xref: /openbmc/linux/fs/btrfs/file.c (revision d670b479)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "ioctl.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "compat.h"
42 
43 /*
44  * when auto defrag is enabled we
45  * queue up these defrag structs to remember which
46  * inodes need defragging passes
47  */
48 struct inode_defrag {
49 	struct rb_node rb_node;
50 	/* objectid */
51 	u64 ino;
52 	/*
53 	 * transid where the defrag was added, we search for
54 	 * extents newer than this
55 	 */
56 	u64 transid;
57 
58 	/* root objectid */
59 	u64 root;
60 
61 	/* last offset we were able to defrag */
62 	u64 last_offset;
63 
64 	/* if we've wrapped around back to zero once already */
65 	int cycled;
66 };
67 
68 static int __compare_inode_defrag(struct inode_defrag *defrag1,
69 				  struct inode_defrag *defrag2)
70 {
71 	if (defrag1->root > defrag2->root)
72 		return 1;
73 	else if (defrag1->root < defrag2->root)
74 		return -1;
75 	else if (defrag1->ino > defrag2->ino)
76 		return 1;
77 	else if (defrag1->ino < defrag2->ino)
78 		return -1;
79 	else
80 		return 0;
81 }
82 
83 /* pop a record for an inode into the defrag tree.  The lock
84  * must be held already
85  *
86  * If you're inserting a record for an older transid than an
87  * existing record, the transid already in the tree is lowered
88  *
89  * If an existing record is found the defrag item you
90  * pass in is freed
91  */
92 static void __btrfs_add_inode_defrag(struct inode *inode,
93 				    struct inode_defrag *defrag)
94 {
95 	struct btrfs_root *root = BTRFS_I(inode)->root;
96 	struct inode_defrag *entry;
97 	struct rb_node **p;
98 	struct rb_node *parent = NULL;
99 	int ret;
100 
101 	p = &root->fs_info->defrag_inodes.rb_node;
102 	while (*p) {
103 		parent = *p;
104 		entry = rb_entry(parent, struct inode_defrag, rb_node);
105 
106 		ret = __compare_inode_defrag(defrag, entry);
107 		if (ret < 0)
108 			p = &parent->rb_left;
109 		else if (ret > 0)
110 			p = &parent->rb_right;
111 		else {
112 			/* if we're reinserting an entry for
113 			 * an old defrag run, make sure to
114 			 * lower the transid of our existing record
115 			 */
116 			if (defrag->transid < entry->transid)
117 				entry->transid = defrag->transid;
118 			if (defrag->last_offset > entry->last_offset)
119 				entry->last_offset = defrag->last_offset;
120 			goto exists;
121 		}
122 	}
123 	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
124 	rb_link_node(&defrag->rb_node, parent, p);
125 	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
126 	return;
127 
128 exists:
129 	kfree(defrag);
130 	return;
131 
132 }
133 
134 /*
135  * insert a defrag record for this inode if auto defrag is
136  * enabled
137  */
138 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
139 			   struct inode *inode)
140 {
141 	struct btrfs_root *root = BTRFS_I(inode)->root;
142 	struct inode_defrag *defrag;
143 	u64 transid;
144 
145 	if (!btrfs_test_opt(root, AUTO_DEFRAG))
146 		return 0;
147 
148 	if (btrfs_fs_closing(root->fs_info))
149 		return 0;
150 
151 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
152 		return 0;
153 
154 	if (trans)
155 		transid = trans->transid;
156 	else
157 		transid = BTRFS_I(inode)->root->last_trans;
158 
159 	defrag = kzalloc(sizeof(*defrag), GFP_NOFS);
160 	if (!defrag)
161 		return -ENOMEM;
162 
163 	defrag->ino = btrfs_ino(inode);
164 	defrag->transid = transid;
165 	defrag->root = root->root_key.objectid;
166 
167 	spin_lock(&root->fs_info->defrag_inodes_lock);
168 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
169 		__btrfs_add_inode_defrag(inode, defrag);
170 	else
171 		kfree(defrag);
172 	spin_unlock(&root->fs_info->defrag_inodes_lock);
173 	return 0;
174 }
175 
176 /*
177  * must be called with the defrag_inodes lock held
178  */
179 struct inode_defrag *btrfs_find_defrag_inode(struct btrfs_fs_info *info,
180 					     u64 root, u64 ino,
181 					     struct rb_node **next)
182 {
183 	struct inode_defrag *entry = NULL;
184 	struct inode_defrag tmp;
185 	struct rb_node *p;
186 	struct rb_node *parent = NULL;
187 	int ret;
188 
189 	tmp.ino = ino;
190 	tmp.root = root;
191 
192 	p = info->defrag_inodes.rb_node;
193 	while (p) {
194 		parent = p;
195 		entry = rb_entry(parent, struct inode_defrag, rb_node);
196 
197 		ret = __compare_inode_defrag(&tmp, entry);
198 		if (ret < 0)
199 			p = parent->rb_left;
200 		else if (ret > 0)
201 			p = parent->rb_right;
202 		else
203 			return entry;
204 	}
205 
206 	if (next) {
207 		while (parent && __compare_inode_defrag(&tmp, entry) > 0) {
208 			parent = rb_next(parent);
209 			entry = rb_entry(parent, struct inode_defrag, rb_node);
210 		}
211 		*next = parent;
212 	}
213 	return NULL;
214 }
215 
216 /*
217  * run through the list of inodes in the FS that need
218  * defragging
219  */
220 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
221 {
222 	struct inode_defrag *defrag;
223 	struct btrfs_root *inode_root;
224 	struct inode *inode;
225 	struct rb_node *n;
226 	struct btrfs_key key;
227 	struct btrfs_ioctl_defrag_range_args range;
228 	u64 first_ino = 0;
229 	u64 root_objectid = 0;
230 	int num_defrag;
231 	int defrag_batch = 1024;
232 
233 	memset(&range, 0, sizeof(range));
234 	range.len = (u64)-1;
235 
236 	atomic_inc(&fs_info->defrag_running);
237 	spin_lock(&fs_info->defrag_inodes_lock);
238 	while(1) {
239 		n = NULL;
240 
241 		/* find an inode to defrag */
242 		defrag = btrfs_find_defrag_inode(fs_info, root_objectid,
243 						 first_ino, &n);
244 		if (!defrag) {
245 			if (n) {
246 				defrag = rb_entry(n, struct inode_defrag,
247 						  rb_node);
248 			} else if (root_objectid || first_ino) {
249 				root_objectid = 0;
250 				first_ino = 0;
251 				continue;
252 			} else {
253 				break;
254 			}
255 		}
256 
257 		/* remove it from the rbtree */
258 		first_ino = defrag->ino + 1;
259 		root_objectid = defrag->root;
260 		rb_erase(&defrag->rb_node, &fs_info->defrag_inodes);
261 
262 		if (btrfs_fs_closing(fs_info))
263 			goto next_free;
264 
265 		spin_unlock(&fs_info->defrag_inodes_lock);
266 
267 		/* get the inode */
268 		key.objectid = defrag->root;
269 		btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
270 		key.offset = (u64)-1;
271 		inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
272 		if (IS_ERR(inode_root))
273 			goto next;
274 
275 		key.objectid = defrag->ino;
276 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
277 		key.offset = 0;
278 
279 		inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
280 		if (IS_ERR(inode))
281 			goto next;
282 
283 		/* do a chunk of defrag */
284 		clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
285 		range.start = defrag->last_offset;
286 		num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
287 					       defrag_batch);
288 		/*
289 		 * if we filled the whole defrag batch, there
290 		 * must be more work to do.  Queue this defrag
291 		 * again
292 		 */
293 		if (num_defrag == defrag_batch) {
294 			defrag->last_offset = range.start;
295 			__btrfs_add_inode_defrag(inode, defrag);
296 			/*
297 			 * we don't want to kfree defrag, we added it back to
298 			 * the rbtree
299 			 */
300 			defrag = NULL;
301 		} else if (defrag->last_offset && !defrag->cycled) {
302 			/*
303 			 * we didn't fill our defrag batch, but
304 			 * we didn't start at zero.  Make sure we loop
305 			 * around to the start of the file.
