xref: /openbmc/linux/fs/btrfs/file.c (revision c0d6fe2f01c475cc137d90607a07578586883df8)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
34 #include <linux/uio.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 #include "qgroup.h"
44 
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 /*
47  * when auto defrag is enabled we
48  * queue up these defrag structs to remember which
49  * inodes need defragging passes
50  */
51 struct inode_defrag {
52 	struct rb_node rb_node;
53 	/* objectid */
54 	u64 ino;
55 	/*
56 	 * transid where the defrag was added, we search for
57 	 * extents newer than this
58 	 */
59 	u64 transid;
60 
61 	/* root objectid */
62 	u64 root;
63 
64 	/* last offset we were able to defrag */
65 	u64 last_offset;
66 
67 	/* if we've wrapped around back to zero once already */
68 	int cycled;
69 };
70 
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 				  struct inode_defrag *defrag2)
73 {
74 	if (defrag1->root > defrag2->root)
75 		return 1;
76 	else if (defrag1->root < defrag2->root)
77 		return -1;
78 	else if (defrag1->ino > defrag2->ino)
79 		return 1;
80 	else if (defrag1->ino < defrag2->ino)
81 		return -1;
82 	else
83 		return 0;
84 }
85 
86 /* pop a record for an inode into the defrag tree.  The lock
87  * must be held already
88  *
89  * If you're inserting a record for an older transid than an
90  * existing record, the transid already in the tree is lowered
91  *
92  * If an existing record is found the defrag item you
93  * pass in is freed
94  */
95 static int __btrfs_add_inode_defrag(struct inode *inode,
96 				    struct inode_defrag *defrag)
97 {
98 	struct btrfs_root *root = BTRFS_I(inode)->root;
99 	struct inode_defrag *entry;
100 	struct rb_node **p;
101 	struct rb_node *parent = NULL;
102 	int ret;
103 
104 	p = &root->fs_info->defrag_inodes.rb_node;
105 	while (*p) {
106 		parent = *p;
107 		entry = rb_entry(parent, struct inode_defrag, rb_node);
108 
109 		ret = __compare_inode_defrag(defrag, entry);
110 		if (ret < 0)
111 			p = &parent->rb_left;
112 		else if (ret > 0)
113 			p = &parent->rb_right;
114 		else {
115 			/* if we're reinserting an entry for
116 			 * an old defrag run, make sure to
117 			 * lower the transid of our existing record
118 			 */
119 			if (defrag->transid < entry->transid)
120 				entry->transid = defrag->transid;
121 			if (defrag->last_offset > entry->last_offset)
122 				entry->last_offset = defrag->last_offset;
123 			return -EEXIST;
124 		}
125 	}
126 	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
127 	rb_link_node(&defrag->rb_node, parent, p);
128 	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
129 	return 0;
130 }
131 
132 static inline int __need_auto_defrag(struct btrfs_root *root)
133 {
134 	if (!btrfs_test_opt(root, AUTO_DEFRAG))
135 		return 0;
136 
137 	if (btrfs_fs_closing(root->fs_info))
138 		return 0;
139 
140 	return 1;
141 }
142 
143 /*
144  * insert a defrag record for this inode if auto defrag is
145  * enabled
146  */
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 			   struct inode *inode)
149 {
150 	struct btrfs_root *root = BTRFS_I(inode)->root;
151 	struct inode_defrag *defrag;
152 	u64 transid;
153 	int ret;
154 
155 	if (!__need_auto_defrag(root))
156 		return 0;
157 
158 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
159 		return 0;
160 
161 	if (trans)
162 		transid = trans->transid;
163 	else
164 		transid = BTRFS_I(inode)->root->last_trans;
165 
166 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
167 	if (!defrag)
168 		return -ENOMEM;
169 
170 	defrag->ino = btrfs_ino(inode);
171 	defrag->transid = transid;
172 	defrag->root = root->root_key.objectid;
173 
174 	spin_lock(&root->fs_info->defrag_inodes_lock);
175 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
176 		/*
177 		 * If we set IN_DEFRAG flag and evict the inode from memory,
178 		 * and then re-read this inode, this new inode doesn't have
179 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
180 		 */
181 		ret = __btrfs_add_inode_defrag(inode, defrag);
182 		if (ret)
183 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 	} else {
185 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
186 	}
187 	spin_unlock(&root->fs_info->defrag_inodes_lock);
188 	return 0;
189 }
190 
191 /*
192  * Requeue the defrag object. If there is a defrag object that points to
193  * the same inode in the tree, we will merge them together (by
194  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
195  */
196 static void btrfs_requeue_inode_defrag(struct inode *inode,
197 				       struct inode_defrag *defrag)
198 {
199 	struct btrfs_root *root = BTRFS_I(inode)->root;
200 	int ret;
201 
202 	if (!__need_auto_defrag(root))
203 		goto out;
204 
205 	/*
206 	 * Here we don't check the IN_DEFRAG flag, because we need merge
207 	 * them together.
208 	 */
209 	spin_lock(&root->fs_info->defrag_inodes_lock);
210 	ret = __btrfs_add_inode_defrag(inode, defrag);
211 	spin_unlock(&root->fs_info->defrag_inodes_lock);
212 	if (ret)
213 		goto out;
214 	return;
215 out:
216 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
217 }
218 
219 /*
220  * pick the defragable inode that we want, if it doesn't exist, we will get
221  * the next one.
222  */
223 static struct inode_defrag *
224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
225 {
226 	struct inode_defrag *entry = NULL;
227 	struct inode_defrag tmp;
228 	struct rb_node *p;
229 	struct rb_node *parent = NULL;
230 	int ret;
231 
232 	tmp.ino = ino;
233 	tmp.root = root;
234 
235 	spin_lock(&fs_info->defrag_inodes_lock);
236 	p = fs_info->defrag_inodes.rb_node;
237 	while (p) {
238 		parent = p;
239 		entry = rb_entry(parent, struct inode_defrag, rb_node);
240 
241 		ret = __compare_inode_defrag(&tmp, entry);
242 		if (ret < 0)
243 			p = parent->rb_left;
244 		else if (ret > 0)
245 			p = parent->rb_right;
246 		else
247 			goto out;
248 	}
249 
250 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
251 		parent = rb_next(parent);
252 		if (parent)
253 			entry = rb_entry(parent, struct inode_defrag, rb_node);
254 		else
255 			entry = NULL;
256 	}
257 out:
258 	if (entry)
259 		rb_erase(parent, &fs_info->defrag_inodes);
260 	spin_unlock(&fs_info->defrag_inodes_lock);
261 	return entry;
262 }
263 
264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
265 {
266 	struct inode_defrag *defrag;
267 	struct rb_node *node;
268 
269 	spin_lock(&fs_info->defrag_inodes_lock);
270 	node = rb_first(&fs_info->defrag_inodes);
271 	while (node) {
272 		rb_erase(node, &fs_info->defrag_inodes);
273 		defrag = rb_entry(node, struct inode_defrag, rb_node);
274 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
275 
276 		cond_resched_lock(&fs_info->defrag_inodes_lock);
277 
278 		node = rb_first(&fs_info->defrag_inodes);
279 	}
280 	spin_unlock(&fs_info->defrag_inodes_lock);
281 }
282 
283 #define BTRFS_DEFRAG_BATCH	1024
284 
285 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
286 				    struct inode_defrag *defrag)
287 {
288 	struct btrfs_root *inode_root;
289 	struct inode *inode;
290 	struct btrfs_key key;
291 	struct btrfs_ioctl_defrag_range_args range;
292 	int num_defrag;
293 	int index;
294 	int ret;
295 
296 	/* get the inode */
297 	key.objectid = defrag->root;
298 	key.type = BTRFS_ROOT_ITEM_KEY;
299 	key.offset = (u64)-1;
300 
301 	index = srcu_read_lock(&fs_info->subvol_srcu);
302 
303 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
304 	if (IS_ERR(inode_root)) {
305 		ret = PTR_ERR(inode_root);
306 		goto cleanup;
307 	}
308 
309 	key.objectid = defrag->ino;
310 	key.type = BTRFS_INODE_ITEM_KEY;
311 	key.offset = 0;
312 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
313 	if (IS_ERR(inode)) {
314 		ret = PTR_ERR(inode);
315 		goto cleanup;
316 	}
317 	srcu_read_unlock(&fs_info->subvol_srcu, index);
318 
319 	/* do a chunk of defrag */
320 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
321 	memset(&range, 0, sizeof(range));
322 	range.len = (u64)-1;
323 	range.start = defrag->last_offset;
324 
325 	sb_start_write(fs_info->sb);
326 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
327 				       BTRFS_DEFRAG_BATCH);
328 	sb_end_write(fs_info->sb);
329 	/*
330 	 * if we filled the whole defrag batch, there
331 	 * must be more work to do.  Queue this defrag
332 	 * again
333 	 */
334 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
335 		defrag->last_offset = range.start;
336 		btrfs_requeue_inode_defrag(inode, defrag);
337 	} else if (defrag->last_offset && !defrag->cycled) {
338 		/*
339 		 * we didn't fill our defrag batch, but
340 		 * we didn't start at zero.  Make sure we loop
341 		 * around to the start of the file.
342 		 */
343 		defrag->last_offset = 0;
344 		defrag->cycled = 1;
345 		btrfs_requeue_inode_defrag(inode, defrag);
346 	} else {
347 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
348 	}
349 
350 	iput(inode);
351 	return 0;
352 cleanup:
353 	srcu_read_unlock(&fs_info->subvol_srcu, index);
354 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
355 	return ret;
356 }
357 
358 /*
359  * run through the list of inodes in the FS that need
360  * defragging
361  */
362 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
363 {
364 	struct inode_defrag *defrag;
365 	u64 first_ino = 0;
366 	u64 root_objectid = 0;
367 
368 	atomic_inc(&fs_info->defrag_running);
369 	while (1) {
370 		/* Pause the auto defragger. */
371 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
372 			     &fs_info->fs_state))
373 			break;
374 
375 		if (!__need_auto_defrag(fs_info->tree_root))
376 			break;
377 
378 		/* find an inode to defrag */
379 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
380 						 first_ino);
381 		if (!defrag) {
382 			if (root_objectid || first_ino) {
383 				root_objectid = 0;
384 				first_ino = 0;
385 				continue;
386 			} else {
387 				break;
388 			}
389 		}
390 
391 		first_ino = defrag->ino + 1;
392 		root_objectid = defrag->root;
393 
394 		__btrfs_run_defrag_inode(fs_info, defrag);
395 	}
396 	atomic_dec(&fs_info->defrag_running);
397 
398 	/*
399 	 * during unmount, we use the transaction_wait queue to
400 	 * wait for the defragger to stop
401 	 */
402 	wake_up(&fs_info->transaction_wait);
403 	return 0;
404 }
405 
406 /* simple helper to fault in pages and copy.  This should go away
407  * and be replaced with calls into generic code.
408  */
409 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
410 					 size_t write_bytes,
411 					 struct page **prepared_pages,
412 					 struct iov_iter *i)
413 {
414 	size_t copied = 0;
415 	size_t total_copied = 0;
416 	int pg = 0;
417 	int offset = pos & (PAGE_CACHE_SIZE - 1);
418 
419 	while (write_bytes > 0) {
420 		size_t count = min_t(size_t,
421 				     PAGE_CACHE_SIZE - offset, write_bytes);
422 		struct page *page = prepared_pages[pg];
423 		/*
424 		 * Copy data from userspace to the current page
425 		 */
426 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
427 
428 		/* Flush processor's dcache for this page */
429 		flush_dcache_page(page);
430 
431 		/*
432 		 * if we get a partial write, we can end up with
433 		 * partially up to date pages.  These add
434 		 * a lot of complexity, so make sure they don't
435 		 * happen by forcing this copy to be retried.
436 		 *
437 		 * The rest of the btrfs_file_write code will fall
438 		 * back to page at a time copies after we return 0.
