xref: /openbmc/linux/fs/btrfs/file.c (revision b96c0546)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31 
32 static struct kmem_cache *btrfs_inode_defrag_cachep;
33 /*
34  * when auto defrag is enabled we
35  * queue up these defrag structs to remember which
36  * inodes need defragging passes
37  */
38 struct inode_defrag {
39 	struct rb_node rb_node;
40 	/* objectid */
41 	u64 ino;
42 	/*
43 	 * transid where the defrag was added, we search for
44 	 * extents newer than this
45 	 */
46 	u64 transid;
47 
48 	/* root objectid */
49 	u64 root;
50 
51 	/* last offset we were able to defrag */
52 	u64 last_offset;
53 
54 	/* if we've wrapped around back to zero once already */
55 	int cycled;
56 };
57 
58 static int __compare_inode_defrag(struct inode_defrag *defrag1,
59 				  struct inode_defrag *defrag2)
60 {
61 	if (defrag1->root > defrag2->root)
62 		return 1;
63 	else if (defrag1->root < defrag2->root)
64 		return -1;
65 	else if (defrag1->ino > defrag2->ino)
66 		return 1;
67 	else if (defrag1->ino < defrag2->ino)
68 		return -1;
69 	else
70 		return 0;
71 }
72 
73 /* pop a record for an inode into the defrag tree.  The lock
74  * must be held already
75  *
76  * If you're inserting a record for an older transid than an
77  * existing record, the transid already in the tree is lowered
78  *
79  * If an existing record is found the defrag item you
80  * pass in is freed
81  */
82 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
83 				    struct inode_defrag *defrag)
84 {
85 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
86 	struct inode_defrag *entry;
87 	struct rb_node **p;
88 	struct rb_node *parent = NULL;
89 	int ret;
90 
91 	p = &fs_info->defrag_inodes.rb_node;
92 	while (*p) {
93 		parent = *p;
94 		entry = rb_entry(parent, struct inode_defrag, rb_node);
95 
96 		ret = __compare_inode_defrag(defrag, entry);
97 		if (ret < 0)
98 			p = &parent->rb_left;
99 		else if (ret > 0)
100 			p = &parent->rb_right;
101 		else {
102 			/* if we're reinserting an entry for
103 			 * an old defrag run, make sure to
104 			 * lower the transid of our existing record
105 			 */
106 			if (defrag->transid < entry->transid)
107 				entry->transid = defrag->transid;
108 			if (defrag->last_offset > entry->last_offset)
109 				entry->last_offset = defrag->last_offset;
110 			return -EEXIST;
111 		}
112 	}
113 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
114 	rb_link_node(&defrag->rb_node, parent, p);
115 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
116 	return 0;
117 }
118 
119 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
120 {
121 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
122 		return 0;
123 
124 	if (btrfs_fs_closing(fs_info))
125 		return 0;
126 
127 	return 1;
128 }
129 
130 /*
131  * insert a defrag record for this inode if auto defrag is
132  * enabled
133  */
134 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
135 			   struct btrfs_inode *inode)
136 {
137 	struct btrfs_root *root = inode->root;
138 	struct btrfs_fs_info *fs_info = root->fs_info;
139 	struct inode_defrag *defrag;
140 	u64 transid;
141 	int ret;
142 
143 	if (!__need_auto_defrag(fs_info))
144 		return 0;
145 
146 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
147 		return 0;
148 
149 	if (trans)
150 		transid = trans->transid;
151 	else
152 		transid = inode->root->last_trans;
153 
154 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
155 	if (!defrag)
156 		return -ENOMEM;
157 
158 	defrag->ino = btrfs_ino(inode);
159 	defrag->transid = transid;
160 	defrag->root = root->root_key.objectid;
161 
162 	spin_lock(&fs_info->defrag_inodes_lock);
163 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
164 		/*
165 		 * If we set IN_DEFRAG flag and evict the inode from memory,
166 		 * and then re-read this inode, this new inode doesn't have
167 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
168 		 */
169 		ret = __btrfs_add_inode_defrag(inode, defrag);
170 		if (ret)
171 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
172 	} else {
173 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174 	}
175 	spin_unlock(&fs_info->defrag_inodes_lock);
176 	return 0;
177 }
178 
179 /*
180  * Requeue the defrag object. If there is a defrag object that points to
181  * the same inode in the tree, we will merge them together (by
182  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
183  */
184 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
185 				       struct inode_defrag *defrag)
186 {
187 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
188 	int ret;
189 
190 	if (!__need_auto_defrag(fs_info))
191 		goto out;
192 
193 	/*
194 	 * Here we don't check the IN_DEFRAG flag, because we need merge
195 	 * them together.
196 	 */
197 	spin_lock(&fs_info->defrag_inodes_lock);
198 	ret = __btrfs_add_inode_defrag(inode, defrag);
199 	spin_unlock(&fs_info->defrag_inodes_lock);
200 	if (ret)
201 		goto out;
202 	return;
203 out:
204 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
205 }
206 
207 /*
208  * pick the defragable inode that we want, if it doesn't exist, we will get
209  * the next one.
210  */
211 static struct inode_defrag *
212 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
213 {
214 	struct inode_defrag *entry = NULL;
215 	struct inode_defrag tmp;
216 	struct rb_node *p;
217 	struct rb_node *parent = NULL;
218 	int ret;
219 
220 	tmp.ino = ino;
221 	tmp.root = root;
222 
223 	spin_lock(&fs_info->defrag_inodes_lock);
224 	p = fs_info->defrag_inodes.rb_node;
225 	while (p) {
226 		parent = p;
227 		entry = rb_entry(parent, struct inode_defrag, rb_node);
228 
229 		ret = __compare_inode_defrag(&tmp, entry);
230 		if (ret < 0)
231 			p = parent->rb_left;
232 		else if (ret > 0)
233 			p = parent->rb_right;
234 		else
235 			goto out;
236 	}
237 
238 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
239 		parent = rb_next(parent);
240 		if (parent)
241 			entry = rb_entry(parent, struct inode_defrag, rb_node);
242 		else
243 			entry = NULL;
244 	}
245 out:
246 	if (entry)
247 		rb_erase(parent, &fs_info->defrag_inodes);
248 	spin_unlock(&fs_info->defrag_inodes_lock);
249 	return entry;
250 }
251 
252 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
253 {
254 	struct inode_defrag *defrag;
255 	struct rb_node *node;
256 
257 	spin_lock(&fs_info->defrag_inodes_lock);
258 	node = rb_first(&fs_info->defrag_inodes);
259 	while (node) {
260 		rb_erase(node, &fs_info->defrag_inodes);
261 		defrag = rb_entry(node, struct inode_defrag, rb_node);
262 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
263 
264 		cond_resched_lock(&fs_info->defrag_inodes_lock);
265 
266 		node = rb_first(&fs_info->defrag_inodes);
267 	}
268 	spin_unlock(&fs_info->defrag_inodes_lock);
269 }
270 
271 #define BTRFS_DEFRAG_BATCH	1024
272 
273 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
274 				    struct inode_defrag *defrag)
275 {
276 	struct btrfs_root *inode_root;
277 	struct inode *inode;
278 	struct btrfs_ioctl_defrag_range_args range;
279 	int num_defrag;
280 	int ret;
281 
282 	/* get the inode */
283 	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
284 	if (IS_ERR(inode_root)) {
285 		ret = PTR_ERR(inode_root);
286 		goto cleanup;
287 	}
288 
289 	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
290 	btrfs_put_root(inode_root);
291 	if (IS_ERR(inode)) {
292 		ret = PTR_ERR(inode);
293 		goto cleanup;
294 	}
295 
296 	/* do a chunk of defrag */
297 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
298 	memset(&range, 0, sizeof(range));
299 	range.len = (u64)-1;
300 	range.start = defrag->last_offset;
301 
302 	sb_start_write(fs_info->sb);
303 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
304 				       BTRFS_DEFRAG_BATCH);
305 	sb_end_write(fs_info->sb);
306 	/*
307 	 * if we filled the whole defrag batch, there
308 	 * must be more work to do.  Queue this defrag
309 	 * again
310 	 */
311 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
312 		defrag->last_offset = range.start;
313 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
314 	} else if (defrag->last_offset && !defrag->cycled) {
315 		/*
316 		 * we didn't fill our defrag batch, but
317 		 * we didn't start at zero.  Make sure we loop
318 		 * around to the start of the file.
319 		 */
320 		defrag->last_offset = 0;
321 		defrag->cycled = 1;
322 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
323 	} else {
324 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
325 	}
326 
327 	iput(inode);
328 	return 0;
329 cleanup:
330 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
331 	return ret;
332 }
333 
334 /*
335  * run through the list of inodes in the FS that need
336  * defragging
337  */
338 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
339 {
340 	struct inode_defrag *defrag;
341 	u64 first_ino = 0;
342 	u64 root_objectid = 0;
343 
344 	atomic_inc(&fs_info->defrag_running);
345 	while (1) {
346 		/* Pause the auto defragger. */
347 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
348 			     &fs_info->fs_state))
349 			break;
350 
351 		if (!__need_auto_defrag(fs_info))
352 			break;
353 
354 		/* find an inode to defrag */
355 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
356 						 first_ino);
357 		if (!defrag) {
358 			if (root_objectid || first_ino) {
359 				root_objectid = 0;
360 				first_ino = 0;
361 				continue;
362 			} else {
363 				break;
364 			}
365 		}
366 
367 		first_ino = defrag->ino + 1;
368 		root_objectid = defrag->root;
369 
370 		__btrfs_run_defrag_inode(fs_info, defrag);
371 	}
372 	atomic_dec(&fs_info->defrag_running);
373 
374 	/*
375 	 * during unmount, we use the transaction_wait queue to
376 	 * wait for the defragger to stop
377 	 */
378 	wake_up(&fs_info->transaction_wait);
379 	return 0;
380 }
381 
382 /* simple helper to fault in pages and copy.  This should go away
383  * and be replaced with calls into generic code.
384  */
385 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
386 					 struct page **prepared_pages,
387 					 struct iov_iter *i)
388 {
389 	size_t copied = 0;
390 	size_t total_copied = 0;
391 	int pg = 0;
392 	int offset = offset_in_page(pos);
393 
394 	while (write_bytes > 0) {
395 		size_t count = min_t(size_t,
396 				     PAGE_SIZE - offset, write_bytes);
397 		struct page *page = prepared_pages[pg];
398 		/*
399 		 * Copy data from userspace to the current page
400 		 */
401 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
402 
403 		/* Flush processor's dcache for this page */
404 		flush_dcache_page(page);
405 
406 		/*
407 		 * if we get a partial write, we can end up with
408 		 * partially up to date pages.  These add
409 		 * a lot of complexity, so make sure they don't
410 		 * happen by forcing this copy to be retried.
411 		 *
412 		 * The rest of the btrfs_file_write code will fall
413 		 * back to page at a time copies after we return 0.
414 		 */
415 		if (!PageUptodate(page) && copied < count)
416 			copied = 0;
417 
418 		iov_iter_advance(i, copied);
419 		write_bytes -= copied;
420 		total_copied += copied;
421 
422 		/* Return to btrfs_file_write_iter to fault page */
423 		if (unlikely(copied == 0))
424 			break;
425 
426 		if (copied < PAGE_SIZE - offset) {
427 			offset += copied;
428 		} else {
429 			pg++;
430 			offset = 0;
431 		}
432 	}
433 	return total_copied;
434 }
435 
436 /*
437  * unlocks pages after btrfs_file_write is done with them
438  */
439 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
440 {
441 	size_t i;
442 	for (i = 0; i < num_pages; i++) {
443 		/* page checked is some magic around finding pages that
444 		 * have been modified without going through btrfs_set_page_dirty
445 		 * clear it here. There should be no need to mark the pages
446 		 * accessed as prepare_pages should have marked them accessed
447 		 * in prepare_pages via find_or_create_page()
448 		 */
449 		ClearPageChecked(pages[i]);
450 		unlock_page(pages[i]);
451 		put_page(pages[i]);
452 	}
453 }
454 
455 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
456 					 const u64 start,
457 					 const u64 len,
458 					 struct extent_state **cached_state)
459 {
460 	u64 search_start = start;
461 	const u64 end = start + len - 1;
462 
463 	while (search_start < end) {
464 		const u64 search_len = end - search_start + 1;
465 		struct extent_map *em;
466 		u64 em_len;
467 		int ret = 0;
468 
469 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
470 		if (IS_ERR(em))
471 			return PTR_ERR(em);
472 
473 		if (em->block_start != EXTENT_MAP_HOLE)
474 			goto next;
475 
476 		em_len = em->len;
477 		if (em->start < search_start)
478 			em_len -= search_start - em->start;
479 		if (em_len > search_len)
480 			em_len = search_len;
481 
482 		ret = set_extent_bit(&inode->io_tree, search_start,
483 				     search_start + em_len - 1,
484 				     EXTENT_DELALLOC_NEW,
485 				     NULL, cached_state, GFP_NOFS);
486 next:
487 		search_start = extent_map_end(em);
488 		free_extent_map(em);
489 		if (ret)
490 			return ret;
491 	}
492 	return 0;
493 }
494 
495 /*
496  * after copy_from_user, pages need to be dirtied and we need to make
497  * sure holes are created between the current EOF and the start of
498  * any next extents (if required).
499  *
500  * this also makes the decision about creating an inline extent vs
501  * doing real data extents, marking pages dirty and delalloc as required.
502  */
503 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
504 		      size_t num_pages, loff_t pos, size_t write_bytes,
505 		      struct extent_state **cached)
506 {
507 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
508 	int err = 0;
509 	int i;
510 	u64 num_bytes;
511 	u64 start_pos;
512 	u64 end_of_last_block;
513 	u64 end_pos = pos + write_bytes;
514 	loff_t isize = i_size_read(&inode->vfs_inode);
515 	unsigned int extra_bits = 0;
516 
517 	start_pos = pos & ~((u64) fs_info->sectorsize - 1);
518 	num_bytes = round_up(write_bytes + pos - start_pos,
519 			     fs_info->sectorsize);
520 
521 	end_of_last_block = start_pos + num_bytes - 1;
522 
523 	/*
524 	 * The pages may have already been dirty, clear out old accounting so
525 	 * we can set things up properly
526 	 */
527 	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
528 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
529 			 0, 0, cached);
530 
531 	if (!btrfs_is_free_space_inode(inode)) {
532 		if (start_pos >= isize &&
533 		    !(inode->flags & BTRFS_INODE_PREALLOC)) {
534 			/*
535 			 * There can't be any extents following eof in this case
536 			 * so just set the delalloc new bit for the range
537 			 * directly.
