1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include "ctree.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "btrfs_inode.h" 23 #include "print-tree.h" 24 #include "tree-log.h" 25 #include "locking.h" 26 #include "volumes.h" 27 #include "qgroup.h" 28 #include "compression.h" 29 30 static struct kmem_cache *btrfs_inode_defrag_cachep; 31 /* 32 * when auto defrag is enabled we 33 * queue up these defrag structs to remember which 34 * inodes need defragging passes 35 */ 36 struct inode_defrag { 37 struct rb_node rb_node; 38 /* objectid */ 39 u64 ino; 40 /* 41 * transid where the defrag was added, we search for 42 * extents newer than this 43 */ 44 u64 transid; 45 46 /* root objectid */ 47 u64 root; 48 49 /* last offset we were able to defrag */ 50 u64 last_offset; 51 52 /* if we've wrapped around back to zero once already */ 53 int cycled; 54 }; 55 56 static int __compare_inode_defrag(struct inode_defrag *defrag1, 57 struct inode_defrag *defrag2) 58 { 59 if (defrag1->root > defrag2->root) 60 return 1; 61 else if (defrag1->root < defrag2->root) 62 return -1; 63 else if (defrag1->ino > defrag2->ino) 64 return 1; 65 else if (defrag1->ino < defrag2->ino) 66 return -1; 67 else 68 return 0; 69 } 70 71 /* pop a record for an inode into the defrag tree. The lock 72 * must be held already 73 * 74 * If you're inserting a record for an older transid than an 75 * existing record, the transid already in the tree is lowered 76 * 77 * If an existing record is found the defrag item you 78 * pass in is freed 79 */ 80 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 81 struct inode_defrag *defrag) 82 { 83 struct btrfs_fs_info *fs_info = inode->root->fs_info; 84 struct inode_defrag *entry; 85 struct rb_node **p; 86 struct rb_node *parent = NULL; 87 int ret; 88 89 p = &fs_info->defrag_inodes.rb_node; 90 while (*p) { 91 parent = *p; 92 entry = rb_entry(parent, struct inode_defrag, rb_node); 93 94 ret = __compare_inode_defrag(defrag, entry); 95 if (ret < 0) 96 p = &parent->rb_left; 97 else if (ret > 0) 98 p = &parent->rb_right; 99 else { 100 /* if we're reinserting an entry for 101 * an old defrag run, make sure to 102 * lower the transid of our existing record 103 */ 104 if (defrag->transid < entry->transid) 105 entry->transid = defrag->transid; 106 if (defrag->last_offset > entry->last_offset) 107 entry->last_offset = defrag->last_offset; 108 return -EEXIST; 109 } 110 } 111 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 112 rb_link_node(&defrag->rb_node, parent, p); 113 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 114 return 0; 115 } 116 117 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 118 { 119 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 120 return 0; 121 122 if (btrfs_fs_closing(fs_info)) 123 return 0; 124 125 return 1; 126 } 127 128 /* 129 * insert a defrag record for this inode if auto defrag is 130 * enabled 131 */ 132 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 133 struct btrfs_inode *inode) 134 { 135 struct btrfs_root *root = inode->root; 136 struct btrfs_fs_info *fs_info = root->fs_info; 137 struct inode_defrag *defrag; 138 u64 transid; 139 int ret; 140 141 if (!__need_auto_defrag(fs_info)) 142 return 0; 143 144 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 145 return 0; 146 147 if (trans) 148 transid = trans->transid; 149 else 150 transid = inode->root->last_trans; 151 152 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 153 if (!defrag) 154 return -ENOMEM; 155 156 defrag->ino = btrfs_ino(inode); 157 defrag->transid = transid; 158 defrag->root = root->root_key.objectid; 159 160 spin_lock(&fs_info->defrag_inodes_lock); 161 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 162 /* 163 * If we set IN_DEFRAG flag and evict the inode from memory, 164 * and then re-read this inode, this new inode doesn't have 165 * IN_DEFRAG flag. At the case, we may find the existed defrag. 166 */ 167 ret = __btrfs_add_inode_defrag(inode, defrag); 168 if (ret) 169 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 170 } else { 171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 172 } 173 spin_unlock(&fs_info->defrag_inodes_lock); 174 return 0; 175 } 176 177 /* 178 * Requeue the defrag object. If there is a defrag object that points to 179 * the same inode in the tree, we will merge them together (by 180 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 181 */ 182 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode, 183 struct inode_defrag *defrag) 184 { 185 struct btrfs_fs_info *fs_info = inode->root->fs_info; 186 int ret; 187 188 if (!__need_auto_defrag(fs_info)) 189 goto out; 190 191 /* 192 * Here we don't check the IN_DEFRAG flag, because we need merge 193 * them together. 194 */ 195 spin_lock(&fs_info->defrag_inodes_lock); 196 ret = __btrfs_add_inode_defrag(inode, defrag); 197 spin_unlock(&fs_info->defrag_inodes_lock); 198 if (ret) 199 goto out; 200 return; 201 out: 202 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 203 } 204 205 /* 206 * pick the defragable inode that we want, if it doesn't exist, we will get 207 * the next one. 208 */ 209 static struct inode_defrag * 210 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 211 { 212 struct inode_defrag *entry = NULL; 213 struct inode_defrag tmp; 214 struct rb_node *p; 215 struct rb_node *parent = NULL; 216 int ret; 217 218 tmp.ino = ino; 219 tmp.root = root; 220 221 spin_lock(&fs_info->defrag_inodes_lock); 222 p = fs_info->defrag_inodes.rb_node; 223 while (p) { 224 parent = p; 225 entry = rb_entry(parent, struct inode_defrag, rb_node); 226 227 ret = __compare_inode_defrag(&tmp, entry); 228 if (ret < 0) 229 p = parent->rb_left; 230 else if (ret > 0) 231 p = parent->rb_right; 232 else 233 goto out; 234 } 235 236 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 237 parent = rb_next(parent); 238 if (parent) 239 entry = rb_entry(parent, struct inode_defrag, rb_node); 240 else 241 entry = NULL; 242 } 243 out: 244 if (entry) 245 rb_erase(parent, &fs_info->defrag_inodes); 246 spin_unlock(&fs_info->defrag_inodes_lock); 247 return entry; 248 } 249 250 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 251 { 252 struct inode_defrag *defrag; 253 struct rb_node *node; 254 255 spin_lock(&fs_info->defrag_inodes_lock); 256 node = rb_first(&fs_info->defrag_inodes); 257 while (node) { 258 rb_erase(node, &fs_info->defrag_inodes); 259 defrag = rb_entry(node, struct inode_defrag, rb_node); 260 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 261 262 cond_resched_lock(&fs_info->defrag_inodes_lock); 263 264 node = rb_first(&fs_info->defrag_inodes); 265 } 266 spin_unlock(&fs_info->defrag_inodes_lock); 267 } 268 269 #define BTRFS_DEFRAG_BATCH 1024 270 271 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 272 struct inode_defrag *defrag) 273 { 274 struct btrfs_root *inode_root; 275 struct inode *inode; 276 struct btrfs_key key; 277 struct btrfs_ioctl_defrag_range_args range; 278 int num_defrag; 279 int index; 280 int ret; 281 282 /* get the inode */ 283 key.objectid = defrag->root; 284 key.type = BTRFS_ROOT_ITEM_KEY; 285 key.offset = (u64)-1; 286 287 index = srcu_read_lock(&fs_info->subvol_srcu); 288 289 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 290 if (IS_ERR(inode_root)) { 291 ret = PTR_ERR(inode_root); 292 goto cleanup; 293 } 294 295 key.objectid = defrag->ino; 296 key.type = BTRFS_INODE_ITEM_KEY; 297 key.offset = 0; 298 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 299 if (IS_ERR(inode)) { 300 ret = PTR_ERR(inode); 301 goto cleanup; 302 } 303 srcu_read_unlock(&fs_info->subvol_srcu, index); 304 305 /* do a chunk of defrag */ 306 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 307 memset(&range, 0, sizeof(range)); 308 range.len = (u64)-1; 309 range.start = defrag->last_offset; 310 311 sb_start_write(fs_info->sb); 312 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 313 BTRFS_DEFRAG_BATCH); 314 sb_end_write(fs_info->sb); 315 /* 316 * if we filled the whole defrag batch, there 317 * must be more work to do. Queue this defrag 318 * again 319 */ 320 if (num_defrag == BTRFS_DEFRAG_BATCH) { 321 defrag->last_offset = range.start; 322 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 323 } else if (defrag->last_offset && !defrag->cycled) { 324 /* 325 * we didn't fill our defrag batch, but 326 * we didn't start at zero. Make sure we loop 327 * around to the start of the file. 328 */ 329 defrag->last_offset = 0; 330 defrag->cycled = 1; 331 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 332 } else { 333 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 334 } 335 336 iput(inode); 337 return 0; 338 cleanup: 339 srcu_read_unlock(&fs_info->subvol_srcu, index); 340 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 341 return ret; 342 } 343 344 /* 345 * run through the list of inodes in the FS that need 346 * defragging 347 */ 348 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 349 { 350 struct inode_defrag *defrag; 351 u64 first_ino = 0; 352 u64 root_objectid = 0; 353 354 atomic_inc(&fs_info->defrag_running); 355 while (1) { 356 /* Pause the auto defragger. */ 357 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 358 &fs_info->fs_state)) 359 break; 360 361 if (!__need_auto_defrag(fs_info)) 362 break; 363 364 /* find an inode to defrag */ 365 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 366 first_ino); 367 if (!defrag) { 368 if (root_objectid || first_ino) { 369 root_objectid = 0; 370 first_ino = 0; 371 continue; 372 } else { 373 break; 374 } 375 } 376 377 first_ino = defrag->ino + 1; 378 root_objectid = defrag->root; 379 380 __btrfs_run_defrag_inode(fs_info, defrag); 381 } 382 atomic_dec(&fs_info->defrag_running); 383 384 /* 385 * during unmount, we use the transaction_wait queue to 386 * wait for the defragger to stop 387 */ 388 wake_up(&fs_info->transaction_wait); 389 return 0; 390 } 391 392 /* simple helper to fault in pages and copy. This should go away 393 * and be replaced with calls into generic code. 394 */ 395 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 396 struct page **prepared_pages, 397 struct iov_iter *i) 398 { 399 size_t copied = 0; 400 size_t total_copied = 0; 401 int pg = 0; 402 int offset = pos & (PAGE_SIZE - 1); 403 404 while (write_bytes > 0) { 405 size_t count = min_t(size_t, 406 PAGE_SIZE - offset, write_bytes); 407 struct page *page = prepared_pages[pg]; 408 /* 409 * Copy data from userspace to the current page 410 */ 411 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 412 413 /* Flush processor's dcache for this page */ 414 flush_dcache_page(page); 415 416 /* 417 * if we get a partial write, we can end up with 418 * partially up to date pages. These add 419 * a lot of complexity, so make sure they don't 420 * happen by forcing this copy to be retried. 421 * 422 * The rest of the btrfs_file_write code will fall 423 * back to page at a time copies after we return 0. 424 */ 425 if (!PageUptodate(page) && copied < count) 426 copied = 0; 427 428 iov_iter_advance(i, copied); 429 write_bytes -= copied; 430 total_copied += copied; 431 432 /* Return to btrfs_file_write_iter to fault page */ 433 if (unlikely(copied == 0)) 434 break; 435 436 if (copied < PAGE_SIZE - offset) { 437 offset += copied; 438 } else { 439 pg++; 440 offset = 0; 441 } 442 } 443 return total_copied; 444 } 445 446 /* 447 * unlocks pages after btrfs_file_write is done with them 448 */ 449 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 450 { 451 size_t i; 452 for (i = 0; i < num_pages; i++) { 453 /* page checked is some magic around finding pages that 454 * have been modified without going through btrfs_set_page_dirty 455 * clear it here. There should be no need to mark the pages 456 * accessed as prepare_pages should have marked them accessed 457 * in prepare_pages via find_or_create_page() 458 */ 459 ClearPageChecked(pages[i]); 460 unlock_page(pages[i]); 461 put_page(pages[i]); 462 } 463 } 464 465 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 466 const u64 start, 467 const u64 len, 468 struct extent_state **cached_state) 469 { 470 u64 search_start = start; 471 const u64 end = start + len - 1; 472 473 while (search_start < end) { 474 const u64 search_len = end - search_start + 1; 475 struct extent_map *em; 476 u64 em_len; 477 int ret = 0; 478 479 em = btrfs_get_extent(inode, NULL, 0, search_start, 480 search_len, 0); 481 if (IS_ERR(em)) 482 return PTR_ERR(em); 483 484 if (em->block_start != EXTENT_MAP_HOLE) 485 goto next; 486 487 em_len = em->len; 488 if (em->start < search_start) 489 em_len -= search_start - em->start; 490 if (em_len > search_len) 491 em_len = search_len; 492 493 ret = set_extent_bit(&inode->io_tree, search_start, 494 search_start + em_len - 1, 495 EXTENT_DELALLOC_NEW, 496 NULL, cached_state, GFP_NOFS); 497 next: 498 search_start = extent_map_end(em); 499 free_extent_map(em); 500 if (ret) 501 return ret; 502 } 503 return 0; 504 } 505 506 /* 507 * after copy_from_user, pages need to be dirtied and we need to make 508 * sure holes are created between the current EOF and the start of 509 * any next extents (if required). 