1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/time.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/backing-dev.h> 26 #include <linux/mpage.h> 27 #include <linux/aio.h> 28 #include <linux/falloc.h> 29 #include <linux/swap.h> 30 #include <linux/writeback.h> 31 #include <linux/statfs.h> 32 #include <linux/compat.h> 33 #include <linux/slab.h> 34 #include <linux/btrfs.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "print-tree.h" 40 #include "tree-log.h" 41 #include "locking.h" 42 #include "volumes.h" 43 44 static struct kmem_cache *btrfs_inode_defrag_cachep; 45 /* 46 * when auto defrag is enabled we 47 * queue up these defrag structs to remember which 48 * inodes need defragging passes 49 */ 50 struct inode_defrag { 51 struct rb_node rb_node; 52 /* objectid */ 53 u64 ino; 54 /* 55 * transid where the defrag was added, we search for 56 * extents newer than this 57 */ 58 u64 transid; 59 60 /* root objectid */ 61 u64 root; 62 63 /* last offset we were able to defrag */ 64 u64 last_offset; 65 66 /* if we've wrapped around back to zero once already */ 67 int cycled; 68 }; 69 70 static int __compare_inode_defrag(struct inode_defrag *defrag1, 71 struct inode_defrag *defrag2) 72 { 73 if (defrag1->root > defrag2->root) 74 return 1; 75 else if (defrag1->root < defrag2->root) 76 return -1; 77 else if (defrag1->ino > defrag2->ino) 78 return 1; 79 else if (defrag1->ino < defrag2->ino) 80 return -1; 81 else 82 return 0; 83 } 84 85 /* pop a record for an inode into the defrag tree. The lock 86 * must be held already 87 * 88 * If you're inserting a record for an older transid than an 89 * existing record, the transid already in the tree is lowered 90 * 91 * If an existing record is found the defrag item you 92 * pass in is freed 93 */ 94 static int __btrfs_add_inode_defrag(struct inode *inode, 95 struct inode_defrag *defrag) 96 { 97 struct btrfs_root *root = BTRFS_I(inode)->root; 98 struct inode_defrag *entry; 99 struct rb_node **p; 100 struct rb_node *parent = NULL; 101 int ret; 102 103 p = &root->fs_info->defrag_inodes.rb_node; 104 while (*p) { 105 parent = *p; 106 entry = rb_entry(parent, struct inode_defrag, rb_node); 107 108 ret = __compare_inode_defrag(defrag, entry); 109 if (ret < 0) 110 p = &parent->rb_left; 111 else if (ret > 0) 112 p = &parent->rb_right; 113 else { 114 /* if we're reinserting an entry for 115 * an old defrag run, make sure to 116 * lower the transid of our existing record 117 */ 118 if (defrag->transid < entry->transid) 119 entry->transid = defrag->transid; 120 if (defrag->last_offset > entry->last_offset) 121 entry->last_offset = defrag->last_offset; 122 return -EEXIST; 123 } 124 } 125 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 126 rb_link_node(&defrag->rb_node, parent, p); 127 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes); 128 return 0; 129 } 130 131 static inline int __need_auto_defrag(struct btrfs_root *root) 132 { 133 if (!btrfs_test_opt(root, AUTO_DEFRAG)) 134 return 0; 135 136 if (btrfs_fs_closing(root->fs_info)) 137 return 0; 138 139 return 1; 140 } 141 142 /* 143 * insert a defrag record for this inode if auto defrag is 144 * enabled 145 */ 146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 147 struct inode *inode) 148 { 149 struct btrfs_root *root = BTRFS_I(inode)->root; 150 struct inode_defrag *defrag; 151 u64 transid; 152 int ret; 153 154 if (!__need_auto_defrag(root)) 155 return 0; 156 157 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) 158 return 0; 159 160 if (trans) 161 transid = trans->transid; 162 else 163 transid = BTRFS_I(inode)->root->last_trans; 164 165 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 166 if (!defrag) 167 return -ENOMEM; 168 169 defrag->ino = btrfs_ino(inode); 170 defrag->transid = transid; 171 defrag->root = root->root_key.objectid; 172 173 spin_lock(&root->fs_info->defrag_inodes_lock); 174 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) { 175 /* 176 * If we set IN_DEFRAG flag and evict the inode from memory, 177 * and then re-read this inode, this new inode doesn't have 178 * IN_DEFRAG flag. At the case, we may find the existed defrag. 179 */ 180 ret = __btrfs_add_inode_defrag(inode, defrag); 181 if (ret) 182 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 183 } else { 184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 185 } 186 spin_unlock(&root->fs_info->defrag_inodes_lock); 187 return 0; 188 } 189 190 /* 191 * Requeue the defrag object. If there is a defrag object that points to 192 * the same inode in the tree, we will merge them together (by 193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 194 */ 195 static void btrfs_requeue_inode_defrag(struct inode *inode, 196 struct inode_defrag *defrag) 197 { 198 struct btrfs_root *root = BTRFS_I(inode)->root; 199 int ret; 200 201 if (!__need_auto_defrag(root)) 202 goto out; 203 204 /* 205 * Here we don't check the IN_DEFRAG flag, because we need merge 206 * them together. 207 */ 208 spin_lock(&root->fs_info->defrag_inodes_lock); 209 ret = __btrfs_add_inode_defrag(inode, defrag); 210 spin_unlock(&root->fs_info->defrag_inodes_lock); 211 if (ret) 212 goto out; 213 return; 214 out: 215 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 216 } 217 218 /* 219 * pick the defragable inode that we want, if it doesn't exist, we will get 220 * the next one. 221 */ 222 static struct inode_defrag * 223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 224 { 225 struct inode_defrag *entry = NULL; 226 struct inode_defrag tmp; 227 struct rb_node *p; 228 struct rb_node *parent = NULL; 229 int ret; 230 231 tmp.ino = ino; 232 tmp.root = root; 233 234 spin_lock(&fs_info->defrag_inodes_lock); 235 p = fs_info->defrag_inodes.rb_node; 236 while (p) { 237 parent = p; 238 entry = rb_entry(parent, struct inode_defrag, rb_node); 239 240 ret = __compare_inode_defrag(&tmp, entry); 241 if (ret < 0) 242 p = parent->rb_left; 243 else if (ret > 0) 244 p = parent->rb_right; 245 else 246 goto out; 247 } 248 249 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 250 parent = rb_next(parent); 251 if (parent) 252 entry = rb_entry(parent, struct inode_defrag, rb_node); 253 else 254 entry = NULL; 255 } 256 out: 257 if (entry) 258 rb_erase(parent, &fs_info->defrag_inodes); 259 spin_unlock(&fs_info->defrag_inodes_lock); 260 return entry; 261 } 262 263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 264 { 265 struct inode_defrag *defrag; 266 struct rb_node *node; 267 268 spin_lock(&fs_info->defrag_inodes_lock); 269 node = rb_first(&fs_info->defrag_inodes); 270 while (node) { 271 rb_erase(node, &fs_info->defrag_inodes); 272 defrag = rb_entry(node, struct inode_defrag, rb_node); 273 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 274 275 if (need_resched()) { 276 spin_unlock(&fs_info->defrag_inodes_lock); 277 cond_resched(); 278 spin_lock(&fs_info->defrag_inodes_lock); 279 } 280 281 node = rb_first(&fs_info->defrag_inodes); 282 } 283 spin_unlock(&fs_info->defrag_inodes_lock); 284 } 285 286 #define BTRFS_DEFRAG_BATCH 1024 287 288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 289 struct inode_defrag *defrag) 290 { 291 struct btrfs_root *inode_root; 292 struct inode *inode; 293 struct btrfs_key key; 294 struct btrfs_ioctl_defrag_range_args range; 295 int num_defrag; 296 int index; 297 int ret; 298 299 /* get the inode */ 300 key.objectid = defrag->root; 301 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 302 key.offset = (u64)-1; 303 304 index = srcu_read_lock(&fs_info->subvol_srcu); 305 306 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 307 if (IS_ERR(inode_root)) { 308 ret = PTR_ERR(inode_root); 309 goto cleanup; 310 } 311 312 key.objectid = defrag->ino; 313 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 314 key.offset = 0; 315 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 316 if (IS_ERR(inode)) { 317 ret = PTR_ERR(inode); 318 goto cleanup; 319 } 320 srcu_read_unlock(&fs_info->subvol_srcu, index); 321 322 /* do a chunk of defrag */ 323 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 324 memset(&range, 0, sizeof(range)); 325 range.len = (u64)-1; 326 range.start = defrag->last_offset; 327 328 sb_start_write(fs_info->sb); 329 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 330 BTRFS_DEFRAG_BATCH); 331 sb_end_write(fs_info->sb); 332 /* 333 * if we filled the whole defrag batch, there 334 * must be more work to do. Queue this defrag 335 * again 336 */ 337 if (num_defrag == BTRFS_DEFRAG_BATCH) { 338 defrag->last_offset = range.start; 339 btrfs_requeue_inode_defrag(inode, defrag); 340 } else if (defrag->last_offset && !defrag->cycled) { 341 /* 342 * we didn't fill our defrag batch, but 343 * we didn't start at zero. Make sure we loop 344 * around to the start of the file. 345 */ 346 defrag->last_offset = 0; 347 defrag->cycled = 1; 348 btrfs_requeue_inode_defrag(inode, defrag); 349 } else { 350 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 351 } 352 353 iput(inode); 354 return 0; 355 cleanup: 356 srcu_read_unlock(&fs_info->subvol_srcu, index); 357 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 358 return ret; 359 } 360 361 /* 362 * run through the list of inodes in the FS that need 363 * defragging 364 */ 365 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 366 { 367 struct inode_defrag *defrag; 368 u64 first_ino = 0; 369 u64 root_objectid = 0; 370 371 atomic_inc(&fs_info->defrag_running); 372 while (1) { 373 /* Pause the auto defragger. */ 374 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 375 &fs_info->fs_state)) 376 break; 377 378 if (!