1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "btrfs_inode.h" 24 #include "print-tree.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "volumes.h" 28 #include "qgroup.h" 29 #include "compression.h" 30 #include "delalloc-space.h" 31 #include "reflink.h" 32 #include "subpage.h" 33 34 static struct kmem_cache *btrfs_inode_defrag_cachep; 35 /* 36 * when auto defrag is enabled we 37 * queue up these defrag structs to remember which 38 * inodes need defragging passes 39 */ 40 struct inode_defrag { 41 struct rb_node rb_node; 42 /* objectid */ 43 u64 ino; 44 /* 45 * transid where the defrag was added, we search for 46 * extents newer than this 47 */ 48 u64 transid; 49 50 /* root objectid */ 51 u64 root; 52 53 /* 54 * The extent size threshold for autodefrag. 55 * 56 * This value is different for compressed/non-compressed extents, 57 * thus needs to be passed from higher layer. 58 * (aka, inode_should_defrag()) 59 */ 60 u32 extent_thresh; 61 }; 62 63 static int __compare_inode_defrag(struct inode_defrag *defrag1, 64 struct inode_defrag *defrag2) 65 { 66 if (defrag1->root > defrag2->root) 67 return 1; 68 else if (defrag1->root < defrag2->root) 69 return -1; 70 else if (defrag1->ino > defrag2->ino) 71 return 1; 72 else if (defrag1->ino < defrag2->ino) 73 return -1; 74 else 75 return 0; 76 } 77 78 /* pop a record for an inode into the defrag tree. The lock 79 * must be held already 80 * 81 * If you're inserting a record for an older transid than an 82 * existing record, the transid already in the tree is lowered 83 * 84 * If an existing record is found the defrag item you 85 * pass in is freed 86 */ 87 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 88 struct inode_defrag *defrag) 89 { 90 struct btrfs_fs_info *fs_info = inode->root->fs_info; 91 struct inode_defrag *entry; 92 struct rb_node **p; 93 struct rb_node *parent = NULL; 94 int ret; 95 96 p = &fs_info->defrag_inodes.rb_node; 97 while (*p) { 98 parent = *p; 99 entry = rb_entry(parent, struct inode_defrag, rb_node); 100 101 ret = __compare_inode_defrag(defrag, entry); 102 if (ret < 0) 103 p = &parent->rb_left; 104 else if (ret > 0) 105 p = &parent->rb_right; 106 else { 107 /* if we're reinserting an entry for 108 * an old defrag run, make sure to 109 * lower the transid of our existing record 110 */ 111 if (defrag->transid < entry->transid) 112 entry->transid = defrag->transid; 113 entry->extent_thresh = min(defrag->extent_thresh, 114 entry->extent_thresh); 115 return -EEXIST; 116 } 117 } 118 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 119 rb_link_node(&defrag->rb_node, parent, p); 120 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 121 return 0; 122 } 123 124 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 125 { 126 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 127 return 0; 128 129 if (btrfs_fs_closing(fs_info)) 130 return 0; 131 132 return 1; 133 } 134 135 /* 136 * insert a defrag record for this inode if auto defrag is 137 * enabled 138 */ 139 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 140 struct btrfs_inode *inode, u32 extent_thresh) 141 { 142 struct btrfs_root *root = inode->root; 143 struct btrfs_fs_info *fs_info = root->fs_info; 144 struct inode_defrag *defrag; 145 u64 transid; 146 int ret; 147 148 if (!__need_auto_defrag(fs_info)) 149 return 0; 150 151 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 152 return 0; 153 154 if (trans) 155 transid = trans->transid; 156 else 157 transid = inode->root->last_trans; 158 159 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 160 if (!defrag) 161 return -ENOMEM; 162 163 defrag->ino = btrfs_ino(inode); 164 defrag->transid = transid; 165 defrag->root = root->root_key.objectid; 166 defrag->extent_thresh = extent_thresh; 167 168 spin_lock(&fs_info->defrag_inodes_lock); 169 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 170 /* 171 * If we set IN_DEFRAG flag and evict the inode from memory, 172 * and then re-read this inode, this new inode doesn't have 173 * IN_DEFRAG flag. At the case, we may find the existed defrag. 174 */ 175 ret = __btrfs_add_inode_defrag(inode, defrag); 176 if (ret) 177 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 178 } else { 179 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 180 } 181 spin_unlock(&fs_info->defrag_inodes_lock); 182 return 0; 183 } 184 185 /* 186 * pick the defragable inode that we want, if it doesn't exist, we will get 187 * the next one. 188 */ 189 static struct inode_defrag * 190 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 191 { 192 struct inode_defrag *entry = NULL; 193 struct inode_defrag tmp; 194 struct rb_node *p; 195 struct rb_node *parent = NULL; 196 int ret; 197 198 tmp.ino = ino; 199 tmp.root = root; 200 201 spin_lock(&fs_info->defrag_inodes_lock); 202 p = fs_info->defrag_inodes.rb_node; 203 while (p) { 204 parent = p; 205 entry = rb_entry(parent, struct inode_defrag, rb_node); 206 207 ret = __compare_inode_defrag(&tmp, entry); 208 if (ret < 0) 209 p = parent->rb_left; 210 else if (ret > 0) 211 p = parent->rb_right; 212 else 213 goto out; 214 } 215 216 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 217 parent = rb_next(parent); 218 if (parent) 219 entry = rb_entry(parent, struct inode_defrag, rb_node); 220 else 221 entry = NULL; 222 } 223 out: 224 if (entry) 225 rb_erase(parent, &fs_info->defrag_inodes); 226 spin_unlock(&fs_info->defrag_inodes_lock); 227 return entry; 228 } 229 230 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 231 { 232 struct inode_defrag *defrag; 233 struct rb_node *node; 234 235 spin_lock(&fs_info->defrag_inodes_lock); 236 node = rb_first(&fs_info->defrag_inodes); 237 while (node) { 238 rb_erase(node, &fs_info->defrag_inodes); 239 defrag = rb_entry(node, struct inode_defrag, rb_node); 240 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 241 242 cond_resched_lock(&fs_info->defrag_inodes_lock); 243 244 node = rb_first(&fs_info->defrag_inodes); 245 } 246 spin_unlock(&fs_info->defrag_inodes_lock); 247 } 248 249 #define BTRFS_DEFRAG_BATCH 1024 250 251 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 252 struct inode_defrag *defrag) 253 { 254 struct btrfs_root *inode_root; 255 struct inode *inode; 256 struct btrfs_ioctl_defrag_range_args range; 257 int ret = 0; 258 u64 cur = 0; 259 260 again: 261 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) 262 goto cleanup; 263 if (!__need_auto_defrag(fs_info)) 264 goto cleanup; 265 266 /* get the inode */ 267 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); 268 if (IS_ERR(inode_root)) { 269 ret = PTR_ERR(inode_root); 270 goto cleanup; 271 } 272 273 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root); 274 btrfs_put_root(inode_root); 275 if (IS_ERR(inode)) { 276 ret = PTR_ERR(inode); 277 goto cleanup; 278 } 279 280 if (cur >= i_size_read(inode)) { 281 iput(inode); 282 goto cleanup; 283 } 284 285 /* do a chunk of defrag */ 286 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 287 memset(&range, 0, sizeof(range)); 288 range.len = (u64)-1; 289 range.start = cur; 290 range.extent_thresh = defrag->extent_thresh; 291 292 sb_start_write(fs_info->sb); 293 ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 294 BTRFS_DEFRAG_BATCH); 295 sb_end_write(fs_info->sb); 296 iput(inode); 297 298 if (ret < 0) 299 goto cleanup; 300 301 cur = max(cur + fs_info->sectorsize, range.start); 302 goto again; 303 304 cleanup: 305 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 306 return ret; 307 } 308 309 /* 310 * run through the list of inodes in the FS that need 311 * defragging 312 */ 313 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 314 { 315 struct inode_defrag *defrag; 316 u64 first_ino = 0; 317 u64 root_objectid = 0; 318 319 atomic_inc(&fs_info->defrag_running); 320 while (1) { 321 /* Pause the auto defragger. */ 322 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 323 &fs_info->fs_state)) 324 break; 325 326 if (!__need_auto_defrag(fs_info)) 327 break; 328 329 /* find an inode to defrag */ 330 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 331 first_ino); 332 if (!defrag) { 333 if (root_objectid || first_ino) { 334 root_objectid = 0; 335 first_ino = 0; 336 continue; 337 } else { 338 break; 339 } 340 } 341 342 first_ino = defrag->ino + 1; 343 root_objectid = defrag->root; 344 345 __btrfs_run_defrag_inode(fs_info, defrag); 346 } 347 atomic_dec(&fs_info->defrag_running); 348 349 /* 350 * during unmount, we use the transaction_wait queue to 351 * wait for the defragger to stop 352 */ 353 wake_up(&fs_info->transaction_wait); 354 return 0; 355 } 356 357 /* simple helper to fault in pages and copy. This should go away 358 * and be replaced with calls into generic code. 359 */ 360 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 361 struct page **prepared_pages, 362 struct iov_iter *i) 363 { 364 size_t copied = 0; 365 size_t total_copied = 0; 366 int pg = 0; 367 int offset = offset_in_page(pos); 368 369 while (write_bytes > 0) { 370 size_t count = min_t(size_t, 371 PAGE_SIZE - offset, write_bytes); 372 struct page *page = prepared_pages[pg]; 373 /* 374 * Copy data from userspace to the current page 375 */ 376 copied = copy_page_from_iter_atomic(page, offset, count, i); 377 378 /* Flush processor's dcache for this page */ 379 flush_dcache_page(page); 380 381 /* 382 * if we get a partial write, we can end up with 383 * partially up to date pages. These add 384 * a lot of complexity, so make sure they don't 385 * happen by forcing this copy to be retried. 386 * 387 * The rest of the btrfs_file_write code will fall 388 * back to page at a time copies after we return 0. 389 */ 390 if (unlikely(copied < count)) { 391 if (!PageUptodate(page)) { 392 iov_iter_revert(i, copied); 393 copied = 0; 394 } 395 if (!copied) 396 break; 397 } 398 399 write_bytes -= copied; 400 total_copied += copied; 401 offset += copied; 402 if (offset == PAGE_SIZE) { 403 pg++; 404 offset = 0; 405 } 406 } 407 return total_copied; 408 } 409 410 /* 411 * unlocks pages after btrfs_file_write is done with them 412 */ 413 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, 414 struct page **pages, size_t num_pages, 415 u64 pos, u64 copied) 416 { 417 size_t i; 418 u64 block_start = round_down(pos, fs_info->sectorsize); 419 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 420 421 ASSERT(block_len <= U32_MAX); 422 for (i = 0; i < num_pages; i++) { 423 /* page checked is some magic around finding pages that 424 * have been modified without going through btrfs_set_page_dirty 425 * clear it here. There should be no need to mark the pages 426 * accessed as prepare_pages should have marked them accessed 427 * in prepare_pages via find_or_create_page() 428 */ 429 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start, 430 block_len); 431 unlock_page(pages[i]); 432 put_page(pages[i]); 433 } 434 } 435 436 /* 437 * After btrfs_copy_from_user(), update the following things for delalloc: 438 * - Mark newly dirtied pages as DELALLOC in the io tree. 439 * Used to advise which range is to be written back. 440 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 441 * - Update inode size for past EOF write 442 */ 443 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 444 size_t num_pages, loff_t pos, size_t write_bytes, 445 struct extent_state **cached, bool noreserve) 446 { 447 struct btrfs_fs_info *fs_info = inode->root->fs_info; 448 int err = 0; 449 int i; 450 u64 num_bytes; 451 u64 start_pos; 452 u64 end_of_last_block; 453 u64 end_pos = pos + write_bytes; 454 loff_t isize = i_size_read(&inode->vfs_inode); 455 unsigned int extra_bits = 0; 456 457 if (write_bytes == 0) 458 return 0; 459 460 if (noreserve) 461 extra_bits |= EXTENT_NORESERVE; 462 463 start_pos = round_down(pos, fs_info->sectorsize); 464 num_bytes = round_up(write_bytes + pos - start_pos, 465 fs_info->sectorsize); 466 ASSERT(num_bytes <= U32_MAX); 467 468 end_of_last_block = start_pos + num_bytes - 1; 469 470 /* 471 * The pages may have already been dirty, clear out old accounting so 472 * we can set things up properly 473 */ 474 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 475 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 476 0, 0, cached); 477 478 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 479 extra_bits, cached); 480 if (err) 481 return err; 482 483 for (i = 0; i < num_pages; i++) { 484 struct page *p = pages[i]; 485 486 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes); 487 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes); 488 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes); 489 } 490 491 /* 492 * we've only changed i_size in ram, and we haven't updated 493 * the disk i_size. There is no need to log the inode 494 * at this time. 495 */ 496 if (end_pos > isize) 497 i_size_write(&inode->vfs_inode, end_pos); 498 return 0; 499 } 500 501 /* 502 * this drops all the extents in the cache that intersect the range 503 * [start, end]. Existing extents are split as required. 