510 * 511 * this also makes the decision about creating an inline extent vs 512 * doing real data extents, marking pages dirty and delalloc as required. 513 */ 514 int btrfs_dirty_pages(struct inode *inode, struct page **pages, 515 size_t num_pages, loff_t pos, size_t write_bytes, 516 struct extent_state **cached) 517 { 518 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 519 int err = 0; 520 int i; 521 u64 num_bytes; 522 u64 start_pos; 523 u64 end_of_last_block; 524 u64 end_pos = pos + write_bytes; 525 loff_t isize = i_size_read(inode); 526 unsigned int extra_bits = 0; 527 528 start_pos = pos & ~((u64) fs_info->sectorsize - 1); 529 num_bytes = round_up(write_bytes + pos - start_pos, 530 fs_info->sectorsize); 531 532 end_of_last_block = start_pos + num_bytes - 1; 533 534 /* 535 * The pages may have already been dirty, clear out old accounting so 536 * we can set things up properly 537 */ 538 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block, 539 EXTENT_DIRTY | EXTENT_DELALLOC | 540 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, cached); 541 542 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) { 543 if (start_pos >= isize && 544 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) { 545 /* 546 * There can't be any extents following eof in this case 547 * so just set the delalloc new bit for the range 548 * directly. 549 */ 550 extra_bits |= EXTENT_DELALLOC_NEW; 551 } else { 552 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode), 553 start_pos, 554 num_bytes, cached); 555 if (err) 556 return err; 557 } 558 } 559 560 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 561 extra_bits, cached, 0); 562 if (err) 563 return err; 564 565 for (i = 0; i < num_pages; i++) { 566 struct page *p = pages[i]; 567 SetPageUptodate(p); 568 ClearPageChecked(p); 569 set_page_dirty(p); 570 } 571 572 /* 573 * we've only changed i_size in ram, and we haven't updated 574 * the disk i_size. There is no need to log the inode 575 * at this time. 576 */ 577 if (end_pos > isize) 578 i_size_write(inode, end_pos); 579 return 0; 580 } 581 582 /* 583 * this drops all the extents in the cache that intersect the range 584 * [start, end]. Existing extents are split as required. 585 */ 586 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 587 int skip_pinned) 588 { 589 struct extent_map *em; 590 struct extent_map *split = NULL; 591 struct extent_map *split2 = NULL; 592 struct extent_map_tree *em_tree = &inode->extent_tree; 593 u64 len = end - start + 1; 594 u64 gen; 595 int ret; 596 int testend = 1; 597 unsigned long flags; 598 int compressed = 0; 599 bool modified; 600 601 WARN_ON(end < start); 602 if (end == (u64)-1) { 603 len = (u64)-1; 604 testend = 0; 605 } 606 while (1) { 607 int no_splits = 0; 608 609 modified = false; 610 if (!split) 611 split = alloc_extent_map(); 612 if (!split2) 613 split2 = alloc_extent_map(); 614 if (!split || !split2) 615 no_splits = 1; 616 617 write_lock(&em_tree->lock); 618 em = lookup_extent_mapping(em_tree, start, len); 619 if (!em) { 620 write_unlock(&em_tree->lock); 621 break; 622 } 623 flags = em->flags; 624 gen = em->generation; 625 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 626 if (testend && em->start + em->len >= start + len) { 627 free_extent_map(em); 628 write_unlock(&em_tree->lock); 629 break; 630 } 631 start = em->start + em->len; 632 if (testend) 633 len = start + len - (em->start + em->len); 634 free_extent_map(em); 635 write_unlock(&em_tree->lock); 636 continue; 637 } 638 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 639 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 640 clear_bit(EXTENT_FLAG_LOGGING, &flags); 641 modified = !list_empty(&em->list); 642 if (no_splits) 643 goto next; 644 645 if (em->start < start) { 646 split->start = em->start; 647 split->len = start - em->start; 648 649 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 650 split->orig_start = em->orig_start; 651 split->block_start = em->block_start; 652 653 if (compressed) 654 split->block_len = em->block_len; 655 else 656 split->block_len = split->len; 657 split->orig_block_len = max(split->block_len, 658 em->orig_block_len); 659 split->ram_bytes = em->ram_bytes; 660 } else { 661 split->orig_start = split->start; 662 split->block_len = 0; 663 split->block_start = em->block_start; 664 split->orig_block_len = 0; 665 split->ram_bytes = split->len; 666 } 667 668 split->generation = gen; 669 split->bdev = em->bdev; 670 split->flags = flags; 671 split->compress_type = em->compress_type; 672 replace_extent_mapping(em_tree, em, split, modified); 673 free_extent_map(split); 674 split = split2; 675 split2 = NULL; 676 } 677 if (testend && em->start + em->len > start + len) { 678 u64 diff = start + len - em->start; 679 680 split->start = start + len; 681 split->len = em->start + em->len - (start + len); 682 split->bdev = em->bdev; 683 split->flags = flags; 684 split->compress_type = em->compress_type; 685 split->generation = gen; 686 687 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 688 split->orig_block_len = max(em->block_len, 689 em->orig_block_len); 690 691 split->ram_bytes = em->ram_bytes; 692 if (compressed) { 693 split->block_len = em->block_len; 694 split->block_start = em->block_start; 695 split->orig_start = em->orig_start; 696 } else { 697 split->block_len = split->len; 698 split->block_start = em->block_start 699 + diff; 700 split->orig_start = em->orig_start; 701 } 702 } else { 703 split->ram_bytes = split->len; 704 split->orig_start = split->start; 705 split->block_len = 0; 706 split->block_start = em->block_start; 707 split->orig_block_len = 0; 708 } 709 710 if (extent_map_in_tree(em)) { 711 replace_extent_mapping(em_tree, em, split, 712 modified); 713 } else { 714 ret = add_extent_mapping(em_tree, split, 715 modified); 716 ASSERT(ret == 0); /* Logic error */ 717 } 718 free_extent_map(split); 719 split = NULL; 720 } 721 next: 722 if (extent_map_in_tree(em)) 723 remove_extent_mapping(em_tree, em); 724 write_unlock(&em_tree->lock); 725 726 /* once for us */ 727 free_extent_map(em); 728 /* once for the tree*/ 729 free_extent_map(em); 730 } 731 if (split) 732 free_extent_map(split); 733 if (split2) 734 free_extent_map(split2); 735 } 736 737 /* 738 * this is very complex, but the basic idea is to drop all extents 739 * in the range start - end. hint_block is filled in with a block number 740 * that would be a good hint to the block allocator for this file. 741 * 742 * If an extent intersects the range but is not entirely inside the range 743 * it is either truncated or split. Anything entirely inside the range 744 * is deleted from the tree. 745 */ 746 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 747 struct btrfs_root *root, struct inode *inode, 748 struct btrfs_path *path, u64 start, u64 end, 749 u64 *drop_end, int drop_cache, 750 int replace_extent, 751 u32 extent_item_size, 752 int *key_inserted) 753 { 754 struct btrfs_fs_info *fs_info = root->fs_info; 755 struct extent_buffer *leaf; 756 struct btrfs_file_extent_item *fi; 757 struct btrfs_key key; 758 struct btrfs_key new_key; 759 u64 ino = btrfs_ino(BTRFS_I(inode)); 760 u64 search_start = start; 761 u64 disk_bytenr = 0; 762 u64 num_bytes = 0; 763 u64 extent_offset = 0; 764 u64 extent_end = 0; 765 u64 last_end = start; 766 int del_nr = 0; 767 int del_slot = 0; 768 int extent_type; 769 int recow; 770 int ret; 771 int modify_tree = -1; 772 int update_refs; 773 int found = 0; 774 int leafs_visited = 0; 775 776 if (drop_cache) 777 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0); 778 779 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 780 modify_tree = 0; 781 782 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 783 root == fs_info->tree_root); 784 while (1) { 785 recow = 0; 786 ret = btrfs_lookup_file_extent(trans, root, path, ino, 787 search_start, modify_tree); 788 if (ret < 0) 789 break; 790 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 791 leaf = path->nodes[0]; 792 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 793 if (key.objectid == ino && 794 key.type == BTRFS_EXTENT_DATA_KEY) 795 path->slots[0]--; 796 } 797 ret = 0; 798 leafs_visited++; 799 next_slot: 800 leaf = path->nodes[0]; 801 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 802 BUG_ON(del_nr > 0); 803 ret = btrfs_next_leaf(root, path); 804 if (ret < 0) 805 break; 806 if (ret > 0) { 807 ret = 0; 808 break; 809 } 810 leafs_visited++; 811 leaf = path->nodes[0]; 812 recow = 1; 813 } 814 815 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 816 817 if (key.objectid > ino) 818 break; 819 if (WARN_ON_ONCE(key.objectid < ino) || 820 key.type < BTRFS_EXTENT_DATA_KEY) { 821 ASSERT(del_nr == 0); 822 path->slots[0]++; 823 goto next_slot; 824 } 825 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 826 break; 827 828 fi = btrfs_item_ptr(leaf, path->slots[0], 829 struct btrfs_file_extent_item); 830 extent_type = btrfs_file_extent_type(leaf, fi); 831 832 if (extent_type == BTRFS_FILE_EXTENT_REG || 833 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 834 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 835 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 836 extent_offset = btrfs_file_extent_offset(leaf, fi); 837 extent_end = key.offset + 838 btrfs_file_extent_num_bytes(leaf, fi); 839 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 840 extent_end = key.offset + 841 btrfs_file_extent_ram_bytes(leaf, fi); 842 } else { 843 /* can't happen */ 844 BUG(); 845 } 846 847 /* 848 * Don't skip extent items representing 0 byte lengths. They 849 * used to be created (bug) if while punching holes we hit 850 * -ENOSPC condition. So if we find one here, just ensure we 851 * delete it, otherwise we would insert a new file extent item 852 * with the same key (offset) as that 0 bytes length file 853 * extent item in the call to setup_items_for_insert() later 854 * in this function. 855 */ 856 if (extent_end == key.offset && extent_end >= search_start) { 857 last_end = extent_end; 858 goto delete_extent_item; 859 } 860 861 if (extent_end <= search_start) { 862 path->slots[0]++; 863 goto next_slot; 864 } 865 866 found = 1; 867 search_start = max(key.offset, start); 868 if (recow || !modify_tree) { 869 modify_tree = -1; 870 btrfs_release_path(path); 871 continue; 872 } 873 874 /* 875 * | - range to drop - | 876 * | -------- extent -------- | 877 */ 878 if (start > key.offset && end < extent_end) { 879 BUG_ON(del_nr > 0); 880 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 881 ret = -EOPNOTSUPP; 882 break; 883 } 884 885 memcpy(&new_key, &key, sizeof(new_key)); 886 new_key.offset = start; 887 ret = btrfs_duplicate_item(trans, root, path, 888 &new_key); 889 if (ret == -EAGAIN) { 890 btrfs_release_path(path); 891 continue; 892 } 893 if (ret < 0) 894 break; 895 896 leaf = path->nodes[0]; 897 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 898 struct btrfs_file_extent_item); 899 btrfs_set_file_extent_num_bytes(leaf, fi, 900 start - key.offset); 901 902 fi = btrfs_item_ptr(leaf, path->slots[0], 903 struct btrfs_file_extent_item); 904 905 extent_offset += start - key.offset; 906 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 907 btrfs_set_file_extent_num_bytes(leaf, fi, 908 extent_end - start); 909 btrfs_mark_buffer_dirty(leaf); 910 911 if (update_refs && disk_bytenr > 0) { 912 ret = btrfs_inc_extent_ref(trans, root, 913 disk_bytenr, num_bytes, 0, 914 root->root_key.objectid, 915 new_key.objectid, 916 start - extent_offset); 917 BUG_ON(ret); /* -ENOMEM */ 918 } 919 key.offset = start; 920 } 921 /* 922 * From here on out we will have actually dropped something, so 923 * last_end can be updated. 