__need_auto_defrag(fs_info->tree_root)) 379 break; 380 381 /* find an inode to defrag */ 382 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 383 first_ino); 384 if (!defrag) { 385 if (root_objectid || first_ino) { 386 root_objectid = 0; 387 first_ino = 0; 388 continue; 389 } else { 390 break; 391 } 392 } 393 394 first_ino = defrag->ino + 1; 395 root_objectid = defrag->root; 396 397 __btrfs_run_defrag_inode(fs_info, defrag); 398 } 399 atomic_dec(&fs_info->defrag_running); 400 401 /* 402 * during unmount, we use the transaction_wait queue to 403 * wait for the defragger to stop 404 */ 405 wake_up(&fs_info->transaction_wait); 406 return 0; 407 } 408 409 /* simple helper to fault in pages and copy. This should go away 410 * and be replaced with calls into generic code. 411 */ 412 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages, 413 size_t write_bytes, 414 struct page **prepared_pages, 415 struct iov_iter *i) 416 { 417 size_t copied = 0; 418 size_t total_copied = 0; 419 int pg = 0; 420 int offset = pos & (PAGE_CACHE_SIZE - 1); 421 422 while (write_bytes > 0) { 423 size_t count = min_t(size_t, 424 PAGE_CACHE_SIZE - offset, write_bytes); 425 struct page *page = prepared_pages[pg]; 426 /* 427 * Copy data from userspace to the current page 428 * 429 * Disable pagefault to avoid recursive lock since 430 * the pages are already locked 431 */ 432 pagefault_disable(); 433 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 434 pagefault_enable(); 435 436 /* Flush processor's dcache for this page */ 437 flush_dcache_page(page); 438 439 /* 440 * if we get a partial write, we can end up with 441 * partially up to date pages. These add 442 * a lot of complexity, so make sure they don't 443 * happen by forcing this copy to be retried. 444 * 445 * The rest of the btrfs_file_write code will fall 446 * back to page at a time copies after we return 0. 447 */ 448 if (!PageUptodate(page) && copied < count) 449 copied = 0; 450 451 iov_iter_advance(i, copied); 452 write_bytes -= copied; 453 total_copied += copied; 454 455 /* Return to btrfs_file_aio_write to fault page */ 456 if (unlikely(copied == 0)) 457 break; 458 459 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) { 460 offset += copied; 461 } else { 462 pg++; 463 offset = 0; 464 } 465 } 466 return total_copied; 467 } 468 469 /* 470 * unlocks pages after btrfs_file_write is done with them 471 */ 472 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 473 { 474 size_t i; 475 for (i = 0; i < num_pages; i++) { 476 /* page checked is some magic around finding pages that 477 * have been modified without going through btrfs_set_page_dirty 478 * clear it here 479 */ 480 ClearPageChecked(pages[i]); 481 unlock_page(pages[i]); 482 mark_page_accessed(pages[i]); 483 page_cache_release(pages[i]); 484 } 485 } 486 487 /* 488 * after copy_from_user, pages need to be dirtied and we need to make 489 * sure holes are created between the current EOF and the start of 490 * any next extents (if required). 491 * 492 * this also makes the decision about creating an inline extent vs 493 * doing real data extents, marking pages dirty and delalloc as required. 494 */ 495 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, 496 struct page **pages, size_t num_pages, 497 loff_t pos, size_t write_bytes, 498 struct extent_state **cached) 499 { 500 int err = 0; 501 int i; 502 u64 num_bytes; 503 u64 start_pos; 504 u64 end_of_last_block; 505 u64 end_pos = pos + write_bytes; 506 loff_t isize = i_size_read(inode); 507 508 start_pos = pos & ~((u64)root->sectorsize - 1); 509 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize); 510 511 end_of_last_block = start_pos + num_bytes - 1; 512 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 513 cached); 514 if (err) 515 return err; 516 517 for (i = 0; i < num_pages; i++) { 518 struct page *p = pages[i]; 519 SetPageUptodate(p); 520 ClearPageChecked(p); 521 set_page_dirty(p); 522 } 523 524 /* 525 * we've only changed i_size in ram, and we haven't updated 526 * the disk i_size. There is no need to log the inode 527 * at this time. 528 */ 529 if (end_pos > isize) 530 i_size_write(inode, end_pos); 531 return 0; 532 } 533 534 /* 535 * this drops all the extents in the cache that intersect the range 536 * [start, end]. Existing extents are split as required. 537 */ 538 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, 539 int skip_pinned) 540 { 541 struct extent_map *em; 542 struct extent_map *split = NULL; 543 struct extent_map *split2 = NULL; 544 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 545 u64 len = end - start + 1; 546 u64 gen; 547 int ret; 548 int testend = 1; 549 unsigned long flags; 550 int compressed = 0; 551 bool modified; 552 553 WARN_ON(end < start); 554 if (end == (u64)-1) { 555 len = (u64)-1; 556 testend = 0; 557 } 558 while (1) { 559 int no_splits = 0; 560 561 modified = false; 562 if (!split) 563 split = alloc_extent_map(); 564 if (!split2) 565 split2 = alloc_extent_map(); 566 if (!split || !split2) 567 no_splits = 1; 568 569 write_lock(&em_tree->lock); 570 em = lookup_extent_mapping(em_tree, start, len); 571 if (!em) { 572 write_unlock(&em_tree->lock); 573 break; 574 } 575 flags = em->flags; 576 gen = em->generation; 577 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 578 if (testend && em->start + em->len >= start + len) { 579 free_extent_map(em); 580 write_unlock(&em_tree->lock); 581 break; 582 } 583 start = em->start + em->len; 584 if (testend) 585 len = start + len - (em->start + em->len); 586 free_extent_map(em); 587 write_unlock(&em_tree->lock); 588 continue; 589 } 590 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 591 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 592 clear_bit(EXTENT_FLAG_LOGGING, &flags); 593 modified = !list_empty(&em->list); 594 remove_extent_mapping(em_tree, em); 595 if (no_splits) 596 goto next; 597 598 if (em->start < start) { 599 split->start = em->start; 600 split->len = start - em->start; 601 602 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 603 split->orig_start = em->orig_start; 604 split->block_start = em->block_start; 605 606 if (compressed) 607 split->block_len = em->block_len; 608 else 609 split->block_len = split->len; 610 split->orig_block_len = max(split->block_len, 611 em->orig_block_len); 612 split->ram_bytes = em->ram_bytes; 613 } else { 614 split->orig_start = split->start; 615 split->block_len = 0; 616 split->block_start = em->block_start; 617 split->orig_block_len = 0; 618 split->ram_bytes = split->len; 619 } 620 621 split->generation = gen; 622 split->bdev = em->bdev; 623 split->flags = flags; 624 split->compress_type = em->compress_type; 625 ret = add_extent_mapping(em_tree, split, modified); 626 BUG_ON(ret); /* Logic error */ 627 free_extent_map(split); 628 split = split2; 629 split2 = NULL; 630 } 631 if (testend && em->start + em->len > start + len) { 632 u64 diff = start + len - em->start; 633 634 split->start = start + len; 635 split->len = em->start + em->len - (start + len); 636 split->bdev = em->bdev; 637 split->flags = flags; 638 split->compress_type = em->compress_type; 639 split->generation = gen; 640 641 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 642 split->orig_block_len = max(em->block_len, 643 em->orig_block_len); 644 645 split->ram_bytes = em->ram_bytes; 646 if (compressed) { 647 split->block_len = em->block_len; 648 split->block_start = em->block_start; 649 split->orig_start = em->orig_start; 650 } else { 651 split->block_len = split->len; 652 split->block_start = em->block_start 653 + diff; 654 split->orig_start = em->orig_start; 655 } 656 } else { 657 split->ram_bytes = split->len; 658 split->orig_start = split->start; 659 split->block_len = 0; 660 split->block_start = em->block_start; 661 split->orig_block_len = 0; 662 } 663 664 ret = add_extent_mapping(em_tree, split, modified); 665 BUG_ON(ret); /* Logic error */ 666 free_extent_map(split); 667 split = NULL; 668 } 669 next: 670 write_unlock(&em_tree->lock); 671 672 /* once for us */ 673 free_extent_map(em); 674 /* once for the tree*/ 675 free_extent_map(em); 676 } 677 if (split) 678 free_extent_map(split); 679 if (split2) 680 free_extent_map(split2); 681 } 682 683 /* 684 * this is very complex, but the basic idea is to drop all extents 685 * in the range