439 		 */
440 		if (!PageUptodate(page) && copied < count)
441 			copied = 0;
442 
443 		iov_iter_advance(i, copied);
444 		write_bytes -= copied;
445 		total_copied += copied;
446 
447 		/* Return to btrfs_file_write_iter to fault page */
448 		if (unlikely(copied == 0))
449 			break;
450 
451 		if (copied < PAGE_CACHE_SIZE - offset) {
452 			offset += copied;
453 		} else {
454 			pg++;
455 			offset = 0;
456 		}
457 	}
458 	return total_copied;
459 }
460 
461 /*
462  * unlocks pages after btrfs_file_write is done with them
463  */
464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
465 {
466 	size_t i;
467 	for (i = 0; i < num_pages; i++) {
468 		/* page checked is some magic around finding pages that
469 		 * have been modified without going through btrfs_set_page_dirty
470 		 * clear it here. There should be no need to mark the pages
471 		 * accessed as prepare_pages should have marked them accessed
472 		 * in prepare_pages via find_or_create_page()
473 		 */
474 		ClearPageChecked(pages[i]);
475 		unlock_page(pages[i]);
476 		page_cache_release(pages[i]);
477 	}
478 }
479 
480 /*
481  * after copy_from_user, pages need to be dirtied and we need to make
482  * sure holes are created between the current EOF and the start of
483  * any next extents (if required).
484  *
485  * this also makes the decision about creating an inline extent vs
486  * doing real data extents, marking pages dirty and delalloc as required.
487  */
488 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
489 			     struct page **pages, size_t num_pages,
490 			     loff_t pos, size_t write_bytes,
491 			     struct extent_state **cached)
492 {
493 	int err = 0;
494 	int i;
495 	u64 num_bytes;
496 	u64 start_pos;
497 	u64 end_of_last_block;
498 	u64 end_pos = pos + write_bytes;
499 	loff_t isize = i_size_read(inode);
500 
501 	start_pos = pos & ~((u64)root->sectorsize - 1);
502 	num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
503 
504 	end_of_last_block = start_pos + num_bytes - 1;
505 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
506 					cached);
507 	if (err)
508 		return err;
509 
510 	for (i = 0; i < num_pages; i++) {
511 		struct page *p = pages[i];
512 		SetPageUptodate(p);
513 		ClearPageChecked(p);
514 		set_page_dirty(p);
515 	}
516 
517 	/*
518 	 * we've only changed i_size in ram, and we haven't updated
519 	 * the disk i_size.  There is no need to log the inode
520 	 * at this time.
521 	 */
522 	if (end_pos > isize)
523 		i_size_write(inode, end_pos);
524 	return 0;
525 }
526 
527 /*
528  * this drops all the extents in the cache that intersect the range
529  * [start, end].  Existing extents are split as required.
530  */
531 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
532 			     int skip_pinned)
533 {
534 	struct extent_map *em;
535 	struct extent_map *split = NULL;
536 	struct extent_map *split2 = NULL;
537 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538 	u64 len = end - start + 1;
539 	u64 gen;
540 	int ret;
541 	int testend = 1;
542 	unsigned long flags;
543 	int compressed = 0;
544 	bool modified;
545 
546 	WARN_ON(end < start);
547 	if (end == (u64)-1) {
548 		len = (u64)-1;
549 		testend = 0;
550 	}
551 	while (1) {
552 		int no_splits = 0;
553 
554 		modified = false;
555 		if (!split)
556 			split = alloc_extent_map();
557 		if (!split2)
558 			split2 = alloc_extent_map();
559 		if (!split || !split2)
560 			no_splits = 1;
561 
562 		write_lock(&em_tree->lock);
563 		em = lookup_extent_mapping(em_tree, start, len);
564 		if (!em) {
565 			write_unlock(&em_tree->lock);
566 			break;
567 		}
568 		flags = em->flags;
569 		gen = em->generation;
570 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
571 			if (testend && em->start + em->len >= start + len) {
572 				free_extent_map(em);
573 				write_unlock(&em_tree->lock);
574 				break;
575 			}
576 			start = em->start + em->len;
577 			if (testend)
578 				len = start + len - (em->start + em->len);
579 			free_extent_map(em);
580 			write_unlock(&em_tree->lock);
581 			continue;
582 		}
583 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
584 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
585 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
586 		modified = !list_empty(&em->list);
587 		if (no_splits)
588 			goto next;
589 
590 		if (em->start < start) {
591 			split->start = em->start;
592 			split->len = start - em->start;
593 
594 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
595 				split->orig_start = em->orig_start;
596 				split->block_start = em->block_start;
597 
598 				if (compressed)
599 					split->block_len = em->block_len;
600 				else
601 					split->block_len = split->len;
602 				split->orig_block_len = max(split->block_len,
603 						em->orig_block_len);
604 				split->ram_bytes = em->ram_bytes;
605 			} else {
606 				split->orig_start = split->start;
607 				split->block_len = 0;
608 				split->block_start = em->block_start;
609 				split->orig_block_len = 0;
610 				split->ram_bytes = split->len;
611 			}
612 
613 			split->generation = gen;
614 			split->bdev = em->bdev;
615 			split->flags = flags;
616 			split->compress_type = em->compress_type;
617 			replace_extent_mapping(em_tree, em, split, modified);
618 			free_extent_map(split);
619 			split = split2;
620 			split2 = NULL;
621 		}
622 		if (testend && em->start + em->len > start + len) {
623 			u64 diff = start + len - em->start;
624 
625 			split->start = start + len;
626 			split->len = em->start + em->len - (start + len);
627 			split->bdev = em->bdev;
628 			split->flags = flags;
629 			split->compress_type = em->compress_type;
630 			split->generation = gen;
631 
632 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
633 				split->orig_block_len = max(em->block_len,
634 						    em->orig_block_len);
635 
636 				split->ram_bytes = em->ram_bytes;
637 				if (compressed) {
638 					split->block_len = em->block_len;
639 					split->block_start = em->block_start;
640 					split->orig_start = em->orig_start;
641 				} else {
642 					split->block_len = split->len;
643 					split->block_start = em->block_start
644 						+ diff;
645 					split->orig_start = em->orig_start;
646 				}
647 			} else {
648 				split->ram_bytes = split->len;
649 				split->orig_start = split->start;
650 				split->block_len = 0;
651 				split->block_start = em->block_start;
652 				split->orig_block_len = 0;
653 			}
654 
655 			if (extent_map_in_tree(em)) {
656 				replace_extent_mapping(em_tree, em, split,
657 						       modified);
658 			} else {
659 				ret = add_extent_mapping(em_tree, split,
660 							 modified);
661 				ASSERT(ret == 0); /* Logic error */
662 			}
663 			free_extent_map(split);
664 			split = NULL;
665 		}
666 next:
667 		if (extent_map_in_tree(em))
668 			remove_extent_mapping(em_tree, em);
669 		write_unlock(&em_tree->lock);
670 
671 		/* once for us */
672 		free_extent_map(em);
673 		/* once for the tree*/
674 		free_extent_map(em);
675 	}
676 	if (split)
677 		free_extent_map(split);
678 	if (split2)
679 		free_extent_map(split2);
680 }
681 
682 /*
683  * this is very complex, but the basic idea is to drop all extents
684  * in the range start - end.  hint_block is filled in with a block number
685  * that would be a good hint to the block allocator for this file.
686  *
687  * If an extent intersects the range but is not entirely inside the range
688  * it is either truncated or split.  Anything entirely inside the range
689  * is deleted from the tree.
690  */
691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
692 			 struct btrfs_root *root, struct inode *inode,
693 			 struct btrfs_path *path, u64 start, u64 end,
694 			 u64 *drop_end, int drop_cache,
695 			 int replace_extent,
696 			 u32 extent_item_size,
697 			 int *key_inserted)
698 {
699 	struct extent_buffer *leaf;
700 	struct btrfs_file_extent_item *fi;
701 	struct btrfs_key key;
702 	struct btrfs_key new_key;
703 	u64 ino = btrfs_ino(inode);
704 	u64 search_start = start;
705 	u64 disk_bytenr = 0;
706 	u64 num_bytes = 0;
707 	u64 extent_offset = 0;
708 	u64 extent_end = 0;
709 	int del_nr = 0;
710 	int del_slot = 0;
711 	int extent_type;
712 	int recow;
713 	int ret;
714 	int modify_tree = -1;
715 	int update_refs;
716 	int found = 0;
717 	int leafs_visited = 0;
718 
719 	if (drop_cache)
720 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
721 
722 	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
723 		modify_tree = 0;
724 
725 	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
726 		       root == root->fs_info->tree_root);
727 	while (1) {
728 		recow = 0;
729 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
730 					       search_start, modify_tree);
731 		if (ret < 0)
732 			break;
733 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
734 			leaf = path->nodes[0];
735 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
736 			if (key.objectid == ino &&
737 			    key.type == BTRFS_EXTENT_DATA_KEY)
738 				path->slots[0]--;
739 		}
740 		ret = 0;
741 		leafs_visited++;
742 next_slot:
743 		leaf = path->nodes[0];
744 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745 			BUG_ON(del_nr > 0);
746 			ret = btrfs_next_leaf(root, path);
747 			if (ret < 0)
748 				break;
749 			if (ret > 0) {
750 				ret = 0;
751 				break;
752 			}
753 			leafs_visited++;
754 			leaf = path->nodes[0];
755 			recow = 1;
756 		}
757 
758 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
759 		if (key.objectid > ino ||
760 		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
761 			break;
762 
763 		fi = btrfs_item_ptr(leaf, path->slots[0],
764 				    struct btrfs_file_extent_item);
765 		extent_type = btrfs_file_extent_type(leaf, fi);
766 
767 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
768 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
769 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
770 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
771 			extent_offset = btrfs_file_extent_offset(leaf, fi);
772 			extent_end = key.offset +
773 				btrfs_file_extent_num_bytes(leaf, fi);
774 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
775 			extent_end = key.offset +
776 				btrfs_file_extent_inline_len(leaf,
777 						     path->slots[0], fi);
778 		} else {
779 			WARN_ON(1);
780 			extent_end = search_start;
781 		}
782 
783 		/*
784 		 * Don't skip extent items representing 0 byte lengths. They
785 		 * used to be created (bug) if while punching holes we hit
786 		 * -ENOSPC condition. So if we find one here, just ensure we
787 		 * delete it, otherwise we would insert a new file extent item
788 		 * with the same key (offset) as that 0 bytes length file
789 		 * extent item in the call to setup_items_for_insert() later
790 		 * in this function.