924 */ 925 last_end = extent_end; 926 927 /* 928 * | ---- range to drop ----- | 929 * | -------- extent -------- | 930 */ 931 if (start <= key.offset && end < extent_end) { 932 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 933 ret = -EOPNOTSUPP; 934 break; 935 } 936 937 memcpy(&new_key, &key, sizeof(new_key)); 938 new_key.offset = end; 939 btrfs_set_item_key_safe(fs_info, path, &new_key); 940 941 extent_offset += end - key.offset; 942 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 943 btrfs_set_file_extent_num_bytes(leaf, fi, 944 extent_end - end); 945 btrfs_mark_buffer_dirty(leaf); 946 if (update_refs && disk_bytenr > 0) 947 inode_sub_bytes(inode, end - key.offset); 948 break; 949 } 950 951 search_start = extent_end; 952 /* 953 * | ---- range to drop ----- | 954 * | -------- extent -------- | 955 */ 956 if (start > key.offset && end >= extent_end) { 957 BUG_ON(del_nr > 0); 958 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 959 ret = -EOPNOTSUPP; 960 break; 961 } 962 963 btrfs_set_file_extent_num_bytes(leaf, fi, 964 start - key.offset); 965 btrfs_mark_buffer_dirty(leaf); 966 if (update_refs && disk_bytenr > 0) 967 inode_sub_bytes(inode, extent_end - start); 968 if (end == extent_end) 969 break; 970 971 path->slots[0]++; 972 goto next_slot; 973 } 974 975 /* 976 * | ---- range to drop ----- | 977 * | ------ extent ------ | 978 */ 979 if (start <= key.offset && end >= extent_end) { 980 delete_extent_item: 981 if (del_nr == 0) { 982 del_slot = path->slots[0]; 983 del_nr = 1; 984 } else { 985 BUG_ON(del_slot + del_nr != path->slots[0]); 986 del_nr++; 987 } 988 989 if (update_refs && 990 extent_type == BTRFS_FILE_EXTENT_INLINE) { 991 inode_sub_bytes(inode, 992 extent_end - key.offset); 993 extent_end = ALIGN(extent_end, 994 fs_info->sectorsize); 995 } else if (update_refs && disk_bytenr > 0) { 996 ret = btrfs_free_extent(trans, root, 997 disk_bytenr, num_bytes, 0, 998 root->root_key.objectid, 999 key.objectid, key.offset - 1000 extent_offset); 1001 BUG_ON(ret); /* -ENOMEM */ 1002 inode_sub_bytes(inode, 1003 extent_end - key.offset); 1004 } 1005 1006 if (end == extent_end) 1007 break; 1008 1009 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 1010 path->slots[0]++; 1011 goto next_slot; 1012 } 1013 1014 ret = btrfs_del_items(trans, root, path, del_slot, 1015 del_nr); 1016 if (ret) { 1017 btrfs_abort_transaction(trans, ret); 1018 break; 1019 } 1020 1021 del_nr = 0; 1022 del_slot = 0; 1023 1024 btrfs_release_path(path); 1025 continue; 1026 } 1027 1028 BUG_ON(1); 1029 } 1030 1031 if (!ret && del_nr > 0) { 1032 /* 1033 * Set path->slots[0] to first slot, so that after the delete 1034 * if items are move off from our leaf to its immediate left or 1035 * right neighbor leafs, we end up with a correct and adjusted 1036 * path->slots[0] for our insertion (if replace_extent != 0). 1037 */ 1038 path->slots[0] = del_slot; 1039 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1040 if (ret) 1041 btrfs_abort_transaction(trans, ret); 1042 } 1043 1044 leaf = path->nodes[0]; 1045 /* 1046 * If btrfs_del_items() was called, it might have deleted a leaf, in 1047 * which case it unlocked our path, so check path->locks[0] matches a 1048 * write lock. 1049 */ 1050 if (!ret && replace_extent && leafs_visited == 1 && 1051 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 1052 path->locks[0] == BTRFS_WRITE_LOCK) && 1053 btrfs_leaf_free_space(fs_info, leaf) >= 1054 sizeof(struct btrfs_item) + extent_item_size) { 1055 1056 key.objectid = ino; 1057 key.type = BTRFS_EXTENT_DATA_KEY; 1058 key.offset = start; 1059 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 1060 struct btrfs_key slot_key; 1061 1062 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 1063 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1064 path->slots[0]++; 1065 } 1066 setup_items_for_insert(root, path, &key, 1067 &extent_item_size, 1068 extent_item_size, 1069 sizeof(struct btrfs_item) + 1070 extent_item_size, 1); 1071 *key_inserted = 1; 1072 } 1073 1074 if (!replace_extent || !(*key_inserted)) 1075 btrfs_release_path(path); 1076 if (drop_end) 1077 *drop_end = found ? min(end, last_end) : end; 1078 return ret; 1079 } 1080 1081 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1082 struct btrfs_root *root, struct inode *inode, u64 start, 1083 u64 end, int drop_cache) 1084 { 1085 struct btrfs_path *path; 1086 int ret; 1087 1088 path = btrfs_alloc_path(); 1089 if (!path) 1090 return -ENOMEM; 1091 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1092 drop_cache, 0, 0, NULL); 1093 btrfs_free_path(path); 1094 return ret; 1095 } 1096 1097 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1098 u64 objectid, u64 bytenr, u64 orig_offset, 1099 u64 *start, u64 *end) 1100 { 1101 struct btrfs_file_extent_item *fi; 1102 struct btrfs_key key; 1103 u64 extent_end; 1104 1105 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1106 return 0; 1107 1108 btrfs_item_key_to_cpu(leaf, &key, slot); 1109 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1110 return 0; 1111 1112 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1113 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1114 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1115 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1116 btrfs_file_extent_compression(leaf, fi) || 1117 btrfs_file_extent_encryption(leaf, fi) || 1118 btrfs_file_extent_other_encoding(leaf, fi)) 1119 return 0; 1120 1121 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1122 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1123 return 0; 1124 1125 *start = key.offset; 1126 *end = extent_end; 1127 return 1; 1128 } 1129 1130 /* 1131 * Mark extent in the range start - end as written. 1132 * 1133 * This changes extent type from 'pre-allocated' to 'regular'. If only 1134 * part of extent is marked as written, the extent will be split into 1135 * two or three. 1136 */ 1137 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1138 struct btrfs_inode *inode, u64 start, u64 end) 1139 { 1140 struct btrfs_fs_info *fs_info = trans->fs_info; 1141 struct btrfs_root *root = inode->root; 1142 struct extent_buffer *leaf; 1143 struct btrfs_path *path; 1144 struct btrfs_file_extent_item *fi; 1145 struct btrfs_key key; 1146 struct btrfs_key new_key; 1147 u64 bytenr; 1148 u64 num_bytes; 1149 u64 extent_end; 1150 u64 orig_offset; 1151 u64 other_start; 1152 u64 other_end; 1153 u64 split; 1154 int del_nr = 0; 1155 int del_slot = 0; 1156 int recow; 1157 int ret; 1158 u64 ino = btrfs_ino(inode); 1159 1160 path = btrfs_alloc_path(); 1161 if (!path) 1162 return -ENOMEM; 1163 again: 1164 recow = 0; 1165 split = start; 1166 key.objectid = ino; 1167 key.type = BTRFS_EXTENT_DATA_KEY; 1168 key.offset = split; 1169 1170 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1171 if (ret < 0) 1172 goto out; 1173 if (ret > 0 && path->slots[0] > 0) 1174 path->slots[0]--; 1175 1176 leaf = path->nodes[0]; 1177 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1178 if (key.objectid != ino || 1179 key.type != BTRFS_EXTENT_DATA_KEY) { 1180 ret = -EINVAL; 1181 btrfs_abort_transaction(trans, ret); 1182 goto out; 1183 } 1184 fi = btrfs_item_ptr(leaf, path->slots[0], 1185 struct btrfs_file_extent_item); 1186 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1187 ret = -EINVAL; 1188 btrfs_abort_transaction(trans, ret); 1189 goto out; 1190 } 1191 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1192 if (key.offset > start || extent_end < end) { 1193 ret = -EINVAL; 1194 btrfs_abort_transaction(trans, ret); 1195 goto out; 1196 } 1197 1198 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1199 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1200 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1201 memcpy(&new_key, &key, sizeof(new_key)); 1202 1203 if (start == key.offset && end < extent_end) { 1204 other_start = 0; 1205 other_end = start; 1206 if (extent_mergeable(leaf, path->slots[0] - 1, 1207 ino, bytenr, orig_offset, 1208 &other_start, &other_end)) { 1209 new_key.offset = end; 1210 btrfs_set_item_key_safe(fs_info, path, &new_key); 1211 fi = btrfs_item_ptr(leaf, path->slots[0], 1212 struct btrfs_file_extent_item); 1213 btrfs_set_file_extent_generation(leaf, fi, 1214 trans->transid); 1215 btrfs_set_file_extent_num_bytes(leaf, fi, 1216 extent_end - end); 1217 btrfs_set_file_extent_offset(leaf, fi, 1218 end - orig_offset); 1219 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1220 struct btrfs_file_extent_item); 1221 btrfs_set_file_extent_generation(leaf, fi, 1222 trans->transid); 1223 btrfs_set_file_extent_num_bytes(leaf, fi, 1224 end - other_start); 1225 btrfs_mark_buffer_dirty(leaf); 1226 goto out; 1227 } 1228 } 1229 1230 if (start > key.offset && end == extent_end) { 1231 other_start = end; 1232 other_end = 0; 1233 if (extent_mergeable(leaf, path->slots[0] + 1, 1234 ino, bytenr, orig_offset, 1235 &other_start, &other_end)) { 1236 fi = btrfs_item_ptr(leaf, path->slots[0], 1237 struct btrfs_file_extent_item); 1238 btrfs_set_file_extent_num_bytes(leaf, fi, 1239 start - key.offset); 1240 btrfs_set_file_extent_generation(leaf, fi, 1241 trans->transid); 1242 path->slots[0]++; 1243 new_key.offset = start; 1244 btrfs_set_item_key_safe(fs_info, path, &new_key); 1245 1246 fi = btrfs_item_ptr(leaf, path->slots[0], 1247 struct btrfs_file_extent_item); 1248 btrfs_set_file_extent_generation(leaf, fi, 1249 trans->transid); 1250 btrfs_set_file_extent_num_bytes(leaf, fi, 1251 other_end - start); 1252 btrfs_set_file_extent_offset(leaf, fi, 1253 start - orig_offset); 1254 btrfs_mark_buffer_dirty(leaf); 1255 goto out; 1256 } 1257 } 1258 1259 while (start > key.offset || end < extent_end) { 1260 if (key.offset == start) 1261 split = end; 1262 1263 new_key.offset = split; 1264 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1265 if (ret == -EAGAIN) { 1266 btrfs_release_path(path); 1267 goto again; 1268 } 1269 if (ret < 0) { 1270 btrfs_abort_transaction(trans, ret); 1271 goto out; 1272 } 1273 1274 leaf = path->nodes[0]; 1275 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1276 struct btrfs_file_extent_item); 1277 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1278 btrfs_set_file_extent_num_bytes(leaf, fi, 1279 split - key.offset); 1280 1281 fi = btrfs_item_ptr(leaf, path->slots[0], 1282 struct btrfs_file_extent_item); 1283 1284 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1285 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1286 btrfs_set_file_extent_num_bytes(leaf, fi, 1287 extent_end - split); 1288 btrfs_mark_buffer_dirty(leaf); 1289 1290 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 1291 0, root->root_key.objectid, 1292 ino, orig_offset); 1293 if (ret) { 1294 btrfs_abort_transaction(trans, ret); 1295 goto out; 1296 } 1297 1298 if (split == start) { 1299 key.offset = start; 1300 } else { 1301 if (start != key.offset) { 1302 ret = -EINVAL; 1303 btrfs_abort_transaction(trans, ret); 1304 goto out; 1305 } 1306 path->slots[0]--; 1307 extent_end = end; 1308 } 1309 recow = 1; 1310 } 1311 1312 other_start = end; 1313 other_end = 0; 1314 if (extent_mergeable(leaf, path->slots[0] + 1, 1315 ino, bytenr, orig_offset, 1316 &other_start, &other_end)) { 1317 if (recow) { 1318 btrfs_release_path(path); 1319 goto again; 1320 } 1321 extent_end = other_end; 1322 del_slot = path->slots[0] + 1; 1323 del_nr++; 1324 