306 			 */
307 			defrag->last_offset = 0;
308 			defrag->cycled = 1;
309 			__btrfs_add_inode_defrag(inode, defrag);
310 			defrag = NULL;
311 		}
312 
313 		iput(inode);
314 next:
315 		spin_lock(&fs_info->defrag_inodes_lock);
316 next_free:
317 		kfree(defrag);
318 	}
319 	spin_unlock(&fs_info->defrag_inodes_lock);
320 
321 	atomic_dec(&fs_info->defrag_running);
322 
323 	/*
324 	 * during unmount, we use the transaction_wait queue to
325 	 * wait for the defragger to stop
326 	 */
327 	wake_up(&fs_info->transaction_wait);
328 	return 0;
329 }
330 
331 /* simple helper to fault in pages and copy.  This should go away
332  * and be replaced with calls into generic code.
333  */
334 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
335 					 size_t write_bytes,
336 					 struct page **prepared_pages,
337 					 struct iov_iter *i)
338 {
339 	size_t copied = 0;
340 	size_t total_copied = 0;
341 	int pg = 0;
342 	int offset = pos & (PAGE_CACHE_SIZE - 1);
343 
344 	while (write_bytes > 0) {
345 		size_t count = min_t(size_t,
346 				     PAGE_CACHE_SIZE - offset, write_bytes);
347 		struct page *page = prepared_pages[pg];
348 		/*
349 		 * Copy data from userspace to the current page
350 		 *
351 		 * Disable pagefault to avoid recursive lock since
352 		 * the pages are already locked
353 		 */
354 		pagefault_disable();
355 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
356 		pagefault_enable();
357 
358 		/* Flush processor's dcache for this page */
359 		flush_dcache_page(page);
360 
361 		/*
362 		 * if we get a partial write, we can end up with
363 		 * partially up to date pages.  These add
364 		 * a lot of complexity, so make sure they don't
365 		 * happen by forcing this copy to be retried.
366 		 *
367 		 * The rest of the btrfs_file_write code will fall
368 		 * back to page at a time copies after we return 0.
369 		 */
370 		if (!PageUptodate(page) && copied < count)
371 			copied = 0;
372 
373 		iov_iter_advance(i, copied);
374 		write_bytes -= copied;
375 		total_copied += copied;
376 
377 		/* Return to btrfs_file_aio_write to fault page */
378 		if (unlikely(copied == 0))
379 			break;
380 
381 		if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
382 			offset += copied;
383 		} else {
384 			pg++;
385 			offset = 0;
386 		}
387 	}
388 	return total_copied;
389 }
390 
391 /*
392  * unlocks pages after btrfs_file_write is done with them
393  */
394 void btrfs_drop_pages(struct page **pages, size_t num_pages)
395 {
396 	size_t i;
397 	for (i = 0; i < num_pages; i++) {
398 		/* page checked is some magic around finding pages that
399 		 * have been modified without going through btrfs_set_page_dirty
400 		 * clear it here
401 		 */
402 		ClearPageChecked(pages[i]);
403 		unlock_page(pages[i]);
404 		mark_page_accessed(pages[i]);
405 		page_cache_release(pages[i]);
406 	}
407 }
408 
409 /*
410  * after copy_from_user, pages need to be dirtied and we need to make
411  * sure holes are created between the current EOF and the start of
412  * any next extents (if required).
413  *
414  * this also makes the decision about creating an inline extent vs
415  * doing real data extents, marking pages dirty and delalloc as required.
416  */
417 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
418 		      struct page **pages, size_t num_pages,
419 		      loff_t pos, size_t write_bytes,
420 		      struct extent_state **cached)
421 {
422 	int err = 0;
423 	int i;
424 	u64 num_bytes;
425 	u64 start_pos;
426 	u64 end_of_last_block;
427 	u64 end_pos = pos + write_bytes;
428 	loff_t isize = i_size_read(inode);
429 
430 	start_pos = pos & ~((u64)root->sectorsize - 1);
431 	num_bytes = (write_bytes + pos - start_pos +
432 		    root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
433 
434 	end_of_last_block = start_pos + num_bytes - 1;
435 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
436 					cached);
437 	if (err)
438 		return err;
439 
440 	for (i = 0; i < num_pages; i++) {
441 		struct page *p = pages[i];
442 		SetPageUptodate(p);
443 		ClearPageChecked(p);
444 		set_page_dirty(p);
445 	}
446 
447 	/*
448 	 * we've only changed i_size in ram, and we haven't updated
449 	 * the disk i_size.  There is no need to log the inode
450 	 * at this time.
451 	 */
452 	if (end_pos > isize)
453 		i_size_write(inode, end_pos);
454 	return 0;
455 }
456 
457 /*
458  * this drops all the extents in the cache that intersect the range
459  * [start, end].  Existing extents are split as required.
460  */
461 int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
462 			    int skip_pinned)
463 {
464 	struct extent_map *em;
465 	struct extent_map *split = NULL;
466 	struct extent_map *split2 = NULL;
467 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
468 	u64 len = end - start + 1;
469 	int ret;
470 	int testend = 1;
471 	unsigned long flags;
472 	int compressed = 0;
473 
474 	WARN_ON(end < start);
475 	if (end == (u64)-1) {
476 		len = (u64)-1;
477 		testend = 0;
478 	}
479 	while (1) {
480 		if (!split)
481 			split = alloc_extent_map();
482 		if (!split2)
483 			split2 = alloc_extent_map();
484 		BUG_ON(!split || !split2); /* -ENOMEM */
485 
486 		write_lock(&em_tree->lock);
487 		em = lookup_extent_mapping(em_tree, start, len);
488 		if (!em) {
489 			write_unlock(&em_tree->lock);
490 			break;
491 		}
492 		flags = em->flags;
493 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
494 			if (testend && em->start + em->len >= start + len) {
495 				free_extent_map(em);
496 				write_unlock(&em_tree->lock);
497 				break;
498 			}
499 			start = em->start + em->len;
500 			if (testend)
501 				len = start + len - (em->start + em->len);
502 			free_extent_map(em);
503 			write_unlock(&em_tree->lock);
504 			continue;
505 		}
506 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
507 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
508 		remove_extent_mapping(em_tree, em);
509 
510 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
511 		    em->start < start) {
512 			split->start = em->start;
513 			split->len = start - em->start;
514 			split->orig_start = em->orig_start;
515 			split->block_start = em->block_start;
516 
517 			if (compressed)
518 				split->block_len = em->block_len;
519 			else
520 				split->block_len = split->len;
521 
522 			split->bdev = em->bdev;
523 			split->flags = flags;
524 			split->compress_type = em->compress_type;
525 			ret = add_extent_mapping(em_tree, split);
526 			BUG_ON(ret); /* Logic error */
527 			free_extent_map(split);
528 			split = split2;
529 			split2 = NULL;
530 		}
531 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
532 		    testend && em->start + em->len > start + len) {
533 			u64 diff = start + len - em->start;
534 
535 			split->start = start + len;
536 			split->len = em->start + em->len - (start + len);
537 			split->bdev = em->bdev;
538 			split->flags = flags;
539 			split->compress_type = em->compress_type;
540 
541 			if (compressed) {
542 				split->block_len = em->block_len;
543 				split->block_start = em->block_start;
544 				split->orig_start = em->orig_start;
545 			} else {
546 				split->block_len = split->len;
547 				split->block_start = em->block_start + diff;
548 				split->orig_start = split->start;
549 			}
550 
551 			ret = add_extent_mapping(em_tree, split);
552 			BUG_ON(ret); /* Logic error */
553 			free_extent_map(split);
554 			split = NULL;
555 		}
556 		write_unlock(&em_tree->lock);
557 
558 		/* once for us */
559 		free_extent_map(em);
560 		/* once for the tree*/
561 		free_extent_map(em);
562 	}
563 	if (split)
564 		free_extent_map(split);
565 	if (split2)
566 		free_extent_map(split2);
567 	return 0;
568 }
569 
570 /*
571  * this is very complex, but the basic idea is to drop all extents
572  * in the range start - end.  hint_block is filled in with a block number
573  * that would be a good hint to the block allocator for this file.
