xref: /openbmc/linux/fs/btrfs/file.c (revision b627b4ed)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/smp_lock.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mpage.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "ioctl.h"
37 #include "print-tree.h"
38 #include "tree-log.h"
39 #include "locking.h"
40 #include "compat.h"
41 
42 
43 /* simple helper to fault in pages and copy.  This should go away
44  * and be replaced with calls into generic code.
45  */
46 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
47 					 int write_bytes,
48 					 struct page **prepared_pages,
49 					 const char __user *buf)
50 {
51 	long page_fault = 0;
52 	int i;
53 	int offset = pos & (PAGE_CACHE_SIZE - 1);
54 
55 	for (i = 0; i < num_pages && write_bytes > 0; i++, offset = 0) {
56 		size_t count = min_t(size_t,
57 				     PAGE_CACHE_SIZE - offset, write_bytes);
58 		struct page *page = prepared_pages[i];
59 		fault_in_pages_readable(buf, count);
60 
61 		/* Copy data from userspace to the current page */
62 		kmap(page);
63 		page_fault = __copy_from_user(page_address(page) + offset,
64 					      buf, count);
65 		/* Flush processor's dcache for this page */
66 		flush_dcache_page(page);
67 		kunmap(page);
68 		buf += count;
69 		write_bytes -= count;
70 
71 		if (page_fault)
72 			break;
73 	}
74 	return page_fault ? -EFAULT : 0;
75 }
76 
77 /*
78  * unlocks pages after btrfs_file_write is done with them
79  */
80 static noinline void btrfs_drop_pages(struct page **pages, size_t num_pages)
81 {
82 	size_t i;
83 	for (i = 0; i < num_pages; i++) {
84 		if (!pages[i])
85 			break;
86 		/* page checked is some magic around finding pages that
87 		 * have been modified without going through btrfs_set_page_dirty
88 		 * clear it here
89 		 */
90 		ClearPageChecked(pages[i]);
91 		unlock_page(pages[i]);
92 		mark_page_accessed(pages[i]);
93 		page_cache_release(pages[i]);
94 	}
95 }
96 
97 /*
98  * after copy_from_user, pages need to be dirtied and we need to make
99  * sure holes are created between the current EOF and the start of
100  * any next extents (if required).
101  *
102  * this also makes the decision about creating an inline extent vs
103  * doing real data extents, marking pages dirty and delalloc as required.
104  */
105 static noinline int dirty_and_release_pages(struct btrfs_trans_handle *trans,
106 				   struct btrfs_root *root,
107 				   struct file *file,
108 				   struct page **pages,
109 				   size_t num_pages,
110 				   loff_t pos,
111 				   size_t write_bytes)
112 {
113 	int err = 0;
114 	int i;
115 	struct inode *inode = fdentry(file)->d_inode;
116 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
117 	u64 hint_byte;
118 	u64 num_bytes;
119 	u64 start_pos;
120 	u64 end_of_last_block;
121 	u64 end_pos = pos + write_bytes;
122 	loff_t isize = i_size_read(inode);
123 
124 	start_pos = pos & ~((u64)root->sectorsize - 1);
125 	num_bytes = (write_bytes + pos - start_pos +
126 		    root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
127 
128 	end_of_last_block = start_pos + num_bytes - 1;
129 
130 	lock_extent(io_tree, start_pos, end_of_last_block, GFP_NOFS);
131 	trans = btrfs_join_transaction(root, 1);
132 	if (!trans) {
133 		err = -ENOMEM;
134 		goto out_unlock;
135 	}
136 	btrfs_set_trans_block_group(trans, inode);
137 	hint_byte = 0;
138 
139 	set_extent_uptodate(io_tree, start_pos, end_of_last_block, GFP_NOFS);
140 
141 	/* check for reserved extents on each page, we don't want
142 	 * to reset the delalloc bit on things that already have
143 	 * extents reserved.
144 	 */
145 	btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block);
146 	for (i = 0; i < num_pages; i++) {
147 		struct page *p = pages[i];
148 		SetPageUptodate(p);
149 		ClearPageChecked(p);
150 		set_page_dirty(p);
151 	}
152 	if (end_pos > isize) {
153 		i_size_write(inode, end_pos);
154 		btrfs_update_inode(trans, root, inode);
155 	}
156 	err = btrfs_end_transaction(trans, root);
157 out_unlock:
158 	unlock_extent(io_tree, start_pos, end_of_last_block, GFP_NOFS);
159 	return err;
160 }
161 
162 /*
163  * this drops all the extents in the cache that intersect the range
164  * [start, end].  Existing extents are split as required.