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1325 0, root->root_key.objectid, 1326 ino, orig_offset); 1327 if (ret) { 1328 btrfs_abort_transaction(trans, ret); 1329 goto out; 1330 } 1331 } 1332 other_start = 0; 1333 other_end = start; 1334 if (extent_mergeable(leaf, path->slots[0] - 1, 1335 ino, bytenr, orig_offset, 1336 &other_start, &other_end)) { 1337 if (recow) { 1338 btrfs_release_path(path); 1339 goto again; 1340 } 1341 key.offset = other_start; 1342 del_slot = path->slots[0]; 1343 del_nr++; 1344 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1345 0, root->root_key.objectid, 1346 ino, orig_offset); 1347 if (ret) { 1348 btrfs_abort_transaction(trans, ret); 1349 goto out; 1350 } 1351 } 1352 if (del_nr == 0) { 1353 fi = btrfs_item_ptr(leaf, path->slots[0], 1354 struct btrfs_file_extent_item); 1355 btrfs_set_file_extent_type(leaf, fi, 1356 BTRFS_FILE_EXTENT_REG); 1357 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1358 btrfs_mark_buffer_dirty(leaf); 1359 } else { 1360 fi = btrfs_item_ptr(leaf, del_slot - 1, 1361 struct btrfs_file_extent_item); 1362 btrfs_set_file_extent_type(leaf, fi, 1363 BTRFS_FILE_EXTENT_REG); 1364 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1365 btrfs_set_file_extent_num_bytes(leaf, fi, 1366 extent_end - key.offset); 1367 btrfs_mark_buffer_dirty(leaf); 1368 1369 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1370 if (ret < 0) { 1371 btrfs_abort_transaction(trans, ret); 1372 goto out; 1373 } 1374 } 1375 out: 1376 btrfs_free_path(path); 1377 return 0; 1378 } 1379 1380 /* 1381 * on error we return an unlocked page and the error value 1382 * on success we return a locked page and 0 1383 */ 1384 static int prepare_uptodate_page(struct inode *inode, 1385 struct page *page, u64 pos, 1386 bool force_uptodate) 1387 { 1388 int ret = 0; 1389 1390 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1391 !PageUptodate(page)) { 1392 ret = btrfs_readpage(NULL, page); 1393 if (ret) 1394 return ret; 1395 lock_page(page); 1396 if (!PageUptodate(page)) { 1397 unlock_page(page); 1398 return -EIO; 1399 } 1400 if (page->mapping != inode->i_mapping) { 1401 unlock_page(page); 1402 return -EAGAIN; 1403 } 1404 } 1405 return 0; 1406 } 1407 1408 /* 1409 * this just gets pages into the page cache and locks them down. 1410 */ 1411 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1412 size_t num_pages, loff_t pos, 1413 size_t write_bytes, bool force_uptodate) 1414 { 1415 int i; 1416 unsigned long index = pos >> PAGE_SHIFT; 1417 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1418 int err = 0; 1419 int faili; 1420 1421 for (i = 0; i < num_pages; i++) { 1422 again: 1423 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1424 mask | __GFP_WRITE); 1425 if (!pages[i]) { 1426 faili = i - 1; 1427 err = -ENOMEM; 1428 goto fail; 1429 } 1430 1431 if (i == 0) 1432 err = prepare_uptodate_page(inode, pages[i], pos, 1433 force_uptodate); 1434 if (!err && i == num_pages - 1) 1435 err = prepare_uptodate_page(inode, pages[i], 1436 pos + write_bytes, false); 1437 if (err) { 1438 put_page(pages[i]); 1439 if (err == -EAGAIN) { 1440 err = 0; 1441 goto again; 1442 } 1443 faili = i - 1; 1444 goto fail; 1445 } 1446 wait_on_page_writeback(pages[i]); 1447 } 1448 1449 return 0; 1450 fail: 1451 while (faili >= 0) { 1452 unlock_page(pages[faili]); 1453 put_page(pages[faili]); 1454 faili--; 1455 } 1456 return err; 1457 1458 } 1459 1460 /* 1461 * This function locks the extent and properly waits for data=ordered extents 1462 * to finish before allowing the pages to be modified if need. 1463 * 1464 * The return value: 1465 * 1 - the extent is locked 1466 * 0 - the extent is not locked, and everything is OK 1467 * -EAGAIN - need re-prepare the pages 1468 * the other < 0 number - Something wrong happens 1469 */ 1470 static noinline int 1471 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1472 size_t num_pages, loff_t pos, 1473 size_t write_bytes, 1474 u64 *lockstart, u64 *lockend, 1475 struct extent_state **cached_state) 1476 { 1477 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1478 u64 start_pos; 1479 u64 last_pos; 1480 int i; 1481 int ret = 0; 1482 1483 start_pos = round_down(pos, fs_info->sectorsize); 1484 last_pos = start_pos 1485 + round_up(pos + write_bytes - start_pos, 1486 fs_info->sectorsize) - 1; 1487 1488 if (start_pos < inode->vfs_inode.i_size) { 1489 struct btrfs_ordered_extent *ordered; 1490 1491 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1492 cached_state); 1493 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1494 last_pos - start_pos + 1); 1495 if (ordered && 1496 ordered->file_offset + ordered->len > start_pos && 1497 ordered->file_offset <= last_pos) { 1498 unlock_extent_cached(&inode->io_tree, start_pos, 1499 last_pos, cached_state); 1500 for (i = 0; i < num_pages; i++) { 1501 unlock_page(pages[i]); 1502 put_page(pages[i]); 1503 } 1504 btrfs_start_ordered_extent(&inode->vfs_inode, 1505 ordered, 1); 1506 btrfs_put_ordered_extent(ordered); 1507 return -EAGAIN; 1508 } 1509 if (ordered) 1510 btrfs_put_ordered_extent(ordered); 1511 1512 *lockstart = start_pos; 1513 *lockend = last_pos; 1514 ret = 1; 1515 } 1516 1517 /* 1518 * It's possible the pages are dirty right now, but we don't want 1519 * to clean them yet because copy_from_user may catch a page fault 1520 * and we might have to fall back to one page at a time. If that 1521 * happens, we'll unlock these pages and we'd have a window where 1522 * reclaim could sneak in and drop the once-dirty page on the floor 1523 * without writing it. 1524 * 1525 * We have the pages locked and the extent range locked, so there's 1526 * no way someone can start IO on any dirty pages in this range. 1527 * 1528 * We'll call btrfs_dirty_pages() later on, and that will flip around 1529 * delalloc bits and dirty the pages as required. 1530 */ 1531 for (i = 0; i < num_pages; i++) { 1532 set_page_extent_mapped(pages[i]); 1533 WARN_ON(!PageLocked(pages[i])); 1534 } 1535 1536 return ret; 1537 } 1538 1539 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1540 size_t *write_bytes) 1541 { 1542 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1543 struct btrfs_root *root = inode->root; 1544 struct btrfs_ordered_extent *ordered; 1545 u64 lockstart, lockend; 1546 u64 num_bytes; 1547 int ret; 1548 1549 ret = btrfs_start_write_no_snapshotting(root); 1550 if (!ret) 1551 return -ENOSPC; 1552 1553 lockstart = round_down(pos, fs_info->sectorsize); 1554 lockend = round_up(pos + *write_bytes, 1555 fs_info->sectorsize) - 1; 1556 1557 while (1) { 1558 lock_extent(&inode->io_tree, lockstart, lockend); 1559 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1560 lockend - lockstart + 1); 1561 if (!ordered) { 1562 break; 1563 } 1564 unlock_extent(&inode->io_tree, lockstart, lockend); 1565 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1); 1566 btrfs_put_ordered_extent(ordered); 1567 } 1568 1569 num_bytes = lockend - lockstart + 1; 1570 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1571 NULL, NULL, NULL); 1572 if (ret <= 0) { 1573 ret = 0; 1574 btrfs_end_write_no_snapshotting(root); 1575 } else { 1576 *write_bytes = min_t(size_t, *write_bytes , 1577 num_bytes - pos + lockstart); 1578 } 1579 1580 unlock_extent(&inode->io_tree, lockstart, lockend); 1581 1582 return ret; 1583 } 1584 1585 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1586 struct iov_iter *i) 1587 { 1588 struct file *file = iocb->ki_filp; 1589 loff_t pos = iocb->ki_pos; 1590 struct inode *inode = file_inode(file); 1591 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1592 struct btrfs_root *root = BTRFS_I(inode)->root; 1593 struct page **pages = NULL; 1594 struct extent_state *cached_state = NULL; 1595 struct extent_changeset *data_reserved = NULL; 1596 u64 release_bytes = 0; 1597 u64 lockstart; 1598 u64 lockend; 1599 size_t num_written = 0; 1600 int nrptrs; 1601 int ret = 0; 1602 bool only_release_metadata = false; 1603 bool force_page_uptodate = false; 1604 1605 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1606 PAGE_SIZE / (sizeof(struct page *))); 1607 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1608 nrptrs = max(nrptrs, 8); 1609 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1610 if (!pages) 1611 return -ENOMEM; 1612 1613 while (iov_iter_count(i) > 0) { 1614 size_t offset = pos & (PAGE_SIZE - 1); 1615 size_t sector_offset; 1616 size_t write_bytes = min(iov_iter_count(i), 1617 nrptrs * (size_t)PAGE_SIZE - 1618 offset); 1619 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1620 PAGE_SIZE); 1621 size_t reserve_bytes; 1622 size_t dirty_pages; 1623 size_t copied; 1624 size_t dirty_sectors; 1625 size_t num_sectors; 1626 int extents_locked; 1627 1628 WARN_ON(num_pages > nrptrs); 1629 1630 /* 1631 * Fault pages before locking them in prepare_pages 1632 * to avoid recursive lock 1633 */ 1634 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1635 ret = -EFAULT; 1636 break; 1637 } 1638 1639 sector_offset = pos & (fs_info->sectorsize - 1); 1640 reserve_bytes = round_up(write_bytes + sector_offset, 1641 fs_info->sectorsize); 1642 1643 extent_changeset_release(data_reserved); 1644 ret = btrfs_check_data_free_space(inode, &data_reserved, pos, 1645 write_bytes); 1646 if (ret < 0) { 1647 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1648 BTRFS_INODE_PREALLOC)) && 1649 check_can_nocow(BTRFS_I(inode), pos, 1650 &write_bytes) > 0) { 1651 /* 1652 * For nodata cow case, no need to reserve 1653 * data space. 1654 */ 1655 only_release_metadata = true; 1656 /* 1657 * our prealloc extent may be smaller than 1658 * write_bytes, so scale down. 1659 */ 1660 num_pages = DIV_ROUND_UP(write_bytes + offset, 1661 PAGE_SIZE); 1662 reserve_bytes = round_up(write_bytes + 1663 sector_offset, 1664 fs_info->sectorsize); 1665 } else { 1666 break; 1667 } 1668 } 1669 1670 WARN_ON(reserve_bytes == 0); 1671 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1672 reserve_bytes); 1673 if (ret) { 1674 if (!only_release_metadata) 1675 btrfs_free_reserved_data_space(inode, 1676 data_reserved, pos, 1677 write_bytes); 1678 else 1679 btrfs_end_write_no_snapshotting(root); 1680 break; 1681 } 1682 1683 release_bytes = reserve_bytes; 1684 again: 1685 /* 1686 * This is going to setup the pages array with the number of 1687 * pages we want, so we don't really need to worry about the 1688 * contents of pages from loop to loop 1689 */ 1690 ret = prepare_pages(inode, pages, num_pages, 1691 pos, write_bytes, 1692 force_page_uptodate); 1693 if (ret) { 1694 btrfs_delalloc_release_extents(BTRFS_I(inode), 1695 reserve_bytes, true); 1696 break; 1697 } 1698 1699 extents_locked = lock_and_cleanup_extent_if_need( 1700 BTRFS_I(inode), pages, 1701 num_pages, pos, write_bytes, &lockstart, 1702 &lockend, &cached_state); 1703 if (extents_locked < 0) { 1704 if (extents_locked == -EAGAIN) 1705 goto again; 1706 btrfs_delalloc_release_extents(BTRFS_I(inode), 1707 reserve_bytes, true); 1708 ret = extents_locked; 1709 break; 1710 } 1711 1712 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1713 1714 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1715 dirty_sectors = round_up(copied + sector_offset, 1716 fs_info->sectorsize); 1717 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1718 1719 /* 1720 * if we have trouble faulting in the pages, fall 1721 * back to one page at a time 1722 */ 1723 if (copied < write_bytes) 1724 nrptrs = 1; 1725 1726 if (copied == 0) { 1727 force_page_uptodate = true; 1728 dirty_sectors = 0; 1729 dirty_pages = 0; 1730 } else { 1731 force_page_uptodate = false; 1732 dirty_pages = DIV_ROUND_UP(copied + offset, 1733 PAGE_SIZE); 1734 } 1735 1736 if (num_sectors > dirty_sectors) { 1737 /* release everything except the sectors we dirtied */ 1738 release_bytes -= dirty_sectors << 1739 fs_info->sb->s_blocksize_bits; 1740 if (only_release_metadata) { 1741 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1742 release_bytes, true); 1743 } else { 1744 u64 __pos; 1745 1746 __pos = round_down(pos, 1747 fs_info->sectorsize) + 1748 (dirty_pages << PAGE_SHIFT); 