791 		 */
792 		if (extent_end == key.offset && extent_end >= search_start)
793 			goto delete_extent_item;
794 
795 		if (extent_end <= search_start) {
796 			path->slots[0]++;
797 			goto next_slot;
798 		}
799 
800 		found = 1;
801 		search_start = max(key.offset, start);
802 		if (recow || !modify_tree) {
803 			modify_tree = -1;
804 			btrfs_release_path(path);
805 			continue;
806 		}
807 
808 		/*
809 		 *     | - range to drop - |
810 		 *  | -------- extent -------- |
811 		 */
812 		if (start > key.offset && end < extent_end) {
813 			BUG_ON(del_nr > 0);
814 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
815 				ret = -EOPNOTSUPP;
816 				break;
817 			}
818 
819 			memcpy(&new_key, &key, sizeof(new_key));
820 			new_key.offset = start;
821 			ret = btrfs_duplicate_item(trans, root, path,
822 						   &new_key);
823 			if (ret == -EAGAIN) {
824 				btrfs_release_path(path);
825 				continue;
826 			}
827 			if (ret < 0)
828 				break;
829 
830 			leaf = path->nodes[0];
831 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
832 					    struct btrfs_file_extent_item);
833 			btrfs_set_file_extent_num_bytes(leaf, fi,
834 							start - key.offset);
835 
836 			fi = btrfs_item_ptr(leaf, path->slots[0],
837 					    struct btrfs_file_extent_item);
838 
839 			extent_offset += start - key.offset;
840 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
841 			btrfs_set_file_extent_num_bytes(leaf, fi,
842 							extent_end - start);
843 			btrfs_mark_buffer_dirty(leaf);
844 
845 			if (update_refs && disk_bytenr > 0) {
846 				ret = btrfs_inc_extent_ref(trans, root,
847 						disk_bytenr, num_bytes, 0,
848 						root->root_key.objectid,
849 						new_key.objectid,
850 						start - extent_offset);
851 				BUG_ON(ret); /* -ENOMEM */
852 			}
853 			key.offset = start;
854 		}
855 		/*
856 		 *  | ---- range to drop ----- |
857 		 *      | -------- extent -------- |
858 		 */
859 		if (start <= key.offset && end < extent_end) {
860 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
861 				ret = -EOPNOTSUPP;
862 				break;
863 			}
864 
865 			memcpy(&new_key, &key, sizeof(new_key));
866 			new_key.offset = end;
867 			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
868 
869 			extent_offset += end - key.offset;
870 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
871 			btrfs_set_file_extent_num_bytes(leaf, fi,
872 							extent_end - end);
873 			btrfs_mark_buffer_dirty(leaf);
874 			if (update_refs && disk_bytenr > 0)
875 				inode_sub_bytes(inode, end - key.offset);
876 			break;
877 		}
878 
879 		search_start = extent_end;
880 		/*
881 		 *       | ---- range to drop ----- |
882 		 *  | -------- extent -------- |
883 		 */
884 		if (start > key.offset && end >= extent_end) {
885 			BUG_ON(del_nr > 0);
886 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
887 				ret = -EOPNOTSUPP;
888 				break;
889 			}
890 
891 			btrfs_set_file_extent_num_bytes(leaf, fi,
892 							start - key.offset);
893 			btrfs_mark_buffer_dirty(leaf);
894 			if (update_refs && disk_bytenr > 0)
895 				inode_sub_bytes(inode, extent_end - start);
896 			if (end == extent_end)
897 				break;
898 
899 			path->slots[0]++;
900 			goto next_slot;
901 		}
902 
903 		/*
904 		 *  | ---- range to drop ----- |
905 		 *    | ------ extent ------ |
906 		 */
907 		if (start <= key.offset && end >= extent_end) {
908 delete_extent_item:
909 			if (del_nr == 0) {
910 				del_slot = path->slots[0];
911 				del_nr = 1;
912 			} else {
913 				BUG_ON(del_slot + del_nr != path->slots[0]);
914 				del_nr++;
915 			}
916 
917 			if (update_refs &&
918 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
919 				inode_sub_bytes(inode,
920 						extent_end - key.offset);
921 				extent_end = ALIGN(extent_end,
922 						   root->sectorsize);
923 			} else if (update_refs && disk_bytenr > 0) {
924 				ret = btrfs_free_extent(trans, root,
925 						disk_bytenr, num_bytes, 0,
926 						root->root_key.objectid,
927 						key.objectid, key.offset -
928 						extent_offset);
929 				BUG_ON(ret); /* -ENOMEM */
930 				inode_sub_bytes(inode,
931 						extent_end - key.offset);
932 			}
933 
934 			if (end == extent_end)
935 				break;
936 
937 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
938 				path->slots[0]++;
939 				goto next_slot;
940 			}
941 
942 			ret = btrfs_del_items(trans, root, path, del_slot,
943 					      del_nr);
944 			if (ret) {
945 				btrfs_abort_transaction(trans, root, ret);
946 				break;
947 			}
948 
949 			del_nr = 0;
950 			del_slot = 0;
951 
952 			btrfs_release_path(path);
953 			continue;
954 		}
955 
956 		BUG_ON(1);
957 	}
958 
959 	if (!ret && del_nr > 0) {
960 		/*
961 		 * Set path->slots[0] to first slot, so that after the delete
962 		 * if items are move off from our leaf to its immediate left or
963 		 * right neighbor leafs, we end up with a correct and adjusted
964 		 * path->slots[0] for our insertion (if replace_extent != 0).
965 		 */
966 		path->slots[0] = del_slot;
967 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
968 		if (ret)
969 			btrfs_abort_transaction(trans, root, ret);
970 	}
971 
972 	leaf = path->nodes[0];
973 	/*
974 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
975 	 * which case it unlocked our path, so check path->locks[0] matches a
976 	 * write lock.
977 	 */
978 	if (!ret && replace_extent && leafs_visited == 1 &&
979 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
980 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
981 	    btrfs_leaf_free_space(root, leaf) >=
982 	    sizeof(struct btrfs_item) + extent_item_size) {
983 
984 		key.objectid = ino;
985 		key.type = BTRFS_EXTENT_DATA_KEY;
986 		key.offset = start;
987 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
988 			struct btrfs_key slot_key;
989 
990 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
991 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
992 				path->slots[0]++;
993 		}
994 		setup_items_for_insert(root, path, &key,
995 				       &extent_item_size,
996 				       extent_item_size,
997 				       sizeof(struct btrfs_item) +
998 				       extent_item_size, 1);
999 		*key_inserted = 1;
1000 	}
1001 
1002 	if (!replace_extent || !(*key_inserted))
1003 		btrfs_release_path(path);
1004 	if (drop_end)
1005 		*drop_end = found ? min(end, extent_end) : end;
1006 	return ret;
1007 }
1008 
1009 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1010 		       struct btrfs_root *root, struct inode *inode, u64 start,
1011 		       u64 end, int drop_cache)
1012 {
1013 	struct btrfs_path *path;
1014 	int ret;
1015 
1016 	path = btrfs_alloc_path();
1017 	if (!path)
1018 		return -ENOMEM;
1019 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1020 				   drop_cache, 0, 0, NULL);
1021 	btrfs_free_path(path);
1022 	return ret;
1023 }
1024 
1025 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1026 			    u64 objectid, u64 bytenr, u64 orig_offset,
1027 			    u64 *start, u64 *end)
1028 {
1029 	struct btrfs_file_extent_item *fi;
1030 	struct btrfs_key key;
1031 	u64 extent_end;
1032 
1033 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1034 		return 0;
1035 
1036 	btrfs_item_key_to_cpu(leaf, &key, slot);
1037 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1038 		return 0;
1039 
1040 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1041 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1042 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1043 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1044 	    btrfs_file_extent_compression(leaf, fi) ||
1045 	    btrfs_file_extent_encryption(leaf, fi) ||
1046 	    btrfs_file_extent_other_encoding(leaf, fi))
1047 		return 0;
1048 
1049 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1050 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1051 		return 0;
1052 
1053 	*start = key.offset;
1054 	*end = extent_end;
1055 	return 1;
1056 }
1057 
1058 /*
1059  * Mark extent in the range start - end as written.
1060  *
1061  * This changes extent type from 'pre-allocated' to 'regular'. If only
1062  * part of extent is marked as written, the extent will be split into
1063  * two or three.
1064  */
1065 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1066 			      struct inode *inode, u64 start, u64 end)
1067 {
1068 	struct btrfs_root *root = BTRFS_I(inode)->root;
1069 	struct extent_buffer *leaf;
1070 	struct btrfs_path *path;
1071 	struct btrfs_file_extent_item *fi;
1072 	struct btrfs_key key;
1073 	struct btrfs_key new_key;
1074 	u64 bytenr;
1075 	u64 num_bytes;
1076 	u64 extent_end;
1077 	u64 orig_offset;
1078 	u64 other_start;
1079 	u64 other_end;
1080 	u64 split;
1081 	int del_nr = 0;
1082 	int del_slot = 0;
1083 	int recow;
1084 	int ret;
1085 	u64 ino = btrfs_ino(inode);
1086 
1087 	path = btrfs_alloc_path();
1088 	if (!path)
1089 		return -ENOMEM;
1090 again:
1091 	recow = 0;
1092 	split = start;
1093 	key.objectid = ino;
1094 	key.type = BTRFS_EXTENT_DATA_KEY;
1095 	key.offset = split;
1096 
1097 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1098 	if (ret < 0)
1099 		goto out;
1100 	if (ret > 0 && path->slots[0] > 0)
1101 		path->slots[0]--;
1102 
1103 	leaf = path->nodes[0];
1104 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1105 	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1106 	fi = btrfs_item_ptr(leaf, path->slots[0],
1107 			    struct btrfs_file_extent_item);
1108 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1109 	       BTRFS_FILE_EXTENT_PREALLOC);
1110 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1111 	BUG_ON(key.offset > start || extent_end < end);
1112 
1113 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1114 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1115 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1116 	memcpy(&new_key, &key, sizeof(new_key));
1117 
1118 	if (start == key.offset && end < extent_end) {
1119 		other_start = 0;
1120 		other_end = start;
1121 		if (extent_mergeable(leaf, path->slots[0] - 1,
1122 				     ino, bytenr, orig_offset,
1123 				     &other_start, &other_end)) {
1124 			new_key.offset = end;
1125 			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1126 			fi = btrfs_item_ptr(leaf, path->slots[0],
1127 					    struct btrfs_file_extent_item);
1128 			btrfs_set_file_extent_generation(leaf, fi,
1129 							 trans->transid);
1130 			btrfs_set_file_extent_num_bytes(leaf, fi,
1131 							extent_end - end);
1132 			btrfs_set_file_extent_offset(leaf, fi,
1133 						     end - orig_offset);
1134 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1135 					    struct btrfs_file_extent_item);
1136 			btrfs_set_file_extent_generation(leaf, fi,
1137 							 trans->transid);
1138 			btrfs_set_file_extent_num_bytes(leaf, fi,
1139 							end - other_start);
1140 			btrfs_mark_buffer_dirty(leaf);
1141 			goto out;
1142 		}
1143 	}
1144 
1145 	if (start > key.offset && end == extent_end) {
1146 		other_start = end;
1147 		other_end = 0;
1148 		if (extent_mergeable(leaf, path->slots[0] + 1,
1149 				     ino, bytenr, orig_offset,
1150 				     &other_start, &other_end)) {
1151 			fi = btrfs_item_ptr(leaf, path->slots[0],
1152 					    struct btrfs_file_extent_item);
1153 			btrfs_set_file_extent_num_bytes(leaf, fi,
1154 							start - key.offset);
1155 			btrfs_set_file_extent_generation(leaf, fi,
1156 							 trans->transid);
1157 			path->slots[0]++;
1158 			new_key.offset = start;
1159 			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1160 
1161 			fi = btrfs_item_ptr(leaf, path->slots[0],
1162 					    struct btrfs_file_extent_item);
1163 			btrfs_set_file_extent_generation(leaf, fi,
1164 							 trans->transid);
1165 			btrfs_set_file_extent_num_bytes(leaf, fi,
1166 							other_end - start);
1167 			btrfs_set_file_extent_offset(leaf, fi,
1168 						     start - orig_offset);
1169 			btrfs_mark_buffer_dirty(leaf);
1170 			goto out;
1171 		}
1172 	}
1173 
1174 	while (start > key.offset || end < extent_end) {
1175 		if (key.offset == start)
1176 			split = end;
1177 
1178 		new_key.offset = split;
1179 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1180 		if (ret == -EAGAIN) {
1181 			btrfs_release_path(path);
1182 			goto again;
1183 		}
1184 		if (ret < 0) {
1185 			btrfs_abort_transaction(trans, root, ret);
1186 			goto out;
1187 		}
1188 
1189 		leaf = path->nodes[0];
1190 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1191 				    struct btrfs_file_extent_item);
1192 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1193 		btrfs_set_file_extent_num_bytes(leaf, fi,
1194 						split - key.offset);
1195 
1196 		fi = btrfs_item_ptr(leaf, path->slots[0],
1197 				    struct btrfs_file_extent_item);
1198 
1199 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1200 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1201 		btrfs_set_file_extent_num_bytes(leaf, fi,
1202 						extent_end - split);
1203 		btrfs_mark_buffer_dirty(leaf);
1204 
1205 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1206 					   root->root_key.objectid,
1207 					   ino, orig_offset);
1208 		BUG_ON(ret); /* -ENOMEM */
1209 
1210 		if (split == start) {
1211 			key.offset = start;
1212 		} else {
1213 			BUG_ON(start != key.offset);
1214 			path->slots[0]--;
1215 			extent_end = end;
1216 		}
1217 		recow = 1;
1218 	}
1219 
1220 	other_start = end;
1221 	other_end = 0;
1222 	if (extent_mergeable(leaf, path->slots[0] + 1,
1223 			     ino, bytenr, orig_offset,
1224 			     &other_start, &other_end)) {
1225 		if (recow) {
1226 			btrfs_release_path(path);
1227 			goto again;
1228 		}
1229 		extent_end = other_end;
1230 		del_slot = path->slots[0] + 1;
1231 		del_nr++;
1232 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1233 					0, root->root_key.objectid,
1234 					ino, orig_offset);
1235 		BUG_ON(ret); /* -ENOMEM */
1236 	}
1237 	other_start = 0;
1238 	other_end = start;
1239 	if (extent_mergeable(leaf, path->slots[0] - 1,
1240 			     ino, bytenr, orig_offset,
1241 			     &other_start, &other_end)) {
1242 		if (recow) {
1243 			btrfs_release_path(path);
1244 			goto again;
1245 		}
1246 		key.offset = other_start;
1247 		del_slot = path->slots[0];
1248 		del_nr++;
1249 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1250 					0, root->root_key.objectid,
1251 					ino, orig_offset);
1252 		BUG_ON(ret); /* -ENOMEM */
1253 	}
1254 	if (del_nr == 0) {
1255 		fi = btrfs_item_ptr(leaf, path->slots[0],
1256 			   struct btrfs_file_extent_item);
1257 		btrfs_set_file_extent_type(leaf, fi,
1258 					   BTRFS_FILE_EXTENT_REG);
1259 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1260 		btrfs_mark_buffer_dirty(leaf);
1261 	} else {
1262 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1263 			   struct btrfs_file_extent_item);
1264 		btrfs_set_file_extent_type(leaf, fi,
1265 					   BTRFS_FILE_EXTENT_REG);
1266 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1267 		btrfs_set_file_extent_num_bytes(leaf, fi,
1268 						extent_end - key.offset);
1269 		btrfs_mark_buffer_dirty(leaf);
1270 
1271 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1272 		if (ret < 0) {
1273 			btrfs_abort_transaction(trans, root, ret);
1274 			goto out;
1275 		}
1276 	}
1277 out:
1278 	btrfs_free_path(path);
1279 	return 0;
1280 }
1281 
1282 /*
1283  * on error we return an unlocked page and the error value
1284  * on success we return a locked page and 0
1285  */
1286 static int prepare_uptodate_page(struct page *page, u64 pos,
1287 				 bool force_uptodate)
1288 {
1289 	int ret = 0;
1290 
1291 	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1292 	    !PageUptodate(page)) {
1293 		ret = btrfs_readpage(NULL, page);
1294 		if (ret)
1295 			return ret;
1296 		lock_page(page);
1297 		if (!PageUptodate(page)) {
1298 			unlock_page(page);
1299 			return -EIO;
1300 		}
1301 	}
1302 	return 0;
1303 }
1304 
1305 /*
1306  * this just gets pages into the page cache and locks them down.