574  *
575  * If an extent intersects the range but is not entirely inside the range
576  * it is either truncated or split.  Anything entirely inside the range
577  * is deleted from the tree.
578  */
579 int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
580 		       u64 start, u64 end, u64 *hint_byte, int drop_cache)
581 {
582 	struct btrfs_root *root = BTRFS_I(inode)->root;
583 	struct extent_buffer *leaf;
584 	struct btrfs_file_extent_item *fi;
585 	struct btrfs_path *path;
586 	struct btrfs_key key;
587 	struct btrfs_key new_key;
588 	u64 ino = btrfs_ino(inode);
589 	u64 search_start = start;
590 	u64 disk_bytenr = 0;
591 	u64 num_bytes = 0;
592 	u64 extent_offset = 0;
593 	u64 extent_end = 0;
594 	int del_nr = 0;
595 	int del_slot = 0;
596 	int extent_type;
597 	int recow;
598 	int ret;
599 	int modify_tree = -1;
600 
601 	if (drop_cache)
602 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
603 
604 	path = btrfs_alloc_path();
605 	if (!path)
606 		return -ENOMEM;
607 
608 	if (start >= BTRFS_I(inode)->disk_i_size)
609 		modify_tree = 0;
610 
611 	while (1) {
612 		recow = 0;
613 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
614 					       search_start, modify_tree);
615 		if (ret < 0)
616 			break;
617 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
618 			leaf = path->nodes[0];
619 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
620 			if (key.objectid == ino &&
621 			    key.type == BTRFS_EXTENT_DATA_KEY)
622 				path->slots[0]--;
623 		}
624 		ret = 0;
625 next_slot:
626 		leaf = path->nodes[0];
627 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
628 			BUG_ON(del_nr > 0);
629 			ret = btrfs_next_leaf(root, path);
630 			if (ret < 0)
631 				break;
632 			if (ret > 0) {
633 				ret = 0;
634 				break;
635 			}
636 			leaf = path->nodes[0];
637 			recow = 1;
638 		}
639 
640 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
641 		if (key.objectid > ino ||
642 		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
643 			break;
644 
645 		fi = btrfs_item_ptr(leaf, path->slots[0],
646 				    struct btrfs_file_extent_item);
647 		extent_type = btrfs_file_extent_type(leaf, fi);
648 
649 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
650 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
651 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
652 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
653 			extent_offset = btrfs_file_extent_offset(leaf, fi);
654 			extent_end = key.offset +
655 				btrfs_file_extent_num_bytes(leaf, fi);
656 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
657 			extent_end = key.offset +
658 				btrfs_file_extent_inline_len(leaf, fi);
659 		} else {
660 			WARN_ON(1);
661 			extent_end = search_start;
662 		}
663 
664 		if (extent_end <= search_start) {
665 			path->slots[0]++;
666 			goto next_slot;
667 		}
668 
669 		search_start = max(key.offset, start);
670 		if (recow || !modify_tree) {
671 			modify_tree = -1;
672 			btrfs_release_path(path);
673 			continue;
674 		}
675 
676 		/*
677 		 *     | - range to drop - |
678 		 *  | -------- extent -------- |
679 		 */
680 		if (start > key.offset && end < extent_end) {
681 			BUG_ON(del_nr > 0);
682 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
683 
684 			memcpy(&new_key, &key, sizeof(new_key));
685 			new_key.offset = start;
686 			ret = btrfs_duplicate_item(trans, root, path,
687 						   &new_key);
688 			if (ret == -EAGAIN) {
689 				btrfs_release_path(path);
690 				continue;
691 			}
692 			if (ret < 0)
693 				break;
694 
695 			leaf = path->nodes[0];
696 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
697 					    struct btrfs_file_extent_item);
698 			btrfs_set_file_extent_num_bytes(leaf, fi,
699 							start - key.offset);
700 
701 			fi = btrfs_item_ptr(leaf, path->slots[0],
702 					    struct btrfs_file_extent_item);
703 
704 			extent_offset += start - key.offset;
705 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
706 			btrfs_set_file_extent_num_bytes(leaf, fi,
707 							extent_end - start);
708 			btrfs_mark_buffer_dirty(leaf);
709 
710 			if (disk_bytenr > 0) {
711 				ret = btrfs_inc_extent_ref(trans, root,
712 						disk_bytenr, num_bytes, 0,
713 						root->root_key.objectid,
714 						new_key.objectid,
715 						start - extent_offset, 0);
716 				BUG_ON(ret); /* -ENOMEM */
717 				*hint_byte = disk_bytenr;
718 			}
719 			key.offset = start;
720 		}
721 		/*
722 		 *  | ---- range to drop ----- |
723 		 *      | -------- extent -------- |
724 		 */
725 		if (start <= key.offset && end < extent_end) {
726 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
727 
728 			memcpy(&new_key, &key, sizeof(new_key));
729 			new_key.offset = end;
730 			btrfs_set_item_key_safe(trans, root, path, &new_key);
731 
732 			extent_offset += end - key.offset;
733 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
734 			btrfs_set_file_extent_num_bytes(leaf, fi,
735 							extent_end - end);
736 			btrfs_mark_buffer_dirty(leaf);
737 			if (disk_bytenr > 0) {
738 				inode_sub_bytes(inode, end - key.offset);
739 				*hint_byte = disk_bytenr;
740 			}
741 			break;
742 		}
743 
744 		search_start = extent_end;
745 		/*
746 		 *       | ---- range to drop ----- |
747 		 *  | -------- extent -------- |
748 		 */
749 		if (start > key.offset && end >= extent_end) {
750 			BUG_ON(del_nr > 0);
751 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
752 
753 			btrfs_set_file_extent_num_bytes(leaf, fi,
754 							start - key.offset);
755 			btrfs_mark_buffer_dirty(leaf);
756 			if (disk_bytenr > 0) {
757 				inode_sub_bytes(inode, extent_end - start);
758 				*hint_byte = disk_bytenr;
759 			}
760 			if (end == extent_end)
761 				break;
762 
763 			path->slots[0]++;
764 			goto next_slot;
765 		}
766 
767 		/*
768 		 *  | ---- range to drop ----- |
769 		 *    | ------ extent ------ |
770 		 */
771 		if (start <= key.offset && end >= extent_end) {
772 			if (del_nr == 0) {
773 				del_slot = path->slots[0];
774 				del_nr = 1;
775 			} else {
776 				BUG_ON(del_slot + del_nr != path->slots[0]);
777 				del_nr++;
778 			}
779 
780 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
781 				inode_sub_bytes(inode,
782 						extent_end - key.offset);
783 				extent_end = ALIGN(extent_end,
784 						   root->sectorsize);
785 			} else if (disk_bytenr > 0) {
786 				ret = btrfs_free_extent(trans, root,
787 						disk_bytenr, num_bytes, 0,
788 						root->root_key.objectid,
789 						key.objectid, key.offset -
790 						extent_offset, 0);
791 				BUG_ON(ret); /* -ENOMEM */
792 				inode_sub_bytes(inode,
793 						extent_end - key.offset);
794 				*hint_byte = disk_bytenr;
795 			}
796 
797 			if (end == extent_end)
798 				break;
799 
800 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
801 				path->slots[0]++;
802 				goto next_slot;
803 			}
804 
805 			ret = btrfs_del_items(trans, root, path, del_slot,
806 					      del_nr);
807 			if (ret) {
808 				btrfs_abort_transaction(trans, root, ret);
809 				goto out;
810 			}
811 
812 			del_nr = 0;
813 			del_slot = 0;
814 
815 			btrfs_release_path(path);
816 			continue;
817 		}
818 
819 		BUG_ON(1);
820 	}
821 
822 	if (!ret && del_nr > 0) {
823 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
824 		if (ret)
825 			btrfs_abort_transaction(trans, root, ret);
826 	}
827 
828 out:
829 	btrfs_free_path(path);
830 	return ret;
831 }
832 
833 static int extent_mergeable(struct extent_buffer *leaf, int slot,
834 			    u64 objectid, u64 bytenr, u64 orig_offset,
835 			    u64 *start, u64 *end)
836 {
837 	struct btrfs_file_extent_item *fi;
838 	struct btrfs_key key;
839 	u64 extent_end;
840 
841 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
842 		return 0;
843 
844 	btrfs_item_key_to_cpu(leaf, &key, slot);
845 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
846 		return 0;
847 
848 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
849 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
850 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
851 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
852 	    btrfs_file_extent_compression(leaf, fi) ||
853 	    btrfs_file_extent_encryption(leaf, fi) ||
854 	    btrfs_file_extent_other_encoding(leaf, fi))
855 		return 0;
856 
857 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
858 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
859 		return 0;
860 
861 	*start = key.offset;
862 	*end = extent_end;
863 	return 1;
864 }
865 
866 /*
867  * Mark extent in the range start - end as written.