start - end. hint_block is filled in with a block number 686 * that would be a good hint to the block allocator for this file. 687 * 688 * If an extent intersects the range but is not entirely inside the range 689 * it is either truncated or split. Anything entirely inside the range 690 * is deleted from the tree. 691 */ 692 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 693 struct btrfs_root *root, struct inode *inode, 694 struct btrfs_path *path, u64 start, u64 end, 695 u64 *drop_end, int drop_cache) 696 { 697 struct extent_buffer *leaf; 698 struct btrfs_file_extent_item *fi; 699 struct btrfs_key key; 700 struct btrfs_key new_key; 701 u64 ino = btrfs_ino(inode); 702 u64 search_start = start; 703 u64 disk_bytenr = 0; 704 u64 num_bytes = 0; 705 u64 extent_offset = 0; 706 u64 extent_end = 0; 707 int del_nr = 0; 708 int del_slot = 0; 709 int extent_type; 710 int recow; 711 int ret; 712 int modify_tree = -1; 713 int update_refs = (root->ref_cows || root == root->fs_info->tree_root); 714 int found = 0; 715 716 if (drop_cache) 717 btrfs_drop_extent_cache(inode, start, end - 1, 0); 718 719 if (start >= BTRFS_I(inode)->disk_i_size) 720 modify_tree = 0; 721 722 while (1) { 723 recow = 0; 724 ret = btrfs_lookup_file_extent(trans, root, path, ino, 725 search_start, modify_tree); 726 if (ret < 0) 727 break; 728 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 729 leaf = path->nodes[0]; 730 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 731 if (key.objectid == ino && 732 key.type == BTRFS_EXTENT_DATA_KEY) 733 path->slots[0]--; 734 } 735 ret = 0; 736 next_slot: 737 leaf = path->nodes[0]; 738 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 739 BUG_ON(del_nr > 0); 740 ret = btrfs_next_leaf(root, path); 741 if (ret < 0) 742 break; 743 if (ret > 0) { 744 ret = 0; 745 break; 746 } 747 leaf = path->nodes[0]; 748 recow = 1; 749 } 750 751 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 752 if (key.objectid > ino || 753 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 754 break; 755 756 fi = btrfs_item_ptr(leaf, path->slots[0], 757 struct btrfs_file_extent_item); 758 extent_type = btrfs_file_extent_type(leaf, fi); 759 760 if (extent_type == BTRFS_FILE_EXTENT_REG || 761 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 762 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 763 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 764 extent_offset = btrfs_file_extent_offset(leaf, fi); 765 extent_end = key.offset + 766 btrfs_file_extent_num_bytes(leaf, fi); 767 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 768 extent_end = key.offset + 769 btrfs_file_extent_inline_len(leaf, fi); 770 } else { 771 WARN_ON(1); 772 extent_end = search_start; 773 } 774 775 if (extent_end <= search_start) { 776 path->slots[0]++; 777 goto next_slot; 778 } 779 780 found = 1; 781 search_start = max(key.offset, start); 782 if (recow || !modify_tree) { 783 modify_tree = -1; 784 btrfs_release_path(path); 785 continue; 786 } 787 788 /* 789 * | - range to drop - | 790 * | -------- extent -------- | 791 */ 792 if (start > key.offset && end < extent_end) { 793 BUG_ON(del_nr > 0); 794 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); 795 796 memcpy(&new_key, &key, sizeof(new_key)); 797 new_key.offset = start; 798 ret = btrfs_duplicate_item(trans, root, path, 799 &new_key); 800 if (ret == -EAGAIN) { 801 btrfs_release_path(path); 802 continue; 803 } 804 if (ret < 0) 805 break; 806 807 leaf = path->nodes[0]; 808 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 809 struct btrfs_file_extent_item); 810 btrfs_set_file_extent_num_bytes(leaf, fi, 811 start - key.offset); 812 813 fi = btrfs_item_ptr(leaf, path->slots[0], 814 struct btrfs_file_extent_item); 815 816 extent_offset += start - key.offset; 817 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 818 btrfs_set_file_extent_num_bytes(leaf, fi, 819 extent_end - start); 820 btrfs_mark_buffer_dirty(leaf); 821 822 if (update_refs && disk_bytenr > 0) { 823 ret = btrfs_inc_extent_ref(trans, root, 824 disk_bytenr, num_bytes, 0, 825 root->root_key.objectid, 826 new_key.objectid, 827 start - extent_offset, 0); 828 BUG_ON(ret); /* -ENOMEM */ 829 } 830 key.offset = start; 831 } 832 /* 833 * | ---- range to drop ----- | 834 * | -------- extent -------- | 835 */ 836 if (start <= key.offset && end < extent_end) { 837 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); 838 839 memcpy(&new_key, &key, sizeof(new_key)); 840 new_key.offset = end; 841 btrfs_set_item_key_safe(root, path, &new_key); 842 843 extent_offset += end - key.offset; 844 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 845 btrfs_set_file_extent_num_bytes(leaf, fi, 846 extent_end - end); 847 btrfs_mark_buffer_dirty(leaf); 848 if (update_refs && disk_bytenr > 0) 849 inode_sub_bytes(inode, end - key.offset); 850 break; 851 } 852 853 search_start = extent_end; 854 /* 855 * | ---- range to drop ----- | 856 * | -------- extent -------- | 857 */ 858 if (start > key.offset && end >= extent_end) { 859 BUG_ON(del_nr > 0); 860 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); 861 862 btrfs_set_file_extent_num_bytes(leaf, fi, 863 start - key.offset); 864 btrfs_mark_buffer_dirty(leaf); 865 if (update_refs && disk_bytenr > 0) 866 inode_sub_bytes(inode, extent_end - start); 867 if (end == extent_end) 868 break; 869 870 path->slots[0]++; 871 goto next_slot; 872 } 873 874 /* 875 * | ---- range to drop ----- | 876 * | ------ extent ------ | 877 */ 878 if (start <= key.offset && end >= extent_end) { 879 if (del_nr == 0) { 880 del_slot = path->slots[0]; 881 del_nr = 1; 882 } else { 883 BUG_ON(del_slot + del_nr != path->slots[0]); 884 del_nr++; 885 } 886 887 if (update_refs && 888 extent_type == BTRFS_FILE_EXTENT_INLINE) { 889 inode_sub_bytes(inode, 890 extent_end - key.offset); 891 extent_end = ALIGN(extent_end, 892 root->sectorsize); 893 } else if (update_refs && disk_bytenr > 0) { 894 ret = btrfs_free_extent(trans, root, 895 disk_bytenr, num_bytes, 0, 896 root->root_key.objectid, 897 key.objectid, key.offset - 898 extent_offset, 0); 899 BUG_ON(ret); /* -ENOMEM */ 900 inode_sub_bytes(inode, 901 extent_end - key.offset); 902 } 903 904 if (end == extent_end) 905 break; 906 907 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 908 path->slots[0]++; 909 goto next_slot; 910 } 911 912 ret = btrfs_del_items(trans, root, path, del_slot, 913 del_nr); 914 if (ret) { 915 btrfs_abort_transaction(trans, root, ret); 916 break; 917 } 918 919 del_nr = 0; 920 del_slot = 0; 921 922 btrfs_release_path(path); 923 continue; 924 } 925 926 BUG_ON(1); 927 } 928 929 if (!ret && del_nr > 0) { 930 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 931 if (ret) 932 btrfs_abort_transaction(trans, root, ret); 933 } 934 935 if (drop_end) 936 *drop_end = found ? min(end, extent_end) : end; 937 btrfs_release_path(path); 938 return ret; 939 } 940 941 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 942 struct btrfs_root *root, struct inode *inode, u64 start, 943 u64 end, int drop_cache) 944 { 945 struct btrfs_path *path; 946 int ret; 947 948 path = btrfs_alloc_path(); 949 if (!path) 950 return -ENOMEM; 951 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 952 drop_cache); 953 btrfs_free_path(path); 954 return ret; 955 } 956 957 static int extent_mergeable(struct extent_buffer *leaf, int slot, 958 u64 objectid, u64 bytenr, u64 orig_offset, 959 u64 *start, u64 *end) 960 { 961 struct btrfs_file_extent_item *fi; 962 struct btrfs_key key; 963 u64 extent_end; 964 965 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 966 return 0; 967 968 btrfs_item_key_to_cpu(leaf, &key, slot); 969 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 970 return 0; 971 972 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 973 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 974 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 975 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 976 btrfs_file_extent_compression(leaf, fi) || 977 btrfs_file_extent_encryption(leaf, fi) || 978 btrfs_file_extent_other_encoding(leaf, fi)) 979 return 0; 980 981 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 982 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 983 return 0; 984 985 *start = key.offset; 986 *end = extent_end; 987 return 1; 988 } 989 990 /* 991 * Mark extent in the range start - end as written. 992 * 993 * This changes extent type from 'pre-allocated' to 'regular'. If only 994 * part of extent is marked as written, the extent will be split into 995 * two or three. 