1307  */
1308 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1309 				  size_t num_pages, loff_t pos,
1310 				  size_t write_bytes, bool force_uptodate)
1311 {
1312 	int i;
1313 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
1314 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1315 	int err = 0;
1316 	int faili;
1317 
1318 	for (i = 0; i < num_pages; i++) {
1319 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1320 					       mask | __GFP_WRITE);
1321 		if (!pages[i]) {
1322 			faili = i - 1;
1323 			err = -ENOMEM;
1324 			goto fail;
1325 		}
1326 
1327 		if (i == 0)
1328 			err = prepare_uptodate_page(pages[i], pos,
1329 						    force_uptodate);
1330 		if (i == num_pages - 1)
1331 			err = prepare_uptodate_page(pages[i],
1332 						    pos + write_bytes, false);
1333 		if (err) {
1334 			page_cache_release(pages[i]);
1335 			faili = i - 1;
1336 			goto fail;
1337 		}
1338 		wait_on_page_writeback(pages[i]);
1339 	}
1340 
1341 	return 0;
1342 fail:
1343 	while (faili >= 0) {
1344 		unlock_page(pages[faili]);
1345 		page_cache_release(pages[faili]);
1346 		faili--;
1347 	}
1348 	return err;
1349 
1350 }
1351 
1352 /*
1353  * This function locks the extent and properly waits for data=ordered extents
1354  * to finish before allowing the pages to be modified if need.
1355  *
1356  * The return value:
1357  * 1 - the extent is locked
1358  * 0 - the extent is not locked, and everything is OK
1359  * -EAGAIN - need re-prepare the pages
1360  * the other < 0 number - Something wrong happens
1361  */
1362 static noinline int
1363 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1364 				size_t num_pages, loff_t pos,
1365 				u64 *lockstart, u64 *lockend,
1366 				struct extent_state **cached_state)
1367 {
1368 	u64 start_pos;
1369 	u64 last_pos;
1370 	int i;
1371 	int ret = 0;
1372 
1373 	start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1374 	last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1375 
1376 	if (start_pos < inode->i_size) {
1377 		struct btrfs_ordered_extent *ordered;
1378 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1379 				 start_pos, last_pos, 0, cached_state);
1380 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1381 						     last_pos - start_pos + 1);
1382 		if (ordered &&
1383 		    ordered->file_offset + ordered->len > start_pos &&
1384 		    ordered->file_offset <= last_pos) {
1385 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1386 					     start_pos, last_pos,
1387 					     cached_state, GFP_NOFS);
1388 			for (i = 0; i < num_pages; i++) {
1389 				unlock_page(pages[i]);
1390 				page_cache_release(pages[i]);
1391 			}
1392 			btrfs_start_ordered_extent(inode, ordered, 1);
1393 			btrfs_put_ordered_extent(ordered);
1394 			return -EAGAIN;
1395 		}
1396 		if (ordered)
1397 			btrfs_put_ordered_extent(ordered);
1398 
1399 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1400 				  last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1401 				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1402 				  0, 0, cached_state, GFP_NOFS);
1403 		*lockstart = start_pos;
1404 		*lockend = last_pos;
1405 		ret = 1;
1406 	}
1407 
1408 	for (i = 0; i < num_pages; i++) {
1409 		if (clear_page_dirty_for_io(pages[i]))
1410 			account_page_redirty(pages[i]);
1411 		set_page_extent_mapped(pages[i]);
1412 		WARN_ON(!PageLocked(pages[i]));
1413 	}
1414 
1415 	return ret;
1416 }
1417 
1418 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1419 				    size_t *write_bytes)
1420 {
1421 	struct btrfs_root *root = BTRFS_I(inode)->root;
1422 	struct btrfs_ordered_extent *ordered;
1423 	u64 lockstart, lockend;
1424 	u64 num_bytes;
1425 	int ret;
1426 
1427 	ret = btrfs_start_write_no_snapshoting(root);
1428 	if (!ret)
1429 		return -ENOSPC;
1430 
1431 	lockstart = round_down(pos, root->sectorsize);
1432 	lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1433 
1434 	while (1) {
1435 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1436 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1437 						     lockend - lockstart + 1);
1438 		if (!ordered) {
1439 			break;
1440 		}
1441 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1442 		btrfs_start_ordered_extent(inode, ordered, 1);
1443 		btrfs_put_ordered_extent(ordered);
1444 	}
1445 
1446 	num_bytes = lockend - lockstart + 1;
1447 	ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1448 	if (ret <= 0) {
1449 		ret = 0;
1450 		btrfs_end_write_no_snapshoting(root);
1451 	} else {
1452 		*write_bytes = min_t(size_t, *write_bytes ,
1453 				     num_bytes - pos + lockstart);
1454 	}
1455 
1456 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1457 
1458 	return ret;
1459 }
1460 
1461 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1462 					       struct iov_iter *i,
1463 					       loff_t pos)
1464 {
1465 	struct inode *inode = file_inode(file);
1466 	struct btrfs_root *root = BTRFS_I(inode)->root;
1467 	struct page **pages = NULL;
1468 	struct extent_state *cached_state = NULL;
1469 	u64 release_bytes = 0;
1470 	u64 lockstart;
1471 	u64 lockend;
1472 	size_t num_written = 0;
1473 	int nrptrs;
1474 	int ret = 0;
1475 	bool only_release_metadata = false;
1476 	bool force_page_uptodate = false;
1477 	bool need_unlock;
1478 
1479 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_CACHE_SIZE),
1480 			PAGE_CACHE_SIZE / (sizeof(struct page *)));
1481 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1482 	nrptrs = max(nrptrs, 8);
1483 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1484 	if (!pages)
1485 		return -ENOMEM;
1486 
1487 	while (iov_iter_count(i) > 0) {
1488 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1489 		size_t write_bytes = min(iov_iter_count(i),
1490 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
1491 					 offset);
1492 		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1493 						PAGE_CACHE_SIZE);
1494 		size_t reserve_bytes;
1495 		size_t dirty_pages;
1496 		size_t copied;
1497 
1498 		WARN_ON(num_pages > nrptrs);
1499 
1500 		/*
1501 		 * Fault pages before locking them in prepare_pages
1502 		 * to avoid recursive lock
1503 		 */
1504 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1505 			ret = -EFAULT;
1506 			break;
1507 		}
1508 
1509 		reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1510 
1511 		if (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1512 					     BTRFS_INODE_PREALLOC)) {
1513 			ret = check_can_nocow(inode, pos, &write_bytes);
1514 			if (ret < 0)
1515 				break;
1516 			if (ret > 0) {
1517 				/*
1518 				 * For nodata cow case, no need to reserve
1519 				 * data space.
1520 				 */
1521 				only_release_metadata = true;
1522 				/*
1523 				 * our prealloc extent may be smaller than
1524 				 * write_bytes, so scale down.
1525 				 */
1526 				num_pages = DIV_ROUND_UP(write_bytes + offset,
1527 							 PAGE_CACHE_SIZE);
1528 				reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1529 				goto reserve_metadata;
1530 			}
1531 		}
1532 		ret = btrfs_check_data_free_space(inode, pos, write_bytes);
1533 		if (ret < 0)
1534 			break;
1535 
1536 reserve_metadata:
1537 		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1538 		if (ret) {
1539 			if (!only_release_metadata)
1540 				btrfs_free_reserved_data_space(inode, pos,
1541 							       write_bytes);
1542 			else
1543 				btrfs_end_write_no_snapshoting(root);
1544 			break;
1545 		}
1546 
1547 		release_bytes = reserve_bytes;
1548 		need_unlock = false;
1549 again:
1550 		/*
1551 		 * This is going to setup the pages array with the number of
1552 		 * pages we want, so we don't really need to worry about the
1553 		 * contents of pages from loop to loop
1554 		 */
1555 		ret = prepare_pages(inode, pages, num_pages,
1556 				    pos, write_bytes,
1557 				    force_page_uptodate);
1558 		if (ret)
1559 			break;
1560 
1561 		ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1562 						      pos, &lockstart, &lockend,
1563 						      &cached_state);
1564 		if (ret < 0) {
1565 			if (ret == -EAGAIN)
1566 				goto again;
1567 			break;
1568 		} else if (ret > 0) {
1569 			need_unlock = true;
1570 			ret = 0;
1571 		}
1572 
1573 		copied = btrfs_copy_from_user(pos, num_pages,
1574 					   write_bytes, pages, i);
1575 
1576 		/*
1577 		 * if we have trouble faulting in the pages, fall
1578 		 * back to one page at a time
1579 		 */
1580 		if (copied < write_bytes)
1581 			nrptrs = 1;
1582 
1583 		if (copied == 0) {
1584 			force_page_uptodate = true;
1585 			dirty_pages = 0;
1586 		} else {
1587 			force_page_uptodate = false;
1588 			dirty_pages = DIV_ROUND_UP(copied + offset,
1589 						   PAGE_CACHE_SIZE);
1590 		}
1591 
1592 		/*
1593 		 * If we had a short copy we need to release the excess delaloc
1594 		 * bytes we reserved.  We need to increment outstanding_extents
1595 		 * because btrfs_delalloc_release_space will decrement it, but
1596 		 * we still have an outstanding extent for the chunk we actually
1597 		 * managed to copy.