868  *
869  * This changes extent type from 'pre-allocated' to 'regular'. If only
870  * part of extent is marked as written, the extent will be split into
871  * two or three.
872  */
873 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
874 			      struct inode *inode, u64 start, u64 end)
875 {
876 	struct btrfs_root *root = BTRFS_I(inode)->root;
877 	struct extent_buffer *leaf;
878 	struct btrfs_path *path;
879 	struct btrfs_file_extent_item *fi;
880 	struct btrfs_key key;
881 	struct btrfs_key new_key;
882 	u64 bytenr;
883 	u64 num_bytes;
884 	u64 extent_end;
885 	u64 orig_offset;
886 	u64 other_start;
887 	u64 other_end;
888 	u64 split;
889 	int del_nr = 0;
890 	int del_slot = 0;
891 	int recow;
892 	int ret;
893 	u64 ino = btrfs_ino(inode);
894 
895 	btrfs_drop_extent_cache(inode, start, end - 1, 0);
896 
897 	path = btrfs_alloc_path();
898 	if (!path)
899 		return -ENOMEM;
900 again:
901 	recow = 0;
902 	split = start;
903 	key.objectid = ino;
904 	key.type = BTRFS_EXTENT_DATA_KEY;
905 	key.offset = split;
906 
907 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
908 	if (ret < 0)
909 		goto out;
910 	if (ret > 0 && path->slots[0] > 0)
911 		path->slots[0]--;
912 
913 	leaf = path->nodes[0];
914 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
915 	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
916 	fi = btrfs_item_ptr(leaf, path->slots[0],
917 			    struct btrfs_file_extent_item);
918 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
919 	       BTRFS_FILE_EXTENT_PREALLOC);
920 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
921 	BUG_ON(key.offset > start || extent_end < end);
922 
923 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
924 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
925 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
926 	memcpy(&new_key, &key, sizeof(new_key));
927 
928 	if (start == key.offset && end < extent_end) {
929 		other_start = 0;
930 		other_end = start;
931 		if (extent_mergeable(leaf, path->slots[0] - 1,
932 				     ino, bytenr, orig_offset,
933 				     &other_start, &other_end)) {
934 			new_key.offset = end;
935 			btrfs_set_item_key_safe(trans, root, path, &new_key);
936 			fi = btrfs_item_ptr(leaf, path->slots[0],
937 					    struct btrfs_file_extent_item);
938 			btrfs_set_file_extent_num_bytes(leaf, fi,
939 							extent_end - end);
940 			btrfs_set_file_extent_offset(leaf, fi,
941 						     end - orig_offset);
942 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
943 					    struct btrfs_file_extent_item);
944 			btrfs_set_file_extent_num_bytes(leaf, fi,
945 							end - other_start);
946 			btrfs_mark_buffer_dirty(leaf);
947 			goto out;
948 		}
949 	}
950 
951 	if (start > key.offset && end == extent_end) {
952 		other_start = end;
953 		other_end = 0;
954 		if (extent_mergeable(leaf, path->slots[0] + 1,
955 				     ino, bytenr, orig_offset,
956 				     &other_start, &other_end)) {
957 			fi = btrfs_item_ptr(leaf, path->slots[0],
958 					    struct btrfs_file_extent_item);
959 			btrfs_set_file_extent_num_bytes(leaf, fi,
960 							start - key.offset);
961 			path->slots[0]++;
962 			new_key.offset = start;
963 			btrfs_set_item_key_safe(trans, root, path, &new_key);
964 
965 			fi = btrfs_item_ptr(leaf, path->slots[0],
966 					    struct btrfs_file_extent_item);
967 			btrfs_set_file_extent_num_bytes(leaf, fi,
968 							other_end - start);
969 			btrfs_set_file_extent_offset(leaf, fi,
970 						     start - orig_offset);
971 			btrfs_mark_buffer_dirty(leaf);
972 			goto out;
973 		}
974 	}
975 
976 	while (start > key.offset || end < extent_end) {
977 		if (key.offset == start)
978 			split = end;
979 
980 		new_key.offset = split;
981 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
982 		if (ret == -EAGAIN) {
983 			btrfs_release_path(path);
984 			goto again;
985 		}
986 		if (ret < 0) {
987 			btrfs_abort_transaction(trans, root, ret);
988 			goto out;
989 		}
990 
991 		leaf = path->nodes[0];
992 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
993 				    struct btrfs_file_extent_item);
994 		btrfs_set_file_extent_num_bytes(leaf, fi,
995 						split - key.offset);
996 
997 		fi = btrfs_item_ptr(leaf, path->slots[0],
998 				    struct btrfs_file_extent_item);
999 
1000 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1001 		btrfs_set_file_extent_num_bytes(leaf, fi,
1002 						extent_end - split);
1003 		btrfs_mark_buffer_dirty(leaf);
1004 
1005 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1006 					   root->root_key.objectid,
1007 					   ino, orig_offset, 0);
1008 		BUG_ON(ret); /* -ENOMEM */
1009 
1010 		if (split == start) {
1011 			key.offset = start;
1012 		} else {
1013 			BUG_ON(start != key.offset);
1014 			path->slots[0]--;
1015 			extent_end = end;
1016 		}
1017 		recow = 1;
1018 	}
1019 
1020 	other_start = end;
1021 	other_end = 0;
1022 	if (extent_mergeable(leaf, path->slots[0] + 1,
1023 			     ino, bytenr, orig_offset,
1024 			     &other_start, &other_end)) {
1025 		if (recow) {
1026 			btrfs_release_path(path);
1027 			goto again;
1028 		}
1029 		extent_end = other_end;
1030 		del_slot = path->slots[0] + 1;
1031 		del_nr++;
1032 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1033 					0, root->root_key.objectid,
1034 					ino, orig_offset, 0);
1035 		BUG_ON(ret); /* -ENOMEM */
1036 	}
1037 	other_start = 0;
1038 	other_end = start;
1039 	if (extent_mergeable(leaf, path->slots[0] - 1,
1040 			     ino, bytenr, orig_offset,
1041 			     &other_start, &other_end)) {
1042 		if (recow) {
1043 			btrfs_release_path(path);
1044 			goto again;
1045 		}
1046 		key.offset = other_start;
1047 		del_slot = path->slots[0];
1048 		del_nr++;
1049 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1050 					0, root->root_key.objectid,
1051 					ino, orig_offset, 0);
1052 		BUG_ON(ret); /* -ENOMEM */
1053 	}
1054 	if (del_nr == 0) {
1055 		fi = btrfs_item_ptr(leaf, path->slots[0],
1056 			   struct btrfs_file_extent_item);
1057 		btrfs_set_file_extent_type(leaf, fi,
1058 					   BTRFS_FILE_EXTENT_REG);
1059 		btrfs_mark_buffer_dirty(leaf);
1060 	} else {
1061 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1062 			   struct btrfs_file_extent_item);
1063 		btrfs_set_file_extent_type(leaf, fi,
1064 					   BTRFS_FILE_EXTENT_REG);
1065 		btrfs_set_file_extent_num_bytes(leaf, fi,
1066 						extent_end - key.offset);
1067 		btrfs_mark_buffer_dirty(leaf);
1068 
1069 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1070 		if (ret < 0) {
1071 			btrfs_abort_transaction(trans, root, ret);
1072 			goto out;
1073 		}
1074 	}
1075 out:
1076 	btrfs_free_path(path);
1077 	return 0;
1078 }
1079 
1080 /*
1081  * on error we return an unlocked page and the error value
1082  * on success we return a locked page and 0
1083  */
1084 static int prepare_uptodate_page(struct page *page, u64 pos,
1085 				 bool force_uptodate)
1086 {
1087 	int ret = 0;
1088 
1089 	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1090 	    !PageUptodate(page)) {
1091 		ret = btrfs_readpage(NULL, page);
1092 		if (ret)
1093 			return ret;
1094 		lock_page(page);
1095 		if (!PageUptodate(page)) {
1096 			unlock_page(page);
1097 			return -EIO;
1098 		}
1099 	}
1100 	return 0;
1101 }
1102 
1103 /*
1104  * this gets pages into the page cache and locks them down, it also properly
1105  * waits for data=ordered extents to finish before allowing the pages to be
1106  * modified.
