xref: /openbmc/linux/fs/btrfs/file.c (revision b625fe69)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "print-tree.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "volumes.h"
28 #include "qgroup.h"
29 #include "compression.h"
30 #include "delalloc-space.h"
31 #include "reflink.h"
32 #include "subpage.h"
33 
34 static struct kmem_cache *btrfs_inode_defrag_cachep;
35 /*
36  * when auto defrag is enabled we
37  * queue up these defrag structs to remember which
38  * inodes need defragging passes
39  */
40 struct inode_defrag {
41 	struct rb_node rb_node;
42 	/* objectid */
43 	u64 ino;
44 	/*
45 	 * transid where the defrag was added, we search for
46 	 * extents newer than this
47 	 */
48 	u64 transid;
49 
50 	/* root objectid */
51 	u64 root;
52 
53 	/*
54 	 * The extent size threshold for autodefrag.
55 	 *
56 	 * This value is different for compressed/non-compressed extents,
57 	 * thus needs to be passed from higher layer.
58 	 * (aka, inode_should_defrag())
59 	 */
60 	u32 extent_thresh;
61 };
62 
63 static int __compare_inode_defrag(struct inode_defrag *defrag1,
64 				  struct inode_defrag *defrag2)
65 {
66 	if (defrag1->root > defrag2->root)
67 		return 1;
68 	else if (defrag1->root < defrag2->root)
69 		return -1;
70 	else if (defrag1->ino > defrag2->ino)
71 		return 1;
72 	else if (defrag1->ino < defrag2->ino)
73 		return -1;
74 	else
75 		return 0;
76 }
77 
78 /* pop a record for an inode into the defrag tree.  The lock
79  * must be held already
80  *
81  * If you're inserting a record for an older transid than an
82  * existing record, the transid already in the tree is lowered
83  *
84  * If an existing record is found the defrag item you
85  * pass in is freed
86  */
87 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
88 				    struct inode_defrag *defrag)
89 {
90 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
91 	struct inode_defrag *entry;
92 	struct rb_node **p;
93 	struct rb_node *parent = NULL;
94 	int ret;
95 
96 	p = &fs_info->defrag_inodes.rb_node;
97 	while (*p) {
98 		parent = *p;
99 		entry = rb_entry(parent, struct inode_defrag, rb_node);
100 
101 		ret = __compare_inode_defrag(defrag, entry);
102 		if (ret < 0)
103 			p = &parent->rb_left;
104 		else if (ret > 0)
105 			p = &parent->rb_right;
106 		else {
107 			/* if we're reinserting an entry for
108 			 * an old defrag run, make sure to
109 			 * lower the transid of our existing record
110 			 */
111 			if (defrag->transid < entry->transid)
112 				entry->transid = defrag->transid;
113 			entry->extent_thresh = min(defrag->extent_thresh,
114 						   entry->extent_thresh);
115 			return -EEXIST;
116 		}
117 	}
118 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
119 	rb_link_node(&defrag->rb_node, parent, p);
120 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
121 	return 0;
122 }
123 
124 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
125 {
126 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
127 		return 0;
128 
129 	if (btrfs_fs_closing(fs_info))
130 		return 0;
131 
132 	return 1;
133 }
134 
135 /*
136  * insert a defrag record for this inode if auto defrag is
137  * enabled
138  */
139 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
140 			   struct btrfs_inode *inode, u32 extent_thresh)
141 {
142 	struct btrfs_root *root = inode->root;
143 	struct btrfs_fs_info *fs_info = root->fs_info;
144 	struct inode_defrag *defrag;
145 	u64 transid;
146 	int ret;
147 
148 	if (!__need_auto_defrag(fs_info))
149 		return 0;
150 
151 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
152 		return 0;
153 
154 	if (trans)
155 		transid = trans->transid;
156 	else
157 		transid = inode->root->last_trans;
158 
159 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
160 	if (!defrag)
161 		return -ENOMEM;
162 
163 	defrag->ino = btrfs_ino(inode);
164 	defrag->transid = transid;
165 	defrag->root = root->root_key.objectid;
166 	defrag->extent_thresh = extent_thresh;
167 
168 	spin_lock(&fs_info->defrag_inodes_lock);
169 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
170 		/*
171 		 * If we set IN_DEFRAG flag and evict the inode from memory,
172 		 * and then re-read this inode, this new inode doesn't have
173 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
174 		 */
175 		ret = __btrfs_add_inode_defrag(inode, defrag);
176 		if (ret)
177 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
178 	} else {
179 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
180 	}
181 	spin_unlock(&fs_info->defrag_inodes_lock);
182 	return 0;
183 }
184 
185 /*
186  * pick the defragable inode that we want, if it doesn't exist, we will get
187  * the next one.
188  */
189 static struct inode_defrag *
190 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
191 {
192 	struct inode_defrag *entry = NULL;
193 	struct inode_defrag tmp;
194 	struct rb_node *p;
195 	struct rb_node *parent = NULL;
196 	int ret;
197 
198 	tmp.ino = ino;
199 	tmp.root = root;
200 
201 	spin_lock(&fs_info->defrag_inodes_lock);
202 	p = fs_info->defrag_inodes.rb_node;
203 	while (p) {
204 		parent = p;
205 		entry = rb_entry(parent, struct inode_defrag, rb_node);
206 
207 		ret = __compare_inode_defrag(&tmp, entry);
208 		if (ret < 0)
209 			p = parent->rb_left;
210 		else if (ret > 0)
211 			p = parent->rb_right;
212 		else
213 			goto out;
214 	}
215 
216 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
217 		parent = rb_next(parent);
218 		if (parent)
219 			entry = rb_entry(parent, struct inode_defrag, rb_node);
220 		else
221 			entry = NULL;
222 	}
223 out:
224 	if (entry)
225 		rb_erase(parent, &fs_info->defrag_inodes);
226 	spin_unlock(&fs_info->defrag_inodes_lock);
227 	return entry;
228 }
229 
230 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
231 {
232 	struct inode_defrag *defrag;
233 	struct rb_node *node;
234 
235 	spin_lock(&fs_info->defrag_inodes_lock);
236 	node = rb_first(&fs_info->defrag_inodes);
237 	while (node) {
238 		rb_erase(node, &fs_info->defrag_inodes);
239 		defrag = rb_entry(node, struct inode_defrag, rb_node);
240 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
241 
242 		cond_resched_lock(&fs_info->defrag_inodes_lock);
243 
244 		node = rb_first(&fs_info->defrag_inodes);
245 	}
246 	spin_unlock(&fs_info->defrag_inodes_lock);
247 }
248 
249 #define BTRFS_DEFRAG_BATCH	1024
250 
251 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
252 				    struct inode_defrag *defrag)
253 {
254 	struct btrfs_root *inode_root;
255 	struct inode *inode;
256 	struct btrfs_ioctl_defrag_range_args range;
257 	int ret = 0;
258 	u64 cur = 0;
259 
260 again:
261 	if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
262 		goto cleanup;
263 	if (!__need_auto_defrag(fs_info))
264 		goto cleanup;
265 
266 	/* get the inode */
267 	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
268 	if (IS_ERR(inode_root)) {
269 		ret = PTR_ERR(inode_root);
270 		goto cleanup;
271 	}
272 
273 	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
274 	btrfs_put_root(inode_root);
275 	if (IS_ERR(inode)) {
276 		ret = PTR_ERR(inode);
277 		goto cleanup;
278 	}
279 
280 	if (cur >= i_size_read(inode)) {
281 		iput(inode);
282 		goto cleanup;
283 	}
284 
285 	/* do a chunk of defrag */
286 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
287 	memset(&range, 0, sizeof(range));
288 	range.len = (u64)-1;
289 	range.start = cur;
290 	range.extent_thresh = defrag->extent_thresh;
291 
292 	sb_start_write(fs_info->sb);
293 	ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
294 				       BTRFS_DEFRAG_BATCH);
295 	sb_end_write(fs_info->sb);
296 	iput(inode);
297 
298 	if (ret < 0)
299 		goto cleanup;
300 
301 	cur = max(cur + fs_info->sectorsize, range.start);
302 	goto again;
303 
304 cleanup:
305 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
306 	return ret;
307 }
308 
309 /*
310  * run through the list of inodes in the FS that need
311  * defragging
312  */
313 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
314 {
315 	struct inode_defrag *defrag;
316 	u64 first_ino = 0;
317 	u64 root_objectid = 0;
318 
319 	atomic_inc(&fs_info->defrag_running);
320 	while (1) {
321 		/* Pause the auto defragger. */
322 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
323 			     &fs_info->fs_state))
324 			break;
325 
326 		if (!__need_auto_defrag(fs_info))
327 			break;
328 
329 		/* find an inode to defrag */
330 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
331 						 first_ino);
332 		if (!defrag) {
333 			if (root_objectid || first_ino) {
334 				root_objectid = 0;
335 				first_ino = 0;
336 				continue;
337 			} else {
338 				break;
339 			}
340 		}
341 
342 		first_ino = defrag->ino + 1;
343 		root_objectid = defrag->root;
344 
345 		__btrfs_run_defrag_inode(fs_info, defrag);
346 	}
347 	atomic_dec(&fs_info->defrag_running);
348 
349 	/*
350 	 * during unmount, we use the transaction_wait queue to
351 	 * wait for the defragger to stop
352 	 */
353 	wake_up(&fs_info->transaction_wait);
354 	return 0;
355 }
356 
357 /* simple helper to fault in pages and copy.  This should go away
358  * and be replaced with calls into generic code.
359  */
360 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
361 					 struct page **prepared_pages,
362 					 struct iov_iter *i)
363 {
364 	size_t copied = 0;
365 	size_t total_copied = 0;
366 	int pg = 0;
367 	int offset = offset_in_page(pos);
368 
369 	while (write_bytes > 0) {
370 		size_t count = min_t(size_t,
371 				     PAGE_SIZE - offset, write_bytes);
372 		struct page *page = prepared_pages[pg];
373 		/*
374 		 * Copy data from userspace to the current page
375 		 */
376 		copied = copy_page_from_iter_atomic(page, offset, count, i);
377 
378 		/* Flush processor's dcache for this page */
379 		flush_dcache_page(page);
380 
381 		/*
382 		 * if we get a partial write, we can end up with
383 		 * partially up to date pages.  These add
384 		 * a lot of complexity, so make sure they don't
385 		 * happen by forcing this copy to be retried.
386 		 *
387 		 * The rest of the btrfs_file_write code will fall
388 		 * back to page at a time copies after we return 0.
389 		 */
390 		if (unlikely(copied < count)) {
391 			if (!PageUptodate(page)) {
392 				iov_iter_revert(i, copied);
393 				copied = 0;
394 			}
395 			if (!copied)
396 				break;
397 		}
398 
399 		write_bytes -= copied;
400 		total_copied += copied;
401 		offset += copied;
402 		if (offset == PAGE_SIZE) {
403 			pg++;
404 			offset = 0;
405 		}
406 	}
407 	return total_copied;
408 }
409 
410 /*
411  * unlocks pages after btrfs_file_write is done with them
412  */
413 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
414 			     struct page **pages, size_t num_pages,
415 			     u64 pos, u64 copied)
416 {
417 	size_t i;
418 	u64 block_start = round_down(pos, fs_info->sectorsize);
419 	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
420 
421 	ASSERT(block_len <= U32_MAX);
422 	for (i = 0; i < num_pages; i++) {
423 		/* page checked is some magic around finding pages that
424 		 * have been modified without going through btrfs_set_page_dirty
425 		 * clear it here. There should be no need to mark the pages
426 		 * accessed as prepare_pages should have marked them accessed
427 		 * in prepare_pages via find_or_create_page()
428 		 */
429 		btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
430 					       block_len);
431 		unlock_page(pages[i]);
432 		put_page(pages[i]);
433 	}
434 }
435 
436 /*
437  * After btrfs_copy_from_user(), update the following things for delalloc:
438  * - Mark newly dirtied pages as DELALLOC in the io tree.
439  *   Used to advise which range is to be written back.
440  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
441  * - Update inode size for past EOF write
442  */
443 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
444 		      size_t num_pages, loff_t pos, size_t write_bytes,
445 		      struct extent_state **cached, bool noreserve)
446 {
447 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
448 	int err = 0;
449 	int i;
450 	u64 num_bytes;
451 	u64 start_pos;
452 	u64 end_of_last_block;
453 	u64 end_pos = pos + write_bytes;
454 	loff_t isize = i_size_read(&inode->vfs_inode);
455 	unsigned int extra_bits = 0;
456 
457 	if (write_bytes == 0)
458 		return 0;
459 
460 	if (noreserve)
461 		extra_bits |= EXTENT_NORESERVE;
462 
463 	start_pos = round_down(pos, fs_info->sectorsize);
464 	num_bytes = round_up(write_bytes + pos - start_pos,
465 			     fs_info->sectorsize);
466 	ASSERT(num_bytes <= U32_MAX);
467 
468 	end_of_last_block = start_pos + num_bytes - 1;
469 
470 	/*
471 	 * The pages may have already been dirty, clear out old accounting so
472 	 * we can set things up properly
473 	 */
474 	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
475 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
476 			 0, 0, cached);
477 
478 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
479 					extra_bits, cached);
480 	if (err)
481 		return err;
482 
483 	for (i = 0; i < num_pages; i++) {
484 		struct page *p = pages[i];
485 
486 		btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
487 		btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
488 		btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
489 	}
490 
491 	/*
492 	 * we've only changed i_size in ram, and we haven't updated
493 	 * the disk i_size.  There is no need to log the inode
494 	 * at this time.