1749 btrfs_delalloc_release_space(inode, 1750 data_reserved, __pos, 1751 release_bytes, true); 1752 } 1753 } 1754 1755 release_bytes = round_up(copied + sector_offset, 1756 fs_info->sectorsize); 1757 1758 if (copied > 0) 1759 ret = btrfs_dirty_pages(inode, pages, dirty_pages, 1760 pos, copied, &cached_state); 1761 if (extents_locked) 1762 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1763 lockstart, lockend, &cached_state); 1764 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes, 1765 true); 1766 if (ret) { 1767 btrfs_drop_pages(pages, num_pages); 1768 break; 1769 } 1770 1771 release_bytes = 0; 1772 if (only_release_metadata) 1773 btrfs_end_write_no_snapshotting(root); 1774 1775 if (only_release_metadata && copied > 0) { 1776 lockstart = round_down(pos, 1777 fs_info->sectorsize); 1778 lockend = round_up(pos + copied, 1779 fs_info->sectorsize) - 1; 1780 1781 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1782 lockend, EXTENT_NORESERVE, NULL, 1783 NULL, GFP_NOFS); 1784 only_release_metadata = false; 1785 } 1786 1787 btrfs_drop_pages(pages, num_pages); 1788 1789 cond_resched(); 1790 1791 balance_dirty_pages_ratelimited(inode->i_mapping); 1792 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1) 1793 btrfs_btree_balance_dirty(fs_info); 1794 1795 pos += copied; 1796 num_written += copied; 1797 } 1798 1799 kfree(pages); 1800 1801 if (release_bytes) { 1802 if (only_release_metadata) { 1803 btrfs_end_write_no_snapshotting(root); 1804 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1805 release_bytes, true); 1806 } else { 1807 btrfs_delalloc_release_space(inode, data_reserved, 1808 round_down(pos, fs_info->sectorsize), 1809 release_bytes, true); 1810 } 1811 } 1812 1813 extent_changeset_free(data_reserved); 1814 return num_written ? num_written : ret; 1815 } 1816 1817 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1818 { 1819 struct file *file = iocb->ki_filp; 1820 struct inode *inode = file_inode(file); 1821 loff_t pos; 1822 ssize_t written; 1823 ssize_t written_buffered; 1824 loff_t endbyte; 1825 int err; 1826 1827 written = generic_file_direct_write(iocb, from); 1828 1829 if (written < 0 || !iov_iter_count(from)) 1830 return written; 1831 1832 pos = iocb->ki_pos; 1833 written_buffered = btrfs_buffered_write(iocb, from); 1834 if (written_buffered < 0) { 1835 err = written_buffered; 1836 goto out; 1837 } 1838 /* 1839 * Ensure all data is persisted. We want the next direct IO read to be 1840 * able to read what was just written. 1841 */ 1842 endbyte = pos + written_buffered - 1; 1843 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1844 if (err) 1845 goto out; 1846 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1847 if (err) 1848 goto out; 1849 written += written_buffered; 1850 iocb->ki_pos = pos + written_buffered; 1851 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1852 endbyte >> PAGE_SHIFT); 1853 out: 1854 return written ? written : err; 1855 } 1856 1857 static void update_time_for_write(struct inode *inode) 1858 { 1859 struct timespec64 now; 1860 1861 if (IS_NOCMTIME(inode)) 1862 return; 1863 1864 now = current_time(inode); 1865 if (!timespec64_equal(&inode->i_mtime, &now)) 1866 inode->i_mtime = now; 1867 1868 if (!timespec64_equal(&inode->i_ctime, &now)) 1869 inode->i_ctime = now; 1870 1871 if (IS_I_VERSION(inode)) 1872 inode_inc_iversion(inode); 1873 } 1874 1875 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1876 struct iov_iter *from) 1877 { 1878 struct file *file = iocb->ki_filp; 1879 struct inode *inode = file_inode(file); 1880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1881 struct btrfs_root *root = BTRFS_I(inode)->root; 1882 u64 start_pos; 1883 u64 end_pos; 1884 ssize_t num_written = 0; 1885 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1886 ssize_t err; 1887 loff_t pos; 1888 size_t count = iov_iter_count(from); 1889 loff_t oldsize; 1890 int clean_page = 0; 1891 1892 if (!(iocb->ki_flags & IOCB_DIRECT) && 1893 (iocb->ki_flags & IOCB_NOWAIT)) 1894 return -EOPNOTSUPP; 1895 1896 if (!inode_trylock(inode)) { 1897 if (iocb->ki_flags & IOCB_NOWAIT) 1898 return -EAGAIN; 1899 inode_lock(inode); 1900 } 1901 1902 err = generic_write_checks(iocb, from); 1903 if (err <= 0) { 1904 inode_unlock(inode); 1905 return err; 1906 } 1907 1908 pos = iocb->ki_pos; 1909 if (iocb->ki_flags & IOCB_NOWAIT) { 1910 /* 1911 * We will allocate space in case nodatacow is not set, 1912 * so bail 1913 */ 1914 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1915 BTRFS_INODE_PREALLOC)) || 1916 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) { 1917 inode_unlock(inode); 1918 return -EAGAIN; 1919 } 1920 } 1921 1922 current->backing_dev_info = inode_to_bdi(inode); 1923 err = file_remove_privs(file); 1924 if (err) { 1925 inode_unlock(inode); 1926 goto out; 1927 } 1928 1929 /* 1930 * If BTRFS flips readonly due to some impossible error 1931 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1932 * although we have opened a file as writable, we have 1933 * to stop this write operation to ensure FS consistency. 1934 */ 1935 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1936 inode_unlock(inode); 1937 err = -EROFS; 1938 goto out; 1939 } 1940 1941 /* 1942 * We reserve space for updating the inode when we reserve space for the 1943 * extent we are going to write, so we will enospc out there. We don't 1944 * need to start yet another transaction to update the inode as we will 1945 * update the inode when we finish writing whatever data we write. 1946 */ 1947 update_time_for_write(inode); 1948 1949 start_pos = round_down(pos, fs_info->sectorsize); 1950 oldsize = i_size_read(inode); 1951 if (start_pos > oldsize) { 1952 /* Expand hole size to cover write data, preventing empty gap */ 1953 end_pos = round_up(pos + count, 1954 fs_info->sectorsize); 1955 err = btrfs_cont_expand(inode, oldsize, end_pos); 1956 if (err) { 1957 inode_unlock(inode); 1958 goto out; 1959 } 1960 if (start_pos > round_up(oldsize, fs_info->sectorsize)) 1961 clean_page = 1; 1962 } 1963 1964 if (sync) 1965 atomic_inc(&BTRFS_I(inode)->sync_writers); 1966 1967 if (iocb->ki_flags & IOCB_DIRECT) { 1968 num_written = __btrfs_direct_write(iocb, from); 1969 } else { 1970 num_written = btrfs_buffered_write(iocb, from); 1971 if (num_written > 0) 1972 iocb->ki_pos = pos + num_written; 1973 if (clean_page) 1974 pagecache_isize_extended(inode, oldsize, 1975 i_size_read(inode)); 1976 } 1977 1978 inode_unlock(inode); 1979 1980 /* 1981 * We also have to set last_sub_trans to the current log transid, 1982 * otherwise subsequent syncs to a file that's been synced in this 1983 * transaction will appear to have already occurred. 1984 */ 1985 spin_lock(&BTRFS_I(inode)->lock); 1986 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1987 spin_unlock(&BTRFS_I(inode)->lock); 1988 if (num_written > 0) 1989 num_written = generic_write_sync(iocb, num_written); 1990 1991 if (sync) 1992 atomic_dec(&BTRFS_I(inode)->sync_writers); 1993 out: 1994 current->backing_dev_info = NULL; 1995 return num_written ? num_written : err; 1996 } 1997 1998 int btrfs_release_file(struct inode *inode, struct file *filp) 1999 { 2000 struct btrfs_file_private *private = filp->private_data; 2001 2002 if (private && private->filldir_buf) 2003 kfree(private->filldir_buf); 2004 kfree(private); 2005 filp->private_data = NULL; 2006 2007 /* 2008 * ordered_data_close is set by settattr when we are about to truncate 2009 * a file from a non-zero size to a zero size. This tries to 2010 * flush down new bytes that may have been written if the 2011 * application were using truncate to replace a file in place. 2012 */ 2013 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 2014 &BTRFS_I(inode)->runtime_flags)) 2015 filemap_flush(inode->i_mapping); 2016 return 0; 2017 } 2018 2019 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2020 { 2021 int ret; 2022 struct blk_plug plug; 2023 2024 /* 2025 * This is only called in fsync, which would do synchronous writes, so 2026 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2027 * multiple disks using raid profile, a large IO can be split to 2028 * several segments of stripe length (currently 64K). 2029 */ 2030 blk_start_plug(&plug); 2031 atomic_inc(&BTRFS_I(inode)->sync_writers); 2032 ret = btrfs_fdatawrite_range(inode, start, end); 2033 atomic_dec(&BTRFS_I(inode)->sync_writers); 2034 blk_finish_plug(&plug); 2035 2036 return ret; 2037 } 2038 2039 /* 2040 * fsync call for both files and directories. This logs the inode into 2041 * the tree log instead of forcing full commits whenever possible. 2042 * 2043 * It needs to call filemap_fdatawait so that all ordered extent updates are 2044 * in the metadata btree are up to date for copying to the log. 2045 * 2046 * It drops the inode mutex before doing the tree log commit. This is an 2047 * important optimization for directories because holding the mutex prevents 2048 * new operations on the dir while we write to disk. 2049 */ 2050 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2051 { 2052 struct dentry *dentry = file_dentry(file); 2053 struct inode *inode = d_inode(dentry); 2054 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2055 struct btrfs_root *root = BTRFS_I(inode)->root; 2056 struct btrfs_trans_handle *trans; 2057 struct btrfs_log_ctx ctx; 2058 int ret = 0, err; 2059 u64 len; 2060 2061 /* 2062 * The range length can be represented by u64, we have to do the typecasts 2063 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync() 2064 */ 2065 len = (u64)end - (u64)start + 1; 2066 trace_btrfs_sync_file(file, datasync); 2067 2068 btrfs_init_log_ctx(&ctx, inode); 2069 2070 /* 2071 * We write the dirty pages in the range and wait until they complete 2072 * out of the ->i_mutex. If so, we can flush the dirty pages by 2073 * multi-task, and make the performance up. See 2074 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2075 */ 2076 ret = start_ordered_ops(inode, start, end); 2077 if (ret) 2078 goto out; 2079 2080 inode_lock(inode); 2081 2082 /* 2083 * We take the dio_sem here because the tree log stuff can race with 2084 * lockless dio writes and get an extent map logged for an extent we 2085 * never waited on. We need it this high up for lockdep reasons. 2086 */ 2087 down_write(&BTRFS_I(inode)->dio_sem); 2088 2089 atomic_inc(&root->log_batch); 2090 2091 /* 2092 * We have to do this here to avoid the priority inversion of waiting on 2093 * IO of a lower priority task while holding a transaciton open. 2094 */ 2095 ret = btrfs_wait_ordered_range(inode, start, len); 2096 if (ret) { 2097 up_write(&BTRFS_I(inode)->dio_sem); 2098 inode_unlock(inode); 2099 goto out; 2100 } 2101 atomic_inc(&root->log_batch); 2102 2103 smp_mb(); 2104 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) || 2105 BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) { 2106 /* 2107 * We've had everything committed since the last time we were 2108 * modified so clear this flag in case it was set for whatever 2109 * reason, it's no longer relevant. 2110 */ 2111 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2112 &BTRFS_I(inode)->runtime_flags); 2113 /* 2114 * An ordered extent might have started before and completed 2115 * already with io errors, in which case the inode was not 2116 * updated and we end up here. So check the inode's mapping 2117 * for any errors that might have happened since we last 2118 * checked called fsync. 2119 */ 2120 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2121 up_write(&BTRFS_I(inode)->dio_sem); 2122 inode_unlock(inode); 2123 goto out; 2124 } 2125 2126 /* 2127 * We use start here because we will need to wait on the IO to complete 2128 * in btrfs_sync_log, which could require joining a transaction (for 2129 * example checking cross references in the nocow path). If we use join 2130 * here we could get into a situation where we're waiting on IO to 2131 * happen that is blocked on a transaction trying to commit. With start 2132 * we inc the extwriter counter, so we wait for all extwriters to exit 2133 * before we start blocking join'ers. This comment is to keep somebody 2134 * from thinking they are super smart and changing this to 2135 * btrfs_join_transaction *cough*Josef*cough*. 