1107  */
1108 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1109 			 struct page **pages, size_t num_pages,
1110 			 loff_t pos, unsigned long first_index,
1111 			 size_t write_bytes, bool force_uptodate)
1112 {
1113 	struct extent_state *cached_state = NULL;
1114 	int i;
1115 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
1116 	struct inode *inode = fdentry(file)->d_inode;
1117 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1118 	int err = 0;
1119 	int faili = 0;
1120 	u64 start_pos;
1121 	u64 last_pos;
1122 
1123 	start_pos = pos & ~((u64)root->sectorsize - 1);
1124 	last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1125 
1126 again:
1127 	for (i = 0; i < num_pages; i++) {
1128 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1129 					       mask | __GFP_WRITE);
1130 		if (!pages[i]) {
1131 			faili = i - 1;
1132 			err = -ENOMEM;
1133 			goto fail;
1134 		}
1135 
1136 		if (i == 0)
1137 			err = prepare_uptodate_page(pages[i], pos,
1138 						    force_uptodate);
1139 		if (i == num_pages - 1)
1140 			err = prepare_uptodate_page(pages[i],
1141 						    pos + write_bytes, false);
1142 		if (err) {
1143 			page_cache_release(pages[i]);
1144 			faili = i - 1;
1145 			goto fail;
1146 		}
1147 		wait_on_page_writeback(pages[i]);
1148 	}
1149 	err = 0;
1150 	if (start_pos < inode->i_size) {
1151 		struct btrfs_ordered_extent *ordered;
1152 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1153 				 start_pos, last_pos - 1, 0, &cached_state);
1154 		ordered = btrfs_lookup_first_ordered_extent(inode,
1155 							    last_pos - 1);
1156 		if (ordered &&
1157 		    ordered->file_offset + ordered->len > start_pos &&
1158 		    ordered->file_offset < last_pos) {
1159 			btrfs_put_ordered_extent(ordered);
1160 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1161 					     start_pos, last_pos - 1,
1162 					     &cached_state, GFP_NOFS);
1163 			for (i = 0; i < num_pages; i++) {
1164 				unlock_page(pages[i]);
1165 				page_cache_release(pages[i]);
1166 			}
1167 			btrfs_wait_ordered_range(inode, start_pos,
1168 						 last_pos - start_pos);
1169 			goto again;
1170 		}
1171 		if (ordered)
1172 			btrfs_put_ordered_extent(ordered);
1173 
1174 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1175 				  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1176 				  EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
1177 				  GFP_NOFS);
1178 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1179 				     start_pos, last_pos - 1, &cached_state,
1180 				     GFP_NOFS);
1181 	}
1182 	for (i = 0; i < num_pages; i++) {
1183 		if (clear_page_dirty_for_io(pages[i]))
1184 			account_page_redirty(pages[i]);
1185 		set_page_extent_mapped(pages[i]);
1186 		WARN_ON(!PageLocked(pages[i]));
1187 	}
1188 	return 0;
1189 fail:
1190 	while (faili >= 0) {
1191 		unlock_page(pages[faili]);
1192 		page_cache_release(pages[faili]);
1193 		faili--;
1194 	}
1195 	return err;
1196 
1197 }
1198 
1199 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1200 					       struct iov_iter *i,
1201 					       loff_t pos)
1202 {
1203 	struct inode *inode = fdentry(file)->d_inode;
1204 	struct btrfs_root *root = BTRFS_I(inode)->root;
1205 	struct page **pages = NULL;
1206 	unsigned long first_index;
1207 	size_t num_written = 0;
1208 	int nrptrs;
1209 	int ret = 0;
1210 	bool force_page_uptodate = false;
1211 
1212 	nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1213 		     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1214 		     (sizeof(struct page *)));
1215 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1216 	nrptrs = max(nrptrs, 8);
1217 	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1218 	if (!pages)
1219 		return -ENOMEM;
1220 
1221 	first_index = pos >> PAGE_CACHE_SHIFT;
1222 
1223 	while (iov_iter_count(i) > 0) {
1224 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1225 		size_t write_bytes = min(iov_iter_count(i),
1226 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
1227 					 offset);
1228 		size_t num_pages = (write_bytes + offset +
1229 				    PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1230 		size_t dirty_pages;
1231 		size_t copied;
1232 
1233 		WARN_ON(num_pages > nrptrs);
1234 
1235 		/*
1236 		 * Fault pages before locking them in prepare_pages
1237 		 * to avoid recursive lock
1238 		 */
1239 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1240 			ret = -EFAULT;
1241 			break;
1242 		}
1243 
1244 		ret = btrfs_delalloc_reserve_space(inode,
1245 					num_pages << PAGE_CACHE_SHIFT);
1246 		if (ret)
1247 			break;
1248 
1249 		/*
1250 		 * This is going to setup the pages array with the number of
1251 		 * pages we want, so we don't really need to worry about the
1252 		 * contents of pages from loop to loop
1253 		 */
1254 		ret = prepare_pages(root, file, pages, num_pages,
1255 				    pos, first_index, write_bytes,
1256 				    force_page_uptodate);
1257 		if (ret) {
1258 			btrfs_delalloc_release_space(inode,
1259 					num_pages << PAGE_CACHE_SHIFT);
1260 			break;
1261 		}
1262 
1263 		copied = btrfs_copy_from_user(pos, num_pages,
1264 					   write_bytes, pages, i);
1265 
1266 		/*
1267 		 * if we have trouble faulting in the pages, fall
1268 		 * back to one page at a time
1269 		 */
1270 		if (copied < write_bytes)
1271 			nrptrs = 1;
1272 
1273 		if (copied == 0) {
1274 			force_page_uptodate = true;
1275 			dirty_pages = 0;
1276 		} else {
1277 			force_page_uptodate = false;
1278 			dirty_pages = (copied + offset +
1279 				       PAGE_CACHE_SIZE - 1) >>
1280 				       PAGE_CACHE_SHIFT;
1281 		}
1282 
1283 		/*
1284 		 * If we had a short copy we need to release the excess delaloc
1285 		 * bytes we reserved.  We need to increment outstanding_extents
1286 		 * because btrfs_delalloc_release_space will decrement it, but
1287 		 * we still have an outstanding extent for the chunk we actually
1288 		 * managed to copy.