538 			 */
539 			extra_bits |= EXTENT_DELALLOC_NEW;
540 		} else {
541 			err = btrfs_find_new_delalloc_bytes(inode, start_pos,
542 							    num_bytes, cached);
543 			if (err)
544 				return err;
545 		}
546 	}
547 
548 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
549 					extra_bits, cached);
550 	if (err)
551 		return err;
552 
553 	for (i = 0; i < num_pages; i++) {
554 		struct page *p = pages[i];
555 		SetPageUptodate(p);
556 		ClearPageChecked(p);
557 		set_page_dirty(p);
558 	}
559 
560 	/*
561 	 * we've only changed i_size in ram, and we haven't updated
562 	 * the disk i_size.  There is no need to log the inode
563 	 * at this time.
564 	 */
565 	if (end_pos > isize)
566 		i_size_write(&inode->vfs_inode, end_pos);
567 	return 0;
568 }
569 
570 /*
571  * this drops all the extents in the cache that intersect the range
572  * [start, end].  Existing extents are split as required.
573  */
574 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
575 			     int skip_pinned)
576 {
577 	struct extent_map *em;
578 	struct extent_map *split = NULL;
579 	struct extent_map *split2 = NULL;
580 	struct extent_map_tree *em_tree = &inode->extent_tree;
581 	u64 len = end - start + 1;
582 	u64 gen;
583 	int ret;
584 	int testend = 1;
585 	unsigned long flags;
586 	int compressed = 0;
587 	bool modified;
588 
589 	WARN_ON(end < start);
590 	if (end == (u64)-1) {
591 		len = (u64)-1;
592 		testend = 0;
593 	}
594 	while (1) {
595 		int no_splits = 0;
596 
597 		modified = false;
598 		if (!split)
599 			split = alloc_extent_map();
600 		if (!split2)
601 			split2 = alloc_extent_map();
602 		if (!split || !split2)
603 			no_splits = 1;
604 
605 		write_lock(&em_tree->lock);
606 		em = lookup_extent_mapping(em_tree, start, len);
607 		if (!em) {
608 			write_unlock(&em_tree->lock);
609 			break;
610 		}
611 		flags = em->flags;
612 		gen = em->generation;
613 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
614 			if (testend && em->start + em->len >= start + len) {
615 				free_extent_map(em);
616 				write_unlock(&em_tree->lock);
617 				break;
618 			}
619 			start = em->start + em->len;
620 			if (testend)
621 				len = start + len - (em->start + em->len);
622 			free_extent_map(em);
623 			write_unlock(&em_tree->lock);
624 			continue;
625 		}
626 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
627 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
628 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
629 		modified = !list_empty(&em->list);
630 		if (no_splits)
631 			goto next;
632 
633 		if (em->start < start) {
634 			split->start = em->start;
635 			split->len = start - em->start;
636 
637 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
638 				split->orig_start = em->orig_start;
639 				split->block_start = em->block_start;
640 
641 				if (compressed)
642 					split->block_len = em->block_len;
643 				else
644 					split->block_len = split->len;
645 				split->orig_block_len = max(split->block_len,
646 						em->orig_block_len);
647 				split->ram_bytes = em->ram_bytes;
648 			} else {
649 				split->orig_start = split->start;
650 				split->block_len = 0;
651 				split->block_start = em->block_start;
652 				split->orig_block_len = 0;
653 				split->ram_bytes = split->len;
654 			}
655 
656 			split->generation = gen;
657 			split->flags = flags;
658 			split->compress_type = em->compress_type;
659 			replace_extent_mapping(em_tree, em, split, modified);
660 			free_extent_map(split);
661 			split = split2;
662 			split2 = NULL;
663 		}
664 		if (testend && em->start + em->len > start + len) {
665 			u64 diff = start + len - em->start;
666 
667 			split->start = start + len;
668 			split->len = em->start + em->len - (start + len);
669 			split->flags = flags;
670 			split->compress_type = em->compress_type;
671 			split->generation = gen;
672 
673 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
674 				split->orig_block_len = max(em->block_len,
675 						    em->orig_block_len);
676 
677 				split->ram_bytes = em->ram_bytes;
678 				if (compressed) {
679 					split->block_len = em->block_len;
680 					split->block_start = em->block_start;
681 					split->orig_start = em->orig_start;
682 				} else {
683 					split->block_len = split->len;
684 					split->block_start = em->block_start
685 						+ diff;
686 					split->orig_start = em->orig_start;
687 				}
688 			} else {
689 				split->ram_bytes = split->len;
690 				split->orig_start = split->start;
691 				split->block_len = 0;
692 				split->block_start = em->block_start;
693 				split->orig_block_len = 0;
694 			}
695 
696 			if (extent_map_in_tree(em)) {
697 				replace_extent_mapping(em_tree, em, split,
698 						       modified);
699 			} else {
700 				ret = add_extent_mapping(em_tree, split,
701 							 modified);
702 				ASSERT(ret == 0); /* Logic error */
703 			}
704 			free_extent_map(split);
705 			split = NULL;
706 		}
707 next:
708 		if (extent_map_in_tree(em))
709 			remove_extent_mapping(em_tree, em);
710 		write_unlock(&em_tree->lock);
711 
712 		/* once for us */
713 		free_extent_map(em);
714 		/* once for the tree*/
715 		free_extent_map(em);
716 	}
717 	if (split)
718 		free_extent_map(split);
719 	if (split2)
720 		free_extent_map(split2);
721 }
722 
723 /*
724  * this is very complex, but the basic idea is to drop all extents
725  * in the range start - end.  hint_block is filled in with a block number
726  * that would be a good hint to the block allocator for this file.
727  *
728  * If an extent intersects the range but is not entirely inside the range
729  * it is either truncated or split.  Anything entirely inside the range
730  * is deleted from the tree.
731  */
732 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
733 			 struct btrfs_root *root, struct btrfs_inode *inode,
734 			 struct btrfs_path *path, u64 start, u64 end,
735 			 u64 *drop_end, int drop_cache,
736 			 int replace_extent,
737 			 u32 extent_item_size,
738 			 int *key_inserted)
739 {
740 	struct btrfs_fs_info *fs_info = root->fs_info;
741 	struct extent_buffer *leaf;
742 	struct btrfs_file_extent_item *fi;
743 	struct btrfs_ref ref = { 0 };
744 	struct btrfs_key key;
745 	struct btrfs_key new_key;
746 	struct inode *vfs_inode = &inode->vfs_inode;
747 	u64 ino = btrfs_ino(inode);
748 	u64 search_start = start;
749 	u64 disk_bytenr = 0;
750 	u64 num_bytes = 0;
751 	u64 extent_offset = 0;
752 	u64 extent_end = 0;
753 	u64 last_end = start;
754 	int del_nr = 0;
755 	int del_slot = 0;
756 	int extent_type;
757 	int recow;
758 	int ret;
759 	int modify_tree = -1;
760 	int update_refs;
761 	int found = 0;
762 	int leafs_visited = 0;
763 
764 	if (drop_cache)
765 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
766 
767 	if (start >= inode->disk_i_size && !replace_extent)
768 		modify_tree = 0;
769 
770 	update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
771 		       root == fs_info->tree_root);
772 	while (1) {
773 		recow = 0;
774 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
775 					       search_start, modify_tree);
776 		if (ret < 0)
777 			break;
778 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
779 			leaf = path->nodes[0];
780 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
781 			if (key.objectid == ino &&
782 			    key.type == BTRFS_EXTENT_DATA_KEY)
783 				path->slots[0]--;
784 		}
785 		ret = 0;
786 		leafs_visited++;
787 next_slot:
788 		leaf = path->nodes[0];
789 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
790 			BUG_ON(del_nr > 0);
791 			ret = btrfs_next_leaf(root, path);
792 			if (ret < 0)
793 				break;
794 			if (ret > 0) {
795 				ret = 0;
796 				break;
797 			}
798 			leafs_visited++;
799 			leaf = path->nodes[0];
800 			recow = 1;
801 		}
802 
803 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
804 
805 		if (key.objectid > ino)
806 			break;
807 		if (WARN_ON_ONCE(key.objectid < ino) ||
808 		    key.type < BTRFS_EXTENT_DATA_KEY) {
809 			ASSERT(del_nr == 0);
810 			path->slots[0]++;
811 			goto next_slot;
812 		}
813 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
814 			break;
815 
816 		fi = btrfs_item_ptr(leaf, path->slots[0],
817 				    struct btrfs_file_extent_item);
818 		extent_type = btrfs_file_extent_type(leaf, fi);
819 
820 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
821 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
822 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
823 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
824 			extent_offset = btrfs_file_extent_offset(leaf, fi);
825 			extent_end = key.offset +
826 				btrfs_file_extent_num_bytes(leaf, fi);
827 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
828 			extent_end = key.offset +
829 				btrfs_file_extent_ram_bytes(leaf, fi);
830 		} else {
831 			/* can't happen */
832 			BUG();
833 		}
834 
835 		/*
836 		 * Don't skip extent items representing 0 byte lengths. They
837 		 * used to be created (bug) if while punching holes we hit
838 		 * -ENOSPC condition. So if we find one here, just ensure we
839 		 * delete it, otherwise we would insert a new file extent item
840 		 * with the same key (offset) as that 0 bytes length file
841 		 * extent item in the call to setup_items_for_insert() later
842 		 * in this function.
843 		 */
844 		if (extent_end == key.offset && extent_end >= search_start) {
845 			last_end = extent_end;
846 			goto delete_extent_item;
847 		}
848 
849 		if (extent_end <= search_start) {
850 			path->slots[0]++;
851 			goto next_slot;
852 		}
853 
854 		found = 1;
855 		search_start = max(key.offset, start);
856 		if (recow || !modify_tree) {
857 			modify_tree = -1;
858 			btrfs_release_path(path);
859 			continue;
860 		}
861 
862 		/*
863 		 *     | - range to drop - |
864 		 *  | -------- extent -------- |
865 		 */
866 		if (start > key.offset && end < extent_end) {
867 			BUG_ON(del_nr > 0);
868 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
869 				ret = -EOPNOTSUPP;
870 				break;
871 			}
872 
873 			memcpy(&new_key, &key, sizeof(new_key));
874 			new_key.offset = start;
875 			ret = btrfs_duplicate_item(trans, root, path,
876 						   &new_key);
877 			if (ret == -EAGAIN) {
878 				btrfs_release_path(path);
879 				continue;
880 			}
881 			if (ret < 0)
882 				break;
883 
884 			leaf = path->nodes[0];
885 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
886 					    struct btrfs_file_extent_item);
887 			btrfs_set_file_extent_num_bytes(leaf, fi,
888 							start - key.offset);
889 
890 			fi = btrfs_item_ptr(leaf, path->slots[0],
891 					    struct btrfs_file_extent_item);
892 
893 			extent_offset += start - key.offset;
894 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
895 			btrfs_set_file_extent_num_bytes(leaf, fi,
896 							extent_end - start);
897 			btrfs_mark_buffer_dirty(leaf);
898 
899 			if (update_refs && disk_bytenr > 0) {
900 				btrfs_init_generic_ref(&ref,
901 						BTRFS_ADD_DELAYED_REF,
902 						disk_bytenr, num_bytes, 0);
903 				btrfs_init_data_ref(&ref,
904 						root->root_key.objectid,
905 						new_key.objectid,
906 						start - extent_offset);
907 				ret = btrfs_inc_extent_ref(trans, &ref);
908 				BUG_ON(ret); /* -ENOMEM */
909 			}
910 			key.offset = start;
911 		}
912 		/*
913 		 * From here on out we will have actually dropped something, so
914 		 * last_end can be updated.
915 		 */
916 		last_end = extent_end;
917 
918 		/*
919 		 *  | ---- range to drop ----- |
920 		 *      | -------- extent -------- |
921 		 */
922 		if (start <= key.offset && end < extent_end) {
923 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
924 				ret = -EOPNOTSUPP;
925 				break;
926 			}
927 
928 			memcpy(&new_key, &key, sizeof(new_key));
929 			new_key.offset = end;
930 			btrfs_set_item_key_safe(fs_info, path, &new_key);
931 
932 			extent_offset += end - key.offset;
933 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
934 			btrfs_set_file_extent_num_bytes(leaf, fi,
935 							extent_end - end);
936 			btrfs_mark_buffer_dirty(leaf);
937 			if (update_refs && disk_bytenr > 0)
938 				inode_sub_bytes(vfs_inode, end - key.offset);
939 			break;
940 		}
941 
942 		search_start = extent_end;
943 		/*
944 		 *       | ---- range to drop ----- |
945 		 *  | -------- extent -------- |
946 		 */
947 		if (start > key.offset && end >= extent_end) {
948 			BUG_ON(del_nr > 0);
949 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
950 				ret = -EOPNOTSUPP;
951 				break;
952 			}
953 
954 			btrfs_set_file_extent_num_bytes(leaf, fi,
955 							start - key.offset);
956 			btrfs_mark_buffer_dirty(leaf);
957 			if (update_refs && disk_bytenr > 0)
958 				inode_sub_bytes(vfs_inode, extent_end - start);
959 			if (end == extent_end)
960 				break;
961 
962 			path->slots[0]++;
963 			goto next_slot;
964 		}
965 
966 		/*
967 		 *  | ---- range to drop ----- |
968 		 *    | ------ extent ------ |
969 		 */
970 		if (start <= key.offset && end >= extent_end) {
971 delete_extent_item:
972 			if (del_nr == 0) {
973 				del_slot = path->slots[0];
974 				del_nr = 1;
975 			} else {
976 				BUG_ON(del_slot + del_nr != path->slots[0]);
977 				del_nr++;
978 			}
979 
980 			if (update_refs &&
981 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
982 				inode_sub_bytes(vfs_inode,
983 						extent_end - key.offset);
984 				extent_end = ALIGN(extent_end,
985 						   fs_info->sectorsize);
986 			} else if (update_refs && disk_bytenr > 0) {
987 				btrfs_init_generic_ref(&ref,
988 						BTRFS_DROP_DELAYED_REF,
989 						disk_bytenr, num_bytes, 0);
990 				btrfs_init_data_ref(&ref,
991 						root->root_key.objectid,
992 						key.objectid,
993 						key.offset - extent_offset);
994 				ret = btrfs_free_extent(trans, &ref);
995 				BUG_ON(ret); /* -ENOMEM */
996 				inode_sub_bytes(vfs_inode,
997 						extent_end - key.offset);
998 			}
999 
1000 			if (end == extent_end)
1001 				break;
1002 
1003 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1004 				path->slots[0]++;
1005 				goto next_slot;
1006 			}
1007 
1008 			ret = btrfs_del_items(trans, root, path, del_slot,
1009 					      del_nr);
1010 			if (ret) {
1011 				btrfs_abort_transaction(trans, ret);
1012 				break;
1013 			}
1014 
1015 			del_nr = 0;
1016 			del_slot = 0;
1017 
1018 			btrfs_release_path(path);
1019 			continue;
1020 		}
1021 
1022 		BUG();
1023 	}
1024 
1025 	if (!ret && del_nr > 0) {
1026 		/*
1027 		 * Set path->slots[0] to first slot, so that after the delete
1028 		 * if items are move off from our leaf to its immediate left or
1029 		 * right neighbor leafs, we end up with a correct and adjusted
1030 		 * path->slots[0] for our insertion (if replace_extent != 0).