2136 */ 2137 trans = btrfs_start_transaction(root, 0); 2138 if (IS_ERR(trans)) { 2139 ret = PTR_ERR(trans); 2140 up_write(&BTRFS_I(inode)->dio_sem); 2141 inode_unlock(inode); 2142 goto out; 2143 } 2144 trans->sync = true; 2145 2146 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx); 2147 if (ret < 0) { 2148 /* Fallthrough and commit/free transaction. */ 2149 ret = 1; 2150 } 2151 2152 /* we've logged all the items and now have a consistent 2153 * version of the file in the log. It is possible that 2154 * someone will come in and modify the file, but that's 2155 * fine because the log is consistent on disk, and we 2156 * have references to all of the file's extents 2157 * 2158 * It is possible that someone will come in and log the 2159 * file again, but that will end up using the synchronization 2160 * inside btrfs_sync_log to keep things safe. 2161 */ 2162 up_write(&BTRFS_I(inode)->dio_sem); 2163 inode_unlock(inode); 2164 2165 /* 2166 * If any of the ordered extents had an error, just return it to user 2167 * space, so that the application knows some writes didn't succeed and 2168 * can take proper action (retry for e.g.). Blindly committing the 2169 * transaction in this case, would fool userspace that everything was 2170 * successful. And we also want to make sure our log doesn't contain 2171 * file extent items pointing to extents that weren't fully written to - 2172 * just like in the non fast fsync path, where we check for the ordered 2173 * operation's error flag before writing to the log tree and return -EIO 2174 * if any of them had this flag set (btrfs_wait_ordered_range) - 2175 * therefore we need to check for errors in the ordered operations, 2176 * which are indicated by ctx.io_err. 2177 */ 2178 if (ctx.io_err) { 2179 btrfs_end_transaction(trans); 2180 ret = ctx.io_err; 2181 goto out; 2182 } 2183 2184 if (ret != BTRFS_NO_LOG_SYNC) { 2185 if (!ret) { 2186 ret = btrfs_sync_log(trans, root, &ctx); 2187 if (!ret) { 2188 ret = btrfs_end_transaction(trans); 2189 goto out; 2190 } 2191 } 2192 ret = btrfs_commit_transaction(trans); 2193 } else { 2194 ret = btrfs_end_transaction(trans); 2195 } 2196 out: 2197 ASSERT(list_empty(&ctx.list)); 2198 err = file_check_and_advance_wb_err(file); 2199 if (!ret) 2200 ret = err; 2201 return ret > 0 ? -EIO : ret; 2202 } 2203 2204 static const struct vm_operations_struct btrfs_file_vm_ops = { 2205 .fault = filemap_fault, 2206 .map_pages = filemap_map_pages, 2207 .page_mkwrite = btrfs_page_mkwrite, 2208 }; 2209 2210 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2211 { 2212 struct address_space *mapping = filp->f_mapping; 2213 2214 if (!mapping->a_ops->readpage) 2215 return -ENOEXEC; 2216 2217 file_accessed(filp); 2218 vma->vm_ops = &btrfs_file_vm_ops; 2219 2220 return 0; 2221 } 2222 2223 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2224 int slot, u64 start, u64 end) 2225 { 2226 struct btrfs_file_extent_item *fi; 2227 struct btrfs_key key; 2228 2229 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2230 return 0; 2231 2232 btrfs_item_key_to_cpu(leaf, &key, slot); 2233 if (key.objectid != btrfs_ino(inode) || 2234 key.type != BTRFS_EXTENT_DATA_KEY) 2235 return 0; 2236 2237 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2238 2239 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2240 return 0; 2241 2242 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2243 return 0; 2244 2245 if (key.offset == end) 2246 return 1; 2247 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2248 return 1; 2249 return 0; 2250 } 2251 2252 static int fill_holes(struct btrfs_trans_handle *trans, 2253 struct btrfs_inode *inode, 2254 struct btrfs_path *path, u64 offset, u64 end) 2255 { 2256 struct btrfs_fs_info *fs_info = trans->fs_info; 2257 struct btrfs_root *root = inode->root; 2258 struct extent_buffer *leaf; 2259 struct btrfs_file_extent_item *fi; 2260 struct extent_map *hole_em; 2261 struct extent_map_tree *em_tree = &inode->extent_tree; 2262 struct btrfs_key key; 2263 int ret; 2264 2265 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2266 goto out; 2267 2268 key.objectid = btrfs_ino(inode); 2269 key.type = BTRFS_EXTENT_DATA_KEY; 2270 key.offset = offset; 2271 2272 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2273 if (ret <= 0) { 2274 /* 2275 * We should have dropped this offset, so if we find it then 2276 * something has gone horribly wrong. 2277 */ 2278 if (ret == 0) 2279 ret = -EINVAL; 2280 return ret; 2281 } 2282 2283 leaf = path->nodes[0]; 2284 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2285 u64 num_bytes; 2286 2287 path->slots[0]--; 2288 fi = btrfs_item_ptr(leaf, path->slots[0], 2289 struct btrfs_file_extent_item); 2290 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2291 end - offset; 2292 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2293 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2294 btrfs_set_file_extent_offset(leaf, fi, 0); 2295 btrfs_mark_buffer_dirty(leaf); 2296 goto out; 2297 } 2298 2299 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2300 u64 num_bytes; 2301 2302 key.offset = offset; 2303 btrfs_set_item_key_safe(fs_info, path, &key); 2304 fi = btrfs_item_ptr(leaf, path->slots[0], 2305 struct btrfs_file_extent_item); 2306 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2307 offset; 2308 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2309 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2310 btrfs_set_file_extent_offset(leaf, fi, 0); 2311 btrfs_mark_buffer_dirty(leaf); 2312 goto out; 2313 } 2314 btrfs_release_path(path); 2315 2316 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2317 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2318 if (ret) 2319 return ret; 2320 2321 out: 2322 btrfs_release_path(path); 2323 2324 hole_em = alloc_extent_map(); 2325 if (!hole_em) { 2326 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2327 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2328 } else { 2329 hole_em->start = offset; 2330 hole_em->len = end - offset; 2331 hole_em->ram_bytes = hole_em->len; 2332 hole_em->orig_start = offset; 2333 2334 hole_em->block_start = EXTENT_MAP_HOLE; 2335 hole_em->block_len = 0; 2336 hole_em->orig_block_len = 0; 2337 hole_em->bdev = fs_info->fs_devices->latest_bdev; 2338 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2339 hole_em->generation = trans->transid; 2340 2341 do { 2342 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2343 write_lock(&em_tree->lock); 2344 ret = add_extent_mapping(em_tree, hole_em, 1); 2345 write_unlock(&em_tree->lock); 2346 } while (ret == -EEXIST); 2347 free_extent_map(hole_em); 2348 if (ret) 2349 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2350 &inode->runtime_flags); 2351 } 2352 2353 return 0; 2354 } 2355 2356 /* 2357 * Find a hole extent on given inode and change start/len to the end of hole 2358 * extent.(hole/vacuum extent whose em->start <= start && 2359 * em->start + em->len > start) 2360 * When a hole extent is found, return 1 and modify start/len. 2361 */ 2362 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2363 { 2364 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2365 struct extent_map *em; 2366 int ret = 0; 2367 2368 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2369 round_down(*start, fs_info->sectorsize), 2370 round_up(*len, fs_info->sectorsize), 0); 2371 if (IS_ERR(em)) 2372 return PTR_ERR(em); 2373 2374 /* Hole or vacuum extent(only exists in no-hole mode) */ 2375 if (em->block_start == EXTENT_MAP_HOLE) { 2376 ret = 1; 2377 *len = em->start + em->len > *start + *len ? 2378 0 : *start + *len - em->start - em->len; 2379 *start = em->start + em->len; 2380 } 2381 free_extent_map(em); 2382 return ret; 2383 } 2384 2385 static int btrfs_punch_hole_lock_range(struct inode *inode, 2386 const u64 lockstart, 2387 const u64 lockend, 2388 struct extent_state **cached_state) 2389 { 2390 while (1) { 2391 struct btrfs_ordered_extent *ordered; 2392 int ret; 2393 2394 truncate_pagecache_range(inode, lockstart, lockend); 2395 2396 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2397 cached_state); 2398 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2399 2400 /* 2401 * We need to make sure we have no ordered extents in this range 2402 * and nobody raced in and read a page in this range, if we did 2403 * we need to try again. 2404 */ 2405 if ((!ordered || 2406 (ordered->file_offset + ordered->len <= lockstart || 2407 ordered->file_offset > lockend)) && 2408 !filemap_range_has_page(inode->i_mapping, 2409 lockstart, lockend)) { 2410 if (ordered) 2411 btrfs_put_ordered_extent(ordered); 2412 break; 2413 } 2414 if (ordered) 2415 btrfs_put_ordered_extent(ordered); 2416 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2417 lockend, cached_state); 2418 ret = btrfs_wait_ordered_range(inode, lockstart, 2419 lockend - lockstart + 1); 2420 if (ret) 2421 return ret; 2422 } 2423 return 0; 2424 } 2425 2426 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2427 { 2428 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2429 struct btrfs_root *root = BTRFS_I(inode)->root; 2430 struct extent_state *cached_state = NULL; 2431 struct btrfs_path *path; 2432 struct btrfs_block_rsv *rsv; 2433 struct btrfs_trans_handle *trans; 2434 u64 lockstart; 2435 u64 lockend; 2436 u64 tail_start; 2437 u64 tail_len; 2438 u64 orig_start = offset; 2439 u64 cur_offset; 2440 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1); 2441 u64 drop_end; 2442 int ret = 0; 2443 int err = 0; 2444 unsigned int rsv_count; 2445 bool same_block; 2446 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES); 2447 u64 ino_size; 2448 bool truncated_block = false; 2449 bool updated_inode = false; 2450 2451 ret = btrfs_wait_ordered_range(inode, offset, len); 2452 if (ret) 2453 return ret; 2454 2455 inode_lock(inode); 2456 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2457 ret = find_first_non_hole(inode, &offset, &len); 2458 if (ret < 0) 2459 goto out_only_mutex; 2460 if (ret && !len) { 2461 /* Already in a large hole */ 2462 ret = 0; 2463 goto out_only_mutex; 2464 } 2465 2466 lockstart = round_up(offset, btrfs_inode_sectorsize(inode)); 2467 lockend = round_down(offset + len, 2468 btrfs_inode_sectorsize(inode)) - 1; 2469 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2470 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2471 /* 2472 * We needn't truncate any block which is beyond the end of the file 2473 * because we are sure there is no data there. 2474 */ 2475 /* 2476 * Only do this if we are in the same block and we aren't doing the 2477 * entire block. 2478 */ 2479 if (same_block && len < fs_info->sectorsize) { 2480 if (offset < ino_size) { 2481 truncated_block = true; 2482 ret = btrfs_truncate_block(inode, offset, len, 0); 2483 } else { 2484 ret = 0; 2485 } 2486 goto out_only_mutex; 2487 } 2488 2489 /* zero back part of the first block */ 2490 if (offset < ino_size) { 2491 truncated_block = true; 2492 ret = btrfs_truncate_block(inode, offset, 0, 0); 2493 if (ret) { 2494 inode_unlock(inode); 2495 return ret; 2496 } 2497 } 2498 2499 /* Check the aligned pages after the first unaligned page, 2500 * if offset != orig_start, which means the first unaligned page 2501 * including several following pages are already in holes, 2502 * the extra check can be skipped */ 2503 if (offset == orig_start) { 2504 /* after truncate page, check hole again */ 2505 len = offset + len - lockstart; 2506 offset = lockstart; 2507 ret = find_first_non_hole(inode, &offset, &len); 2508 if (ret < 0) 2509 goto out_only_mutex; 2510 if (ret && !len) { 2511 ret = 0; 2512 goto out_only_mutex; 2513 } 2514 lockstart = offset; 2515 } 2516 2517 /* Check the tail unaligned part is in a hole */ 2518 tail_start = lockend + 1; 2519 tail_len = offset + len - tail_start; 2520 if (tail_len) { 2521 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2522 if (unlikely(ret < 0)) 2523 goto out_only_mutex; 2524 if (!ret) { 2525 /* zero the front end of the last page */ 2526 if (tail_start + tail_len < ino_size) { 2527 truncated_block = true; 2528 ret = btrfs_truncate_block(inode, 2529 tail_start + tail_len, 2530 0, 1); 2531 if (ret) 2532 goto out_only_mutex; 2533 } 2534 } 2535 } 2536 2537 if (lockend < lockstart) { 2538 ret = 0; 2539 goto out_only_mutex; 2540 } 2541 2542 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2543 &cached_state); 2544 if (ret) { 2545 inode_unlock(inode); 2546 goto out_only_mutex; 2547 } 2548 2549 path = btrfs_alloc_path(); 2550 if (!path) { 2551 ret = -ENOMEM; 2552 goto out; 2553 } 2554 2555 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2556 if (!rsv) { 2557 ret = -ENOMEM; 2558 goto out_free; 2559 } 2560 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1); 2561 rsv->failfast = 1; 2562 2563 /* 2564 * 1 - update the inode 2565 * 1 - removing the extents in the range 2566 * 1 - adding the hole extent if no_holes isn't set 2567 */ 2568 rsv_count = no_holes ? 