xref: /openbmc/linux/fs/btrfs/file.c (revision d2999e1b)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 #include "qgroup.h"
44 
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 /*
47  * when auto defrag is enabled we
48  * queue up these defrag structs to remember which
49  * inodes need defragging passes
50  */
51 struct inode_defrag {
52 	struct rb_node rb_node;
53 	/* objectid */
54 	u64 ino;
55 	/*
56 	 * transid where the defrag was added, we search for
57 	 * extents newer than this
58 	 */
59 	u64 transid;
60 
61 	/* root objectid */
62 	u64 root;
63 
64 	/* last offset we were able to defrag */
65 	u64 last_offset;
66 
67 	/* if we've wrapped around back to zero once already */
68 	int cycled;
69 };
70 
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 				  struct inode_defrag *defrag2)
73 {
74 	if (defrag1->root > defrag2->root)
75 		return 1;
76 	else if (defrag1->root < defrag2->root)
77 		return -1;
78 	else if (defrag1->ino > defrag2->ino)
79 		return 1;
80 	else if (defrag1->ino < defrag2->ino)
81 		return -1;
82 	else
83 		return 0;
84 }
85 
86 /* pop a record for an inode into the defrag tree.  The lock
87  * must be held already
88  *
89  * If you're inserting a record for an older transid than an
90  * existing record, the transid already in the tree is lowered
91  *
92  * If an existing record is found the defrag item you
93  * pass in is freed
94  */
95 static int __btrfs_add_inode_defrag(struct inode *inode,
96 				    struct inode_defrag *defrag)
97 {
98 	struct btrfs_root *root = BTRFS_I(inode)->root;
99 	struct inode_defrag *entry;
100 	struct rb_node **p;
101 	struct rb_node *parent = NULL;
102 	int ret;
103 
104 	p = &root->fs_info->defrag_inodes.rb_node;
105 	while (*p) {
106 		parent = *p;
107 		entry = rb_entry(parent, struct inode_defrag, rb_node);
108 
109 		ret = __compare_inode_defrag(defrag, entry);
110 		if (ret < 0)
111 			p = &parent->rb_left;
112 		else if (ret > 0)
113 			p = &parent->rb_right;
114 		else {
115 			/* if we're reinserting an entry for
116 			 * an old defrag run, make sure to
117 			 * lower the transid of our existing record
118 			 */
119 			if (defrag->transid < entry->transid)
120 				entry->transid = defrag->transid;
121 			if (defrag->last_offset > entry->last_offset)
122 				entry->last_offset = defrag->last_offset;
123 			return -EEXIST;
124 		}
125 	}
126 	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
127 	rb_link_node(&defrag->rb_node, parent, p);
128 	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
129 	return 0;
130 }
131 
132 static inline int __need_auto_defrag(struct btrfs_root *root)
133 {
134 	if (!btrfs_test_opt(root, AUTO_DEFRAG))
135 		return 0;
136 
137 	if (btrfs_fs_closing(root->fs_info))
138 		return 0;
139 
140 	return 1;
141 }
142 
143 /*
144  * insert a defrag record for this inode if auto defrag is
145  * enabled
146  */
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 			   struct inode *inode)
149 {
150 	struct btrfs_root *root = BTRFS_I(inode)->root;
151 	struct inode_defrag *defrag;
152 	u64 transid;
153 	int ret;
154 
155 	if (!__need_auto_defrag(root))
156 		return 0;
157 
158 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
159 		return 0;
160 
161 	if (trans)
162 		transid = trans->transid;
163 	else
164 		transid = BTRFS_I(inode)->root->last_trans;
165 
166 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
167 	if (!defrag)
168 		return -ENOMEM;
169 
170 	defrag->ino = btrfs_ino(inode);
171 	defrag->transid = transid;
172 	defrag->root = root->root_key.objectid;
173 
174 	spin_lock(&root->fs_info->defrag_inodes_lock);
175 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
176 		/*
177 		 * If we set IN_DEFRAG flag and evict the inode from memory,
178 		 * and then re-read this inode, this new inode doesn't have
179 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
180 		 */
181 		ret = __btrfs_add_inode_defrag(inode, defrag);
182 		if (ret)
183 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 	} else {
185 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
186 	}
187 	spin_unlock(&root->fs_info->defrag_inodes_lock);
188 	return 0;
189 }
190 
191 /*
192  * Requeue the defrag object. If there is a defrag object that points to
193  * the same inode in the tree, we will merge them together (by
194  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
195  */
196 static void btrfs_requeue_inode_defrag(struct inode *inode,
197 				       struct inode_defrag *defrag)
198 {
199 	struct btrfs_root *root = BTRFS_I(inode)->root;
200 	int ret;
201 
202 	if (!__need_auto_defrag(root))
203 		goto out;
204 
205 	/*
206 	 * Here we don't check the IN_DEFRAG flag, because we need merge
207 	 * them together.
208 	 */
209 	spin_lock(&root->fs_info->defrag_inodes_lock);
210 	ret = __btrfs_add_inode_defrag(inode, defrag);
211 	spin_unlock(&root->fs_info->defrag_inodes_lock);
212 	if (ret)
213 		goto out;
214 	return;
215 out:
216 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
217 }
218 
219 /*
220  * pick the defragable inode that we want, if it doesn't exist, we will get
221  * the next one.
222  */
223 static struct inode_defrag *
224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
225 {
226 	struct inode_defrag *entry = NULL;
227 	struct inode_defrag tmp;
228 	struct rb_node *p;
229 	struct rb_node *parent = NULL;
230 	int ret;
231 
232 	tmp.ino = ino;
233 	tmp.root = root;
234 
235 	spin_lock(&fs_info->defrag_inodes_lock);
236 	p = fs_info->defrag_inodes.rb_node;
237 	while (p) {
238 		parent = p;
239 		entry = rb_entry(parent, struct inode_defrag, rb_node);
240 
241 		ret = __compare_inode_defrag(&tmp, entry);
242 		if (ret < 0)
243 			p = parent->rb_left;
244 		else if (ret > 0)
245 			p = parent->rb_right;
246 		else
247 			goto out;
248 	}
249 
250 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
251 		parent = rb_next(parent);
252 		if (parent)
253 			entry = rb_entry(parent, struct inode_defrag, rb_node);
254 		else
255 			entry = NULL;
256 	}
257 out:
258 	if (entry)
259 		rb_erase(parent, &fs_info->defrag_inodes);
260 	spin_unlock(&fs_info->defrag_inodes_lock);
261 	return entry;
262 }
263 
264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
265 {
266 	struct inode_defrag *defrag;
267 	struct rb_node *node;
268 
269 	spin_lock(&fs_info->defrag_inodes_lock);
270 	node = rb_first(&fs_info->defrag_inodes);
271 	while (node) {
272 		rb_erase(node, &fs_info->defrag_inodes);
273 		defrag = rb_entry(node, struct inode_defrag, rb_node);
274 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
275 
276 		if (need_resched()) {
277 			spin_unlock(&fs_info->defrag_inodes_lock);
278 			cond_resched();
279 			spin_lock(&fs_info->defrag_inodes_lock);
280 		}
281 
282 		node = rb_first(&fs_info->defrag_inodes);
283 	}
284 	spin_unlock(&fs_info->defrag_inodes_lock);
285 }
286 
287 #define BTRFS_DEFRAG_BATCH	1024
288 
289 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
290 				    struct inode_defrag *defrag)
291 {
292 	struct btrfs_root *inode_root;
293 	struct inode *inode;
294 	struct btrfs_key key;
295 	struct btrfs_ioctl_defrag_range_args range;
296 	int num_defrag;
297 	int index;
298 	int ret;
299 
300 	/* get the inode */
301 	key.objectid = defrag->root;
302 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
303 	key.offset = (u64)-1;
304 
305 	index = srcu_read_lock(&fs_info->subvol_srcu);
306 
307 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
308 	if (IS_ERR(inode_root)) {
309 		ret = PTR_ERR(inode_root);
310 		goto cleanup;
311 	}
312 
313 	key.objectid = defrag->ino;
314 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
315 	key.offset = 0;
316 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
317 	if (IS_ERR(inode)) {
318 		ret = PTR_ERR(inode);
319 		goto cleanup;
320 	}
321 	srcu_read_unlock(&fs_info->subvol_srcu, index);
322 
323 	/* do a chunk of defrag */
324 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
325 	memset(&range, 0, sizeof(range));
326 	range.len = (u64)-1;
327 	range.start = defrag->last_offset;
328 
329 	sb_start_write(fs_info->sb);
330 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
331 				       BTRFS_DEFRAG_BATCH);
332 	sb_end_write(fs_info->sb);
333 	/*
334 	 * if we filled the whole defrag batch, there
335 	 * must be more work to do.  Queue this defrag
336 	 * again
337 	 */
338 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
339 		defrag->last_offset = range.start;
340 		btrfs_requeue_inode_defrag(inode, defrag);
341 	} else if (defrag->last_offset && !defrag->cycled) {
342 		/*
343 		 * we didn't fill our defrag batch, but
344 		 * we didn't start at zero.  Make sure we loop
345 		 * around to the start of the file.
346 		 */
347 		defrag->last_offset = 0;
348 		defrag->cycled = 1;
349 		btrfs_requeue_inode_defrag(inode, defrag);
350 	} else {
351 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
352 	}
353 
354 	iput(inode);
355 	return 0;
356 cleanup:
357 	srcu_read_unlock(&fs_info->subvol_srcu, index);
358 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
359 	return ret;
360 }
361 
362 /*
363  * run through the list of inodes in the FS that need
364  * defragging
365  */
366 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
367 {
368 	struct inode_defrag *defrag;
369 	u64 first_ino = 0;
370 	u64 root_objectid = 0;
371 
372 	atomic_inc(&fs_info->defrag_running);
373 	while (1) {
374 		/* Pause the auto defragger. */
375 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
376 			     &fs_info->fs_state))
377 			break;
378 
379 		if (!__need_auto_defrag(fs_info->tree_root))
380 			break;
381 
382 		/* find an inode to defrag */
383 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
384 						 first_ino);
385 		if (!defrag) {
386 			if (root_objectid || first_ino) {
387 				root_objectid = 0;
388 				first_ino = 0;
389 				continue;
390 			} else {
391 				break;
392 			}
393 		}
394 
395 		first_ino = defrag->ino + 1;
396 		root_objectid = defrag->root;
397 
398 		__btrfs_run_defrag_inode(fs_info, defrag);
399 	}
400 	atomic_dec(&fs_info->defrag_running);
401 
402 	/*
403 	 * during unmount, we use the transaction_wait queue to
404 	 * wait for the defragger to stop
405 	 */
406 	wake_up(&fs_info->transaction_wait);
407 	return 0;
408 }
409 
410 /* simple helper to fault in pages and copy.  This should go away
411  * and be replaced with calls into generic code.