504 */ 505 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 506 int skip_pinned) 507 { 508 struct extent_map *em; 509 struct extent_map *split = NULL; 510 struct extent_map *split2 = NULL; 511 struct extent_map_tree *em_tree = &inode->extent_tree; 512 u64 len = end - start + 1; 513 u64 gen; 514 int ret; 515 int testend = 1; 516 unsigned long flags; 517 int compressed = 0; 518 bool modified; 519 520 WARN_ON(end < start); 521 if (end == (u64)-1) { 522 len = (u64)-1; 523 testend = 0; 524 } 525 while (1) { 526 int no_splits = 0; 527 528 modified = false; 529 if (!split) 530 split = alloc_extent_map(); 531 if (!split2) 532 split2 = alloc_extent_map(); 533 if (!split || !split2) 534 no_splits = 1; 535 536 write_lock(&em_tree->lock); 537 em = lookup_extent_mapping(em_tree, start, len); 538 if (!em) { 539 write_unlock(&em_tree->lock); 540 break; 541 } 542 flags = em->flags; 543 gen = em->generation; 544 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 545 if (testend && em->start + em->len >= start + len) { 546 free_extent_map(em); 547 write_unlock(&em_tree->lock); 548 break; 549 } 550 start = em->start + em->len; 551 if (testend) 552 len = start + len - (em->start + em->len); 553 free_extent_map(em); 554 write_unlock(&em_tree->lock); 555 continue; 556 } 557 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 558 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 559 clear_bit(EXTENT_FLAG_LOGGING, &flags); 560 modified = !list_empty(&em->list); 561 if (no_splits) 562 goto next; 563 564 if (em->start < start) { 565 split->start = em->start; 566 split->len = start - em->start; 567 568 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 569 split->orig_start = em->orig_start; 570 split->block_start = em->block_start; 571 572 if (compressed) 573 split->block_len = em->block_len; 574 else 575 split->block_len = split->len; 576 split->orig_block_len = max(split->block_len, 577 em->orig_block_len); 578 split->ram_bytes = em->ram_bytes; 579 } else { 580 split->orig_start = split->start; 581 split->block_len = 0; 582 split->block_start = em->block_start; 583 split->orig_block_len = 0; 584 split->ram_bytes = split->len; 585 } 586 587 split->generation = gen; 588 split->flags = flags; 589 split->compress_type = em->compress_type; 590 replace_extent_mapping(em_tree, em, split, modified); 591 free_extent_map(split); 592 split = split2; 593 split2 = NULL; 594 } 595 if (testend && em->start + em->len > start + len) { 596 u64 diff = start + len - em->start; 597 598 split->start = start + len; 599 split->len = em->start + em->len - (start + len); 600 split->flags = flags; 601 split->compress_type = em->compress_type; 602 split->generation = gen; 603 604 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 605 split->orig_block_len = max(em->block_len, 606 em->orig_block_len); 607 608 split->ram_bytes = em->ram_bytes; 609 if (compressed) { 610 split->block_len = em->block_len; 611 split->block_start = em->block_start; 612 split->orig_start = em->orig_start; 613 } else { 614 split->block_len = split->len; 615 split->block_start = em->block_start 616 + diff; 617 split->orig_start = em->orig_start; 618 } 619 } else { 620 split->ram_bytes = split->len; 621 split->orig_start = split->start; 622 split->block_len = 0; 623 split->block_start = em->block_start; 624 split->orig_block_len = 0; 625 } 626 627 if (extent_map_in_tree(em)) { 628 replace_extent_mapping(em_tree, em, split, 629 modified); 630 } else { 631 ret = add_extent_mapping(em_tree, split, 632 modified); 633 ASSERT(ret == 0); /* Logic error */ 634 } 635 free_extent_map(split); 636 split = NULL; 637 } 638 next: 639 if (extent_map_in_tree(em)) 640 remove_extent_mapping(em_tree, em); 641 write_unlock(&em_tree->lock); 642 643 /* once for us */ 644 free_extent_map(em); 645 /* once for the tree*/ 646 free_extent_map(em); 647 } 648 if (split) 649 free_extent_map(split); 650 if (split2) 651 free_extent_map(split2); 652 } 653 654 /* 655 * this is very complex, but the basic idea is to drop all extents 656 * in the range start - end. hint_block is filled in with a block number 657 * that would be a good hint to the block allocator for this file. 658 * 659 * If an extent intersects the range but is not entirely inside the range 660 * it is either truncated or split. Anything entirely inside the range 661 * is deleted from the tree. 662 * 663 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 664 * to deal with that. We set the field 'bytes_found' of the arguments structure 665 * with the number of allocated bytes found in the target range, so that the 666 * caller can update the inode's number of bytes in an atomic way when 667 * replacing extents in a range to avoid races with stat(2). 668 */ 669 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 670 struct btrfs_root *root, struct btrfs_inode *inode, 671 struct btrfs_drop_extents_args *args) 672 { 673 struct btrfs_fs_info *fs_info = root->fs_info; 674 struct extent_buffer *leaf; 675 struct btrfs_file_extent_item *fi; 676 struct btrfs_ref ref = { 0 }; 677 struct btrfs_key key; 678 struct btrfs_key new_key; 679 u64 ino = btrfs_ino(inode); 680 u64 search_start = args->start; 681 u64 disk_bytenr = 0; 682 u64 num_bytes = 0; 683 u64 extent_offset = 0; 684 u64 extent_end = 0; 685 u64 last_end = args->start; 686 int del_nr = 0; 687 int del_slot = 0; 688 int extent_type; 689 int recow; 690 int ret; 691 int modify_tree = -1; 692 int update_refs; 693 int found = 0; 694 struct btrfs_path *path = args->path; 695 696 args->bytes_found = 0; 697 args->extent_inserted = false; 698 699 /* Must always have a path if ->replace_extent is true */ 700 ASSERT(!(args->replace_extent && !args->path)); 701 702 if (!path) { 703 path = btrfs_alloc_path(); 704 if (!path) { 705 ret = -ENOMEM; 706 goto out; 707 } 708 } 709 710 if (args->drop_cache) 711 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0); 712 713 if (args->start >= inode->disk_i_size && !args->replace_extent) 714 modify_tree = 0; 715 716 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); 717 while (1) { 718 recow = 0; 719 ret = btrfs_lookup_file_extent(trans, root, path, ino, 720 search_start, modify_tree); 721 if (ret < 0) 722 break; 723 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 724 leaf = path->nodes[0]; 725 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 726 if (key.objectid == ino && 727 key.type == BTRFS_EXTENT_DATA_KEY) 728 path->slots[0]--; 729 } 730 ret = 0; 731 next_slot: 732 leaf = path->nodes[0]; 733 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 734 BUG_ON(del_nr > 0); 735 ret = btrfs_next_leaf(root, path); 736 if (ret < 0) 737 break; 738 if (ret > 0) { 739 ret = 0; 740 break; 741 } 742 leaf = path->nodes[0]; 743 recow = 1; 744 } 745 746 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 747 748 if (key.objectid > ino) 749 break; 750 if (WARN_ON_ONCE(key.objectid < ino) || 751 key.type < BTRFS_EXTENT_DATA_KEY) { 752 ASSERT(del_nr == 0); 753 path->slots[0]++; 754 goto next_slot; 755 } 756 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 757 break; 758 759 fi = btrfs_item_ptr(leaf, path->slots[0], 760 struct btrfs_file_extent_item); 761 extent_type = btrfs_file_extent_type(leaf, fi); 762 763 if (extent_type == BTRFS_FILE_EXTENT_REG || 764 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 765 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 766 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 767 extent_offset = btrfs_file_extent_offset(leaf, fi); 768 extent_end = key.offset + 769 btrfs_file_extent_num_bytes(leaf, fi); 770 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 771 extent_end = key.offset + 772 btrfs_file_extent_ram_bytes(leaf, fi); 773 } else { 774 /* can't happen */ 775 BUG(); 776 } 777 778 /* 779 * Don't skip extent items representing 0 byte lengths. They 780 * used to be created (bug) if while punching holes we hit 781 * -ENOSPC condition. So if we find one here, just ensure we 782 * delete it, otherwise we would insert a new file extent item 783 * with the same key (offset) as that 0 bytes length file 784 * extent item in the call to setup_items_for_insert() later 785 * in this function. 786 */ 787 if (extent_end == key.offset && extent_end >= search_start) { 788 last_end = extent_end; 789 goto delete_extent_item; 790 } 791 792 if (extent_end <= search_start) { 793 path->slots[0]++; 794 goto next_slot; 795 } 796 797 found = 1; 798 search_start = max(key.offset, args->start); 799 if (recow || !modify_tree) { 800 modify_tree = -1; 801 btrfs_release_path(path); 802 continue; 803 } 804 805 /* 806 * | - range to drop - | 807 * | -------- extent -------- | 808 */ 809 if (args->start > key.offset && args->end < extent_end) { 810 BUG_ON(del_nr > 0); 811 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 812 ret = -EOPNOTSUPP; 813 break; 814 } 815 816 memcpy(&new_key, &key, sizeof(new_key)); 817 new_key.offset = args->start; 818 ret = btrfs_duplicate_item(trans, root, path, 819 &new_key); 820 if (ret == -EAGAIN) { 821 btrfs_release_path(path); 822 continue; 823 } 824 if (ret < 0) 825 break; 826 827 leaf = path->nodes[0]; 828 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 829 struct btrfs_file_extent_item); 830 btrfs_set_file_extent_num_bytes(leaf, fi, 831 args->start - key.offset); 832 833 fi = btrfs_item_ptr(leaf, path->slots[0], 834 struct btrfs_file_extent_item); 835 836 extent_offset += args->start - key.offset; 837 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 838 btrfs_set_file_extent_num_bytes(leaf, fi, 839 extent_end - args->start); 840 btrfs_mark_buffer_dirty(leaf); 841 842 if (update_refs && disk_bytenr > 0) { 843 btrfs_init_generic_ref(&ref, 844 BTRFS_ADD_DELAYED_REF, 845 disk_bytenr, num_bytes, 0); 846 btrfs_init_data_ref(&ref, 847 root->root_key.objectid, 848 new_key.objectid, 849 args->start - extent_offset, 850 0, false); 851 ret = btrfs_inc_extent_ref(trans, &ref); 852 BUG_ON(ret); /* -ENOMEM */ 853 } 854 key.offset = args->start; 855 } 856 /* 857 * From here on out we will have actually dropped something, so 858 * last_end can be updated. 859 */ 860 last_end = extent_end; 861 862 /* 863 * | ---- range to drop ----- | 864 * | -------- extent -------- | 865 */ 866 if (args->start <= key.offset && args->end < extent_end) { 867 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 868 ret = -EOPNOTSUPP; 869 break; 870 } 871 872 memcpy(&new_key, &key, sizeof(new_key)); 873 new_key.offset = args->end; 874 btrfs_set_item_key_safe(fs_info, path, &new_key); 875 876 extent_offset += args->end - key.offset; 877 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 878 btrfs_set_file_extent_num_bytes(leaf, fi, 879 extent_end - args->end); 880 btrfs_mark_buffer_dirty(leaf); 881 if (update_refs && disk_bytenr > 0) 882 args->bytes_found += args->end - key.offset; 883 break; 884 } 885 886 search_start = extent_end; 887 /* 888 * | ---- range to drop ----- | 889 * | -------- extent -------- | 890 */ 891 if (args->start > key.offset && args->end >= extent_end) { 892 BUG_ON(del_nr > 0); 893 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 894 ret = -EOPNOTSUPP; 895 break; 896 } 897 898 btrfs_set_file_extent_num_bytes(leaf, fi, 899 args->start - key.offset); 900 btrfs_mark_buffer_dirty(leaf); 901 if (update_refs && disk_bytenr > 0) 902 args->bytes_found += extent_end - args->start; 903 if (args->end == extent_end) 904 break; 905 906 path->slots[0]++; 907 goto next_slot; 908 } 909 910 /* 911 * | ---- range to drop ----- | 912 * | ------ extent ------ | 913 */ 914 if (args->start <= key.offset && args->end >= extent_end) { 915 delete_extent_item: 916 if (del_nr == 0) { 917 del_slot = path->slots[0]; 918 del_nr = 1; 919 } else { 920 BUG_ON(del_slot + del_nr != path->slots[0]); 921 del_nr++; 922 } 923 924 if (update_refs && 925 extent_type == BTRFS_FILE_EXTENT_INLINE) { 926 args->bytes_found += extent_end - key.offset; 927 extent_end = ALIGN(extent_end, 928 fs_info->sectorsize); 929 } else if (update_refs && disk_bytenr > 0) { 930 btrfs_init_generic_ref(&ref, 931 BTRFS_DROP_DELAYED_REF, 932 disk_bytenr, num_bytes, 0); 933 btrfs_init_data_ref(&ref, 934 root->root_key.objectid, 935 key.objectid, 936 key.offset - extent_offset, 0, 937 false); 938 ret = btrfs_free_extent(trans, &ref); 939 BUG_ON(ret); /* -ENOMEM */ 940 args->bytes_found += extent_end - key.offset; 941 } 942 943 if (args->end == extent_end) 944 break; 945 946 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 947 path->slots[0]++; 948 goto next_slot; 949 } 950 951 ret = btrfs_del_items(trans, root, path, del_slot, 952 del_nr); 953 if (ret) { 954 btrfs_abort_transaction(trans, ret); 955 break; 956 } 957 958 del_nr = 0; 959 del_slot = 0; 960 961 btrfs_release_path(path); 962 continue; 963 } 964 965 BUG(); 966 } 967 968 if (!ret && del_nr > 0) { 969 /* 970 * Set path->slots[0] to first slot, so that after the delete 971 * if items are move off from our leaf to its immediate left or 972 * right neighbor leafs, we end up with a correct and adjusted 973 * path->slots[0] for our insertion (if args->replace_extent). 974 */ 975 path->slots[0] = del_slot; 976 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 977 if (ret) 978 btrfs_abort_transaction(trans, ret); 979 } 980 981 leaf = path->nodes[0]; 982 /* 983 * If btrfs_del_items() was called, it might have deleted a leaf, in 984 * which case it unlocked our path, so check path->locks[0] matches a 985 * write lock. 986 */ 987 if (!ret && args->replace_extent && 988 path->locks[0] == BTRFS_WRITE_LOCK && 989 btrfs_leaf_free_space(leaf) >= 990 sizeof(struct btrfs_item) + args->extent_item_size) { 991 992 key.objectid = ino; 993 key.type = BTRFS_EXTENT_DATA_KEY; 994 key.offset = args->start; 995 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 996 struct btrfs_key slot_key; 997 998 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 999 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1000 path->slots[0]++; 1001 } 1002 btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size); 1003 args->extent_inserted = true; 1004 } 1005 1006 if (!args->path) 1007 btrfs_free_path(path); 1008 else if (!args->extent_inserted) 1009 btrfs_release_path(path); 1010 out: 1011 args->drop_end = found ? min(args->end, last_end) : args->end; 1012 1013 return ret; 1014 } 1015 1016 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1017 u64 objectid, u64 bytenr, u64 orig_offset, 1018 u64 *start, u64 *end) 1019 { 1020 struct btrfs_file_extent_item *fi; 1021 struct btrfs_key key; 1022 u64 extent_end; 1023 1024 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1025 return 0; 1026 1027 btrfs_item_key_to_cpu(leaf, &key, slot); 1028 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1029 return 0; 1030 1031 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1032 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1033 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1034 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1035 btrfs_file_extent_compression(leaf, fi) || 1036 btrfs_file_extent_encryption(leaf, fi) || 1037 btrfs_file_extent_other_encoding(leaf, fi)) 1038 return 0; 1039 1040 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1041 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1042 return 0; 1043 1044 *start = key.offset; 1045 *end = extent_end; 1046 return 1; 1047 } 1048 1049 /* 1050 * Mark extent in the range start - end as written. 1051 * 1052 * This changes extent type from 'pre-allocated' to 'regular'. If only 1053 * part of extent is marked as written, the extent will be split into 1054 * two or three. 