996 */ 997 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 998 struct inode *inode, u64 start, u64 end) 999 { 1000 struct btrfs_root *root = BTRFS_I(inode)->root; 1001 struct extent_buffer *leaf; 1002 struct btrfs_path *path; 1003 struct btrfs_file_extent_item *fi; 1004 struct btrfs_key key; 1005 struct btrfs_key new_key; 1006 u64 bytenr; 1007 u64 num_bytes; 1008 u64 extent_end; 1009 u64 orig_offset; 1010 u64 other_start; 1011 u64 other_end; 1012 u64 split; 1013 int del_nr = 0; 1014 int del_slot = 0; 1015 int recow; 1016 int ret; 1017 u64 ino = btrfs_ino(inode); 1018 1019 path = btrfs_alloc_path(); 1020 if (!path) 1021 return -ENOMEM; 1022 again: 1023 recow = 0; 1024 split = start; 1025 key.objectid = ino; 1026 key.type = BTRFS_EXTENT_DATA_KEY; 1027 key.offset = split; 1028 1029 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1030 if (ret < 0) 1031 goto out; 1032 if (ret > 0 && path->slots[0] > 0) 1033 path->slots[0]--; 1034 1035 leaf = path->nodes[0]; 1036 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1037 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY); 1038 fi = btrfs_item_ptr(leaf, path->slots[0], 1039 struct btrfs_file_extent_item); 1040 BUG_ON(btrfs_file_extent_type(leaf, fi) != 1041 BTRFS_FILE_EXTENT_PREALLOC); 1042 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1043 BUG_ON(key.offset > start || extent_end < end); 1044 1045 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1046 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1047 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1048 memcpy(&new_key, &key, sizeof(new_key)); 1049 1050 if (start == key.offset && end < extent_end) { 1051 other_start = 0; 1052 other_end = start; 1053 if (extent_mergeable(leaf, path->slots[0] - 1, 1054 ino, bytenr, orig_offset, 1055 &other_start, &other_end)) { 1056 new_key.offset = end; 1057 btrfs_set_item_key_safe(root, path, &new_key); 1058 fi = btrfs_item_ptr(leaf, path->slots[0], 1059 struct btrfs_file_extent_item); 1060 btrfs_set_file_extent_generation(leaf, fi, 1061 trans->transid); 1062 btrfs_set_file_extent_num_bytes(leaf, fi, 1063 extent_end - end); 1064 btrfs_set_file_extent_offset(leaf, fi, 1065 end - orig_offset); 1066 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1067 struct btrfs_file_extent_item); 1068 btrfs_set_file_extent_generation(leaf, fi, 1069 trans->transid); 1070 btrfs_set_file_extent_num_bytes(leaf, fi, 1071 end - other_start); 1072 btrfs_mark_buffer_dirty(leaf); 1073 goto out; 1074 } 1075 } 1076 1077 if (start > key.offset && end == extent_end) { 1078 other_start = end; 1079 other_end = 0; 1080 if (extent_mergeable(leaf, path->slots[0] + 1, 1081 ino, bytenr, orig_offset, 1082 &other_start, &other_end)) { 1083 fi = btrfs_item_ptr(leaf, path->slots[0], 1084 struct btrfs_file_extent_item); 1085 btrfs_set_file_extent_num_bytes(leaf, fi, 1086 start - key.offset); 1087 btrfs_set_file_extent_generation(leaf, fi, 1088 trans->transid); 1089 path->slots[0]++; 1090 new_key.offset = start; 1091 btrfs_set_item_key_safe(root, path, &new_key); 1092 1093 fi = btrfs_item_ptr(leaf, path->slots[0], 1094 struct btrfs_file_extent_item); 1095 btrfs_set_file_extent_generation(leaf, fi, 1096 trans->transid); 1097 btrfs_set_file_extent_num_bytes(leaf, fi, 1098 other_end - start); 1099 btrfs_set_file_extent_offset(leaf, fi, 1100 start - orig_offset); 1101 btrfs_mark_buffer_dirty(leaf); 1102 goto out; 1103 } 1104 } 1105 1106 while (start > key.offset || end < extent_end) { 1107 if (key.offset == start) 1108 split = end; 1109 1110 new_key.offset = split; 1111 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1112 if (ret == -EAGAIN) { 1113 btrfs_release_path(path); 1114 goto again; 1115 } 1116 if (ret < 0) { 1117 btrfs_abort_transaction(trans, root, ret); 1118 goto out; 1119 } 1120 1121 leaf = path->nodes[0]; 1122 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1123 struct btrfs_file_extent_item); 1124 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1125 btrfs_set_file_extent_num_bytes(leaf, fi, 1126 split - key.offset); 1127 1128 fi = btrfs_item_ptr(leaf, path->slots[0], 1129 struct btrfs_file_extent_item); 1130 1131 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1132 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1133 btrfs_set_file_extent_num_bytes(leaf, fi, 1134 extent_end - split); 1135 btrfs_mark_buffer_dirty(leaf); 1136 1137 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, 1138 root->root_key.objectid, 1139 ino, orig_offset, 0); 1140 BUG_ON(ret); /* -ENOMEM */ 1141 1142 if (split == start) { 1143 key.offset = start; 1144 } else { 1145 BUG_ON(start != key.offset); 1146 path->slots[0]--; 1147 extent_end = end; 1148 } 1149 recow = 1; 1150 } 1151 1152 other_start = end; 1153 other_end = 0; 1154 if (extent_mergeable(leaf, path->slots[0] + 1, 1155 ino, bytenr, orig_offset, 1156 &other_start, &other_end)) { 1157 if (recow) { 1158 btrfs_release_path(path); 1159 goto again; 1160 } 1161 extent_end = other_end; 1162 del_slot = path->slots[0] + 1; 1163 del_nr++; 1164 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1165 0, root->root_key.objectid, 1166 ino, orig_offset, 0); 1167 BUG_ON(ret); /* -ENOMEM */ 1168 } 1169 other_start = 0; 1170 other_end = start; 1171 if (extent_mergeable(leaf, path->slots[0] - 1, 1172 ino, bytenr, orig_offset, 1173 &other_start, &other_end)) { 1174 if (recow) { 1175 btrfs_release_path(path); 1176 goto again; 1177 } 1178 key.offset = other_start; 1179 del_slot = path->slots[0]; 1180 del_nr++; 1181 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1182 0, root->root_key.objectid, 1183 ino, orig_offset, 0); 1184 BUG_ON(ret); /* -ENOMEM */ 1185 } 1186 if (del_nr == 0) { 1187 fi = btrfs_item_ptr(leaf, path->slots[0], 1188 struct btrfs_file_extent_item); 1189 btrfs_set_file_extent_type(leaf, fi, 1190 BTRFS_FILE_EXTENT_REG); 1191 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1192 btrfs_mark_buffer_dirty(leaf); 1193 } else { 1194 fi = btrfs_item_ptr(leaf, del_slot - 1, 1195 struct btrfs_file_extent_item); 1196 btrfs_set_file_extent_type(leaf, fi, 1197 BTRFS_FILE_EXTENT_REG); 1198 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1199 btrfs_set_file_extent_num_bytes(leaf, fi, 1200 extent_end - key.offset); 1201 btrfs_mark_buffer_dirty(leaf); 1202 1203 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1204 if (ret < 0) { 1205 btrfs_abort_transaction(trans, root, ret); 1206 goto out; 1207 } 1208 } 1209 out: 1210 btrfs_free_path(path); 1211 return 0; 1212 } 1213 1214 /* 1215 * on error we return an unlocked page and the error value 1216 * on success we return a locked page and 0 1217 */ 1218 static int prepare_uptodate_page(struct page *page, u64 pos, 1219 bool force_uptodate) 1220 { 1221 int ret = 0; 1222 1223 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) && 1224 !PageUptodate(page)) { 1225 ret = btrfs_readpage(NULL, page); 1226 if (ret) 1227 return ret; 1228 lock_page(page); 1229 if (!PageUptodate(page)) { 1230 unlock_page(page); 1231 return -EIO; 1232 } 1233 } 1234 return 0; 1235 } 1236 1237 /* 1238 * this gets pages into the page cache and locks them down, it also properly 1239 * waits for data=ordered extents to finish before allowing the pages to be 1240 * modified. 1241 */ 1242 static noinline int prepare_pages(struct btrfs_root *root, struct file *file, 1243 struct page **pages, size_t num_pages, 1244 loff_t pos, unsigned long first_index, 1245 size_t write_bytes, bool force_uptodate) 1246 { 1247 struct extent_state *cached_state = NULL; 1248 int i; 1249 unsigned long index = pos >> PAGE_CACHE_SHIFT; 1250 struct inode *inode = file_inode(file); 1251 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1252 int err = 0; 1253 int faili = 0; 1254 u64 start_pos; 1255 u64 last_pos; 1256 1257 start_pos = pos & ~((u64)root->sectorsize - 1); 1258 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT; 1259 1260 again: 1261 for (i = 0; i < num_pages; i++) { 1262 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1263 mask | __GFP_WRITE); 1264 if (!pages[i]) { 1265 faili = i - 1; 1266 err = -ENOMEM; 1267 goto fail; 1268 } 1269 1270 if (i == 0) 1271 err = prepare_uptodate_page(pages[i], pos, 1272 force_uptodate); 1273 if (i == num_pages - 1) 1274 err = prepare_uptodate_page(pages[i], 1275 pos + write_bytes, false); 1276 if (err) { 1277 page_cache_release(pages[i]); 1278 faili = i - 1; 1279 goto fail; 1280 } 1281 wait_on_page_writeback(pages[i]); 1282 } 1283 faili = num_pages - 1; 1284 err = 0; 1285 if (start_pos < inode->i_size) { 1286 struct btrfs_ordered_extent *ordered; 1287 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1288 start_pos, last_pos - 1, 0, &cached_state); 1289 ordered = btrfs_lookup_first_ordered_extent(inode, 1290 last_pos - 1); 1291 if (ordered && 1292 ordered->file_offset + ordered->len > start_pos && 1293 ordered->file_offset < last_pos) { 1294 btrfs_put_ordered_extent(ordered); 1295 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1296 start_pos, last_pos - 1, 1297 &cached_state, GFP_NOFS); 1298 for (i = 0; i < num_pages; i++) { 1299 unlock_page(pages[i]); 1300 page_cache_release(pages[i]); 1301 } 1302 err = btrfs_wait_ordered_range(inode, start_pos, 1303 last_pos - start_pos); 1304 if (err) 1305 goto fail; 1306 goto again; 1307 } 1308 if (ordered) 1309 btrfs_put_ordered_extent(ordered); 