1598 		 */
1599 		if (num_pages > dirty_pages) {
1600 			release_bytes = (num_pages - dirty_pages) <<
1601 				PAGE_CACHE_SHIFT;
1602 			if (copied > 0) {
1603 				spin_lock(&BTRFS_I(inode)->lock);
1604 				BTRFS_I(inode)->outstanding_extents++;
1605 				spin_unlock(&BTRFS_I(inode)->lock);
1606 			}
1607 			if (only_release_metadata) {
1608 				btrfs_delalloc_release_metadata(inode,
1609 								release_bytes);
1610 			} else {
1611 				u64 __pos;
1612 
1613 				__pos = round_down(pos, root->sectorsize) +
1614 					(dirty_pages << PAGE_CACHE_SHIFT);
1615 				btrfs_delalloc_release_space(inode, __pos,
1616 							     release_bytes);
1617 			}
1618 		}
1619 
1620 		release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1621 
1622 		if (copied > 0)
1623 			ret = btrfs_dirty_pages(root, inode, pages,
1624 						dirty_pages, pos, copied,
1625 						NULL);
1626 		if (need_unlock)
1627 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1628 					     lockstart, lockend, &cached_state,
1629 					     GFP_NOFS);
1630 		if (ret) {
1631 			btrfs_drop_pages(pages, num_pages);
1632 			break;
1633 		}
1634 
1635 		release_bytes = 0;
1636 		if (only_release_metadata)
1637 			btrfs_end_write_no_snapshoting(root);
1638 
1639 		if (only_release_metadata && copied > 0) {
1640 			lockstart = round_down(pos, root->sectorsize);
1641 			lockend = lockstart +
1642 				(dirty_pages << PAGE_CACHE_SHIFT) - 1;
1643 
1644 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1645 				       lockend, EXTENT_NORESERVE, NULL,
1646 				       NULL, GFP_NOFS);
1647 			only_release_metadata = false;
1648 		}
1649 
1650 		btrfs_drop_pages(pages, num_pages);
1651 
1652 		cond_resched();
1653 
1654 		balance_dirty_pages_ratelimited(inode->i_mapping);
1655 		if (dirty_pages < (root->nodesize >> PAGE_CACHE_SHIFT) + 1)
1656 			btrfs_btree_balance_dirty(root);
1657 
1658 		pos += copied;
1659 		num_written += copied;
1660 	}
1661 
1662 	kfree(pages);
1663 
1664 	if (release_bytes) {
1665 		if (only_release_metadata) {
1666 			btrfs_end_write_no_snapshoting(root);
1667 			btrfs_delalloc_release_metadata(inode, release_bytes);
1668 		} else {
1669 			btrfs_delalloc_release_space(inode, pos, release_bytes);
1670 		}
1671 	}
1672 
1673 	return num_written ? num_written : ret;
1674 }
1675 
1676 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1677 				    struct iov_iter *from,
1678 				    loff_t pos)
1679 {
1680 	struct file *file = iocb->ki_filp;
1681 	struct inode *inode = file_inode(file);
1682 	ssize_t written;
1683 	ssize_t written_buffered;
1684 	loff_t endbyte;
1685 	int err;
1686 
1687 	written = generic_file_direct_write(iocb, from, pos);
1688 
1689 	if (written < 0 || !iov_iter_count(from))
1690 		return written;
1691 
1692 	pos += written;
1693 	written_buffered = __btrfs_buffered_write(file, from, pos);
1694 	if (written_buffered < 0) {
1695 		err = written_buffered;
1696 		goto out;
1697 	}
1698 	/*
1699 	 * Ensure all data is persisted. We want the next direct IO read to be
1700 	 * able to read what was just written.
1701 	 */
1702 	endbyte = pos + written_buffered - 1;
1703 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1704 	if (err)
1705 		goto out;
1706 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1707 	if (err)
1708 		goto out;
1709 	written += written_buffered;
1710 	iocb->ki_pos = pos + written_buffered;
1711 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1712 				 endbyte >> PAGE_CACHE_SHIFT);
1713 out:
1714 	return written ? written : err;
1715 }
1716 
1717 static void update_time_for_write(struct inode *inode)
1718 {
1719 	struct timespec now;
1720 
1721 	if (IS_NOCMTIME(inode))
1722 		return;
1723 
1724 	now = current_fs_time(inode->i_sb);
1725 	if (!timespec_equal(&inode->i_mtime, &now))
1726 		inode->i_mtime = now;
1727 
1728 	if (!timespec_equal(&inode->i_ctime, &now))
1729 		inode->i_ctime = now;
1730 
1731 	if (IS_I_VERSION(inode))
1732 		inode_inc_iversion(inode);
1733 }
1734 
1735 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1736 				    struct iov_iter *from)
1737 {
1738 	struct file *file = iocb->ki_filp;
1739 	struct inode *inode = file_inode(file);
1740 	struct btrfs_root *root = BTRFS_I(inode)->root;
1741 	u64 start_pos;
1742 	u64 end_pos;
1743 	ssize_t num_written = 0;
1744 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1745 	ssize_t err;
1746 	loff_t pos;
1747 	size_t count;
1748 
1749 	mutex_lock(&inode->i_mutex);
1750 	err = generic_write_checks(iocb, from);
1751 	if (err <= 0) {
1752 		mutex_unlock(&inode->i_mutex);
1753 		return err;
1754 	}
1755 
1756 	current->backing_dev_info = inode_to_bdi(inode);
1757 	err = file_remove_privs(file);
1758 	if (err) {
1759 		mutex_unlock(&inode->i_mutex);
1760 		goto out;
1761 	}
1762 
1763 	/*
1764 	 * If BTRFS flips readonly due to some impossible error
1765 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1766 	 * although we have opened a file as writable, we have
1767 	 * to stop this write operation to ensure FS consistency.
1768 	 */
1769 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1770 		mutex_unlock(&inode->i_mutex);
1771 		err = -EROFS;
1772 		goto out;
1773 	}
1774 
1775 	/*
1776 	 * We reserve space for updating the inode when we reserve space for the
1777 	 * extent we are going to write, so we will enospc out there.  We don't
1778 	 * need to start yet another transaction to update the inode as we will
1779 	 * update the inode when we finish writing whatever data we write.
1780 	 */
1781 	update_time_for_write(inode);
1782 
1783 	pos = iocb->ki_pos;
1784 	count = iov_iter_count(from);
1785 	start_pos = round_down(pos, root->sectorsize);
1786 	if (start_pos > i_size_read(inode)) {
1787 		/* Expand hole size to cover write data, preventing empty gap */
1788 		end_pos = round_up(pos + count, root->sectorsize);
1789 		err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
1790 		if (err) {
1791 			mutex_unlock(&inode->i_mutex);
1792 			goto out;
1793 		}
1794 	}
1795 
1796 	if (sync)
1797 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1798 
1799 	if (iocb->ki_flags & IOCB_DIRECT) {
1800 		num_written = __btrfs_direct_write(iocb, from, pos);
1801 	} else {
1802 		num_written = __btrfs_buffered_write(file, from, pos);
1803 		if (num_written > 0)
1804 			iocb->ki_pos = pos + num_written;
1805 	}
1806 
1807 	mutex_unlock(&inode->i_mutex);
1808 
1809 	/*
1810 	 * We also have to set last_sub_trans to the current log transid,
1811 	 * otherwise subsequent syncs to a file that's been synced in this
1812 	 * transaction will appear to have already occured.
1813 	 */
1814 	spin_lock(&BTRFS_I(inode)->lock);
1815 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1816 	spin_unlock(&BTRFS_I(inode)->lock);
1817 	if (num_written > 0) {
1818 		err = generic_write_sync(file, pos, num_written);
1819 		if (err < 0)
1820 			num_written = err;
1821 	}
1822 
1823 	if (sync)
1824 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1825 out:
1826 	current->backing_dev_info = NULL;
1827 	return num_written ? num_written : err;
1828 }
1829 
1830 int btrfs_release_file(struct inode *inode, struct file *filp)
1831 {
1832 	if (filp->private_data)
1833 		btrfs_ioctl_trans_end(filp);
1834 	/*
1835 	 * ordered_data_close is set by settattr when we are about to truncate
1836 	 * a file from a non-zero size to a zero size.  This tries to
1837 	 * flush down new bytes that may have been written if the
1838 	 * application were using truncate to replace a file in place.
1839 	 */
1840 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1841 			       &BTRFS_I(inode)->runtime_flags))
1842 			filemap_flush(inode->i_mapping);
1843 	return 0;
1844 }
1845 
1846 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1847 {
1848 	int ret;
1849 
1850 	atomic_inc(&BTRFS_I(inode)->sync_writers);
1851 	ret = btrfs_fdatawrite_range(inode, start, end);
1852 	atomic_dec(&BTRFS_I(inode)->sync_writers);
1853 
1854 	return ret;
1855 }
1856 
1857 /*
1858  * fsync call for both files and directories.  This logs the inode into
1859  * the tree log instead of forcing full commits whenever possible.
1860  *
1861  * It needs to call filemap_fdatawait so that all ordered extent updates are
1862  * in the metadata btree are up to date for copying to the log.
1863  *
1864  * It drops the inode mutex before doing the tree log commit.  This is an
1865  * important optimization for directories because holding the mutex prevents
1866  * new operations on the dir while we write to disk.
1867  */
1868 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1869 {
1870 	struct dentry *dentry = file->f_path.dentry;
1871 	struct inode *inode = d_inode(dentry);
1872 	struct btrfs_root *root = BTRFS_I(inode)->root;
1873 	struct btrfs_trans_handle *trans;
1874 	struct btrfs_log_ctx ctx;
1875 	int ret = 0;
1876 	bool full_sync = 0;
1877 	const u64 len = end - start + 1;
1878 
1879 	trace_btrfs_sync_file(file, datasync);
1880 
1881 	/*
1882 	 * We write the dirty pages in the range and wait until they complete
1883 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1884 	 * multi-task, and make the performance up.  See
1885 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1886 	 */
1887 	ret = start_ordered_ops(inode, start, end);
1888 	if (ret)
1889 		return ret;
1890 
1891 	mutex_lock(&inode->i_mutex);
1892 	atomic_inc(&root->log_batch);
1893 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1894 			     &BTRFS_I(inode)->runtime_flags);
1895 	/*
1896 	 * We might have have had more pages made dirty after calling
1897 	 * start_ordered_ops and before acquiring the inode's i_mutex.
1898 	 */
1899 	if (full_sync) {
1900 		/*
1901 		 * For a full sync, we need to make sure any ordered operations
1902 		 * start and finish before we start logging the inode, so that
1903 		 * all extents are persisted and the respective file extent
1904 		 * items are in the fs/subvol btree.
1905 		 */
1906 		ret = btrfs_wait_ordered_range(inode, start, len);
1907 	} else {
1908 		/*
1909 		 * Start any new ordered operations before starting to log the
1910 		 * inode. We will wait for them to finish in btrfs_sync_log().