1289 		 */
1290 		if (num_pages > dirty_pages) {
1291 			if (copied > 0) {
1292 				spin_lock(&BTRFS_I(inode)->lock);
1293 				BTRFS_I(inode)->outstanding_extents++;
1294 				spin_unlock(&BTRFS_I(inode)->lock);
1295 			}
1296 			btrfs_delalloc_release_space(inode,
1297 					(num_pages - dirty_pages) <<
1298 					PAGE_CACHE_SHIFT);
1299 		}
1300 
1301 		if (copied > 0) {
1302 			ret = btrfs_dirty_pages(root, inode, pages,
1303 						dirty_pages, pos, copied,
1304 						NULL);
1305 			if (ret) {
1306 				btrfs_delalloc_release_space(inode,
1307 					dirty_pages << PAGE_CACHE_SHIFT);
1308 				btrfs_drop_pages(pages, num_pages);
1309 				break;
1310 			}
1311 		}
1312 
1313 		btrfs_drop_pages(pages, num_pages);
1314 
1315 		cond_resched();
1316 
1317 		balance_dirty_pages_ratelimited_nr(inode->i_mapping,
1318 						   dirty_pages);
1319 		if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1320 			btrfs_btree_balance_dirty(root, 1);
1321 
1322 		pos += copied;
1323 		num_written += copied;
1324 	}
1325 
1326 	kfree(pages);
1327 
1328 	return num_written ? num_written : ret;
1329 }
1330 
1331 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1332 				    const struct iovec *iov,
1333 				    unsigned long nr_segs, loff_t pos,
1334 				    loff_t *ppos, size_t count, size_t ocount)
1335 {
1336 	struct file *file = iocb->ki_filp;
1337 	struct inode *inode = fdentry(file)->d_inode;
1338 	struct iov_iter i;
1339 	ssize_t written;
1340 	ssize_t written_buffered;
1341 	loff_t endbyte;
1342 	int err;
1343 
1344 	written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1345 					    count, ocount);
1346 
1347 	/*
1348 	 * the generic O_DIRECT will update in-memory i_size after the
1349 	 * DIOs are done.  But our endio handlers that update the on
1350 	 * disk i_size never update past the in memory i_size.  So we
1351 	 * need one more update here to catch any additions to the
1352 	 * file
1353 	 */
1354 	if (inode->i_size != BTRFS_I(inode)->disk_i_size) {
1355 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
1356 		mark_inode_dirty(inode);
1357 	}
1358 
1359 	if (written < 0 || written == count)
1360 		return written;
1361 
1362 	pos += written;
1363 	count -= written;
1364 	iov_iter_init(&i, iov, nr_segs, count, written);
1365 	written_buffered = __btrfs_buffered_write(file, &i, pos);
1366 	if (written_buffered < 0) {
1367 		err = written_buffered;
1368 		goto out;
1369 	}
1370 	endbyte = pos + written_buffered - 1;
1371 	err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1372 	if (err)
1373 		goto out;
1374 	written += written_buffered;
1375 	*ppos = pos + written_buffered;
1376 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1377 				 endbyte >> PAGE_CACHE_SHIFT);
1378 out:
1379 	return written ? written : err;
1380 }
1381 
1382 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1383 				    const struct iovec *iov,
1384 				    unsigned long nr_segs, loff_t pos)
1385 {
1386 	struct file *file = iocb->ki_filp;
1387 	struct inode *inode = fdentry(file)->d_inode;
1388 	struct btrfs_root *root = BTRFS_I(inode)->root;
1389 	loff_t *ppos = &iocb->ki_pos;
1390 	u64 start_pos;
1391 	ssize_t num_written = 0;
1392 	ssize_t err = 0;
1393 	size_t count, ocount;
1394 
1395 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
1396 
1397 	mutex_lock(&inode->i_mutex);
1398 
1399 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1400 	if (err) {
1401 		mutex_unlock(&inode->i_mutex);
1402 		goto out;
1403 	}
1404 	count = ocount;
1405 
1406 	current->backing_dev_info = inode->i_mapping->backing_dev_info;
1407 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1408 	if (err) {
1409 		mutex_unlock(&inode->i_mutex);
1410 		goto out;
1411 	}
1412 
1413 	if (count == 0) {
1414 		mutex_unlock(&inode->i_mutex);
1415 		goto out;
1416 	}
1417 
1418 	err = file_remove_suid(file);
1419 	if (err) {
1420 		mutex_unlock(&inode->i_mutex);
1421 		goto out;
1422 	}
1423 
1424 	/*
1425 	 * If BTRFS flips readonly due to some impossible error
1426 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1427 	 * although we have opened a file as writable, we have
1428 	 * to stop this write operation to ensure FS consistency.
1429 	 */
1430 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
1431 		mutex_unlock(&inode->i_mutex);
1432 		err = -EROFS;
1433 		goto out;
1434 	}
1435 
1436 	err = file_update_time(file);
1437 	if (err) {
1438 		mutex_unlock(&inode->i_mutex);
1439 		goto out;
1440 	}
1441 
1442 	start_pos = round_down(pos, root->sectorsize);
1443 	if (start_pos > i_size_read(inode)) {
1444 		err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1445 		if (err) {
1446 			mutex_unlock(&inode->i_mutex);
1447 			goto out;
1448 		}
1449 	}
1450 
1451 	if (unlikely(file->f_flags & O_DIRECT)) {
1452 		num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1453 						   pos, ppos, count, ocount);
1454 	} else {
1455 		struct iov_iter i;
1456 
1457 		iov_iter_init(&i, iov, nr_segs, count, num_written);
1458 
1459 		num_written = __btrfs_buffered_write(file, &i, pos);
1460 		if (num_written > 0)
1461 			*ppos = pos + num_written;
1462 	}
1463 
1464 	mutex_unlock(&inode->i_mutex);
1465 
1466 	/*
1467 	 * we want to make sure fsync finds this change
1468 	 * but we haven't joined a transaction running right now.
1469 	 *
1470 	 * Later on, someone is sure to update the inode and get the
1471 	 * real transid recorded.
1472 	 *
1473 	 * We set last_trans now to the fs_info generation + 1,
1474 	 * this will either be one more than the running transaction
1475 	 * or the generation used for the next transaction if there isn't
1476 	 * one running right now.
1477 	 */
1478 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1479 	if (num_written > 0 || num_written == -EIOCBQUEUED) {
1480 		err = generic_write_sync(file, pos, num_written);
1481 		if (err < 0 && num_written > 0)
1482 			num_written = err;
1483 	}
1484 out:
1485 	current->backing_dev_info = NULL;
1486 	return num_written ? num_written : err;
1487 }
1488 
1489 int btrfs_release_file(struct inode *inode, struct file *filp)
1490 {
1491 	/*
1492 	 * ordered_data_close is set by settattr when we are about to truncate
1493 	 * a file from a non-zero size to a zero size.  This tries to
1494 	 * flush down new bytes that may have been written if the
1495 	 * application were using truncate to replace a file in place.