412  */
413 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
414 					 size_t write_bytes,
415 					 struct page **prepared_pages,
416 					 struct iov_iter *i)
417 {
418 	size_t copied = 0;
419 	size_t total_copied = 0;
420 	int pg = 0;
421 	int offset = pos & (PAGE_CACHE_SIZE - 1);
422 
423 	while (write_bytes > 0) {
424 		size_t count = min_t(size_t,
425 				     PAGE_CACHE_SIZE - offset, write_bytes);
426 		struct page *page = prepared_pages[pg];
427 		/*
428 		 * Copy data from userspace to the current page
429 		 */
430 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
431 
432 		/* Flush processor's dcache for this page */
433 		flush_dcache_page(page);
434 
435 		/*
436 		 * if we get a partial write, we can end up with
437 		 * partially up to date pages.  These add
438 		 * a lot of complexity, so make sure they don't
439 		 * happen by forcing this copy to be retried.
440 		 *
441 		 * The rest of the btrfs_file_write code will fall
442 		 * back to page at a time copies after we return 0.
443 		 */
444 		if (!PageUptodate(page) && copied < count)
445 			copied = 0;
446 
447 		iov_iter_advance(i, copied);
448 		write_bytes -= copied;
449 		total_copied += copied;
450 
451 		/* Return to btrfs_file_write_iter to fault page */
452 		if (unlikely(copied == 0))
453 			break;
454 
455 		if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
456 			offset += copied;
457 		} else {
458 			pg++;
459 			offset = 0;
460 		}
461 	}
462 	return total_copied;
463 }
464 
465 /*
466  * unlocks pages after btrfs_file_write is done with them
467  */
468 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
469 {
470 	size_t i;
471 	for (i = 0; i < num_pages; i++) {
472 		/* page checked is some magic around finding pages that
473 		 * have been modified without going through btrfs_set_page_dirty
474 		 * clear it here. There should be no need to mark the pages
475 		 * accessed as prepare_pages should have marked them accessed
476 		 * in prepare_pages via find_or_create_page()
477 		 */
478 		ClearPageChecked(pages[i]);
479 		unlock_page(pages[i]);
480 		page_cache_release(pages[i]);
481 	}
482 }
483 
484 /*
485  * after copy_from_user, pages need to be dirtied and we need to make
486  * sure holes are created between the current EOF and the start of
487  * any next extents (if required).
488  *
489  * this also makes the decision about creating an inline extent vs
490  * doing real data extents, marking pages dirty and delalloc as required.
491  */
492 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
493 			     struct page **pages, size_t num_pages,
494 			     loff_t pos, size_t write_bytes,
495 			     struct extent_state **cached)
496 {
497 	int err = 0;
498 	int i;
499 	u64 num_bytes;
500 	u64 start_pos;
501 	u64 end_of_last_block;
502 	u64 end_pos = pos + write_bytes;
503 	loff_t isize = i_size_read(inode);
504 
505 	start_pos = pos & ~((u64)root->sectorsize - 1);
506 	num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
507 
508 	end_of_last_block = start_pos + num_bytes - 1;
509 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
510 					cached);
511 	if (err)
512 		return err;
513 
514 	for (i = 0; i < num_pages; i++) {
515 		struct page *p = pages[i];
516 		SetPageUptodate(p);
517 		ClearPageChecked(p);
518 		set_page_dirty(p);
519 	}
520 
521 	/*
522 	 * we've only changed i_size in ram, and we haven't updated
523 	 * the disk i_size.  There is no need to log the inode
524 	 * at this time.
525 	 */
526 	if (end_pos > isize)
527 		i_size_write(inode, end_pos);
528 	return 0;
529 }
530 
531 /*
532  * this drops all the extents in the cache that intersect the range
533  * [start, end].  Existing extents are split as required.
534  */
535 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
536 			     int skip_pinned)
537 {
538 	struct extent_map *em;
539 	struct extent_map *split = NULL;
540 	struct extent_map *split2 = NULL;
541 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
542 	u64 len = end - start + 1;
543 	u64 gen;
544 	int ret;
545 	int testend = 1;
546 	unsigned long flags;
547 	int compressed = 0;
548 	bool modified;
549 
550 	WARN_ON(end < start);
551 	if (end == (u64)-1) {
552 		len = (u64)-1;
553 		testend = 0;
554 	}
555 	while (1) {
556 		int no_splits = 0;
557 
558 		modified = false;
559 		if (!split)
560 			split = alloc_extent_map();
561 		if (!split2)
562 			split2 = alloc_extent_map();
563 		if (!split || !split2)
564 			no_splits = 1;
565 
566 		write_lock(&em_tree->lock);
567 		em = lookup_extent_mapping(em_tree, start, len);
568 		if (!em) {
569 			write_unlock(&em_tree->lock);
570 			break;
571 		}
572 		flags = em->flags;
573 		gen = em->generation;
574 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
575 			if (testend && em->start + em->len >= start + len) {
576 				free_extent_map(em);
577 				write_unlock(&em_tree->lock);
578 				break;
579 			}
580 			start = em->start + em->len;
581 			if (testend)
582 				len = start + len - (em->start + em->len);
583 			free_extent_map(em);
584 			write_unlock(&em_tree->lock);
585 			continue;
586 		}
587 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
588 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
589 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
590 		modified = !list_empty(&em->list);
591 		if (no_splits)
592 			goto next;
593 
594 		if (em->start < start) {
595 			split->start = em->start;
596 			split->len = start - em->start;
597 
598 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
599 				split->orig_start = em->orig_start;
600 				split->block_start = em->block_start;
601 
602 				if (compressed)
603 					split->block_len = em->block_len;
604 				else
605 					split->block_len = split->len;
606 				split->orig_block_len = max(split->block_len,
607 						em->orig_block_len);
608 				split->ram_bytes = em->ram_bytes;
609 			} else {
610 				split->orig_start = split->start;
611 				split->block_len = 0;
612 				split->block_start = em->block_start;
613 				split->orig_block_len = 0;
614 				split->ram_bytes = split->len;
615 			}
616 
617 			split->generation = gen;
618 			split->bdev = em->bdev;
619 			split->flags = flags;
620 			split->compress_type = em->compress_type;
621 			replace_extent_mapping(em_tree, em, split, modified);
622 			free_extent_map(split);
623 			split = split2;
624 			split2 = NULL;
625 		}
626 		if (testend && em->start + em->len > start + len) {
627 			u64 diff = start + len - em->start;
628 
629 			split->start = start + len;
630 			split->len = em->start + em->len - (start + len);
631 			split->bdev = em->bdev;
632 			split->flags = flags;
633 			split->compress_type = em->compress_type;
634 			split->generation = gen;
635 
636 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
637 				split->orig_block_len = max(em->block_len,
638 						    em->orig_block_len);
639 
640 				split->ram_bytes = em->ram_bytes;
641 				if (compressed) {
642 					split->block_len = em->block_len;
643 					split->block_start = em->block_start;
644 					split->orig_start = em->orig_start;
645 				} else {
646 					split->block_len = split->len;
647 					split->block_start = em->block_start
648 						+ diff;
649 					split->orig_start = em->orig_start;
650 				}
651 			} else {
652 				split->ram_bytes = split->len;
653 				split->orig_start = split->start;
654 				split->block_len = 0;
655 				split->block_start = em->block_start;
656 				split->orig_block_len = 0;
657 			}
658 
659 			if (extent_map_in_tree(em)) {
660 				replace_extent_mapping(em_tree, em, split,
661 						       modified);
662 			} else {
663 				ret = add_extent_mapping(em_tree, split,
664 							 modified);
665 				ASSERT(ret == 0); /* Logic error */
666 			}
667 			free_extent_map(split);
668 			split = NULL;
669 		}
670 next:
671 		if (extent_map_in_tree(em))
672 			remove_extent_mapping(em_tree, em);
673 		write_unlock(&em_tree->lock);
674 
675 		/* once for us */
676 		free_extent_map(em);
677 		/* once for the tree*/
678 		free_extent_map(em);
679 	}
680 	if (split)
681 		free_extent_map(split);
682 	if (split2)
683 		free_extent_map(split2);
684 }
685 
686 /*
687  * this is very complex, but the basic idea is to drop all extents
688  * in the range start - end.  hint_block is filled in with a block number
689  * that would be a good hint to the block allocator for this file.
690  *
691  * If an extent intersects the range but is not entirely inside the range
692  * it is either truncated or split.  Anything entirely inside the range
693  * is deleted from the tree.
694  */
695 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
696 			 struct btrfs_root *root, struct inode *inode,
697 			 struct btrfs_path *path, u64 start, u64 end,
698 			 u64 *drop_end, int drop_cache,
699 			 int replace_extent,
700 			 u32 extent_item_size,
701 			 int *key_inserted)
702 {
703 	struct extent_buffer *leaf;
704 	struct btrfs_file_extent_item *fi;
705 	struct btrfs_key key;
706 	struct btrfs_key new_key;
707 	u64 ino = btrfs_ino(inode);
708 	u64 search_start = start;
709 	u64 disk_bytenr = 0;
710 	u64 num_bytes = 0;
711 	u64 extent_offset = 0;
712 	u64 extent_end = 0;
713 	int del_nr = 0;
714 	int del_slot = 0;
715 	int extent_type;
716 	int recow;
717 	int ret;
718 	int modify_tree = -1;
719 	int update_refs;
720 	int found = 0;
721 	int leafs_visited = 0;
722 
723 	if (drop_cache)
724 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
725 
726 	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
727 		modify_tree = 0;
728 
729 	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
730 		       root == root->fs_info->tree_root);
731 	while (1) {
732 		recow = 0;
733 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
734 					       search_start, modify_tree);
735 		if (ret < 0)
736 			break;
737 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
738 			leaf = path->nodes[0];
739 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
740 			if (key.objectid == ino &&
741 			    key.type == BTRFS_EXTENT_DATA_KEY)
742 				path->slots[0]--;
743 		}
744 		ret = 0;
745 		leafs_visited++;
746 next_slot:
747 		leaf = path->nodes[0];
748 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
749 			BUG_ON(del_nr > 0);
750 			ret = btrfs_next_leaf(root, path);
751 			if (ret < 0)
752 				break;
753 			if (ret > 0) {
754 				ret = 0;
755 				break;
756 			}
757 			leafs_visited++;
758 			leaf = path->nodes[0];
759 			recow = 1;
760 		}
761 
762 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
763 		if (key.objectid > ino ||
764 		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
765 			break;
766 
767 		fi = btrfs_item_ptr(leaf, path->slots[0],
768 				    struct btrfs_file_extent_item);
769 		extent_type = btrfs_file_extent_type(leaf, fi);
770 
771 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
772 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
773 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
774 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
775 			extent_offset = btrfs_file_extent_offset(leaf, fi);
776 			extent_end = key.offset +
777 				btrfs_file_extent_num_bytes(leaf, fi);
778 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
779 			extent_end = key.offset +
780 				btrfs_file_extent_inline_len(leaf,
781 						     path->slots[0], fi);
782 		} else {
783 			WARN_ON(1);
784 			extent_end = search_start;
785 		}
786 
787 		/*
788 		 * Don't skip extent items representing 0 byte lengths. They
789 		 * used to be created (bug) if while punching holes we hit
790 		 * -ENOSPC condition. So if we find one here, just ensure we
791 		 * delete it, otherwise we would insert a new file extent item
792 		 * with the same key (offset) as that 0 bytes length file
793 		 * extent item in the call to setup_items_for_insert() later
794 		 * in this function.