165  */
166 int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
167 			    int skip_pinned)
168 {
169 	struct extent_map *em;
170 	struct extent_map *split = NULL;
171 	struct extent_map *split2 = NULL;
172 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
173 	u64 len = end - start + 1;
174 	int ret;
175 	int testend = 1;
176 	unsigned long flags;
177 	int compressed = 0;
178 
179 	WARN_ON(end < start);
180 	if (end == (u64)-1) {
181 		len = (u64)-1;
182 		testend = 0;
183 	}
184 	while (1) {
185 		if (!split)
186 			split = alloc_extent_map(GFP_NOFS);
187 		if (!split2)
188 			split2 = alloc_extent_map(GFP_NOFS);
189 
190 		spin_lock(&em_tree->lock);
191 		em = lookup_extent_mapping(em_tree, start, len);
192 		if (!em) {
193 			spin_unlock(&em_tree->lock);
194 			break;
195 		}
196 		flags = em->flags;
197 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
198 			spin_unlock(&em_tree->lock);
199 			if (em->start <= start &&
200 			    (!testend || em->start + em->len >= start + len)) {
201 				free_extent_map(em);
202 				break;
203 			}
204 			if (start < em->start) {
205 				len = em->start - start;
206 			} else {
207 				len = start + len - (em->start + em->len);
208 				start = em->start + em->len;
209 			}
210 			free_extent_map(em);
211 			continue;
212 		}
213 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
214 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
215 		remove_extent_mapping(em_tree, em);
216 
217 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
218 		    em->start < start) {
219 			split->start = em->start;
220 			split->len = start - em->start;
221 			split->orig_start = em->orig_start;
222 			split->block_start = em->block_start;
223 
224 			if (compressed)
225 				split->block_len = em->block_len;
226 			else
227 				split->block_len = split->len;
228 
229 			split->bdev = em->bdev;
230 			split->flags = flags;
231 			ret = add_extent_mapping(em_tree, split);
232 			BUG_ON(ret);
233 			free_extent_map(split);
234 			split = split2;
235 			split2 = NULL;
236 		}
237 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
238 		    testend && em->start + em->len > start + len) {
239 			u64 diff = start + len - em->start;
240 
241 			split->start = start + len;
242 			split->len = em->start + em->len - (start + len);
243 			split->bdev = em->bdev;
244 			split->flags = flags;
245 
246 			if (compressed) {
247 				split->block_len = em->block_len;
248 				split->block_start = em->block_start;
249 				split->orig_start = em->orig_start;
250 			} else {
251 				split->block_len = split->len;
252 				split->block_start = em->block_start + diff;
253 				split->orig_start = split->start;
254 			}
255 
256 			ret = add_extent_mapping(em_tree, split);
257 			BUG_ON(ret);
258 			free_extent_map(split);
259 			split = NULL;
260 		}
261 		spin_unlock(&em_tree->lock);
262 
263 		/* once for us */
264 		free_extent_map(em);
265 		/* once for the tree*/
266 		free_extent_map(em);
267 	}
268 	if (split)
269 		free_extent_map(split);
270 	if (split2)
271 		free_extent_map(split2);
272 	return 0;
273 }
274 
275 int btrfs_check_file(struct btrfs_root *root, struct inode *inode)
276 {
277 	return 0;
278 #if 0
279 	struct btrfs_path *path;
280 	struct btrfs_key found_key;
281 	struct extent_buffer *leaf;
282 	struct btrfs_file_extent_item *extent;
283 	u64 last_offset = 0;
284 	int nritems;
285 	int slot;
286 	int found_type;
287 	int ret;
288 	int err = 0;
289 	u64 extent_end = 0;
290 
291 	path = btrfs_alloc_path();
292 	ret = btrfs_lookup_file_extent(NULL, root, path, inode->i_ino,
293 				       last_offset, 0);
294 	while (1) {
295 		nritems = btrfs_header_nritems(path->nodes[0]);
296 		if (path->slots[0] >= nritems) {
297 			ret = btrfs_next_leaf(root, path);
298 			if (ret)
299 				goto out;
300 			nritems = btrfs_header_nritems(path->nodes[0]);
301 		}
302 		slot = path->slots[0];
303 		leaf = path->nodes[0];
304 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
305 		if (found_key.objectid != inode->i_ino)
306 			break;
307 		if (found_key.type != BTRFS_EXTENT_DATA_KEY)
308 			goto out;
309 
310 		if (found_key.offset < last_offset) {
311 			WARN_ON(1);
312 			btrfs_print_leaf(root, leaf);
313 			printk(KERN_ERR "inode %lu found offset %llu "
314 			       "expected %llu\n", inode->i_ino,
315 			       (unsigned long long)found_key.offset,
316 			       (unsigned long long)last_offset);
317 			err = 1;
318 			goto out;
319 		}
320 		extent = btrfs_item_ptr(leaf, slot,
321 					struct btrfs_file_extent_item);
322 		found_type = btrfs_file_extent_type(leaf, extent);
323 		if (found_type == BTRFS_FILE_EXTENT_REG) {
324 			extent_end = found_key.offset +
325 			     btrfs_file_extent_num_bytes(leaf, extent);
326 		} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
327 			struct btrfs_item *item;
328 			item = btrfs_item_nr(leaf, slot);
329 			extent_end = found_key.offset +
330 			     btrfs_file_extent_inline_len(leaf, extent);
331 			extent_end = (extent_end + root->sectorsize - 1) &
332 				~((u64)root->sectorsize - 1);
333 		}
334 		last_offset = extent_end;
335 		path->slots[0]++;
336 	}
337 	if (0 && last_offset < inode->i_size) {
338 		WARN_ON(1);
339 		btrfs_print_leaf(root, leaf);
340 		printk(KERN_ERR "inode %lu found offset %llu size %llu\n",
341 		       inode->i_ino, (unsigned long long)last_offset,
342 		       (unsigned long long)inode->i_size);
343 		err = 1;
344 
345 	}
346 out:
347 	btrfs_free_path(path);
348 	return err;
349 #endif
350 }
351 
352 /*
353  * this is very complex, but the basic idea is to drop all extents
354  * in the range start - end.  hint_block is filled in with a block number
355  * that would be a good hint to the block allocator for this file.
356  *
357  * If an extent intersects the range but is not entirely inside the range
358  * it is either truncated or split.  Anything entirely inside the range
359  * is deleted from the tree.
360  *
361  * inline_limit is used to tell this code which offsets in the file to keep
362  * if they contain inline extents.