495 	 */
496 	if (end_pos > isize)
497 		i_size_write(&inode->vfs_inode, end_pos);
498 	return 0;
499 }
500 
501 /*
502  * this drops all the extents in the cache that intersect the range
503  * [start, end].  Existing extents are split as required.
504  */
505 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
506 			     int skip_pinned)
507 {
508 	struct extent_map *em;
509 	struct extent_map *split = NULL;
510 	struct extent_map *split2 = NULL;
511 	struct extent_map_tree *em_tree = &inode->extent_tree;
512 	u64 len = end - start + 1;
513 	u64 gen;
514 	int ret;
515 	int testend = 1;
516 	unsigned long flags;
517 	int compressed = 0;
518 	bool modified;
519 
520 	WARN_ON(end < start);
521 	if (end == (u64)-1) {
522 		len = (u64)-1;
523 		testend = 0;
524 	}
525 	while (1) {
526 		int no_splits = 0;
527 
528 		modified = false;
529 		if (!split)
530 			split = alloc_extent_map();
531 		if (!split2)
532 			split2 = alloc_extent_map();
533 		if (!split || !split2)
534 			no_splits = 1;
535 
536 		write_lock(&em_tree->lock);
537 		em = lookup_extent_mapping(em_tree, start, len);
538 		if (!em) {
539 			write_unlock(&em_tree->lock);
540 			break;
541 		}
542 		flags = em->flags;
543 		gen = em->generation;
544 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
545 			if (testend && em->start + em->len >= start + len) {
546 				free_extent_map(em);
547 				write_unlock(&em_tree->lock);
548 				break;
549 			}
550 			start = em->start + em->len;
551 			if (testend)
552 				len = start + len - (em->start + em->len);
553 			free_extent_map(em);
554 			write_unlock(&em_tree->lock);
555 			continue;
556 		}
557 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
558 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
559 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
560 		modified = !list_empty(&em->list);
561 		if (no_splits)
562 			goto next;
563 
564 		if (em->start < start) {
565 			split->start = em->start;
566 			split->len = start - em->start;
567 
568 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
569 				split->orig_start = em->orig_start;
570 				split->block_start = em->block_start;
571 
572 				if (compressed)
573 					split->block_len = em->block_len;
574 				else
575 					split->block_len = split->len;
576 				split->orig_block_len = max(split->block_len,
577 						em->orig_block_len);
578 				split->ram_bytes = em->ram_bytes;
579 			} else {
580 				split->orig_start = split->start;
581 				split->block_len = 0;
582 				split->block_start = em->block_start;
583 				split->orig_block_len = 0;
584 				split->ram_bytes = split->len;
585 			}
586 
587 			split->generation = gen;
588 			split->flags = flags;
589 			split->compress_type = em->compress_type;
590 			replace_extent_mapping(em_tree, em, split, modified);
591 			free_extent_map(split);
592 			split = split2;
593 			split2 = NULL;
594 		}
595 		if (testend && em->start + em->len > start + len) {
596 			u64 diff = start + len - em->start;
597 
598 			split->start = start + len;
599 			split->len = em->start + em->len - (start + len);
600 			split->flags = flags;
601 			split->compress_type = em->compress_type;
602 			split->generation = gen;
603 
604 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
605 				split->orig_block_len = max(em->block_len,
606 						    em->orig_block_len);
607 
608 				split->ram_bytes = em->ram_bytes;
609 				if (compressed) {
610 					split->block_len = em->block_len;
611 					split->block_start = em->block_start;
612 					split->orig_start = em->orig_start;
613 				} else {
614 					split->block_len = split->len;
615 					split->block_start = em->block_start
616 						+ diff;
617 					split->orig_start = em->orig_start;
618 				}
619 			} else {
620 				split->ram_bytes = split->len;
621 				split->orig_start = split->start;
622 				split->block_len = 0;
623 				split->block_start = em->block_start;
624 				split->orig_block_len = 0;
625 			}
626 
627 			if (extent_map_in_tree(em)) {
628 				replace_extent_mapping(em_tree, em, split,
629 						       modified);
630 			} else {
631 				ret = add_extent_mapping(em_tree, split,
632 							 modified);
633 				ASSERT(ret == 0); /* Logic error */
634 			}
635 			free_extent_map(split);
636 			split = NULL;
637 		}
638 next:
639 		if (extent_map_in_tree(em))
640 			remove_extent_mapping(em_tree, em);
641 		write_unlock(&em_tree->lock);
642 
643 		/* once for us */
644 		free_extent_map(em);
645 		/* once for the tree*/
646 		free_extent_map(em);
647 	}
648 	if (split)
649 		free_extent_map(split);
650 	if (split2)
651 		free_extent_map(split2);
652 }
653 
654 /*
655  * this is very complex, but the basic idea is to drop all extents
656  * in the range start - end.  hint_block is filled in with a block number
657  * that would be a good hint to the block allocator for this file.
658  *
659  * If an extent intersects the range but is not entirely inside the range
660  * it is either truncated or split.  Anything entirely inside the range
661  * is deleted from the tree.
662  *
663  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
664  * to deal with that. We set the field 'bytes_found' of the arguments structure
665  * with the number of allocated bytes found in the target range, so that the
666  * caller can update the inode's number of bytes in an atomic way when
667  * replacing extents in a range to avoid races with stat(2).
668  */
669 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
670 		       struct btrfs_root *root, struct btrfs_inode *inode,
671 		       struct btrfs_drop_extents_args *args)
672 {
673 	struct btrfs_fs_info *fs_info = root->fs_info;
674 	struct extent_buffer *leaf;
675 	struct btrfs_file_extent_item *fi;
676 	struct btrfs_ref ref = { 0 };
677 	struct btrfs_key key;
678 	struct btrfs_key new_key;
679 	u64 ino = btrfs_ino(inode);
680 	u64 search_start = args->start;
681 	u64 disk_bytenr = 0;
682 	u64 num_bytes = 0;
683 	u64 extent_offset = 0;
684 	u64 extent_end = 0;
685 	u64 last_end = args->start;
686 	int del_nr = 0;
687 	int del_slot = 0;
688 	int extent_type;
689 	int recow;
690 	int ret;
691 	int modify_tree = -1;
692 	int update_refs;
693 	int found = 0;
694 	int leafs_visited = 0;
695 	struct btrfs_path *path = args->path;
696 
697 	args->bytes_found = 0;
698 	args->extent_inserted = false;
699 
700 	/* Must always have a path if ->replace_extent is true */
701 	ASSERT(!(args->replace_extent && !args->path));
702 
703 	if (!path) {
704 		path = btrfs_alloc_path();
705 		if (!path) {
706 			ret = -ENOMEM;
707 			goto out;
708 		}
709 	}
710 
711 	if (args->drop_cache)
712 		btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
713 
714 	if (args->start >= inode->disk_i_size && !args->replace_extent)
715 		modify_tree = 0;
716 
717 	update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
718 	while (1) {
719 		recow = 0;
720 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
721 					       search_start, modify_tree);
722 		if (ret < 0)
723 			break;
724 		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
725 			leaf = path->nodes[0];
726 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
727 			if (key.objectid == ino &&
728 			    key.type == BTRFS_EXTENT_DATA_KEY)
729 				path->slots[0]--;
730 		}
731 		ret = 0;
732 		leafs_visited++;
733 next_slot:
734 		leaf = path->nodes[0];
735 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
736 			BUG_ON(del_nr > 0);
737 			ret = btrfs_next_leaf(root, path);
738 			if (ret < 0)
739 				break;
740 			if (ret > 0) {
741 				ret = 0;
742 				break;
743 			}
744 			leafs_visited++;
745 			leaf = path->nodes[0];
746 			recow = 1;
747 		}
748 
749 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
750 
751 		if (key.objectid > ino)
752 			break;
753 		if (WARN_ON_ONCE(key.objectid < ino) ||
754 		    key.type < BTRFS_EXTENT_DATA_KEY) {
755 			ASSERT(del_nr == 0);
756 			path->slots[0]++;
757 			goto next_slot;
758 		}
759 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
760 			break;
761 
762 		fi = btrfs_item_ptr(leaf, path->slots[0],
763 				    struct btrfs_file_extent_item);
764 		extent_type = btrfs_file_extent_type(leaf, fi);
765 
766 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
767 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
768 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
769 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
770 			extent_offset = btrfs_file_extent_offset(leaf, fi);
771 			extent_end = key.offset +
772 				btrfs_file_extent_num_bytes(leaf, fi);
773 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
774 			extent_end = key.offset +
775 				btrfs_file_extent_ram_bytes(leaf, fi);
776 		} else {
777 			/* can't happen */
778 			BUG();
779 		}
780 
781 		/*
782 		 * Don't skip extent items representing 0 byte lengths. They
783 		 * used to be created (bug) if while punching holes we hit
784 		 * -ENOSPC condition. So if we find one here, just ensure we
785 		 * delete it, otherwise we would insert a new file extent item
786 		 * with the same key (offset) as that 0 bytes length file
787 		 * extent item in the call to setup_items_for_insert() later
788 		 * in this function.
789 		 */
790 		if (extent_end == key.offset && extent_end >= search_start) {
791 			last_end = extent_end;
792 			goto delete_extent_item;
793 		}
794 
795 		if (extent_end <= search_start) {
796 			path->slots[0]++;
797 			goto next_slot;
798 		}
799 
800 		found = 1;
801 		search_start = max(key.offset, args->start);
802 		if (recow || !modify_tree) {
803 			modify_tree = -1;
804 			btrfs_release_path(path);
805 			continue;
806 		}
807 
808 		/*
809 		 *     | - range to drop - |
810 		 *  | -------- extent -------- |
811 		 */
812 		if (args->start > key.offset && args->end < extent_end) {
813 			BUG_ON(del_nr > 0);
814 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
815 				ret = -EOPNOTSUPP;
816 				break;
817 			}
818 
819 			memcpy(&new_key, &key, sizeof(new_key));
820 			new_key.offset = args->start;
821 			ret = btrfs_duplicate_item(trans, root, path,
822 						   &new_key);
823 			if (ret == -EAGAIN) {
824 				btrfs_release_path(path);
825 				continue;
826 			}
827 			if (ret < 0)
828 				break;
829 
830 			leaf = path->nodes[0];
831 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
832 					    struct btrfs_file_extent_item);
833 			btrfs_set_file_extent_num_bytes(leaf, fi,
834 							args->start - key.offset);
835 
836 			fi = btrfs_item_ptr(leaf, path->slots[0],
837 					    struct btrfs_file_extent_item);
838 
839 			extent_offset += args->start - key.offset;
840 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
841 			btrfs_set_file_extent_num_bytes(leaf, fi,
842 							extent_end - args->start);
843 			btrfs_mark_buffer_dirty(leaf);
844 
845 			if (update_refs && disk_bytenr > 0) {
846 				btrfs_init_generic_ref(&ref,
847 						BTRFS_ADD_DELAYED_REF,
848 						disk_bytenr, num_bytes, 0);
849 				btrfs_init_data_ref(&ref,
850 						root->root_key.objectid,
851 						new_key.objectid,
852 						args->start - extent_offset,
853 						0, false);
854 				ret = btrfs_inc_extent_ref(trans, &ref);
855 				BUG_ON(ret); /* -ENOMEM */
856 			}
857 			key.offset = args->start;
858 		}
859 		/*
860 		 * From here on out we will have actually dropped something, so
861 		 * last_end can be updated.