1310 1311 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, 1312 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1313 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1314 0, 0, &cached_state, GFP_NOFS); 1315 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1316 start_pos, last_pos - 1, &cached_state, 1317 GFP_NOFS); 1318 } 1319 for (i = 0; i < num_pages; i++) { 1320 if (clear_page_dirty_for_io(pages[i])) 1321 account_page_redirty(pages[i]); 1322 set_page_extent_mapped(pages[i]); 1323 WARN_ON(!PageLocked(pages[i])); 1324 } 1325 return 0; 1326 fail: 1327 while (faili >= 0) { 1328 unlock_page(pages[faili]); 1329 page_cache_release(pages[faili]); 1330 faili--; 1331 } 1332 return err; 1333 1334 } 1335 1336 static noinline int check_can_nocow(struct inode *inode, loff_t pos, 1337 size_t *write_bytes) 1338 { 1339 struct btrfs_root *root = BTRFS_I(inode)->root; 1340 struct btrfs_ordered_extent *ordered; 1341 u64 lockstart, lockend; 1342 u64 num_bytes; 1343 int ret; 1344 1345 lockstart = round_down(pos, root->sectorsize); 1346 lockend = lockstart + round_up(*write_bytes, root->sectorsize) - 1; 1347 1348 while (1) { 1349 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1350 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1351 lockend - lockstart + 1); 1352 if (!ordered) { 1353 break; 1354 } 1355 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1356 btrfs_start_ordered_extent(inode, ordered, 1); 1357 btrfs_put_ordered_extent(ordered); 1358 } 1359 1360 num_bytes = lockend - lockstart + 1; 1361 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL); 1362 if (ret <= 0) { 1363 ret = 0; 1364 } else { 1365 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 1366 EXTENT_DIRTY | EXTENT_DELALLOC | 1367 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1368 NULL, GFP_NOFS); 1369 *write_bytes = min_t(size_t, *write_bytes, num_bytes); 1370 } 1371 1372 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1373 1374 return ret; 1375 } 1376 1377 static noinline ssize_t __btrfs_buffered_write(struct file *file, 1378 struct iov_iter *i, 1379 loff_t pos) 1380 { 1381 struct inode *inode = file_inode(file); 1382 struct btrfs_root *root = BTRFS_I(inode)->root; 1383 struct page **pages = NULL; 1384 u64 release_bytes = 0; 1385 unsigned long first_index; 1386 size_t num_written = 0; 1387 int nrptrs; 1388 int ret = 0; 1389 bool only_release_metadata = false; 1390 bool force_page_uptodate = false; 1391 1392 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) / 1393 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE / 1394 (sizeof(struct page *))); 1395 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1396 nrptrs = max(nrptrs, 8); 1397 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL); 1398 if (!pages) 1399 return -ENOMEM; 1400 1401 first_index = pos >> PAGE_CACHE_SHIFT; 1402 1403 while (iov_iter_count(i) > 0) { 1404 size_t offset = pos & (PAGE_CACHE_SIZE - 1); 1405 size_t write_bytes = min(iov_iter_count(i), 1406 nrptrs * (size_t)PAGE_CACHE_SIZE - 1407 offset); 1408 size_t num_pages = (write_bytes + offset + 1409 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1410 size_t reserve_bytes; 1411 size_t dirty_pages; 1412 size_t copied; 1413 1414 WARN_ON(num_pages > nrptrs); 1415 1416 /* 1417 * Fault pages before locking them in prepare_pages 1418 * to avoid recursive lock 1419 */ 1420 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1421 ret = -EFAULT; 1422 break; 1423 } 1424 1425 reserve_bytes = num_pages << PAGE_CACHE_SHIFT; 1426 ret = btrfs_check_data_free_space(inode, reserve_bytes); 1427 if (ret == -ENOSPC && 1428 (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1429 BTRFS_INODE_PREALLOC))) { 1430 ret = check_can_nocow(inode, pos, &write_bytes); 1431 if (ret > 0) { 1432 only_release_metadata = true; 1433 /* 1434 * our prealloc extent may be smaller than 1435 * write_bytes, so scale down. 1436 */ 1437 num_pages = (write_bytes + offset + 1438 PAGE_CACHE_SIZE - 1) >> 1439 PAGE_CACHE_SHIFT; 1440 reserve_bytes = num_pages << PAGE_CACHE_SHIFT; 1441 ret = 0; 1442 } else { 1443 ret = -ENOSPC; 1444 } 1445 } 1446 1447 if (ret) 1448 break; 1449 1450 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes); 1451 if (ret) { 1452 if (!only_release_metadata) 1453 btrfs_free_reserved_data_space(inode, 1454 reserve_bytes); 1455 break; 1456 } 1457 1458 release_bytes = reserve_bytes; 1459 1460 /* 1461 * This is going to setup the pages array with the number of 1462 * pages we want, so we don't really need to worry about the 1463 * contents of pages from loop to loop 1464 */ 1465 ret = prepare_pages(root, file, pages, num_pages, 1466 pos, first_index, write_bytes, 1467 force_page_uptodate); 1468 if (ret) 1469 break; 1470 1471 copied = btrfs_copy_from_user(pos, num_pages, 1472 write_bytes, pages, i); 1473 1474 /* 1475 * if we have trouble faulting in the pages, fall 1476 * back to one page at a time 1477 */ 1478 if (copied < write_bytes) 1479 nrptrs = 1; 1480 1481 if (copied == 0) { 1482 force_page_uptodate = true; 1483 dirty_pages = 0; 1484 } else { 1485 force_page_uptodate = false; 1486 dirty_pages = (copied + offset + 1487 PAGE_CACHE_SIZE - 1) >> 1488 PAGE_CACHE_SHIFT; 1489 } 1490 1491 /* 1492 * If we had a short copy we need to release the excess delaloc 1493 * bytes we reserved. We need to increment outstanding_extents 1494 * because btrfs_delalloc_release_space will decrement it, but 1495 * we still have an outstanding extent for the chunk we actually 1496 * managed to copy. 1497 */ 1498 if (num_pages > dirty_pages) { 1499 release_bytes = (num_pages - dirty_pages) << 1500 PAGE_CACHE_SHIFT; 1501 if (copied > 0) { 1502 spin_lock(&BTRFS_I(inode)->lock); 1503 BTRFS_I(inode)->outstanding_extents++; 1504 spin_unlock(&BTRFS_I(inode)->lock); 1505 } 1506 if (only_release_metadata) 1507 btrfs_delalloc_release_metadata(inode, 1508 release_bytes); 1509 else 1510 btrfs_delalloc_release_space(inode, 1511 release_bytes); 1512 } 1513 1514 release_bytes = dirty_pages << PAGE_CACHE_SHIFT; 1515 if (copied > 0) { 1516 ret = btrfs_dirty_pages(root, inode, pages, 1517 dirty_pages, pos, copied, 1518 NULL); 1519 if (ret) { 1520 btrfs_drop_pages(pages, num_pages); 1521 break; 1522 } 1523 } 1524 1525 release_bytes = 0; 1526 btrfs_drop_pages(pages, num_pages); 1527 1528 if (only_release_metadata && copied > 0) { 1529 u64 lockstart = round_down(pos, root->sectorsize); 1530 u64 lockend = lockstart + 1531 (dirty_pages << PAGE_CACHE_SHIFT) - 1; 1532 1533 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1534 lockend, EXTENT_NORESERVE, NULL, 1535 NULL, GFP_NOFS); 1536 only_release_metadata = false; 1537 } 1538 1539 cond_resched(); 1540 1541 balance_dirty_pages_ratelimited(inode->i_mapping); 1542 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1) 1543 btrfs_btree_balance_dirty(root); 1544 1545 pos += copied; 1546 num_written += copied; 1547 } 1548 1549 kfree(pages); 1550 1551 if (release_bytes) { 1552 if (only_release_metadata) 1553 btrfs_delalloc_release_metadata(inode, release_bytes); 1554 else 1555 btrfs_delalloc_release_space(inode, release_bytes); 1556 } 1557 1558 return num_written ? num_written : ret; 1559 } 1560 1561 static ssize_t __btrfs_direct_write(struct kiocb *iocb, 1562 const struct iovec *iov, 1563 unsigned long nr_segs, loff_t pos, 1564 loff_t *ppos, size_t count, size_t ocount) 1565 { 1566 struct file *file = iocb->ki_filp; 1567 struct iov_iter i; 1568 ssize_t written; 1569 ssize_t written_buffered; 1570 loff_t endbyte; 1571 int err; 1572 1573 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos, 1574 count, ocount); 1575 1576 if (written < 0 || written == count) 1577 return written; 1578 1579 pos += written; 1580 count -= written; 1581 iov_iter_init(&i, iov, nr_segs, count, written); 1582 written_buffered = __btrfs_buffered_write(file, &i, pos); 1583 if (written_buffered < 0) { 1584 err = written_buffered; 1585 goto out; 1586 } 1587 endbyte = pos + written_buffered - 1; 1588 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 1589 if (err) 1590 goto out; 1591 written += written_buffered; 1592 *ppos = pos + written_buffered; 1593 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT, 1594 endbyte >> PAGE_CACHE_SHIFT); 1595 out: 1596 return written ? written : err; 1597 } 1598 1599 static void update_time_for_write(struct inode *inode) 1600 { 1601 struct timespec now; 1602 1603 if (IS_NOCMTIME(inode)) 1604 return; 1605 1606 now = current_fs_time(inode->i_sb); 1607 if (!timespec_equal(&inode->i_mtime, &now)) 1608 inode->i_mtime = now; 1609 1610 if (!timespec_equal(&inode->i_ctime, &now)) 1611 inode->i_ctime = now; 1612 1613 if (IS_I_VERSION(inode)) 1614 inode_inc_iversion(inode); 1615 } 1616 1617 static ssize_t btrfs_file_aio_write(struct kiocb *iocb, 1618 const struct iovec *iov, 1619 unsigned long nr_segs, loff_t pos) 1620 { 1621 struct file *file = iocb->ki_filp; 1622 struct inode *inode = file_inode(file); 1623 struct btrfs_root *root = BTRFS_I(inode)->root; 1624 loff_t *ppos = &iocb->ki_pos; 1625 u64 start_pos; 1626 ssize_t num_written = 0; 1627 ssize_t err = 0; 1628 size_t count, ocount; 1629 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1630 1631 mutex_lock(&inode->i_mutex); 1632 1633 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 1634 if (err) { 1635 mutex_unlock(&inode->i_mutex); 1636 goto out; 1637 } 1638 count = ocount; 1639 1640 current->backing_dev_info = inode->i_mapping->backing_dev_info; 1641 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 1642 if (err) { 1643 mutex_unlock(&inode->i_mutex); 1644 goto out; 1645 } 1646 1647 if (count == 0) { 1648 mutex_unlock(&inode->i_mutex); 1649 goto out; 1650 } 1651 1652 err = file_remove_suid(file); 1653 if (err) { 1654 mutex_unlock(&inode->i_mutex); 1655 goto out; 1656 } 1657 1658 /* 1659 * If BTRFS flips readonly due to some impossible error 1660 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1661 * although we have opened a file as writable, we have 1662 * to stop this write operation to ensure FS consistency. 