1055 */ 1056 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1057 struct btrfs_inode *inode, u64 start, u64 end) 1058 { 1059 struct btrfs_fs_info *fs_info = trans->fs_info; 1060 struct btrfs_root *root = inode->root; 1061 struct extent_buffer *leaf; 1062 struct btrfs_path *path; 1063 struct btrfs_file_extent_item *fi; 1064 struct btrfs_ref ref = { 0 }; 1065 struct btrfs_key key; 1066 struct btrfs_key new_key; 1067 u64 bytenr; 1068 u64 num_bytes; 1069 u64 extent_end; 1070 u64 orig_offset; 1071 u64 other_start; 1072 u64 other_end; 1073 u64 split; 1074 int del_nr = 0; 1075 int del_slot = 0; 1076 int recow; 1077 int ret = 0; 1078 u64 ino = btrfs_ino(inode); 1079 1080 path = btrfs_alloc_path(); 1081 if (!path) 1082 return -ENOMEM; 1083 again: 1084 recow = 0; 1085 split = start; 1086 key.objectid = ino; 1087 key.type = BTRFS_EXTENT_DATA_KEY; 1088 key.offset = split; 1089 1090 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1091 if (ret < 0) 1092 goto out; 1093 if (ret > 0 && path->slots[0] > 0) 1094 path->slots[0]--; 1095 1096 leaf = path->nodes[0]; 1097 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1098 if (key.objectid != ino || 1099 key.type != BTRFS_EXTENT_DATA_KEY) { 1100 ret = -EINVAL; 1101 btrfs_abort_transaction(trans, ret); 1102 goto out; 1103 } 1104 fi = btrfs_item_ptr(leaf, path->slots[0], 1105 struct btrfs_file_extent_item); 1106 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1107 ret = -EINVAL; 1108 btrfs_abort_transaction(trans, ret); 1109 goto out; 1110 } 1111 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1112 if (key.offset > start || extent_end < end) { 1113 ret = -EINVAL; 1114 btrfs_abort_transaction(trans, ret); 1115 goto out; 1116 } 1117 1118 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1119 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1120 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1121 memcpy(&new_key, &key, sizeof(new_key)); 1122 1123 if (start == key.offset && end < extent_end) { 1124 other_start = 0; 1125 other_end = start; 1126 if (extent_mergeable(leaf, path->slots[0] - 1, 1127 ino, bytenr, orig_offset, 1128 &other_start, &other_end)) { 1129 new_key.offset = end; 1130 btrfs_set_item_key_safe(fs_info, path, &new_key); 1131 fi = btrfs_item_ptr(leaf, path->slots[0], 1132 struct btrfs_file_extent_item); 1133 btrfs_set_file_extent_generation(leaf, fi, 1134 trans->transid); 1135 btrfs_set_file_extent_num_bytes(leaf, fi, 1136 extent_end - end); 1137 btrfs_set_file_extent_offset(leaf, fi, 1138 end - orig_offset); 1139 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1140 struct btrfs_file_extent_item); 1141 btrfs_set_file_extent_generation(leaf, fi, 1142 trans->transid); 1143 btrfs_set_file_extent_num_bytes(leaf, fi, 1144 end - other_start); 1145 btrfs_mark_buffer_dirty(leaf); 1146 goto out; 1147 } 1148 } 1149 1150 if (start > key.offset && end == extent_end) { 1151 other_start = end; 1152 other_end = 0; 1153 if (extent_mergeable(leaf, path->slots[0] + 1, 1154 ino, bytenr, orig_offset, 1155 &other_start, &other_end)) { 1156 fi = btrfs_item_ptr(leaf, path->slots[0], 1157 struct btrfs_file_extent_item); 1158 btrfs_set_file_extent_num_bytes(leaf, fi, 1159 start - key.offset); 1160 btrfs_set_file_extent_generation(leaf, fi, 1161 trans->transid); 1162 path->slots[0]++; 1163 new_key.offset = start; 1164 btrfs_set_item_key_safe(fs_info, path, &new_key); 1165 1166 fi = btrfs_item_ptr(leaf, path->slots[0], 1167 struct btrfs_file_extent_item); 1168 btrfs_set_file_extent_generation(leaf, fi, 1169 trans->transid); 1170 btrfs_set_file_extent_num_bytes(leaf, fi, 1171 other_end - start); 1172 btrfs_set_file_extent_offset(leaf, fi, 1173 start - orig_offset); 1174 btrfs_mark_buffer_dirty(leaf); 1175 goto out; 1176 } 1177 } 1178 1179 while (start > key.offset || end < extent_end) { 1180 if (key.offset == start) 1181 split = end; 1182 1183 new_key.offset = split; 1184 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1185 if (ret == -EAGAIN) { 1186 btrfs_release_path(path); 1187 goto again; 1188 } 1189 if (ret < 0) { 1190 btrfs_abort_transaction(trans, ret); 1191 goto out; 1192 } 1193 1194 leaf = path->nodes[0]; 1195 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1196 struct btrfs_file_extent_item); 1197 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1198 btrfs_set_file_extent_num_bytes(leaf, fi, 1199 split - key.offset); 1200 1201 fi = btrfs_item_ptr(leaf, path->slots[0], 1202 struct btrfs_file_extent_item); 1203 1204 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1205 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1206 btrfs_set_file_extent_num_bytes(leaf, fi, 1207 extent_end - split); 1208 btrfs_mark_buffer_dirty(leaf); 1209 1210 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 1211 num_bytes, 0); 1212 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 1213 orig_offset, 0, false); 1214 ret = btrfs_inc_extent_ref(trans, &ref); 1215 if (ret) { 1216 btrfs_abort_transaction(trans, ret); 1217 goto out; 1218 } 1219 1220 if (split == start) { 1221 key.offset = start; 1222 } else { 1223 if (start != key.offset) { 1224 ret = -EINVAL; 1225 btrfs_abort_transaction(trans, ret); 1226 goto out; 1227 } 1228 path->slots[0]--; 1229 extent_end = end; 1230 } 1231 recow = 1; 1232 } 1233 1234 other_start = end; 1235 other_end = 0; 1236 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1237 num_bytes, 0); 1238 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset, 1239 0, false); 1240 if (extent_mergeable(leaf, path->slots[0] + 1, 1241 ino, bytenr, orig_offset, 1242 &other_start, &other_end)) { 1243 if (recow) { 1244 btrfs_release_path(path); 1245 goto again; 1246 } 1247 extent_end = other_end; 1248 del_slot = path->slots[0] + 1; 1249 del_nr++; 1250 ret = btrfs_free_extent(trans, &ref); 1251 if (ret) { 1252 btrfs_abort_transaction(trans, ret); 1253 goto out; 1254 } 1255 } 1256 other_start = 0; 1257 other_end = start; 1258 if (extent_mergeable(leaf, path->slots[0] - 1, 1259 ino, bytenr, orig_offset, 1260 &other_start, &other_end)) { 1261 if (recow) { 1262 btrfs_release_path(path); 1263 goto again; 1264 } 1265 key.offset = other_start; 1266 del_slot = path->slots[0]; 1267 del_nr++; 1268 ret = btrfs_free_extent(trans, &ref); 1269 if (ret) { 1270 btrfs_abort_transaction(trans, ret); 1271 goto out; 1272 } 1273 } 1274 if (del_nr == 0) { 1275 fi = btrfs_item_ptr(leaf, path->slots[0], 1276 struct btrfs_file_extent_item); 1277 btrfs_set_file_extent_type(leaf, fi, 1278 BTRFS_FILE_EXTENT_REG); 1279 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1280 btrfs_mark_buffer_dirty(leaf); 1281 } else { 1282 fi = btrfs_item_ptr(leaf, del_slot - 1, 1283 struct btrfs_file_extent_item); 1284 btrfs_set_file_extent_type(leaf, fi, 1285 BTRFS_FILE_EXTENT_REG); 1286 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1287 btrfs_set_file_extent_num_bytes(leaf, fi, 1288 extent_end - key.offset); 1289 btrfs_mark_buffer_dirty(leaf); 1290 1291 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1292 if (ret < 0) { 1293 btrfs_abort_transaction(trans, ret); 1294 goto out; 1295 } 1296 } 1297 out: 1298 btrfs_free_path(path); 1299 return ret; 1300 } 1301 1302 /* 1303 * on error we return an unlocked page and the error value 1304 * on success we return a locked page and 0 1305 */ 1306 static int prepare_uptodate_page(struct inode *inode, 1307 struct page *page, u64 pos, 1308 bool force_uptodate) 1309 { 1310 int ret = 0; 1311 1312 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1313 !PageUptodate(page)) { 1314 ret = btrfs_readpage(NULL, page); 1315 if (ret) 1316 return ret; 1317 lock_page(page); 1318 if (!PageUptodate(page)) { 1319 unlock_page(page); 1320 return -EIO; 1321 } 1322 1323 /* 1324 * Since btrfs_readpage() will unlock the page before it 1325 * returns, there is a window where btrfs_releasepage() can be 1326 * called to release the page. Here we check both inode 1327 * mapping and PagePrivate() to make sure the page was not 1328 * released. 1329 * 1330 * The private flag check is essential for subpage as we need 1331 * to store extra bitmap using page->private. 1332 */ 1333 if (page->mapping != inode->i_mapping || !PagePrivate(page)) { 1334 unlock_page(page); 1335 return -EAGAIN; 1336 } 1337 } 1338 return 0; 1339 } 1340 1341 /* 1342 * this just gets pages into the page cache and locks them down. 1343 */ 1344 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1345 size_t num_pages, loff_t pos, 1346 size_t write_bytes, bool force_uptodate) 1347 { 1348 int i; 1349 unsigned long index = pos >> PAGE_SHIFT; 1350 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1351 int err = 0; 1352 int faili; 1353 1354 for (i = 0; i < num_pages; i++) { 1355 again: 1356 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1357 mask | __GFP_WRITE); 1358 if (!pages[i]) { 1359 faili = i - 1; 1360 err = -ENOMEM; 1361 goto fail; 1362 } 1363 1364 err = set_page_extent_mapped(pages[i]); 1365 if (err < 0) { 1366 faili = i; 1367 goto fail; 1368 } 1369 1370 if (i == 0) 1371 err = prepare_uptodate_page(inode, pages[i], pos, 1372 force_uptodate); 1373 if (!err && i == num_pages - 1) 1374 err = prepare_uptodate_page(inode, pages[i], 1375 pos + write_bytes, false); 1376 if (err) { 1377 put_page(pages[i]); 1378 if (err == -EAGAIN) { 1379 err = 0; 1380 goto again; 1381 } 1382 faili = i - 1; 1383 goto fail; 1384 } 1385 wait_on_page_writeback(pages[i]); 1386 } 1387 1388 return 0; 1389 fail: 1390 while (faili >= 0) { 1391 unlock_page(pages[faili]); 1392 put_page(pages[faili]); 1393 faili--; 1394 } 1395 return err; 1396 1397 } 1398 1399 /* 1400 * This function locks the extent and properly waits for data=ordered extents 1401 * to finish before allowing the pages to be modified if need. 1402 * 1403 * The return value: 1404 * 1 - the extent is locked 1405 * 0 - the extent is not locked, and everything is OK 1406 * -EAGAIN - need re-prepare the pages 1407 * the other < 0 number - Something wrong happens 1408 */ 1409 static noinline int 1410 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1411 size_t num_pages, loff_t pos, 1412 size_t write_bytes, 1413 u64 *lockstart, u64 *lockend, 1414 struct extent_state **cached_state) 1415 { 1416 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1417 u64 start_pos; 1418 u64 last_pos; 1419 int i; 1420 int ret = 0; 1421 1422 start_pos = round_down(pos, fs_info->sectorsize); 1423 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 1424 1425 if (start_pos < inode->vfs_inode.i_size) { 1426 struct btrfs_ordered_extent *ordered; 1427 1428 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1429 cached_state); 1430 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1431 last_pos - start_pos + 1); 1432 if (ordered && 1433 ordered->file_offset + ordered->num_bytes > start_pos && 1434 ordered->file_offset <= last_pos) { 1435 unlock_extent_cached(&inode->io_tree, start_pos, 1436 last_pos, cached_state); 1437 for (i = 0; i < num_pages; i++) { 1438 unlock_page(pages[i]); 1439 put_page(pages[i]); 1440 } 1441 btrfs_start_ordered_extent(ordered, 1); 1442 btrfs_put_ordered_extent(ordered); 1443 return -EAGAIN; 1444 } 1445 if (ordered) 1446 btrfs_put_ordered_extent(ordered); 1447 1448 *lockstart = start_pos; 1449 *lockend = last_pos; 1450 ret = 1; 1451 } 1452 1453 /* 1454 * We should be called after prepare_pages() which should have locked 1455 * all pages in the range. 1456 */ 1457 for (i = 0; i < num_pages; i++) 1458 WARN_ON(!PageLocked(pages[i])); 1459 1460 return ret; 1461 } 1462 1463 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1464 size_t *write_bytes, bool nowait) 1465 { 1466 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1467 struct btrfs_root *root = inode->root; 1468 u64 lockstart, lockend; 1469 u64 num_bytes; 1470 int ret; 1471 1472 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1473 return 0; 1474 1475 if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock)) 1476 return -EAGAIN; 1477 1478 lockstart = round_down(pos, fs_info->sectorsize); 1479 lockend = round_up(pos + *write_bytes, 1480 fs_info->sectorsize) - 1; 1481 num_bytes = lockend - lockstart + 1; 1482 1483 if (nowait) { 1484 struct btrfs_ordered_extent *ordered; 1485 1486 if (!try_lock_extent(&inode->io_tree, lockstart, lockend)) 1487 return -EAGAIN; 1488 1489 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1490 num_bytes); 1491 if (ordered) { 1492 btrfs_put_ordered_extent(ordered); 1493 ret = -EAGAIN; 1494 goto out_unlock; 1495 } 1496 } else { 1497 btrfs_lock_and_flush_ordered_range(inode, lockstart, 1498 lockend, NULL); 1499 } 1500 1501 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1502 NULL, NULL, NULL, false); 1503 if (ret <= 0) { 1504 ret = 0; 1505 if (!nowait) 1506 btrfs_drew_write_unlock(&root->snapshot_lock); 1507 } else { 1508 *write_bytes = min_t(size_t, *write_bytes , 1509 num_bytes - pos + lockstart); 1510 } 1511 out_unlock: 1512 unlock_extent(&inode->io_tree, lockstart, lockend); 1513 1514 return ret; 1515 } 1516 1517 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos, 1518 size_t *write_bytes) 1519 { 1520 return check_can_nocow(inode, pos, write_bytes, true); 1521 } 1522 1523 /* 1524 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1525 * 1526 * @pos: File offset 1527 * @write_bytes: The length to write, will be updated to the nocow writeable 1528 * range 1529 * 1530 * This function will flush ordered extents in the range to ensure proper 1531 * nocow checks. 1532 * 1533 * Return: 1534 * >0 and update @write_bytes if we can do nocow write 1535 * 0 if we can't do nocow write 1536 * -EAGAIN if we can't get the needed lock or there are ordered extents 1537 * for * (nowait == true) case 1538 * <0 if other error happened 1539 * 1540 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock(). 