1031 		 */
1032 		path->slots[0] = del_slot;
1033 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1034 		if (ret)
1035 			btrfs_abort_transaction(trans, ret);
1036 	}
1037 
1038 	leaf = path->nodes[0];
1039 	/*
1040 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
1041 	 * which case it unlocked our path, so check path->locks[0] matches a
1042 	 * write lock.
1043 	 */
1044 	if (!ret && replace_extent && leafs_visited == 1 &&
1045 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1046 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
1047 	    btrfs_leaf_free_space(leaf) >=
1048 	    sizeof(struct btrfs_item) + extent_item_size) {
1049 
1050 		key.objectid = ino;
1051 		key.type = BTRFS_EXTENT_DATA_KEY;
1052 		key.offset = start;
1053 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1054 			struct btrfs_key slot_key;
1055 
1056 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1057 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1058 				path->slots[0]++;
1059 		}
1060 		setup_items_for_insert(root, path, &key, &extent_item_size, 1);
1061 		*key_inserted = 1;
1062 	}
1063 
1064 	if (!replace_extent || !(*key_inserted))
1065 		btrfs_release_path(path);
1066 	if (drop_end)
1067 		*drop_end = found ? min(end, last_end) : end;
1068 	return ret;
1069 }
1070 
1071 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1072 		       struct btrfs_root *root, struct inode *inode, u64 start,
1073 		       u64 end, int drop_cache)
1074 {
1075 	struct btrfs_path *path;
1076 	int ret;
1077 
1078 	path = btrfs_alloc_path();
1079 	if (!path)
1080 		return -ENOMEM;
1081 	ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path, start,
1082 				   end, NULL, drop_cache, 0, 0, NULL);
1083 	btrfs_free_path(path);
1084 	return ret;
1085 }
1086 
1087 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1088 			    u64 objectid, u64 bytenr, u64 orig_offset,
1089 			    u64 *start, u64 *end)
1090 {
1091 	struct btrfs_file_extent_item *fi;
1092 	struct btrfs_key key;
1093 	u64 extent_end;
1094 
1095 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1096 		return 0;
1097 
1098 	btrfs_item_key_to_cpu(leaf, &key, slot);
1099 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1100 		return 0;
1101 
1102 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1103 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1104 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1105 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1106 	    btrfs_file_extent_compression(leaf, fi) ||
1107 	    btrfs_file_extent_encryption(leaf, fi) ||
1108 	    btrfs_file_extent_other_encoding(leaf, fi))
1109 		return 0;
1110 
1111 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1112 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1113 		return 0;
1114 
1115 	*start = key.offset;
1116 	*end = extent_end;
1117 	return 1;
1118 }
1119 
1120 /*
1121  * Mark extent in the range start - end as written.
1122  *
1123  * This changes extent type from 'pre-allocated' to 'regular'. If only
1124  * part of extent is marked as written, the extent will be split into
1125  * two or three.
1126  */
1127 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1128 			      struct btrfs_inode *inode, u64 start, u64 end)
1129 {
1130 	struct btrfs_fs_info *fs_info = trans->fs_info;
1131 	struct btrfs_root *root = inode->root;
1132 	struct extent_buffer *leaf;
1133 	struct btrfs_path *path;
1134 	struct btrfs_file_extent_item *fi;
1135 	struct btrfs_ref ref = { 0 };
1136 	struct btrfs_key key;
1137 	struct btrfs_key new_key;
1138 	u64 bytenr;
1139 	u64 num_bytes;
1140 	u64 extent_end;
1141 	u64 orig_offset;
1142 	u64 other_start;
1143 	u64 other_end;
1144 	u64 split;
1145 	int del_nr = 0;
1146 	int del_slot = 0;
1147 	int recow;
1148 	int ret;
1149 	u64 ino = btrfs_ino(inode);
1150 
1151 	path = btrfs_alloc_path();
1152 	if (!path)
1153 		return -ENOMEM;
1154 again:
1155 	recow = 0;
1156 	split = start;
1157 	key.objectid = ino;
1158 	key.type = BTRFS_EXTENT_DATA_KEY;
1159 	key.offset = split;
1160 
1161 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1162 	if (ret < 0)
1163 		goto out;
1164 	if (ret > 0 && path->slots[0] > 0)
1165 		path->slots[0]--;
1166 
1167 	leaf = path->nodes[0];
1168 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1169 	if (key.objectid != ino ||
1170 	    key.type != BTRFS_EXTENT_DATA_KEY) {
1171 		ret = -EINVAL;
1172 		btrfs_abort_transaction(trans, ret);
1173 		goto out;
1174 	}
1175 	fi = btrfs_item_ptr(leaf, path->slots[0],
1176 			    struct btrfs_file_extent_item);
1177 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1178 		ret = -EINVAL;
1179 		btrfs_abort_transaction(trans, ret);
1180 		goto out;
1181 	}
1182 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1183 	if (key.offset > start || extent_end < end) {
1184 		ret = -EINVAL;
1185 		btrfs_abort_transaction(trans, ret);
1186 		goto out;
1187 	}
1188 
1189 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1190 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1191 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1192 	memcpy(&new_key, &key, sizeof(new_key));
1193 
1194 	if (start == key.offset && end < extent_end) {
1195 		other_start = 0;
1196 		other_end = start;
1197 		if (extent_mergeable(leaf, path->slots[0] - 1,
1198 				     ino, bytenr, orig_offset,
1199 				     &other_start, &other_end)) {
1200 			new_key.offset = end;
1201 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1202 			fi = btrfs_item_ptr(leaf, path->slots[0],
1203 					    struct btrfs_file_extent_item);
1204 			btrfs_set_file_extent_generation(leaf, fi,
1205 							 trans->transid);
1206 			btrfs_set_file_extent_num_bytes(leaf, fi,
1207 							extent_end - end);
1208 			btrfs_set_file_extent_offset(leaf, fi,
1209 						     end - orig_offset);
1210 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1211 					    struct btrfs_file_extent_item);
1212 			btrfs_set_file_extent_generation(leaf, fi,
1213 							 trans->transid);
1214 			btrfs_set_file_extent_num_bytes(leaf, fi,
1215 							end - other_start);
1216 			btrfs_mark_buffer_dirty(leaf);
1217 			goto out;
1218 		}
1219 	}
1220 
1221 	if (start > key.offset && end == extent_end) {
1222 		other_start = end;
1223 		other_end = 0;
1224 		if (extent_mergeable(leaf, path->slots[0] + 1,
1225 				     ino, bytenr, orig_offset,
1226 				     &other_start, &other_end)) {
1227 			fi = btrfs_item_ptr(leaf, path->slots[0],
1228 					    struct btrfs_file_extent_item);
1229 			btrfs_set_file_extent_num_bytes(leaf, fi,
1230 							start - key.offset);
1231 			btrfs_set_file_extent_generation(leaf, fi,
1232 							 trans->transid);
1233 			path->slots[0]++;
1234 			new_key.offset = start;
1235 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1236 
1237 			fi = btrfs_item_ptr(leaf, path->slots[0],
1238 					    struct btrfs_file_extent_item);
1239 			btrfs_set_file_extent_generation(leaf, fi,
1240 							 trans->transid);
1241 			btrfs_set_file_extent_num_bytes(leaf, fi,
1242 							other_end - start);
1243 			btrfs_set_file_extent_offset(leaf, fi,
1244 						     start - orig_offset);
1245 			btrfs_mark_buffer_dirty(leaf);
1246 			goto out;
1247 		}
1248 	}
1249 
1250 	while (start > key.offset || end < extent_end) {
1251 		if (key.offset == start)
1252 			split = end;
1253 
1254 		new_key.offset = split;
1255 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1256 		if (ret == -EAGAIN) {
1257 			btrfs_release_path(path);
1258 			goto again;
1259 		}
1260 		if (ret < 0) {
1261 			btrfs_abort_transaction(trans, ret);
1262 			goto out;
1263 		}
1264 
1265 		leaf = path->nodes[0];
1266 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1267 				    struct btrfs_file_extent_item);
1268 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1269 		btrfs_set_file_extent_num_bytes(leaf, fi,
1270 						split - key.offset);
1271 
1272 		fi = btrfs_item_ptr(leaf, path->slots[0],
1273 				    struct btrfs_file_extent_item);
1274 
1275 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1276 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1277 		btrfs_set_file_extent_num_bytes(leaf, fi,
1278 						extent_end - split);
1279 		btrfs_mark_buffer_dirty(leaf);
1280 
1281 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1282 				       num_bytes, 0);
1283 		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1284 				    orig_offset);
1285 		ret = btrfs_inc_extent_ref(trans, &ref);
1286 		if (ret) {
1287 			btrfs_abort_transaction(trans, ret);
1288 			goto out;
1289 		}
1290 
1291 		if (split == start) {
1292 			key.offset = start;
1293 		} else {
1294 			if (start != key.offset) {
1295 				ret = -EINVAL;
1296 				btrfs_abort_transaction(trans, ret);
1297 				goto out;
1298 			}
1299 			path->slots[0]--;
1300 			extent_end = end;
1301 		}
1302 		recow = 1;
1303 	}
1304 
1305 	other_start = end;
1306 	other_end = 0;
1307 	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1308 			       num_bytes, 0);
1309 	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1310 	if (extent_mergeable(leaf, path->slots[0] + 1,
1311 			     ino, bytenr, orig_offset,
1312 			     &other_start, &other_end)) {
1313 		if (recow) {
1314 			btrfs_release_path(path);
1315 			goto again;
1316 		}
1317 		extent_end = other_end;
1318 		del_slot = path->slots[0] + 1;
1319 		del_nr++;
1320 		ret = btrfs_free_extent(trans, &ref);
1321 		if (ret) {
1322 			btrfs_abort_transaction(trans, ret);
1323 			goto out;
1324 		}
1325 	}
1326 	other_start = 0;
1327 	other_end = start;
1328 	if (extent_mergeable(leaf, path->slots[0] - 1,
1329 			     ino, bytenr, orig_offset,
1330 			     &other_start, &other_end)) {
1331 		if (recow) {
1332 			btrfs_release_path(path);
1333 			goto again;
1334 		}
1335 		key.offset = other_start;
1336 		del_slot = path->slots[0];
1337 		del_nr++;
1338 		ret = btrfs_free_extent(trans, &ref);
1339 		if (ret) {
1340 			btrfs_abort_transaction(trans, ret);
1341 			goto out;
1342 		}
1343 	}
1344 	if (del_nr == 0) {
1345 		fi = btrfs_item_ptr(leaf, path->slots[0],
1346 			   struct btrfs_file_extent_item);
1347 		btrfs_set_file_extent_type(leaf, fi,
1348 					   BTRFS_FILE_EXTENT_REG);
1349 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1350 		btrfs_mark_buffer_dirty(leaf);
1351 	} else {
1352 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1353 			   struct btrfs_file_extent_item);
1354 		btrfs_set_file_extent_type(leaf, fi,
1355 					   BTRFS_FILE_EXTENT_REG);
1356 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1357 		btrfs_set_file_extent_num_bytes(leaf, fi,
1358 						extent_end - key.offset);
1359 		btrfs_mark_buffer_dirty(leaf);
1360 
1361 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1362 		if (ret < 0) {
1363 			btrfs_abort_transaction(trans, ret);
1364 			goto out;
1365 		}
1366 	}
1367 out:
1368 	btrfs_free_path(path);
1369 	return 0;
1370 }
1371 
1372 /*
1373  * on error we return an unlocked page and the error value
1374  * on success we return a locked page and 0
1375  */
1376 static int prepare_uptodate_page(struct inode *inode,
1377 				 struct page *page, u64 pos,
1378 				 bool force_uptodate)
1379 {
1380 	int ret = 0;
1381 
1382 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1383 	    !PageUptodate(page)) {
1384 		ret = btrfs_readpage(NULL, page);
1385 		if (ret)
1386 			return ret;
1387 		lock_page(page);
1388 		if (!PageUptodate(page)) {
1389 			unlock_page(page);
1390 			return -EIO;
1391 		}
1392 		if (page->mapping != inode->i_mapping) {
1393 			unlock_page(page);
1394 			return -EAGAIN;
1395 		}
1396 	}
1397 	return 0;
1398 }
1399 
1400 /*
1401  * this just gets pages into the page cache and locks them down.
1402  */
1403 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1404 				  size_t num_pages, loff_t pos,
1405 				  size_t write_bytes, bool force_uptodate)
1406 {
1407 	int i;
1408 	unsigned long index = pos >> PAGE_SHIFT;
1409 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1410 	int err = 0;
1411 	int faili;
1412 
1413 	for (i = 0; i < num_pages; i++) {
1414 again:
1415 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1416 					       mask | __GFP_WRITE);
1417 		if (!pages[i]) {
1418 			faili = i - 1;
1419 			err = -ENOMEM;
1420 			goto fail;
1421 		}
1422 
1423 		if (i == 0)
1424 			err = prepare_uptodate_page(inode, pages[i], pos,
1425 						    force_uptodate);
1426 		if (!err && i == num_pages - 1)
1427 			err = prepare_uptodate_page(inode, pages[i],
1428 						    pos + write_bytes, false);
1429 		if (err) {
1430 			put_page(pages[i]);
1431 			if (err == -EAGAIN) {
1432 				err = 0;
1433 				goto again;
1434 			}
1435 			faili = i - 1;
1436 			goto fail;
1437 		}
1438 		wait_on_page_writeback(pages[i]);
1439 	}
1440 
1441 	return 0;
1442 fail:
1443 	while (faili >= 0) {
1444 		unlock_page(pages[faili]);
1445 		put_page(pages[faili]);
1446 		faili--;
1447 	}
1448 	return err;
1449 
1450 }
1451 
1452 /*
1453  * This function locks the extent and properly waits for data=ordered extents
1454  * to finish before allowing the pages to be modified if need.