795 		 */
796 		if (extent_end == key.offset && extent_end >= search_start)
797 			goto delete_extent_item;
798 
799 		if (extent_end <= search_start) {
800 			path->slots[0]++;
801 			goto next_slot;
802 		}
803 
804 		found = 1;
805 		search_start = max(key.offset, start);
806 		if (recow || !modify_tree) {
807 			modify_tree = -1;
808 			btrfs_release_path(path);
809 			continue;
810 		}
811 
812 		/*
813 		 *     | - range to drop - |
814 		 *  | -------- extent -------- |
815 		 */
816 		if (start > key.offset && end < extent_end) {
817 			BUG_ON(del_nr > 0);
818 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
819 				ret = -EOPNOTSUPP;
820 				break;
821 			}
822 
823 			memcpy(&new_key, &key, sizeof(new_key));
824 			new_key.offset = start;
825 			ret = btrfs_duplicate_item(trans, root, path,
826 						   &new_key);
827 			if (ret == -EAGAIN) {
828 				btrfs_release_path(path);
829 				continue;
830 			}
831 			if (ret < 0)
832 				break;
833 
834 			leaf = path->nodes[0];
835 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
836 					    struct btrfs_file_extent_item);
837 			btrfs_set_file_extent_num_bytes(leaf, fi,
838 							start - key.offset);
839 
840 			fi = btrfs_item_ptr(leaf, path->slots[0],
841 					    struct btrfs_file_extent_item);
842 
843 			extent_offset += start - key.offset;
844 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
845 			btrfs_set_file_extent_num_bytes(leaf, fi,
846 							extent_end - start);
847 			btrfs_mark_buffer_dirty(leaf);
848 
849 			if (update_refs && disk_bytenr > 0) {
850 				ret = btrfs_inc_extent_ref(trans, root,
851 						disk_bytenr, num_bytes, 0,
852 						root->root_key.objectid,
853 						new_key.objectid,
854 						start - extent_offset, 1);
855 				BUG_ON(ret); /* -ENOMEM */
856 			}
857 			key.offset = start;
858 		}
859 		/*
860 		 *  | ---- range to drop ----- |
861 		 *      | -------- extent -------- |
862 		 */
863 		if (start <= key.offset && end < extent_end) {
864 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
865 				ret = -EOPNOTSUPP;
866 				break;
867 			}
868 
869 			memcpy(&new_key, &key, sizeof(new_key));
870 			new_key.offset = end;
871 			btrfs_set_item_key_safe(root, path, &new_key);
872 
873 			extent_offset += end - key.offset;
874 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
875 			btrfs_set_file_extent_num_bytes(leaf, fi,
876 							extent_end - end);
877 			btrfs_mark_buffer_dirty(leaf);
878 			if (update_refs && disk_bytenr > 0)
879 				inode_sub_bytes(inode, end - key.offset);
880 			break;
881 		}
882 
883 		search_start = extent_end;
884 		/*
885 		 *       | ---- range to drop ----- |
886 		 *  | -------- extent -------- |
887 		 */
888 		if (start > key.offset && end >= extent_end) {
889 			BUG_ON(del_nr > 0);
890 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
891 				ret = -EOPNOTSUPP;
892 				break;
893 			}
894 
895 			btrfs_set_file_extent_num_bytes(leaf, fi,
896 							start - key.offset);
897 			btrfs_mark_buffer_dirty(leaf);
898 			if (update_refs && disk_bytenr > 0)
899 				inode_sub_bytes(inode, extent_end - start);
900 			if (end == extent_end)
901 				break;
902 
903 			path->slots[0]++;
904 			goto next_slot;
905 		}
906 
907 		/*
908 		 *  | ---- range to drop ----- |
909 		 *    | ------ extent ------ |
910 		 */
911 		if (start <= key.offset && end >= extent_end) {
912 delete_extent_item:
913 			if (del_nr == 0) {
914 				del_slot = path->slots[0];
915 				del_nr = 1;
916 			} else {
917 				BUG_ON(del_slot + del_nr != path->slots[0]);
918 				del_nr++;
919 			}
920 
921 			if (update_refs &&
922 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
923 				inode_sub_bytes(inode,
924 						extent_end - key.offset);
925 				extent_end = ALIGN(extent_end,
926 						   root->sectorsize);
927 			} else if (update_refs && disk_bytenr > 0) {
928 				ret = btrfs_free_extent(trans, root,
929 						disk_bytenr, num_bytes, 0,
930 						root->root_key.objectid,
931 						key.objectid, key.offset -
932 						extent_offset, 0);
933 				BUG_ON(ret); /* -ENOMEM */
934 				inode_sub_bytes(inode,
935 						extent_end - key.offset);
936 			}
937 
938 			if (end == extent_end)
939 				break;
940 
941 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
942 				path->slots[0]++;
943 				goto next_slot;
944 			}
945 
946 			ret = btrfs_del_items(trans, root, path, del_slot,
947 					      del_nr);
948 			if (ret) {
949 				btrfs_abort_transaction(trans, root, ret);
950 				break;
951 			}
952 
953 			del_nr = 0;
954 			del_slot = 0;
955 
956 			btrfs_release_path(path);
957 			continue;
958 		}
959 
960 		BUG_ON(1);
961 	}
962 
963 	if (!ret && del_nr > 0) {
964 		/*
965 		 * Set path->slots[0] to first slot, so that after the delete
966 		 * if items are move off from our leaf to its immediate left or
967 		 * right neighbor leafs, we end up with a correct and adjusted
968 		 * path->slots[0] for our insertion (if replace_extent != 0).
969 		 */
970 		path->slots[0] = del_slot;
971 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
972 		if (ret)
973 			btrfs_abort_transaction(trans, root, ret);
974 	}
975 
976 	leaf = path->nodes[0];
977 	/*
978 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
979 	 * which case it unlocked our path, so check path->locks[0] matches a
980 	 * write lock.
981 	 */
982 	if (!ret && replace_extent && leafs_visited == 1 &&
983 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
984 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
985 	    btrfs_leaf_free_space(root, leaf) >=
986 	    sizeof(struct btrfs_item) + extent_item_size) {
987 
988 		key.objectid = ino;
989 		key.type = BTRFS_EXTENT_DATA_KEY;
990 		key.offset = start;
991 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
992 			struct btrfs_key slot_key;
993 
994 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
995 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
996 				path->slots[0]++;
997 		}
998 		setup_items_for_insert(root, path, &key,
999 				       &extent_item_size,
1000 				       extent_item_size,
1001 				       sizeof(struct btrfs_item) +
1002 				       extent_item_size, 1);
1003 		*key_inserted = 1;
1004 	}
1005 
1006 	if (!replace_extent || !(*key_inserted))
1007 		btrfs_release_path(path);
1008 	if (drop_end)
1009 		*drop_end = found ? min(end, extent_end) : end;
1010 	return ret;
1011 }
1012 
1013 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1014 		       struct btrfs_root *root, struct inode *inode, u64 start,
1015 		       u64 end, int drop_cache)
1016 {
1017 	struct btrfs_path *path;
1018 	int ret;
1019 
1020 	path = btrfs_alloc_path();
1021 	if (!path)
1022 		return -ENOMEM;
1023 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1024 				   drop_cache, 0, 0, NULL);
1025 	btrfs_free_path(path);
1026 	return ret;
1027 }
1028 
1029 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1030 			    u64 objectid, u64 bytenr, u64 orig_offset,
1031 			    u64 *start, u64 *end)
1032 {
1033 	struct btrfs_file_extent_item *fi;
1034 	struct btrfs_key key;
1035 	u64 extent_end;
1036 
1037 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1038 		return 0;
1039 
1040 	btrfs_item_key_to_cpu(leaf, &key, slot);
1041 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1042 		return 0;
1043 
1044 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1045 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1046 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1047 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1048 	    btrfs_file_extent_compression(leaf, fi) ||
1049 	    btrfs_file_extent_encryption(leaf, fi) ||
1050 	    btrfs_file_extent_other_encoding(leaf, fi))
1051 		return 0;
1052 
1053 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1054 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1055 		return 0;
1056 
1057 	*start = key.offset;
1058 	*end = extent_end;
1059 	return 1;
1060 }
1061 
1062 /*
1063  * Mark extent in the range start - end as written.
1064  *
1065  * This changes extent type from 'pre-allocated' to 'regular'. If only
1066  * part of extent is marked as written, the extent will be split into
1067  * two or three.