363  */
364 noinline int btrfs_drop_extents(struct btrfs_trans_handle *trans,
365 		       struct btrfs_root *root, struct inode *inode,
366 		       u64 start, u64 end, u64 inline_limit, u64 *hint_byte)
367 {
368 	u64 extent_end = 0;
369 	u64 locked_end = end;
370 	u64 search_start = start;
371 	u64 leaf_start;
372 	u64 ram_bytes = 0;
373 	u64 orig_parent = 0;
374 	u64 disk_bytenr = 0;
375 	u8 compression;
376 	u8 encryption;
377 	u16 other_encoding = 0;
378 	u64 root_gen;
379 	u64 root_owner;
380 	struct extent_buffer *leaf;
381 	struct btrfs_file_extent_item *extent;
382 	struct btrfs_path *path;
383 	struct btrfs_key key;
384 	struct btrfs_file_extent_item old;
385 	int keep;
386 	int slot;
387 	int bookend;
388 	int found_type = 0;
389 	int found_extent;
390 	int found_inline;
391 	int recow;
392 	int ret;
393 
394 	inline_limit = 0;
395 	btrfs_drop_extent_cache(inode, start, end - 1, 0);
396 
397 	path = btrfs_alloc_path();
398 	if (!path)
399 		return -ENOMEM;
400 	while (1) {
401 		recow = 0;
402 		btrfs_release_path(root, path);
403 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
404 					       search_start, -1);
405 		if (ret < 0)
406 			goto out;
407 		if (ret > 0) {
408 			if (path->slots[0] == 0) {
409 				ret = 0;
410 				goto out;
411 			}
412 			path->slots[0]--;
413 		}
414 next_slot:
415 		keep = 0;
416 		bookend = 0;
417 		found_extent = 0;
418 		found_inline = 0;
419 		leaf_start = 0;
420 		root_gen = 0;
421 		root_owner = 0;
422 		compression = 0;
423 		encryption = 0;
424 		extent = NULL;
425 		leaf = path->nodes[0];
426 		slot = path->slots[0];
427 		ret = 0;
428 		btrfs_item_key_to_cpu(leaf, &key, slot);
429 		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY &&
430 		    key.offset >= end) {
431 			goto out;
432 		}
433 		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
434 		    key.objectid != inode->i_ino) {
435 			goto out;
436 		}
437 		if (recow) {
438 			search_start = max(key.offset, start);
439 			continue;
440 		}
441 		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
442 			extent = btrfs_item_ptr(leaf, slot,
443 						struct btrfs_file_extent_item);
444 			found_type = btrfs_file_extent_type(leaf, extent);
445 			compression = btrfs_file_extent_compression(leaf,
446 								    extent);
447 			encryption = btrfs_file_extent_encryption(leaf,
448 								  extent);
449 			other_encoding = btrfs_file_extent_other_encoding(leaf,
450 								  extent);
451 			if (found_type == BTRFS_FILE_EXTENT_REG ||
452 			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
453 				extent_end =
454 				     btrfs_file_extent_disk_bytenr(leaf,
455 								   extent);
456 				if (extent_end)
457 					*hint_byte = extent_end;
458 
459 				extent_end = key.offset +
460 				     btrfs_file_extent_num_bytes(leaf, extent);
461 				ram_bytes = btrfs_file_extent_ram_bytes(leaf,
462 								extent);
463 				found_extent = 1;
464 			} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
465 				found_inline = 1;
466 				extent_end = key.offset +
467 				     btrfs_file_extent_inline_len(leaf, extent);
468 			}
469 		} else {
470 			extent_end = search_start;
471 		}
472 
473 		/* we found nothing we can drop */
474 		if ((!found_extent && !found_inline) ||
475 		    search_start >= extent_end) {
476 			int nextret;
477 			u32 nritems;
478 			nritems = btrfs_header_nritems(leaf);
479 			if (slot >= nritems - 1) {
480 				nextret = btrfs_next_leaf(root, path);
481 				if (nextret)
482 					goto out;
483 				recow = 1;
484 			} else {
485 				path->slots[0]++;
486 			}
487 			goto next_slot;
488 		}
489 
490 		if (end <= extent_end && start >= key.offset && found_inline)
491 			*hint_byte = EXTENT_MAP_INLINE;
492 
493 		if (found_extent) {
494 			read_extent_buffer(leaf, &old, (unsigned long)extent,
495 					   sizeof(old));
496 			root_gen = btrfs_header_generation(leaf);
497 			root_owner = btrfs_header_owner(leaf);
498 			leaf_start = leaf->start;
499 		}
500 
501 		if (end < extent_end && end >= key.offset) {
502 			bookend = 1;
503 			if (found_inline && start <= key.offset)
504 				keep = 1;
505 		}
506 
507 		if (bookend && found_extent) {
508 			if (locked_end < extent_end) {
509 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
510 						locked_end, extent_end - 1,
511 						GFP_NOFS);
512 				if (!ret) {
513 					btrfs_release_path(root, path);
514 					lock_extent(&BTRFS_I(inode)->io_tree,
515 						locked_end, extent_end - 1,
516 						GFP_NOFS);
517 					locked_end = extent_end;
518 					continue;
519 				}
520 				locked_end = extent_end;
521 			}
522 			orig_parent = path->nodes[0]->start;
523 			disk_bytenr = le64_to_cpu(old.disk_bytenr);
524 			if (disk_bytenr != 0) {
525 				ret = btrfs_inc_extent_ref(trans, root,
526 					   disk_bytenr,
527 					   le64_to_cpu(old.disk_num_bytes),
528 					   orig_parent, root->root_key.objectid,
529 					   trans->transid, inode->i_ino);
530 				BUG_ON(ret);
531 			}
532 		}
533 
534 		if (found_inline) {
535 			u64 mask = root->sectorsize - 1;
536 			search_start = (extent_end + mask) & ~mask;
537 		} else
538 			search_start = extent_end;
539 
540 		/* truncate existing extent */
541 		if (start > key.offset) {
542 			u64 new_num;
543 			u64 old_num;
544 			keep = 1;
545 			WARN_ON(start & (root->sectorsize - 1));
546 			if (found_extent) {
547 				new_num = start - key.offset;
548 				old_num = btrfs_file_extent_num_bytes(leaf,
549 								      extent);
550 				*hint_byte =
551 					btrfs_file_extent_disk_bytenr(leaf,
552 								      extent);
553 				if (btrfs_file_extent_disk_bytenr(leaf,