1455  *
1456  * The return value:
1457  * 1 - the extent is locked
1458  * 0 - the extent is not locked, and everything is OK
1459  * -EAGAIN - need re-prepare the pages
1460  * the other < 0 number - Something wrong happens
1461  */
1462 static noinline int
1463 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1464 				size_t num_pages, loff_t pos,
1465 				size_t write_bytes,
1466 				u64 *lockstart, u64 *lockend,
1467 				struct extent_state **cached_state)
1468 {
1469 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1470 	u64 start_pos;
1471 	u64 last_pos;
1472 	int i;
1473 	int ret = 0;
1474 
1475 	start_pos = round_down(pos, fs_info->sectorsize);
1476 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1477 
1478 	if (start_pos < inode->vfs_inode.i_size) {
1479 		struct btrfs_ordered_extent *ordered;
1480 
1481 		lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1482 				cached_state);
1483 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1484 						     last_pos - start_pos + 1);
1485 		if (ordered &&
1486 		    ordered->file_offset + ordered->num_bytes > start_pos &&
1487 		    ordered->file_offset <= last_pos) {
1488 			unlock_extent_cached(&inode->io_tree, start_pos,
1489 					last_pos, cached_state);
1490 			for (i = 0; i < num_pages; i++) {
1491 				unlock_page(pages[i]);
1492 				put_page(pages[i]);
1493 			}
1494 			btrfs_start_ordered_extent(ordered, 1);
1495 			btrfs_put_ordered_extent(ordered);
1496 			return -EAGAIN;
1497 		}
1498 		if (ordered)
1499 			btrfs_put_ordered_extent(ordered);
1500 
1501 		*lockstart = start_pos;
1502 		*lockend = last_pos;
1503 		ret = 1;
1504 	}
1505 
1506 	/*
1507 	 * It's possible the pages are dirty right now, but we don't want
1508 	 * to clean them yet because copy_from_user may catch a page fault
1509 	 * and we might have to fall back to one page at a time.  If that
1510 	 * happens, we'll unlock these pages and we'd have a window where
1511 	 * reclaim could sneak in and drop the once-dirty page on the floor
1512 	 * without writing it.
1513 	 *
1514 	 * We have the pages locked and the extent range locked, so there's
1515 	 * no way someone can start IO on any dirty pages in this range.
1516 	 *
1517 	 * We'll call btrfs_dirty_pages() later on, and that will flip around
1518 	 * delalloc bits and dirty the pages as required.
1519 	 */
1520 	for (i = 0; i < num_pages; i++) {
1521 		set_page_extent_mapped(pages[i]);
1522 		WARN_ON(!PageLocked(pages[i]));
1523 	}
1524 
1525 	return ret;
1526 }
1527 
1528 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1529 			   size_t *write_bytes, bool nowait)
1530 {
1531 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1532 	struct btrfs_root *root = inode->root;
1533 	u64 lockstart, lockend;
1534 	u64 num_bytes;
1535 	int ret;
1536 
1537 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1538 		return 0;
1539 
1540 	if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1541 		return -EAGAIN;
1542 
1543 	lockstart = round_down(pos, fs_info->sectorsize);
1544 	lockend = round_up(pos + *write_bytes,
1545 			   fs_info->sectorsize) - 1;
1546 	num_bytes = lockend - lockstart + 1;
1547 
1548 	if (nowait) {
1549 		struct btrfs_ordered_extent *ordered;
1550 
1551 		if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1552 			return -EAGAIN;
1553 
1554 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1555 						     num_bytes);
1556 		if (ordered) {
1557 			btrfs_put_ordered_extent(ordered);
1558 			ret = -EAGAIN;
1559 			goto out_unlock;
1560 		}
1561 	} else {
1562 		btrfs_lock_and_flush_ordered_range(inode, lockstart,
1563 						   lockend, NULL);
1564 	}
1565 
1566 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1567 			NULL, NULL, NULL, false);
1568 	if (ret <= 0) {
1569 		ret = 0;
1570 		if (!nowait)
1571 			btrfs_drew_write_unlock(&root->snapshot_lock);
1572 	} else {
1573 		*write_bytes = min_t(size_t, *write_bytes ,
1574 				     num_bytes - pos + lockstart);
1575 	}
1576 out_unlock:
1577 	unlock_extent(&inode->io_tree, lockstart, lockend);
1578 
1579 	return ret;
1580 }
1581 
1582 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1583 			      size_t *write_bytes)
1584 {
1585 	return check_can_nocow(inode, pos, write_bytes, true);
1586 }
1587 
1588 /*
1589  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1590  *
1591  * @pos:	 File offset
1592  * @write_bytes: The length to write, will be updated to the nocow writeable
1593  *		 range
1594  *
1595  * This function will flush ordered extents in the range to ensure proper
1596  * nocow checks.
1597  *
1598  * Return:
1599  * >0		and update @write_bytes if we can do nocow write
1600  *  0		if we can't do nocow write
1601  * -EAGAIN	if we can't get the needed lock or there are ordered extents
1602  * 		for * (nowait == true) case
1603  * <0		if other error happened
1604  *
1605  * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1606  */
1607 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1608 			   size_t *write_bytes)
1609 {
1610 	return check_can_nocow(inode, pos, write_bytes, false);
1611 }
1612 
1613 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1614 {
1615 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1616 }
1617 
1618 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1619 					       struct iov_iter *i)
1620 {
1621 	struct file *file = iocb->ki_filp;
1622 	loff_t pos = iocb->ki_pos;
1623 	struct inode *inode = file_inode(file);
1624 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1625 	struct page **pages = NULL;
1626 	struct extent_changeset *data_reserved = NULL;
1627 	u64 release_bytes = 0;
1628 	u64 lockstart;
1629 	u64 lockend;
1630 	size_t num_written = 0;
1631 	int nrptrs;
1632 	int ret = 0;
1633 	bool only_release_metadata = false;
1634 	bool force_page_uptodate = false;
1635 
1636 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1637 			PAGE_SIZE / (sizeof(struct page *)));
1638 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1639 	nrptrs = max(nrptrs, 8);
1640 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1641 	if (!pages)
1642 		return -ENOMEM;
1643 
1644 	while (iov_iter_count(i) > 0) {
1645 		struct extent_state *cached_state = NULL;
1646 		size_t offset = offset_in_page(pos);
1647 		size_t sector_offset;
1648 		size_t write_bytes = min(iov_iter_count(i),
1649 					 nrptrs * (size_t)PAGE_SIZE -
1650 					 offset);
1651 		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1652 						PAGE_SIZE);
1653 		size_t reserve_bytes;
1654 		size_t dirty_pages;
1655 		size_t copied;
1656 		size_t dirty_sectors;
1657 		size_t num_sectors;
1658 		int extents_locked;
1659 
1660 		WARN_ON(num_pages > nrptrs);
1661 
1662 		/*
1663 		 * Fault pages before locking them in prepare_pages
1664 		 * to avoid recursive lock
1665 		 */
1666 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1667 			ret = -EFAULT;
1668 			break;
1669 		}
1670 
1671 		only_release_metadata = false;
1672 		sector_offset = pos & (fs_info->sectorsize - 1);
1673 		reserve_bytes = round_up(write_bytes + sector_offset,
1674 				fs_info->sectorsize);
1675 
1676 		extent_changeset_release(data_reserved);
1677 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1678 						  &data_reserved, pos,
1679 						  write_bytes);
1680 		if (ret < 0) {
1681 			if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1682 						   &write_bytes) > 0) {
1683 				/*
1684 				 * For nodata cow case, no need to reserve
1685 				 * data space.
1686 				 */
1687 				only_release_metadata = true;
1688 				/*
1689 				 * our prealloc extent may be smaller than
1690 				 * write_bytes, so scale down.
1691 				 */
1692 				num_pages = DIV_ROUND_UP(write_bytes + offset,
1693 							 PAGE_SIZE);
1694 				reserve_bytes = round_up(write_bytes +
1695 							 sector_offset,
1696 							 fs_info->sectorsize);
1697 			} else {
1698 				break;
1699 			}
1700 		}
1701 
1702 		WARN_ON(reserve_bytes == 0);
1703 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1704 				reserve_bytes);
1705 		if (ret) {
1706 			if (!only_release_metadata)
1707 				btrfs_free_reserved_data_space(BTRFS_I(inode),
1708 						data_reserved, pos,
1709 						write_bytes);
1710 			else
1711 				btrfs_check_nocow_unlock(BTRFS_I(inode));
1712 			break;
1713 		}
1714 
1715 		release_bytes = reserve_bytes;
1716 again:
1717 		/*
1718 		 * This is going to setup the pages array with the number of
1719 		 * pages we want, so we don't really need to worry about the
1720 		 * contents of pages from loop to loop
1721 		 */
1722 		ret = prepare_pages(inode, pages, num_pages,
1723 				    pos, write_bytes,
1724 				    force_page_uptodate);
1725 		if (ret) {
1726 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1727 						       reserve_bytes);
1728 			break;
1729 		}
1730 
1731 		extents_locked = lock_and_cleanup_extent_if_need(
1732 				BTRFS_I(inode), pages,
1733 				num_pages, pos, write_bytes, &lockstart,
1734 				&lockend, &cached_state);
1735 		if (extents_locked < 0) {
1736 			if (extents_locked == -EAGAIN)
1737 				goto again;
1738 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1739 						       reserve_bytes);
1740 			ret = extents_locked;
1741 			break;
1742 		}
1743 
1744 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1745 
1746 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1747 		dirty_sectors = round_up(copied + sector_offset,
1748 					fs_info->sectorsize);
1749 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1750 
1751 		/*
1752 		 * if we have trouble faulting in the pages, fall
1753 		 * back to one page at a time
1754 		 */
1755 		if (copied < write_bytes)
1756 			nrptrs = 1;
1757 
1758 		if (copied == 0) {
1759 			force_page_uptodate = true;
1760 			dirty_sectors = 0;
1761 			dirty_pages = 0;
1762 		} else {
1763 			force_page_uptodate = false;
1764 			dirty_pages = DIV_ROUND_UP(copied + offset,
1765 						   PAGE_SIZE);
1766 		}
1767 
1768 		if (num_sectors > dirty_sectors) {
1769 			/* release everything except the sectors we dirtied */
1770 			release_bytes -= dirty_sectors <<
1771 						fs_info->sb->s_blocksize_bits;
1772 			if (only_release_metadata) {
1773 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1774 							release_bytes, true);
1775 			} else {
1776 				u64 __pos;
1777 
1778 				__pos = round_down(pos,
1779 						   fs_info->sectorsize) +
1780 					(dirty_pages << PAGE_SHIFT);
1781 				btrfs_delalloc_release_space(BTRFS_I(inode),
1782 						data_reserved, __pos,
1783 						release_bytes, true);
1784 			}
1785 		}
1786 
1787 		release_bytes = round_up(copied + sector_offset,
1788 					fs_info->sectorsize);
1789 
1790 		if (copied > 0)
1791 			ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1792 						dirty_pages, pos, copied,
1793 						&cached_state);
1794 
1795 		/*
1796 		 * If we have not locked the extent range, because the range's
1797 		 * start offset is >= i_size, we might still have a non-NULL
1798 		 * cached extent state, acquired while marking the extent range
1799 		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1800 		 * possible cached extent state to avoid a memory leak.
1801 		 */
1802 		if (extents_locked)
1803 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1804 					     lockstart, lockend, &cached_state);
1805 		else
1806 			free_extent_state(cached_state);
1807 
1808 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1809 		if (ret) {
1810 			btrfs_drop_pages(pages, num_pages);
1811 			break;
1812 		}
1813 
1814 		release_bytes = 0;
1815 		if (only_release_metadata)
1816 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1817 
1818 		if (only_release_metadata && copied > 0) {
1819 			lockstart = round_down(pos,
1820 					       fs_info->sectorsize);
1821 			lockend = round_up(pos + copied,
1822 					   fs_info->sectorsize) - 1;
1823 
1824 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1825 				       lockend, EXTENT_NORESERVE, NULL,
1826 				       NULL, GFP_NOFS);
1827 		}
1828 
1829 		btrfs_drop_pages(pages, num_pages);
1830 
1831 		cond_resched();
1832 
1833 		balance_dirty_pages_ratelimited(inode->i_mapping);
1834 
1835 		pos += copied;
1836 		num_written += copied;
1837 	}
1838 
1839 	kfree(pages);
1840 
1841 	if (release_bytes) {
1842 		if (only_release_metadata) {
1843 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1844 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1845 					release_bytes, true);
1846 		} else {
1847 			btrfs_delalloc_release_space(BTRFS_I(inode),
1848 					data_reserved,
1849 					round_down(pos, fs_info->sectorsize),
1850 					release_bytes, true);
1851 		}
1852 	}
1853 
1854 	extent_changeset_free(data_reserved);
1855 	return num_written ? num_written : ret;
1856 }
1857 
1858 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1859 {
1860 	struct file *file = iocb->ki_filp;
1861 	struct inode *inode = file_inode(file);
1862 	loff_t pos;
1863 	ssize_t written;
1864 	ssize_t written_buffered;
1865 	loff_t endbyte;
1866 	int err;
1867 
1868 	written = btrfs_direct_IO(iocb, from);
1869 
1870 	if (written < 0 || !iov_iter_count(from))
1871 		return written;
1872 
1873 	pos = iocb->ki_pos;
1874 	written_buffered = btrfs_buffered_write(iocb, from);
1875 	if (written_buffered < 0) {
1876 		err = written_buffered;
1877 		goto out;
1878 	}
1879 	/*
1880 	 * Ensure all data is persisted. We want the next direct IO read to be
1881 	 * able to read what was just written.
1882 	 */
1883 	endbyte = pos + written_buffered - 1;
1884 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1885 	if (err)
1886 		goto out;
1887 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1888 	if (err)
1889 		goto out;
1890 	written += written_buffered;
1891 	iocb->ki_pos = pos + written_buffered;
1892 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1893 				 endbyte >> PAGE_SHIFT);
1894 out:
1895 	return written ? written : err;
1896 }
1897 
1898 static void update_time_for_write(struct inode *inode)
1899 {
1900 	struct timespec64 now;
1901 
1902 	if (IS_NOCMTIME(inode))
1903 		return;
1904 
1905 	now = current_time(inode);
1906 	if (!timespec64_equal(&inode->i_mtime, &now))
1907 		inode->i_mtime = now;
1908 
1909 	if (!timespec64_equal(&inode->i_ctime, &now))
1910 		inode->i_ctime = now;
1911 
1912 	if (IS_I_VERSION(inode))
1913 		inode_inc_iversion(inode);
1914 }
1915 
1916 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1917 				    struct iov_iter *from)
1918 {
1919 	struct file *file = iocb->ki_filp;
1920 	struct inode *inode = file_inode(file);
1921 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1922 	struct btrfs_root *root = BTRFS_I(inode)->root;
1923 	u64 start_pos;
1924 	u64 end_pos;
1925 	ssize_t num_written = 0;
1926 	const bool sync = iocb->ki_flags & IOCB_DSYNC;
1927 	ssize_t err;
1928 	loff_t pos;
1929 	size_t count;
1930 	loff_t oldsize;
1931 	int clean_page = 0;
1932 
1933 	if (!(iocb->ki_flags & IOCB_DIRECT) &&
1934 	    (iocb->ki_flags & IOCB_NOWAIT))
1935 		return -EOPNOTSUPP;
1936 
1937 	if (iocb->ki_flags & IOCB_NOWAIT) {
1938 		if (!inode_trylock(inode))
1939 			return -EAGAIN;
1940 	} else {
1941 		inode_lock(inode);
1942 	}
1943 
1944 	err = generic_write_checks(iocb, from);
1945 	if (err <= 0) {
1946 		inode_unlock(inode);
1947 		return err;
1948 	}
1949 
1950 	pos = iocb->ki_pos;
1951 	count = iov_iter_count(from);
1952 	if (iocb->ki_flags & IOCB_NOWAIT) {
1953 		size_t nocow_bytes = count;
1954 
1955 		/*
1956 		 * We will allocate space in case nodatacow is not set,
1957 		 * so bail
1958 		 */
1959 		if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes)
1960 		    <= 0) {
1961 			inode_unlock(inode);
1962 			return -EAGAIN;
1963 		}
1964 		/*
1965 		 * There are holes in the range or parts of the range that must
1966 		 * be COWed (shared extents, RO block groups, etc), so just bail
1967 		 * out.