1068  */
1069 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1070 			      struct inode *inode, u64 start, u64 end)
1071 {
1072 	struct btrfs_root *root = BTRFS_I(inode)->root;
1073 	struct extent_buffer *leaf;
1074 	struct btrfs_path *path;
1075 	struct btrfs_file_extent_item *fi;
1076 	struct btrfs_key key;
1077 	struct btrfs_key new_key;
1078 	u64 bytenr;
1079 	u64 num_bytes;
1080 	u64 extent_end;
1081 	u64 orig_offset;
1082 	u64 other_start;
1083 	u64 other_end;
1084 	u64 split;
1085 	int del_nr = 0;
1086 	int del_slot = 0;
1087 	int recow;
1088 	int ret;
1089 	u64 ino = btrfs_ino(inode);
1090 
1091 	path = btrfs_alloc_path();
1092 	if (!path)
1093 		return -ENOMEM;
1094 again:
1095 	recow = 0;
1096 	split = start;
1097 	key.objectid = ino;
1098 	key.type = BTRFS_EXTENT_DATA_KEY;
1099 	key.offset = split;
1100 
1101 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1102 	if (ret < 0)
1103 		goto out;
1104 	if (ret > 0 && path->slots[0] > 0)
1105 		path->slots[0]--;
1106 
1107 	leaf = path->nodes[0];
1108 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1109 	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1110 	fi = btrfs_item_ptr(leaf, path->slots[0],
1111 			    struct btrfs_file_extent_item);
1112 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1113 	       BTRFS_FILE_EXTENT_PREALLOC);
1114 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1115 	BUG_ON(key.offset > start || extent_end < end);
1116 
1117 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1118 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1119 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1120 	memcpy(&new_key, &key, sizeof(new_key));
1121 
1122 	if (start == key.offset && end < extent_end) {
1123 		other_start = 0;
1124 		other_end = start;
1125 		if (extent_mergeable(leaf, path->slots[0] - 1,
1126 				     ino, bytenr, orig_offset,
1127 				     &other_start, &other_end)) {
1128 			new_key.offset = end;
1129 			btrfs_set_item_key_safe(root, path, &new_key);
1130 			fi = btrfs_item_ptr(leaf, path->slots[0],
1131 					    struct btrfs_file_extent_item);
1132 			btrfs_set_file_extent_generation(leaf, fi,
1133 							 trans->transid);
1134 			btrfs_set_file_extent_num_bytes(leaf, fi,
1135 							extent_end - end);
1136 			btrfs_set_file_extent_offset(leaf, fi,
1137 						     end - orig_offset);
1138 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1139 					    struct btrfs_file_extent_item);
1140 			btrfs_set_file_extent_generation(leaf, fi,
1141 							 trans->transid);
1142 			btrfs_set_file_extent_num_bytes(leaf, fi,
1143 							end - other_start);
1144 			btrfs_mark_buffer_dirty(leaf);
1145 			goto out;
1146 		}
1147 	}
1148 
1149 	if (start > key.offset && end == extent_end) {
1150 		other_start = end;
1151 		other_end = 0;
1152 		if (extent_mergeable(leaf, path->slots[0] + 1,
1153 				     ino, bytenr, orig_offset,
1154 				     &other_start, &other_end)) {
1155 			fi = btrfs_item_ptr(leaf, path->slots[0],
1156 					    struct btrfs_file_extent_item);
1157 			btrfs_set_file_extent_num_bytes(leaf, fi,
1158 							start - key.offset);
1159 			btrfs_set_file_extent_generation(leaf, fi,
1160 							 trans->transid);
1161 			path->slots[0]++;
1162 			new_key.offset = start;
1163 			btrfs_set_item_key_safe(root, path, &new_key);
1164 
1165 			fi = btrfs_item_ptr(leaf, path->slots[0],
1166 					    struct btrfs_file_extent_item);
1167 			btrfs_set_file_extent_generation(leaf, fi,
1168 							 trans->transid);
1169 			btrfs_set_file_extent_num_bytes(leaf, fi,
1170 							other_end - start);
1171 			btrfs_set_file_extent_offset(leaf, fi,
1172 						     start - orig_offset);
1173 			btrfs_mark_buffer_dirty(leaf);
1174 			goto out;
1175 		}
1176 	}
1177 
1178 	while (start > key.offset || end < extent_end) {
1179 		if (key.offset == start)
1180 			split = end;
1181 
1182 		new_key.offset = split;
1183 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1184 		if (ret == -EAGAIN) {
1185 			btrfs_release_path(path);
1186 			goto again;
1187 		}
1188 		if (ret < 0) {
1189 			btrfs_abort_transaction(trans, root, ret);
1190 			goto out;
1191 		}
1192 
1193 		leaf = path->nodes[0];
1194 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1195 				    struct btrfs_file_extent_item);
1196 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1197 		btrfs_set_file_extent_num_bytes(leaf, fi,
1198 						split - key.offset);
1199 
1200 		fi = btrfs_item_ptr(leaf, path->slots[0],
1201 				    struct btrfs_file_extent_item);
1202 
1203 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1204 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1205 		btrfs_set_file_extent_num_bytes(leaf, fi,
1206 						extent_end - split);
1207 		btrfs_mark_buffer_dirty(leaf);
1208 
1209 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1210 					   root->root_key.objectid,
1211 					   ino, orig_offset, 1);
1212 		BUG_ON(ret); /* -ENOMEM */
1213 
1214 		if (split == start) {
1215 			key.offset = start;
1216 		} else {
1217 			BUG_ON(start != key.offset);
1218 			path->slots[0]--;
1219 			extent_end = end;
1220 		}
1221 		recow = 1;
1222 	}
1223 
1224 	other_start = end;
1225 	other_end = 0;
1226 	if (extent_mergeable(leaf, path->slots[0] + 1,
1227 			     ino, bytenr, orig_offset,
1228 			     &other_start, &other_end)) {
1229 		if (recow) {
1230 			btrfs_release_path(path);
1231 			goto again;
1232 		}
1233 		extent_end = other_end;
1234 		del_slot = path->slots[0] + 1;
1235 		del_nr++;
1236 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1237 					0, root->root_key.objectid,
1238 					ino, orig_offset, 0);
1239 		BUG_ON(ret); /* -ENOMEM */
1240 	}
1241 	other_start = 0;
1242 	other_end = start;
1243 	if (extent_mergeable(leaf, path->slots[0] - 1,
1244 			     ino, bytenr, orig_offset,
1245 			     &other_start, &other_end)) {
1246 		if (recow) {
1247 			btrfs_release_path(path);
1248 			goto again;
1249 		}
1250 		key.offset = other_start;
1251 		del_slot = path->slots[0];
1252 		del_nr++;
1253 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1254 					0, root->root_key.objectid,
1255 					ino, orig_offset, 0);
1256 		BUG_ON(ret); /* -ENOMEM */
1257 	}
1258 	if (del_nr == 0) {
1259 		fi = btrfs_item_ptr(leaf, path->slots[0],
1260 			   struct btrfs_file_extent_item);
1261 		btrfs_set_file_extent_type(leaf, fi,
1262 					   BTRFS_FILE_EXTENT_REG);
1263 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1264 		btrfs_mark_buffer_dirty(leaf);
1265 	} else {
1266 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1267 			   struct btrfs_file_extent_item);
1268 		btrfs_set_file_extent_type(leaf, fi,
1269 					   BTRFS_FILE_EXTENT_REG);
1270 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1271 		btrfs_set_file_extent_num_bytes(leaf, fi,
1272 						extent_end - key.offset);
1273 		btrfs_mark_buffer_dirty(leaf);
1274 
1275 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1276 		if (ret < 0) {
1277 			btrfs_abort_transaction(trans, root, ret);
1278 			goto out;
1279 		}
1280 	}
1281 out:
1282 	btrfs_free_path(path);
1283 	return 0;
1284 }
1285 
1286 /*
1287  * on error we return an unlocked page and the error value
1288  * on success we return a locked page and 0
1289  */
1290 static int prepare_uptodate_page(struct page *page, u64 pos,
1291 				 bool force_uptodate)
1292 {
1293 	int ret = 0;
1294 
1295 	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1296 	    !PageUptodate(page)) {
1297 		ret = btrfs_readpage(NULL, page);
1298 		if (ret)
1299 			return ret;
1300 		lock_page(page);
1301 		if (!PageUptodate(page)) {
1302 			unlock_page(page);
1303 			return -EIO;
1304 		}
1305 	}
1306 	return 0;
1307 }
1308 
1309 /*
1310  * this just gets pages into the page cache and locks them down.
1311  */
1312 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1313 				  size_t num_pages, loff_t pos,
1314 				  size_t write_bytes, bool force_uptodate)
1315 {
1316 	int i;
1317 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
1318 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1319 	int err = 0;
1320 	int faili;
1321 
1322 	for (i = 0; i < num_pages; i++) {
1323 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1324 					       mask | __GFP_WRITE);
1325 		if (!pages[i]) {
1326 			faili = i - 1;
1327 			err = -ENOMEM;
1328 			goto fail;
1329 		}
1330 
1331 		if (i == 0)
1332 			err = prepare_uptodate_page(pages[i], pos,
1333 						    force_uptodate);
1334 		if (i == num_pages - 1)
1335 			err = prepare_uptodate_page(pages[i],
1336 						    pos + write_bytes, false);
1337 		if (err) {
1338 			page_cache_release(pages[i]);
1339 			faili = i - 1;
1340 			goto fail;
1341 		}
1342 		wait_on_page_writeback(pages[i]);
1343 	}
1344 
1345 	return 0;
1346 fail:
1347 	while (faili >= 0) {
1348 		unlock_page(pages[faili]);
1349 		page_cache_release(pages[faili]);
1350 		faili--;
1351 	}
1352 	return err;
1353 
1354 }
1355 
1356 /*
1357  * This function locks the extent and properly waits for data=ordered extents
1358  * to finish before allowing the pages to be modified if need.
1359  *
1360  * The return value:
1361  * 1 - the extent is locked
1362  * 0 - the extent is not locked, and everything is OK
1363  * -EAGAIN - need re-prepare the pages
1364  * the other < 0 number - Something wrong happens
1365  */
1366 static noinline int
1367 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1368 				size_t num_pages, loff_t pos,
1369 				u64 *lockstart, u64 *lockend,
1370 				struct extent_state **cached_state)
1371 {
1372 	u64 start_pos;
1373 	u64 last_pos;
1374 	int i;
1375 	int ret = 0;
1376 
1377 	start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1378 	last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1379 
1380 	if (start_pos < inode->i_size) {
1381 		struct btrfs_ordered_extent *ordered;
1382 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1383 				 start_pos, last_pos, 0, cached_state);
1384 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1385 						     last_pos - start_pos + 1);
1386 		if (ordered &&
1387 		    ordered->file_offset + ordered->len > start_pos &&
1388 		    ordered->file_offset <= last_pos) {
1389 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1390 					     start_pos, last_pos,
1391 					     cached_state, GFP_NOFS);
1392 			for (i = 0; i < num_pages; i++) {
1393 				unlock_page(pages[i]);
1394 				page_cache_release(pages[i]);
1395 			}
1396 			btrfs_start_ordered_extent(inode, ordered, 1);
1397 			btrfs_put_ordered_extent(ordered);
1398 			return -EAGAIN;
1399 		}
1400 		if (ordered)
1401 			btrfs_put_ordered_extent(ordered);
1402 
1403 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1404 				  last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1405 				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1406 				  0, 0, cached_state, GFP_NOFS);
1407 		*lockstart = start_pos;
1408 		*lockend = last_pos;
1409 		ret = 1;
1410 	}
1411 
1412 	for (i = 0; i < num_pages; i++) {
1413 		if (clear_page_dirty_for_io(pages[i]))
1414 			account_page_redirty(pages[i]);
1415 		set_page_extent_mapped(pages[i]);
1416 		WARN_ON(!PageLocked(pages[i]));
1417 	}
1418 
1419 	return ret;
1420 }
1421 
1422 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1423 				    size_t *write_bytes)
1424 {
1425 	struct btrfs_root *root = BTRFS_I(inode)->root;
1426 	struct btrfs_ordered_extent *ordered;
1427 	u64 lockstart, lockend;
1428 	u64 num_bytes;
1429 	int ret;
1430 
1431 	ret = btrfs_start_nocow_write(root);
1432 	if (!ret)
1433 		return -ENOSPC;
1434 
1435 	lockstart = round_down(pos, root->sectorsize);
1436 	lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1437 
1438 	while (1) {
1439 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1440 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1441 						     lockend - lockstart + 1);
1442 		if (!ordered) {
1443 			break;
1444 		}
1445 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1446 		btrfs_start_ordered_extent(inode, ordered, 1);
1447 		btrfs_put_ordered_extent(ordered);
1448 	}
1449 
1450 	num_bytes = lockend - lockstart + 1;
1451 	ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1452 	if (ret <= 0) {
1453 		ret = 0;
1454 		btrfs_end_nocow_write(root);
1455 	} else {
1456 		*write_bytes = min_t(size_t, *write_bytes ,
1457 				     num_bytes - pos + lockstart);
1458 	}
1459 
1460 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1461 
1462 	return ret;
1463 }
1464 
1465 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1466 					       struct iov_iter *i,
1467 					       loff_t pos)
1468 {
1469 	struct inode *inode = file_inode(file);
1470 	struct btrfs_root *root = BTRFS_I(inode)->root;
1471 	struct page **pages = NULL;
1472 	struct extent_state *cached_state = NULL;
1473 	u64 release_bytes = 0;
1474 	u64 lockstart;
1475 	u64 lockend;
1476 	unsigned long first_index;
1477 	size_t num_written = 0;
1478 	int nrptrs;
1479 	int ret = 0;
1480 	bool only_release_metadata = false;
1481 	bool force_page_uptodate = false;
1482 	bool need_unlock;
1483 
1484 	nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1485 		     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1486 		     (sizeof(struct page *)));
1487 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1488 	nrptrs = max(nrptrs, 8);
1489 	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1490 	if (!pages)
1491 		return -ENOMEM;
1492 
1493 	first_index = pos >> PAGE_CACHE_SHIFT;
1494 
1495 	while (iov_iter_count(i) > 0) {
1496 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1497 		size_t write_bytes = min(iov_iter_count(i),
1498 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
1499 					 offset);
1500 		size_t num_pages = (write_bytes + offset +
1501 				    PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1502 		size_t reserve_bytes;
1503 		size_t dirty_pages;
1504 		size_t copied;
1505 
1506 		WARN_ON(num_pages > nrptrs);
1507 
1508 		/*
1509 		 * Fault pages before locking them in prepare_pages
1510 		 * to avoid recursive lock
1511 		 */
1512 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1513 			ret = -EFAULT;
1514 			break;
1515 		}
1516 
1517 		reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1518 		ret = btrfs_check_data_free_space(inode, reserve_bytes);
1519 		if (ret == -ENOSPC &&
1520 		    (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1521 					      BTRFS_INODE_PREALLOC))) {
1522 			ret = check_can_nocow(inode, pos, &write_bytes);
1523 			if (ret > 0) {
1524 				only_release_metadata = true;
1525 				/*
1526 				 * our prealloc extent may be smaller than
1527 				 * write_bytes, so scale down.