2 : 3; 2569 trans = btrfs_start_transaction(root, rsv_count); 2570 if (IS_ERR(trans)) { 2571 err = PTR_ERR(trans); 2572 goto out_free; 2573 } 2574 2575 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2576 min_size, false); 2577 BUG_ON(ret); 2578 trans->block_rsv = rsv; 2579 2580 cur_offset = lockstart; 2581 len = lockend - cur_offset; 2582 while (cur_offset < lockend) { 2583 ret = __btrfs_drop_extents(trans, root, inode, path, 2584 cur_offset, lockend + 1, 2585 &drop_end, 1, 0, 0, NULL); 2586 if (ret != -ENOSPC) 2587 break; 2588 2589 trans->block_rsv = &fs_info->trans_block_rsv; 2590 2591 if (cur_offset < drop_end && cur_offset < ino_size) { 2592 ret = fill_holes(trans, BTRFS_I(inode), path, 2593 cur_offset, drop_end); 2594 if (ret) { 2595 /* 2596 * If we failed then we didn't insert our hole 2597 * entries for the area we dropped, so now the 2598 * fs is corrupted, so we must abort the 2599 * transaction. 2600 */ 2601 btrfs_abort_transaction(trans, ret); 2602 err = ret; 2603 break; 2604 } 2605 } 2606 2607 cur_offset = drop_end; 2608 2609 ret = btrfs_update_inode(trans, root, inode); 2610 if (ret) { 2611 err = ret; 2612 break; 2613 } 2614 2615 btrfs_end_transaction(trans); 2616 btrfs_btree_balance_dirty(fs_info); 2617 2618 trans = btrfs_start_transaction(root, rsv_count); 2619 if (IS_ERR(trans)) { 2620 ret = PTR_ERR(trans); 2621 trans = NULL; 2622 break; 2623 } 2624 2625 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2626 rsv, min_size, false); 2627 BUG_ON(ret); /* shouldn't happen */ 2628 trans->block_rsv = rsv; 2629 2630 ret = find_first_non_hole(inode, &cur_offset, &len); 2631 if (unlikely(ret < 0)) 2632 break; 2633 if (ret && !len) { 2634 ret = 0; 2635 break; 2636 } 2637 } 2638 2639 if (ret) { 2640 err = ret; 2641 goto out_trans; 2642 } 2643 2644 trans->block_rsv = &fs_info->trans_block_rsv; 2645 /* 2646 * If we are using the NO_HOLES feature we might have had already an 2647 * hole that overlaps a part of the region [lockstart, lockend] and 2648 * ends at (or beyond) lockend. Since we have no file extent items to 2649 * represent holes, drop_end can be less than lockend and so we must 2650 * make sure we have an extent map representing the existing hole (the 2651 * call to __btrfs_drop_extents() might have dropped the existing extent 2652 * map representing the existing hole), otherwise the fast fsync path 2653 * will not record the existence of the hole region 2654 * [existing_hole_start, lockend]. 2655 */ 2656 if (drop_end <= lockend) 2657 drop_end = lockend + 1; 2658 /* 2659 * Don't insert file hole extent item if it's for a range beyond eof 2660 * (because it's useless) or if it represents a 0 bytes range (when 2661 * cur_offset == drop_end). 2662 */ 2663 if (cur_offset < ino_size && cur_offset < drop_end) { 2664 ret = fill_holes(trans, BTRFS_I(inode), path, 2665 cur_offset, drop_end); 2666 if (ret) { 2667 /* Same comment as above. */ 2668 btrfs_abort_transaction(trans, ret); 2669 err = ret; 2670 goto out_trans; 2671 } 2672 } 2673 2674 out_trans: 2675 if (!trans) 2676 goto out_free; 2677 2678 inode_inc_iversion(inode); 2679 inode->i_mtime = inode->i_ctime = current_time(inode); 2680 2681 trans->block_rsv = &fs_info->trans_block_rsv; 2682 ret = btrfs_update_inode(trans, root, inode); 2683 updated_inode = true; 2684 btrfs_end_transaction(trans); 2685 btrfs_btree_balance_dirty(fs_info); 2686 out_free: 2687 btrfs_free_path(path); 2688 btrfs_free_block_rsv(fs_info, rsv); 2689 out: 2690 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2691 &cached_state); 2692 out_only_mutex: 2693 if (!updated_inode && truncated_block && !ret && !err) { 2694 /* 2695 * If we only end up zeroing part of a page, we still need to 2696 * update the inode item, so that all the time fields are 2697 * updated as well as the necessary btrfs inode in memory fields 2698 * for detecting, at fsync time, if the inode isn't yet in the 2699 * log tree or it's there but not up to date. 2700 */ 2701 trans = btrfs_start_transaction(root, 1); 2702 if (IS_ERR(trans)) { 2703 err = PTR_ERR(trans); 2704 } else { 2705 err = btrfs_update_inode(trans, root, inode); 2706 ret = btrfs_end_transaction(trans); 2707 } 2708 } 2709 inode_unlock(inode); 2710 if (ret && !err) 2711 err = ret; 2712 return err; 2713 } 2714 2715 /* Helper structure to record which range is already reserved */ 2716 struct falloc_range { 2717 struct list_head list; 2718 u64 start; 2719 u64 len; 2720 }; 2721 2722 /* 2723 * Helper function to add falloc range 2724 * 2725 * Caller should have locked the larger range of extent containing 2726 * [start, len) 2727 */ 2728 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2729 { 2730 struct falloc_range *prev = NULL; 2731 struct falloc_range *range = NULL; 2732 2733 if (list_empty(head)) 2734 goto insert; 2735 2736 /* 2737 * As fallocate iterate by bytenr order, we only need to check 2738 * the last range. 2739 */ 2740 prev = list_entry(head->prev, struct falloc_range, list); 2741 if (prev->start + prev->len == start) { 2742 prev->len += len; 2743 return 0; 2744 } 2745 insert: 2746 range = kmalloc(sizeof(*range), GFP_KERNEL); 2747 if (!range) 2748 return -ENOMEM; 2749 range->start = start; 2750 range->len = len; 2751 list_add_tail(&range->list, head); 2752 return 0; 2753 } 2754 2755 static int btrfs_fallocate_update_isize(struct inode *inode, 2756 const u64 end, 2757 const int mode) 2758 { 2759 struct btrfs_trans_handle *trans; 2760 struct btrfs_root *root = BTRFS_I(inode)->root; 2761 int ret; 2762 int ret2; 2763 2764 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2765 return 0; 2766 2767 trans = btrfs_start_transaction(root, 1); 2768 if (IS_ERR(trans)) 2769 return PTR_ERR(trans); 2770 2771 inode->i_ctime = current_time(inode); 2772 i_size_write(inode, end); 2773 btrfs_ordered_update_i_size(inode, end, NULL); 2774 ret = btrfs_update_inode(trans, root, inode); 2775 ret2 = btrfs_end_transaction(trans); 2776 2777 return ret ? ret : ret2; 2778 } 2779 2780 enum { 2781 RANGE_BOUNDARY_WRITTEN_EXTENT = 0, 2782 RANGE_BOUNDARY_PREALLOC_EXTENT = 1, 2783 RANGE_BOUNDARY_HOLE = 2, 2784 }; 2785 2786 static int btrfs_zero_range_check_range_boundary(struct inode *inode, 2787 u64 offset) 2788 { 2789 const u64 sectorsize = btrfs_inode_sectorsize(inode); 2790 struct extent_map *em; 2791 int ret; 2792 2793 offset = round_down(offset, sectorsize); 2794 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0); 2795 if (IS_ERR(em)) 2796 return PTR_ERR(em); 2797 2798 if (em->block_start == EXTENT_MAP_HOLE) 2799 ret = RANGE_BOUNDARY_HOLE; 2800 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2801 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2802 else 2803 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2804 2805 free_extent_map(em); 2806 return ret; 2807 } 2808 2809 static int btrfs_zero_range(struct inode *inode, 2810 loff_t offset, 2811 loff_t len, 2812 const int mode) 2813 { 2814 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2815 struct extent_map *em; 2816 struct extent_changeset *data_reserved = NULL; 2817 int ret; 2818 u64 alloc_hint = 0; 2819 const u64 sectorsize = btrfs_inode_sectorsize(inode); 2820 u64 alloc_start = round_down(offset, sectorsize); 2821 u64 alloc_end = round_up(offset + len, sectorsize); 2822 u64 bytes_to_reserve = 0; 2823 bool space_reserved = false; 2824 2825 inode_dio_wait(inode); 2826 2827 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2828 alloc_start, alloc_end - alloc_start, 0); 2829 if (IS_ERR(em)) { 2830 ret = PTR_ERR(em); 2831 goto out; 2832 } 2833 2834 /* 2835 * Avoid hole punching and extent allocation for some cases. More cases 2836 * could be considered, but these are unlikely common and we keep things 2837 * as simple as possible for now. Also, intentionally, if the target 2838 * range contains one or more prealloc extents together with regular 2839 * extents and holes, we drop all the existing extents and allocate a 2840 * new prealloc extent, so that we get a larger contiguous disk extent. 2841 */ 2842 if (em->start <= alloc_start && 2843 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2844 const u64 em_end = em->start + em->len; 2845 2846 if (em_end >= offset + len) { 2847 /* 2848 * The whole range is already a prealloc extent, 2849 * do nothing except updating the inode's i_size if 2850 * needed. 2851 */ 2852 free_extent_map(em); 2853 ret = btrfs_fallocate_update_isize(inode, offset + len, 2854 mode); 2855 goto out; 2856 } 2857 /* 2858 * Part of the range is already a prealloc extent, so operate 2859 * only on the remaining part of the range. 2860 */ 2861 alloc_start = em_end; 2862 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2863 len = offset + len - alloc_start; 2864 offset = alloc_start; 2865 alloc_hint = em->block_start + em->len; 2866 } 2867 free_extent_map(em); 2868 2869 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2870 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2871 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2872 alloc_start, sectorsize, 0); 2873 if (IS_ERR(em)) { 2874 ret = PTR_ERR(em); 2875 goto out; 2876 } 2877 2878 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2879 free_extent_map(em); 2880 ret = btrfs_fallocate_update_isize(inode, offset + len, 2881 mode); 2882 goto out; 2883 } 2884 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 2885 free_extent_map(em); 2886 ret = btrfs_truncate_block(inode, offset, len, 0); 2887 if (!ret) 2888 ret = btrfs_fallocate_update_isize(inode, 2889 offset + len, 2890 mode); 2891 return ret; 2892 } 2893 free_extent_map(em); 2894 alloc_start = round_down(offset, sectorsize); 2895 alloc_end = alloc_start + sectorsize; 2896 goto reserve_space; 2897 } 2898 2899 alloc_start = round_up(offset, sectorsize); 2900 alloc_end = round_down(offset + len, sectorsize); 2901 2902 /* 2903 * For unaligned ranges, check the pages at the boundaries, they might 2904 * map to an extent, in which case we need to partially zero them, or 2905 * they might map to a hole, in which case we need our allocation range 2906 * to cover them. 2907 */ 2908 if (!IS_ALIGNED(offset, sectorsize)) { 2909 ret = btrfs_zero_range_check_range_boundary(inode, offset); 2910 if (ret < 0) 2911 goto out; 2912 if (ret == RANGE_BOUNDARY_HOLE) { 2913 alloc_start = round_down(offset, sectorsize); 2914 ret = 0; 2915 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2916 ret = btrfs_truncate_block(inode, offset, 0, 0); 2917 if (ret) 2918 goto out; 2919 } else { 2920 ret = 0; 2921 } 2922 } 2923 2924 if (!IS_ALIGNED(offset + len, sectorsize)) { 2925 ret = btrfs_zero_range_check_range_boundary(inode, 2926 offset + len); 2927 if (ret < 0) 2928 goto out; 2929 if (ret == RANGE_BOUNDARY_HOLE) { 2930 alloc_end = round_up(offset + len, sectorsize); 2931 ret = 0; 2932 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2933 ret = btrfs_truncate_block(inode, offset + len, 0, 1); 2934 if (ret) 2935 goto out; 2936 } else { 2937 ret = 0; 2938 } 2939 } 2940 2941 