1496 	 */
1497 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1498 			       &BTRFS_I(inode)->runtime_flags)) {
1499 		btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1500 		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1501 			filemap_flush(inode->i_mapping);
1502 	}
1503 	if (filp->private_data)
1504 		btrfs_ioctl_trans_end(filp);
1505 	return 0;
1506 }
1507 
1508 /*
1509  * fsync call for both files and directories.  This logs the inode into
1510  * the tree log instead of forcing full commits whenever possible.
1511  *
1512  * It needs to call filemap_fdatawait so that all ordered extent updates are
1513  * in the metadata btree are up to date for copying to the log.
1514  *
1515  * It drops the inode mutex before doing the tree log commit.  This is an
1516  * important optimization for directories because holding the mutex prevents
1517  * new operations on the dir while we write to disk.
1518  */
1519 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1520 {
1521 	struct dentry *dentry = file->f_path.dentry;
1522 	struct inode *inode = dentry->d_inode;
1523 	struct btrfs_root *root = BTRFS_I(inode)->root;
1524 	int ret = 0;
1525 	struct btrfs_trans_handle *trans;
1526 
1527 	trace_btrfs_sync_file(file, datasync);
1528 
1529 	mutex_lock(&inode->i_mutex);
1530 
1531 	/*
1532 	 * we wait first, since the writeback may change the inode, also wait
1533 	 * ordered range does a filemape_write_and_wait_range which is why we
1534 	 * don't do it above like other file systems.
1535 	 */
1536 	root->log_batch++;
1537 	btrfs_wait_ordered_range(inode, start, end);
1538 	root->log_batch++;
1539 
1540 	/*
1541 	 * check the transaction that last modified this inode
1542 	 * and see if its already been committed
1543 	 */
1544 	if (!BTRFS_I(inode)->last_trans) {
1545 		mutex_unlock(&inode->i_mutex);
1546 		goto out;
1547 	}
1548 
1549 	/*
1550 	 * if the last transaction that changed this file was before
1551 	 * the current transaction, we can bail out now without any
1552 	 * syncing
1553 	 */
1554 	smp_mb();
1555 	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1556 	    BTRFS_I(inode)->last_trans <=
1557 	    root->fs_info->last_trans_committed) {
1558 		BTRFS_I(inode)->last_trans = 0;
1559 		mutex_unlock(&inode->i_mutex);
1560 		goto out;
1561 	}
1562 
1563 	/*
1564 	 * ok we haven't committed the transaction yet, lets do a commit
1565 	 */
1566 	if (file->private_data)
1567 		btrfs_ioctl_trans_end(file);
1568 
1569 	trans = btrfs_start_transaction(root, 0);
1570 	if (IS_ERR(trans)) {
1571 		ret = PTR_ERR(trans);
1572 		mutex_unlock(&inode->i_mutex);
1573 		goto out;
1574 	}
1575 
1576 	ret = btrfs_log_dentry_safe(trans, root, dentry);
1577 	if (ret < 0) {
1578 		mutex_unlock(&inode->i_mutex);
1579 		goto out;
1580 	}
1581 
1582 	/* we've logged all the items and now have a consistent
1583 	 * version of the file in the log.  It is possible that
1584 	 * someone will come in and modify the file, but that's
1585 	 * fine because the log is consistent on disk, and we
1586 	 * have references to all of the file's extents
1587 	 *
1588 	 * It is possible that someone will come in and log the
1589 	 * file again, but that will end up using the synchronization
1590 	 * inside btrfs_sync_log to keep things safe.
1591 	 */
1592 	mutex_unlock(&inode->i_mutex);
1593 
1594 	if (ret != BTRFS_NO_LOG_SYNC) {
1595 		if (ret > 0) {
1596 			ret = btrfs_commit_transaction(trans, root);
1597 		} else {
1598 			ret = btrfs_sync_log(trans, root);
1599 			if (ret == 0)
1600 				ret = btrfs_end_transaction(trans, root);
1601 			else
1602 				ret = btrfs_commit_transaction(trans, root);
1603 		}
1604 	} else {
1605 		ret = btrfs_end_transaction(trans, root);
1606 	}
1607 out:
1608 	return ret > 0 ? -EIO : ret;
1609 }
1610 
1611 static const struct vm_operations_struct btrfs_file_vm_ops = {
1612 	.fault		= filemap_fault,
1613 	.page_mkwrite	= btrfs_page_mkwrite,
1614 };
1615 
1616 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1617 {
1618 	struct address_space *mapping = filp->f_mapping;
1619 
1620 	if (!mapping->a_ops->readpage)
1621 		return -ENOEXEC;
1622 
1623 	file_accessed(filp);
1624 	vma->vm_ops = &btrfs_file_vm_ops;
1625 	vma->vm_flags |= VM_CAN_NONLINEAR;
1626 
1627 	return 0;
1628 }
1629 
1630 static long btrfs_fallocate(struct file *file, int mode,
1631 			    loff_t offset, loff_t len)
1632 {
1633 	struct inode *inode = file->f_path.dentry->d_inode;
1634 	struct extent_state *cached_state = NULL;
1635 	u64 cur_offset;
1636 	u64 last_byte;
1637 	u64 alloc_start;
1638 	u64 alloc_end;
1639 	u64 alloc_hint = 0;
1640 	u64 locked_end;
1641 	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
1642 	struct extent_map *em;
1643 	int ret;
1644 
1645 	alloc_start = offset & ~mask;
1646 	alloc_end =  (offset + len + mask) & ~mask;
1647 
1648 	/* We only support the FALLOC_FL_KEEP_SIZE mode */
1649 	if (mode & ~FALLOC_FL_KEEP_SIZE)
1650 		return -EOPNOTSUPP;
1651 
1652 	/*
1653 	 * Make sure we have enough space before we do the
1654 	 * allocation.
1655 	 */
1656 	ret = btrfs_check_data_free_space(inode, len);
1657 	if (ret)
1658 		return ret;
1659 
1660 	/*
1661 	 * wait for ordered IO before we have any locks.  We'll loop again
1662 	 * below with the locks held.
1663 	 */
1664 	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
1665 
1666 	mutex_lock(&inode->i_mutex);
1667 	ret = inode_newsize_ok(inode, alloc_end);
1668 	if (ret)
1669 		goto out;
1670 
1671 	if (alloc_start > inode->i_size) {
1672 		ret = btrfs_cont_expand(inode, i_size_read(inode),
1673 					alloc_start);
1674 		if (ret)
1675 			goto out;
1676 	}
1677 
1678 	locked_end = alloc_end - 1;
1679 	while (1) {
1680 		struct btrfs_ordered_extent *ordered;
1681 
1682 		/* the extent lock is ordered inside the running
1683 		 * transaction
1684 		 */
1685 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
1686 				 locked_end, 0, &cached_state);
1687 		ordered = btrfs_lookup_first_ordered_extent(inode,
1688 							    alloc_end - 1);
1689 		if (ordered &&
1690 		    ordered->file_offset + ordered->len > alloc_start &&
1691 		    ordered->file_offset < alloc_end) {
1692 			btrfs_put_ordered_extent(ordered);
1693 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1694 					     alloc_start, locked_end,
1695 					     &cached_state, GFP_NOFS);
1696 			/*
1697 			 * we can't wait on the range with the transaction
1698 			 * running or with the extent lock held
1699 			 */
1700 			btrfs_wait_ordered_range(inode, alloc_start,
1701 						 alloc_end - alloc_start);
1702 		} else {
1703 			if (ordered)
1704 				btrfs_put_ordered_extent(ordered);
1705 			break;
1706 		}
1707 	}
1708 
1709 	cur_offset = alloc_start;
1710 	while (1) {
1711 		u64 actual_end;
1712 
1713 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
1714 				      alloc_end - cur_offset, 0);
1715 		if (IS_ERR_OR_NULL(em)) {
1716 			if (!em)
1717 				ret = -ENOMEM;
1718 			else
1719 				ret = PTR_ERR(em);
1720 			break;
1721 		}
1722 		last_byte = min(extent_map_end(em), alloc_end);
1723 		actual_end = min_t(u64, extent_map_end(em), offset + len);
1724 		last_byte = (last_byte + mask) & ~mask;
1725 
1726 		if (em->block_start == EXTENT_MAP_HOLE ||
1727 		    (cur_offset >= inode->i_size &&
1728 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
1729 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
1730 							last_byte - cur_offset,
1731 							1 << inode->i_blkbits,
1732 							offset + len,
1733 							&alloc_hint);
1734 
1735 			if (ret < 0) {
1736 				free_extent_map(em);
1737 				break;
1738 			}
1739 		} else if (actual_end > inode->i_size &&
1740 			   !(mode & FALLOC_FL_KEEP_SIZE)) {
1741 			/*
1742 			 * We didn't need to allocate any more space, but we
1743 			 * still extended the size of the file so we need to
1744 			 * update i_size.