1528 				 */
1529 				num_pages = (write_bytes + offset +
1530 					     PAGE_CACHE_SIZE - 1) >>
1531 					PAGE_CACHE_SHIFT;
1532 				reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1533 				ret = 0;
1534 			} else {
1535 				ret = -ENOSPC;
1536 			}
1537 		}
1538 
1539 		if (ret)
1540 			break;
1541 
1542 		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1543 		if (ret) {
1544 			if (!only_release_metadata)
1545 				btrfs_free_reserved_data_space(inode,
1546 							       reserve_bytes);
1547 			else
1548 				btrfs_end_nocow_write(root);
1549 			break;
1550 		}
1551 
1552 		release_bytes = reserve_bytes;
1553 		need_unlock = false;
1554 again:
1555 		/*
1556 		 * This is going to setup the pages array with the number of
1557 		 * pages we want, so we don't really need to worry about the
1558 		 * contents of pages from loop to loop
1559 		 */
1560 		ret = prepare_pages(inode, pages, num_pages,
1561 				    pos, write_bytes,
1562 				    force_page_uptodate);
1563 		if (ret)
1564 			break;
1565 
1566 		ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1567 						      pos, &lockstart, &lockend,
1568 						      &cached_state);
1569 		if (ret < 0) {
1570 			if (ret == -EAGAIN)
1571 				goto again;
1572 			break;
1573 		} else if (ret > 0) {
1574 			need_unlock = true;
1575 			ret = 0;
1576 		}
1577 
1578 		copied = btrfs_copy_from_user(pos, num_pages,
1579 					   write_bytes, pages, i);
1580 
1581 		/*
1582 		 * if we have trouble faulting in the pages, fall
1583 		 * back to one page at a time
1584 		 */
1585 		if (copied < write_bytes)
1586 			nrptrs = 1;
1587 
1588 		if (copied == 0) {
1589 			force_page_uptodate = true;
1590 			dirty_pages = 0;
1591 		} else {
1592 			force_page_uptodate = false;
1593 			dirty_pages = (copied + offset +
1594 				       PAGE_CACHE_SIZE - 1) >>
1595 				       PAGE_CACHE_SHIFT;
1596 		}
1597 
1598 		/*
1599 		 * If we had a short copy we need to release the excess delaloc
1600 		 * bytes we reserved.  We need to increment outstanding_extents
1601 		 * because btrfs_delalloc_release_space will decrement it, but
1602 		 * we still have an outstanding extent for the chunk we actually
1603 		 * managed to copy.
1604 		 */
1605 		if (num_pages > dirty_pages) {
1606 			release_bytes = (num_pages - dirty_pages) <<
1607 				PAGE_CACHE_SHIFT;
1608 			if (copied > 0) {
1609 				spin_lock(&BTRFS_I(inode)->lock);
1610 				BTRFS_I(inode)->outstanding_extents++;
1611 				spin_unlock(&BTRFS_I(inode)->lock);
1612 			}
1613 			if (only_release_metadata)
1614 				btrfs_delalloc_release_metadata(inode,
1615 								release_bytes);
1616 			else
1617 				btrfs_delalloc_release_space(inode,
1618 							     release_bytes);
1619 		}
1620 
1621 		release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1622 
1623 		if (copied > 0)
1624 			ret = btrfs_dirty_pages(root, inode, pages,
1625 						dirty_pages, pos, copied,
1626 						NULL);
1627 		if (need_unlock)
1628 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1629 					     lockstart, lockend, &cached_state,
1630 					     GFP_NOFS);
1631 		if (ret) {
1632 			btrfs_drop_pages(pages, num_pages);
1633 			break;
1634 		}
1635 
1636 		release_bytes = 0;
1637 		if (only_release_metadata)
1638 			btrfs_end_nocow_write(root);
1639 
1640 		if (only_release_metadata && copied > 0) {
1641 			u64 lockstart = round_down(pos, root->sectorsize);
1642 			u64 lockend = lockstart +
1643 				(dirty_pages << PAGE_CACHE_SHIFT) - 1;
1644 
1645 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1646 				       lockend, EXTENT_NORESERVE, NULL,
1647 				       NULL, GFP_NOFS);
1648 			only_release_metadata = false;
1649 		}
1650 
1651 		btrfs_drop_pages(pages, num_pages);
1652 
1653 		cond_resched();
1654 
1655 		balance_dirty_pages_ratelimited(inode->i_mapping);
1656 		if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1657 			btrfs_btree_balance_dirty(root);
1658 
1659 		pos += copied;
1660 		num_written += copied;
1661 	}
1662 
1663 	kfree(pages);
1664 
1665 	if (release_bytes) {
1666 		if (only_release_metadata) {
1667 			btrfs_end_nocow_write(root);
1668 			btrfs_delalloc_release_metadata(inode, release_bytes);
1669 		} else {
1670 			btrfs_delalloc_release_space(inode, release_bytes);
1671 		}
1672 	}
1673 
1674 	return num_written ? num_written : ret;
1675 }
1676 
1677 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1678 				    struct iov_iter *from,
1679 				    loff_t pos)
1680 {
1681 	struct file *file = iocb->ki_filp;
1682 	ssize_t written;
1683 	ssize_t written_buffered;
1684 	loff_t endbyte;
1685 	int err;
1686 
1687 	written = generic_file_direct_write(iocb, from, pos);
1688 
1689 	if (written < 0 || !iov_iter_count(from))
1690 		return written;
1691 
1692 	pos += written;
1693 	written_buffered = __btrfs_buffered_write(file, from, pos);
1694 	if (written_buffered < 0) {
1695 		err = written_buffered;
1696 		goto out;
1697 	}
1698 	endbyte = pos + written_buffered - 1;
1699 	err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1700 	if (err)
1701 		goto out;
1702 	written += written_buffered;
1703 	iocb->ki_pos = pos + written_buffered;
1704 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1705 				 endbyte >> PAGE_CACHE_SHIFT);
1706 out:
1707 	return written ? written : err;
1708 }
1709 
1710 static void update_time_for_write(struct inode *inode)
1711 {
1712 	struct timespec now;
1713 
1714 	if (IS_NOCMTIME(inode))
1715 		return;
1716 
1717 	now = current_fs_time(inode->i_sb);
1718 	if (!timespec_equal(&inode->i_mtime, &now))
1719 		inode->i_mtime = now;
1720 
1721 	if (!timespec_equal(&inode->i_ctime, &now))
1722 		inode->i_ctime = now;
1723 
1724 	if (IS_I_VERSION(inode))
1725 		inode_inc_iversion(inode);
1726 }
1727 
1728 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1729 				    struct iov_iter *from)
1730 {
1731 	struct file *file = iocb->ki_filp;
1732 	struct inode *inode = file_inode(file);
1733 	struct btrfs_root *root = BTRFS_I(inode)->root;
1734 	u64 start_pos;
1735 	u64 end_pos;
1736 	ssize_t num_written = 0;
1737 	ssize_t err = 0;
1738 	size_t count = iov_iter_count(from);
1739 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1740 	loff_t pos = iocb->ki_pos;
1741 
1742 	mutex_lock(&inode->i_mutex);
1743 
1744 	current->backing_dev_info = inode->i_mapping->backing_dev_info;
1745 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1746 	if (err) {
1747 		mutex_unlock(&inode->i_mutex);
1748 		goto out;
1749 	}
1750 
1751 	if (count == 0) {
1752 		mutex_unlock(&inode->i_mutex);
1753 		goto out;
1754 	}
1755 
1756 	iov_iter_truncate(from, count);
1757 
1758 	err = file_remove_suid(file);
1759 	if (err) {
1760 		mutex_unlock(&inode->i_mutex);
1761 		goto out;
1762 	}
1763 
1764 	/*
1765 	 * If BTRFS flips readonly due to some impossible error
1766 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1767 	 * although we have opened a file as writable, we have
1768 	 * to stop this write operation to ensure FS consistency.
1769 	 */
1770 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1771 		mutex_unlock(&inode->i_mutex);
1772 		err = -EROFS;
1773 		goto out;
1774 	}
1775 
1776 	/*
1777 	 * We reserve space for updating the inode when we reserve space for the
1778 	 * extent we are going to write, so we will enospc out there.  We don't
1779 	 * need to start yet another transaction to update the inode as we will
1780 	 * update the inode when we finish writing whatever data we write.