862 		 */
863 		last_end = extent_end;
864 
865 		/*
866 		 *  | ---- range to drop ----- |
867 		 *      | -------- extent -------- |
868 		 */
869 		if (args->start <= key.offset && args->end < extent_end) {
870 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
871 				ret = -EOPNOTSUPP;
872 				break;
873 			}
874 
875 			memcpy(&new_key, &key, sizeof(new_key));
876 			new_key.offset = args->end;
877 			btrfs_set_item_key_safe(fs_info, path, &new_key);
878 
879 			extent_offset += args->end - key.offset;
880 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
881 			btrfs_set_file_extent_num_bytes(leaf, fi,
882 							extent_end - args->end);
883 			btrfs_mark_buffer_dirty(leaf);
884 			if (update_refs && disk_bytenr > 0)
885 				args->bytes_found += args->end - key.offset;
886 			break;
887 		}
888 
889 		search_start = extent_end;
890 		/*
891 		 *       | ---- range to drop ----- |
892 		 *  | -------- extent -------- |
893 		 */
894 		if (args->start > key.offset && args->end >= extent_end) {
895 			BUG_ON(del_nr > 0);
896 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
897 				ret = -EOPNOTSUPP;
898 				break;
899 			}
900 
901 			btrfs_set_file_extent_num_bytes(leaf, fi,
902 							args->start - key.offset);
903 			btrfs_mark_buffer_dirty(leaf);
904 			if (update_refs && disk_bytenr > 0)
905 				args->bytes_found += extent_end - args->start;
906 			if (args->end == extent_end)
907 				break;
908 
909 			path->slots[0]++;
910 			goto next_slot;
911 		}
912 
913 		/*
914 		 *  | ---- range to drop ----- |
915 		 *    | ------ extent ------ |
916 		 */
917 		if (args->start <= key.offset && args->end >= extent_end) {
918 delete_extent_item:
919 			if (del_nr == 0) {
920 				del_slot = path->slots[0];
921 				del_nr = 1;
922 			} else {
923 				BUG_ON(del_slot + del_nr != path->slots[0]);
924 				del_nr++;
925 			}
926 
927 			if (update_refs &&
928 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
929 				args->bytes_found += extent_end - key.offset;
930 				extent_end = ALIGN(extent_end,
931 						   fs_info->sectorsize);
932 			} else if (update_refs && disk_bytenr > 0) {
933 				btrfs_init_generic_ref(&ref,
934 						BTRFS_DROP_DELAYED_REF,
935 						disk_bytenr, num_bytes, 0);
936 				btrfs_init_data_ref(&ref,
937 						root->root_key.objectid,
938 						key.objectid,
939 						key.offset - extent_offset, 0,
940 						false);
941 				ret = btrfs_free_extent(trans, &ref);
942 				BUG_ON(ret); /* -ENOMEM */
943 				args->bytes_found += extent_end - key.offset;
944 			}
945 
946 			if (args->end == extent_end)
947 				break;
948 
949 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
950 				path->slots[0]++;
951 				goto next_slot;
952 			}
953 
954 			ret = btrfs_del_items(trans, root, path, del_slot,
955 					      del_nr);
956 			if (ret) {
957 				btrfs_abort_transaction(trans, ret);
958 				break;
959 			}
960 
961 			del_nr = 0;
962 			del_slot = 0;
963 
964 			btrfs_release_path(path);
965 			continue;
966 		}
967 
968 		BUG();
969 	}
970 
971 	if (!ret && del_nr > 0) {
972 		/*
973 		 * Set path->slots[0] to first slot, so that after the delete
974 		 * if items are move off from our leaf to its immediate left or
975 		 * right neighbor leafs, we end up with a correct and adjusted
976 		 * path->slots[0] for our insertion (if args->replace_extent).
977 		 */
978 		path->slots[0] = del_slot;
979 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
980 		if (ret)
981 			btrfs_abort_transaction(trans, ret);
982 	}
983 
984 	leaf = path->nodes[0];
985 	/*
986 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
987 	 * which case it unlocked our path, so check path->locks[0] matches a
988 	 * write lock.
989 	 */
990 	if (!ret && args->replace_extent && leafs_visited == 1 &&
991 	    path->locks[0] == BTRFS_WRITE_LOCK &&
992 	    btrfs_leaf_free_space(leaf) >=
993 	    sizeof(struct btrfs_item) + args->extent_item_size) {
994 
995 		key.objectid = ino;
996 		key.type = BTRFS_EXTENT_DATA_KEY;
997 		key.offset = args->start;
998 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
999 			struct btrfs_key slot_key;
1000 
1001 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1002 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1003 				path->slots[0]++;
1004 		}
1005 		btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size);
1006 		args->extent_inserted = true;
1007 	}
1008 
1009 	if (!args->path)
1010 		btrfs_free_path(path);
1011 	else if (!args->extent_inserted)
1012 		btrfs_release_path(path);
1013 out:
1014 	args->drop_end = found ? min(args->end, last_end) : args->end;
1015 
1016 	return ret;
1017 }
1018 
1019 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1020 			    u64 objectid, u64 bytenr, u64 orig_offset,
1021 			    u64 *start, u64 *end)
1022 {
1023 	struct btrfs_file_extent_item *fi;
1024 	struct btrfs_key key;
1025 	u64 extent_end;
1026 
1027 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1028 		return 0;
1029 
1030 	btrfs_item_key_to_cpu(leaf, &key, slot);
1031 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1032 		return 0;
1033 
1034 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1035 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1036 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1037 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1038 	    btrfs_file_extent_compression(leaf, fi) ||
1039 	    btrfs_file_extent_encryption(leaf, fi) ||
1040 	    btrfs_file_extent_other_encoding(leaf, fi))
1041 		return 0;
1042 
1043 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1044 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1045 		return 0;
1046 
1047 	*start = key.offset;
1048 	*end = extent_end;
1049 	return 1;
1050 }
1051 
1052 /*
1053  * Mark extent in the range start - end as written.
1054  *
1055  * This changes extent type from 'pre-allocated' to 'regular'. If only
1056  * part of extent is marked as written, the extent will be split into
1057  * two or three.
1058  */
1059 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1060 			      struct btrfs_inode *inode, u64 start, u64 end)
1061 {
1062 	struct btrfs_fs_info *fs_info = trans->fs_info;
1063 	struct btrfs_root *root = inode->root;
1064 	struct extent_buffer *leaf;
1065 	struct btrfs_path *path;
1066 	struct btrfs_file_extent_item *fi;
1067 	struct btrfs_ref ref = { 0 };
1068 	struct btrfs_key key;
1069 	struct btrfs_key new_key;
1070 	u64 bytenr;
1071 	u64 num_bytes;
1072 	u64 extent_end;
1073 	u64 orig_offset;
1074 	u64 other_start;
1075 	u64 other_end;
1076 	u64 split;
1077 	int del_nr = 0;
1078 	int del_slot = 0;
1079 	int recow;
1080 	int ret = 0;
1081 	u64 ino = btrfs_ino(inode);
1082 
1083 	path = btrfs_alloc_path();
1084 	if (!path)
1085 		return -ENOMEM;
1086 again:
1087 	recow = 0;
1088 	split = start;
1089 	key.objectid = ino;
1090 	key.type = BTRFS_EXTENT_DATA_KEY;
1091 	key.offset = split;
1092 
1093 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1094 	if (ret < 0)
1095 		goto out;
1096 	if (ret > 0 && path->slots[0] > 0)
1097 		path->slots[0]--;
1098 
1099 	leaf = path->nodes[0];
1100 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1101 	if (key.objectid != ino ||
1102 	    key.type != BTRFS_EXTENT_DATA_KEY) {
1103 		ret = -EINVAL;
1104 		btrfs_abort_transaction(trans, ret);
1105 		goto out;
1106 	}
1107 	fi = btrfs_item_ptr(leaf, path->slots[0],
1108 			    struct btrfs_file_extent_item);
1109 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1110 		ret = -EINVAL;
1111 		btrfs_abort_transaction(trans, ret);
1112 		goto out;
1113 	}
1114 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1115 	if (key.offset > start || extent_end < end) {
1116 		ret = -EINVAL;
1117 		btrfs_abort_transaction(trans, ret);
1118 		goto out;
1119 	}
1120 
1121 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1122 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1123 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1124 	memcpy(&new_key, &key, sizeof(new_key));
1125 
1126 	if (start == key.offset && end < extent_end) {
1127 		other_start = 0;
1128 		other_end = start;
1129 		if (extent_mergeable(leaf, path->slots[0] - 1,
1130 				     ino, bytenr, orig_offset,
1131 				     &other_start, &other_end)) {
1132 			new_key.offset = end;
1133 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1134 			fi = btrfs_item_ptr(leaf, path->slots[0],
1135 					    struct btrfs_file_extent_item);
1136 			btrfs_set_file_extent_generation(leaf, fi,
1137 							 trans->transid);
1138 			btrfs_set_file_extent_num_bytes(leaf, fi,
1139 							extent_end - end);
1140 			btrfs_set_file_extent_offset(leaf, fi,
1141 						     end - orig_offset);
1142 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1143 					    struct btrfs_file_extent_item);
1144 			btrfs_set_file_extent_generation(leaf, fi,
1145 							 trans->transid);
1146 			btrfs_set_file_extent_num_bytes(leaf, fi,
1147 							end - other_start);
1148 			btrfs_mark_buffer_dirty(leaf);
1149 			goto out;
1150 		}
1151 	}
1152 
1153 	if (start > key.offset && end == extent_end) {
1154 		other_start = end;
1155 		other_end = 0;
1156 		if (extent_mergeable(leaf, path->slots[0] + 1,
1157 				     ino, bytenr, orig_offset,
1158 				     &other_start, &other_end)) {
1159 			fi = btrfs_item_ptr(leaf, path->slots[0],
1160 					    struct btrfs_file_extent_item);
1161 			btrfs_set_file_extent_num_bytes(leaf, fi,
1162 							start - key.offset);
1163 			btrfs_set_file_extent_generation(leaf, fi,
1164 							 trans->transid);
1165 			path->slots[0]++;
1166 			new_key.offset = start;
1167 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1168 
1169 			fi = btrfs_item_ptr(leaf, path->slots[0],
1170 					    struct btrfs_file_extent_item);
1171 			btrfs_set_file_extent_generation(leaf, fi,
1172 							 trans->transid);
1173 			btrfs_set_file_extent_num_bytes(leaf, fi,
1174 							other_end - start);
1175 			btrfs_set_file_extent_offset(leaf, fi,
1176 						     start - orig_offset);
1177 			btrfs_mark_buffer_dirty(leaf);
1178 			goto out;
1179 		}
1180 	}
1181 
1182 	while (start > key.offset || end < extent_end) {
1183 		if (key.offset == start)
1184 			split = end;
1185 
1186 		new_key.offset = split;
1187 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1188 		if (ret == -EAGAIN) {
1189 			btrfs_release_path(path);
1190 			goto again;
1191 		}
1192 		if (ret < 0) {
1193 			btrfs_abort_transaction(trans, ret);
1194 			goto out;
1195 		}
1196 
1197 		leaf = path->nodes[0];
1198 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1199 				    struct btrfs_file_extent_item);
1200 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1201 		btrfs_set_file_extent_num_bytes(leaf, fi,
1202 						split - key.offset);
1203 
1204 		fi = btrfs_item_ptr(leaf, path->slots[0],
1205 				    struct btrfs_file_extent_item);
1206 
1207 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1208 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1209 		btrfs_set_file_extent_num_bytes(leaf, fi,
1210 						extent_end - split);
1211 		btrfs_mark_buffer_dirty(leaf);
1212 
1213 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1214 				       num_bytes, 0);
1215 		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1216 				    orig_offset, 0, false);
1217 		ret = btrfs_inc_extent_ref(trans, &ref);
1218 		if (ret) {
1219 			btrfs_abort_transaction(trans, ret);
1220 			goto out;
1221 		}
1222 
1223 		if (split == start) {
1224 			key.offset = start;
1225 		} else {
1226 			if (start != key.offset) {
1227 				ret = -EINVAL;
1228 				btrfs_abort_transaction(trans, ret);
1229 				goto out;
1230 			}
1231 			path->slots[0]--;
1232 			extent_end = end;
1233 		}
1234 		recow = 1;
1235 	}
1236 
1237 	other_start = end;
1238 	other_end = 0;
1239 	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1240 			       num_bytes, 0);
1241 	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
1242 			    0, false);
1243 	if (extent_mergeable(leaf, path->slots[0] + 1,
1244 			     ino, bytenr, orig_offset,
1245 			     &other_start, &other_end)) {
1246 		if (recow) {
1247 			btrfs_release_path(path);
1248 			goto again;
1249 		}
1250 		extent_end = other_end;
1251 		del_slot = path->slots[0] + 1;
1252 		del_nr++;
1253 		ret = btrfs_free_extent(trans, &ref);
1254 		if (ret) {
1255 			btrfs_abort_transaction(trans, ret);
1256 			goto out;
1257 		}
1258 	}
1259 	other_start = 0;
1260 	other_end = start;
1261 	if (extent_mergeable(leaf, path->slots[0] - 1,
1262 			     ino, bytenr, orig_offset,
1263 			     &other_start, &other_end)) {
1264 		if (recow) {
1265 			btrfs_release_path(path);
1266 			goto again;
1267 		}
1268 		key.offset = other_start;
1269 		del_slot = path->slots[0];
1270 		del_nr++;
1271 		ret = btrfs_free_extent(trans, &ref);
1272 		if (ret) {
1273 			btrfs_abort_transaction(trans, ret);
1274 			goto out;
1275 		}
1276 	}
1277 	if (del_nr == 0) {
1278 		fi = btrfs_item_ptr(leaf, path->slots[0],
1279 			   struct btrfs_file_extent_item);
1280 		btrfs_set_file_extent_type(leaf, fi,
1281 					   BTRFS_FILE_EXTENT_REG);
1282 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1283 		btrfs_mark_buffer_dirty(leaf);
1284 	} else {
1285 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1286 			   struct btrfs_file_extent_item);
1287 		btrfs_set_file_extent_type(leaf, fi,
1288 					   BTRFS_FILE_EXTENT_REG);
1289 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1290 		btrfs_set_file_extent_num_bytes(leaf, fi,
1291 						extent_end - key.offset);
1292 		btrfs_mark_buffer_dirty(leaf);
1293 
1294 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1295 		if (ret < 0) {
1296 			btrfs_abort_transaction(trans, ret);
1297 			goto out;
1298 		}
1299 	}
1300 out:
1301 	btrfs_free_path(path);
1302 	return ret;
1303 }
1304 
1305 /*
1306  * on error we return an unlocked page and the error value
1307  * on success we return a locked page and 0
1308  */
1309 static int prepare_uptodate_page(struct inode *inode,
1310 				 struct page *page, u64 pos,
1311 				 bool force_uptodate)
1312 {
1313 	int ret = 0;
1314 
1315 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1316 	    !PageUptodate(page)) {
1317 		ret = btrfs_readpage(NULL, page);
1318 		if (ret)
1319 			return ret;
1320 		lock_page(page);
1321 		if (!PageUptodate(page)) {
1322 			unlock_page(page);
1323 			return -EIO;
1324 		}
1325 
1326 		/*
1327 		 * Since btrfs_readpage() will unlock the page before it
1328 		 * returns, there is a window where btrfs_releasepage() can be
1329 		 * called to release the page.  Here we check both inode
1330 		 * mapping and PagePrivate() to make sure the page was not
1331 		 * released.