1911 		 *
1912 		 * Right before acquiring the inode's mutex, we might have new
1913 		 * writes dirtying pages, which won't immediately start the
1914 		 * respective ordered operations - that is done through the
1915 		 * fill_delalloc callbacks invoked from the writepage and
1916 		 * writepages address space operations. So make sure we start
1917 		 * all ordered operations before starting to log our inode. Not
1918 		 * doing this means that while logging the inode, writeback
1919 		 * could start and invoke writepage/writepages, which would call
1920 		 * the fill_delalloc callbacks (cow_file_range,
1921 		 * submit_compressed_extents). These callbacks add first an
1922 		 * extent map to the modified list of extents and then create
1923 		 * the respective ordered operation, which means in
1924 		 * tree-log.c:btrfs_log_inode() we might capture all existing
1925 		 * ordered operations (with btrfs_get_logged_extents()) before
1926 		 * the fill_delalloc callback adds its ordered operation, and by
1927 		 * the time we visit the modified list of extent maps (with
1928 		 * btrfs_log_changed_extents()), we see and process the extent
1929 		 * map they created. We then use the extent map to construct a
1930 		 * file extent item for logging without waiting for the
1931 		 * respective ordered operation to finish - this file extent
1932 		 * item points to a disk location that might not have yet been
1933 		 * written to, containing random data - so after a crash a log
1934 		 * replay will make our inode have file extent items that point
1935 		 * to disk locations containing invalid data, as we returned
1936 		 * success to userspace without waiting for the respective
1937 		 * ordered operation to finish, because it wasn't captured by
1938 		 * btrfs_get_logged_extents().
1939 		 */
1940 		ret = start_ordered_ops(inode, start, end);
1941 	}
1942 	if (ret) {
1943 		mutex_unlock(&inode->i_mutex);
1944 		goto out;
1945 	}
1946 	atomic_inc(&root->log_batch);
1947 
1948 	/*
1949 	 * If the last transaction that changed this file was before the current
1950 	 * transaction and we have the full sync flag set in our inode, we can
1951 	 * bail out now without any syncing.
1952 	 *
1953 	 * Note that we can't bail out if the full sync flag isn't set. This is
1954 	 * because when the full sync flag is set we start all ordered extents
1955 	 * and wait for them to fully complete - when they complete they update
1956 	 * the inode's last_trans field through:
1957 	 *
1958 	 *     btrfs_finish_ordered_io() ->
1959 	 *         btrfs_update_inode_fallback() ->
1960 	 *             btrfs_update_inode() ->
1961 	 *                 btrfs_set_inode_last_trans()
1962 	 *
1963 	 * So we are sure that last_trans is up to date and can do this check to
1964 	 * bail out safely. For the fast path, when the full sync flag is not
1965 	 * set in our inode, we can not do it because we start only our ordered
1966 	 * extents and don't wait for them to complete (that is when
1967 	 * btrfs_finish_ordered_io runs), so here at this point their last_trans
1968 	 * value might be less than or equals to fs_info->last_trans_committed,
1969 	 * and setting a speculative last_trans for an inode when a buffered
1970 	 * write is made (such as fs_info->generation + 1 for example) would not
1971 	 * be reliable since after setting the value and before fsync is called
1972 	 * any number of transactions can start and commit (transaction kthread
1973 	 * commits the current transaction periodically), and a transaction
1974 	 * commit does not start nor waits for ordered extents to complete.
1975 	 */
1976 	smp_mb();
1977 	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1978 	    (BTRFS_I(inode)->last_trans <=
1979 	     root->fs_info->last_trans_committed &&
1980 	     (full_sync ||
1981 	      !btrfs_have_ordered_extents_in_range(inode, start, len)))) {
1982 		/*
1983 		 * We'v had everything committed since the last time we were
1984 		 * modified so clear this flag in case it was set for whatever
1985 		 * reason, it's no longer relevant.
1986 		 */
1987 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1988 			  &BTRFS_I(inode)->runtime_flags);
1989 		mutex_unlock(&inode->i_mutex);
1990 		goto out;
1991 	}
1992 
1993 	/*
1994 	 * ok we haven't committed the transaction yet, lets do a commit
1995 	 */
1996 	if (file->private_data)
1997 		btrfs_ioctl_trans_end(file);
1998 
1999 	/*
2000 	 * We use start here because we will need to wait on the IO to complete
2001 	 * in btrfs_sync_log, which could require joining a transaction (for
2002 	 * example checking cross references in the nocow path).  If we use join
2003 	 * here we could get into a situation where we're waiting on IO to
2004 	 * happen that is blocked on a transaction trying to commit.  With start
2005 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2006 	 * before we start blocking join'ers.  This comment is to keep somebody
2007 	 * from thinking they are super smart and changing this to
2008 	 * btrfs_join_transaction *cough*Josef*cough*.
2009 	 */
2010 	trans = btrfs_start_transaction(root, 0);
2011 	if (IS_ERR(trans)) {
2012 		ret = PTR_ERR(trans);
2013 		mutex_unlock(&inode->i_mutex);
2014 		goto out;
2015 	}
2016 	trans->sync = true;
2017 
2018 	btrfs_init_log_ctx(&ctx);
2019 
2020 	ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2021 	if (ret < 0) {
2022 		/* Fallthrough and commit/free transaction. */
2023 		ret = 1;
2024 	}
2025 
2026 	/* we've logged all the items and now have a consistent
2027 	 * version of the file in the log.  It is possible that
2028 	 * someone will come in and modify the file, but that's
2029 	 * fine because the log is consistent on disk, and we
2030 	 * have references to all of the file's extents
2031 	 *
2032 	 * It is possible that someone will come in and log the
2033 	 * file again, but that will end up using the synchronization
2034 	 * inside btrfs_sync_log to keep things safe.
2035 	 */
2036 	mutex_unlock(&inode->i_mutex);
2037 
2038 	/*
2039 	 * If any of the ordered extents had an error, just return it to user
2040 	 * space, so that the application knows some writes didn't succeed and
2041 	 * can take proper action (retry for e.g.). Blindly committing the
2042 	 * transaction in this case, would fool userspace that everything was
2043 	 * successful. And we also want to make sure our log doesn't contain
2044 	 * file extent items pointing to extents that weren't fully written to -
2045 	 * just like in the non fast fsync path, where we check for the ordered
2046 	 * operation's error flag before writing to the log tree and return -EIO
2047 	 * if any of them had this flag set (btrfs_wait_ordered_range) -
2048 	 * therefore we need to check for errors in the ordered operations,
2049 	 * which are indicated by ctx.io_err.
2050 	 */
2051 	if (ctx.io_err) {
2052 		btrfs_end_transaction(trans, root);
2053 		ret = ctx.io_err;
2054 		goto out;
2055 	}
2056 
2057 	if (ret != BTRFS_NO_LOG_SYNC) {
2058 		if (!ret) {
2059 			ret = btrfs_sync_log(trans, root, &ctx);
2060 			if (!ret) {
2061 				ret = btrfs_end_transaction(trans, root);
2062 				goto out;
2063 			}
2064 		}
2065 		if (!full_sync) {
2066 			ret = btrfs_wait_ordered_range(inode, start,
2067 						       end - start + 1);
2068 			if (ret) {
2069 				btrfs_end_transaction(trans, root);
2070 				goto out;
2071 			}
2072 		}
2073 		ret = btrfs_commit_transaction(trans, root);
2074 	} else {
2075 		ret = btrfs_end_transaction(trans, root);
2076 	}
2077 out:
2078 	return ret > 0 ? -EIO : ret;
2079 }
2080 
2081 static const struct vm_operations_struct btrfs_file_vm_ops = {
2082 	.fault		= filemap_fault,
2083 	.map_pages	= filemap_map_pages,
2084 	.page_mkwrite	= btrfs_page_mkwrite,
2085 };
2086 
2087 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2088 {
2089 	struct address_space *mapping = filp->f_mapping;
2090 
2091 	if (!mapping->a_ops->readpage)
2092 		return -ENOEXEC;
2093 
2094 	file_accessed(filp);
2095 	vma->vm_ops = &btrfs_file_vm_ops;
2096 
2097 	return 0;
2098 }
2099 
2100 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2101 			  int slot, u64 start, u64 end)
2102 {
2103 	struct btrfs_file_extent_item *fi;
2104 	struct btrfs_key key;
2105 
2106 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2107 		return 0;
2108 
2109 	btrfs_item_key_to_cpu(leaf, &key, slot);
2110 	if (key.objectid != btrfs_ino(inode) ||
2111 	    key.type != BTRFS_EXTENT_DATA_KEY)
2112 		return 0;
2113 
2114 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2115 
2116 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2117 		return 0;
2118 
2119 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2120 		return 0;
2121 
2122 	if (key.offset == end)
2123 		return 1;
2124 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2125 		return 1;
2126 	return 0;
2127 }
2128 
2129 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2130 		      struct btrfs_path *path, u64 offset, u64 end)
2131 {
2132 	struct btrfs_root *root = BTRFS_I(inode)->root;
2133 	struct extent_buffer *leaf;
2134 	struct btrfs_file_extent_item *fi;
2135 	struct extent_map *hole_em;
2136 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2137 	struct btrfs_key key;
2138 	int ret;
2139 
2140 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2141 		goto out;
2142 
2143 	key.objectid = btrfs_ino(inode);
2144 	key.type = BTRFS_EXTENT_DATA_KEY;
2145 	key.offset = offset;
2146 
2147 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2148 	if (ret < 0)
2149 		return ret;
2150 	BUG_ON(!ret);
2151 
2152 	leaf = path->nodes[0];
2153 	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2154 		u64 num_bytes;
2155 
2156 		path->slots[0]--;
2157 		fi = btrfs_item_ptr(leaf, path->slots[0],
2158 				    struct btrfs_file_extent_item);
2159 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2160 			end - offset;
2161 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2162 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2163 		btrfs_set_file_extent_offset(leaf, fi, 0);
2164 		btrfs_mark_buffer_dirty(leaf);
2165 		goto out;
2166 	}
2167 
2168 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2169 		u64 num_bytes;
2170 
2171 		key.offset = offset;
2172 		btrfs_set_item_key_safe(root->fs_info, path, &key);
2173 		fi = btrfs_item_ptr(leaf, path->slots[0],
2174 				    struct btrfs_file_extent_item);
2175 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2176 			offset;
2177 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2178 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2179 		btrfs_set_file_extent_offset(leaf, fi, 0);
2180 		btrfs_mark_buffer_dirty(leaf);
2181 		goto out;
2182 	}
2183 	btrfs_release_path(path);
2184 
2185 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2186 				       0, 0, end - offset, 0, end - offset,
2187 				       0, 0, 0);
2188 	if (ret)
2189 		return ret;
2190 
2191 out:
2192 	btrfs_release_path(path);
2193 
2194 	hole_em = alloc_extent_map();
2195 	if (!hole_em) {
2196 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2197 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2198 			&BTRFS_I(inode)->runtime_flags);
2199 	} else {
2200 		hole_em->start = offset;
2201 		hole_em->len = end - offset;
2202 		hole_em->ram_bytes = hole_em->len;
2203 		hole_em->orig_start = offset;
2204 
2205 		hole_em->block_start = EXTENT_MAP_HOLE;
2206 		hole_em->block_len = 0;
2207 		hole_em->orig_block_len = 0;
2208 		hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2209 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2210 		hole_em->generation = trans->transid;
2211 
2212 		do {
2213 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2214 			write_lock(&em_tree->lock);
2215 			ret = add_extent_mapping(em_tree, hole_em, 1);
2216 			write_unlock(&em_tree->lock);
2217 		} while (ret == -EEXIST);
2218 		free_extent_map(hole_em);
2219 		if (ret)
2220 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2221 				&BTRFS_I(inode)->runtime_flags);
2222 	}
2223 
2224 	return 0;
2225 }
2226 
2227 /*
2228  * Find a hole extent on given inode and change start/len to the end of hole
2229  * extent.(hole/vacuum extent whose em->start <= start &&
2230  *	   em->start + em->len > start)
2231  * When a hole extent is found, return 1 and modify start/len.
2232  */
2233 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2234 {
2235 	struct extent_map *em;
2236 	int ret = 0;
2237 
2238 	em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2239 	if (IS_ERR_OR_NULL(em)) {
2240 		if (!em)
2241 			ret = -ENOMEM;
2242 		else
2243 			ret = PTR_ERR(em);
2244 		return ret;
2245 	}
2246 
2247 	/* Hole or vacuum extent(only exists in no-hole mode) */
2248 	if (em->block_start == EXTENT_MAP_HOLE) {
2249 		ret = 1;
2250 		*len = em->start + em->len > *start + *len ?