1541 */ 1542 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1543 size_t *write_bytes) 1544 { 1545 return check_can_nocow(inode, pos, write_bytes, false); 1546 } 1547 1548 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1549 { 1550 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1551 } 1552 1553 static void update_time_for_write(struct inode *inode) 1554 { 1555 struct timespec64 now; 1556 1557 if (IS_NOCMTIME(inode)) 1558 return; 1559 1560 now = current_time(inode); 1561 if (!timespec64_equal(&inode->i_mtime, &now)) 1562 inode->i_mtime = now; 1563 1564 if (!timespec64_equal(&inode->i_ctime, &now)) 1565 inode->i_ctime = now; 1566 1567 if (IS_I_VERSION(inode)) 1568 inode_inc_iversion(inode); 1569 } 1570 1571 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1572 size_t count) 1573 { 1574 struct file *file = iocb->ki_filp; 1575 struct inode *inode = file_inode(file); 1576 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1577 loff_t pos = iocb->ki_pos; 1578 int ret; 1579 loff_t oldsize; 1580 loff_t start_pos; 1581 1582 if (iocb->ki_flags & IOCB_NOWAIT) { 1583 size_t nocow_bytes = count; 1584 1585 /* We will allocate space in case nodatacow is not set, so bail */ 1586 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0) 1587 return -EAGAIN; 1588 /* 1589 * There are holes in the range or parts of the range that must 1590 * be COWed (shared extents, RO block groups, etc), so just bail 1591 * out. 1592 */ 1593 if (nocow_bytes < count) 1594 return -EAGAIN; 1595 } 1596 1597 current->backing_dev_info = inode_to_bdi(inode); 1598 ret = file_remove_privs(file); 1599 if (ret) 1600 return ret; 1601 1602 /* 1603 * We reserve space for updating the inode when we reserve space for the 1604 * extent we are going to write, so we will enospc out there. We don't 1605 * need to start yet another transaction to update the inode as we will 1606 * update the inode when we finish writing whatever data we write. 1607 */ 1608 update_time_for_write(inode); 1609 1610 start_pos = round_down(pos, fs_info->sectorsize); 1611 oldsize = i_size_read(inode); 1612 if (start_pos > oldsize) { 1613 /* Expand hole size to cover write data, preventing empty gap */ 1614 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1615 1616 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1617 if (ret) { 1618 current->backing_dev_info = NULL; 1619 return ret; 1620 } 1621 } 1622 1623 return 0; 1624 } 1625 1626 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1627 struct iov_iter *i) 1628 { 1629 struct file *file = iocb->ki_filp; 1630 loff_t pos; 1631 struct inode *inode = file_inode(file); 1632 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1633 struct page **pages = NULL; 1634 struct extent_changeset *data_reserved = NULL; 1635 u64 release_bytes = 0; 1636 u64 lockstart; 1637 u64 lockend; 1638 size_t num_written = 0; 1639 int nrptrs; 1640 ssize_t ret; 1641 bool only_release_metadata = false; 1642 bool force_page_uptodate = false; 1643 loff_t old_isize = i_size_read(inode); 1644 unsigned int ilock_flags = 0; 1645 1646 if (iocb->ki_flags & IOCB_NOWAIT) 1647 ilock_flags |= BTRFS_ILOCK_TRY; 1648 1649 ret = btrfs_inode_lock(inode, ilock_flags); 1650 if (ret < 0) 1651 return ret; 1652 1653 ret = generic_write_checks(iocb, i); 1654 if (ret <= 0) 1655 goto out; 1656 1657 ret = btrfs_write_check(iocb, i, ret); 1658 if (ret < 0) 1659 goto out; 1660 1661 pos = iocb->ki_pos; 1662 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1663 PAGE_SIZE / (sizeof(struct page *))); 1664 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1665 nrptrs = max(nrptrs, 8); 1666 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1667 if (!pages) { 1668 ret = -ENOMEM; 1669 goto out; 1670 } 1671 1672 while (iov_iter_count(i) > 0) { 1673 struct extent_state *cached_state = NULL; 1674 size_t offset = offset_in_page(pos); 1675 size_t sector_offset; 1676 size_t write_bytes = min(iov_iter_count(i), 1677 nrptrs * (size_t)PAGE_SIZE - 1678 offset); 1679 size_t num_pages; 1680 size_t reserve_bytes; 1681 size_t dirty_pages; 1682 size_t copied; 1683 size_t dirty_sectors; 1684 size_t num_sectors; 1685 int extents_locked; 1686 1687 /* 1688 * Fault pages before locking them in prepare_pages 1689 * to avoid recursive lock 1690 */ 1691 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1692 ret = -EFAULT; 1693 break; 1694 } 1695 1696 only_release_metadata = false; 1697 sector_offset = pos & (fs_info->sectorsize - 1); 1698 1699 extent_changeset_release(data_reserved); 1700 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1701 &data_reserved, pos, 1702 write_bytes); 1703 if (ret < 0) { 1704 /* 1705 * If we don't have to COW at the offset, reserve 1706 * metadata only. write_bytes may get smaller than 1707 * requested here. 1708 */ 1709 if (btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1710 &write_bytes) > 0) 1711 only_release_metadata = true; 1712 else 1713 break; 1714 } 1715 1716 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1717 WARN_ON(num_pages > nrptrs); 1718 reserve_bytes = round_up(write_bytes + sector_offset, 1719 fs_info->sectorsize); 1720 WARN_ON(reserve_bytes == 0); 1721 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1722 reserve_bytes, 1723 reserve_bytes); 1724 if (ret) { 1725 if (!only_release_metadata) 1726 btrfs_free_reserved_data_space(BTRFS_I(inode), 1727 data_reserved, pos, 1728 write_bytes); 1729 else 1730 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1731 break; 1732 } 1733 1734 release_bytes = reserve_bytes; 1735 again: 1736 /* 1737 * This is going to setup the pages array with the number of 1738 * pages we want, so we don't really need to worry about the 1739 * contents of pages from loop to loop 1740 */ 1741 ret = prepare_pages(inode, pages, num_pages, 1742 pos, write_bytes, 1743 force_page_uptodate); 1744 if (ret) { 1745 btrfs_delalloc_release_extents(BTRFS_I(inode), 1746 reserve_bytes); 1747 break; 1748 } 1749 1750 extents_locked = lock_and_cleanup_extent_if_need( 1751 BTRFS_I(inode), pages, 1752 num_pages, pos, write_bytes, &lockstart, 1753 &lockend, &cached_state); 1754 if (extents_locked < 0) { 1755 if (extents_locked == -EAGAIN) 1756 goto again; 1757 btrfs_delalloc_release_extents(BTRFS_I(inode), 1758 reserve_bytes); 1759 ret = extents_locked; 1760 break; 1761 } 1762 1763 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1764 1765 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1766 dirty_sectors = round_up(copied + sector_offset, 1767 fs_info->sectorsize); 1768 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1769 1770 /* 1771 * if we have trouble faulting in the pages, fall 1772 * back to one page at a time 1773 */ 1774 if (copied < write_bytes) 1775 nrptrs = 1; 1776 1777 if (copied == 0) { 1778 force_page_uptodate = true; 1779 dirty_sectors = 0; 1780 dirty_pages = 0; 1781 } else { 1782 force_page_uptodate = false; 1783 dirty_pages = DIV_ROUND_UP(copied + offset, 1784 PAGE_SIZE); 1785 } 1786 1787 if (num_sectors > dirty_sectors) { 1788 /* release everything except the sectors we dirtied */ 1789 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1790 if (only_release_metadata) { 1791 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1792 release_bytes, true); 1793 } else { 1794 u64 __pos; 1795 1796 __pos = round_down(pos, 1797 fs_info->sectorsize) + 1798 (dirty_pages << PAGE_SHIFT); 1799 btrfs_delalloc_release_space(BTRFS_I(inode), 1800 data_reserved, __pos, 1801 release_bytes, true); 1802 } 1803 } 1804 1805 release_bytes = round_up(copied + sector_offset, 1806 fs_info->sectorsize); 1807 1808 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1809 dirty_pages, pos, copied, 1810 &cached_state, only_release_metadata); 1811 1812 /* 1813 * If we have not locked the extent range, because the range's 1814 * start offset is >= i_size, we might still have a non-NULL 1815 * cached extent state, acquired while marking the extent range 1816 * as delalloc through btrfs_dirty_pages(). Therefore free any 1817 * possible cached extent state to avoid a memory leak. 1818 */ 1819 if (extents_locked) 1820 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1821 lockstart, lockend, &cached_state); 1822 else 1823 free_extent_state(cached_state); 1824 1825 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1826 if (ret) { 1827 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1828 break; 1829 } 1830 1831 release_bytes = 0; 1832 if (only_release_metadata) 1833 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1834 1835 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1836 1837 cond_resched(); 1838 1839 balance_dirty_pages_ratelimited(inode->i_mapping); 1840 1841 pos += copied; 1842 num_written += copied; 1843 } 1844 1845 kfree(pages); 1846 1847 if (release_bytes) { 1848 if (only_release_metadata) { 1849 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1850 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1851 release_bytes, true); 1852 } else { 1853 btrfs_delalloc_release_space(BTRFS_I(inode), 1854 data_reserved, 1855 round_down(pos, fs_info->sectorsize), 1856 release_bytes, true); 1857 } 1858 } 1859 1860 extent_changeset_free(data_reserved); 1861 if (num_written > 0) { 1862 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1863 iocb->ki_pos += num_written; 1864 } 1865 out: 1866 btrfs_inode_unlock(inode, ilock_flags); 1867 return num_written ? num_written : ret; 1868 } 1869 1870 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1871 const struct iov_iter *iter, loff_t offset) 1872 { 1873 const u32 blocksize_mask = fs_info->sectorsize - 1; 1874 1875 if (offset & blocksize_mask) 1876 return -EINVAL; 1877 1878 if (iov_iter_alignment(iter) & blocksize_mask) 1879 return -EINVAL; 1880 1881 return 0; 1882 } 1883 1884 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1885 { 1886 const bool is_sync_write = (iocb->ki_flags & IOCB_DSYNC); 1887 struct file *file = iocb->ki_filp; 1888 struct inode *inode = file_inode(file); 1889 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1890 loff_t pos; 1891 ssize_t written = 0; 1892 ssize_t written_buffered; 1893 size_t prev_left = 0; 1894 loff_t endbyte; 1895 ssize_t err; 1896 unsigned int ilock_flags = 0; 1897 1898 if (iocb->ki_flags & IOCB_NOWAIT) 1899 ilock_flags |= BTRFS_ILOCK_TRY; 1900 1901 /* If the write DIO is within EOF, use a shared lock */ 1902 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode)) 1903 ilock_flags |= BTRFS_ILOCK_SHARED; 1904 1905 relock: 1906 err = btrfs_inode_lock(inode, ilock_flags); 1907 if (err < 0) 1908 return err; 1909 1910 err = generic_write_checks(iocb, from); 1911 if (err <= 0) { 1912 btrfs_inode_unlock(inode, ilock_flags); 1913 return err; 1914 } 1915 1916 err = btrfs_write_check(iocb, from, err); 1917 if (err < 0) { 1918 btrfs_inode_unlock(inode, ilock_flags); 1919 goto out; 1920 } 1921 1922 pos = iocb->ki_pos; 1923 /* 1924 * Re-check since file size may have changed just before taking the 1925 * lock or pos may have changed because of O_APPEND in generic_write_check() 1926 */ 1927 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1928 pos + iov_iter_count(from) > i_size_read(inode)) { 1929 btrfs_inode_unlock(inode, ilock_flags); 1930 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1931 goto relock; 1932 } 1933 1934 if (check_direct_IO(fs_info, from, pos)) { 1935 btrfs_inode_unlock(inode, ilock_flags); 1936 goto buffered; 1937 } 1938 1939 /* 1940 * We remove IOCB_DSYNC so that we don't deadlock when iomap_dio_rw() 1941 * calls generic_write_sync() (through iomap_dio_complete()), because 1942 * that results in calling fsync (btrfs_sync_file()) which will try to 1943 * lock the inode in exclusive/write mode. 1944 */ 1945 if (is_sync_write) 1946 iocb->ki_flags &= ~IOCB_DSYNC; 1947 1948 /* 1949 * The iov_iter can be mapped to the same file range we are writing to. 1950 * If that's the case, then we will deadlock in the iomap code, because 1951 * it first calls our callback btrfs_dio_iomap_begin(), which will create 1952 * an ordered extent, and after that it will fault in the pages that the 1953 * iov_iter refers to. During the fault in we end up in the readahead 1954 * pages code (starting at btrfs_readahead()), which will lock the range, 1955 * find that ordered extent and then wait for it to complete (at 1956 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since 1957 * obviously the ordered extent can never complete as we didn't submit 1958 * yet the respective bio(s). This always happens when the buffer is 1959 * memory mapped to the same file range, since the iomap DIO code always 1960 * invalidates pages in the target file range (after starting and waiting 1961 * for any writeback). 1962 * 1963 * So here we disable page faults in the iov_iter and then retry if we 1964 * got -EFAULT, faulting in the pages before the retry. 1965 */ 1966 again: 1967 from->nofault = true; 1968 err = iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 1969 IOMAP_DIO_PARTIAL, written); 1970 from->nofault = false; 1971 1972 /* No increment (+=) because iomap returns a cumulative value. */ 1973 if (err > 0) 1974 written = err; 1975 1976 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) { 1977 const size_t left = iov_iter_count(from); 1978 /* 1979 * We have more data left to write. Try to fault in as many as 1980 * possible of the remainder pages and retry. We do this without 1981 * releasing and locking again the inode, to prevent races with 1982 * truncate. 1983 * 1984 * Also, in case the iov refers to pages in the file range of the 1985 * file we want to write to (due to a mmap), we could enter an 1986 * infinite loop if we retry after faulting the pages in, since 1987 * iomap will invalidate any pages in the range early on, before 1988 * it tries to fault in the pages of the iov. So we keep track of 1989 * how much was left of iov in the previous EFAULT and fallback 1990 * to buffered IO in case we haven't made any progress. 1991 */ 1992 if (left == prev_left) { 1993 err = -ENOTBLK; 1994 } else { 1995 fault_in_iov_iter_readable(from, left); 1996 prev_left = left; 1997 goto again; 1998 } 1999 } 2000 2001 btrfs_inode_unlock(inode, ilock_flags); 2002 2003 /* 2004 * Add back IOCB_DSYNC. Our caller, btrfs_file_write_iter(), will do 2005 * the fsync (call generic_write_sync()). 2006 */ 2007 if (is_sync_write) 2008 iocb->ki_flags |= IOCB_DSYNC; 2009 2010 /* If 'err' is -ENOTBLK then it means we must fallback to buffered IO. */ 2011 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from)) 2012 goto out; 2013 2014 buffered: 2015 pos = iocb->ki_pos; 2016 written_buffered = btrfs_buffered_write(iocb, from); 2017 if (written_buffered < 0) { 2018 err = written_buffered; 2019 goto out; 2020 } 2021 /* 2022 * Ensure all data is persisted. We want the next direct IO read to be 2023 * able to read what was just written. 