1745 			 */
1746 			inode->i_ctime = CURRENT_TIME;
1747 			i_size_write(inode, actual_end);
1748 			btrfs_ordered_update_i_size(inode, actual_end, NULL);
1749 		}
1750 		free_extent_map(em);
1751 
1752 		cur_offset = last_byte;
1753 		if (cur_offset >= alloc_end) {
1754 			ret = 0;
1755 			break;
1756 		}
1757 	}
1758 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
1759 			     &cached_state, GFP_NOFS);
1760 out:
1761 	mutex_unlock(&inode->i_mutex);
1762 	/* Let go of our reservation. */
1763 	btrfs_free_reserved_data_space(inode, len);
1764 	return ret;
1765 }
1766 
1767 static int find_desired_extent(struct inode *inode, loff_t *offset, int origin)
1768 {
1769 	struct btrfs_root *root = BTRFS_I(inode)->root;
1770 	struct extent_map *em;
1771 	struct extent_state *cached_state = NULL;
1772 	u64 lockstart = *offset;
1773 	u64 lockend = i_size_read(inode);
1774 	u64 start = *offset;
1775 	u64 orig_start = *offset;
1776 	u64 len = i_size_read(inode);
1777 	u64 last_end = 0;
1778 	int ret = 0;
1779 
1780 	lockend = max_t(u64, root->sectorsize, lockend);
1781 	if (lockend <= lockstart)
1782 		lockend = lockstart + root->sectorsize;
1783 
1784 	len = lockend - lockstart + 1;
1785 
1786 	len = max_t(u64, len, root->sectorsize);
1787 	if (inode->i_size == 0)
1788 		return -ENXIO;
1789 
1790 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
1791 			 &cached_state);
1792 
1793 	/*
1794 	 * Delalloc is such a pain.  If we have a hole and we have pending
1795 	 * delalloc for a portion of the hole we will get back a hole that
1796 	 * exists for the entire range since it hasn't been actually written
1797 	 * yet.  So to take care of this case we need to look for an extent just
1798 	 * before the position we want in case there is outstanding delalloc
1799 	 * going on here.
1800 	 */
1801 	if (origin == SEEK_HOLE && start != 0) {
1802 		if (start <= root->sectorsize)
1803 			em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
1804 						     root->sectorsize, 0);
1805 		else
1806 			em = btrfs_get_extent_fiemap(inode, NULL, 0,
1807 						     start - root->sectorsize,
1808 						     root->sectorsize, 0);
1809 		if (IS_ERR(em)) {
1810 			ret = PTR_ERR(em);
1811 			goto out;
1812 		}
1813 		last_end = em->start + em->len;
1814 		if (em->block_start == EXTENT_MAP_DELALLOC)
1815 			last_end = min_t(u64, last_end, inode->i_size);
1816 		free_extent_map(em);
1817 	}
1818 
1819 	while (1) {
1820 		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
1821 		if (IS_ERR(em)) {
1822 			ret = PTR_ERR(em);
1823 			break;
1824 		}
1825 
1826 		if (em->block_start == EXTENT_MAP_HOLE) {
1827 			if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
1828 				if (last_end <= orig_start) {
1829 					free_extent_map(em);
1830 					ret = -ENXIO;
1831 					break;
1832 				}
1833 			}
1834 
1835 			if (origin == SEEK_HOLE) {
1836 				*offset = start;
1837 				free_extent_map(em);
1838 				break;
1839 			}
1840 		} else {
1841 			if (origin == SEEK_DATA) {
1842 				if (em->block_start == EXTENT_MAP_DELALLOC) {
1843 					if (start >= inode->i_size) {
1844 						free_extent_map(em);
1845 						ret = -ENXIO;
1846 						break;
1847 					}
1848 				}
1849 
1850 				*offset = start;
1851 				free_extent_map(em);
1852 				break;
1853 			}
1854 		}
1855 
1856 		start = em->start + em->len;
1857 		last_end = em->start + em->len;
1858 
1859 		if (em->block_start == EXTENT_MAP_DELALLOC)
1860 			last_end = min_t(u64, last_end, inode->i_size);
1861 
1862 		if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
1863 			free_extent_map(em);
1864 			ret = -ENXIO;
1865 			break;
1866 		}
1867 		free_extent_map(em);
1868 		cond_resched();
1869 	}
1870 	if (!ret)
1871 		*offset = min(*offset, inode->i_size);
1872 out:
1873 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1874 			     &cached_state, GFP_NOFS);
1875 	return ret;
1876 }
1877 
1878 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int origin)
1879 {
1880 	struct inode *inode = file->f_mapping->host;
1881 	int ret;
1882 
1883 	mutex_lock(&inode->i_mutex);
1884 	switch (origin) {
1885 	case SEEK_END:
1886 	case SEEK_CUR:
1887 		offset = generic_file_llseek(file, offset, origin);
1888 		goto out;
1889 	case SEEK_DATA:
1890 	case SEEK_HOLE:
1891 		if (offset >= i_size_read(inode)) {
1892 			mutex_unlock(&inode->i_mutex);
1893 			return -ENXIO;
1894 		}
1895 
1896 		ret = find_desired_extent(inode, &offset, origin);
1897 		if (ret) {
1898 			mutex_unlock(&inode->i_mutex);
1899 			return ret;
1900 		}
1901 	}
1902 
1903 	if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
1904 		offset = -EINVAL;
1905 		goto out;
1906 	}
1907 	if (offset > inode->i_sb->s_maxbytes) {
1908 		offset = -EINVAL;
1909 		goto out;
1910 	}
1911 
1912 	/* Special lock needed here? */
1913 	if (offset != file->f_pos) {
1914 		file->f_pos = offset;
1915 		file->f_version = 0;
1916 	}
1917 out:
1918 	mutex_unlock(&inode->i_mutex);
1919 	return offset;
1920 }
1921 
1922 const struct file_operations btrfs_file_operations = {
1923 	.llseek		= btrfs_file_llseek,
1924 	.read		= do_sync_read,
1925 	.write		= do_sync_write,
1926 	.aio_read       = generic_file_aio_read,
1927 	.splice_read	= generic_file_splice_read,
1928 	.aio_write	= btrfs_file_aio_write,
1929 	.mmap		= btrfs_file_mmap,
1930 	.open		= generic_file_open,
1931 	.release	= btrfs_release_file,
1932 	.fsync		= btrfs_sync_file,
1933 	.fallocate	= btrfs_fallocate,
1934 	.unlocked_ioctl	= btrfs_ioctl,
1935 #ifdef CONFIG_COMPAT
1936 	.compat_ioctl	= btrfs_ioctl,
1937 #endif
1938 };
1939