1968 		 */
1969 		if (nocow_bytes < count) {
1970 			inode_unlock(inode);
1971 			return -EAGAIN;
1972 		}
1973 	}
1974 
1975 	current->backing_dev_info = inode_to_bdi(inode);
1976 	err = file_remove_privs(file);
1977 	if (err) {
1978 		inode_unlock(inode);
1979 		goto out;
1980 	}
1981 
1982 	/*
1983 	 * If BTRFS flips readonly due to some impossible error
1984 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1985 	 * although we have opened a file as writable, we have
1986 	 * to stop this write operation to ensure FS consistency.
1987 	 */
1988 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1989 		inode_unlock(inode);
1990 		err = -EROFS;
1991 		goto out;
1992 	}
1993 
1994 	/*
1995 	 * We reserve space for updating the inode when we reserve space for the
1996 	 * extent we are going to write, so we will enospc out there.  We don't
1997 	 * need to start yet another transaction to update the inode as we will
1998 	 * update the inode when we finish writing whatever data we write.
1999 	 */
2000 	update_time_for_write(inode);
2001 
2002 	start_pos = round_down(pos, fs_info->sectorsize);
2003 	oldsize = i_size_read(inode);
2004 	if (start_pos > oldsize) {
2005 		/* Expand hole size to cover write data, preventing empty gap */
2006 		end_pos = round_up(pos + count,
2007 				   fs_info->sectorsize);
2008 		err = btrfs_cont_expand(inode, oldsize, end_pos);
2009 		if (err) {
2010 			inode_unlock(inode);
2011 			goto out;
2012 		}
2013 		if (start_pos > round_up(oldsize, fs_info->sectorsize))
2014 			clean_page = 1;
2015 	}
2016 
2017 	if (sync)
2018 		atomic_inc(&BTRFS_I(inode)->sync_writers);
2019 
2020 	if (iocb->ki_flags & IOCB_DIRECT) {
2021 		/*
2022 		 * 1. We must always clear IOCB_DSYNC in order to not deadlock
2023 		 *    in iomap, as it calls generic_write_sync() in this case.
2024 		 * 2. If we are async, we can call iomap_dio_complete() either
2025 		 *    in
2026 		 *
2027 		 *    2.1. A worker thread from the last bio completed.  In this
2028 		 *	   case we need to mark the btrfs_dio_data that it is
2029 		 *	   async in order to call generic_write_sync() properly.
2030 		 *	   This is handled by setting BTRFS_DIO_SYNC_STUB in the
2031 		 *	   current->journal_info.
2032 		 *    2.2  The submitter context, because all IO completed
2033 		 *         before we exited iomap_dio_rw().  In this case we can
2034 		 *         just re-set the IOCB_DSYNC on the iocb and we'll do
2035 		 *         the sync below.  If our ->end_io() gets called and
2036 		 *         current->journal_info is set, then we know we're in
2037 		 *         our current context and we will clear
2038 		 *         current->journal_info to indicate that we need to
2039 		 *         sync below.
2040 		 */
2041 		if (sync) {
2042 			ASSERT(current->journal_info == NULL);
2043 			iocb->ki_flags &= ~IOCB_DSYNC;
2044 			current->journal_info = BTRFS_DIO_SYNC_STUB;
2045 		}
2046 		num_written = __btrfs_direct_write(iocb, from);
2047 
2048 		/*
2049 		 * As stated above, we cleared journal_info, so we need to do
2050 		 * the sync ourselves.
2051 		 */
2052 		if (sync && current->journal_info == NULL)
2053 			iocb->ki_flags |= IOCB_DSYNC;
2054 		current->journal_info = NULL;
2055 	} else {
2056 		num_written = btrfs_buffered_write(iocb, from);
2057 		if (num_written > 0)
2058 			iocb->ki_pos = pos + num_written;
2059 		if (clean_page)
2060 			pagecache_isize_extended(inode, oldsize,
2061 						i_size_read(inode));
2062 	}
2063 
2064 	inode_unlock(inode);
2065 
2066 	/*
2067 	 * We also have to set last_sub_trans to the current log transid,
2068 	 * otherwise subsequent syncs to a file that's been synced in this
2069 	 * transaction will appear to have already occurred.
2070 	 */
2071 	spin_lock(&BTRFS_I(inode)->lock);
2072 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
2073 	spin_unlock(&BTRFS_I(inode)->lock);
2074 	if (num_written > 0)
2075 		num_written = generic_write_sync(iocb, num_written);
2076 
2077 	if (sync)
2078 		atomic_dec(&BTRFS_I(inode)->sync_writers);
2079 out:
2080 	current->backing_dev_info = NULL;
2081 	return num_written ? num_written : err;
2082 }
2083 
2084 int btrfs_release_file(struct inode *inode, struct file *filp)
2085 {
2086 	struct btrfs_file_private *private = filp->private_data;
2087 
2088 	if (private && private->filldir_buf)
2089 		kfree(private->filldir_buf);
2090 	kfree(private);
2091 	filp->private_data = NULL;
2092 
2093 	/*
2094 	 * Set by setattr when we are about to truncate a file from a non-zero
2095 	 * size to a zero size.  This tries to flush down new bytes that may
2096 	 * have been written if the application were using truncate to replace
2097 	 * a file in place.
2098 	 */
2099 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2100 			       &BTRFS_I(inode)->runtime_flags))
2101 			filemap_flush(inode->i_mapping);
2102 	return 0;
2103 }
2104 
2105 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2106 {
2107 	int ret;
2108 	struct blk_plug plug;
2109 
2110 	/*
2111 	 * This is only called in fsync, which would do synchronous writes, so
2112 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2113 	 * multiple disks using raid profile, a large IO can be split to
2114 	 * several segments of stripe length (currently 64K).
2115 	 */
2116 	blk_start_plug(&plug);
2117 	atomic_inc(&BTRFS_I(inode)->sync_writers);
2118 	ret = btrfs_fdatawrite_range(inode, start, end);
2119 	atomic_dec(&BTRFS_I(inode)->sync_writers);
2120 	blk_finish_plug(&plug);
2121 
2122 	return ret;
2123 }
2124 
2125 /*
2126  * fsync call for both files and directories.  This logs the inode into
2127  * the tree log instead of forcing full commits whenever possible.
2128  *
2129  * It needs to call filemap_fdatawait so that all ordered extent updates are
2130  * in the metadata btree are up to date for copying to the log.
2131  *
2132  * It drops the inode mutex before doing the tree log commit.  This is an
2133  * important optimization for directories because holding the mutex prevents
2134  * new operations on the dir while we write to disk.
2135  */
2136 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2137 {
2138 	struct dentry *dentry = file_dentry(file);
2139 	struct inode *inode = d_inode(dentry);
2140 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2141 	struct btrfs_root *root = BTRFS_I(inode)->root;
2142 	struct btrfs_trans_handle *trans;
2143 	struct btrfs_log_ctx ctx;
2144 	int ret = 0, err;
2145 	u64 len;
2146 	bool full_sync;
2147 
2148 	trace_btrfs_sync_file(file, datasync);
2149 
2150 	btrfs_init_log_ctx(&ctx, inode);
2151 
2152 	/*
2153 	 * Always set the range to a full range, otherwise we can get into
2154 	 * several problems, from missing file extent items to represent holes
2155 	 * when not using the NO_HOLES feature, to log tree corruption due to
2156 	 * races between hole detection during logging and completion of ordered
2157 	 * extents outside the range, to missing checksums due to ordered extents
2158 	 * for which we flushed only a subset of their pages.
2159 	 */
2160 	start = 0;
2161 	end = LLONG_MAX;
2162 	len = (u64)LLONG_MAX + 1;
2163 
2164 	/*
2165 	 * We write the dirty pages in the range and wait until they complete
2166 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
2167 	 * multi-task, and make the performance up.  See
2168 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2169 	 */
2170 	ret = start_ordered_ops(inode, start, end);
2171 	if (ret)
2172 		goto out;
2173 
2174 	inode_lock(inode);
2175 
2176 	/*
2177 	 * We take the dio_sem here because the tree log stuff can race with
2178 	 * lockless dio writes and get an extent map logged for an extent we
2179 	 * never waited on.  We need it this high up for lockdep reasons.
2180 	 */
2181 	down_write(&BTRFS_I(inode)->dio_sem);
2182 
2183 	atomic_inc(&root->log_batch);
2184 
2185 	/*
2186 	 * Always check for the full sync flag while holding the inode's lock,
2187 	 * to avoid races with other tasks. The flag must be either set all the
2188 	 * time during logging or always off all the time while logging.
2189 	 */
2190 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2191 			     &BTRFS_I(inode)->runtime_flags);
2192 
2193 	/*
2194 	 * Before we acquired the inode's lock, someone may have dirtied more
2195 	 * pages in the target range. We need to make sure that writeback for
2196 	 * any such pages does not start while we are logging the inode, because
2197 	 * if it does, any of the following might happen when we are not doing a
2198 	 * full inode sync:
2199 	 *
2200 	 * 1) We log an extent after its writeback finishes but before its
2201 	 *    checksums are added to the csum tree, leading to -EIO errors
2202 	 *    when attempting to read the extent after a log replay.
2203 	 *
2204 	 * 2) We can end up logging an extent before its writeback finishes.
2205 	 *    Therefore after the log replay we will have a file extent item
2206 	 *    pointing to an unwritten extent (and no data checksums as well).
2207 	 *
2208 	 * So trigger writeback for any eventual new dirty pages and then we
2209 	 * wait for all ordered extents to complete below.
2210 	 */
2211 	ret = start_ordered_ops(inode, start, end);
2212 	if (ret) {
2213 		up_write(&BTRFS_I(inode)->dio_sem);
2214 		inode_unlock(inode);
2215 		goto out;
2216 	}
2217 
2218 	/*
2219 	 * We have to do this here to avoid the priority inversion of waiting on
2220 	 * IO of a lower priority task while holding a transaction open.
2221 	 *
2222 	 * For a full fsync we wait for the ordered extents to complete while
2223 	 * for a fast fsync we wait just for writeback to complete, and then
2224 	 * attach the ordered extents to the transaction so that a transaction
2225 	 * commit waits for their completion, to avoid data loss if we fsync,
2226 	 * the current transaction commits before the ordered extents complete
2227 	 * and a power failure happens right after that.
2228 	 */
2229 	if (full_sync) {
2230 		ret = btrfs_wait_ordered_range(inode, start, len);
2231 	} else {
2232 		/*
2233 		 * Get our ordered extents as soon as possible to avoid doing
2234 		 * checksum lookups in the csum tree, and use instead the
2235 		 * checksums attached to the ordered extents.
2236 		 */
2237 		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2238 						      &ctx.ordered_extents);
2239 		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2240 	}
2241 
2242 	if (ret)
2243 		goto out_release_extents;
2244 
2245 	atomic_inc(&root->log_batch);
2246 
2247 	/*
2248 	 * If we are doing a fast fsync we can not bail out if the inode's
2249 	 * last_trans is <= then the last committed transaction, because we only
2250 	 * update the last_trans of the inode during ordered extent completion,
2251 	 * and for a fast fsync we don't wait for that, we only wait for the
2252 	 * writeback to complete.
2253 	 */
2254 	smp_mb();
2255 	if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2256 	    (BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed &&
2257 	     (full_sync || list_empty(&ctx.ordered_extents)))) {
2258 		/*
2259 		 * We've had everything committed since the last time we were
2260 		 * modified so clear this flag in case it was set for whatever
2261 		 * reason, it's no longer relevant.
2262 		 */
2263 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2264 			  &BTRFS_I(inode)->runtime_flags);
2265 		/*
2266 		 * An ordered extent might have started before and completed
2267 		 * already with io errors, in which case the inode was not
2268 		 * updated and we end up here. So check the inode's mapping
2269 		 * for any errors that might have happened since we last
2270 		 * checked called fsync.
2271 		 */
2272 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2273 		goto out_release_extents;
2274 	}
2275 
2276 	/*
2277 	 * We use start here because we will need to wait on the IO to complete
2278 	 * in btrfs_sync_log, which could require joining a transaction (for
2279 	 * example checking cross references in the nocow path).  If we use join
2280 	 * here we could get into a situation where we're waiting on IO to
2281 	 * happen that is blocked on a transaction trying to commit.  With start
2282 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2283 	 * before we start blocking joiners.  This comment is to keep somebody
2284 	 * from thinking they are super smart and changing this to
2285 	 * btrfs_join_transaction *cough*Josef*cough*.
2286 	 */
2287 	trans = btrfs_start_transaction(root, 0);
2288 	if (IS_ERR(trans)) {
2289 		ret = PTR_ERR(trans);
2290 		goto out_release_extents;
2291 	}
2292 
2293 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2294 	btrfs_release_log_ctx_extents(&ctx);
2295 	if (ret < 0) {
2296 		/* Fallthrough and commit/free transaction. */
2297 		ret = 1;
2298 	}
2299 
2300 	/* we've logged all the items and now have a consistent
2301 	 * version of the file in the log.  It is possible that
2302 	 * someone will come in and modify the file, but that's
2303 	 * fine because the log is consistent on disk, and we
2304 	 * have references to all of the file's extents
2305 	 *
2306 	 * It is possible that someone will come in and log the
2307 	 * file again, but that will end up using the synchronization
2308 	 * inside btrfs_sync_log to keep things safe.