2024 */ 2025 endbyte = pos + written_buffered - 1; 2026 err = btrfs_fdatawrite_range(inode, pos, endbyte); 2027 if (err) 2028 goto out; 2029 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 2030 if (err) 2031 goto out; 2032 written += written_buffered; 2033 iocb->ki_pos = pos + written_buffered; 2034 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 2035 endbyte >> PAGE_SHIFT); 2036 out: 2037 return err < 0 ? err : written; 2038 } 2039 2040 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 2041 const struct btrfs_ioctl_encoded_io_args *encoded) 2042 { 2043 struct file *file = iocb->ki_filp; 2044 struct inode *inode = file_inode(file); 2045 loff_t count; 2046 ssize_t ret; 2047 2048 btrfs_inode_lock(inode, 0); 2049 count = encoded->len; 2050 ret = generic_write_checks_count(iocb, &count); 2051 if (ret == 0 && count != encoded->len) { 2052 /* 2053 * The write got truncated by generic_write_checks_count(). We 2054 * can't do a partial encoded write. 2055 */ 2056 ret = -EFBIG; 2057 } 2058 if (ret || encoded->len == 0) 2059 goto out; 2060 2061 ret = btrfs_write_check(iocb, from, encoded->len); 2062 if (ret < 0) 2063 goto out; 2064 2065 ret = btrfs_do_encoded_write(iocb, from, encoded); 2066 out: 2067 btrfs_inode_unlock(inode, 0); 2068 return ret; 2069 } 2070 2071 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 2072 const struct btrfs_ioctl_encoded_io_args *encoded) 2073 { 2074 struct file *file = iocb->ki_filp; 2075 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 2076 ssize_t num_written, num_sync; 2077 const bool sync = iocb->ki_flags & IOCB_DSYNC; 2078 2079 /* 2080 * If the fs flips readonly due to some impossible error, although we 2081 * have opened a file as writable, we have to stop this write operation 2082 * to ensure consistency. 2083 */ 2084 if (BTRFS_FS_ERROR(inode->root->fs_info)) 2085 return -EROFS; 2086 2087 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 2088 return -EOPNOTSUPP; 2089 2090 if (sync) 2091 atomic_inc(&inode->sync_writers); 2092 2093 if (encoded) { 2094 num_written = btrfs_encoded_write(iocb, from, encoded); 2095 num_sync = encoded->len; 2096 } else if (iocb->ki_flags & IOCB_DIRECT) { 2097 num_written = num_sync = btrfs_direct_write(iocb, from); 2098 } else { 2099 num_written = num_sync = btrfs_buffered_write(iocb, from); 2100 } 2101 2102 btrfs_set_inode_last_sub_trans(inode); 2103 2104 if (num_sync > 0) { 2105 num_sync = generic_write_sync(iocb, num_sync); 2106 if (num_sync < 0) 2107 num_written = num_sync; 2108 } 2109 2110 if (sync) 2111 atomic_dec(&inode->sync_writers); 2112 2113 current->backing_dev_info = NULL; 2114 return num_written; 2115 } 2116 2117 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2118 { 2119 return btrfs_do_write_iter(iocb, from, NULL); 2120 } 2121 2122 int btrfs_release_file(struct inode *inode, struct file *filp) 2123 { 2124 struct btrfs_file_private *private = filp->private_data; 2125 2126 if (private && private->filldir_buf) 2127 kfree(private->filldir_buf); 2128 kfree(private); 2129 filp->private_data = NULL; 2130 2131 /* 2132 * Set by setattr when we are about to truncate a file from a non-zero 2133 * size to a zero size. This tries to flush down new bytes that may 2134 * have been written if the application were using truncate to replace 2135 * a file in place. 2136 */ 2137 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 2138 &BTRFS_I(inode)->runtime_flags)) 2139 filemap_flush(inode->i_mapping); 2140 return 0; 2141 } 2142 2143 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2144 { 2145 int ret; 2146 struct blk_plug plug; 2147 2148 /* 2149 * This is only called in fsync, which would do synchronous writes, so 2150 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2151 * multiple disks using raid profile, a large IO can be split to 2152 * several segments of stripe length (currently 64K). 2153 */ 2154 blk_start_plug(&plug); 2155 atomic_inc(&BTRFS_I(inode)->sync_writers); 2156 ret = btrfs_fdatawrite_range(inode, start, end); 2157 atomic_dec(&BTRFS_I(inode)->sync_writers); 2158 blk_finish_plug(&plug); 2159 2160 return ret; 2161 } 2162 2163 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 2164 { 2165 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 2166 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2167 2168 if (btrfs_inode_in_log(inode, fs_info->generation) && 2169 list_empty(&ctx->ordered_extents)) 2170 return true; 2171 2172 /* 2173 * If we are doing a fast fsync we can not bail out if the inode's 2174 * last_trans is <= then the last committed transaction, because we only 2175 * update the last_trans of the inode during ordered extent completion, 2176 * and for a fast fsync we don't wait for that, we only wait for the 2177 * writeback to complete. 2178 */ 2179 if (inode->last_trans <= fs_info->last_trans_committed && 2180 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 2181 list_empty(&ctx->ordered_extents))) 2182 return true; 2183 2184 return false; 2185 } 2186 2187 /* 2188 * fsync call for both files and directories. This logs the inode into 2189 * the tree log instead of forcing full commits whenever possible. 2190 * 2191 * It needs to call filemap_fdatawait so that all ordered extent updates are 2192 * in the metadata btree are up to date for copying to the log. 2193 * 2194 * It drops the inode mutex before doing the tree log commit. This is an 2195 * important optimization for directories because holding the mutex prevents 2196 * new operations on the dir while we write to disk. 2197 */ 2198 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2199 { 2200 struct dentry *dentry = file_dentry(file); 2201 struct inode *inode = d_inode(dentry); 2202 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2203 struct btrfs_root *root = BTRFS_I(inode)->root; 2204 struct btrfs_trans_handle *trans; 2205 struct btrfs_log_ctx ctx; 2206 int ret = 0, err; 2207 u64 len; 2208 bool full_sync; 2209 2210 trace_btrfs_sync_file(file, datasync); 2211 2212 btrfs_init_log_ctx(&ctx, inode); 2213 2214 /* 2215 * Always set the range to a full range, otherwise we can get into 2216 * several problems, from missing file extent items to represent holes 2217 * when not using the NO_HOLES feature, to log tree corruption due to 2218 * races between hole detection during logging and completion of ordered 2219 * extents outside the range, to missing checksums due to ordered extents 2220 * for which we flushed only a subset of their pages. 2221 */ 2222 start = 0; 2223 end = LLONG_MAX; 2224 len = (u64)LLONG_MAX + 1; 2225 2226 /* 2227 * We write the dirty pages in the range and wait until they complete 2228 * out of the ->i_mutex. If so, we can flush the dirty pages by 2229 * multi-task, and make the performance up. See 2230 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2231 */ 2232 ret = start_ordered_ops(inode, start, end); 2233 if (ret) 2234 goto out; 2235 2236 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 2237 2238 atomic_inc(&root->log_batch); 2239 2240 /* 2241 * Always check for the full sync flag while holding the inode's lock, 2242 * to avoid races with other tasks. The flag must be either set all the 2243 * time during logging or always off all the time while logging. 2244 */ 2245 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2246 &BTRFS_I(inode)->runtime_flags); 2247 2248 /* 2249 * Before we acquired the inode's lock and the mmap lock, someone may 2250 * have dirtied more pages in the target range. We need to make sure 2251 * that writeback for any such pages does not start while we are logging 2252 * the inode, because if it does, any of the following might happen when 2253 * we are not doing a full inode sync: 2254 * 2255 * 1) We log an extent after its writeback finishes but before its 2256 * checksums are added to the csum tree, leading to -EIO errors 2257 * when attempting to read the extent after a log replay. 2258 * 2259 * 2) We can end up logging an extent before its writeback finishes. 2260 * Therefore after the log replay we will have a file extent item 2261 * pointing to an unwritten extent (and no data checksums as well). 2262 * 2263 * So trigger writeback for any eventual new dirty pages and then we 2264 * wait for all ordered extents to complete below. 2265 */ 2266 ret = start_ordered_ops(inode, start, end); 2267 if (ret) { 2268 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2269 goto out; 2270 } 2271 2272 /* 2273 * We have to do this here to avoid the priority inversion of waiting on 2274 * IO of a lower priority task while holding a transaction open. 2275 * 2276 * For a full fsync we wait for the ordered extents to complete while 2277 * for a fast fsync we wait just for writeback to complete, and then 2278 * attach the ordered extents to the transaction so that a transaction 2279 * commit waits for their completion, to avoid data loss if we fsync, 2280 * the current transaction commits before the ordered extents complete 2281 * and a power failure happens right after that. 2282 * 2283 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 2284 * logical address recorded in the ordered extent may change. We need 2285 * to wait for the IO to stabilize the logical address. 2286 */ 2287 if (full_sync || btrfs_is_zoned(fs_info)) { 2288 ret = btrfs_wait_ordered_range(inode, start, len); 2289 } else { 2290 /* 2291 * Get our ordered extents as soon as possible to avoid doing 2292 * checksum lookups in the csum tree, and use instead the 2293 * checksums attached to the ordered extents. 2294 */ 2295 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 2296 &ctx.ordered_extents); 2297 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 2298 } 2299 2300 if (ret) 2301 goto out_release_extents; 2302 2303 atomic_inc(&root->log_batch); 2304 2305 smp_mb(); 2306 if (skip_inode_logging(&ctx)) { 2307 /* 2308 * We've had everything committed since the last time we were 2309 * modified so clear this flag in case it was set for whatever 2310 * reason, it's no longer relevant. 2311 */ 2312 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2313 &BTRFS_I(inode)->runtime_flags); 2314 /* 2315 * An ordered extent might have started before and completed 2316 * already with io errors, in which case the inode was not 2317 * updated and we end up here. So check the inode's mapping 2318 * for any errors that might have happened since we last 2319 * checked called fsync. 2320 */ 2321 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2322 goto out_release_extents; 2323 } 2324 2325 /* 2326 * We use start here because we will need to wait on the IO to complete 2327 * in btrfs_sync_log, which could require joining a transaction (for 2328 * example checking cross references in the nocow path). If we use join 2329 * here we could get into a situation where we're waiting on IO to 2330 * happen that is blocked on a transaction trying to commit. With start 2331 * we inc the extwriter counter, so we wait for all extwriters to exit 2332 * before we start blocking joiners. This comment is to keep somebody 2333 * from thinking they are super smart and changing this to 2334 * btrfs_join_transaction *cough*Josef*cough*. 2335 */ 2336 trans = btrfs_start_transaction(root, 0); 2337 if (IS_ERR(trans)) { 2338 ret = PTR_ERR(trans); 2339 goto out_release_extents; 2340 } 2341 trans->in_fsync = true; 2342 2343 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 2344 btrfs_release_log_ctx_extents(&ctx); 2345 if (ret < 0) { 2346 /* Fallthrough and commit/free transaction. */ 2347 ret = 1; 2348 } 2349 2350 /* we've logged all the items and now have a consistent 2351 * version of the file in the log. It is possible that 2352 * someone will come in and modify the file, but that's 2353 * fine because the log is consistent on disk, and we 2354 * have references to all of the file's extents 2355 * 2356 * It is possible that someone will come in and log the 2357 * file again, but that will end up using the synchronization 2358 * inside btrfs_sync_log to keep things safe. 2359 */ 2360 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2361 2362 if (ret != BTRFS_NO_LOG_SYNC) { 2363 if (!ret) { 2364 ret = btrfs_sync_log(trans, root, &ctx); 2365 if (!ret) { 2366 ret = btrfs_end_transaction(trans); 2367 goto out; 2368 } 2369 } 2370 if (!full_sync) { 2371 ret = btrfs_wait_ordered_range(inode, start, len); 2372 if (ret) { 2373 btrfs_end_transaction(trans); 2374 goto out; 2375 } 2376 } 2377 ret = btrfs_commit_transaction(trans); 2378 } else { 2379 ret = btrfs_end_transaction(trans); 2380 } 2381 out: 2382 ASSERT(list_empty(&ctx.list)); 2383 err = file_check_and_advance_wb_err(file); 2384 if (!ret) 2385 ret = err; 2386 return ret > 0 ? -EIO : ret; 2387 2388 out_release_extents: 2389 btrfs_release_log_ctx_extents(&ctx); 2390 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2391 goto out; 2392 } 2393 2394 static const struct vm_operations_struct btrfs_file_vm_ops = { 2395 .fault = filemap_fault, 2396 .map_pages = filemap_map_pages, 2397 .page_mkwrite = btrfs_page_mkwrite, 2398 }; 2399 2400 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2401 { 2402 struct address_space *mapping = filp->f_mapping; 2403 2404 if (!mapping->a_ops->readpage) 2405 return -ENOEXEC; 2406 2407 file_accessed(filp); 2408 vma->vm_ops = &btrfs_file_vm_ops; 2409 2410 return 0; 2411 } 2412 2413 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2414 int slot, u64 start, u64 end) 2415 { 2416 struct btrfs_file_extent_item *fi; 2417 struct btrfs_key key; 2418 2419 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2420 return 0; 2421 2422 btrfs_item_key_to_cpu(leaf, &key, slot); 2423 if (key.objectid != btrfs_ino(inode) || 2424 key.type != BTRFS_EXTENT_DATA_KEY) 2425 return 0; 2426 2427 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2428 2429 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2430 return 0; 2431 2432 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2433 return 0; 2434 2435 if (key.offset == end) 2436 return 1; 2437 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2438 return 1; 2439 return 0; 2440 } 2441 2442 static int fill_holes(struct btrfs_trans_handle *trans, 2443 struct btrfs_inode *inode, 2444 struct btrfs_path *path, u64 offset, u64 end) 2445 { 2446 struct btrfs_fs_info *fs_info = trans->fs_info; 2447 struct btrfs_root *root = inode->root; 2448 struct extent_buffer *leaf; 2449 struct btrfs_file_extent_item *fi; 2450 struct extent_map *hole_em; 2451 struct extent_map_tree *em_tree = &inode->extent_tree; 2452 struct btrfs_key key; 2453 int ret; 2454 2455 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2456 goto out; 2457 2458 key.objectid = btrfs_ino(inode); 2459 key.type = BTRFS_EXTENT_DATA_KEY; 2460 key.offset = offset; 2461 2462 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2463 if (ret <= 0) { 2464 /* 2465 * We should have dropped this offset, so if we find it then 2466 * something has gone horribly wrong. 