1332 		 *
1333 		 * The private flag check is essential for subpage as we need
1334 		 * to store extra bitmap using page->private.
1335 		 */
1336 		if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
1337 			unlock_page(page);
1338 			return -EAGAIN;
1339 		}
1340 	}
1341 	return 0;
1342 }
1343 
1344 /*
1345  * this just gets pages into the page cache and locks them down.
1346  */
1347 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1348 				  size_t num_pages, loff_t pos,
1349 				  size_t write_bytes, bool force_uptodate)
1350 {
1351 	int i;
1352 	unsigned long index = pos >> PAGE_SHIFT;
1353 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1354 	int err = 0;
1355 	int faili;
1356 
1357 	for (i = 0; i < num_pages; i++) {
1358 again:
1359 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1360 					       mask | __GFP_WRITE);
1361 		if (!pages[i]) {
1362 			faili = i - 1;
1363 			err = -ENOMEM;
1364 			goto fail;
1365 		}
1366 
1367 		err = set_page_extent_mapped(pages[i]);
1368 		if (err < 0) {
1369 			faili = i;
1370 			goto fail;
1371 		}
1372 
1373 		if (i == 0)
1374 			err = prepare_uptodate_page(inode, pages[i], pos,
1375 						    force_uptodate);
1376 		if (!err && i == num_pages - 1)
1377 			err = prepare_uptodate_page(inode, pages[i],
1378 						    pos + write_bytes, false);
1379 		if (err) {
1380 			put_page(pages[i]);
1381 			if (err == -EAGAIN) {
1382 				err = 0;
1383 				goto again;
1384 			}
1385 			faili = i - 1;
1386 			goto fail;
1387 		}
1388 		wait_on_page_writeback(pages[i]);
1389 	}
1390 
1391 	return 0;
1392 fail:
1393 	while (faili >= 0) {
1394 		unlock_page(pages[faili]);
1395 		put_page(pages[faili]);
1396 		faili--;
1397 	}
1398 	return err;
1399 
1400 }
1401 
1402 /*
1403  * This function locks the extent and properly waits for data=ordered extents
1404  * to finish before allowing the pages to be modified if need.
1405  *
1406  * The return value:
1407  * 1 - the extent is locked
1408  * 0 - the extent is not locked, and everything is OK
1409  * -EAGAIN - need re-prepare the pages
1410  * the other < 0 number - Something wrong happens
1411  */
1412 static noinline int
1413 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1414 				size_t num_pages, loff_t pos,
1415 				size_t write_bytes,
1416 				u64 *lockstart, u64 *lockend,
1417 				struct extent_state **cached_state)
1418 {
1419 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1420 	u64 start_pos;
1421 	u64 last_pos;
1422 	int i;
1423 	int ret = 0;
1424 
1425 	start_pos = round_down(pos, fs_info->sectorsize);
1426 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1427 
1428 	if (start_pos < inode->vfs_inode.i_size) {
1429 		struct btrfs_ordered_extent *ordered;
1430 
1431 		lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1432 				cached_state);
1433 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1434 						     last_pos - start_pos + 1);
1435 		if (ordered &&
1436 		    ordered->file_offset + ordered->num_bytes > start_pos &&
1437 		    ordered->file_offset <= last_pos) {
1438 			unlock_extent_cached(&inode->io_tree, start_pos,
1439 					last_pos, cached_state);
1440 			for (i = 0; i < num_pages; i++) {
1441 				unlock_page(pages[i]);
1442 				put_page(pages[i]);
1443 			}
1444 			btrfs_start_ordered_extent(ordered, 1);
1445 			btrfs_put_ordered_extent(ordered);
1446 			return -EAGAIN;
1447 		}
1448 		if (ordered)
1449 			btrfs_put_ordered_extent(ordered);
1450 
1451 		*lockstart = start_pos;
1452 		*lockend = last_pos;
1453 		ret = 1;
1454 	}
1455 
1456 	/*
1457 	 * We should be called after prepare_pages() which should have locked
1458 	 * all pages in the range.
1459 	 */
1460 	for (i = 0; i < num_pages; i++)
1461 		WARN_ON(!PageLocked(pages[i]));
1462 
1463 	return ret;
1464 }
1465 
1466 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1467 			   size_t *write_bytes, bool nowait)
1468 {
1469 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1470 	struct btrfs_root *root = inode->root;
1471 	u64 lockstart, lockend;
1472 	u64 num_bytes;
1473 	int ret;
1474 
1475 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1476 		return 0;
1477 
1478 	if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1479 		return -EAGAIN;
1480 
1481 	lockstart = round_down(pos, fs_info->sectorsize);
1482 	lockend = round_up(pos + *write_bytes,
1483 			   fs_info->sectorsize) - 1;
1484 	num_bytes = lockend - lockstart + 1;
1485 
1486 	if (nowait) {
1487 		struct btrfs_ordered_extent *ordered;
1488 
1489 		if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1490 			return -EAGAIN;
1491 
1492 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1493 						     num_bytes);
1494 		if (ordered) {
1495 			btrfs_put_ordered_extent(ordered);
1496 			ret = -EAGAIN;
1497 			goto out_unlock;
1498 		}
1499 	} else {
1500 		btrfs_lock_and_flush_ordered_range(inode, lockstart,
1501 						   lockend, NULL);
1502 	}
1503 
1504 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1505 			NULL, NULL, NULL, false);
1506 	if (ret <= 0) {
1507 		ret = 0;
1508 		if (!nowait)
1509 			btrfs_drew_write_unlock(&root->snapshot_lock);
1510 	} else {
1511 		*write_bytes = min_t(size_t, *write_bytes ,
1512 				     num_bytes - pos + lockstart);
1513 	}
1514 out_unlock:
1515 	unlock_extent(&inode->io_tree, lockstart, lockend);
1516 
1517 	return ret;
1518 }
1519 
1520 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1521 			      size_t *write_bytes)
1522 {
1523 	return check_can_nocow(inode, pos, write_bytes, true);
1524 }
1525 
1526 /*
1527  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1528  *
1529  * @pos:	 File offset
1530  * @write_bytes: The length to write, will be updated to the nocow writeable
1531  *		 range
1532  *
1533  * This function will flush ordered extents in the range to ensure proper
1534  * nocow checks.
1535  *
1536  * Return:
1537  * >0		and update @write_bytes if we can do nocow write
1538  *  0		if we can't do nocow write
1539  * -EAGAIN	if we can't get the needed lock or there are ordered extents
1540  * 		for * (nowait == true) case
1541  * <0		if other error happened
1542  *
1543  * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1544  */
1545 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1546 			   size_t *write_bytes)
1547 {
1548 	return check_can_nocow(inode, pos, write_bytes, false);
1549 }
1550 
1551 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1552 {
1553 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1554 }
1555 
1556 static void update_time_for_write(struct inode *inode)
1557 {
1558 	struct timespec64 now;
1559 
1560 	if (IS_NOCMTIME(inode))
1561 		return;
1562 
1563 	now = current_time(inode);
1564 	if (!timespec64_equal(&inode->i_mtime, &now))
1565 		inode->i_mtime = now;
1566 
1567 	if (!timespec64_equal(&inode->i_ctime, &now))
1568 		inode->i_ctime = now;
1569 
1570 	if (IS_I_VERSION(inode))
1571 		inode_inc_iversion(inode);
1572 }
1573 
1574 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1575 			     size_t count)
1576 {
1577 	struct file *file = iocb->ki_filp;
1578 	struct inode *inode = file_inode(file);
1579 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1580 	loff_t pos = iocb->ki_pos;
1581 	int ret;
1582 	loff_t oldsize;
1583 	loff_t start_pos;
1584 
1585 	if (iocb->ki_flags & IOCB_NOWAIT) {
1586 		size_t nocow_bytes = count;
1587 
1588 		/* We will allocate space in case nodatacow is not set, so bail */
1589 		if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0)
1590 			return -EAGAIN;
1591 		/*
1592 		 * There are holes in the range or parts of the range that must
1593 		 * be COWed (shared extents, RO block groups, etc), so just bail
1594 		 * out.
1595 		 */
1596 		if (nocow_bytes < count)
1597 			return -EAGAIN;
1598 	}
1599 
1600 	current->backing_dev_info = inode_to_bdi(inode);
1601 	ret = file_remove_privs(file);
1602 	if (ret)
1603 		return ret;
1604 
1605 	/*
1606 	 * We reserve space for updating the inode when we reserve space for the
1607 	 * extent we are going to write, so we will enospc out there.  We don't
1608 	 * need to start yet another transaction to update the inode as we will
1609 	 * update the inode when we finish writing whatever data we write.
1610 	 */
1611 	update_time_for_write(inode);
1612 
1613 	start_pos = round_down(pos, fs_info->sectorsize);
1614 	oldsize = i_size_read(inode);
1615 	if (start_pos > oldsize) {
1616 		/* Expand hole size to cover write data, preventing empty gap */
1617 		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1618 
1619 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1620 		if (ret) {
1621 			current->backing_dev_info = NULL;
1622 			return ret;
1623 		}
1624 	}
1625 
1626 	return 0;
1627 }
1628 
1629 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1630 					       struct iov_iter *i)
1631 {
1632 	struct file *file = iocb->ki_filp;
1633 	loff_t pos;
1634 	struct inode *inode = file_inode(file);
1635 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1636 	struct page **pages = NULL;
1637 	struct extent_changeset *data_reserved = NULL;
1638 	u64 release_bytes = 0;
1639 	u64 lockstart;
1640 	u64 lockend;
1641 	size_t num_written = 0;
1642 	int nrptrs;
1643 	ssize_t ret;
1644 	bool only_release_metadata = false;
1645 	bool force_page_uptodate = false;
1646 	loff_t old_isize = i_size_read(inode);
1647 	unsigned int ilock_flags = 0;
1648 
1649 	if (iocb->ki_flags & IOCB_NOWAIT)
1650 		ilock_flags |= BTRFS_ILOCK_TRY;
1651 
1652 	ret = btrfs_inode_lock(inode, ilock_flags);
1653 	if (ret < 0)
1654 		return ret;
1655 
1656 	ret = generic_write_checks(iocb, i);
1657 	if (ret <= 0)
1658 		goto out;
1659 
1660 	ret = btrfs_write_check(iocb, i, ret);
1661 	if (ret < 0)
1662 		goto out;
1663 
1664 	pos = iocb->ki_pos;
1665 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1666 			PAGE_SIZE / (sizeof(struct page *)));
1667 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1668 	nrptrs = max(nrptrs, 8);
1669 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1670 	if (!pages) {
1671 		ret = -ENOMEM;
1672 		goto out;
1673 	}
1674 
1675 	while (iov_iter_count(i) > 0) {
1676 		struct extent_state *cached_state = NULL;
1677 		size_t offset = offset_in_page(pos);
1678 		size_t sector_offset;
1679 		size_t write_bytes = min(iov_iter_count(i),
1680 					 nrptrs * (size_t)PAGE_SIZE -
1681 					 offset);
1682 		size_t num_pages;
1683 		size_t reserve_bytes;
1684 		size_t dirty_pages;
1685 		size_t copied;
1686 		size_t dirty_sectors;
1687 		size_t num_sectors;
1688 		int extents_locked;
1689 
1690 		/*
1691 		 * Fault pages before locking them in prepare_pages
1692 		 * to avoid recursive lock
1693 		 */
1694 		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1695 			ret = -EFAULT;
1696 			break;
1697 		}
1698 
1699 		only_release_metadata = false;
1700 		sector_offset = pos & (fs_info->sectorsize - 1);
1701 
1702 		extent_changeset_release(data_reserved);
1703 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1704 						  &data_reserved, pos,
1705 						  write_bytes);
1706 		if (ret < 0) {
1707 			/*
1708 			 * If we don't have to COW at the offset, reserve
1709 			 * metadata only. write_bytes may get smaller than
1710 			 * requested here.