1781 	 */
1782 	update_time_for_write(inode);
1783 
1784 	start_pos = round_down(pos, root->sectorsize);
1785 	if (start_pos > i_size_read(inode)) {
1786 		/* Expand hole size to cover write data, preventing empty gap */
1787 		end_pos = round_up(pos + count, root->sectorsize);
1788 		err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
1789 		if (err) {
1790 			mutex_unlock(&inode->i_mutex);
1791 			goto out;
1792 		}
1793 	}
1794 
1795 	if (sync)
1796 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1797 
1798 	if (unlikely(file->f_flags & O_DIRECT)) {
1799 		num_written = __btrfs_direct_write(iocb, from, pos);
1800 	} else {
1801 		num_written = __btrfs_buffered_write(file, from, pos);
1802 		if (num_written > 0)
1803 			iocb->ki_pos = pos + num_written;
1804 	}
1805 
1806 	mutex_unlock(&inode->i_mutex);
1807 
1808 	/*
1809 	 * we want to make sure fsync finds this change
1810 	 * but we haven't joined a transaction running right now.
1811 	 *
1812 	 * Later on, someone is sure to update the inode and get the
1813 	 * real transid recorded.
1814 	 *
1815 	 * We set last_trans now to the fs_info generation + 1,
1816 	 * this will either be one more than the running transaction
1817 	 * or the generation used for the next transaction if there isn't
1818 	 * one running right now.
1819 	 *
1820 	 * We also have to set last_sub_trans to the current log transid,
1821 	 * otherwise subsequent syncs to a file that's been synced in this
1822 	 * transaction will appear to have already occured.
1823 	 */
1824 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1825 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1826 	if (num_written > 0) {
1827 		err = generic_write_sync(file, pos, num_written);
1828 		if (err < 0)
1829 			num_written = err;
1830 	}
1831 
1832 	if (sync)
1833 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1834 out:
1835 	current->backing_dev_info = NULL;
1836 	return num_written ? num_written : err;
1837 }
1838 
1839 int btrfs_release_file(struct inode *inode, struct file *filp)
1840 {
1841 	/*
1842 	 * ordered_data_close is set by settattr when we are about to truncate
1843 	 * a file from a non-zero size to a zero size.  This tries to
1844 	 * flush down new bytes that may have been written if the
1845 	 * application were using truncate to replace a file in place.
1846 	 */
1847 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1848 			       &BTRFS_I(inode)->runtime_flags)) {
1849 		struct btrfs_trans_handle *trans;
1850 		struct btrfs_root *root = BTRFS_I(inode)->root;
1851 
1852 		/*
1853 		 * We need to block on a committing transaction to keep us from
1854 		 * throwing a ordered operation on to the list and causing
1855 		 * something like sync to deadlock trying to flush out this
1856 		 * inode.
1857 		 */
1858 		trans = btrfs_start_transaction(root, 0);
1859 		if (IS_ERR(trans))
1860 			return PTR_ERR(trans);
1861 		btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1862 		btrfs_end_transaction(trans, root);
1863 		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1864 			filemap_flush(inode->i_mapping);
1865 	}
1866 	if (filp->private_data)
1867 		btrfs_ioctl_trans_end(filp);
1868 	return 0;
1869 }
1870 
1871 /*
1872  * fsync call for both files and directories.  This logs the inode into
1873  * the tree log instead of forcing full commits whenever possible.
1874  *
1875  * It needs to call filemap_fdatawait so that all ordered extent updates are
1876  * in the metadata btree are up to date for copying to the log.
1877  *
1878  * It drops the inode mutex before doing the tree log commit.  This is an
1879  * important optimization for directories because holding the mutex prevents
1880  * new operations on the dir while we write to disk.
1881  */
1882 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1883 {
1884 	struct dentry *dentry = file->f_path.dentry;
1885 	struct inode *inode = dentry->d_inode;
1886 	struct btrfs_root *root = BTRFS_I(inode)->root;
1887 	struct btrfs_trans_handle *trans;
1888 	struct btrfs_log_ctx ctx;
1889 	int ret = 0;
1890 	bool full_sync = 0;
1891 
1892 	trace_btrfs_sync_file(file, datasync);
1893 
1894 	/*
1895 	 * We write the dirty pages in the range and wait until they complete
1896 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1897 	 * multi-task, and make the performance up.  See
1898 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1899 	 */
1900 	atomic_inc(&BTRFS_I(inode)->sync_writers);
1901 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1902 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1903 			     &BTRFS_I(inode)->runtime_flags))
1904 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1905 	atomic_dec(&BTRFS_I(inode)->sync_writers);
1906 	if (ret)
1907 		return ret;
1908 
1909 	mutex_lock(&inode->i_mutex);
1910 
1911 	/*
1912 	 * We flush the dirty pages again to avoid some dirty pages in the
1913 	 * range being left.
1914 	 */
1915 	atomic_inc(&root->log_batch);
1916 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1917 			     &BTRFS_I(inode)->runtime_flags);
1918 	if (full_sync) {
1919 		ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1920 		if (ret) {
1921 			mutex_unlock(&inode->i_mutex);
1922 			goto out;
1923 		}
1924 	}
1925 	atomic_inc(&root->log_batch);
1926 
1927 	/*
1928 	 * check the transaction that last modified this inode
1929 	 * and see if its already been committed
1930 	 */
1931 	if (!BTRFS_I(inode)->last_trans) {
1932 		mutex_unlock(&inode->i_mutex);
1933 		goto out;
1934 	}
1935 
1936 	/*
1937 	 * if the last transaction that changed this file was before
1938 	 * the current transaction, we can bail out now without any
1939 	 * syncing
1940 	 */
1941 	smp_mb();
1942 	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1943 	    BTRFS_I(inode)->last_trans <=
1944 	    root->fs_info->last_trans_committed) {
1945 		BTRFS_I(inode)->last_trans = 0;
1946 
1947 		/*
1948 		 * We'v had everything committed since the last time we were
1949 		 * modified so clear this flag in case it was set for whatever
1950 		 * reason, it's no longer relevant.
1951 		 */
1952 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1953 			  &BTRFS_I(inode)->runtime_flags);
1954 		mutex_unlock(&inode->i_mutex);
1955 		goto out;
1956 	}
1957 
1958 	/*
1959 	 * ok we haven't committed the transaction yet, lets do a commit
1960 	 */
1961 	if (file->private_data)
1962 		btrfs_ioctl_trans_end(file);
1963 
1964 	/*
1965 	 * We use start here because we will need to wait on the IO to complete
1966 	 * in btrfs_sync_log, which could require joining a transaction (for
1967 	 * example checking cross references in the nocow path).  If we use join
1968 	 * here we could get into a situation where we're waiting on IO to
1969 	 * happen that is blocked on a transaction trying to commit.  With start
1970 	 * we inc the extwriter counter, so we wait for all extwriters to exit
1971 	 * before we start blocking join'ers.  This comment is to keep somebody
1972 	 * from thinking they are super smart and changing this to
1973 	 * btrfs_join_transaction *cough*Josef*cough*.
1974 	 */
1975 	trans = btrfs_start_transaction(root, 0);
1976 	if (IS_ERR(trans)) {
1977 		ret = PTR_ERR(trans);
1978 		mutex_unlock(&inode->i_mutex);
1979 		goto out;
1980 	}
1981 	trans->sync = true;
1982 
1983 	btrfs_init_log_ctx(&ctx);
1984 
1985 	ret = btrfs_log_dentry_safe(trans, root, dentry, &ctx);
1986 	if (ret < 0) {
1987 		/* Fallthrough and commit/free transaction. */
1988 		ret = 1;
1989 	}
1990 
1991 	/* we've logged all the items and now have a consistent
1992 	 * version of the file in the log.  It is possible that
1993 	 * someone will come in and modify the file, but that's
1994 	 * fine because the log is consistent on disk, and we
1995 	 * have references to all of the file's extents
1996 	 *
1997 	 * It is possible that someone will come in and log the
1998 	 * file again, but that will end up using the synchronization
1999 	 * inside btrfs_sync_log to keep things safe.
2000 	 */
2001 	mutex_unlock(&inode->i_mutex);
2002 
2003 	if (ret != BTRFS_NO_LOG_SYNC) {
2004 		if (!ret) {
2005 			ret = btrfs_sync_log(trans, root, &ctx);
2006 			if (!ret) {
2007 				ret = btrfs_end_transaction(trans, root);
2008 				goto out;
2009 			}
2010 		}
2011 		if (!full_sync) {
2012 			ret = btrfs_wait_ordered_range(inode, start,
2013 						       end - start + 1);
2014 			if (ret) {
2015 				btrfs_end_transaction(trans, root);
2016 				goto out;
2017 			}
2018 		}
2019 		ret = btrfs_commit_transaction(trans, root);
2020 	} else {
2021 		ret = btrfs_end_transaction(trans, root);
2022 	}
2023 out:
2024 	return ret > 0 ? -EIO : ret;
2025 }
2026 
2027 static const struct vm_operations_struct btrfs_file_vm_ops = {
2028 	.fault		= filemap_fault,
2029 	.map_pages	= filemap_map_pages,
2030 	.page_mkwrite	= btrfs_page_mkwrite,
2031 	.remap_pages	= generic_file_remap_pages,
2032 };
2033 
2034 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2035 {
2036 	struct address_space *mapping = filp->f_mapping;
2037 
2038 	if (!mapping->a_ops->readpage)
2039 		return -ENOEXEC;
2040 
2041 	file_accessed(filp);
2042 	vma->vm_ops = &btrfs_file_vm_ops;
2043 
2044 	return 0;
2045 }
2046 
2047 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2048 			  int slot, u64 start, u64 end)
2049 {
2050 	struct btrfs_file_extent_item *fi;
2051 	struct btrfs_key key;
2052 
2053 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2054 		return 0;
2055 
2056 	btrfs_item_key_to_cpu(leaf, &key, slot);
2057 	if (key.objectid != btrfs_ino(inode) ||
2058 	    key.type != BTRFS_EXTENT_DATA_KEY)
2059 		return 0;
2060 
2061 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2062 
2063 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2064 		return 0;
2065 
2066 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2067 		return 0;
2068 
2069 	if (key.offset == end)
2070 		return 1;
2071 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2072 		return 1;
2073 	return 0;
2074 }
2075 
2076 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2077 		      struct btrfs_path *path, u64 offset, u64 end)
2078 {
2079 	struct btrfs_root *root = BTRFS_I(inode)->root;
2080 	struct extent_buffer *leaf;
2081 	struct btrfs_file_extent_item *fi;
2082 	struct extent_map *hole_em;
2083 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2084 	struct btrfs_key key;
2085 	int ret;
2086 
2087 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2088 		goto out;
2089 
2090 	key.objectid = btrfs_ino(inode);
2091 	key.type = BTRFS_EXTENT_DATA_KEY;
2092 	key.offset = offset;
2093 
2094 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2095 	if (ret < 0)
2096 		return ret;
2097 	BUG_ON(!ret);
2098 
2099 	leaf = path->nodes[0];
2100 	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2101 		u64 num_bytes;
2102 
2103 		path->slots[0]--;
2104 		fi = btrfs_item_ptr(leaf, path->slots[0],
2105 				    struct btrfs_file_extent_item);
2106 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2107 			end - offset;
2108 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2109 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2110 		btrfs_set_file_extent_offset(leaf, fi, 0);
2111 		btrfs_mark_buffer_dirty(leaf);
2112 		goto out;
2113 	}
2114 
2115 	if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
2116 		u64 num_bytes;
2117 
2118 		path->slots[0]++;
2119 		key.offset = offset;
2120 		btrfs_set_item_key_safe(root, path, &key);
2121 		fi = btrfs_item_ptr(leaf, path->slots[0],
2122 				    struct btrfs_file_extent_item);
2123 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2124 			offset;
2125 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2126 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2127 		btrfs_set_file_extent_offset(leaf, fi, 0);
2128 		btrfs_mark_buffer_dirty(leaf);
2129 		goto out;
2130 	}
2131 	btrfs_release_path(path);
2132 
2133 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2134 				       0, 0, end - offset, 0, end - offset,
2135 				       0, 0, 0);
2136 	if (ret)
2137 		return ret;
2138 
2139 out:
2140 	btrfs_release_path(path);
2141 
2142 	hole_em = alloc_extent_map();
2143 	if (!hole_em) {
2144 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2145 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2146 			&BTRFS_I(inode)->runtime_flags);
2147 	} else {
2148 		hole_em->start = offset;
2149 		hole_em->len = end - offset;
2150 		hole_em->ram_bytes = hole_em->len;
2151 		hole_em->orig_start = offset;
2152 
2153 		hole_em->block_start = EXTENT_MAP_HOLE;
2154 		hole_em->block_len = 0;
2155 		hole_em->orig_block_len = 0;
2156 		hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2157 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2158 		hole_em->generation = trans->transid;
2159 
2160 		do {
2161 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2162 			write_lock(&em_tree->lock);
2163 			ret = add_extent_mapping(em_tree, hole_em, 1);
2164 			write_unlock(&em_tree->lock);
2165 		} while (ret == -EEXIST);
2166 		free_extent_map(hole_em);
2167 		if (ret)
2168 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2169 				&BTRFS_I(inode)->runtime_flags);
2170 	}
2171 
2172 	return 0;
2173 }
2174 
2175 /*
2176  * Find a hole extent on given inode and change start/len to the end of hole
2177  * extent.(hole/vacuum extent whose em->start <= start &&
2178  *	   em->start + em->len > start)
2179  * When a hole extent is found, return 1 and modify start/len.