2309 	 */
2310 	up_write(&BTRFS_I(inode)->dio_sem);
2311 	inode_unlock(inode);
2312 
2313 	if (ret != BTRFS_NO_LOG_SYNC) {
2314 		if (!ret) {
2315 			ret = btrfs_sync_log(trans, root, &ctx);
2316 			if (!ret) {
2317 				ret = btrfs_end_transaction(trans);
2318 				goto out;
2319 			}
2320 		}
2321 		if (!full_sync) {
2322 			ret = btrfs_wait_ordered_range(inode, start, len);
2323 			if (ret) {
2324 				btrfs_end_transaction(trans);
2325 				goto out;
2326 			}
2327 		}
2328 		ret = btrfs_commit_transaction(trans);
2329 	} else {
2330 		ret = btrfs_end_transaction(trans);
2331 	}
2332 out:
2333 	ASSERT(list_empty(&ctx.list));
2334 	err = file_check_and_advance_wb_err(file);
2335 	if (!ret)
2336 		ret = err;
2337 	return ret > 0 ? -EIO : ret;
2338 
2339 out_release_extents:
2340 	btrfs_release_log_ctx_extents(&ctx);
2341 	up_write(&BTRFS_I(inode)->dio_sem);
2342 	inode_unlock(inode);
2343 	goto out;
2344 }
2345 
2346 static const struct vm_operations_struct btrfs_file_vm_ops = {
2347 	.fault		= filemap_fault,
2348 	.map_pages	= filemap_map_pages,
2349 	.page_mkwrite	= btrfs_page_mkwrite,
2350 };
2351 
2352 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2353 {
2354 	struct address_space *mapping = filp->f_mapping;
2355 
2356 	if (!mapping->a_ops->readpage)
2357 		return -ENOEXEC;
2358 
2359 	file_accessed(filp);
2360 	vma->vm_ops = &btrfs_file_vm_ops;
2361 
2362 	return 0;
2363 }
2364 
2365 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2366 			  int slot, u64 start, u64 end)
2367 {
2368 	struct btrfs_file_extent_item *fi;
2369 	struct btrfs_key key;
2370 
2371 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2372 		return 0;
2373 
2374 	btrfs_item_key_to_cpu(leaf, &key, slot);
2375 	if (key.objectid != btrfs_ino(inode) ||
2376 	    key.type != BTRFS_EXTENT_DATA_KEY)
2377 		return 0;
2378 
2379 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2380 
2381 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2382 		return 0;
2383 
2384 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2385 		return 0;
2386 
2387 	if (key.offset == end)
2388 		return 1;
2389 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2390 		return 1;
2391 	return 0;
2392 }
2393 
2394 static int fill_holes(struct btrfs_trans_handle *trans,
2395 		struct btrfs_inode *inode,
2396 		struct btrfs_path *path, u64 offset, u64 end)
2397 {
2398 	struct btrfs_fs_info *fs_info = trans->fs_info;
2399 	struct btrfs_root *root = inode->root;
2400 	struct extent_buffer *leaf;
2401 	struct btrfs_file_extent_item *fi;
2402 	struct extent_map *hole_em;
2403 	struct extent_map_tree *em_tree = &inode->extent_tree;
2404 	struct btrfs_key key;
2405 	int ret;
2406 
2407 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2408 		goto out;
2409 
2410 	key.objectid = btrfs_ino(inode);
2411 	key.type = BTRFS_EXTENT_DATA_KEY;
2412 	key.offset = offset;
2413 
2414 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2415 	if (ret <= 0) {
2416 		/*
2417 		 * We should have dropped this offset, so if we find it then
2418 		 * something has gone horribly wrong.
2419 		 */
2420 		if (ret == 0)
2421 			ret = -EINVAL;
2422 		return ret;
2423 	}
2424 
2425 	leaf = path->nodes[0];
2426 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2427 		u64 num_bytes;
2428 
2429 		path->slots[0]--;
2430 		fi = btrfs_item_ptr(leaf, path->slots[0],
2431 				    struct btrfs_file_extent_item);
2432 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2433 			end - offset;
2434 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2435 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2436 		btrfs_set_file_extent_offset(leaf, fi, 0);
2437 		btrfs_mark_buffer_dirty(leaf);
2438 		goto out;
2439 	}
2440 
2441 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2442 		u64 num_bytes;
2443 
2444 		key.offset = offset;
2445 		btrfs_set_item_key_safe(fs_info, path, &key);
2446 		fi = btrfs_item_ptr(leaf, path->slots[0],
2447 				    struct btrfs_file_extent_item);
2448 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2449 			offset;
2450 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2451 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2452 		btrfs_set_file_extent_offset(leaf, fi, 0);
2453 		btrfs_mark_buffer_dirty(leaf);
2454 		goto out;
2455 	}
2456 	btrfs_release_path(path);
2457 
2458 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2459 			offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2460 	if (ret)
2461 		return ret;
2462 
2463 out:
2464 	btrfs_release_path(path);
2465 
2466 	hole_em = alloc_extent_map();
2467 	if (!hole_em) {
2468 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2469 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2470 	} else {
2471 		hole_em->start = offset;
2472 		hole_em->len = end - offset;
2473 		hole_em->ram_bytes = hole_em->len;
2474 		hole_em->orig_start = offset;
2475 
2476 		hole_em->block_start = EXTENT_MAP_HOLE;
2477 		hole_em->block_len = 0;
2478 		hole_em->orig_block_len = 0;
2479 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2480 		hole_em->generation = trans->transid;
2481 
2482 		do {
2483 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2484 			write_lock(&em_tree->lock);
2485 			ret = add_extent_mapping(em_tree, hole_em, 1);
2486 			write_unlock(&em_tree->lock);
2487 		} while (ret == -EEXIST);
2488 		free_extent_map(hole_em);
2489 		if (ret)
2490 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2491 					&inode->runtime_flags);
2492 	}
2493 
2494 	return 0;
2495 }
2496 
2497 /*
2498  * Find a hole extent on given inode and change start/len to the end of hole
2499  * extent.(hole/vacuum extent whose em->start <= start &&
2500  *	   em->start + em->len > start)
2501  * When a hole extent is found, return 1 and modify start/len.
2502  */
2503 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2504 {
2505 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2506 	struct extent_map *em;
2507 	int ret = 0;
2508 
2509 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2510 			      round_down(*start, fs_info->sectorsize),
2511 			      round_up(*len, fs_info->sectorsize));
2512 	if (IS_ERR(em))
2513 		return PTR_ERR(em);
2514 
2515 	/* Hole or vacuum extent(only exists in no-hole mode) */
2516 	if (em->block_start == EXTENT_MAP_HOLE) {
2517 		ret = 1;
2518 		*len = em->start + em->len > *start + *len ?
2519 		       0 : *start + *len - em->start - em->len;
2520 		*start = em->start + em->len;
2521 	}
2522 	free_extent_map(em);
2523 	return ret;
2524 }
2525 
2526 static int btrfs_punch_hole_lock_range(struct inode *inode,
2527 				       const u64 lockstart,
2528 				       const u64 lockend,
2529 				       struct extent_state **cached_state)
2530 {
2531 	while (1) {
2532 		struct btrfs_ordered_extent *ordered;
2533 		int ret;
2534 
2535 		truncate_pagecache_range(inode, lockstart, lockend);
2536 
2537 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2538 				 cached_state);
2539 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2540 							    lockend);
2541 
2542 		/*
2543 		 * We need to make sure we have no ordered extents in this range
2544 		 * and nobody raced in and read a page in this range, if we did
2545 		 * we need to try again.
2546 		 */
2547 		if ((!ordered ||
2548 		    (ordered->file_offset + ordered->num_bytes <= lockstart ||
2549 		     ordered->file_offset > lockend)) &&
2550 		     !filemap_range_has_page(inode->i_mapping,
2551 					     lockstart, lockend)) {
2552 			if (ordered)
2553 				btrfs_put_ordered_extent(ordered);
2554 			break;
2555 		}
2556 		if (ordered)
2557 			btrfs_put_ordered_extent(ordered);
2558 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2559 				     lockend, cached_state);
2560 		ret = btrfs_wait_ordered_range(inode, lockstart,
2561 					       lockend - lockstart + 1);
2562 		if (ret)
2563 			return ret;
2564 	}
2565 	return 0;
2566 }
2567 
2568 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2569 				     struct inode *inode,
2570 				     struct btrfs_path *path,
2571 				     struct btrfs_replace_extent_info *extent_info,
2572 				     const u64 replace_len)
2573 {
2574 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2575 	struct btrfs_root *root = BTRFS_I(inode)->root;
2576 	struct btrfs_file_extent_item *extent;
2577 	struct extent_buffer *leaf;
2578 	struct btrfs_key key;
2579 	int slot;
2580 	struct btrfs_ref ref = { 0 };
2581 	int ret;
2582 
2583 	if (replace_len == 0)
2584 		return 0;
2585 
2586 	if (extent_info->disk_offset == 0 &&
2587 	    btrfs_fs_incompat(fs_info, NO_HOLES))
2588 		return 0;
2589 
2590 	key.objectid = btrfs_ino(BTRFS_I(inode));
2591 	key.type = BTRFS_EXTENT_DATA_KEY;
2592 	key.offset = extent_info->file_offset;
2593 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2594 				      sizeof(struct btrfs_file_extent_item));
2595 	if (ret)
2596 		return ret;
2597 	leaf = path->nodes[0];
2598 	slot = path->slots[0];
2599 	write_extent_buffer(leaf, extent_info->extent_buf,
2600 			    btrfs_item_ptr_offset(leaf, slot),
2601 			    sizeof(struct btrfs_file_extent_item));
2602 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2603 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2604 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2605 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2606 	if (extent_info->is_new_extent)
2607 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2608 	btrfs_mark_buffer_dirty(leaf);
2609 	btrfs_release_path(path);
2610 
2611 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
2612 			extent_info->file_offset, replace_len);
2613 	if (ret)
2614 		return ret;
2615 
2616 	/* If it's a hole, nothing more needs to be done. */
2617 	if (extent_info->disk_offset == 0)
2618 		return 0;
2619 
2620 	inode_add_bytes(inode, replace_len);
2621 
2622 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2623 		key.objectid = extent_info->disk_offset;
2624 		key.type = BTRFS_EXTENT_ITEM_KEY;
2625 		key.offset = extent_info->disk_len;
2626 		ret = btrfs_alloc_reserved_file_extent(trans, root,
2627 						       btrfs_ino(BTRFS_I(inode)),
2628 						       extent_info->file_offset,
2629 						       extent_info->qgroup_reserved,
2630 						       &key);
2631 	} else {
2632 		u64 ref_offset;
2633 
2634 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2635 				       extent_info->disk_offset,
2636 				       extent_info->disk_len, 0);
2637 		ref_offset = extent_info->file_offset - extent_info->data_offset;
2638 		btrfs_init_data_ref(&ref, root->root_key.objectid,
2639 				    btrfs_ino(BTRFS_I(inode)), ref_offset);
2640 		ret = btrfs_inc_extent_ref(trans, &ref);
2641 	}
2642 
2643 	extent_info->insertions++;
2644 
2645 	return ret;
2646 }
2647 
2648 /*
2649  * The respective range must have been previously locked, as well as the inode.
2650  * The end offset is inclusive (last byte of the range).
2651  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2652  * the file range with an extent.
2653  * When not punching a hole, we don't want to end up in a state where we dropped
2654  * extents without inserting a new one, so we must abort the transaction to avoid
2655  * a corruption.
2656  */
2657 int btrfs_replace_file_extents(struct inode *inode, struct btrfs_path *path,
2658 			   const u64 start, const u64 end,
2659 			   struct btrfs_replace_extent_info *extent_info,
2660 			   struct btrfs_trans_handle **trans_out)
2661 {
2662 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2663 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2664 	u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2665 	struct btrfs_root *root = BTRFS_I(inode)->root;
2666 	struct btrfs_trans_handle *trans = NULL;
2667 	struct btrfs_block_rsv *rsv;
2668 	unsigned int rsv_count;
2669 	u64 cur_offset;
2670 	u64 drop_end;
2671 	u64 len = end - start;
2672 	int ret = 0;
2673 
2674 	if (end <= start)
2675 		return -EINVAL;
2676 
2677 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2678 	if (!rsv) {
2679 		ret = -ENOMEM;
2680 		goto out;
2681 	}
2682 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2683 	rsv->failfast = 1;
2684 
2685 	/*
2686 	 * 1 - update the inode
2687 	 * 1 - removing the extents in the range
2688 	 * 1 - adding the hole extent if no_holes isn't set or if we are
2689 	 *     replacing the range with a new extent
2690 	 */
2691 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2692 		rsv_count = 3;
2693 	else
2694 		rsv_count = 2;
2695 
2696 	trans = btrfs_start_transaction(root, rsv_count);
2697 	if (IS_ERR(trans)) {
2698 		ret = PTR_ERR(trans);
2699 		trans = NULL;
2700 		goto out_free;
2701 	}
2702 
2703 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2704 				      min_size, false);
2705 	BUG_ON(ret);
2706 	trans->block_rsv = rsv;
2707 
2708 	cur_offset = start;
2709 	while (cur_offset < end) {
2710 		ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path,
2711 					   cur_offset, end + 1, &drop_end,
2712 					   1, 0, 0, NULL);
2713 		if (ret != -ENOSPC) {
2714 			/*
2715 			 * When cloning we want to avoid transaction aborts when
2716 			 * nothing was done and we are attempting to clone parts
2717 			 * of inline extents, in such cases -EOPNOTSUPP is
2718 			 * returned by __btrfs_drop_extents() without having
2719 			 * changed anything in the file.
2720 			 */
2721 			if (extent_info && !extent_info->is_new_extent &&
2722 			    ret && ret != -EOPNOTSUPP)
2723 				btrfs_abort_transaction(trans, ret);
2724 			break;
2725 		}
2726 
2727 		trans->block_rsv = &fs_info->trans_block_rsv;
2728 
2729 		if (!extent_info && cur_offset < drop_end &&
2730 		    cur_offset < ino_size) {
2731 			ret = fill_holes(trans, BTRFS_I(inode), path,
2732 					cur_offset, drop_end);
2733 			if (ret) {
2734 				/*
2735 				 * If we failed then we didn't insert our hole
2736 				 * entries for the area we dropped, so now the
2737 				 * fs is corrupted, so we must abort the
2738 				 * transaction.
2739 				 */
2740 				btrfs_abort_transaction(trans, ret);
2741 				break;
2742 			}
2743 		} else if (!extent_info && cur_offset < drop_end) {
2744 			/*
2745 			 * We are past the i_size here, but since we didn't
2746 			 * insert holes we need to clear the mapped area so we
2747 			 * know to not set disk_i_size in this area until a new
2748 			 * file extent is inserted here.
2749 			 */
2750 			ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2751 					cur_offset, drop_end - cur_offset);
2752 			if (ret) {
2753 				/*
2754 				 * We couldn't clear our area, so we could
2755 				 * presumably adjust up and corrupt the fs, so
2756 				 * we need to abort.