1711 			 */
1712 			if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1713 						   &write_bytes) > 0)
1714 				only_release_metadata = true;
1715 			else
1716 				break;
1717 		}
1718 
1719 		num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1720 		WARN_ON(num_pages > nrptrs);
1721 		reserve_bytes = round_up(write_bytes + sector_offset,
1722 					 fs_info->sectorsize);
1723 		WARN_ON(reserve_bytes == 0);
1724 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1725 				reserve_bytes);
1726 		if (ret) {
1727 			if (!only_release_metadata)
1728 				btrfs_free_reserved_data_space(BTRFS_I(inode),
1729 						data_reserved, pos,
1730 						write_bytes);
1731 			else
1732 				btrfs_check_nocow_unlock(BTRFS_I(inode));
1733 			break;
1734 		}
1735 
1736 		release_bytes = reserve_bytes;
1737 again:
1738 		/*
1739 		 * This is going to setup the pages array with the number of
1740 		 * pages we want, so we don't really need to worry about the
1741 		 * contents of pages from loop to loop
1742 		 */
1743 		ret = prepare_pages(inode, pages, num_pages,
1744 				    pos, write_bytes,
1745 				    force_page_uptodate);
1746 		if (ret) {
1747 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1748 						       reserve_bytes);
1749 			break;
1750 		}
1751 
1752 		extents_locked = lock_and_cleanup_extent_if_need(
1753 				BTRFS_I(inode), pages,
1754 				num_pages, pos, write_bytes, &lockstart,
1755 				&lockend, &cached_state);
1756 		if (extents_locked < 0) {
1757 			if (extents_locked == -EAGAIN)
1758 				goto again;
1759 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1760 						       reserve_bytes);
1761 			ret = extents_locked;
1762 			break;
1763 		}
1764 
1765 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1766 
1767 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1768 		dirty_sectors = round_up(copied + sector_offset,
1769 					fs_info->sectorsize);
1770 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1771 
1772 		/*
1773 		 * if we have trouble faulting in the pages, fall
1774 		 * back to one page at a time
1775 		 */
1776 		if (copied < write_bytes)
1777 			nrptrs = 1;
1778 
1779 		if (copied == 0) {
1780 			force_page_uptodate = true;
1781 			dirty_sectors = 0;
1782 			dirty_pages = 0;
1783 		} else {
1784 			force_page_uptodate = false;
1785 			dirty_pages = DIV_ROUND_UP(copied + offset,
1786 						   PAGE_SIZE);
1787 		}
1788 
1789 		if (num_sectors > dirty_sectors) {
1790 			/* release everything except the sectors we dirtied */
1791 			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1792 			if (only_release_metadata) {
1793 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1794 							release_bytes, true);
1795 			} else {
1796 				u64 __pos;
1797 
1798 				__pos = round_down(pos,
1799 						   fs_info->sectorsize) +
1800 					(dirty_pages << PAGE_SHIFT);
1801 				btrfs_delalloc_release_space(BTRFS_I(inode),
1802 						data_reserved, __pos,
1803 						release_bytes, true);
1804 			}
1805 		}
1806 
1807 		release_bytes = round_up(copied + sector_offset,
1808 					fs_info->sectorsize);
1809 
1810 		ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1811 					dirty_pages, pos, copied,
1812 					&cached_state, only_release_metadata);
1813 
1814 		/*
1815 		 * If we have not locked the extent range, because the range's
1816 		 * start offset is >= i_size, we might still have a non-NULL
1817 		 * cached extent state, acquired while marking the extent range
1818 		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1819 		 * possible cached extent state to avoid a memory leak.
1820 		 */
1821 		if (extents_locked)
1822 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1823 					     lockstart, lockend, &cached_state);
1824 		else
1825 			free_extent_state(cached_state);
1826 
1827 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1828 		if (ret) {
1829 			btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1830 			break;
1831 		}
1832 
1833 		release_bytes = 0;
1834 		if (only_release_metadata)
1835 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1836 
1837 		btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1838 
1839 		cond_resched();
1840 
1841 		balance_dirty_pages_ratelimited(inode->i_mapping);
1842 
1843 		pos += copied;
1844 		num_written += copied;
1845 	}
1846 
1847 	kfree(pages);
1848 
1849 	if (release_bytes) {
1850 		if (only_release_metadata) {
1851 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1852 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1853 					release_bytes, true);
1854 		} else {
1855 			btrfs_delalloc_release_space(BTRFS_I(inode),
1856 					data_reserved,
1857 					round_down(pos, fs_info->sectorsize),
1858 					release_bytes, true);
1859 		}
1860 	}
1861 
1862 	extent_changeset_free(data_reserved);
1863 	if (num_written > 0) {
1864 		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1865 		iocb->ki_pos += num_written;
1866 	}
1867 out:
1868 	btrfs_inode_unlock(inode, ilock_flags);
1869 	return num_written ? num_written : ret;
1870 }
1871 
1872 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1873 			       const struct iov_iter *iter, loff_t offset)
1874 {
1875 	const u32 blocksize_mask = fs_info->sectorsize - 1;
1876 
1877 	if (offset & blocksize_mask)
1878 		return -EINVAL;
1879 
1880 	if (iov_iter_alignment(iter) & blocksize_mask)
1881 		return -EINVAL;
1882 
1883 	return 0;
1884 }
1885 
1886 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1887 {
1888 	const bool is_sync_write = (iocb->ki_flags & IOCB_DSYNC);
1889 	struct file *file = iocb->ki_filp;
1890 	struct inode *inode = file_inode(file);
1891 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1892 	loff_t pos;
1893 	ssize_t written = 0;
1894 	ssize_t written_buffered;
1895 	size_t prev_left = 0;
1896 	loff_t endbyte;
1897 	ssize_t err;
1898 	unsigned int ilock_flags = 0;
1899 
1900 	if (iocb->ki_flags & IOCB_NOWAIT)
1901 		ilock_flags |= BTRFS_ILOCK_TRY;
1902 
1903 	/* If the write DIO is within EOF, use a shared lock */
1904 	if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1905 		ilock_flags |= BTRFS_ILOCK_SHARED;
1906 
1907 relock:
1908 	err = btrfs_inode_lock(inode, ilock_flags);
1909 	if (err < 0)
1910 		return err;
1911 
1912 	err = generic_write_checks(iocb, from);
1913 	if (err <= 0) {
1914 		btrfs_inode_unlock(inode, ilock_flags);
1915 		return err;
1916 	}
1917 
1918 	err = btrfs_write_check(iocb, from, err);
1919 	if (err < 0) {
1920 		btrfs_inode_unlock(inode, ilock_flags);
1921 		goto out;
1922 	}
1923 
1924 	pos = iocb->ki_pos;
1925 	/*
1926 	 * Re-check since file size may have changed just before taking the
1927 	 * lock or pos may have changed because of O_APPEND in generic_write_check()
1928 	 */
1929 	if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1930 	    pos + iov_iter_count(from) > i_size_read(inode)) {
1931 		btrfs_inode_unlock(inode, ilock_flags);
1932 		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1933 		goto relock;
1934 	}
1935 
1936 	if (check_direct_IO(fs_info, from, pos)) {
1937 		btrfs_inode_unlock(inode, ilock_flags);
1938 		goto buffered;
1939 	}
1940 
1941 	/*
1942 	 * We remove IOCB_DSYNC so that we don't deadlock when iomap_dio_rw()
1943 	 * calls generic_write_sync() (through iomap_dio_complete()), because
1944 	 * that results in calling fsync (btrfs_sync_file()) which will try to
1945 	 * lock the inode in exclusive/write mode.
1946 	 */
1947 	if (is_sync_write)
1948 		iocb->ki_flags &= ~IOCB_DSYNC;
1949 
1950 	/*
1951 	 * The iov_iter can be mapped to the same file range we are writing to.
1952 	 * If that's the case, then we will deadlock in the iomap code, because
1953 	 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1954 	 * an ordered extent, and after that it will fault in the pages that the
1955 	 * iov_iter refers to. During the fault in we end up in the readahead
1956 	 * pages code (starting at btrfs_readahead()), which will lock the range,
1957 	 * find that ordered extent and then wait for it to complete (at
1958 	 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1959 	 * obviously the ordered extent can never complete as we didn't submit
1960 	 * yet the respective bio(s). This always happens when the buffer is
1961 	 * memory mapped to the same file range, since the iomap DIO code always
1962 	 * invalidates pages in the target file range (after starting and waiting
1963 	 * for any writeback).
1964 	 *
1965 	 * So here we disable page faults in the iov_iter and then retry if we
1966 	 * got -EFAULT, faulting in the pages before the retry.
1967 	 */
1968 again:
1969 	from->nofault = true;
1970 	err = iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
1971 			   IOMAP_DIO_PARTIAL, written);
1972 	from->nofault = false;
1973 
1974 	/* No increment (+=) because iomap returns a cumulative value. */
1975 	if (err > 0)
1976 		written = err;
1977 
1978 	if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1979 		const size_t left = iov_iter_count(from);
1980 		/*
1981 		 * We have more data left to write. Try to fault in as many as
1982 		 * possible of the remainder pages and retry. We do this without
1983 		 * releasing and locking again the inode, to prevent races with
1984 		 * truncate.
1985 		 *
1986 		 * Also, in case the iov refers to pages in the file range of the
1987 		 * file we want to write to (due to a mmap), we could enter an
1988 		 * infinite loop if we retry after faulting the pages in, since
1989 		 * iomap will invalidate any pages in the range early on, before
1990 		 * it tries to fault in the pages of the iov. So we keep track of
1991 		 * how much was left of iov in the previous EFAULT and fallback
1992 		 * to buffered IO in case we haven't made any progress.
1993 		 */
1994 		if (left == prev_left) {
1995 			err = -ENOTBLK;
1996 		} else {
1997 			fault_in_iov_iter_readable(from, left);
1998 			prev_left = left;
1999 			goto again;
2000 		}
2001 	}
2002 
2003 	btrfs_inode_unlock(inode, ilock_flags);
2004 
2005 	/*
2006 	 * Add back IOCB_DSYNC. Our caller, btrfs_file_write_iter(), will do
2007 	 * the fsync (call generic_write_sync()).
2008 	 */
2009 	if (is_sync_write)
2010 		iocb->ki_flags |= IOCB_DSYNC;
2011 
2012 	/* If 'err' is -ENOTBLK then it means we must fallback to buffered IO. */
2013 	if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
2014 		goto out;
2015 
2016 buffered:
2017 	pos = iocb->ki_pos;
2018 	written_buffered = btrfs_buffered_write(iocb, from);
2019 	if (written_buffered < 0) {
2020 		err = written_buffered;
2021 		goto out;
2022 	}
2023 	/*
2024 	 * Ensure all data is persisted. We want the next direct IO read to be
2025 	 * able to read what was just written.
2026 	 */
2027 	endbyte = pos + written_buffered - 1;
2028 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
2029 	if (err)
2030 		goto out;
2031 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
2032 	if (err)
2033 		goto out;
2034 	written += written_buffered;
2035 	iocb->ki_pos = pos + written_buffered;
2036 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
2037 				 endbyte >> PAGE_SHIFT);
2038 out:
2039 	return err < 0 ? err : written;
2040 }
2041 
2042 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
2043 				    struct iov_iter *from)
2044 {
2045 	struct file *file = iocb->ki_filp;
2046 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
2047 	ssize_t num_written = 0;
2048 	const bool sync = iocb->ki_flags & IOCB_DSYNC;
2049 
2050 	/*
2051 	 * If the fs flips readonly due to some impossible error, although we
2052 	 * have opened a file as writable, we have to stop this write operation
2053 	 * to ensure consistency.
2054 	 */
2055 	if (BTRFS_FS_ERROR(inode->root->fs_info))
2056 		return -EROFS;
2057 
2058 	if (!(iocb->ki_flags & IOCB_DIRECT) &&
2059 	    (iocb->ki_flags & IOCB_NOWAIT))
2060 		return -EOPNOTSUPP;
2061 
2062 	if (sync)
2063 		atomic_inc(&inode->sync_writers);
2064 
2065 	if (iocb->ki_flags & IOCB_DIRECT)
2066 		num_written = btrfs_direct_write(iocb, from);
2067 	else
2068 		num_written = btrfs_buffered_write(iocb, from);
2069 
2070 	btrfs_set_inode_last_sub_trans(inode);
2071 
2072 	if (num_written > 0)
2073 		num_written = generic_write_sync(iocb, num_written);
2074 
2075 	if (sync)
2076 		atomic_dec(&inode->sync_writers);
2077 
2078 	current->backing_dev_info = NULL;
2079 	return num_written;
2080 }
2081 
2082 int btrfs_release_file(struct inode *inode, struct file *filp)
2083 {
2084 	struct btrfs_file_private *private = filp->private_data;
2085 
2086 	if (private && private->filldir_buf)
2087 		kfree(private->filldir_buf);
2088 	kfree(private);
2089 	filp->private_data = NULL;
2090 
2091 	/*
2092 	 * Set by setattr when we are about to truncate a file from a non-zero
2093 	 * size to a zero size.  This tries to flush down new bytes that may
2094 	 * have been written if the application were using truncate to replace
2095 	 * a file in place.