2467 */ 2468 if (ret == 0) 2469 ret = -EINVAL; 2470 return ret; 2471 } 2472 2473 leaf = path->nodes[0]; 2474 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2475 u64 num_bytes; 2476 2477 path->slots[0]--; 2478 fi = btrfs_item_ptr(leaf, path->slots[0], 2479 struct btrfs_file_extent_item); 2480 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2481 end - offset; 2482 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2483 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2484 btrfs_set_file_extent_offset(leaf, fi, 0); 2485 btrfs_mark_buffer_dirty(leaf); 2486 goto out; 2487 } 2488 2489 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2490 u64 num_bytes; 2491 2492 key.offset = offset; 2493 btrfs_set_item_key_safe(fs_info, path, &key); 2494 fi = btrfs_item_ptr(leaf, path->slots[0], 2495 struct btrfs_file_extent_item); 2496 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2497 offset; 2498 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2499 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2500 btrfs_set_file_extent_offset(leaf, fi, 0); 2501 btrfs_mark_buffer_dirty(leaf); 2502 goto out; 2503 } 2504 btrfs_release_path(path); 2505 2506 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2507 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2508 if (ret) 2509 return ret; 2510 2511 out: 2512 btrfs_release_path(path); 2513 2514 hole_em = alloc_extent_map(); 2515 if (!hole_em) { 2516 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2517 btrfs_set_inode_full_sync(inode); 2518 } else { 2519 hole_em->start = offset; 2520 hole_em->len = end - offset; 2521 hole_em->ram_bytes = hole_em->len; 2522 hole_em->orig_start = offset; 2523 2524 hole_em->block_start = EXTENT_MAP_HOLE; 2525 hole_em->block_len = 0; 2526 hole_em->orig_block_len = 0; 2527 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2528 hole_em->generation = trans->transid; 2529 2530 do { 2531 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2532 write_lock(&em_tree->lock); 2533 ret = add_extent_mapping(em_tree, hole_em, 1); 2534 write_unlock(&em_tree->lock); 2535 } while (ret == -EEXIST); 2536 free_extent_map(hole_em); 2537 if (ret) 2538 btrfs_set_inode_full_sync(inode); 2539 } 2540 2541 return 0; 2542 } 2543 2544 /* 2545 * Find a hole extent on given inode and change start/len to the end of hole 2546 * extent.(hole/vacuum extent whose em->start <= start && 2547 * em->start + em->len > start) 2548 * When a hole extent is found, return 1 and modify start/len. 2549 */ 2550 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2551 { 2552 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2553 struct extent_map *em; 2554 int ret = 0; 2555 2556 em = btrfs_get_extent(inode, NULL, 0, 2557 round_down(*start, fs_info->sectorsize), 2558 round_up(*len, fs_info->sectorsize)); 2559 if (IS_ERR(em)) 2560 return PTR_ERR(em); 2561 2562 /* Hole or vacuum extent(only exists in no-hole mode) */ 2563 if (em->block_start == EXTENT_MAP_HOLE) { 2564 ret = 1; 2565 *len = em->start + em->len > *start + *len ? 2566 0 : *start + *len - em->start - em->len; 2567 *start = em->start + em->len; 2568 } 2569 free_extent_map(em); 2570 return ret; 2571 } 2572 2573 static int btrfs_punch_hole_lock_range(struct inode *inode, 2574 const u64 lockstart, 2575 const u64 lockend, 2576 struct extent_state **cached_state) 2577 { 2578 /* 2579 * For subpage case, if the range is not at page boundary, we could 2580 * have pages at the leading/tailing part of the range. 2581 * This could lead to dead loop since filemap_range_has_page() 2582 * will always return true. 2583 * So here we need to do extra page alignment for 2584 * filemap_range_has_page(). 2585 */ 2586 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2587 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2588 2589 while (1) { 2590 struct btrfs_ordered_extent *ordered; 2591 int ret; 2592 2593 truncate_pagecache_range(inode, lockstart, lockend); 2594 2595 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2596 cached_state); 2597 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), 2598 lockend); 2599 2600 /* 2601 * We need to make sure we have no ordered extents in this range 2602 * and nobody raced in and read a page in this range, if we did 2603 * we need to try again. 2604 */ 2605 if ((!ordered || 2606 (ordered->file_offset + ordered->num_bytes <= lockstart || 2607 ordered->file_offset > lockend)) && 2608 !filemap_range_has_page(inode->i_mapping, 2609 page_lockstart, page_lockend)) { 2610 if (ordered) 2611 btrfs_put_ordered_extent(ordered); 2612 break; 2613 } 2614 if (ordered) 2615 btrfs_put_ordered_extent(ordered); 2616 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2617 lockend, cached_state); 2618 ret = btrfs_wait_ordered_range(inode, lockstart, 2619 lockend - lockstart + 1); 2620 if (ret) 2621 return ret; 2622 } 2623 return 0; 2624 } 2625 2626 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2627 struct btrfs_inode *inode, 2628 struct btrfs_path *path, 2629 struct btrfs_replace_extent_info *extent_info, 2630 const u64 replace_len, 2631 const u64 bytes_to_drop) 2632 { 2633 struct btrfs_fs_info *fs_info = trans->fs_info; 2634 struct btrfs_root *root = inode->root; 2635 struct btrfs_file_extent_item *extent; 2636 struct extent_buffer *leaf; 2637 struct btrfs_key key; 2638 int slot; 2639 struct btrfs_ref ref = { 0 }; 2640 int ret; 2641 2642 if (replace_len == 0) 2643 return 0; 2644 2645 if (extent_info->disk_offset == 0 && 2646 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2647 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2648 return 0; 2649 } 2650 2651 key.objectid = btrfs_ino(inode); 2652 key.type = BTRFS_EXTENT_DATA_KEY; 2653 key.offset = extent_info->file_offset; 2654 ret = btrfs_insert_empty_item(trans, root, path, &key, 2655 sizeof(struct btrfs_file_extent_item)); 2656 if (ret) 2657 return ret; 2658 leaf = path->nodes[0]; 2659 slot = path->slots[0]; 2660 write_extent_buffer(leaf, extent_info->extent_buf, 2661 btrfs_item_ptr_offset(leaf, slot), 2662 sizeof(struct btrfs_file_extent_item)); 2663 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2664 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2665 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2666 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2667 if (extent_info->is_new_extent) 2668 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2669 btrfs_mark_buffer_dirty(leaf); 2670 btrfs_release_path(path); 2671 2672 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2673 replace_len); 2674 if (ret) 2675 return ret; 2676 2677 /* If it's a hole, nothing more needs to be done. */ 2678 if (extent_info->disk_offset == 0) { 2679 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2680 return 0; 2681 } 2682 2683 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2684 2685 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2686 key.objectid = extent_info->disk_offset; 2687 key.type = BTRFS_EXTENT_ITEM_KEY; 2688 key.offset = extent_info->disk_len; 2689 ret = btrfs_alloc_reserved_file_extent(trans, root, 2690 btrfs_ino(inode), 2691 extent_info->file_offset, 2692 extent_info->qgroup_reserved, 2693 &key); 2694 } else { 2695 u64 ref_offset; 2696 2697 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2698 extent_info->disk_offset, 2699 extent_info->disk_len, 0); 2700 ref_offset = extent_info->file_offset - extent_info->data_offset; 2701 btrfs_init_data_ref(&ref, root->root_key.objectid, 2702 btrfs_ino(inode), ref_offset, 0, false); 2703 ret = btrfs_inc_extent_ref(trans, &ref); 2704 } 2705 2706 extent_info->insertions++; 2707 2708 return ret; 2709 } 2710 2711 /* 2712 * The respective range must have been previously locked, as well as the inode. 2713 * The end offset is inclusive (last byte of the range). 2714 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2715 * the file range with an extent. 2716 * When not punching a hole, we don't want to end up in a state where we dropped 2717 * extents without inserting a new one, so we must abort the transaction to avoid 2718 * a corruption. 2719 */ 2720 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2721 struct btrfs_path *path, const u64 start, 2722 const u64 end, 2723 struct btrfs_replace_extent_info *extent_info, 2724 struct btrfs_trans_handle **trans_out) 2725 { 2726 struct btrfs_drop_extents_args drop_args = { 0 }; 2727 struct btrfs_root *root = inode->root; 2728 struct btrfs_fs_info *fs_info = root->fs_info; 2729 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2730 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2731 struct btrfs_trans_handle *trans = NULL; 2732 struct btrfs_block_rsv *rsv; 2733 unsigned int rsv_count; 2734 u64 cur_offset; 2735 u64 len = end - start; 2736 int ret = 0; 2737 2738 if (end <= start) 2739 return -EINVAL; 2740 2741 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2742 if (!rsv) { 2743 ret = -ENOMEM; 2744 goto out; 2745 } 2746 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2747 rsv->failfast = 1; 2748 2749 /* 2750 * 1 - update the inode 2751 * 1 - removing the extents in the range 2752 * 1 - adding the hole extent if no_holes isn't set or if we are 2753 * replacing the range with a new extent 2754 */ 2755 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2756 rsv_count = 3; 2757 else 2758 rsv_count = 2; 2759 2760 trans = btrfs_start_transaction(root, rsv_count); 2761 if (IS_ERR(trans)) { 2762 ret = PTR_ERR(trans); 2763 trans = NULL; 2764 goto out_free; 2765 } 2766 2767 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2768 min_size, false); 2769 BUG_ON(ret); 2770 trans->block_rsv = rsv; 2771 2772 cur_offset = start; 2773 drop_args.path = path; 2774 drop_args.end = end + 1; 2775 drop_args.drop_cache = true; 2776 while (cur_offset < end) { 2777 drop_args.start = cur_offset; 2778 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2779 /* If we are punching a hole decrement the inode's byte count */ 2780 if (!extent_info) 2781 btrfs_update_inode_bytes(inode, 0, 2782 drop_args.bytes_found); 2783 if (ret != -ENOSPC) { 2784 /* 2785 * The only time we don't want to abort is if we are 2786 * attempting to clone a partial inline extent, in which 2787 * case we'll get EOPNOTSUPP. However if we aren't 2788 * clone we need to abort no matter what, because if we 2789 * got EOPNOTSUPP via prealloc then we messed up and 2790 * need to abort. 2791 */ 2792 if (ret && 2793 (ret != -EOPNOTSUPP || 2794 (extent_info && extent_info->is_new_extent))) 2795 btrfs_abort_transaction(trans, ret); 2796 break; 2797 } 2798 2799 trans->block_rsv = &fs_info->trans_block_rsv; 2800 2801 if (!extent_info && cur_offset < drop_args.drop_end && 2802 cur_offset < ino_size) { 2803 ret = fill_holes(trans, inode, path, cur_offset, 2804 drop_args.drop_end); 2805 if (ret) { 2806 /* 2807 * If we failed then we didn't insert our hole 2808 * entries for the area we dropped, so now the 2809 * fs is corrupted, so we must abort the 2810 * transaction. 2811 */ 2812 btrfs_abort_transaction(trans, ret); 2813 break; 2814 } 2815 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2816 /* 2817 * We are past the i_size here, but since we didn't 2818 * insert holes we need to clear the mapped area so we 2819 * know to not set disk_i_size in this area until a new 2820 * file extent is inserted here. 2821 */ 2822 ret = btrfs_inode_clear_file_extent_range(inode, 2823 cur_offset, 2824 drop_args.drop_end - cur_offset); 2825 if (ret) { 2826 /* 2827 * We couldn't clear our area, so we could 2828 * presumably adjust up and corrupt the fs, so 2829 * we need to abort. 2830 */ 2831 btrfs_abort_transaction(trans, ret); 2832 break; 2833 } 2834 } 2835 2836 if (extent_info && 2837 drop_args.drop_end > extent_info->file_offset) { 2838 u64 replace_len = drop_args.drop_end - 2839 extent_info->file_offset; 2840 2841 ret = btrfs_insert_replace_extent(trans, inode, path, 2842 extent_info, replace_len, 2843 drop_args.bytes_found); 2844 if (ret) { 2845 btrfs_abort_transaction(trans, ret); 2846 break; 2847 } 2848 extent_info->data_len -= replace_len; 2849 extent_info->data_offset += replace_len; 2850 extent_info->file_offset += replace_len; 2851 } 2852 2853 ret = btrfs_update_inode(trans, root, inode); 2854 if (ret) 2855 break; 2856 2857 btrfs_end_transaction(trans); 2858 btrfs_btree_balance_dirty(fs_info); 2859 2860 trans = btrfs_start_transaction(root, rsv_count); 2861 if (IS_ERR(trans)) { 2862 ret = PTR_ERR(trans); 2863 trans = NULL; 2864 break; 2865 } 2866 2867 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2868 rsv, min_size, false); 2869 BUG_ON(ret); /* shouldn't happen */ 2870 trans->block_rsv = rsv; 2871 2872 cur_offset = drop_args.drop_end; 2873 len = end - cur_offset; 2874 if (!extent_info && len) { 2875 ret = find_first_non_hole(inode, &cur_offset, &len); 2876 if (unlikely(ret < 0)) 2877 break; 2878 if (ret && !len) { 2879 ret = 0; 2880 break; 2881 } 2882 } 2883 } 2884 2885 /* 2886 * If we were cloning, force the next fsync to be a full one since we 2887 * we replaced (or just dropped in the case of cloning holes when 2888 * NO_HOLES is enabled) file extent items and did not setup new extent 2889 * maps for the replacement extents (or holes). 2890 */ 2891 if (extent_info && !extent_info->is_new_extent) 2892 btrfs_set_inode_full_sync(inode); 2893 2894 if (ret) 2895 goto out_trans; 2896 2897 trans->block_rsv = &fs_info->trans_block_rsv; 2898 /* 2899 * If we are using the NO_HOLES feature we might have had already an 2900 * hole that overlaps a part of the region [lockstart, lockend] and 2901 * ends at (or beyond) lockend. Since we have no file extent items to 2902 * represent holes, drop_end can be less than lockend and so we must 2903 * make sure we have an extent map representing the existing hole (the 2904 * call to __btrfs_drop_extents() might have dropped the existing extent 2905 * map representing the existing hole), otherwise the fast fsync path 2906 * will not record the existence of the hole region 2907 * [existing_hole_start, lockend]. 