554 								  extent)) {
555 					inode_sub_bytes(inode, old_num -
556 							new_num);
557 				}
558 				btrfs_set_file_extent_num_bytes(leaf,
559 							extent, new_num);
560 				btrfs_mark_buffer_dirty(leaf);
561 			} else if (key.offset < inline_limit &&
562 				   (end > extent_end) &&
563 				   (inline_limit < extent_end)) {
564 				u32 new_size;
565 				new_size = btrfs_file_extent_calc_inline_size(
566 						   inline_limit - key.offset);
567 				inode_sub_bytes(inode, extent_end -
568 						inline_limit);
569 				btrfs_set_file_extent_ram_bytes(leaf, extent,
570 							new_size);
571 				if (!compression && !encryption) {
572 					btrfs_truncate_item(trans, root, path,
573 							    new_size, 1);
574 				}
575 			}
576 		}
577 		/* delete the entire extent */
578 		if (!keep) {
579 			if (found_inline)
580 				inode_sub_bytes(inode, extent_end -
581 						key.offset);
582 			ret = btrfs_del_item(trans, root, path);
583 			/* TODO update progress marker and return */
584 			BUG_ON(ret);
585 			extent = NULL;
586 			btrfs_release_path(root, path);
587 			/* the extent will be freed later */
588 		}
589 		if (bookend && found_inline && start <= key.offset) {
590 			u32 new_size;
591 			new_size = btrfs_file_extent_calc_inline_size(
592 						   extent_end - end);
593 			inode_sub_bytes(inode, end - key.offset);
594 			btrfs_set_file_extent_ram_bytes(leaf, extent,
595 							new_size);
596 			if (!compression && !encryption)
597 				ret = btrfs_truncate_item(trans, root, path,
598 							  new_size, 0);
599 			BUG_ON(ret);
600 		}
601 		/* create bookend, splitting the extent in two */
602 		if (bookend && found_extent) {
603 			struct btrfs_key ins;
604 			ins.objectid = inode->i_ino;
605 			ins.offset = end;
606 			btrfs_set_key_type(&ins, BTRFS_EXTENT_DATA_KEY);
607 
608 			btrfs_release_path(root, path);
609 			path->leave_spinning = 1;
610 			ret = btrfs_insert_empty_item(trans, root, path, &ins,
611 						      sizeof(*extent));
612 			BUG_ON(ret);
613 
614 			leaf = path->nodes[0];
615 			extent = btrfs_item_ptr(leaf, path->slots[0],
616 						struct btrfs_file_extent_item);
617 			write_extent_buffer(leaf, &old,
618 					    (unsigned long)extent, sizeof(old));
619 
620 			btrfs_set_file_extent_compression(leaf, extent,
621 							  compression);
622 			btrfs_set_file_extent_encryption(leaf, extent,
623 							 encryption);
624 			btrfs_set_file_extent_other_encoding(leaf, extent,
625 							     other_encoding);
626 			btrfs_set_file_extent_offset(leaf, extent,
627 				    le64_to_cpu(old.offset) + end - key.offset);
628 			WARN_ON(le64_to_cpu(old.num_bytes) <
629 				(extent_end - end));
630 			btrfs_set_file_extent_num_bytes(leaf, extent,
631 							extent_end - end);
632 
633 			/*
634 			 * set the ram bytes to the size of the full extent
635 			 * before splitting.  This is a worst case flag,
636 			 * but its the best we can do because we don't know
637 			 * how splitting affects compression
638 			 */
639 			btrfs_set_file_extent_ram_bytes(leaf, extent,
640 							ram_bytes);
641 			btrfs_set_file_extent_type(leaf, extent, found_type);
642 
643 			btrfs_unlock_up_safe(path, 1);
644 			btrfs_mark_buffer_dirty(path->nodes[0]);
645 			btrfs_set_lock_blocking(path->nodes[0]);
646 
647 			if (disk_bytenr != 0) {
648 				ret = btrfs_update_extent_ref(trans, root,
649 						disk_bytenr,
650 						le64_to_cpu(old.disk_num_bytes),
651 						orig_parent,
652 						leaf->start,
653 						root->root_key.objectid,
654 						trans->transid, ins.objectid);
655 
656 				BUG_ON(ret);
657 			}
658 			path->leave_spinning = 0;
659 			btrfs_release_path(root, path);
660 			if (disk_bytenr != 0)
661 				inode_add_bytes(inode, extent_end - end);
662 		}
663 
664 		if (found_extent && !keep) {
665 			u64 old_disk_bytenr = le64_to_cpu(old.disk_bytenr);
666 
667 			if (old_disk_bytenr != 0) {
668 				inode_sub_bytes(inode,
669 						le64_to_cpu(old.num_bytes));
670 				ret = btrfs_free_extent(trans, root,
671 						old_disk_bytenr,
672 						le64_to_cpu(old.disk_num_bytes),
673 						leaf_start, root_owner,
674 						root_gen, key.objectid, 0);
675 				BUG_ON(ret);
676 				*hint_byte = old_disk_bytenr;
677 			}
678 		}
679 
680 		if (search_start >= end) {
681 			ret = 0;
682 			goto out;
683 		}
684 	}
685 out:
686 	btrfs_free_path(path);
687 	if (locked_end > end) {
688 		unlock_extent(&BTRFS_I(inode)->io_tree, end, locked_end - 1,
689 			      GFP_NOFS);
690 	}
691 	btrfs_check_file(root, inode);
692 	return ret;
693 }
694 
695 static int extent_mergeable(struct extent_buffer *leaf, int slot,
696 			    u64 objectid, u64 bytenr, u64 *start, u64 *end)
697 {
698 	struct btrfs_file_extent_item *fi;
699 	struct btrfs_key key;
700 	u64 extent_end;
701 
702 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
703 		return 0;
704 
705 	btrfs_item_key_to_cpu(leaf, &key, slot);
706 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
707 		return 0;
708 
709 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
710 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
711 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
712 	    btrfs_file_extent_compression(leaf, fi) ||
713 	    btrfs_file_extent_encryption(leaf, fi) ||
714 	    btrfs_file_extent_other_encoding(leaf, fi))
715 		return 0;
716 
717 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
718 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
719 		return 0;
720 
721 	*start = key.offset;
722 	*end = extent_end;
723 	return 1;
724 }
725 
726 /*
727  * Mark extent in the range start - end as written.