1663 */ 1664 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1665 mutex_unlock(&inode->i_mutex); 1666 err = -EROFS; 1667 goto out; 1668 } 1669 1670 /* 1671 * We reserve space for updating the inode when we reserve space for the 1672 * extent we are going to write, so we will enospc out there. We don't 1673 * need to start yet another transaction to update the inode as we will 1674 * update the inode when we finish writing whatever data we write. 1675 */ 1676 update_time_for_write(inode); 1677 1678 start_pos = round_down(pos, root->sectorsize); 1679 if (start_pos > i_size_read(inode)) { 1680 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos); 1681 if (err) { 1682 mutex_unlock(&inode->i_mutex); 1683 goto out; 1684 } 1685 } 1686 1687 if (sync) 1688 atomic_inc(&BTRFS_I(inode)->sync_writers); 1689 1690 if (unlikely(file->f_flags & O_DIRECT)) { 1691 num_written = __btrfs_direct_write(iocb, iov, nr_segs, 1692 pos, ppos, count, ocount); 1693 } else { 1694 struct iov_iter i; 1695 1696 iov_iter_init(&i, iov, nr_segs, count, num_written); 1697 1698 num_written = __btrfs_buffered_write(file, &i, pos); 1699 if (num_written > 0) 1700 *ppos = pos + num_written; 1701 } 1702 1703 mutex_unlock(&inode->i_mutex); 1704 1705 /* 1706 * we want to make sure fsync finds this change 1707 * but we haven't joined a transaction running right now. 1708 * 1709 * Later on, someone is sure to update the inode and get the 1710 * real transid recorded. 1711 * 1712 * We set last_trans now to the fs_info generation + 1, 1713 * this will either be one more than the running transaction 1714 * or the generation used for the next transaction if there isn't 1715 * one running right now. 1716 * 1717 * We also have to set last_sub_trans to the current log transid, 1718 * otherwise subsequent syncs to a file that's been synced in this 1719 * transaction will appear to have already occured. 1720 */ 1721 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1; 1722 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1723 if (num_written > 0) { 1724 err = generic_write_sync(file, pos, num_written); 1725 if (err < 0 && num_written > 0) 1726 num_written = err; 1727 } 1728 1729 if (sync) 1730 atomic_dec(&BTRFS_I(inode)->sync_writers); 1731 out: 1732 current->backing_dev_info = NULL; 1733 return num_written ? num_written : err; 1734 } 1735 1736 int btrfs_release_file(struct inode *inode, struct file *filp) 1737 { 1738 /* 1739 * ordered_data_close is set by settattr when we are about to truncate 1740 * a file from a non-zero size to a zero size. This tries to 1741 * flush down new bytes that may have been written if the 1742 * application were using truncate to replace a file in place. 1743 */ 1744 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 1745 &BTRFS_I(inode)->runtime_flags)) { 1746 struct btrfs_trans_handle *trans; 1747 struct btrfs_root *root = BTRFS_I(inode)->root; 1748 1749 /* 1750 * We need to block on a committing transaction to keep us from 1751 * throwing a ordered operation on to the list and causing 1752 * something like sync to deadlock trying to flush out this 1753 * inode. 1754 */ 1755 trans = btrfs_start_transaction(root, 0); 1756 if (IS_ERR(trans)) 1757 return PTR_ERR(trans); 1758 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode); 1759 btrfs_end_transaction(trans, root); 1760 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 1761 filemap_flush(inode->i_mapping); 1762 } 1763 if (filp->private_data) 1764 btrfs_ioctl_trans_end(filp); 1765 return 0; 1766 } 1767 1768 /* 1769 * fsync call for both files and directories. This logs the inode into 1770 * the tree log instead of forcing full commits whenever possible. 1771 * 1772 * It needs to call filemap_fdatawait so that all ordered extent updates are 1773 * in the metadata btree are up to date for copying to the log. 1774 * 1775 * It drops the inode mutex before doing the tree log commit. This is an 1776 * important optimization for directories because holding the mutex prevents 1777 * new operations on the dir while we write to disk. 1778 */ 1779 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1780 { 1781 struct dentry *dentry = file->f_path.dentry; 1782 struct inode *inode = dentry->d_inode; 1783 struct btrfs_root *root = BTRFS_I(inode)->root; 1784 int ret = 0; 1785 struct btrfs_trans_handle *trans; 1786 bool full_sync = 0; 1787 1788 trace_btrfs_sync_file(file, datasync); 1789 1790 /* 1791 * We write the dirty pages in the range and wait until they complete 1792 * out of the ->i_mutex. If so, we can flush the dirty pages by 1793 * multi-task, and make the performance up. See 1794 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1795 */ 1796 atomic_inc(&BTRFS_I(inode)->sync_writers); 1797 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 1798 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1799 &BTRFS_I(inode)->runtime_flags)) 1800 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 1801 atomic_dec(&BTRFS_I(inode)->sync_writers); 1802 if (ret) 1803 return ret; 1804 1805 mutex_lock(&inode->i_mutex); 1806 1807 /* 1808 * We flush the dirty pages again to avoid some dirty pages in the 1809 * range being left. 1810 */ 1811 atomic_inc(&root->log_batch); 1812 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1813 &BTRFS_I(inode)->runtime_flags); 1814 if (full_sync) { 1815 ret = btrfs_wait_ordered_range(inode, start, end - start + 1); 1816 if (ret) { 1817 mutex_unlock(&inode->i_mutex); 1818 goto out; 1819 } 1820 } 1821 atomic_inc(&root->log_batch); 1822 1823 /* 1824 * check the transaction that last modified this inode 1825 * and see if its already been committed 1826 */ 1827 if (!BTRFS_I(inode)->last_trans) { 1828 mutex_unlock(&inode->i_mutex); 1829 goto out; 1830 } 1831 1832 /* 1833 * if the last transaction that changed this file was before 1834 * the current transaction, we can bail out now without any 1835 * syncing 1836 */ 1837 smp_mb(); 1838 if (btrfs_inode_in_log(inode, root->fs_info->generation) || 1839 BTRFS_I(inode)->last_trans <= 1840 root->fs_info->last_trans_committed) { 1841 BTRFS_I(inode)->last_trans = 0; 1842 1843 /* 1844 * We'v had everything committed since the last time we were 1845 * modified so clear this flag in case it was set for whatever 1846 * reason, it's no longer relevant. 1847 */ 1848 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1849 &BTRFS_I(inode)->runtime_flags); 1850 mutex_unlock(&inode->i_mutex); 1851 goto out; 1852 } 1853 1854 /* 1855 * ok we haven't committed the transaction yet, lets do a commit 1856 */ 1857 if (file->private_data) 1858 btrfs_ioctl_trans_end(file); 1859 1860 trans = btrfs_start_transaction(root, 0); 1861 if (IS_ERR(trans)) { 1862 ret = PTR_ERR(trans); 1863 mutex_unlock(&inode->i_mutex); 1864 goto out; 1865 } 1866 1867 ret = btrfs_log_dentry_safe(trans, root, dentry); 1868 if (ret < 0) { 1869 /* Fallthrough and commit/free transaction. */ 1870 ret = 1; 1871 } 1872 1873 /* we've logged all the items and now have a consistent 1874 * version of the file in the log. It is possible that 1875 * someone will come in and modify the file, but that's 1876 * fine because the log is consistent on disk, and we 1877 * have references to all of the file's extents 1878 * 1879 * It is possible that someone will come in and log the 1880 * file again, but that will end up using the synchronization 1881 * inside btrfs_sync_log to keep things safe. 1882 */ 1883 mutex_unlock(&inode->i_mutex); 1884 1885 if (ret != BTRFS_NO_LOG_SYNC) { 1886 if (!ret) { 1887 ret = btrfs_sync_log(trans, root); 1888 if (!ret) { 1889 ret = btrfs_end_transaction(trans, root); 1890 goto out; 1891 } 1892 } 1893 if (!full_sync) { 1894 ret = btrfs_wait_ordered_range(inode, start, 1895 end - start + 1); 1896 if (ret) 1897 goto out; 1898 } 1899 ret = btrfs_commit_transaction(trans, root); 