reserve_space: 2942 if (alloc_start < alloc_end) { 2943 struct extent_state *cached_state = NULL; 2944 const u64 lockstart = alloc_start; 2945 const u64 lockend = alloc_end - 1; 2946 2947 bytes_to_reserve = alloc_end - alloc_start; 2948 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 2949 bytes_to_reserve); 2950 if (ret < 0) 2951 goto out; 2952 space_reserved = true; 2953 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 2954 alloc_start, bytes_to_reserve); 2955 if (ret) 2956 goto out; 2957 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2958 &cached_state); 2959 if (ret) 2960 goto out; 2961 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 2962 alloc_end - alloc_start, 2963 i_blocksize(inode), 2964 offset + len, &alloc_hint); 2965 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2966 lockend, &cached_state); 2967 /* btrfs_prealloc_file_range releases reserved space on error */ 2968 if (ret) { 2969 space_reserved = false; 2970 goto out; 2971 } 2972 } 2973 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 2974 out: 2975 if (ret && space_reserved) 2976 btrfs_free_reserved_data_space(inode, data_reserved, 2977 alloc_start, bytes_to_reserve); 2978 extent_changeset_free(data_reserved); 2979 2980 return ret; 2981 } 2982 2983 static long btrfs_fallocate(struct file *file, int mode, 2984 loff_t offset, loff_t len) 2985 { 2986 struct inode *inode = file_inode(file); 2987 struct extent_state *cached_state = NULL; 2988 struct extent_changeset *data_reserved = NULL; 2989 struct falloc_range *range; 2990 struct falloc_range *tmp; 2991 struct list_head reserve_list; 2992 u64 cur_offset; 2993 u64 last_byte; 2994 u64 alloc_start; 2995 u64 alloc_end; 2996 u64 alloc_hint = 0; 2997 u64 locked_end; 2998 u64 actual_end = 0; 2999 struct extent_map *em; 3000 int blocksize = btrfs_inode_sectorsize(inode); 3001 int ret; 3002 3003 alloc_start = round_down(offset, blocksize); 3004 alloc_end = round_up(offset + len, blocksize); 3005 cur_offset = alloc_start; 3006 3007 /* Make sure we aren't being give some crap mode */ 3008 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3009 FALLOC_FL_ZERO_RANGE)) 3010 return -EOPNOTSUPP; 3011 3012 if (mode & FALLOC_FL_PUNCH_HOLE) 3013 return btrfs_punch_hole(inode, offset, len); 3014 3015 /* 3016 * Only trigger disk allocation, don't trigger qgroup reserve 3017 * 3018 * For qgroup space, it will be checked later. 3019 */ 3020 if (!(mode & FALLOC_FL_ZERO_RANGE)) { 3021 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3022 alloc_end - alloc_start); 3023 if (ret < 0) 3024 return ret; 3025 } 3026 3027 inode_lock(inode); 3028 3029 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3030 ret = inode_newsize_ok(inode, offset + len); 3031 if (ret) 3032 goto out; 3033 } 3034 3035 /* 3036 * TODO: Move these two operations after we have checked 3037 * accurate reserved space, or fallocate can still fail but 3038 * with page truncated or size expanded. 3039 * 3040 * But that's a minor problem and won't do much harm BTW. 3041 */ 3042 if (alloc_start > inode->i_size) { 3043 ret = btrfs_cont_expand(inode, i_size_read(inode), 3044 alloc_start); 3045 if (ret) 3046 goto out; 3047 } else if (offset + len > inode->i_size) { 3048 /* 3049 * If we are fallocating from the end of the file onward we 3050 * need to zero out the end of the block if i_size lands in the 3051 * middle of a block. 3052 */ 3053 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 3054 if (ret) 3055 goto out; 3056 } 3057 3058 /* 3059 * wait for ordered IO before we have any locks. We'll loop again 3060 * below with the locks held. 3061 */ 3062 ret = btrfs_wait_ordered_range(inode, alloc_start, 3063 alloc_end - alloc_start); 3064 if (ret) 3065 goto out; 3066 3067 if (mode & FALLOC_FL_ZERO_RANGE) { 3068 ret = btrfs_zero_range(inode, offset, len, mode); 3069 inode_unlock(inode); 3070 return ret; 3071 } 3072 3073 locked_end = alloc_end - 1; 3074 while (1) { 3075 struct btrfs_ordered_extent *ordered; 3076 3077 /* the extent lock is ordered inside the running 3078 * transaction 3079 */ 3080 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 3081 locked_end, &cached_state); 3082 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end); 3083 3084 if (ordered && 3085 ordered->file_offset + ordered->len > alloc_start && 3086 ordered->file_offset < alloc_end) { 3087 btrfs_put_ordered_extent(ordered); 3088 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 3089 alloc_start, locked_end, 3090 &cached_state); 3091 /* 3092 * we can't wait on the range with the transaction 3093 * running or with the extent lock held 3094 */ 3095 ret = btrfs_wait_ordered_range(inode, alloc_start, 3096 alloc_end - alloc_start); 3097 if (ret) 3098 goto out; 3099 } else { 3100 if (ordered) 3101 btrfs_put_ordered_extent(ordered); 3102 break; 3103 } 3104 } 3105 3106 /* First, check if we exceed the qgroup limit */ 3107 INIT_LIST_HEAD(&reserve_list); 3108 while (cur_offset < alloc_end) { 3109 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3110 alloc_end - cur_offset, 0); 3111 if (IS_ERR(em)) { 3112 ret = PTR_ERR(em); 3113 break; 3114 } 3115 last_byte = min(extent_map_end(em), alloc_end); 3116 actual_end = min_t(u64, extent_map_end(em), offset + len); 3117 last_byte = ALIGN(last_byte, blocksize); 3118 if (em->block_start == EXTENT_MAP_HOLE || 3119 (cur_offset >= inode->i_size && 3120 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3121 ret = add_falloc_range(&reserve_list, cur_offset, 3122 last_byte - cur_offset); 3123 if (ret < 0) { 3124 free_extent_map(em); 3125 break; 3126 } 3127 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 3128 cur_offset, last_byte - cur_offset); 3129 if (ret < 0) { 3130 free_extent_map(em); 3131 break; 3132 } 3133 } else { 3134 /* 3135 * Do not need to reserve unwritten extent for this 3136 * range, free reserved data space first, otherwise 3137 * it'll result in false ENOSPC error. 3138 */ 3139 btrfs_free_reserved_data_space(inode, data_reserved, 3140 cur_offset, last_byte - cur_offset); 3141 } 3142 free_extent_map(em); 3143 cur_offset = last_byte; 3144 } 3145 3146 /* 3147 * If ret is still 0, means we're OK to fallocate. 3148 * Or just cleanup the list and exit. 3149 */ 3150 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3151 if (!ret) 3152 ret = btrfs_prealloc_file_range(inode, mode, 3153 range->start, 3154 range->len, i_blocksize(inode), 3155 offset + len, &alloc_hint); 3156 else 3157 btrfs_free_reserved_data_space(inode, 3158 data_reserved, range->start, 3159 range->len); 3160 list_del(&range->list); 3161 kfree(range); 3162 } 3163 if (ret < 0) 3164 goto out_unlock; 3165 3166 /* 3167 * We didn't need to allocate any more space, but we still extended the 3168 * size of the file so we need to update i_size and the inode item. 3169 */ 3170 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3171 out_unlock: 3172 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3173 &cached_state); 3174 out: 3175 inode_unlock(inode); 3176 /* Let go of our reservation. */ 3177 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) 3178 btrfs_free_reserved_data_space(inode, data_reserved, 3179 alloc_start, alloc_end - cur_offset); 3180 extent_changeset_free(data_reserved); 3181 return ret; 3182 } 3183 3184 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 3185 { 3186 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3187 struct extent_map *em = NULL; 3188 struct extent_state *cached_state = NULL; 3189 u64 lockstart; 3190 u64 lockend; 3191 u64 start; 3192 u64 len; 3193 int ret = 0; 3194 3195 if (inode->i_size == 0) 3196 return -ENXIO; 3197 3198 /* 3199 * *offset can be negative, in this case we start finding DATA/HOLE from 3200 * the very start of the file. 3201 */ 3202 start = max_t(loff_t, 0, *offset); 3203 3204 lockstart = round_down(start, fs_info->sectorsize); 3205 lockend = round_up(i_size_read(inode), 3206 fs_info->sectorsize); 3207 if (lockend <= lockstart) 3208 lockend = lockstart + fs_info->sectorsize; 3209 lockend--; 3210 len = lockend - lockstart + 1; 3211 3212 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3213 &cached_state); 3214 3215 while (start < inode->i_size) { 3216 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, 3217 start, len, 0); 3218 if (IS_ERR(em)) { 3219 ret = PTR_ERR(em); 3220 em = NULL; 3221 break; 3222 } 3223 3224 if (whence == SEEK_HOLE && 3225 (em->block_start == EXTENT_MAP_HOLE || 3226 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3227 break; 3228 else if (whence == SEEK_DATA && 3229 (em->block_start != EXTENT_MAP_HOLE && 3230 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3231 break; 3232 3233 start = em->start + em->len; 3234 free_extent_map(em); 3235 em = NULL; 3236 cond_resched(); 3237 } 3238 free_extent_map(em); 3239 if (!ret) { 3240 if (whence == SEEK_DATA && start >= inode->i_size) 3241 ret = -ENXIO; 3242 else 3243 *offset = min_t(loff_t, start, inode->i_size); 3244 } 3245 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3246 &cached_state); 3247 return ret; 3248 } 3249 3250 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3251 { 3252 struct inode *inode = file->f_mapping->host; 3253 int ret; 3254 3255 inode_lock(inode); 3256 switch (whence) { 3257 case SEEK_END: 3258 case SEEK_CUR: 3259 offset = generic_file_llseek(file, offset, whence); 3260 goto out; 3261 case SEEK_DATA: 3262 case SEEK_HOLE: 3263 if (offset >= i_size_read(inode)) { 3264 inode_unlock(inode); 3265 return -ENXIO; 3266 } 3267 3268 ret = find_desired_extent(inode, &offset, whence); 3269 if (ret) { 3270 inode_unlock(inode); 3271 return ret; 3272 } 3273 } 3274 3275 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3276 out: 3277 inode_unlock(inode); 3278 return offset; 3279 } 3280 3281 static int btrfs_file_open(struct inode *inode, struct file *filp) 3282 { 3283 filp->f_mode |= FMODE_NOWAIT; 3284 return generic_file_open(inode, filp); 3285 } 3286 3287 const struct file_operations btrfs_file_operations = { 3288 .llseek = btrfs_file_llseek, 3289 .read_iter = generic_file_read_iter, 3290 .splice_read = generic_file_splice_read, 3291 .write_iter = btrfs_file_write_iter, 3292 .mmap = btrfs_file_mmap, 3293 .open = btrfs_file_open, 3294 .release = btrfs_release_file, 3295 .fsync = btrfs_sync_file, 3296 .fallocate = btrfs_fallocate, 3297 .unlocked_ioctl = btrfs_ioctl, 3298 #ifdef CONFIG_COMPAT 3299 .compat_ioctl = btrfs_compat_ioctl, 3300 #endif 3301 .remap_file_range = btrfs_remap_file_range, 3302 }; 3303 3304 void __cold btrfs_auto_defrag_exit(void) 3305 { 3306 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3307 } 3308 3309 int __init btrfs_auto_defrag_init(void) 3310 { 3311 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3312 sizeof(struct inode_defrag), 0, 3313 SLAB_MEM_SPREAD, 3314 NULL); 3315 if (!btrfs_inode_defrag_cachep) 3316 return -ENOMEM; 3317 3318 return 0; 3319 } 3320 3321 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3322 { 3323 int ret; 3324 3325 /* 3326 * So with compression we will find and lock a dirty page and clear the 3327 * first one as dirty, setup an async extent, and immediately return 3328 * with the entire range locked but with nobody actually marked with 3329 * writeback. So we can't just filemap_write_and_wait_range() and 3330 * expect it to work since it will just kick off a thread to do the 3331 * actual work. So we need to call filemap_fdatawrite_range _again_ 3332 * since it will wait on the page lock, which won't be unlocked until 3333 * after the pages have been marked as writeback and so we're good to go 3334 * from there. We have to do this otherwise we'll miss the ordered 3335 * extents and that results in badness. Please Josef, do not think you 3336 * know better and pull this out at some point in the future, it is 3337 * right and you are wrong. 3338 */ 3339 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3340 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3341 &BTRFS_I(inode)->runtime_flags)) 3342 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3343 3344 return ret; 3345 } 3346