2180  */
2181 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2182 {
2183 	struct extent_map *em;
2184 	int ret = 0;
2185 
2186 	em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2187 	if (IS_ERR_OR_NULL(em)) {
2188 		if (!em)
2189 			ret = -ENOMEM;
2190 		else
2191 			ret = PTR_ERR(em);
2192 		return ret;
2193 	}
2194 
2195 	/* Hole or vacuum extent(only exists in no-hole mode) */
2196 	if (em->block_start == EXTENT_MAP_HOLE) {
2197 		ret = 1;
2198 		*len = em->start + em->len > *start + *len ?
2199 		       0 : *start + *len - em->start - em->len;
2200 		*start = em->start + em->len;
2201 	}
2202 	free_extent_map(em);
2203 	return ret;
2204 }
2205 
2206 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2207 {
2208 	struct btrfs_root *root = BTRFS_I(inode)->root;
2209 	struct extent_state *cached_state = NULL;
2210 	struct btrfs_path *path;
2211 	struct btrfs_block_rsv *rsv;
2212 	struct btrfs_trans_handle *trans;
2213 	u64 lockstart;
2214 	u64 lockend;
2215 	u64 tail_start;
2216 	u64 tail_len;
2217 	u64 orig_start = offset;
2218 	u64 cur_offset;
2219 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2220 	u64 drop_end;
2221 	int ret = 0;
2222 	int err = 0;
2223 	int rsv_count;
2224 	bool same_page;
2225 	bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2226 	u64 ino_size;
2227 
2228 	ret = btrfs_wait_ordered_range(inode, offset, len);
2229 	if (ret)
2230 		return ret;
2231 
2232 	mutex_lock(&inode->i_mutex);
2233 	ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2234 	ret = find_first_non_hole(inode, &offset, &len);
2235 	if (ret < 0)
2236 		goto out_only_mutex;
2237 	if (ret && !len) {
2238 		/* Already in a large hole */
2239 		ret = 0;
2240 		goto out_only_mutex;
2241 	}
2242 
2243 	lockstart = round_up(offset , BTRFS_I(inode)->root->sectorsize);
2244 	lockend = round_down(offset + len,
2245 			     BTRFS_I(inode)->root->sectorsize) - 1;
2246 	same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2247 		    ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2248 
2249 	/*
2250 	 * We needn't truncate any page which is beyond the end of the file
2251 	 * because we are sure there is no data there.
2252 	 */
2253 	/*
2254 	 * Only do this if we are in the same page and we aren't doing the
2255 	 * entire page.
2256 	 */
2257 	if (same_page && len < PAGE_CACHE_SIZE) {
2258 		if (offset < ino_size)
2259 			ret = btrfs_truncate_page(inode, offset, len, 0);
2260 		goto out_only_mutex;
2261 	}
2262 
2263 	/* zero back part of the first page */
2264 	if (offset < ino_size) {
2265 		ret = btrfs_truncate_page(inode, offset, 0, 0);
2266 		if (ret) {
2267 			mutex_unlock(&inode->i_mutex);
2268 			return ret;
2269 		}
2270 	}
2271 
2272 	/* Check the aligned pages after the first unaligned page,
2273 	 * if offset != orig_start, which means the first unaligned page
2274 	 * including serveral following pages are already in holes,
2275 	 * the extra check can be skipped */
2276 	if (offset == orig_start) {
2277 		/* after truncate page, check hole again */
2278 		len = offset + len - lockstart;
2279 		offset = lockstart;
2280 		ret = find_first_non_hole(inode, &offset, &len);
2281 		if (ret < 0)
2282 			goto out_only_mutex;
2283 		if (ret && !len) {
2284 			ret = 0;
2285 			goto out_only_mutex;
2286 		}
2287 		lockstart = offset;
2288 	}
2289 
2290 	/* Check the tail unaligned part is in a hole */
2291 	tail_start = lockend + 1;
2292 	tail_len = offset + len - tail_start;
2293 	if (tail_len) {
2294 		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2295 		if (unlikely(ret < 0))
2296 			goto out_only_mutex;
2297 		if (!ret) {
2298 			/* zero the front end of the last page */
2299 			if (tail_start + tail_len < ino_size) {
2300 				ret = btrfs_truncate_page(inode,
2301 						tail_start + tail_len, 0, 1);
2302 				if (ret)
2303 					goto out_only_mutex;
2304 				}
2305 		}
2306 	}
2307 
2308 	if (lockend < lockstart) {
2309 		mutex_unlock(&inode->i_mutex);
2310 		return 0;
2311 	}
2312 
2313 	while (1) {
2314 		struct btrfs_ordered_extent *ordered;
2315 
2316 		truncate_pagecache_range(inode, lockstart, lockend);
2317 
2318 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2319 				 0, &cached_state);
2320 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2321 
2322 		/*
2323 		 * We need to make sure we have no ordered extents in this range
2324 		 * and nobody raced in and read a page in this range, if we did
2325 		 * we need to try again.
2326 		 */
2327 		if ((!ordered ||
2328 		    (ordered->file_offset + ordered->len <= lockstart ||
2329 		     ordered->file_offset > lockend)) &&
2330 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2331 			if (ordered)
2332 				btrfs_put_ordered_extent(ordered);
2333 			break;
2334 		}
2335 		if (ordered)
2336 			btrfs_put_ordered_extent(ordered);
2337 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2338 				     lockend, &cached_state, GFP_NOFS);
2339 		ret = btrfs_wait_ordered_range(inode, lockstart,
2340 					       lockend - lockstart + 1);
2341 		if (ret) {
2342 			mutex_unlock(&inode->i_mutex);
2343 			return ret;
2344 		}
2345 	}
2346 
2347 	path = btrfs_alloc_path();
2348 	if (!path) {
2349 		ret = -ENOMEM;
2350 		goto out;
2351 	}
2352 
2353 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2354 	if (!rsv) {
2355 		ret = -ENOMEM;
2356 		goto out_free;
2357 	}
2358 	rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2359 	rsv->failfast = 1;
2360 
2361 	/*
2362 	 * 1 - update the inode
2363 	 * 1 - removing the extents in the range
2364 	 * 1 - adding the hole extent if no_holes isn't set
2365 	 */
2366 	rsv_count = no_holes ? 2 : 3;
2367 	trans = btrfs_start_transaction(root, rsv_count);
2368 	if (IS_ERR(trans)) {
2369 		err = PTR_ERR(trans);
2370 		goto out_free;
2371 	}
2372 
2373 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2374 				      min_size);
2375 	BUG_ON(ret);
2376 	trans->block_rsv = rsv;
2377 
2378 	cur_offset = lockstart;
2379 	len = lockend - cur_offset;
2380 	while (cur_offset < lockend) {
2381 		ret = __btrfs_drop_extents(trans, root, inode, path,
2382 					   cur_offset, lockend + 1,
2383 					   &drop_end, 1, 0, 0, NULL);
2384 		if (ret != -ENOSPC)
2385 			break;
2386 
2387 		trans->block_rsv = &root->fs_info->trans_block_rsv;
2388 
2389 		if (cur_offset < ino_size) {
2390 			ret = fill_holes(trans, inode, path, cur_offset,
2391 					 drop_end);
2392 			if (ret) {
2393 				err = ret;
2394 				break;
2395 			}
2396 		}
2397 
2398 		cur_offset = drop_end;
2399 
2400 		ret = btrfs_update_inode(trans, root, inode);
2401 		if (ret) {
2402 			err = ret;
2403 			break;
2404 		}
2405 
2406 		btrfs_end_transaction(trans, root);
2407 		btrfs_btree_balance_dirty(root);
2408 
2409 		trans = btrfs_start_transaction(root, rsv_count);
2410 		if (IS_ERR(trans)) {
2411 			ret = PTR_ERR(trans);
2412 			trans = NULL;
2413 			break;
2414 		}
2415 
2416 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2417 					      rsv, min_size);
2418 		BUG_ON(ret);	/* shouldn't happen */
2419 		trans->block_rsv = rsv;
2420 
2421 		ret = find_first_non_hole(inode, &cur_offset, &len);
2422 		if (unlikely(ret < 0))
2423 			break;
2424 		if (ret && !len) {
2425 			ret = 0;
2426 			break;
2427 		}
2428 	}
2429 
2430 	if (ret) {
2431 		err = ret;
2432 		goto out_trans;
2433 	}
2434 
2435 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2436 	/*
2437 	 * Don't insert file hole extent item if it's for a range beyond eof
2438 	 * (because it's useless) or if it represents a 0 bytes range (when
2439 	 * cur_offset == drop_end).