2908 */ 2909 if (drop_args.drop_end <= end) 2910 drop_args.drop_end = end + 1; 2911 /* 2912 * Don't insert file hole extent item if it's for a range beyond eof 2913 * (because it's useless) or if it represents a 0 bytes range (when 2914 * cur_offset == drop_end). 2915 */ 2916 if (!extent_info && cur_offset < ino_size && 2917 cur_offset < drop_args.drop_end) { 2918 ret = fill_holes(trans, inode, path, cur_offset, 2919 drop_args.drop_end); 2920 if (ret) { 2921 /* Same comment as above. */ 2922 btrfs_abort_transaction(trans, ret); 2923 goto out_trans; 2924 } 2925 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2926 /* See the comment in the loop above for the reasoning here. */ 2927 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2928 drop_args.drop_end - cur_offset); 2929 if (ret) { 2930 btrfs_abort_transaction(trans, ret); 2931 goto out_trans; 2932 } 2933 2934 } 2935 if (extent_info) { 2936 ret = btrfs_insert_replace_extent(trans, inode, path, 2937 extent_info, extent_info->data_len, 2938 drop_args.bytes_found); 2939 if (ret) { 2940 btrfs_abort_transaction(trans, ret); 2941 goto out_trans; 2942 } 2943 } 2944 2945 out_trans: 2946 if (!trans) 2947 goto out_free; 2948 2949 trans->block_rsv = &fs_info->trans_block_rsv; 2950 if (ret) 2951 btrfs_end_transaction(trans); 2952 else 2953 *trans_out = trans; 2954 out_free: 2955 btrfs_free_block_rsv(fs_info, rsv); 2956 out: 2957 return ret; 2958 } 2959 2960 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2961 { 2962 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2963 struct btrfs_root *root = BTRFS_I(inode)->root; 2964 struct extent_state *cached_state = NULL; 2965 struct btrfs_path *path; 2966 struct btrfs_trans_handle *trans = NULL; 2967 u64 lockstart; 2968 u64 lockend; 2969 u64 tail_start; 2970 u64 tail_len; 2971 u64 orig_start = offset; 2972 int ret = 0; 2973 bool same_block; 2974 u64 ino_size; 2975 bool truncated_block = false; 2976 bool updated_inode = false; 2977 2978 ret = btrfs_wait_ordered_range(inode, offset, len); 2979 if (ret) 2980 return ret; 2981 2982 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 2983 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2984 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2985 if (ret < 0) 2986 goto out_only_mutex; 2987 if (ret && !len) { 2988 /* Already in a large hole */ 2989 ret = 0; 2990 goto out_only_mutex; 2991 } 2992 2993 lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode))); 2994 lockend = round_down(offset + len, 2995 btrfs_inode_sectorsize(BTRFS_I(inode))) - 1; 2996 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2997 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2998 /* 2999 * We needn't truncate any block which is beyond the end of the file 3000 * because we are sure there is no data there. 3001 */ 3002 /* 3003 * Only do this if we are in the same block and we aren't doing the 3004 * entire block. 3005 */ 3006 if (same_block && len < fs_info->sectorsize) { 3007 if (offset < ino_size) { 3008 truncated_block = true; 3009 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 3010 0); 3011 } else { 3012 ret = 0; 3013 } 3014 goto out_only_mutex; 3015 } 3016 3017 /* zero back part of the first block */ 3018 if (offset < ino_size) { 3019 truncated_block = true; 3020 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 3021 if (ret) { 3022 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3023 return ret; 3024 } 3025 } 3026 3027 /* Check the aligned pages after the first unaligned page, 3028 * if offset != orig_start, which means the first unaligned page 3029 * including several following pages are already in holes, 3030 * the extra check can be skipped */ 3031 if (offset == orig_start) { 3032 /* after truncate page, check hole again */ 3033 len = offset + len - lockstart; 3034 offset = lockstart; 3035 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 3036 if (ret < 0) 3037 goto out_only_mutex; 3038 if (ret && !len) { 3039 ret = 0; 3040 goto out_only_mutex; 3041 } 3042 lockstart = offset; 3043 } 3044 3045 /* Check the tail unaligned part is in a hole */ 3046 tail_start = lockend + 1; 3047 tail_len = offset + len - tail_start; 3048 if (tail_len) { 3049 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 3050 if (unlikely(ret < 0)) 3051 goto out_only_mutex; 3052 if (!ret) { 3053 /* zero the front end of the last page */ 3054 if (tail_start + tail_len < ino_size) { 3055 truncated_block = true; 3056 ret = btrfs_truncate_block(BTRFS_I(inode), 3057 tail_start + tail_len, 3058 0, 1); 3059 if (ret) 3060 goto out_only_mutex; 3061 } 3062 } 3063 } 3064 3065 if (lockend < lockstart) { 3066 ret = 0; 3067 goto out_only_mutex; 3068 } 3069 3070 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3071 &cached_state); 3072 if (ret) 3073 goto out_only_mutex; 3074 3075 path = btrfs_alloc_path(); 3076 if (!path) { 3077 ret = -ENOMEM; 3078 goto out; 3079 } 3080 3081 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 3082 lockend, NULL, &trans); 3083 btrfs_free_path(path); 3084 if (ret) 3085 goto out; 3086 3087 ASSERT(trans != NULL); 3088 inode_inc_iversion(inode); 3089 inode->i_mtime = inode->i_ctime = current_time(inode); 3090 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3091 updated_inode = true; 3092 btrfs_end_transaction(trans); 3093 btrfs_btree_balance_dirty(fs_info); 3094 out: 3095 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3096 &cached_state); 3097 out_only_mutex: 3098 if (!updated_inode && truncated_block && !ret) { 3099 /* 3100 * If we only end up zeroing part of a page, we still need to 3101 * update the inode item, so that all the time fields are 3102 * updated as well as the necessary btrfs inode in memory fields 3103 * for detecting, at fsync time, if the inode isn't yet in the 3104 * log tree or it's there but not up to date. 3105 */ 3106 struct timespec64 now = current_time(inode); 3107 3108 inode_inc_iversion(inode); 3109 inode->i_mtime = now; 3110 inode->i_ctime = now; 3111 trans = btrfs_start_transaction(root, 1); 3112 if (IS_ERR(trans)) { 3113 ret = PTR_ERR(trans); 3114 } else { 3115 int ret2; 3116 3117 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3118 ret2 = btrfs_end_transaction(trans); 3119 if (!ret) 3120 ret = ret2; 3121 } 3122 } 3123 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3124 return ret; 3125 } 3126 3127 /* Helper structure to record which range is already reserved */ 3128 struct falloc_range { 3129 struct list_head list; 3130 u64 start; 3131 u64 len; 3132 }; 3133 3134 /* 3135 * Helper function to add falloc range 3136 * 3137 * Caller should have locked the larger range of extent containing 3138 * [start, len) 3139 */ 3140 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 3141 { 3142 struct falloc_range *range = NULL; 3143 3144 if (!list_empty(head)) { 3145 /* 3146 * As fallocate iterates by bytenr order, we only need to check 3147 * the last range. 3148 */ 3149 range = list_last_entry(head, struct falloc_range, list); 3150 if (range->start + range->len == start) { 3151 range->len += len; 3152 return 0; 3153 } 3154 } 3155 3156 range = kmalloc(sizeof(*range), GFP_KERNEL); 3157 if (!range) 3158 return -ENOMEM; 3159 range->start = start; 3160 range->len = len; 3161 list_add_tail(&range->list, head); 3162 return 0; 3163 } 3164 3165 static int btrfs_fallocate_update_isize(struct inode *inode, 3166 const u64 end, 3167 const int mode) 3168 { 3169 struct btrfs_trans_handle *trans; 3170 struct btrfs_root *root = BTRFS_I(inode)->root; 3171 int ret; 3172 int ret2; 3173 3174 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 3175 return 0; 3176 3177 trans = btrfs_start_transaction(root, 1); 3178 if (IS_ERR(trans)) 3179 return PTR_ERR(trans); 3180 3181 inode->i_ctime = current_time(inode); 3182 i_size_write(inode, end); 3183 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 3184 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3185 ret2 = btrfs_end_transaction(trans); 3186 3187 return ret ? ret : ret2; 3188 } 3189 3190 enum { 3191 RANGE_BOUNDARY_WRITTEN_EXTENT, 3192 RANGE_BOUNDARY_PREALLOC_EXTENT, 3193 RANGE_BOUNDARY_HOLE, 3194 }; 3195 3196 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 3197 u64 offset) 3198 { 3199 const u64 sectorsize = btrfs_inode_sectorsize(inode); 3200 struct extent_map *em; 3201 int ret; 3202 3203 offset = round_down(offset, sectorsize); 3204 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize); 3205 if (IS_ERR(em)) 3206 return PTR_ERR(em); 3207 3208 if (em->block_start == EXTENT_MAP_HOLE) 3209 ret = RANGE_BOUNDARY_HOLE; 3210 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3211 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 3212 else 3213 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 3214 3215 free_extent_map(em); 3216 return ret; 3217 } 3218 3219 static int btrfs_zero_range(struct inode *inode, 3220 loff_t offset, 3221 loff_t len, 3222 const int mode) 3223 { 3224 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3225 struct extent_map *em; 3226 struct extent_changeset *data_reserved = NULL; 3227 int ret; 3228 u64 alloc_hint = 0; 3229 const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode)); 3230 u64 alloc_start = round_down(offset, sectorsize); 3231 u64 alloc_end = round_up(offset + len, sectorsize); 3232 u64 bytes_to_reserve = 0; 3233 bool space_reserved = false; 3234 3235 inode_dio_wait(inode); 3236 3237 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3238 alloc_end - alloc_start); 3239 if (IS_ERR(em)) { 3240 ret = PTR_ERR(em); 3241 goto out; 3242 } 3243 3244 /* 3245 * Avoid hole punching and extent allocation for some cases. More cases 3246 * could be considered, but these are unlikely common and we keep things 3247 * as simple as possible for now. Also, intentionally, if the target 3248 * range contains one or more prealloc extents together with regular 3249 * extents and holes, we drop all the existing extents and allocate a 3250 * new prealloc extent, so that we get a larger contiguous disk extent. 3251 */ 3252 if (em->start <= alloc_start && 3253 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3254 const u64 em_end = em->start + em->len; 3255 3256 if (em_end >= offset + len) { 3257 /* 3258 * The whole range is already a prealloc extent, 3259 * do nothing except updating the inode's i_size if 3260 * needed. 3261 */ 3262 free_extent_map(em); 3263 ret = btrfs_fallocate_update_isize(inode, offset + len, 3264 mode); 3265 goto out; 3266 } 3267 /* 3268 * Part of the range is already a prealloc extent, so operate 3269 * only on the remaining part of the range. 3270 */ 3271 alloc_start = em_end; 3272 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 3273 len = offset + len - alloc_start; 3274 offset = alloc_start; 3275 alloc_hint = em->block_start + em->len; 3276 } 3277 free_extent_map(em); 3278 3279 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 3280 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 3281 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3282 sectorsize); 3283 if (IS_ERR(em)) { 3284 ret = PTR_ERR(em); 3285 goto out; 3286 } 3287 3288 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3289 free_extent_map(em); 3290 ret = btrfs_fallocate_update_isize(inode, offset + len, 3291 mode); 3292 goto out; 3293 } 3294 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 3295 free_extent_map(em); 3296 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 3297 0); 3298 if (!ret) 3299 ret = btrfs_fallocate_update_isize(inode, 3300 offset + len, 3301 mode); 3302 return ret; 3303 } 3304 free_extent_map(em); 3305 alloc_start = round_down(offset, sectorsize); 3306 alloc_end = alloc_start + sectorsize; 3307 goto reserve_space; 3308 } 3309 3310 alloc_start = round_up(offset, sectorsize); 3311 alloc_end = round_down(offset + len, sectorsize); 3312 3313 /* 3314 * For unaligned ranges, check the pages at the boundaries, they might 3315 * map to an extent, in which case we need to partially zero them, or 3316 * they might map to a hole, in which case we need our allocation range 3317 * to cover them. 3318 */ 3319 if (!IS_ALIGNED(offset, sectorsize)) { 3320 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3321 offset); 3322 if (ret < 0) 3323 goto out; 3324 if (ret == RANGE_BOUNDARY_HOLE) { 3325 alloc_start = round_down(offset, sectorsize); 3326 ret = 0; 3327 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3328 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 3329 if (ret) 3330 goto out; 3331 } else { 3332 ret = 0; 3333 } 3334 } 3335 3336 if (!IS_ALIGNED(offset + len, sectorsize)) { 3337 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3338 offset + len); 3339 if (ret < 0) 3340 goto out; 3341 if (ret == RANGE_BOUNDARY_HOLE) { 3342 alloc_end = round_up(offset + len, sectorsize); 3343 ret = 0; 3344 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3345 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 3346 0, 1); 3347 if (ret) 3348 goto out; 3349 } else { 3350 ret = 0; 3351 } 3352 } 3353 3354 reserve_space: 3355 if (alloc_start < alloc_end) { 3356 struct extent_state *cached_state = NULL; 3357 const u64 lockstart = alloc_start; 3358 const u64 lockend = alloc_end - 1; 3359 3360 bytes_to_reserve = alloc_end - alloc_start; 3361 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3362 bytes_to_reserve); 3363 if (ret < 0) 3364 goto out; 3365 space_reserved = true; 3366 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3367 &cached_state); 3368 if (ret) 3369 goto out; 3370 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3371 alloc_start, bytes_to_reserve); 3372 if (ret) { 3373 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3374 lockend, &cached_state); 3375 goto out; 3376 } 3377 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3378 alloc_end - alloc_start, 3379 i_blocksize(inode), 3380 offset + len, &alloc_hint); 3381 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3382 lockend, &cached_state); 3383 /* btrfs_prealloc_file_range releases reserved space on error */ 3384 if (ret) { 3385 space_reserved = false; 3386 goto out; 3387 } 3388 } 3389 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3390 out: 3391 if (ret && space_reserved) 3392 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3393 alloc_start, bytes_to_reserve); 3394 extent_changeset_free(data_reserved); 3395 3396 return ret; 3397 } 3398 3399 static long btrfs_fallocate(struct file *file, int mode, 3400 loff_t offset, loff_t len) 3401 { 3402 struct inode *inode = file_inode(file); 3403 struct extent_state *cached_state = NULL; 3404 struct extent_changeset *data_reserved = NULL; 3405 struct falloc_range *range; 3406 struct falloc_range *tmp; 3407 struct list_head reserve_list; 3408 u64 cur_offset; 3409 u64 last_byte; 3410 u64 alloc_start; 3411 u64 alloc_end; 3412 u64 alloc_hint = 0; 3413 u64 locked_end; 3414 u64 actual_end = 0; 3415 struct extent_map *em; 3416 int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode)); 3417 int ret; 3418 3419 /* Do not allow fallocate in ZONED mode */ 3420 if (btrfs_is_zoned(btrfs_sb(inode->i_sb))) 3421 return -EOPNOTSUPP; 3422 3423 alloc_start = round_down(offset, blocksize); 3424 alloc_end = round_up(offset + len, blocksize); 3425 cur_offset = alloc_start; 3426 3427 /* Make sure we aren't being give some crap mode */ 3428 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3429 FALLOC_FL_ZERO_RANGE)) 3430 return -EOPNOTSUPP; 3431 3432 if (mode & FALLOC_FL_PUNCH_HOLE) 3433 return btrfs_punch_hole(inode, offset, len); 3434 3435 /* 3436 * Only trigger disk allocation, don't trigger qgroup reserve 3437 * 3438 * For qgroup space, it will be checked later. 