2757 				 */
2758 				btrfs_abort_transaction(trans, ret);
2759 				break;
2760 			}
2761 		}
2762 
2763 		if (extent_info && drop_end > extent_info->file_offset) {
2764 			u64 replace_len = drop_end - extent_info->file_offset;
2765 
2766 			ret = btrfs_insert_replace_extent(trans, inode, path,
2767 							extent_info, replace_len);
2768 			if (ret) {
2769 				btrfs_abort_transaction(trans, ret);
2770 				break;
2771 			}
2772 			extent_info->data_len -= replace_len;
2773 			extent_info->data_offset += replace_len;
2774 			extent_info->file_offset += replace_len;
2775 		}
2776 
2777 		cur_offset = drop_end;
2778 
2779 		ret = btrfs_update_inode(trans, root, inode);
2780 		if (ret)
2781 			break;
2782 
2783 		btrfs_end_transaction(trans);
2784 		btrfs_btree_balance_dirty(fs_info);
2785 
2786 		trans = btrfs_start_transaction(root, rsv_count);
2787 		if (IS_ERR(trans)) {
2788 			ret = PTR_ERR(trans);
2789 			trans = NULL;
2790 			break;
2791 		}
2792 
2793 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2794 					      rsv, min_size, false);
2795 		BUG_ON(ret);	/* shouldn't happen */
2796 		trans->block_rsv = rsv;
2797 
2798 		if (!extent_info) {
2799 			ret = find_first_non_hole(inode, &cur_offset, &len);
2800 			if (unlikely(ret < 0))
2801 				break;
2802 			if (ret && !len) {
2803 				ret = 0;
2804 				break;
2805 			}
2806 		}
2807 	}
2808 
2809 	/*
2810 	 * If we were cloning, force the next fsync to be a full one since we
2811 	 * we replaced (or just dropped in the case of cloning holes when
2812 	 * NO_HOLES is enabled) extents and extent maps.
2813 	 * This is for the sake of simplicity, and cloning into files larger
2814 	 * than 16Mb would force the full fsync any way (when
2815 	 * try_release_extent_mapping() is invoked during page cache truncation.
2816 	 */
2817 	if (extent_info && !extent_info->is_new_extent)
2818 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2819 			&BTRFS_I(inode)->runtime_flags);
2820 
2821 	if (ret)
2822 		goto out_trans;
2823 
2824 	trans->block_rsv = &fs_info->trans_block_rsv;
2825 	/*
2826 	 * If we are using the NO_HOLES feature we might have had already an
2827 	 * hole that overlaps a part of the region [lockstart, lockend] and
2828 	 * ends at (or beyond) lockend. Since we have no file extent items to
2829 	 * represent holes, drop_end can be less than lockend and so we must
2830 	 * make sure we have an extent map representing the existing hole (the
2831 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2832 	 * map representing the existing hole), otherwise the fast fsync path
2833 	 * will not record the existence of the hole region
2834 	 * [existing_hole_start, lockend].
2835 	 */
2836 	if (drop_end <= end)
2837 		drop_end = end + 1;
2838 	/*
2839 	 * Don't insert file hole extent item if it's for a range beyond eof
2840 	 * (because it's useless) or if it represents a 0 bytes range (when
2841 	 * cur_offset == drop_end).
2842 	 */
2843 	if (!extent_info && cur_offset < ino_size && cur_offset < drop_end) {
2844 		ret = fill_holes(trans, BTRFS_I(inode), path,
2845 				cur_offset, drop_end);
2846 		if (ret) {
2847 			/* Same comment as above. */
2848 			btrfs_abort_transaction(trans, ret);
2849 			goto out_trans;
2850 		}
2851 	} else if (!extent_info && cur_offset < drop_end) {
2852 		/* See the comment in the loop above for the reasoning here. */
2853 		ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2854 					cur_offset, drop_end - cur_offset);
2855 		if (ret) {
2856 			btrfs_abort_transaction(trans, ret);
2857 			goto out_trans;
2858 		}
2859 
2860 	}
2861 	if (extent_info) {
2862 		ret = btrfs_insert_replace_extent(trans, inode, path, extent_info,
2863 						extent_info->data_len);
2864 		if (ret) {
2865 			btrfs_abort_transaction(trans, ret);
2866 			goto out_trans;
2867 		}
2868 	}
2869 
2870 out_trans:
2871 	if (!trans)
2872 		goto out_free;
2873 
2874 	trans->block_rsv = &fs_info->trans_block_rsv;
2875 	if (ret)
2876 		btrfs_end_transaction(trans);
2877 	else
2878 		*trans_out = trans;
2879 out_free:
2880 	btrfs_free_block_rsv(fs_info, rsv);
2881 out:
2882 	return ret;
2883 }
2884 
2885 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2886 {
2887 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2888 	struct btrfs_root *root = BTRFS_I(inode)->root;
2889 	struct extent_state *cached_state = NULL;
2890 	struct btrfs_path *path;
2891 	struct btrfs_trans_handle *trans = NULL;
2892 	u64 lockstart;
2893 	u64 lockend;
2894 	u64 tail_start;
2895 	u64 tail_len;
2896 	u64 orig_start = offset;
2897 	int ret = 0;
2898 	bool same_block;
2899 	u64 ino_size;
2900 	bool truncated_block = false;
2901 	bool updated_inode = false;
2902 
2903 	ret = btrfs_wait_ordered_range(inode, offset, len);
2904 	if (ret)
2905 		return ret;
2906 
2907 	inode_lock(inode);
2908 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2909 	ret = find_first_non_hole(inode, &offset, &len);
2910 	if (ret < 0)
2911 		goto out_only_mutex;
2912 	if (ret && !len) {
2913 		/* Already in a large hole */
2914 		ret = 0;
2915 		goto out_only_mutex;
2916 	}
2917 
2918 	lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2919 	lockend = round_down(offset + len,
2920 			     btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2921 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2922 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2923 	/*
2924 	 * We needn't truncate any block which is beyond the end of the file
2925 	 * because we are sure there is no data there.
2926 	 */
2927 	/*
2928 	 * Only do this if we are in the same block and we aren't doing the
2929 	 * entire block.
2930 	 */
2931 	if (same_block && len < fs_info->sectorsize) {
2932 		if (offset < ino_size) {
2933 			truncated_block = true;
2934 			ret = btrfs_truncate_block(inode, offset, len, 0);
2935 		} else {
2936 			ret = 0;
2937 		}
2938 		goto out_only_mutex;
2939 	}
2940 
2941 	/* zero back part of the first block */
2942 	if (offset < ino_size) {
2943 		truncated_block = true;
2944 		ret = btrfs_truncate_block(inode, offset, 0, 0);
2945 		if (ret) {
2946 			inode_unlock(inode);
2947 			return ret;
2948 		}
2949 	}
2950 
2951 	/* Check the aligned pages after the first unaligned page,
2952 	 * if offset != orig_start, which means the first unaligned page
2953 	 * including several following pages are already in holes,
2954 	 * the extra check can be skipped */
2955 	if (offset == orig_start) {
2956 		/* after truncate page, check hole again */
2957 		len = offset + len - lockstart;
2958 		offset = lockstart;
2959 		ret = find_first_non_hole(inode, &offset, &len);
2960 		if (ret < 0)
2961 			goto out_only_mutex;
2962 		if (ret && !len) {
2963 			ret = 0;
2964 			goto out_only_mutex;
2965 		}
2966 		lockstart = offset;
2967 	}
2968 
2969 	/* Check the tail unaligned part is in a hole */
2970 	tail_start = lockend + 1;
2971 	tail_len = offset + len - tail_start;
2972 	if (tail_len) {
2973 		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2974 		if (unlikely(ret < 0))
2975 			goto out_only_mutex;
2976 		if (!ret) {
2977 			/* zero the front end of the last page */
2978 			if (tail_start + tail_len < ino_size) {
2979 				truncated_block = true;
2980 				ret = btrfs_truncate_block(inode,
2981 							tail_start + tail_len,
2982 							0, 1);
2983 				if (ret)
2984 					goto out_only_mutex;
2985 			}
2986 		}
2987 	}
2988 
2989 	if (lockend < lockstart) {
2990 		ret = 0;
2991 		goto out_only_mutex;
2992 	}
2993 
2994 	ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2995 					  &cached_state);
2996 	if (ret)
2997 		goto out_only_mutex;
2998 
2999 	path = btrfs_alloc_path();
3000 	if (!path) {
3001 		ret = -ENOMEM;
3002 		goto out;
3003 	}
3004 
3005 	ret = btrfs_replace_file_extents(inode, path, lockstart, lockend, NULL,
3006 				     &trans);
3007 	btrfs_free_path(path);
3008 	if (ret)
3009 		goto out;
3010 
3011 	ASSERT(trans != NULL);
3012 	inode_inc_iversion(inode);
3013 	inode->i_mtime = inode->i_ctime = current_time(inode);
3014 	ret = btrfs_update_inode(trans, root, inode);
3015 	updated_inode = true;
3016 	btrfs_end_transaction(trans);
3017 	btrfs_btree_balance_dirty(fs_info);
3018 out:
3019 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3020 			     &cached_state);
3021 out_only_mutex:
3022 	if (!updated_inode && truncated_block && !ret) {
3023 		/*
3024 		 * If we only end up zeroing part of a page, we still need to
3025 		 * update the inode item, so that all the time fields are
3026 		 * updated as well as the necessary btrfs inode in memory fields
3027 		 * for detecting, at fsync time, if the inode isn't yet in the
3028 		 * log tree or it's there but not up to date.
3029 		 */
3030 		struct timespec64 now = current_time(inode);
3031 
3032 		inode_inc_iversion(inode);
3033 		inode->i_mtime = now;
3034 		inode->i_ctime = now;
3035 		trans = btrfs_start_transaction(root, 1);
3036 		if (IS_ERR(trans)) {
3037 			ret = PTR_ERR(trans);
3038 		} else {
3039 			int ret2;
3040 
3041 			ret = btrfs_update_inode(trans, root, inode);
3042 			ret2 = btrfs_end_transaction(trans);
3043 			if (!ret)
3044 				ret = ret2;
3045 		}
3046 	}
3047 	inode_unlock(inode);
3048 	return ret;
3049 }
3050 
3051 /* Helper structure to record which range is already reserved */
3052 struct falloc_range {
3053 	struct list_head list;
3054 	u64 start;
3055 	u64 len;
3056 };
3057 
3058 /*
3059  * Helper function to add falloc range
3060  *
3061  * Caller should have locked the larger range of extent containing
3062  * [start, len)
3063  */
3064 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3065 {
3066 	struct falloc_range *prev = NULL;
3067 	struct falloc_range *range = NULL;
3068 
3069 	if (list_empty(head))
3070 		goto insert;
3071 
3072 	/*
3073 	 * As fallocate iterate by bytenr order, we only need to check
3074 	 * the last range.
3075 	 */
3076 	prev = list_entry(head->prev, struct falloc_range, list);
3077 	if (prev->start + prev->len == start) {
3078 		prev->len += len;
3079 		return 0;
3080 	}
3081 insert:
3082 	range = kmalloc(sizeof(*range), GFP_KERNEL);
3083 	if (!range)
3084 		return -ENOMEM;
3085 	range->start = start;
3086 	range->len = len;
3087 	list_add_tail(&range->list, head);
3088 	return 0;
3089 }
3090 
3091 static int btrfs_fallocate_update_isize(struct inode *inode,
3092 					const u64 end,
3093 					const int mode)
3094 {
3095 	struct btrfs_trans_handle *trans;
3096 	struct btrfs_root *root = BTRFS_I(inode)->root;
3097 	int ret;
3098 	int ret2;
3099 
3100 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3101 		return 0;
3102 
3103 	trans = btrfs_start_transaction(root, 1);
3104 	if (IS_ERR(trans))
3105 		return PTR_ERR(trans);
3106 
3107 	inode->i_ctime = current_time(inode);
3108 	i_size_write(inode, end);
3109 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3110 	ret = btrfs_update_inode(trans, root, inode);
3111 	ret2 = btrfs_end_transaction(trans);
3112 
3113 	return ret ? ret : ret2;
3114 }
3115 
3116 enum {
3117 	RANGE_BOUNDARY_WRITTEN_EXTENT,
3118 	RANGE_BOUNDARY_PREALLOC_EXTENT,
3119 	RANGE_BOUNDARY_HOLE,
3120 };
3121 
3122 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3123 						 u64 offset)
3124 {
3125 	const u64 sectorsize = btrfs_inode_sectorsize(inode);
3126 	struct extent_map *em;
3127 	int ret;
3128 
3129 	offset = round_down(offset, sectorsize);
3130 	em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3131 	if (IS_ERR(em))
3132 		return PTR_ERR(em);
3133 
3134 	if (em->block_start == EXTENT_MAP_HOLE)
3135 		ret = RANGE_BOUNDARY_HOLE;
3136 	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3137 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3138 	else
3139 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3140 
3141 	free_extent_map(em);
3142 	return ret;
3143 }
3144 
3145 static int btrfs_zero_range(struct inode *inode,
3146 			    loff_t offset,
3147 			    loff_t len,
3148 			    const int mode)
3149 {
3150 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3151 	struct extent_map *em;
3152 	struct extent_changeset *data_reserved = NULL;
3153 	int ret;
3154 	u64 alloc_hint = 0;
3155 	const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3156 	u64 alloc_start = round_down(offset, sectorsize);
3157 	u64 alloc_end = round_up(offset + len, sectorsize);
3158 	u64 bytes_to_reserve = 0;
3159 	bool space_reserved = false;
3160 
3161 	inode_dio_wait(inode);
3162 
3163 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3164 			      alloc_end - alloc_start);
3165 	if (IS_ERR(em)) {
3166 		ret = PTR_ERR(em);
3167 		goto out;
3168 	}
3169 
3170 	/*
3171 	 * Avoid hole punching and extent allocation for some cases. More cases
3172 	 * could be considered, but these are unlikely common and we keep things
3173 	 * as simple as possible for now. Also, intentionally, if the target
3174 	 * range contains one or more prealloc extents together with regular
3175 	 * extents and holes, we drop all the existing extents and allocate a
3176 	 * new prealloc extent, so that we get a larger contiguous disk extent.
3177 	 */
3178 	if (em->start <= alloc_start &&
3179 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3180 		const u64 em_end = em->start + em->len;
3181 
3182 		if (em_end >= offset + len) {
3183 			/*
3184 			 * The whole range is already a prealloc extent,
3185 			 * do nothing except updating the inode's i_size if
3186 			 * needed.
3187 			 */
3188 			free_extent_map(em);
3189 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3190 							   mode);
3191 			goto out;
3192 		}
3193 		/*
3194 		 * Part of the range is already a prealloc extent, so operate
3195 		 * only on the remaining part of the range.
3196 		 */
3197 		alloc_start = em_end;
3198 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3199 		len = offset + len - alloc_start;
3200 		offset = alloc_start;
3201 		alloc_hint = em->block_start + em->len;
3202 	}
3203 	free_extent_map(em);
3204 
3205 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3206 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3207 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3208 				      sectorsize);
3209 		if (IS_ERR(em)) {
3210 			ret = PTR_ERR(em);
3211 			goto out;
3212 		}
3213 
3214 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3215 			free_extent_map(em);
3216 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3217 							   mode);
3218 			goto out;
3219 		}
3220 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3221 			free_extent_map(em);
3222 			ret = btrfs_truncate_block(inode, offset, len, 0);
3223 			if (!ret)
3224 				ret = btrfs_fallocate_update_isize(inode,
3225 								   offset + len,
3226 								   mode);
3227 			return ret;
3228 		}
3229 		free_extent_map(em);
3230 		alloc_start = round_down(offset, sectorsize);
3231 		alloc_end = alloc_start + sectorsize;
3232 		goto reserve_space;
3233 	}
3234 
3235 	alloc_start = round_up(offset, sectorsize);
3236 	alloc_end = round_down(offset + len, sectorsize);
3237 
3238 	/*
3239 	 * For unaligned ranges, check the pages at the boundaries, they might
3240 	 * map to an extent, in which case we need to partially zero them, or
3241 	 * they might map to a hole, in which case we need our allocation range
3242 	 * to cover them.