728  *
729  * This changes extent type from 'pre-allocated' to 'regular'. If only
730  * part of extent is marked as written, the extent will be split into
731  * two or three.
732  */
733 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
734 			      struct btrfs_root *root,
735 			      struct inode *inode, u64 start, u64 end)
736 {
737 	struct extent_buffer *leaf;
738 	struct btrfs_path *path;
739 	struct btrfs_file_extent_item *fi;
740 	struct btrfs_key key;
741 	u64 bytenr;
742 	u64 num_bytes;
743 	u64 extent_end;
744 	u64 extent_offset;
745 	u64 other_start;
746 	u64 other_end;
747 	u64 split = start;
748 	u64 locked_end = end;
749 	u64 orig_parent;
750 	int extent_type;
751 	int split_end = 1;
752 	int ret;
753 
754 	btrfs_drop_extent_cache(inode, start, end - 1, 0);
755 
756 	path = btrfs_alloc_path();
757 	BUG_ON(!path);
758 again:
759 	key.objectid = inode->i_ino;
760 	key.type = BTRFS_EXTENT_DATA_KEY;
761 	if (split == start)
762 		key.offset = split;
763 	else
764 		key.offset = split - 1;
765 
766 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
767 	if (ret > 0 && path->slots[0] > 0)
768 		path->slots[0]--;
769 
770 	leaf = path->nodes[0];
771 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
772 	BUG_ON(key.objectid != inode->i_ino ||
773 	       key.type != BTRFS_EXTENT_DATA_KEY);
774 	fi = btrfs_item_ptr(leaf, path->slots[0],
775 			    struct btrfs_file_extent_item);
776 	extent_type = btrfs_file_extent_type(leaf, fi);
777 	BUG_ON(extent_type != BTRFS_FILE_EXTENT_PREALLOC);
778 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
779 	BUG_ON(key.offset > start || extent_end < end);
780 
781 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
782 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
783 	extent_offset = btrfs_file_extent_offset(leaf, fi);
784 
785 	if (key.offset == start)
786 		split = end;
787 
788 	if (key.offset == start && extent_end == end) {
789 		int del_nr = 0;
790 		int del_slot = 0;
791 		u64 leaf_owner = btrfs_header_owner(leaf);
792 		u64 leaf_gen = btrfs_header_generation(leaf);
793 		other_start = end;
794 		other_end = 0;
795 		if (extent_mergeable(leaf, path->slots[0] + 1, inode->i_ino,
796 				     bytenr, &other_start, &other_end)) {
797 			extent_end = other_end;
798 			del_slot = path->slots[0] + 1;
799 			del_nr++;
800 			ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
801 						leaf->start, leaf_owner,
802 						leaf_gen, inode->i_ino, 0);
803 			BUG_ON(ret);
804 		}
805 		other_start = 0;
806 		other_end = start;
807 		if (extent_mergeable(leaf, path->slots[0] - 1, inode->i_ino,
808 				     bytenr, &other_start, &other_end)) {
809 			key.offset = other_start;
810 			del_slot = path->slots[0];
811 			del_nr++;
812 			ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
813 						leaf->start, leaf_owner,
814 						leaf_gen, inode->i_ino, 0);
815 			BUG_ON(ret);
816 		}
817 		split_end = 0;
818 		if (del_nr == 0) {
819 			btrfs_set_file_extent_type(leaf, fi,
820 						   BTRFS_FILE_EXTENT_REG);
821 			goto done;
822 		}
823 
824 		fi = btrfs_item_ptr(leaf, del_slot - 1,
825 				    struct btrfs_file_extent_item);
826 		btrfs_set_file_extent_type(leaf, fi, BTRFS_FILE_EXTENT_REG);
827 		btrfs_set_file_extent_num_bytes(leaf, fi,
828 						extent_end - key.offset);
829 		btrfs_mark_buffer_dirty(leaf);
830 
831 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
832 		BUG_ON(ret);
833 		goto done;
834 	} else if (split == start) {
835 		if (locked_end < extent_end) {
836 			ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
837 					locked_end, extent_end - 1, GFP_NOFS);
838 			if (!ret) {
839 				btrfs_release_path(root, path);
840 				lock_extent(&BTRFS_I(inode)->io_tree,
841 					locked_end, extent_end - 1, GFP_NOFS);
842 				locked_end = extent_end;
843 				goto again;
844 			}
845 			locked_end = extent_end;
846 		}
847 		btrfs_set_file_extent_num_bytes(leaf, fi, split - key.offset);
848 		extent_offset += split - key.offset;
849 	} else  {
850 		BUG_ON(key.offset != start);
851 		btrfs_set_file_extent_offset(leaf, fi, extent_offset +
852 					     split - key.offset);
853 		btrfs_set_file_extent_num_bytes(leaf, fi, extent_end - split);
854 		key.offset = split;
855 		btrfs_set_item_key_safe(trans, root, path, &key);
856 		extent_end = split;
857 	}
858 
859 	if (extent_end == end) {
860 		split_end = 0;
861 		extent_type = BTRFS_FILE_EXTENT_REG;
862 	}
863 	if (extent_end == end && split == start) {
864 		other_start = end;
865 		other_end = 0;
866 		if (extent_mergeable(leaf, path->slots[0] + 1, inode->i_ino,
867 				     bytenr, &other_start, &other_end)) {
868 			path->slots[0]++;
869 			fi = btrfs_item_ptr(leaf, path->slots[0],
870 					    struct btrfs_file_extent_item);
871 			key.offset = split;
872 			btrfs_set_item_key_safe(trans, root, path, &key);