2251 		       0 : *start + *len - em->start - em->len;
2252 		*start = em->start + em->len;
2253 	}
2254 	free_extent_map(em);
2255 	return ret;
2256 }
2257 
2258 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2259 {
2260 	struct btrfs_root *root = BTRFS_I(inode)->root;
2261 	struct extent_state *cached_state = NULL;
2262 	struct btrfs_path *path;
2263 	struct btrfs_block_rsv *rsv;
2264 	struct btrfs_trans_handle *trans;
2265 	u64 lockstart;
2266 	u64 lockend;
2267 	u64 tail_start;
2268 	u64 tail_len;
2269 	u64 orig_start = offset;
2270 	u64 cur_offset;
2271 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2272 	u64 drop_end;
2273 	int ret = 0;
2274 	int err = 0;
2275 	unsigned int rsv_count;
2276 	bool same_page;
2277 	bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2278 	u64 ino_size;
2279 	bool truncated_page = false;
2280 	bool updated_inode = false;
2281 
2282 	ret = btrfs_wait_ordered_range(inode, offset, len);
2283 	if (ret)
2284 		return ret;
2285 
2286 	mutex_lock(&inode->i_mutex);
2287 	ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2288 	ret = find_first_non_hole(inode, &offset, &len);
2289 	if (ret < 0)
2290 		goto out_only_mutex;
2291 	if (ret && !len) {
2292 		/* Already in a large hole */
2293 		ret = 0;
2294 		goto out_only_mutex;
2295 	}
2296 
2297 	lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2298 	lockend = round_down(offset + len,
2299 			     BTRFS_I(inode)->root->sectorsize) - 1;
2300 	same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2301 		    ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2302 
2303 	/*
2304 	 * We needn't truncate any page which is beyond the end of the file
2305 	 * because we are sure there is no data there.
2306 	 */
2307 	/*
2308 	 * Only do this if we are in the same page and we aren't doing the
2309 	 * entire page.
2310 	 */
2311 	if (same_page && len < PAGE_CACHE_SIZE) {
2312 		if (offset < ino_size) {
2313 			truncated_page = true;
2314 			ret = btrfs_truncate_page(inode, offset, len, 0);
2315 		} else {
2316 			ret = 0;
2317 		}
2318 		goto out_only_mutex;
2319 	}
2320 
2321 	/* zero back part of the first page */
2322 	if (offset < ino_size) {
2323 		truncated_page = true;
2324 		ret = btrfs_truncate_page(inode, offset, 0, 0);
2325 		if (ret) {
2326 			mutex_unlock(&inode->i_mutex);
2327 			return ret;
2328 		}
2329 	}
2330 
2331 	/* Check the aligned pages after the first unaligned page,
2332 	 * if offset != orig_start, which means the first unaligned page
2333 	 * including serveral following pages are already in holes,
2334 	 * the extra check can be skipped */
2335 	if (offset == orig_start) {
2336 		/* after truncate page, check hole again */
2337 		len = offset + len - lockstart;
2338 		offset = lockstart;
2339 		ret = find_first_non_hole(inode, &offset, &len);
2340 		if (ret < 0)
2341 			goto out_only_mutex;
2342 		if (ret && !len) {
2343 			ret = 0;
2344 			goto out_only_mutex;
2345 		}
2346 		lockstart = offset;
2347 	}
2348 
2349 	/* Check the tail unaligned part is in a hole */
2350 	tail_start = lockend + 1;
2351 	tail_len = offset + len - tail_start;
2352 	if (tail_len) {
2353 		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2354 		if (unlikely(ret < 0))
2355 			goto out_only_mutex;
2356 		if (!ret) {
2357 			/* zero the front end of the last page */
2358 			if (tail_start + tail_len < ino_size) {
2359 				truncated_page = true;
2360 				ret = btrfs_truncate_page(inode,
2361 						tail_start + tail_len, 0, 1);
2362 				if (ret)
2363 					goto out_only_mutex;
2364 			}
2365 		}
2366 	}
2367 
2368 	if (lockend < lockstart) {
2369 		ret = 0;
2370 		goto out_only_mutex;
2371 	}
2372 
2373 	while (1) {
2374 		struct btrfs_ordered_extent *ordered;
2375 
2376 		truncate_pagecache_range(inode, lockstart, lockend);
2377 
2378 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2379 				 0, &cached_state);
2380 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2381 
2382 		/*
2383 		 * We need to make sure we have no ordered extents in this range
2384 		 * and nobody raced in and read a page in this range, if we did
2385 		 * we need to try again.
2386 		 */
2387 		if ((!ordered ||
2388 		    (ordered->file_offset + ordered->len <= lockstart ||
2389 		     ordered->file_offset > lockend)) &&
2390 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2391 			if (ordered)
2392 				btrfs_put_ordered_extent(ordered);
2393 			break;
2394 		}
2395 		if (ordered)
2396 			btrfs_put_ordered_extent(ordered);
2397 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2398 				     lockend, &cached_state, GFP_NOFS);
2399 		ret = btrfs_wait_ordered_range(inode, lockstart,
2400 					       lockend - lockstart + 1);
2401 		if (ret) {
2402 			mutex_unlock(&inode->i_mutex);
2403 			return ret;
2404 		}
2405 	}
2406 
2407 	path = btrfs_alloc_path();
2408 	if (!path) {
2409 		ret = -ENOMEM;
2410 		goto out;
2411 	}
2412 
2413 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2414 	if (!rsv) {
2415 		ret = -ENOMEM;
2416 		goto out_free;
2417 	}
2418 	rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2419 	rsv->failfast = 1;
2420 
2421 	/*
2422 	 * 1 - update the inode
2423 	 * 1 - removing the extents in the range
2424 	 * 1 - adding the hole extent if no_holes isn't set
2425 	 */
2426 	rsv_count = no_holes ? 2 : 3;
2427 	trans = btrfs_start_transaction(root, rsv_count);
2428 	if (IS_ERR(trans)) {
2429 		err = PTR_ERR(trans);
2430 		goto out_free;
2431 	}
2432 
2433 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2434 				      min_size);
2435 	BUG_ON(ret);
2436 	trans->block_rsv = rsv;
2437 
2438 	cur_offset = lockstart;
2439 	len = lockend - cur_offset;
2440 	while (cur_offset < lockend) {
2441 		ret = __btrfs_drop_extents(trans, root, inode, path,
2442 					   cur_offset, lockend + 1,
2443 					   &drop_end, 1, 0, 0, NULL);
2444 		if (ret != -ENOSPC)
2445 			break;
2446 
2447 		trans->block_rsv = &root->fs_info->trans_block_rsv;
2448 
2449 		if (cur_offset < ino_size) {
2450 			ret = fill_holes(trans, inode, path, cur_offset,
2451 					 drop_end);
2452 			if (ret) {
2453 				err = ret;
2454 				break;
2455 			}
2456 		}
2457 
2458 		cur_offset = drop_end;
2459 
2460 		ret = btrfs_update_inode(trans, root, inode);
2461 		if (ret) {
2462 			err = ret;
2463 			break;
2464 		}
2465 
2466 		btrfs_end_transaction(trans, root);
2467 		btrfs_btree_balance_dirty(root);
2468 
2469 		trans = btrfs_start_transaction(root, rsv_count);
2470 		if (IS_ERR(trans)) {
2471 			ret = PTR_ERR(trans);
2472 			trans = NULL;
2473 			break;
2474 		}
2475 
2476 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2477 					      rsv, min_size);
2478 		BUG_ON(ret);	/* shouldn't happen */
2479 		trans->block_rsv = rsv;
2480 
2481 		ret = find_first_non_hole(inode, &cur_offset, &len);
2482 		if (unlikely(ret < 0))
2483 			break;
2484 		if (ret && !len) {
2485 			ret = 0;
2486 			break;
2487 		}
2488 	}
2489 
2490 	if (ret) {
2491 		err = ret;
2492 		goto out_trans;
2493 	}
2494 
2495 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2496 	/*
2497 	 * If we are using the NO_HOLES feature we might have had already an
2498 	 * hole that overlaps a part of the region [lockstart, lockend] and
2499 	 * ends at (or beyond) lockend. Since we have no file extent items to
2500 	 * represent holes, drop_end can be less than lockend and so we must
2501 	 * make sure we have an extent map representing the existing hole (the
2502 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2503 	 * map representing the existing hole), otherwise the fast fsync path
2504 	 * will not record the existence of the hole region
2505 	 * [existing_hole_start, lockend].
2506 	 */
2507 	if (drop_end <= lockend)
2508 		drop_end = lockend + 1;
2509 	/*
2510 	 * Don't insert file hole extent item if it's for a range beyond eof
2511 	 * (because it's useless) or if it represents a 0 bytes range (when
2512 	 * cur_offset == drop_end).
2513 	 */
2514 	if (cur_offset < ino_size && cur_offset < drop_end) {
2515 		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2516 		if (ret) {
2517 			err = ret;
2518 			goto out_trans;
2519 		}
2520 	}
2521 
2522 out_trans:
2523 	if (!trans)
2524 		goto out_free;
2525 
2526 	inode_inc_iversion(inode);
2527 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2528 
2529 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2530 	ret = btrfs_update_inode(trans, root, inode);
2531 	updated_inode = true;
2532 	btrfs_end_transaction(trans, root);
2533 	btrfs_btree_balance_dirty(root);
2534 out_free:
2535 	btrfs_free_path(path);
2536 	btrfs_free_block_rsv(root, rsv);
2537 out:
2538 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2539 			     &cached_state, GFP_NOFS);
2540 out_only_mutex:
2541 	if (!updated_inode && truncated_page && !ret && !err) {
2542 		/*
2543 		 * If we only end up zeroing part of a page, we still need to
2544 		 * update the inode item, so that all the time fields are
2545 		 * updated as well as the necessary btrfs inode in memory fields
2546 		 * for detecting, at fsync time, if the inode isn't yet in the
2547 		 * log tree or it's there but not up to date.
2548 		 */
2549 		trans = btrfs_start_transaction(root, 1);
2550 		if (IS_ERR(trans)) {
2551 			err = PTR_ERR(trans);
2552 		} else {
2553 			err = btrfs_update_inode(trans, root, inode);
2554 			ret = btrfs_end_transaction(trans, root);
2555 		}
2556 	}
2557 	mutex_unlock(&inode->i_mutex);
2558 	if (ret && !err)
2559 		err = ret;
2560 	return err;
2561 }
2562 
2563 /* Helper structure to record which range is already reserved */
2564 struct falloc_range {
2565 	struct list_head list;
2566 	u64 start;
2567 	u64 len;
2568 };
2569 
2570 /*
2571  * Helper function to add falloc range
2572  *
2573  * Caller should have locked the larger range of extent containing
2574  * [start, len)
2575  */
2576 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2577 {
2578 	struct falloc_range *prev = NULL;
2579 	struct falloc_range *range = NULL;
2580 
2581 	if (list_empty(head))
2582 		goto insert;
2583 
2584 	/*
2585 	 * As fallocate iterate by bytenr order, we only need to check
2586 	 * the last range.
2587 	 */
2588 	prev = list_entry(head->prev, struct falloc_range, list);
2589 	if (prev->start + prev->len == start) {
2590 		prev->len += len;
2591 		return 0;
2592 	}
2593 insert:
2594 	range = kmalloc(sizeof(*range), GFP_NOFS);
2595 	if (!range)
2596 		return -ENOMEM;
2597 	range->start = start;
2598 	range->len = len;
2599 	list_add_tail(&range->list, head);
2600 	return 0;
2601 }
2602 
2603 static long btrfs_fallocate(struct file *file, int mode,
2604 			    loff_t offset, loff_t len)
2605 {
2606 	struct inode *inode = file_inode(file);
2607 	struct extent_state *cached_state = NULL;
2608 	struct falloc_range *range;
2609 	struct falloc_range *tmp;
2610 	struct list_head reserve_list;
2611 	u64 cur_offset;
2612 	u64 last_byte;
2613 	u64 alloc_start;
2614 	u64 alloc_end;
2615 	u64 alloc_hint = 0;
2616 	u64 locked_end;
2617 	u64 actual_end = 0;
2618 	struct extent_map *em;
2619 	int blocksize = BTRFS_I(inode)->root->sectorsize;
2620 	int ret;
2621 
2622 	alloc_start = round_down(offset, blocksize);
2623 	alloc_end = round_up(offset + len, blocksize);
2624 
2625 	/* Make sure we aren't being give some crap mode */
2626 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2627 		return -EOPNOTSUPP;
2628 
2629 	if (mode & FALLOC_FL_PUNCH_HOLE)
2630 		return btrfs_punch_hole(inode, offset, len);
2631 
2632 	/*
2633 	 * Only trigger disk allocation, don't trigger qgroup reserve
2634 	 *
2635 	 * For qgroup space, it will be checked later.