1900 } else { 1901 ret = btrfs_end_transaction(trans, root); 1902 } 1903 out: 1904 return ret > 0 ? -EIO : ret; 1905 } 1906 1907 static const struct vm_operations_struct btrfs_file_vm_ops = { 1908 .fault = filemap_fault, 1909 .page_mkwrite = btrfs_page_mkwrite, 1910 .remap_pages = generic_file_remap_pages, 1911 }; 1912 1913 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 1914 { 1915 struct address_space *mapping = filp->f_mapping; 1916 1917 if (!mapping->a_ops->readpage) 1918 return -ENOEXEC; 1919 1920 file_accessed(filp); 1921 vma->vm_ops = &btrfs_file_vm_ops; 1922 1923 return 0; 1924 } 1925 1926 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf, 1927 int slot, u64 start, u64 end) 1928 { 1929 struct btrfs_file_extent_item *fi; 1930 struct btrfs_key key; 1931 1932 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1933 return 0; 1934 1935 btrfs_item_key_to_cpu(leaf, &key, slot); 1936 if (key.objectid != btrfs_ino(inode) || 1937 key.type != BTRFS_EXTENT_DATA_KEY) 1938 return 0; 1939 1940 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1941 1942 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 1943 return 0; 1944 1945 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 1946 return 0; 1947 1948 if (key.offset == end) 1949 return 1; 1950 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 1951 return 1; 1952 return 0; 1953 } 1954 1955 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode, 1956 struct btrfs_path *path, u64 offset, u64 end) 1957 { 1958 struct btrfs_root *root = BTRFS_I(inode)->root; 1959 struct extent_buffer *leaf; 1960 struct btrfs_file_extent_item *fi; 1961 struct extent_map *hole_em; 1962 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1963 struct btrfs_key key; 1964 int ret; 1965 1966 key.objectid = btrfs_ino(inode); 1967 key.type = BTRFS_EXTENT_DATA_KEY; 1968 key.offset = offset; 1969 1970 1971 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1972 if (ret < 0) 1973 return ret; 1974 BUG_ON(!ret); 1975 1976 leaf = path->nodes[0]; 1977 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) { 1978 u64 num_bytes; 1979 1980 path->slots[0]--; 1981 fi = btrfs_item_ptr(leaf, path->slots[0], 1982 struct btrfs_file_extent_item); 1983 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 1984 end - offset; 1985 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1986 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 1987 btrfs_set_file_extent_offset(leaf, fi, 0); 1988 btrfs_mark_buffer_dirty(leaf); 1989 goto out; 1990 } 1991 1992 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) { 1993 u64 num_bytes; 1994 1995 path->slots[0]++; 1996 key.offset = offset; 1997 btrfs_set_item_key_safe(root, path, &key); 1998 fi = btrfs_item_ptr(leaf, path->slots[0], 1999 struct btrfs_file_extent_item); 2000 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2001 offset; 2002 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2003 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2004 btrfs_set_file_extent_offset(leaf, fi, 0); 2005 btrfs_mark_buffer_dirty(leaf); 2006 goto out; 2007 } 2008 btrfs_release_path(path); 2009 2010 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 2011 0, 0, end - offset, 0, end - offset, 2012 0, 0, 0); 2013 if (ret) 2014 return ret; 2015 2016 out: 2017 btrfs_release_path(path); 2018 2019 hole_em = alloc_extent_map(); 2020 if (!hole_em) { 2021 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2022 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2023 &BTRFS_I(inode)->runtime_flags); 2024 } else { 2025 hole_em->start = offset; 2026 hole_em->len = end - offset; 2027 hole_em->ram_bytes = hole_em->len; 2028 hole_em->orig_start = offset; 2029 2030 hole_em->block_start = EXTENT_MAP_HOLE; 2031 hole_em->block_len = 0; 2032 hole_em->orig_block_len = 0; 2033 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 2034 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2035 hole_em->generation = trans->transid; 2036 2037 do { 2038 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2039 write_lock(&em_tree->lock); 2040 ret = add_extent_mapping(em_tree, hole_em, 1); 2041 write_unlock(&em_tree->lock); 2042 } while (ret == -EEXIST); 2043 free_extent_map(hole_em); 2044 if (ret) 2045 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2046 &BTRFS_I(inode)->runtime_flags); 2047 } 2048 2049 return 0; 2050 } 2051 2052 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2053 { 2054 struct btrfs_root *root = BTRFS_I(inode)->root; 2055 struct extent_state *cached_state = NULL; 2056 struct btrfs_path *path; 2057 struct btrfs_block_rsv *rsv; 2058 struct btrfs_trans_handle *trans; 2059 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize); 2060 u64 lockend = round_down(offset + len, 2061 BTRFS_I(inode)->root->sectorsize) - 1; 2062 u64 cur_offset = lockstart; 2063 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 2064 u64 drop_end; 2065 int ret = 0; 2066 int err = 0; 2067 bool same_page = ((offset >> PAGE_CACHE_SHIFT) == 2068 ((offset + len - 1) >> PAGE_CACHE_SHIFT)); 2069 2070 ret = btrfs_wait_ordered_range(inode, offset, len); 2071 if (ret) 2072 return ret; 2073 2074 mutex_lock(&inode->i_mutex); 2075 /* 2076 * We needn't truncate any page which is beyond the end of the file 2077 * because we are sure there is no data there. 2078 */ 2079 /* 2080 * Only do this if we are in the same page and we aren't doing the 2081 * entire page. 2082 */ 2083 if (same_page && len < PAGE_CACHE_SIZE) { 2084 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) 2085 ret = btrfs_truncate_page(inode, offset, len, 0); 2086 mutex_unlock(&inode->i_mutex); 2087 return ret; 2088 } 2089 2090 /* zero back part of the first page */ 2091 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) { 2092 ret = btrfs_truncate_page(inode, offset, 0, 0); 2093 if (ret) { 2094 mutex_unlock(&inode->i_mutex); 2095 return ret; 2096 } 2097 } 2098 2099 /* zero the front end of the last page */ 2100 if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) { 2101 ret = btrfs_truncate_page(inode, offset + len, 0, 1); 2102 if (ret) { 2103 mutex_unlock(&inode->i_mutex); 2104 return ret; 2105 } 2106 } 2107 2108 if (lockend < lockstart) { 2109 mutex_unlock(&inode->i_mutex); 2110 return 0; 2111 } 2112 2113 while (1) { 2114 struct btrfs_ordered_extent *ordered; 2115 2116 truncate_pagecache_range(inode, lockstart, lockend); 2117 2118 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2119 0, &cached_state); 2120 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2121 2122 /* 2123 * We need to make sure we have no ordered extents in this range 2124 * and nobody raced in and read a page in this range, if we did 2125 * we need to try again. 2126 */ 2127 if ((!ordered || 2128 (ordered->file_offset + ordered->len < lockstart || 2129 ordered->file_offset > lockend)) && 2130 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart, 2131 lockend, EXTENT_UPTODATE, 0, 2132 cached_state)) { 2133 if (ordered) 2134 btrfs_put_ordered_extent(ordered); 2135 break; 2136 } 2137 if (ordered) 2138 btrfs_put_ordered_extent(ordered); 2139 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2140 lockend, &cached_state, GFP_NOFS); 2141 ret = btrfs_wait_ordered_range(inode, lockstart, 2142 lockend - lockstart + 1); 2143 if (ret) { 2144 mutex_unlock(&inode->i_mutex); 2145 return ret; 2146 } 2147 } 2148 2149 path = btrfs_alloc_path(); 2150 if (!path) { 2151 ret = -ENOMEM; 2152 goto out; 2153 } 2154 2155 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2156 if (!rsv) { 2157 ret = -ENOMEM; 2158 goto out_free; 2159 } 2160 rsv->size = btrfs_calc_trunc_metadata_size(root, 1); 2161 rsv->failfast = 1; 2162 2163 /* 2164 * 1 - update the inode 2165 * 1 - removing the extents in the range 2166 * 1 - adding the hole extent 2167 */ 2168 trans = btrfs_start_transaction(root, 3); 2169 if (IS_ERR(trans)) { 2170 err = PTR_ERR(trans); 2171 goto out_free; 2172 } 2173 2174 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 2175 min_size); 2176 BUG_ON(ret); 2177 trans->block_rsv = rsv; 2178 2179 while (cur_offset < lockend) { 2180 ret = __btrfs_drop_extents(trans, root, inode, path, 2181 cur_offset, lockend + 1, 2182 &drop_end, 1); 2183 if (ret != -ENOSPC) 2184 break; 2185 2186 trans->block_rsv = &root->fs_info->trans_block_rsv; 2187 2188 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2189 if (ret) { 2190 err = ret; 2191 break; 2192 } 2193 2194 cur_offset = drop_end; 2195 2196 ret = btrfs_update_inode(trans, root, inode); 2197 if (ret) { 2198 err = ret; 2199 break; 2200 } 2201 2202 btrfs_end_transaction(trans, root); 2203 btrfs_btree_balance_dirty(root); 2204 2205 trans = btrfs_start_transaction(root, 3); 2206 if (IS_ERR(trans)) { 2207 ret = PTR_ERR(trans); 2208 trans = NULL; 2209 break; 2210 } 2211 2212 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 2213 rsv, min_size); 2214 BUG_ON(ret); /* shouldn't happen */ 2215 trans->block_rsv = rsv; 2216 } 2217 2218 if (ret) { 2219 err = ret; 2220 goto out_trans; 2221 } 2222 2223 trans->block_rsv = &root->fs_info->trans_block_rsv; 2224 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2225 if (ret) { 2226 err = ret; 2227 goto out_trans; 2228 } 2229 2230 out_trans: 2231 if (!trans) 2232 goto out_free; 2233 2234 inode_inc_iversion(inode); 2235 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2236 2237 trans->block_rsv = &root->fs_info->trans_block_rsv; 2238 ret = btrfs_update_inode(trans, root, inode); 2239 btrfs_end_transaction(trans, root); 2240 btrfs_btree_balance_dirty(root); 2241 out_free: 2242 btrfs_free_path(path); 2243 btrfs_free_block_rsv(root, rsv); 2244 out: 2245 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2246 &cached_state, GFP_NOFS); 2247 mutex_unlock(&inode->i_mutex); 2248 if (ret && !err) 2249 err = ret; 2250 return err; 2251 } 2252 2253 static long btrfs_fallocate(struct file *file, int mode, 2254 loff_t offset, loff_t len) 2255 { 2256 struct inode *inode = file_inode(file); 2257 struct extent_state *cached_state = NULL; 2258 struct btrfs_root *root = BTRFS_I(inode)->root; 2259 u64 cur_offset; 2260 u64 last_byte; 2261 u64 alloc_start; 2262 u64 alloc_end; 2263 u64 alloc_hint = 0; 2264 u64 locked_end; 2265 struct extent_map *em; 2266 int blocksize = BTRFS_I(inode)->root->sectorsize; 2267 int ret; 2268 2269 alloc_start = round_down(offset, blocksize); 2270 alloc_end = round_up(offset + len, blocksize); 2271 2272 /* Make sure we aren't being give some crap mode */ 2273 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2274 return -EOPNOTSUPP; 2275 2276 if (mode & FALLOC_FL_PUNCH_HOLE) 2277 return btrfs_punch_hole(inode, offset, len); 2278 2279 /* 2280 * Make sure we have enough space before we do the 2281 * allocation. 2282 */ 2283 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start); 2284 if (ret) 2285 return ret; 2286 if (root->fs_info->quota_enabled) { 2287 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start); 2288 if (ret) 2289 goto out_reserve_fail; 2290 } 2291 2292 mutex_lock(&inode->i_mutex); 2293 ret = inode_newsize_ok(inode, alloc_end); 2294 if (ret) 2295 goto out; 2296 2297 if (alloc_start > inode->i_size) { 2298 ret = btrfs_cont_expand(inode, i_size_read(inode), 2299 alloc_start); 2300 if (ret) 2301 goto out; 2302 } else { 2303 /* 2304 * If we are fallocating from the end of the file onward we 2305 * need to zero out the end of the page if i_size lands in the 2306 * middle of a page. 2307 */ 2308 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0); 2309 if (ret) 2310 goto out; 2311 } 2312 2313 /* 2314 * wait for ordered IO before we have any locks. We'll loop again 2315 * below with the locks held. 2316 */ 2317 ret = btrfs_wait_ordered_range(inode, alloc_start, 2318 alloc_end - alloc_start); 2319 if (ret) 2320 goto out; 2321 2322 locked_end = alloc_end - 1; 2323 while (1) { 2324 struct btrfs_ordered_extent *ordered; 2325 2326 /* the extent lock is ordered inside the running 2327 * transaction 2328 */ 2329 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 2330 locked_end, 0, &cached_state); 2331 ordered = btrfs_lookup_first_ordered_extent(inode, 2332 alloc_end - 1); 2333 if (ordered && 2334 ordered->file_offset + ordered->len > alloc_start && 2335 ordered->file_offset < alloc_end) { 2336 btrfs_put_ordered_extent(ordered); 2337 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 2338 alloc_start, locked_end, 2339 &cached_state, GFP_NOFS); 2340 /* 2341 * we can't wait on the range with the transaction 2342 * running or with the extent lock held 2343 */ 2344 ret = btrfs_wait_ordered_range(inode, alloc_start, 2345 alloc_end - alloc_start); 2346 if (ret) 2347 goto out; 2348 } else { 2349 if (ordered) 2350 btrfs_put_ordered_extent(ordered); 2351 break; 2352 } 2353 } 2354 2355 cur_offset = alloc_start; 2356 while (1) { 2357 u64 actual_end; 2358 2359 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2360 alloc_end - cur_offset, 0); 2361 if (IS_ERR_OR_NULL(em)) { 2362 if (!em) 2363 ret = -ENOMEM; 2364 else 2365 ret = PTR_ERR(em); 2366 break; 2367 } 2368 last_byte = min(extent_map_end(em), alloc_end); 2369 actual_end = min_t(u64, extent_map_end(em), offset + len); 2370 last_byte = ALIGN(last_byte, blocksize); 2371 2372 if (em->block_start == EXTENT_MAP_HOLE || 2373 (cur_offset >= inode->i_size && 2374 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 2375 ret = btrfs_prealloc_file_range(inode, mode, cur_offset, 2376 last_byte - cur_offset, 2377 1 << inode->i_blkbits, 2378 offset + len, 2379 &alloc_hint); 2380 2381 if (ret < 0) { 2382 free_extent_map(em); 2383 break; 2384 } 2385 } else if (actual_end > inode->i_size && 2386 !(mode & FALLOC_FL_KEEP_SIZE)) { 2387 /* 2388 * We didn't need to allocate any more space, but we 2389 * still extended the size of the file so we need to 2390 * update i_size. 2391 */ 2392 inode->i_ctime = CURRENT_TIME; 2393 i_size_write(inode, actual_end); 2394 btrfs_ordered_update_i_size(inode, actual_end, NULL); 2395 } 2396 free_extent_map(em); 2397 2398 cur_offset = last_byte; 2399 if (cur_offset >= alloc_end) { 2400 ret = 0; 2401 break; 2402 } 2403 } 2404 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 2405 &cached_state, GFP_NOFS); 2406 out: 2407 mutex_unlock(&inode->i_mutex); 2408 if (root->fs_info->quota_enabled) 2409 btrfs_qgroup_free(root, alloc_end - alloc_start); 2410 out_reserve_fail: 2411 /* Let go of our reservation. */ 2412 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start); 2413 return ret; 2414 } 2415 2416 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 2417 { 2418 struct btrfs_root *root = BTRFS_I(inode)->root; 2419 struct extent_map *em = NULL; 2420 struct extent_state *cached_state = NULL; 2421 u64 lockstart = *offset; 2422 u64 lockend = i_size_read(inode); 2423 u64 start = *offset; 2424 u64 len = i_size_read(inode); 2425 int ret = 0; 2426 2427 lockend = max_t(u64, root->sectorsize, lockend); 2428 if (lockend <= lockstart) 2429 lockend = lockstart + root->sectorsize; 2430 2431 lockend--; 2432 len = lockend - lockstart + 1; 2433 2434 len = max_t(u64, len, root->sectorsize); 2435 if (inode->i_size == 0) 2436 return -ENXIO; 2437 2438 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0, 2439 &cached_state); 2440 2441 while (start < inode->i_size) { 2442 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0); 2443 if (IS_ERR(em)) { 2444 ret = PTR_ERR(em); 2445 em = NULL; 2446 break; 2447 } 2448 2449 if (whence == SEEK_HOLE && 2450 (em->block_start == EXTENT_MAP_HOLE || 2451 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2452 break; 2453 else if (whence == SEEK_DATA && 2454 (em->block_start != EXTENT_MAP_HOLE && 2455 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2456 break; 2457 2458 start = em->start + em->len; 2459 free_extent_map(em); 2460 em = NULL; 2461 cond_resched(); 2462 } 2463 free_extent_map(em); 2464 if (!ret) { 2465 if (whence == SEEK_DATA && start >= inode->i_size) 2466 ret = -ENXIO; 2467 else 2468 *offset = min_t(loff_t, start, inode->i_size); 2469 } 2470 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2471 &cached_state, GFP_NOFS); 2472 return ret; 2473 } 2474 2475 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 2476 { 2477 struct inode *inode = file->f_mapping->host; 2478 int ret; 2479 2480 mutex_lock(&inode->i_mutex); 2481 switch (whence) { 2482 case SEEK_END: 2483 case SEEK_CUR: 2484 offset = generic_file_llseek(file, offset, whence); 2485 goto out; 2486 case SEEK_DATA: 2487 case SEEK_HOLE: 2488 if (offset >= i_size_read(inode)) { 2489 mutex_unlock(&inode->i_mutex); 2490 return -ENXIO; 2491 } 2492 2493 ret = find_desired_extent(inode, &offset, whence); 2494 if (ret) { 2495 mutex_unlock(&inode->i_mutex); 2496 return ret; 2497 } 2498 } 2499 2500 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2501 out: 2502 mutex_unlock(&inode->i_mutex); 2503 return offset; 2504 } 2505 2506 const struct file_operations btrfs_file_operations = { 2507 .llseek = btrfs_file_llseek, 2508 .read = do_sync_read, 2509 .write = do_sync_write, 2510 .aio_read = generic_file_aio_read, 2511 .splice_read = generic_file_splice_read, 2512 .aio_write = btrfs_file_aio_write, 2513 .mmap = btrfs_file_mmap, 2514 .open = generic_file_open, 2515 .release = btrfs_release_file, 2516 .fsync = btrfs_sync_file, 2517 .fallocate = btrfs_fallocate, 2518 .unlocked_ioctl = btrfs_ioctl, 2519 #ifdef CONFIG_COMPAT 2520 .compat_ioctl = btrfs_ioctl, 2521 #endif 2522 }; 2523 2524 void btrfs_auto_defrag_exit(void) 2525 { 2526 if (btrfs_inode_defrag_cachep) 2527 kmem_cache_destroy(btrfs_inode_defrag_cachep); 2528 } 2529 2530 int btrfs_auto_defrag_init(void) 2531 { 2532 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 2533 sizeof(struct inode_defrag), 0, 2534 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 2535 NULL); 2536 if (!btrfs_inode_defrag_cachep) 2537 return -ENOMEM; 2538 2539 return 0; 2540 } 2541