3243 	 */
3244 	if (!IS_ALIGNED(offset, sectorsize)) {
3245 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3246 							    offset);
3247 		if (ret < 0)
3248 			goto out;
3249 		if (ret == RANGE_BOUNDARY_HOLE) {
3250 			alloc_start = round_down(offset, sectorsize);
3251 			ret = 0;
3252 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3253 			ret = btrfs_truncate_block(inode, offset, 0, 0);
3254 			if (ret)
3255 				goto out;
3256 		} else {
3257 			ret = 0;
3258 		}
3259 	}
3260 
3261 	if (!IS_ALIGNED(offset + len, sectorsize)) {
3262 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3263 							    offset + len);
3264 		if (ret < 0)
3265 			goto out;
3266 		if (ret == RANGE_BOUNDARY_HOLE) {
3267 			alloc_end = round_up(offset + len, sectorsize);
3268 			ret = 0;
3269 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3270 			ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3271 			if (ret)
3272 				goto out;
3273 		} else {
3274 			ret = 0;
3275 		}
3276 	}
3277 
3278 reserve_space:
3279 	if (alloc_start < alloc_end) {
3280 		struct extent_state *cached_state = NULL;
3281 		const u64 lockstart = alloc_start;
3282 		const u64 lockend = alloc_end - 1;
3283 
3284 		bytes_to_reserve = alloc_end - alloc_start;
3285 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3286 						      bytes_to_reserve);
3287 		if (ret < 0)
3288 			goto out;
3289 		space_reserved = true;
3290 		ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3291 						  &cached_state);
3292 		if (ret)
3293 			goto out;
3294 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3295 						alloc_start, bytes_to_reserve);
3296 		if (ret)
3297 			goto out;
3298 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3299 						alloc_end - alloc_start,
3300 						i_blocksize(inode),
3301 						offset + len, &alloc_hint);
3302 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3303 				     lockend, &cached_state);
3304 		/* btrfs_prealloc_file_range releases reserved space on error */
3305 		if (ret) {
3306 			space_reserved = false;
3307 			goto out;
3308 		}
3309 	}
3310 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3311  out:
3312 	if (ret && space_reserved)
3313 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3314 					       alloc_start, bytes_to_reserve);
3315 	extent_changeset_free(data_reserved);
3316 
3317 	return ret;
3318 }
3319 
3320 static long btrfs_fallocate(struct file *file, int mode,
3321 			    loff_t offset, loff_t len)
3322 {
3323 	struct inode *inode = file_inode(file);
3324 	struct extent_state *cached_state = NULL;
3325 	struct extent_changeset *data_reserved = NULL;
3326 	struct falloc_range *range;
3327 	struct falloc_range *tmp;
3328 	struct list_head reserve_list;
3329 	u64 cur_offset;
3330 	u64 last_byte;
3331 	u64 alloc_start;
3332 	u64 alloc_end;
3333 	u64 alloc_hint = 0;
3334 	u64 locked_end;
3335 	u64 actual_end = 0;
3336 	struct extent_map *em;
3337 	int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3338 	int ret;
3339 
3340 	alloc_start = round_down(offset, blocksize);
3341 	alloc_end = round_up(offset + len, blocksize);
3342 	cur_offset = alloc_start;
3343 
3344 	/* Make sure we aren't being give some crap mode */
3345 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3346 		     FALLOC_FL_ZERO_RANGE))
3347 		return -EOPNOTSUPP;
3348 
3349 	if (mode & FALLOC_FL_PUNCH_HOLE)
3350 		return btrfs_punch_hole(inode, offset, len);
3351 
3352 	/*
3353 	 * Only trigger disk allocation, don't trigger qgroup reserve
3354 	 *
3355 	 * For qgroup space, it will be checked later.
3356 	 */
3357 	if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3358 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3359 						      alloc_end - alloc_start);
3360 		if (ret < 0)
3361 			return ret;
3362 	}
3363 
3364 	inode_lock(inode);
3365 
3366 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3367 		ret = inode_newsize_ok(inode, offset + len);
3368 		if (ret)
3369 			goto out;
3370 	}
3371 
3372 	/*
3373 	 * TODO: Move these two operations after we have checked
3374 	 * accurate reserved space, or fallocate can still fail but
3375 	 * with page truncated or size expanded.
3376 	 *
3377 	 * But that's a minor problem and won't do much harm BTW.
3378 	 */
3379 	if (alloc_start > inode->i_size) {
3380 		ret = btrfs_cont_expand(inode, i_size_read(inode),
3381 					alloc_start);
3382 		if (ret)
3383 			goto out;
3384 	} else if (offset + len > inode->i_size) {
3385 		/*
3386 		 * If we are fallocating from the end of the file onward we
3387 		 * need to zero out the end of the block if i_size lands in the
3388 		 * middle of a block.
3389 		 */
3390 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3391 		if (ret)
3392 			goto out;
3393 	}
3394 
3395 	/*
3396 	 * wait for ordered IO before we have any locks.  We'll loop again
3397 	 * below with the locks held.
3398 	 */
3399 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3400 				       alloc_end - alloc_start);
3401 	if (ret)
3402 		goto out;
3403 
3404 	if (mode & FALLOC_FL_ZERO_RANGE) {
3405 		ret = btrfs_zero_range(inode, offset, len, mode);
3406 		inode_unlock(inode);
3407 		return ret;
3408 	}
3409 
3410 	locked_end = alloc_end - 1;
3411 	while (1) {
3412 		struct btrfs_ordered_extent *ordered;
3413 
3414 		/* the extent lock is ordered inside the running
3415 		 * transaction
3416 		 */
3417 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3418 				 locked_end, &cached_state);
3419 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3420 							    locked_end);
3421 
3422 		if (ordered &&
3423 		    ordered->file_offset + ordered->num_bytes > alloc_start &&
3424 		    ordered->file_offset < alloc_end) {
3425 			btrfs_put_ordered_extent(ordered);
3426 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3427 					     alloc_start, locked_end,
3428 					     &cached_state);
3429 			/*
3430 			 * we can't wait on the range with the transaction
3431 			 * running or with the extent lock held
3432 			 */
3433 			ret = btrfs_wait_ordered_range(inode, alloc_start,
3434 						       alloc_end - alloc_start);
3435 			if (ret)
3436 				goto out;
3437 		} else {
3438 			if (ordered)
3439 				btrfs_put_ordered_extent(ordered);
3440 			break;
3441 		}
3442 	}
3443 
3444 	/* First, check if we exceed the qgroup limit */
3445 	INIT_LIST_HEAD(&reserve_list);
3446 	while (cur_offset < alloc_end) {
3447 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3448 				      alloc_end - cur_offset);
3449 		if (IS_ERR(em)) {
3450 			ret = PTR_ERR(em);
3451 			break;
3452 		}
3453 		last_byte = min(extent_map_end(em), alloc_end);
3454 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3455 		last_byte = ALIGN(last_byte, blocksize);
3456 		if (em->block_start == EXTENT_MAP_HOLE ||
3457 		    (cur_offset >= inode->i_size &&
3458 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3459 			ret = add_falloc_range(&reserve_list, cur_offset,
3460 					       last_byte - cur_offset);
3461 			if (ret < 0) {
3462 				free_extent_map(em);
3463 				break;
3464 			}
3465 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3466 					&data_reserved, cur_offset,
3467 					last_byte - cur_offset);
3468 			if (ret < 0) {
3469 				cur_offset = last_byte;
3470 				free_extent_map(em);
3471 				break;
3472 			}
3473 		} else {
3474 			/*
3475 			 * Do not need to reserve unwritten extent for this
3476 			 * range, free reserved data space first, otherwise
3477 			 * it'll result in false ENOSPC error.
3478 			 */
3479 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3480 				data_reserved, cur_offset,
3481 				last_byte - cur_offset);
3482 		}
3483 		free_extent_map(em);
3484 		cur_offset = last_byte;
3485 	}
3486 
3487 	/*
3488 	 * If ret is still 0, means we're OK to fallocate.
3489 	 * Or just cleanup the list and exit.
3490 	 */
3491 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3492 		if (!ret)
3493 			ret = btrfs_prealloc_file_range(inode, mode,
3494 					range->start,
3495 					range->len, i_blocksize(inode),
3496 					offset + len, &alloc_hint);
3497 		else
3498 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3499 					data_reserved, range->start,
3500 					range->len);
3501 		list_del(&range->list);
3502 		kfree(range);
3503 	}
3504 	if (ret < 0)
3505 		goto out_unlock;
3506 
3507 	/*
3508 	 * We didn't need to allocate any more space, but we still extended the
3509 	 * size of the file so we need to update i_size and the inode item.
3510 	 */
3511 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3512 out_unlock:
3513 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3514 			     &cached_state);
3515 out:
3516 	inode_unlock(inode);
3517 	/* Let go of our reservation. */
3518 	if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3519 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3520 				cur_offset, alloc_end - cur_offset);
3521 	extent_changeset_free(data_reserved);
3522 	return ret;
3523 }
3524 
3525 static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3526 				  int whence)
3527 {
3528 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3529 	struct extent_map *em = NULL;
3530 	struct extent_state *cached_state = NULL;
3531 	loff_t i_size = inode->i_size;
3532 	u64 lockstart;
3533 	u64 lockend;
3534 	u64 start;
3535 	u64 len;
3536 	int ret = 0;
3537 
3538 	if (i_size == 0 || offset >= i_size)
3539 		return -ENXIO;
3540 
3541 	/*
3542 	 * offset can be negative, in this case we start finding DATA/HOLE from
3543 	 * the very start of the file.
3544 	 */
3545 	start = max_t(loff_t, 0, offset);
3546 
3547 	lockstart = round_down(start, fs_info->sectorsize);
3548 	lockend = round_up(i_size, fs_info->sectorsize);
3549 	if (lockend <= lockstart)
3550 		lockend = lockstart + fs_info->sectorsize;
3551 	lockend--;
3552 	len = lockend - lockstart + 1;
3553 
3554 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3555 			 &cached_state);
3556 
3557 	while (start < i_size) {
3558 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3559 		if (IS_ERR(em)) {
3560 			ret = PTR_ERR(em);
3561 			em = NULL;
3562 			break;
3563 		}
3564 
3565 		if (whence == SEEK_HOLE &&
3566 		    (em->block_start == EXTENT_MAP_HOLE ||
3567 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3568 			break;
3569 		else if (whence == SEEK_DATA &&
3570 			   (em->block_start != EXTENT_MAP_HOLE &&
3571 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3572 			break;
3573 
3574 		start = em->start + em->len;
3575 		free_extent_map(em);
3576 		em = NULL;
3577 		cond_resched();
3578 	}
3579 	free_extent_map(em);
3580 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3581 			     &cached_state);
3582 	if (ret) {
3583 		offset = ret;
3584 	} else {
3585 		if (whence == SEEK_DATA && start >= i_size)
3586 			offset = -ENXIO;
3587 		else
3588 			offset = min_t(loff_t, start, i_size);
3589 	}
3590 
3591 	return offset;
3592 }
3593 
3594 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3595 {
3596 	struct inode *inode = file->f_mapping->host;
3597 
3598 	switch (whence) {
3599 	default:
3600 		return generic_file_llseek(file, offset, whence);
3601 	case SEEK_DATA:
3602 	case SEEK_HOLE:
3603 		inode_lock_shared(inode);
3604 		offset = find_desired_extent(inode, offset, whence);
3605 		inode_unlock_shared(inode);
3606 		break;
3607 	}
3608 
3609 	if (offset < 0)
3610 		return offset;
3611 
3612 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3613 }
3614 
3615 static int btrfs_file_open(struct inode *inode, struct file *filp)
3616 {
3617 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3618 	return generic_file_open(inode, filp);
3619 }
3620 
3621 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3622 {
3623 	ssize_t ret = 0;
3624 
3625 	if (iocb->ki_flags & IOCB_DIRECT) {
3626 		struct inode *inode = file_inode(iocb->ki_filp);
3627 
3628 		inode_lock_shared(inode);
3629 		ret = btrfs_direct_IO(iocb, to);
3630 		inode_unlock_shared(inode);
3631 		if (ret < 0)
3632 			return ret;
3633 	}
3634 
3635 	return generic_file_buffered_read(iocb, to, ret);
3636 }
3637 
3638 const struct file_operations btrfs_file_operations = {
3639 	.llseek		= btrfs_file_llseek,
3640 	.read_iter      = btrfs_file_read_iter,
3641 	.splice_read	= generic_file_splice_read,
3642 	.write_iter	= btrfs_file_write_iter,
3643 	.splice_write	= iter_file_splice_write,
3644 	.mmap		= btrfs_file_mmap,
3645 	.open		= btrfs_file_open,
3646 	.release	= btrfs_release_file,
3647 	.fsync		= btrfs_sync_file,
3648 	.fallocate	= btrfs_fallocate,
3649 	.unlocked_ioctl	= btrfs_ioctl,
3650 #ifdef CONFIG_COMPAT
3651 	.compat_ioctl	= btrfs_compat_ioctl,
3652 #endif
3653 	.remap_file_range = btrfs_remap_file_range,
3654 };
3655 
3656 void __cold btrfs_auto_defrag_exit(void)
3657 {
3658 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3659 }
3660 
3661 int __init btrfs_auto_defrag_init(void)
3662 {
3663 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3664 					sizeof(struct inode_defrag), 0,
3665 					SLAB_MEM_SPREAD,
3666 					NULL);
3667 	if (!btrfs_inode_defrag_cachep)
3668 		return -ENOMEM;
3669 
3670 	return 0;
3671 }
3672 
3673 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3674 {
3675 	int ret;
3676 
3677 	/*
3678 	 * So with compression we will find and lock a dirty page and clear the
3679 	 * first one as dirty, setup an async extent, and immediately return
3680 	 * with the entire range locked but with nobody actually marked with
3681 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3682 	 * expect it to work since it will just kick off a thread to do the
3683 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3684 	 * since it will wait on the page lock, which won't be unlocked until
3685 	 * after the pages have been marked as writeback and so we're good to go
3686 	 * from there.  We have to do this otherwise we'll miss the ordered
3687 	 * extents and that results in badness.  Please Josef, do not think you
3688 	 * know better and pull this out at some point in the future, it is
3689 	 * right and you are wrong.
3690 	 */
3691 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3692 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3693 			     &BTRFS_I(inode)->runtime_flags))
3694 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3695 
3696 	return ret;
3697 }
3698