2636 	 */
2637 	ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2638 	if (ret < 0)
2639 		return ret;
2640 
2641 	mutex_lock(&inode->i_mutex);
2642 	ret = inode_newsize_ok(inode, alloc_end);
2643 	if (ret)
2644 		goto out;
2645 
2646 	/*
2647 	 * TODO: Move these two operations after we have checked
2648 	 * accurate reserved space, or fallocate can still fail but
2649 	 * with page truncated or size expanded.
2650 	 *
2651 	 * But that's a minor problem and won't do much harm BTW.
2652 	 */
2653 	if (alloc_start > inode->i_size) {
2654 		ret = btrfs_cont_expand(inode, i_size_read(inode),
2655 					alloc_start);
2656 		if (ret)
2657 			goto out;
2658 	} else if (offset + len > inode->i_size) {
2659 		/*
2660 		 * If we are fallocating from the end of the file onward we
2661 		 * need to zero out the end of the page if i_size lands in the
2662 		 * middle of a page.
2663 		 */
2664 		ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2665 		if (ret)
2666 			goto out;
2667 	}
2668 
2669 	/*
2670 	 * wait for ordered IO before we have any locks.  We'll loop again
2671 	 * below with the locks held.
2672 	 */
2673 	ret = btrfs_wait_ordered_range(inode, alloc_start,
2674 				       alloc_end - alloc_start);
2675 	if (ret)
2676 		goto out;
2677 
2678 	locked_end = alloc_end - 1;
2679 	while (1) {
2680 		struct btrfs_ordered_extent *ordered;
2681 
2682 		/* the extent lock is ordered inside the running
2683 		 * transaction
2684 		 */
2685 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2686 				 locked_end, 0, &cached_state);
2687 		ordered = btrfs_lookup_first_ordered_extent(inode,
2688 							    alloc_end - 1);
2689 		if (ordered &&
2690 		    ordered->file_offset + ordered->len > alloc_start &&
2691 		    ordered->file_offset < alloc_end) {
2692 			btrfs_put_ordered_extent(ordered);
2693 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2694 					     alloc_start, locked_end,
2695 					     &cached_state, GFP_NOFS);
2696 			/*
2697 			 * we can't wait on the range with the transaction
2698 			 * running or with the extent lock held
2699 			 */
2700 			ret = btrfs_wait_ordered_range(inode, alloc_start,
2701 						       alloc_end - alloc_start);
2702 			if (ret)
2703 				goto out;
2704 		} else {
2705 			if (ordered)
2706 				btrfs_put_ordered_extent(ordered);
2707 			break;
2708 		}
2709 	}
2710 
2711 	/* First, check if we exceed the qgroup limit */
2712 	INIT_LIST_HEAD(&reserve_list);
2713 	cur_offset = alloc_start;
2714 	while (1) {
2715 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2716 				      alloc_end - cur_offset, 0);
2717 		if (IS_ERR_OR_NULL(em)) {
2718 			if (!em)
2719 				ret = -ENOMEM;
2720 			else
2721 				ret = PTR_ERR(em);
2722 			break;
2723 		}
2724 		last_byte = min(extent_map_end(em), alloc_end);
2725 		actual_end = min_t(u64, extent_map_end(em), offset + len);
2726 		last_byte = ALIGN(last_byte, blocksize);
2727 		if (em->block_start == EXTENT_MAP_HOLE ||
2728 		    (cur_offset >= inode->i_size &&
2729 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2730 			ret = add_falloc_range(&reserve_list, cur_offset,
2731 					       last_byte - cur_offset);
2732 			if (ret < 0) {
2733 				free_extent_map(em);
2734 				break;
2735 			}
2736 			ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2737 					last_byte - cur_offset);
2738 			if (ret < 0)
2739 				break;
2740 		}
2741 		free_extent_map(em);
2742 		cur_offset = last_byte;
2743 		if (cur_offset >= alloc_end)
2744 			break;
2745 	}
2746 
2747 	/*
2748 	 * If ret is still 0, means we're OK to fallocate.
2749 	 * Or just cleanup the list and exit.
2750 	 */
2751 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2752 		if (!ret)
2753 			ret = btrfs_prealloc_file_range(inode, mode,
2754 					range->start,
2755 					range->len, 1 << inode->i_blkbits,
2756 					offset + len, &alloc_hint);
2757 		list_del(&range->list);
2758 		kfree(range);
2759 	}
2760 	if (ret < 0)
2761 		goto out_unlock;
2762 
2763 	if (actual_end > inode->i_size &&
2764 	    !(mode & FALLOC_FL_KEEP_SIZE)) {
2765 		struct btrfs_trans_handle *trans;
2766 		struct btrfs_root *root = BTRFS_I(inode)->root;
2767 
2768 		/*
2769 		 * We didn't need to allocate any more space, but we
2770 		 * still extended the size of the file so we need to
2771 		 * update i_size and the inode item.
2772 		 */
2773 		trans = btrfs_start_transaction(root, 1);
2774 		if (IS_ERR(trans)) {
2775 			ret = PTR_ERR(trans);
2776 		} else {
2777 			inode->i_ctime = CURRENT_TIME;
2778 			i_size_write(inode, actual_end);
2779 			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2780 			ret = btrfs_update_inode(trans, root, inode);
2781 			if (ret)
2782 				btrfs_end_transaction(trans, root);
2783 			else
2784 				ret = btrfs_end_transaction(trans, root);
2785 		}
2786 	}
2787 out_unlock:
2788 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2789 			     &cached_state, GFP_NOFS);
2790 out:
2791 	/*
2792 	 * As we waited the extent range, the data_rsv_map must be empty
2793 	 * in the range, as written data range will be released from it.
2794 	 * And for prealloacted extent, it will also be released when
2795 	 * its metadata is written.
2796 	 * So this is completely used as cleanup.
2797 	 */
2798 	btrfs_qgroup_free_data(inode, alloc_start, alloc_end - alloc_start);
2799 	mutex_unlock(&inode->i_mutex);
2800 	/* Let go of our reservation. */
2801 	btrfs_free_reserved_data_space(inode, alloc_start,
2802 				       alloc_end - alloc_start);
2803 	return ret;
2804 }
2805 
2806 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2807 {
2808 	struct btrfs_root *root = BTRFS_I(inode)->root;
2809 	struct extent_map *em = NULL;
2810 	struct extent_state *cached_state = NULL;
2811 	u64 lockstart;
2812 	u64 lockend;
2813 	u64 start;
2814 	u64 len;
2815 	int ret = 0;
2816 
2817 	if (inode->i_size == 0)
2818 		return -ENXIO;
2819 
2820 	/*
2821 	 * *offset can be negative, in this case we start finding DATA/HOLE from
2822 	 * the very start of the file.
2823 	 */
2824 	start = max_t(loff_t, 0, *offset);
2825 
2826 	lockstart = round_down(start, root->sectorsize);
2827 	lockend = round_up(i_size_read(inode), root->sectorsize);
2828 	if (lockend <= lockstart)
2829 		lockend = lockstart + root->sectorsize;
2830 	lockend--;
2831 	len = lockend - lockstart + 1;
2832 
2833 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2834 			 &cached_state);
2835 
2836 	while (start < inode->i_size) {
2837 		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2838 		if (IS_ERR(em)) {
2839 			ret = PTR_ERR(em);
2840 			em = NULL;
2841 			break;
2842 		}
2843 
2844 		if (whence == SEEK_HOLE &&
2845 		    (em->block_start == EXTENT_MAP_HOLE ||
2846 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2847 			break;
2848 		else if (whence == SEEK_DATA &&
2849 			   (em->block_start != EXTENT_MAP_HOLE &&
2850 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2851 			break;
2852 
2853 		start = em->start + em->len;
2854 		free_extent_map(em);
2855 		em = NULL;
2856 		cond_resched();
2857 	}
2858 	free_extent_map(em);
2859 	if (!ret) {
2860 		if (whence == SEEK_DATA && start >= inode->i_size)
2861 			ret = -ENXIO;
2862 		else
2863 			*offset = min_t(loff_t, start, inode->i_size);
2864 	}
2865 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2866 			     &cached_state, GFP_NOFS);
2867 	return ret;
2868 }
2869 
2870 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2871 {
2872 	struct inode *inode = file->f_mapping->host;
2873 	int ret;
2874 
2875 	mutex_lock(&inode->i_mutex);
2876 	switch (whence) {
2877 	case SEEK_END:
2878 	case SEEK_CUR:
2879 		offset = generic_file_llseek(file, offset, whence);
2880 		goto out;
2881 	case SEEK_DATA:
2882 	case SEEK_HOLE:
2883 		if (offset >= i_size_read(inode)) {
2884 			mutex_unlock(&inode->i_mutex);
2885 			return -ENXIO;
2886 		}
2887 
2888 		ret = find_desired_extent(inode, &offset, whence);
2889 		if (ret) {
2890 			mutex_unlock(&inode->i_mutex);
2891 			return ret;
2892 		}
2893 	}
2894 
2895 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2896 out:
2897 	mutex_unlock(&inode->i_mutex);
2898 	return offset;
2899 }
2900 
2901 const struct file_operations btrfs_file_operations = {
2902 	.llseek		= btrfs_file_llseek,
2903 	.read_iter      = generic_file_read_iter,
2904 	.splice_read	= generic_file_splice_read,
2905 	.write_iter	= btrfs_file_write_iter,
2906 	.mmap		= btrfs_file_mmap,
2907 	.open		= generic_file_open,
2908 	.release	= btrfs_release_file,
2909 	.fsync		= btrfs_sync_file,
2910 	.fallocate	= btrfs_fallocate,
2911 	.unlocked_ioctl	= btrfs_ioctl,
2912 #ifdef CONFIG_COMPAT
2913 	.compat_ioctl	= btrfs_ioctl,
2914 #endif
2915 };
2916 
2917 void btrfs_auto_defrag_exit(void)
2918 {
2919 	if (btrfs_inode_defrag_cachep)
2920 		kmem_cache_destroy(btrfs_inode_defrag_cachep);
2921 }
2922 
2923 int btrfs_auto_defrag_init(void)
2924 {
2925 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2926 					sizeof(struct inode_defrag), 0,
2927 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2928 					NULL);
2929 	if (!btrfs_inode_defrag_cachep)
2930 		return -ENOMEM;
2931 
2932 	return 0;
2933 }
2934 
2935 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
2936 {
2937 	int ret;
2938 
2939 	/*
2940 	 * So with compression we will find and lock a dirty page and clear the
2941 	 * first one as dirty, setup an async extent, and immediately return
2942 	 * with the entire range locked but with nobody actually marked with
2943 	 * writeback.  So we can't just filemap_write_and_wait_range() and
2944 	 * expect it to work since it will just kick off a thread to do the
2945 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
2946 	 * since it will wait on the page lock, which won't be unlocked until
2947 	 * after the pages have been marked as writeback and so we're good to go
2948 	 * from there.  We have to do this otherwise we'll miss the ordered
2949 	 * extents and that results in badness.  Please Josef, do not think you
2950 	 * know better and pull this out at some point in the future, it is
2951 	 * right and you are wrong.
2952 	 */
2953 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2954 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
2955 			     &BTRFS_I(inode)->runtime_flags))
2956 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2957 
2958 	return ret;
2959 }
2960