2096 	 */
2097 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2098 			       &BTRFS_I(inode)->runtime_flags))
2099 			filemap_flush(inode->i_mapping);
2100 	return 0;
2101 }
2102 
2103 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2104 {
2105 	int ret;
2106 	struct blk_plug plug;
2107 
2108 	/*
2109 	 * This is only called in fsync, which would do synchronous writes, so
2110 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2111 	 * multiple disks using raid profile, a large IO can be split to
2112 	 * several segments of stripe length (currently 64K).
2113 	 */
2114 	blk_start_plug(&plug);
2115 	atomic_inc(&BTRFS_I(inode)->sync_writers);
2116 	ret = btrfs_fdatawrite_range(inode, start, end);
2117 	atomic_dec(&BTRFS_I(inode)->sync_writers);
2118 	blk_finish_plug(&plug);
2119 
2120 	return ret;
2121 }
2122 
2123 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2124 {
2125 	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2126 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2127 
2128 	if (btrfs_inode_in_log(inode, fs_info->generation) &&
2129 	    list_empty(&ctx->ordered_extents))
2130 		return true;
2131 
2132 	/*
2133 	 * If we are doing a fast fsync we can not bail out if the inode's
2134 	 * last_trans is <= then the last committed transaction, because we only
2135 	 * update the last_trans of the inode during ordered extent completion,
2136 	 * and for a fast fsync we don't wait for that, we only wait for the
2137 	 * writeback to complete.
2138 	 */
2139 	if (inode->last_trans <= fs_info->last_trans_committed &&
2140 	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2141 	     list_empty(&ctx->ordered_extents)))
2142 		return true;
2143 
2144 	return false;
2145 }
2146 
2147 /*
2148  * fsync call for both files and directories.  This logs the inode into
2149  * the tree log instead of forcing full commits whenever possible.
2150  *
2151  * It needs to call filemap_fdatawait so that all ordered extent updates are
2152  * in the metadata btree are up to date for copying to the log.
2153  *
2154  * It drops the inode mutex before doing the tree log commit.  This is an
2155  * important optimization for directories because holding the mutex prevents
2156  * new operations on the dir while we write to disk.
2157  */
2158 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2159 {
2160 	struct dentry *dentry = file_dentry(file);
2161 	struct inode *inode = d_inode(dentry);
2162 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2163 	struct btrfs_root *root = BTRFS_I(inode)->root;
2164 	struct btrfs_trans_handle *trans;
2165 	struct btrfs_log_ctx ctx;
2166 	int ret = 0, err;
2167 	u64 len;
2168 	bool full_sync;
2169 
2170 	trace_btrfs_sync_file(file, datasync);
2171 
2172 	btrfs_init_log_ctx(&ctx, inode);
2173 
2174 	/*
2175 	 * Always set the range to a full range, otherwise we can get into
2176 	 * several problems, from missing file extent items to represent holes
2177 	 * when not using the NO_HOLES feature, to log tree corruption due to
2178 	 * races between hole detection during logging and completion of ordered
2179 	 * extents outside the range, to missing checksums due to ordered extents
2180 	 * for which we flushed only a subset of their pages.
2181 	 */
2182 	start = 0;
2183 	end = LLONG_MAX;
2184 	len = (u64)LLONG_MAX + 1;
2185 
2186 	/*
2187 	 * We write the dirty pages in the range and wait until they complete
2188 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
2189 	 * multi-task, and make the performance up.  See
2190 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2191 	 */
2192 	ret = start_ordered_ops(inode, start, end);
2193 	if (ret)
2194 		goto out;
2195 
2196 	btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2197 
2198 	atomic_inc(&root->log_batch);
2199 
2200 	/*
2201 	 * Always check for the full sync flag while holding the inode's lock,
2202 	 * to avoid races with other tasks. The flag must be either set all the
2203 	 * time during logging or always off all the time while logging.
2204 	 */
2205 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2206 			     &BTRFS_I(inode)->runtime_flags);
2207 
2208 	/*
2209 	 * Before we acquired the inode's lock and the mmap lock, someone may
2210 	 * have dirtied more pages in the target range. We need to make sure
2211 	 * that writeback for any such pages does not start while we are logging
2212 	 * the inode, because if it does, any of the following might happen when
2213 	 * we are not doing a full inode sync:
2214 	 *
2215 	 * 1) We log an extent after its writeback finishes but before its
2216 	 *    checksums are added to the csum tree, leading to -EIO errors
2217 	 *    when attempting to read the extent after a log replay.
2218 	 *
2219 	 * 2) We can end up logging an extent before its writeback finishes.
2220 	 *    Therefore after the log replay we will have a file extent item
2221 	 *    pointing to an unwritten extent (and no data checksums as well).
2222 	 *
2223 	 * So trigger writeback for any eventual new dirty pages and then we
2224 	 * wait for all ordered extents to complete below.
2225 	 */
2226 	ret = start_ordered_ops(inode, start, end);
2227 	if (ret) {
2228 		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2229 		goto out;
2230 	}
2231 
2232 	/*
2233 	 * We have to do this here to avoid the priority inversion of waiting on
2234 	 * IO of a lower priority task while holding a transaction open.
2235 	 *
2236 	 * For a full fsync we wait for the ordered extents to complete while
2237 	 * for a fast fsync we wait just for writeback to complete, and then
2238 	 * attach the ordered extents to the transaction so that a transaction
2239 	 * commit waits for their completion, to avoid data loss if we fsync,
2240 	 * the current transaction commits before the ordered extents complete
2241 	 * and a power failure happens right after that.
2242 	 *
2243 	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2244 	 * logical address recorded in the ordered extent may change. We need
2245 	 * to wait for the IO to stabilize the logical address.
2246 	 */
2247 	if (full_sync || btrfs_is_zoned(fs_info)) {
2248 		ret = btrfs_wait_ordered_range(inode, start, len);
2249 	} else {
2250 		/*
2251 		 * Get our ordered extents as soon as possible to avoid doing
2252 		 * checksum lookups in the csum tree, and use instead the
2253 		 * checksums attached to the ordered extents.
2254 		 */
2255 		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2256 						      &ctx.ordered_extents);
2257 		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2258 	}
2259 
2260 	if (ret)
2261 		goto out_release_extents;
2262 
2263 	atomic_inc(&root->log_batch);
2264 
2265 	smp_mb();
2266 	if (skip_inode_logging(&ctx)) {
2267 		/*
2268 		 * We've had everything committed since the last time we were
2269 		 * modified so clear this flag in case it was set for whatever
2270 		 * reason, it's no longer relevant.
2271 		 */
2272 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2273 			  &BTRFS_I(inode)->runtime_flags);
2274 		/*
2275 		 * An ordered extent might have started before and completed
2276 		 * already with io errors, in which case the inode was not
2277 		 * updated and we end up here. So check the inode's mapping
2278 		 * for any errors that might have happened since we last
2279 		 * checked called fsync.
2280 		 */
2281 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2282 		goto out_release_extents;
2283 	}
2284 
2285 	/*
2286 	 * We use start here because we will need to wait on the IO to complete
2287 	 * in btrfs_sync_log, which could require joining a transaction (for
2288 	 * example checking cross references in the nocow path).  If we use join
2289 	 * here we could get into a situation where we're waiting on IO to
2290 	 * happen that is blocked on a transaction trying to commit.  With start
2291 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2292 	 * before we start blocking joiners.  This comment is to keep somebody
2293 	 * from thinking they are super smart and changing this to
2294 	 * btrfs_join_transaction *cough*Josef*cough*.
2295 	 */
2296 	trans = btrfs_start_transaction(root, 0);
2297 	if (IS_ERR(trans)) {
2298 		ret = PTR_ERR(trans);
2299 		goto out_release_extents;
2300 	}
2301 	trans->in_fsync = true;
2302 
2303 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2304 	btrfs_release_log_ctx_extents(&ctx);
2305 	if (ret < 0) {
2306 		/* Fallthrough and commit/free transaction. */
2307 		ret = 1;
2308 	}
2309 
2310 	/* we've logged all the items and now have a consistent
2311 	 * version of the file in the log.  It is possible that
2312 	 * someone will come in and modify the file, but that's
2313 	 * fine because the log is consistent on disk, and we
2314 	 * have references to all of the file's extents
2315 	 *
2316 	 * It is possible that someone will come in and log the
2317 	 * file again, but that will end up using the synchronization
2318 	 * inside btrfs_sync_log to keep things safe.
2319 	 */
2320 	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2321 
2322 	if (ret != BTRFS_NO_LOG_SYNC) {
2323 		if (!ret) {
2324 			ret = btrfs_sync_log(trans, root, &ctx);
2325 			if (!ret) {
2326 				ret = btrfs_end_transaction(trans);
2327 				goto out;
2328 			}
2329 		}
2330 		if (!full_sync) {
2331 			ret = btrfs_wait_ordered_range(inode, start, len);
2332 			if (ret) {
2333 				btrfs_end_transaction(trans);
2334 				goto out;
2335 			}
2336 		}
2337 		ret = btrfs_commit_transaction(trans);
2338 	} else {
2339 		ret = btrfs_end_transaction(trans);
2340 	}
2341 out:
2342 	ASSERT(list_empty(&ctx.list));
2343 	err = file_check_and_advance_wb_err(file);
2344 	if (!ret)
2345 		ret = err;
2346 	return ret > 0 ? -EIO : ret;
2347 
2348 out_release_extents:
2349 	btrfs_release_log_ctx_extents(&ctx);
2350 	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2351 	goto out;
2352 }
2353 
2354 static const struct vm_operations_struct btrfs_file_vm_ops = {
2355 	.fault		= filemap_fault,
2356 	.map_pages	= filemap_map_pages,
2357 	.page_mkwrite	= btrfs_page_mkwrite,
2358 };
2359 
2360 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2361 {
2362 	struct address_space *mapping = filp->f_mapping;
2363 
2364 	if (!mapping->a_ops->readpage)
2365 		return -ENOEXEC;
2366 
2367 	file_accessed(filp);
2368 	vma->vm_ops = &btrfs_file_vm_ops;
2369 
2370 	return 0;
2371 }
2372 
2373 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2374 			  int slot, u64 start, u64 end)
2375 {
2376 	struct btrfs_file_extent_item *fi;
2377 	struct btrfs_key key;
2378 
2379 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2380 		return 0;
2381 
2382 	btrfs_item_key_to_cpu(leaf, &key, slot);
2383 	if (key.objectid != btrfs_ino(inode) ||
2384 	    key.type != BTRFS_EXTENT_DATA_KEY)
2385 		return 0;
2386 
2387 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2388 
2389 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2390 		return 0;
2391 
2392 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2393 		return 0;
2394 
2395 	if (key.offset == end)
2396 		return 1;
2397 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2398 		return 1;
2399 	return 0;
2400 }
2401 
2402 static int fill_holes(struct btrfs_trans_handle *trans,
2403 		struct btrfs_inode *inode,
2404 		struct btrfs_path *path, u64 offset, u64 end)
2405 {
2406 	struct btrfs_fs_info *fs_info = trans->fs_info;
2407 	struct btrfs_root *root = inode->root;
2408 	struct extent_buffer *leaf;
2409 	struct btrfs_file_extent_item *fi;
2410 	struct extent_map *hole_em;
2411 	struct extent_map_tree *em_tree = &inode->extent_tree;
2412 	struct btrfs_key key;
2413 	int ret;
2414 
2415 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2416 		goto out;
2417 
2418 	key.objectid = btrfs_ino(inode);
2419 	key.type = BTRFS_EXTENT_DATA_KEY;
2420 	key.offset = offset;
2421 
2422 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2423 	if (ret <= 0) {
2424 		/*
2425 		 * We should have dropped this offset, so if we find it then
2426 		 * something has gone horribly wrong.
2427 		 */
2428 		if (ret == 0)
2429 			ret = -EINVAL;
2430 		return ret;
2431 	}
2432 
2433 	leaf = path->nodes[0];
2434 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2435 		u64 num_bytes;
2436 
2437 		path->slots[0]--;
2438 		fi = btrfs_item_ptr(leaf, path->slots[0],
2439 				    struct btrfs_file_extent_item);
2440 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2441 			end - offset;
2442 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2443 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2444 		btrfs_set_file_extent_offset(leaf, fi, 0);
2445 		btrfs_mark_buffer_dirty(leaf);
2446 		goto out;
2447 	}
2448 
2449 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2450 		u64 num_bytes;
2451 
2452 		key.offset = offset;
2453 		btrfs_set_item_key_safe(fs_info, path, &key);
2454 		fi = btrfs_item_ptr(leaf, path->slots[0],
2455 				    struct btrfs_file_extent_item);
2456 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2457 			offset;
2458 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2459 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2460 		btrfs_set_file_extent_offset(leaf, fi, 0);
2461 		btrfs_mark_buffer_dirty(leaf);
2462 		goto out;
2463 	}
2464 	btrfs_release_path(path);
2465 
2466 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2467 			offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2468 	if (ret)
2469 		return ret;
2470 
2471 out:
2472 	btrfs_release_path(path);
2473 
2474 	hole_em = alloc_extent_map();
2475 	if (!hole_em) {
2476 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2477 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2478 	} else {
2479 		hole_em->start = offset;
2480 		hole_em->len = end - offset;
2481 		hole_em->ram_bytes = hole_em->len;
2482 		hole_em->orig_start = offset;
2483 
2484 		hole_em->block_start = EXTENT_MAP_HOLE;
2485 		hole_em->block_len = 0;
2486 		hole_em->orig_block_len = 0;
2487 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2488 		hole_em->generation = trans->transid;
2489 
2490 		do {
2491 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2492 			write_lock(&em_tree->lock);
2493 			ret = add_extent_mapping(em_tree, hole_em, 1);
2494 			write_unlock(&em_tree->lock);
2495 		} while (ret == -EEXIST);
2496 		free_extent_map(hole_em);
2497 		if (ret)
2498 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2499 					&inode->runtime_flags);
2500 	}
2501 
2502 	return 0;
2503 }
2504 
2505 /*
2506  * Find a hole extent on given inode and change start/len to the end of hole
2507  * extent.(hole/vacuum extent whose em->start <= start &&
2508  *	   em->start + em->len > start)
2509  * When a hole extent is found, return 1 and modify start/len.