2440 	 */
2441 	if (cur_offset < ino_size && cur_offset < drop_end) {
2442 		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2443 		if (ret) {
2444 			err = ret;
2445 			goto out_trans;
2446 		}
2447 	}
2448 
2449 out_trans:
2450 	if (!trans)
2451 		goto out_free;
2452 
2453 	inode_inc_iversion(inode);
2454 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2455 
2456 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2457 	ret = btrfs_update_inode(trans, root, inode);
2458 	btrfs_end_transaction(trans, root);
2459 	btrfs_btree_balance_dirty(root);
2460 out_free:
2461 	btrfs_free_path(path);
2462 	btrfs_free_block_rsv(root, rsv);
2463 out:
2464 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2465 			     &cached_state, GFP_NOFS);
2466 out_only_mutex:
2467 	mutex_unlock(&inode->i_mutex);
2468 	if (ret && !err)
2469 		err = ret;
2470 	return err;
2471 }
2472 
2473 static long btrfs_fallocate(struct file *file, int mode,
2474 			    loff_t offset, loff_t len)
2475 {
2476 	struct inode *inode = file_inode(file);
2477 	struct extent_state *cached_state = NULL;
2478 	struct btrfs_root *root = BTRFS_I(inode)->root;
2479 	u64 cur_offset;
2480 	u64 last_byte;
2481 	u64 alloc_start;
2482 	u64 alloc_end;
2483 	u64 alloc_hint = 0;
2484 	u64 locked_end;
2485 	struct extent_map *em;
2486 	int blocksize = BTRFS_I(inode)->root->sectorsize;
2487 	int ret;
2488 
2489 	alloc_start = round_down(offset, blocksize);
2490 	alloc_end = round_up(offset + len, blocksize);
2491 
2492 	/* Make sure we aren't being give some crap mode */
2493 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2494 		return -EOPNOTSUPP;
2495 
2496 	if (mode & FALLOC_FL_PUNCH_HOLE)
2497 		return btrfs_punch_hole(inode, offset, len);
2498 
2499 	/*
2500 	 * Make sure we have enough space before we do the
2501 	 * allocation.
2502 	 */
2503 	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2504 	if (ret)
2505 		return ret;
2506 	if (root->fs_info->quota_enabled) {
2507 		ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2508 		if (ret)
2509 			goto out_reserve_fail;
2510 	}
2511 
2512 	mutex_lock(&inode->i_mutex);
2513 	ret = inode_newsize_ok(inode, alloc_end);
2514 	if (ret)
2515 		goto out;
2516 
2517 	if (alloc_start > inode->i_size) {
2518 		ret = btrfs_cont_expand(inode, i_size_read(inode),
2519 					alloc_start);
2520 		if (ret)
2521 			goto out;
2522 	} else {
2523 		/*
2524 		 * If we are fallocating from the end of the file onward we
2525 		 * need to zero out the end of the page if i_size lands in the
2526 		 * middle of a page.
2527 		 */
2528 		ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2529 		if (ret)
2530 			goto out;
2531 	}
2532 
2533 	/*
2534 	 * wait for ordered IO before we have any locks.  We'll loop again
2535 	 * below with the locks held.
2536 	 */
2537 	ret = btrfs_wait_ordered_range(inode, alloc_start,
2538 				       alloc_end - alloc_start);
2539 	if (ret)
2540 		goto out;
2541 
2542 	locked_end = alloc_end - 1;
2543 	while (1) {
2544 		struct btrfs_ordered_extent *ordered;
2545 
2546 		/* the extent lock is ordered inside the running
2547 		 * transaction
2548 		 */
2549 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2550 				 locked_end, 0, &cached_state);
2551 		ordered = btrfs_lookup_first_ordered_extent(inode,
2552 							    alloc_end - 1);
2553 		if (ordered &&
2554 		    ordered->file_offset + ordered->len > alloc_start &&
2555 		    ordered->file_offset < alloc_end) {
2556 			btrfs_put_ordered_extent(ordered);
2557 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2558 					     alloc_start, locked_end,
2559 					     &cached_state, GFP_NOFS);
2560 			/*
2561 			 * we can't wait on the range with the transaction
2562 			 * running or with the extent lock held
2563 			 */
2564 			ret = btrfs_wait_ordered_range(inode, alloc_start,
2565 						       alloc_end - alloc_start);
2566 			if (ret)
2567 				goto out;
2568 		} else {
2569 			if (ordered)
2570 				btrfs_put_ordered_extent(ordered);
2571 			break;
2572 		}
2573 	}
2574 
2575 	cur_offset = alloc_start;
2576 	while (1) {
2577 		u64 actual_end;
2578 
2579 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2580 				      alloc_end - cur_offset, 0);
2581 		if (IS_ERR_OR_NULL(em)) {
2582 			if (!em)
2583 				ret = -ENOMEM;
2584 			else
2585 				ret = PTR_ERR(em);
2586 			break;
2587 		}
2588 		last_byte = min(extent_map_end(em), alloc_end);
2589 		actual_end = min_t(u64, extent_map_end(em), offset + len);
2590 		last_byte = ALIGN(last_byte, blocksize);
2591 
2592 		if (em->block_start == EXTENT_MAP_HOLE ||
2593 		    (cur_offset >= inode->i_size &&
2594 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2595 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2596 							last_byte - cur_offset,
2597 							1 << inode->i_blkbits,
2598 							offset + len,
2599 							&alloc_hint);
2600 
2601 			if (ret < 0) {
2602 				free_extent_map(em);
2603 				break;
2604 			}
2605 		} else if (actual_end > inode->i_size &&
2606 			   !(mode & FALLOC_FL_KEEP_SIZE)) {
2607 			/*
2608 			 * We didn't need to allocate any more space, but we
2609 			 * still extended the size of the file so we need to
2610 			 * update i_size.
2611 			 */
2612 			inode->i_ctime = CURRENT_TIME;
2613 			i_size_write(inode, actual_end);
2614 			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2615 		}
2616 		free_extent_map(em);
2617 
2618 		cur_offset = last_byte;
2619 		if (cur_offset >= alloc_end) {
2620 			ret = 0;
2621 			break;
2622 		}
2623 	}
2624 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2625 			     &cached_state, GFP_NOFS);
2626 out:
2627 	mutex_unlock(&inode->i_mutex);
2628 	if (root->fs_info->quota_enabled)
2629 		btrfs_qgroup_free(root, alloc_end - alloc_start);
2630 out_reserve_fail:
2631 	/* Let go of our reservation. */
2632 	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2633 	return ret;
2634 }
2635 
2636 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2637 {
2638 	struct btrfs_root *root = BTRFS_I(inode)->root;
2639 	struct extent_map *em = NULL;
2640 	struct extent_state *cached_state = NULL;
2641 	u64 lockstart = *offset;
2642 	u64 lockend = i_size_read(inode);
2643 	u64 start = *offset;
2644 	u64 len = i_size_read(inode);
2645 	int ret = 0;
2646 
2647 	lockend = max_t(u64, root->sectorsize, lockend);
2648 	if (lockend <= lockstart)
2649 		lockend = lockstart + root->sectorsize;
2650 
2651 	lockend--;
2652 	len = lockend - lockstart + 1;
2653 
2654 	len = max_t(u64, len, root->sectorsize);
2655 	if (inode->i_size == 0)
2656 		return -ENXIO;
2657 
2658 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2659 			 &cached_state);
2660 
2661 	while (start < inode->i_size) {
2662 		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2663 		if (IS_ERR(em)) {
2664 			ret = PTR_ERR(em);
2665 			em = NULL;
2666 			break;
2667 		}
2668 
2669 		if (whence == SEEK_HOLE &&
2670 		    (em->block_start == EXTENT_MAP_HOLE ||
2671 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2672 			break;
2673 		else if (whence == SEEK_DATA &&
2674 			   (em->block_start != EXTENT_MAP_HOLE &&
2675 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2676 			break;
2677 
2678 		start = em->start + em->len;
2679 		free_extent_map(em);
2680 		em = NULL;
2681 		cond_resched();
2682 	}
2683 	free_extent_map(em);
2684 	if (!ret) {
2685 		if (whence == SEEK_DATA && start >= inode->i_size)
2686 			ret = -ENXIO;
2687 		else
2688 			*offset = min_t(loff_t, start, inode->i_size);
2689 	}
2690 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2691 			     &cached_state, GFP_NOFS);
2692 	return ret;
2693 }
2694 
2695 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2696 {
2697 	struct inode *inode = file->f_mapping->host;
2698 	int ret;
2699 
2700 	mutex_lock(&inode->i_mutex);
2701 	switch (whence) {
2702 	case SEEK_END:
2703 	case SEEK_CUR:
2704 		offset = generic_file_llseek(file, offset, whence);
2705 		goto out;
2706 	case SEEK_DATA:
2707 	case SEEK_HOLE:
2708 		if (offset >= i_size_read(inode)) {
2709 			mutex_unlock(&inode->i_mutex);
2710 			return -ENXIO;
2711 		}
2712 
2713 		ret = find_desired_extent(inode, &offset, whence);
2714 		if (ret) {
2715 			mutex_unlock(&inode->i_mutex);
2716 			return ret;
2717 		}
2718 	}
2719 
2720 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2721 out:
2722 	mutex_unlock(&inode->i_mutex);
2723 	return offset;
2724 }
2725 
2726 const struct file_operations btrfs_file_operations = {
2727 	.llseek		= btrfs_file_llseek,
2728 	.read		= new_sync_read,
2729 	.write		= new_sync_write,
2730 	.read_iter      = generic_file_read_iter,
2731 	.splice_read	= generic_file_splice_read,
2732 	.write_iter	= btrfs_file_write_iter,
2733 	.mmap		= btrfs_file_mmap,
2734 	.open		= generic_file_open,
2735 	.release	= btrfs_release_file,
2736 	.fsync		= btrfs_sync_file,
2737 	.fallocate	= btrfs_fallocate,
2738 	.unlocked_ioctl	= btrfs_ioctl,
2739 #ifdef CONFIG_COMPAT
2740 	.compat_ioctl	= btrfs_ioctl,
2741 #endif
2742 };
2743 
2744 void btrfs_auto_defrag_exit(void)
2745 {
2746 	if (btrfs_inode_defrag_cachep)
2747 		kmem_cache_destroy(btrfs_inode_defrag_cachep);
2748 }
2749 
2750 int btrfs_auto_defrag_init(void)
2751 {
2752 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2753 					sizeof(struct inode_defrag), 0,
2754 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2755 					NULL);
2756 	if (!btrfs_inode_defrag_cachep)
2757 		return -ENOMEM;
2758 
2759 	return 0;
2760 }
2761