873 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
874 			btrfs_set_file_extent_num_bytes(leaf, fi,
875 							other_end - split);
876 			goto done;
877 		}
878 	}
879 	if (extent_end == end && split == end) {
880 		other_start = 0;
881 		other_end = start;
882 		if (extent_mergeable(leaf, path->slots[0] - 1 , inode->i_ino,
883 				     bytenr, &other_start, &other_end)) {
884 			path->slots[0]--;
885 			fi = btrfs_item_ptr(leaf, path->slots[0],
886 					    struct btrfs_file_extent_item);
887 			btrfs_set_file_extent_num_bytes(leaf, fi, extent_end -
888 							other_start);
889 			goto done;
890 		}
891 	}
892 
893 	btrfs_mark_buffer_dirty(leaf);
894 
895 	orig_parent = leaf->start;
896 	ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
897 				   orig_parent, root->root_key.objectid,
898 				   trans->transid, inode->i_ino);
899 	BUG_ON(ret);
900 	btrfs_release_path(root, path);
901 
902 	key.offset = start;
903 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*fi));
904 	BUG_ON(ret);
905 
906 	leaf = path->nodes[0];
907 	fi = btrfs_item_ptr(leaf, path->slots[0],
908 			    struct btrfs_file_extent_item);
909 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
910 	btrfs_set_file_extent_type(leaf, fi, extent_type);
911 	btrfs_set_file_extent_disk_bytenr(leaf, fi, bytenr);
912 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, num_bytes);
913 	btrfs_set_file_extent_offset(leaf, fi, extent_offset);
914 	btrfs_set_file_extent_num_bytes(leaf, fi, extent_end - key.offset);
915 	btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
916 	btrfs_set_file_extent_compression(leaf, fi, 0);
917 	btrfs_set_file_extent_encryption(leaf, fi, 0);
918 	btrfs_set_file_extent_other_encoding(leaf, fi, 0);
919 
920 	if (orig_parent != leaf->start) {
921 		ret = btrfs_update_extent_ref(trans, root, bytenr, num_bytes,
922 					      orig_parent, leaf->start,
923 					      root->root_key.objectid,
924 					      trans->transid, inode->i_ino);
925 		BUG_ON(ret);
926 	}
927 done:
928 	btrfs_mark_buffer_dirty(leaf);
929 	btrfs_release_path(root, path);
930 	if (split_end && split == start) {
931 		split = end;
932 		goto again;
933 	}
934 	if (locked_end > end) {
935 		unlock_extent(&BTRFS_I(inode)->io_tree, end, locked_end - 1,
936 			      GFP_NOFS);
937 	}
938 	btrfs_free_path(path);
939 	return 0;
940 }
941 
942 /*
943  * this gets pages into the page cache and locks them down, it also properly
944  * waits for data=ordered extents to finish before allowing the pages to be
945  * modified.
946  */
947 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
948 			 struct page **pages, size_t num_pages,
949 			 loff_t pos, unsigned long first_index,
950 			 unsigned long last_index, size_t write_bytes)
951 {
952 	int i;
953 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
954 	struct inode *inode = fdentry(file)->d_inode;
955 	int err = 0;
956 	u64 start_pos;
957 	u64 last_pos;
958 
959 	start_pos = pos & ~((u64)root->sectorsize - 1);
960 	last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
961 
962 	if (start_pos > inode->i_size) {
963 		err = btrfs_cont_expand(inode, start_pos);
964 		if (err)
965 			return err;
966 	}
967 
968 	memset(pages, 0, num_pages * sizeof(struct page *));
969 again:
970 	for (i = 0; i < num_pages; i++) {
971 		pages[i] = grab_cache_page(inode->i_mapping, index + i);
972 		if (!pages[i]) {
973 			err = -ENOMEM;
974 			BUG_ON(1);
975 		}
976 		wait_on_page_writeback(pages[i]);
977 	}
978 	if (start_pos < inode->i_size) {
979 		struct btrfs_ordered_extent *ordered;
980 		lock_extent(&BTRFS_I(inode)->io_tree,
981 			    start_pos, last_pos - 1, GFP_NOFS);
982 		ordered = btrfs_lookup_first_ordered_extent(inode,
983 							    last_pos - 1);
984 		if (ordered &&
985 		    ordered->file_offset + ordered->len > start_pos &&
986 		    ordered->file_offset < last_pos) {
987 			btrfs_put_ordered_extent(ordered);
988 			unlock_extent(&BTRFS_I(inode)->io_tree,
989 				      start_pos, last_pos - 1, GFP_NOFS);
990 			for (i = 0; i < num_pages; i++) {
991 				unlock_page(pages[i]);
992 				page_cache_release(pages[i]);
993 			}
994 			btrfs_wait_ordered_range(inode, start_pos,
995 						 last_pos - start_pos);
996 			goto again;
997 		}
998 		if (ordered)
999 			btrfs_put_ordered_extent(ordered);
1000 
1001 		clear_extent_bits(&BTRFS_I(inode)->io_tree, start_pos,
1002 				  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC,
1003 				  GFP_NOFS);
1004 		unlock_extent(&BTRFS_I(inode)->io_tree,
1005 			      start_pos, last_pos - 1, GFP_NOFS);
1006 	}
1007 	for (i = 0; i < num_pages; i++) {
1008 		clear_page_dirty_for_io(pages[i]);
1009 		set_page_extent_mapped(pages[i]);
1010 		WARN_ON(!PageLocked(pages[i]));
1011 	}
1012 	return 0;
1013 }
1014 
1015 static ssize_t btrfs_file_write(struct file *file, const char __user *buf,
1016 				size_t count, loff_t *ppos)