2510  */
2511 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2512 {
2513 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2514 	struct extent_map *em;
2515 	int ret = 0;
2516 
2517 	em = btrfs_get_extent(inode, NULL, 0,
2518 			      round_down(*start, fs_info->sectorsize),
2519 			      round_up(*len, fs_info->sectorsize));
2520 	if (IS_ERR(em))
2521 		return PTR_ERR(em);
2522 
2523 	/* Hole or vacuum extent(only exists in no-hole mode) */
2524 	if (em->block_start == EXTENT_MAP_HOLE) {
2525 		ret = 1;
2526 		*len = em->start + em->len > *start + *len ?
2527 		       0 : *start + *len - em->start - em->len;
2528 		*start = em->start + em->len;
2529 	}
2530 	free_extent_map(em);
2531 	return ret;
2532 }
2533 
2534 static int btrfs_punch_hole_lock_range(struct inode *inode,
2535 				       const u64 lockstart,
2536 				       const u64 lockend,
2537 				       struct extent_state **cached_state)
2538 {
2539 	/*
2540 	 * For subpage case, if the range is not at page boundary, we could
2541 	 * have pages at the leading/tailing part of the range.
2542 	 * This could lead to dead loop since filemap_range_has_page()
2543 	 * will always return true.
2544 	 * So here we need to do extra page alignment for
2545 	 * filemap_range_has_page().
2546 	 */
2547 	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2548 	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2549 
2550 	while (1) {
2551 		struct btrfs_ordered_extent *ordered;
2552 		int ret;
2553 
2554 		truncate_pagecache_range(inode, lockstart, lockend);
2555 
2556 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2557 				 cached_state);
2558 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2559 							    lockend);
2560 
2561 		/*
2562 		 * We need to make sure we have no ordered extents in this range
2563 		 * and nobody raced in and read a page in this range, if we did
2564 		 * we need to try again.
2565 		 */
2566 		if ((!ordered ||
2567 		    (ordered->file_offset + ordered->num_bytes <= lockstart ||
2568 		     ordered->file_offset > lockend)) &&
2569 		     !filemap_range_has_page(inode->i_mapping,
2570 					     page_lockstart, page_lockend)) {
2571 			if (ordered)
2572 				btrfs_put_ordered_extent(ordered);
2573 			break;
2574 		}
2575 		if (ordered)
2576 			btrfs_put_ordered_extent(ordered);
2577 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2578 				     lockend, cached_state);
2579 		ret = btrfs_wait_ordered_range(inode, lockstart,
2580 					       lockend - lockstart + 1);
2581 		if (ret)
2582 			return ret;
2583 	}
2584 	return 0;
2585 }
2586 
2587 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2588 				     struct btrfs_inode *inode,
2589 				     struct btrfs_path *path,
2590 				     struct btrfs_replace_extent_info *extent_info,
2591 				     const u64 replace_len,
2592 				     const u64 bytes_to_drop)
2593 {
2594 	struct btrfs_fs_info *fs_info = trans->fs_info;
2595 	struct btrfs_root *root = inode->root;
2596 	struct btrfs_file_extent_item *extent;
2597 	struct extent_buffer *leaf;
2598 	struct btrfs_key key;
2599 	int slot;
2600 	struct btrfs_ref ref = { 0 };
2601 	int ret;
2602 
2603 	if (replace_len == 0)
2604 		return 0;
2605 
2606 	if (extent_info->disk_offset == 0 &&
2607 	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2608 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2609 		return 0;
2610 	}
2611 
2612 	key.objectid = btrfs_ino(inode);
2613 	key.type = BTRFS_EXTENT_DATA_KEY;
2614 	key.offset = extent_info->file_offset;
2615 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2616 				      sizeof(struct btrfs_file_extent_item));
2617 	if (ret)
2618 		return ret;
2619 	leaf = path->nodes[0];
2620 	slot = path->slots[0];
2621 	write_extent_buffer(leaf, extent_info->extent_buf,
2622 			    btrfs_item_ptr_offset(leaf, slot),
2623 			    sizeof(struct btrfs_file_extent_item));
2624 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2625 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2626 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2627 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2628 	if (extent_info->is_new_extent)
2629 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2630 	btrfs_mark_buffer_dirty(leaf);
2631 	btrfs_release_path(path);
2632 
2633 	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2634 						replace_len);
2635 	if (ret)
2636 		return ret;
2637 
2638 	/* If it's a hole, nothing more needs to be done. */
2639 	if (extent_info->disk_offset == 0) {
2640 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2641 		return 0;
2642 	}
2643 
2644 	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2645 
2646 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2647 		key.objectid = extent_info->disk_offset;
2648 		key.type = BTRFS_EXTENT_ITEM_KEY;
2649 		key.offset = extent_info->disk_len;
2650 		ret = btrfs_alloc_reserved_file_extent(trans, root,
2651 						       btrfs_ino(inode),
2652 						       extent_info->file_offset,
2653 						       extent_info->qgroup_reserved,
2654 						       &key);
2655 	} else {
2656 		u64 ref_offset;
2657 
2658 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2659 				       extent_info->disk_offset,
2660 				       extent_info->disk_len, 0);
2661 		ref_offset = extent_info->file_offset - extent_info->data_offset;
2662 		btrfs_init_data_ref(&ref, root->root_key.objectid,
2663 				    btrfs_ino(inode), ref_offset, 0, false);
2664 		ret = btrfs_inc_extent_ref(trans, &ref);
2665 	}
2666 
2667 	extent_info->insertions++;
2668 
2669 	return ret;
2670 }
2671 
2672 /*
2673  * The respective range must have been previously locked, as well as the inode.
2674  * The end offset is inclusive (last byte of the range).
2675  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2676  * the file range with an extent.
2677  * When not punching a hole, we don't want to end up in a state where we dropped
2678  * extents without inserting a new one, so we must abort the transaction to avoid
2679  * a corruption.
2680  */
2681 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2682 			       struct btrfs_path *path, const u64 start,
2683 			       const u64 end,
2684 			       struct btrfs_replace_extent_info *extent_info,
2685 			       struct btrfs_trans_handle **trans_out)
2686 {
2687 	struct btrfs_drop_extents_args drop_args = { 0 };
2688 	struct btrfs_root *root = inode->root;
2689 	struct btrfs_fs_info *fs_info = root->fs_info;
2690 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2691 	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2692 	struct btrfs_trans_handle *trans = NULL;
2693 	struct btrfs_block_rsv *rsv;
2694 	unsigned int rsv_count;
2695 	u64 cur_offset;
2696 	u64 len = end - start;
2697 	int ret = 0;
2698 
2699 	if (end <= start)
2700 		return -EINVAL;
2701 
2702 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2703 	if (!rsv) {
2704 		ret = -ENOMEM;
2705 		goto out;
2706 	}
2707 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2708 	rsv->failfast = 1;
2709 
2710 	/*
2711 	 * 1 - update the inode
2712 	 * 1 - removing the extents in the range
2713 	 * 1 - adding the hole extent if no_holes isn't set or if we are
2714 	 *     replacing the range with a new extent
2715 	 */
2716 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2717 		rsv_count = 3;
2718 	else
2719 		rsv_count = 2;
2720 
2721 	trans = btrfs_start_transaction(root, rsv_count);
2722 	if (IS_ERR(trans)) {
2723 		ret = PTR_ERR(trans);
2724 		trans = NULL;
2725 		goto out_free;
2726 	}
2727 
2728 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2729 				      min_size, false);
2730 	BUG_ON(ret);
2731 	trans->block_rsv = rsv;
2732 
2733 	cur_offset = start;
2734 	drop_args.path = path;
2735 	drop_args.end = end + 1;
2736 	drop_args.drop_cache = true;
2737 	while (cur_offset < end) {
2738 		drop_args.start = cur_offset;
2739 		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2740 		/* If we are punching a hole decrement the inode's byte count */
2741 		if (!extent_info)
2742 			btrfs_update_inode_bytes(inode, 0,
2743 						 drop_args.bytes_found);
2744 		if (ret != -ENOSPC) {
2745 			/*
2746 			 * The only time we don't want to abort is if we are
2747 			 * attempting to clone a partial inline extent, in which
2748 			 * case we'll get EOPNOTSUPP.  However if we aren't
2749 			 * clone we need to abort no matter what, because if we
2750 			 * got EOPNOTSUPP via prealloc then we messed up and
2751 			 * need to abort.
2752 			 */
2753 			if (ret &&
2754 			    (ret != -EOPNOTSUPP ||
2755 			     (extent_info && extent_info->is_new_extent)))
2756 				btrfs_abort_transaction(trans, ret);
2757 			break;
2758 		}
2759 
2760 		trans->block_rsv = &fs_info->trans_block_rsv;
2761 
2762 		if (!extent_info && cur_offset < drop_args.drop_end &&
2763 		    cur_offset < ino_size) {
2764 			ret = fill_holes(trans, inode, path, cur_offset,
2765 					 drop_args.drop_end);
2766 			if (ret) {
2767 				/*
2768 				 * If we failed then we didn't insert our hole
2769 				 * entries for the area we dropped, so now the
2770 				 * fs is corrupted, so we must abort the
2771 				 * transaction.
2772 				 */
2773 				btrfs_abort_transaction(trans, ret);
2774 				break;
2775 			}
2776 		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2777 			/*
2778 			 * We are past the i_size here, but since we didn't
2779 			 * insert holes we need to clear the mapped area so we
2780 			 * know to not set disk_i_size in this area until a new
2781 			 * file extent is inserted here.
2782 			 */
2783 			ret = btrfs_inode_clear_file_extent_range(inode,
2784 					cur_offset,
2785 					drop_args.drop_end - cur_offset);
2786 			if (ret) {
2787 				/*
2788 				 * We couldn't clear our area, so we could
2789 				 * presumably adjust up and corrupt the fs, so
2790 				 * we need to abort.
2791 				 */
2792 				btrfs_abort_transaction(trans, ret);
2793 				break;
2794 			}
2795 		}
2796 
2797 		if (extent_info &&
2798 		    drop_args.drop_end > extent_info->file_offset) {
2799 			u64 replace_len = drop_args.drop_end -
2800 					  extent_info->file_offset;
2801 
2802 			ret = btrfs_insert_replace_extent(trans, inode,	path,
2803 					extent_info, replace_len,
2804 					drop_args.bytes_found);
2805 			if (ret) {
2806 				btrfs_abort_transaction(trans, ret);
2807 				break;
2808 			}
2809 			extent_info->data_len -= replace_len;
2810 			extent_info->data_offset += replace_len;
2811 			extent_info->file_offset += replace_len;
2812 		}
2813 
2814 		ret = btrfs_update_inode(trans, root, inode);
2815 		if (ret)
2816 			break;
2817 
2818 		btrfs_end_transaction(trans);
2819 		btrfs_btree_balance_dirty(fs_info);
2820 
2821 		trans = btrfs_start_transaction(root, rsv_count);
2822 		if (IS_ERR(trans)) {
2823 			ret = PTR_ERR(trans);
2824 			trans = NULL;
2825 			break;
2826 		}
2827 
2828 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2829 					      rsv, min_size, false);
2830 		BUG_ON(ret);	/* shouldn't happen */
2831 		trans->block_rsv = rsv;
2832 
2833 		cur_offset = drop_args.drop_end;
2834 		len = end - cur_offset;
2835 		if (!extent_info && len) {
2836 			ret = find_first_non_hole(inode, &cur_offset, &len);
2837 			if (unlikely(ret < 0))
2838 				break;
2839 			if (ret && !len) {
2840 				ret = 0;
2841 				break;
2842 			}
2843 		}
2844 	}
2845 
2846 	/*
2847 	 * If we were cloning, force the next fsync to be a full one since we
2848 	 * we replaced (or just dropped in the case of cloning holes when
2849 	 * NO_HOLES is enabled) file extent items and did not setup new extent
2850 	 * maps for the replacement extents (or holes).
2851 	 */
2852 	if (extent_info && !extent_info->is_new_extent)
2853 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2854 
2855 	if (ret)
2856 		goto out_trans;
2857 
2858 	trans->block_rsv = &fs_info->trans_block_rsv;
2859 	/*
2860 	 * If we are using the NO_HOLES feature we might have had already an
2861 	 * hole that overlaps a part of the region [lockstart, lockend] and
2862 	 * ends at (or beyond) lockend. Since we have no file extent items to
2863 	 * represent holes, drop_end can be less than lockend and so we must
2864 	 * make sure we have an extent map representing the existing hole (the
2865 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2866 	 * map representing the existing hole), otherwise the fast fsync path
2867 	 * will not record the existence of the hole region
2868 	 * [existing_hole_start, lockend].