3439 */ 3440 if (!(mode & FALLOC_FL_ZERO_RANGE)) { 3441 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3442 alloc_end - alloc_start); 3443 if (ret < 0) 3444 return ret; 3445 } 3446 3447 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 3448 3449 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3450 ret = inode_newsize_ok(inode, offset + len); 3451 if (ret) 3452 goto out; 3453 } 3454 3455 /* 3456 * TODO: Move these two operations after we have checked 3457 * accurate reserved space, or fallocate can still fail but 3458 * with page truncated or size expanded. 3459 * 3460 * But that's a minor problem and won't do much harm BTW. 3461 */ 3462 if (alloc_start > inode->i_size) { 3463 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3464 alloc_start); 3465 if (ret) 3466 goto out; 3467 } else if (offset + len > inode->i_size) { 3468 /* 3469 * If we are fallocating from the end of the file onward we 3470 * need to zero out the end of the block if i_size lands in the 3471 * middle of a block. 3472 */ 3473 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3474 if (ret) 3475 goto out; 3476 } 3477 3478 /* 3479 * wait for ordered IO before we have any locks. We'll loop again 3480 * below with the locks held. 3481 */ 3482 ret = btrfs_wait_ordered_range(inode, alloc_start, 3483 alloc_end - alloc_start); 3484 if (ret) 3485 goto out; 3486 3487 if (mode & FALLOC_FL_ZERO_RANGE) { 3488 ret = btrfs_zero_range(inode, offset, len, mode); 3489 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3490 return ret; 3491 } 3492 3493 locked_end = alloc_end - 1; 3494 while (1) { 3495 struct btrfs_ordered_extent *ordered; 3496 3497 /* the extent lock is ordered inside the running 3498 * transaction 3499 */ 3500 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 3501 locked_end, &cached_state); 3502 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), 3503 locked_end); 3504 3505 if (ordered && 3506 ordered->file_offset + ordered->num_bytes > alloc_start && 3507 ordered->file_offset < alloc_end) { 3508 btrfs_put_ordered_extent(ordered); 3509 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 3510 alloc_start, locked_end, 3511 &cached_state); 3512 /* 3513 * we can't wait on the range with the transaction 3514 * running or with the extent lock held 3515 */ 3516 ret = btrfs_wait_ordered_range(inode, alloc_start, 3517 alloc_end - alloc_start); 3518 if (ret) 3519 goto out; 3520 } else { 3521 if (ordered) 3522 btrfs_put_ordered_extent(ordered); 3523 break; 3524 } 3525 } 3526 3527 /* First, check if we exceed the qgroup limit */ 3528 INIT_LIST_HEAD(&reserve_list); 3529 while (cur_offset < alloc_end) { 3530 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3531 alloc_end - cur_offset); 3532 if (IS_ERR(em)) { 3533 ret = PTR_ERR(em); 3534 break; 3535 } 3536 last_byte = min(extent_map_end(em), alloc_end); 3537 actual_end = min_t(u64, extent_map_end(em), offset + len); 3538 last_byte = ALIGN(last_byte, blocksize); 3539 if (em->block_start == EXTENT_MAP_HOLE || 3540 (cur_offset >= inode->i_size && 3541 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3542 ret = add_falloc_range(&reserve_list, cur_offset, 3543 last_byte - cur_offset); 3544 if (ret < 0) { 3545 free_extent_map(em); 3546 break; 3547 } 3548 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3549 &data_reserved, cur_offset, 3550 last_byte - cur_offset); 3551 if (ret < 0) { 3552 cur_offset = last_byte; 3553 free_extent_map(em); 3554 break; 3555 } 3556 } else { 3557 /* 3558 * Do not need to reserve unwritten extent for this 3559 * range, free reserved data space first, otherwise 3560 * it'll result in false ENOSPC error. 3561 */ 3562 btrfs_free_reserved_data_space(BTRFS_I(inode), 3563 data_reserved, cur_offset, 3564 last_byte - cur_offset); 3565 } 3566 free_extent_map(em); 3567 cur_offset = last_byte; 3568 } 3569 3570 /* 3571 * If ret is still 0, means we're OK to fallocate. 3572 * Or just cleanup the list and exit. 3573 */ 3574 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3575 if (!ret) 3576 ret = btrfs_prealloc_file_range(inode, mode, 3577 range->start, 3578 range->len, i_blocksize(inode), 3579 offset + len, &alloc_hint); 3580 else 3581 btrfs_free_reserved_data_space(BTRFS_I(inode), 3582 data_reserved, range->start, 3583 range->len); 3584 list_del(&range->list); 3585 kfree(range); 3586 } 3587 if (ret < 0) 3588 goto out_unlock; 3589 3590 /* 3591 * We didn't need to allocate any more space, but we still extended the 3592 * size of the file so we need to update i_size and the inode item. 3593 */ 3594 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3595 out_unlock: 3596 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3597 &cached_state); 3598 out: 3599 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3600 /* Let go of our reservation. */ 3601 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) 3602 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3603 cur_offset, alloc_end - cur_offset); 3604 extent_changeset_free(data_reserved); 3605 return ret; 3606 } 3607 3608 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset, 3609 int whence) 3610 { 3611 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3612 struct extent_map *em = NULL; 3613 struct extent_state *cached_state = NULL; 3614 loff_t i_size = inode->vfs_inode.i_size; 3615 u64 lockstart; 3616 u64 lockend; 3617 u64 start; 3618 u64 len; 3619 int ret = 0; 3620 3621 if (i_size == 0 || offset >= i_size) 3622 return -ENXIO; 3623 3624 /* 3625 * offset can be negative, in this case we start finding DATA/HOLE from 3626 * the very start of the file. 3627 */ 3628 start = max_t(loff_t, 0, offset); 3629 3630 lockstart = round_down(start, fs_info->sectorsize); 3631 lockend = round_up(i_size, fs_info->sectorsize); 3632 if (lockend <= lockstart) 3633 lockend = lockstart + fs_info->sectorsize; 3634 lockend--; 3635 len = lockend - lockstart + 1; 3636 3637 lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state); 3638 3639 while (start < i_size) { 3640 em = btrfs_get_extent_fiemap(inode, start, len); 3641 if (IS_ERR(em)) { 3642 ret = PTR_ERR(em); 3643 em = NULL; 3644 break; 3645 } 3646 3647 if (whence == SEEK_HOLE && 3648 (em->block_start == EXTENT_MAP_HOLE || 3649 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3650 break; 3651 else if (whence == SEEK_DATA && 3652 (em->block_start != EXTENT_MAP_HOLE && 3653 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3654 break; 3655 3656 start = em->start + em->len; 3657 free_extent_map(em); 3658 em = NULL; 3659 cond_resched(); 3660 } 3661 free_extent_map(em); 3662 unlock_extent_cached(&inode->io_tree, lockstart, lockend, 3663 &cached_state); 3664 if (ret) { 3665 offset = ret; 3666 } else { 3667 if (whence == SEEK_DATA && start >= i_size) 3668 offset = -ENXIO; 3669 else 3670 offset = min_t(loff_t, start, i_size); 3671 } 3672 3673 return offset; 3674 } 3675 3676 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3677 { 3678 struct inode *inode = file->f_mapping->host; 3679 3680 switch (whence) { 3681 default: 3682 return generic_file_llseek(file, offset, whence); 3683 case SEEK_DATA: 3684 case SEEK_HOLE: 3685 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3686 offset = find_desired_extent(BTRFS_I(inode), offset, whence); 3687 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3688 break; 3689 } 3690 3691 if (offset < 0) 3692 return offset; 3693 3694 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3695 } 3696 3697 static int btrfs_file_open(struct inode *inode, struct file *filp) 3698 { 3699 int ret; 3700 3701 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; 3702 3703 ret = fsverity_file_open(inode, filp); 3704 if (ret) 3705 return ret; 3706 return generic_file_open(inode, filp); 3707 } 3708 3709 static int check_direct_read(struct btrfs_fs_info *fs_info, 3710 const struct iov_iter *iter, loff_t offset) 3711 { 3712 int ret; 3713 int i, seg; 3714 3715 ret = check_direct_IO(fs_info, iter, offset); 3716 if (ret < 0) 3717 return ret; 3718 3719 if (!iter_is_iovec(iter)) 3720 return 0; 3721 3722 for (seg = 0; seg < iter->nr_segs; seg++) 3723 for (i = seg + 1; i < iter->nr_segs; i++) 3724 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 3725 return -EINVAL; 3726 return 0; 3727 } 3728 3729 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 3730 { 3731 struct inode *inode = file_inode(iocb->ki_filp); 3732 size_t prev_left = 0; 3733 ssize_t read = 0; 3734 ssize_t ret; 3735 3736 if (fsverity_active(inode)) 3737 return 0; 3738 3739 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos)) 3740 return 0; 3741 3742 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3743 again: 3744 /* 3745 * This is similar to what we do for direct IO writes, see the comment 3746 * at btrfs_direct_write(), but we also disable page faults in addition 3747 * to disabling them only at the iov_iter level. This is because when 3748 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(), 3749 * which can still trigger page fault ins despite having set ->nofault 3750 * to true of our 'to' iov_iter. 3751 * 3752 * The difference to direct IO writes is that we deadlock when trying 3753 * to lock the extent range in the inode's tree during he page reads 3754 * triggered by the fault in (while for writes it is due to waiting for 3755 * our own ordered extent). This is because for direct IO reads, 3756 * btrfs_dio_iomap_begin() returns with the extent range locked, which 3757 * is only unlocked in the endio callback (end_bio_extent_readpage()). 3758 */ 3759 pagefault_disable(); 3760 to->nofault = true; 3761 ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 3762 IOMAP_DIO_PARTIAL, read); 3763 to->nofault = false; 3764 pagefault_enable(); 3765 3766 /* No increment (+=) because iomap returns a cumulative value. */ 3767 if (ret > 0) 3768 read = ret; 3769 3770 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) { 3771 const size_t left = iov_iter_count(to); 3772 3773 if (left == prev_left) { 3774 /* 3775 * We didn't make any progress since the last attempt, 3776 * fallback to a buffered read for the remainder of the 3777 * range. This is just to avoid any possibility of looping 3778 * for too long. 3779 */ 3780 ret = read; 3781 } else { 3782 /* 3783 * We made some progress since the last retry or this is 3784 * the first time we are retrying. Fault in as many pages 3785 * as possible and retry. 3786 */ 3787 fault_in_iov_iter_writeable(to, left); 3788 prev_left = left; 3789 goto again; 3790 } 3791 } 3792 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3793 return ret < 0 ? ret : read; 3794 } 3795 3796 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3797 { 3798 ssize_t ret = 0; 3799 3800 if (iocb->ki_flags & IOCB_DIRECT) { 3801 ret = btrfs_direct_read(iocb, to); 3802 if (ret < 0 || !iov_iter_count(to) || 3803 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3804 return ret; 3805 } 3806 3807 return filemap_read(iocb, to, ret); 3808 } 3809 3810 const struct file_operations btrfs_file_operations = { 3811 .llseek = btrfs_file_llseek, 3812 .read_iter = btrfs_file_read_iter, 3813 .splice_read = generic_file_splice_read, 3814 .write_iter = btrfs_file_write_iter, 3815 .splice_write = iter_file_splice_write, 3816 .mmap = btrfs_file_mmap, 3817 .open = btrfs_file_open, 3818 .release = btrfs_release_file, 3819 .fsync = btrfs_sync_file, 3820 .fallocate = btrfs_fallocate, 3821 .unlocked_ioctl = btrfs_ioctl, 3822 #ifdef CONFIG_COMPAT 3823 .compat_ioctl = btrfs_compat_ioctl, 3824 #endif 3825 .remap_file_range = btrfs_remap_file_range, 3826 }; 3827 3828 void __cold btrfs_auto_defrag_exit(void) 3829 { 3830 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3831 } 3832 3833 int __init btrfs_auto_defrag_init(void) 3834 { 3835 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3836 sizeof(struct inode_defrag), 0, 3837 SLAB_MEM_SPREAD, 3838 NULL); 3839 if (!btrfs_inode_defrag_cachep) 3840 return -ENOMEM; 3841 3842 return 0; 3843 } 3844 3845 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3846 { 3847 int ret; 3848 3849 /* 3850 * So with compression we will find and lock a dirty page and clear the 3851 * first one as dirty, setup an async extent, and immediately return 3852 * with the entire range locked but with nobody actually marked with 3853 * writeback. So we can't just filemap_write_and_wait_range() and 3854 * expect it to work since it will just kick off a thread to do the 3855 * actual work. So we need to call filemap_fdatawrite_range _again_ 3856 * since it will wait on the page lock, which won't be unlocked until 3857 * after the pages have been marked as writeback and so we're good to go 3858 * from there. We have to do this otherwise we'll miss the ordered 3859 * extents and that results in badness. Please Josef, do not think you 3860 * know better and pull this out at some point in the future, it is 3861 * right and you are wrong. 3862 */ 3863 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3864 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3865 &BTRFS_I(inode)->runtime_flags)) 3866 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3867 3868 return ret; 3869 } 3870