1017 {
1018 	loff_t pos;
1019 	loff_t start_pos;
1020 	ssize_t num_written = 0;
1021 	ssize_t err = 0;
1022 	int ret = 0;
1023 	struct inode *inode = fdentry(file)->d_inode;
1024 	struct btrfs_root *root = BTRFS_I(inode)->root;
1025 	struct page **pages = NULL;
1026 	int nrptrs;
1027 	struct page *pinned[2];
1028 	unsigned long first_index;
1029 	unsigned long last_index;
1030 	int will_write;
1031 
1032 	will_write = ((file->f_flags & O_SYNC) || IS_SYNC(inode) ||
1033 		      (file->f_flags & O_DIRECT));
1034 
1035 	nrptrs = min((count + PAGE_CACHE_SIZE - 1) / PAGE_CACHE_SIZE,
1036 		     PAGE_CACHE_SIZE / (sizeof(struct page *)));
1037 	pinned[0] = NULL;
1038 	pinned[1] = NULL;
1039 
1040 	pos = *ppos;
1041 	start_pos = pos;
1042 
1043 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
1044 	current->backing_dev_info = inode->i_mapping->backing_dev_info;
1045 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1046 	if (err)
1047 		goto out_nolock;
1048 	if (count == 0)
1049 		goto out_nolock;
1050 
1051 	err = file_remove_suid(file);
1052 	if (err)
1053 		goto out_nolock;
1054 	file_update_time(file);
1055 
1056 	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1057 
1058 	mutex_lock(&inode->i_mutex);
1059 	BTRFS_I(inode)->sequence++;
1060 	first_index = pos >> PAGE_CACHE_SHIFT;
1061 	last_index = (pos + count) >> PAGE_CACHE_SHIFT;
1062 
1063 	/*
1064 	 * there are lots of better ways to do this, but this code
1065 	 * makes sure the first and last page in the file range are
1066 	 * up to date and ready for cow
1067 	 */
1068 	if ((pos & (PAGE_CACHE_SIZE - 1))) {
1069 		pinned[0] = grab_cache_page(inode->i_mapping, first_index);
1070 		if (!PageUptodate(pinned[0])) {
1071 			ret = btrfs_readpage(NULL, pinned[0]);
1072 			BUG_ON(ret);
1073 			wait_on_page_locked(pinned[0]);
1074 		} else {
1075 			unlock_page(pinned[0]);
1076 		}
1077 	}
1078 	if ((pos + count) & (PAGE_CACHE_SIZE - 1)) {
1079 		pinned[1] = grab_cache_page(inode->i_mapping, last_index);
1080 		if (!PageUptodate(pinned[1])) {
1081 			ret = btrfs_readpage(NULL, pinned[1]);
1082 			BUG_ON(ret);
1083 			wait_on_page_locked(pinned[1]);
1084 		} else {
1085 			unlock_page(pinned[1]);
1086 		}
1087 	}
1088 
1089 	while (count > 0) {
1090 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1091 		size_t write_bytes = min(count, nrptrs *
1092 					(size_t)PAGE_CACHE_SIZE -
1093 					 offset);
1094 		size_t num_pages = (write_bytes + PAGE_CACHE_SIZE - 1) >>
1095 					PAGE_CACHE_SHIFT;
1096 
1097 		WARN_ON(num_pages > nrptrs);
1098 		memset(pages, 0, sizeof(struct page *) * nrptrs);
1099 
1100 		ret = btrfs_check_data_free_space(root, inode, write_bytes);
1101 		if (ret)
1102 			goto out;
1103 
1104 		ret = prepare_pages(root, file, pages, num_pages,
1105 				    pos, first_index, last_index,
1106 				    write_bytes);
1107 		if (ret) {
1108 			btrfs_free_reserved_data_space(root, inode,
1109 						       write_bytes);
1110 			goto out;
1111 		}
1112 
1113 		ret = btrfs_copy_from_user(pos, num_pages,
1114 					   write_bytes, pages, buf);
1115 		if (ret) {
1116 			btrfs_free_reserved_data_space(root, inode,
1117 						       write_bytes);
1118 			btrfs_drop_pages(pages, num_pages);
1119 			goto out;
1120 		}
1121 
1122 		ret = dirty_and_release_pages(NULL, root, file, pages,
1123 					      num_pages, pos, write_bytes);
1124 		btrfs_drop_pages(pages, num_pages);
1125 		if (ret) {
1126 			btrfs_free_reserved_data_space(root, inode,
1127 						       write_bytes);
1128 			goto out;
1129 		}
1130 
1131 		if (will_write) {
1132 			btrfs_fdatawrite_range(inode->i_mapping, pos,
1133 					       pos + write_bytes - 1,
1134 					       WB_SYNC_NONE);
1135 		} else {
1136 			balance_dirty_pages_ratelimited_nr(inode->i_mapping,
1137 							   num_pages);
1138 			if (num_pages <
1139 			    (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1140 				btrfs_btree_balance_dirty(root, 1);
1141 			btrfs_throttle(root);
1142 		}
1143 
1144 		buf += write_bytes;
1145 		count -= write_bytes;
1146 		pos += write_bytes;
1147 		num_written += write_bytes;
1148 
1149 		cond_resched();
1150 	}
1151 out:
1152 	mutex_unlock(&inode->i_mutex);
1153 	if (ret)
1154 		err = ret;
1155 
1156 out_nolock:
1157 	kfree(pages);
1158 	if (pinned[0])
1159 		page_cache_release(pinned[0]);
1160 	if (pinned[1])
1161 		page_cache_release(pinned[1]);
1162 	*ppos = pos;
1163 
1164 	/*
1165 	 * we want to make sure fsync finds this change
1166 	 * but we haven't joined a transaction running right now.
1167 	 *
1168 	 * Later on, someone is sure to update the inode and get the
1169 	 * real transid recorded.
1170 	 *
1171 	 * We set last_trans now to the fs_info generation + 1,
1172 	 * this will either be one more than the running transaction
1173 	 * or the generation used for the next transaction if there isn't
1174 	 * one running right now.
1175 	 */
1176 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1177 
1178 	if (num_written > 0 && will_write) {
1179 		struct btrfs_trans_handle *trans;
1180 
1181 		err = btrfs_wait_ordered_range(inode, start_pos, num_written);
1182 		if (err)
1183 			num_written = err;
1184 
1185 		if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) {
1186 			trans = btrfs_start_transaction(root, 1);
1187 			ret = btrfs_log_dentry_safe(trans, root,
1188 						    file->f_dentry);
1189 			if (ret == 0) {
1190 				ret = btrfs_sync_log(trans, root);
1191 				if (ret == 0)
1192 					btrfs_end_transaction(trans, root);
1193 				else
1194 					btrfs_commit_transaction(trans, root);
1195 			} else {
1196 				btrfs_commit_transaction(trans, root);
1197 			}
1198 		}
1199 		if (file->f_flags & O_DIRECT) {
1200 			invalidate_mapping_pages(inode->i_mapping,
1201 			      start_pos >> PAGE_CACHE_SHIFT,
1202 			     (start_pos + num_written - 1) >> PAGE_CACHE_SHIFT);
1203 		}
1204 	}
1205 	current->backing_dev_info = NULL;
1206 	return num_written ? num_written : err;
1207 }
1208 
1209 int btrfs_release_file(struct inode *inode, struct file *filp)
1210 {
1211 	/*
1212 	 * ordered_data_close is set by settattr when we are about to truncate
1213 	 * a file from a non-zero size to a zero size.  This tries to
1214 	 * flush down new bytes that may have been written if the
1215 	 * application were using truncate to replace a file in place.
1216 	 */
1217 	if (BTRFS_I(inode)->ordered_data_close) {
1218 		BTRFS_I(inode)->ordered_data_close = 0;
1219 		btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1220 		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1221 			filemap_flush(inode->i_mapping);
1222 	}
1223 	if (filp->private_data)
1224 		btrfs_ioctl_trans_end(filp);
1225 	return 0;
1226 }
1227 
1228 /*
1229  * fsync call for both files and directories.  This logs the inode into
1230  * the tree log instead of forcing full commits whenever possible.
1231  *
1232  * It needs to call filemap_fdatawait so that all ordered extent updates are
1233  * in the metadata btree are up to date for copying to the log.
1234  *
1235  * It drops the inode mutex before doing the tree log commit.  This is an
1236  * important optimization for directories because holding the mutex prevents
1237  * new operations on the dir while we write to disk.
1238  */
1239 int btrfs_sync_file(struct file *file, struct dentry *dentry, int datasync)
1240 {
1241 	struct inode *inode = dentry->d_inode;
1242 	struct btrfs_root *root = BTRFS_I(inode)->root;
1243 	int ret = 0;
1244 	struct btrfs_trans_handle *trans;
1245 
1246 	/*
1247 	 * check the transaction that last modified this inode
1248 	 * and see if its already been committed
1249 	 */
1250 	if (!BTRFS_I(inode)->last_trans)
1251 		goto out;
1252 
1253 	mutex_lock(&root->fs_info->trans_mutex);
1254 	if (BTRFS_I(inode)->last_trans <=
1255 	    root->fs_info->last_trans_committed) {
1256 		BTRFS_I(inode)->last_trans = 0;
1257 		mutex_unlock(&root->fs_info->trans_mutex);
1258 		goto out;
1259 	}
1260 	mutex_unlock(&root->fs_info->trans_mutex);
1261 
1262 	root->log_batch++;
1263 	filemap_fdatawrite(inode->i_mapping);
1264 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
1265 	root->log_batch++;
1266 
1267 	/*
1268 	 * ok we haven't committed the transaction yet, lets do a commit
1269 	 */
1270 	if (file && file->private_data)
1271 		btrfs_ioctl_trans_end(file);
1272 
1273 	trans = btrfs_start_transaction(root, 1);
1274 	if (!trans) {
1275 		ret = -ENOMEM;
1276 		goto out;
1277 	}
1278 
1279 	ret = btrfs_log_dentry_safe(trans, root, dentry);
1280 	if (ret < 0)
1281 		goto out;
1282 
1283 	/* we've logged all the items and now have a consistent
1284 	 * version of the file in the log.  It is possible that
1285 	 * someone will come in and modify the file, but that's
1286 	 * fine because the log is consistent on disk, and we
1287 	 * have references to all of the file's extents
1288 	 *
1289 	 * It is possible that someone will come in and log the
1290 	 * file again, but that will end up using the synchronization
1291 	 * inside btrfs_sync_log to keep things safe.
1292 	 */
1293 	mutex_unlock(&dentry->d_inode->i_mutex);
1294 
1295 	if (ret > 0) {
1296 		ret = btrfs_commit_transaction(trans, root);
1297 	} else {
1298 		ret = btrfs_sync_log(trans, root);
1299 		if (ret == 0)
1300 			ret = btrfs_end_transaction(trans, root);
1301 		else
1302 			ret = btrfs_commit_transaction(trans, root);
1303 	}
1304 	mutex_lock(&dentry->d_inode->i_mutex);
1305 out:
1306 	return ret > 0 ? EIO : ret;
1307 }
1308 
1309 static struct vm_operations_struct btrfs_file_vm_ops = {
1310 	.fault		= filemap_fault,
1311 	.page_mkwrite	= btrfs_page_mkwrite,
1312 };
1313 
1314 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1315 {
1316 	vma->vm_ops = &btrfs_file_vm_ops;
1317 	file_accessed(filp);
1318 	return 0;
1319 }
1320 
1321 struct file_operations btrfs_file_operations = {
1322 	.llseek		= generic_file_llseek,
1323 	.read		= do_sync_read,
1324 	.aio_read       = generic_file_aio_read,
1325 	.splice_read	= generic_file_splice_read,
1326 	.write		= btrfs_file_write,
1327 	.mmap		= btrfs_file_mmap,
1328 	.open		= generic_file_open,
1329 	.release	= btrfs_release_file,
1330 	.fsync		= btrfs_sync_file,
1331 	.unlocked_ioctl	= btrfs_ioctl,
1332 #ifdef CONFIG_COMPAT
1333 	.compat_ioctl	= btrfs_ioctl,
1334 #endif
1335 };
1336