2869 	 */
2870 	if (drop_args.drop_end <= end)
2871 		drop_args.drop_end = end + 1;
2872 	/*
2873 	 * Don't insert file hole extent item if it's for a range beyond eof
2874 	 * (because it's useless) or if it represents a 0 bytes range (when
2875 	 * cur_offset == drop_end).
2876 	 */
2877 	if (!extent_info && cur_offset < ino_size &&
2878 	    cur_offset < drop_args.drop_end) {
2879 		ret = fill_holes(trans, inode, path, cur_offset,
2880 				 drop_args.drop_end);
2881 		if (ret) {
2882 			/* Same comment as above. */
2883 			btrfs_abort_transaction(trans, ret);
2884 			goto out_trans;
2885 		}
2886 	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2887 		/* See the comment in the loop above for the reasoning here. */
2888 		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2889 					drop_args.drop_end - cur_offset);
2890 		if (ret) {
2891 			btrfs_abort_transaction(trans, ret);
2892 			goto out_trans;
2893 		}
2894 
2895 	}
2896 	if (extent_info) {
2897 		ret = btrfs_insert_replace_extent(trans, inode, path,
2898 				extent_info, extent_info->data_len,
2899 				drop_args.bytes_found);
2900 		if (ret) {
2901 			btrfs_abort_transaction(trans, ret);
2902 			goto out_trans;
2903 		}
2904 	}
2905 
2906 out_trans:
2907 	if (!trans)
2908 		goto out_free;
2909 
2910 	trans->block_rsv = &fs_info->trans_block_rsv;
2911 	if (ret)
2912 		btrfs_end_transaction(trans);
2913 	else
2914 		*trans_out = trans;
2915 out_free:
2916 	btrfs_free_block_rsv(fs_info, rsv);
2917 out:
2918 	return ret;
2919 }
2920 
2921 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2922 {
2923 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2924 	struct btrfs_root *root = BTRFS_I(inode)->root;
2925 	struct extent_state *cached_state = NULL;
2926 	struct btrfs_path *path;
2927 	struct btrfs_trans_handle *trans = NULL;
2928 	u64 lockstart;
2929 	u64 lockend;
2930 	u64 tail_start;
2931 	u64 tail_len;
2932 	u64 orig_start = offset;
2933 	int ret = 0;
2934 	bool same_block;
2935 	u64 ino_size;
2936 	bool truncated_block = false;
2937 	bool updated_inode = false;
2938 
2939 	ret = btrfs_wait_ordered_range(inode, offset, len);
2940 	if (ret)
2941 		return ret;
2942 
2943 	btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2944 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2945 	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2946 	if (ret < 0)
2947 		goto out_only_mutex;
2948 	if (ret && !len) {
2949 		/* Already in a large hole */
2950 		ret = 0;
2951 		goto out_only_mutex;
2952 	}
2953 
2954 	lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2955 	lockend = round_down(offset + len,
2956 			     btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2957 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2958 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2959 	/*
2960 	 * We needn't truncate any block which is beyond the end of the file
2961 	 * because we are sure there is no data there.
2962 	 */
2963 	/*
2964 	 * Only do this if we are in the same block and we aren't doing the
2965 	 * entire block.
2966 	 */
2967 	if (same_block && len < fs_info->sectorsize) {
2968 		if (offset < ino_size) {
2969 			truncated_block = true;
2970 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2971 						   0);
2972 		} else {
2973 			ret = 0;
2974 		}
2975 		goto out_only_mutex;
2976 	}
2977 
2978 	/* zero back part of the first block */
2979 	if (offset < ino_size) {
2980 		truncated_block = true;
2981 		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2982 		if (ret) {
2983 			btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2984 			return ret;
2985 		}
2986 	}
2987 
2988 	/* Check the aligned pages after the first unaligned page,
2989 	 * if offset != orig_start, which means the first unaligned page
2990 	 * including several following pages are already in holes,
2991 	 * the extra check can be skipped */
2992 	if (offset == orig_start) {
2993 		/* after truncate page, check hole again */
2994 		len = offset + len - lockstart;
2995 		offset = lockstart;
2996 		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2997 		if (ret < 0)
2998 			goto out_only_mutex;
2999 		if (ret && !len) {
3000 			ret = 0;
3001 			goto out_only_mutex;
3002 		}
3003 		lockstart = offset;
3004 	}
3005 
3006 	/* Check the tail unaligned part is in a hole */
3007 	tail_start = lockend + 1;
3008 	tail_len = offset + len - tail_start;
3009 	if (tail_len) {
3010 		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
3011 		if (unlikely(ret < 0))
3012 			goto out_only_mutex;
3013 		if (!ret) {
3014 			/* zero the front end of the last page */
3015 			if (tail_start + tail_len < ino_size) {
3016 				truncated_block = true;
3017 				ret = btrfs_truncate_block(BTRFS_I(inode),
3018 							tail_start + tail_len,
3019 							0, 1);
3020 				if (ret)
3021 					goto out_only_mutex;
3022 			}
3023 		}
3024 	}
3025 
3026 	if (lockend < lockstart) {
3027 		ret = 0;
3028 		goto out_only_mutex;
3029 	}
3030 
3031 	ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3032 					  &cached_state);
3033 	if (ret)
3034 		goto out_only_mutex;
3035 
3036 	path = btrfs_alloc_path();
3037 	if (!path) {
3038 		ret = -ENOMEM;
3039 		goto out;
3040 	}
3041 
3042 	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
3043 					 lockend, NULL, &trans);
3044 	btrfs_free_path(path);
3045 	if (ret)
3046 		goto out;
3047 
3048 	ASSERT(trans != NULL);
3049 	inode_inc_iversion(inode);
3050 	inode->i_mtime = inode->i_ctime = current_time(inode);
3051 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3052 	updated_inode = true;
3053 	btrfs_end_transaction(trans);
3054 	btrfs_btree_balance_dirty(fs_info);
3055 out:
3056 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3057 			     &cached_state);
3058 out_only_mutex:
3059 	if (!updated_inode && truncated_block && !ret) {
3060 		/*
3061 		 * If we only end up zeroing part of a page, we still need to
3062 		 * update the inode item, so that all the time fields are
3063 		 * updated as well as the necessary btrfs inode in memory fields
3064 		 * for detecting, at fsync time, if the inode isn't yet in the
3065 		 * log tree or it's there but not up to date.
3066 		 */
3067 		struct timespec64 now = current_time(inode);
3068 
3069 		inode_inc_iversion(inode);
3070 		inode->i_mtime = now;
3071 		inode->i_ctime = now;
3072 		trans = btrfs_start_transaction(root, 1);
3073 		if (IS_ERR(trans)) {
3074 			ret = PTR_ERR(trans);
3075 		} else {
3076 			int ret2;
3077 
3078 			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3079 			ret2 = btrfs_end_transaction(trans);
3080 			if (!ret)
3081 				ret = ret2;
3082 		}
3083 	}
3084 	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3085 	return ret;
3086 }
3087 
3088 /* Helper structure to record which range is already reserved */
3089 struct falloc_range {
3090 	struct list_head list;
3091 	u64 start;
3092 	u64 len;
3093 };
3094 
3095 /*
3096  * Helper function to add falloc range
3097  *
3098  * Caller should have locked the larger range of extent containing
3099  * [start, len)
3100  */
3101 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3102 {
3103 	struct falloc_range *range = NULL;
3104 
3105 	if (!list_empty(head)) {
3106 		/*
3107 		 * As fallocate iterates by bytenr order, we only need to check
3108 		 * the last range.
3109 		 */
3110 		range = list_last_entry(head, struct falloc_range, list);
3111 		if (range->start + range->len == start) {
3112 			range->len += len;
3113 			return 0;
3114 		}
3115 	}
3116 
3117 	range = kmalloc(sizeof(*range), GFP_KERNEL);
3118 	if (!range)
3119 		return -ENOMEM;
3120 	range->start = start;
3121 	range->len = len;
3122 	list_add_tail(&range->list, head);
3123 	return 0;
3124 }
3125 
3126 static int btrfs_fallocate_update_isize(struct inode *inode,
3127 					const u64 end,
3128 					const int mode)
3129 {
3130 	struct btrfs_trans_handle *trans;
3131 	struct btrfs_root *root = BTRFS_I(inode)->root;
3132 	int ret;
3133 	int ret2;
3134 
3135 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3136 		return 0;
3137 
3138 	trans = btrfs_start_transaction(root, 1);
3139 	if (IS_ERR(trans))
3140 		return PTR_ERR(trans);
3141 
3142 	inode->i_ctime = current_time(inode);
3143 	i_size_write(inode, end);
3144 	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3145 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3146 	ret2 = btrfs_end_transaction(trans);
3147 
3148 	return ret ? ret : ret2;
3149 }
3150 
3151 enum {
3152 	RANGE_BOUNDARY_WRITTEN_EXTENT,
3153 	RANGE_BOUNDARY_PREALLOC_EXTENT,
3154 	RANGE_BOUNDARY_HOLE,
3155 };
3156 
3157 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3158 						 u64 offset)
3159 {
3160 	const u64 sectorsize = btrfs_inode_sectorsize(inode);
3161 	struct extent_map *em;
3162 	int ret;
3163 
3164 	offset = round_down(offset, sectorsize);
3165 	em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3166 	if (IS_ERR(em))
3167 		return PTR_ERR(em);
3168 
3169 	if (em->block_start == EXTENT_MAP_HOLE)
3170 		ret = RANGE_BOUNDARY_HOLE;
3171 	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3172 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3173 	else
3174 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3175 
3176 	free_extent_map(em);
3177 	return ret;
3178 }
3179 
3180 static int btrfs_zero_range(struct inode *inode,
3181 			    loff_t offset,
3182 			    loff_t len,
3183 			    const int mode)
3184 {
3185 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3186 	struct extent_map *em;
3187 	struct extent_changeset *data_reserved = NULL;
3188 	int ret;
3189 	u64 alloc_hint = 0;
3190 	const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3191 	u64 alloc_start = round_down(offset, sectorsize);
3192 	u64 alloc_end = round_up(offset + len, sectorsize);
3193 	u64 bytes_to_reserve = 0;
3194 	bool space_reserved = false;
3195 
3196 	inode_dio_wait(inode);
3197 
3198 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3199 			      alloc_end - alloc_start);
3200 	if (IS_ERR(em)) {
3201 		ret = PTR_ERR(em);
3202 		goto out;
3203 	}
3204 
3205 	/*
3206 	 * Avoid hole punching and extent allocation for some cases. More cases
3207 	 * could be considered, but these are unlikely common and we keep things
3208 	 * as simple as possible for now. Also, intentionally, if the target
3209 	 * range contains one or more prealloc extents together with regular
3210 	 * extents and holes, we drop all the existing extents and allocate a
3211 	 * new prealloc extent, so that we get a larger contiguous disk extent.
3212 	 */
3213 	if (em->start <= alloc_start &&
3214 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3215 		const u64 em_end = em->start + em->len;
3216 
3217 		if (em_end >= offset + len) {
3218 			/*
3219 			 * The whole range is already a prealloc extent,
3220 			 * do nothing except updating the inode's i_size if
3221 			 * needed.
3222 			 */
3223 			free_extent_map(em);
3224 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3225 							   mode);
3226 			goto out;
3227 		}
3228 		/*
3229 		 * Part of the range is already a prealloc extent, so operate
3230 		 * only on the remaining part of the range.
3231 		 */
3232 		alloc_start = em_end;
3233 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3234 		len = offset + len - alloc_start;
3235 		offset = alloc_start;
3236 		alloc_hint = em->block_start + em->len;
3237 	}
3238 	free_extent_map(em);
3239 
3240 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3241 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3242 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3243 				      sectorsize);
3244 		if (IS_ERR(em)) {
3245 			ret = PTR_ERR(em);
3246 			goto out;
3247 		}
3248 
3249 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3250 			free_extent_map(em);
3251 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3252 							   mode);
3253 			goto out;
3254 		}
3255 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3256 			free_extent_map(em);
3257 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3258 						   0);
3259 			if (!ret)
3260 				ret = btrfs_fallocate_update_isize(inode,
3261 								   offset + len,
3262 								   mode);
3263 			return ret;
3264 		}
3265 		free_extent_map(em);
3266 		alloc_start = round_down(offset, sectorsize);
3267 		alloc_end = alloc_start + sectorsize;
3268 		goto reserve_space;
3269 	}
3270 
3271 	alloc_start = round_up(offset, sectorsize);
3272 	alloc_end = round_down(offset + len, sectorsize);
3273 
3274 	/*
3275 	 * For unaligned ranges, check the pages at the boundaries, they might
3276 	 * map to an extent, in which case we need to partially zero them, or
3277 	 * they might map to a hole, in which case we need our allocation range
3278 	 * to cover them.
3279 	 */
3280 	if (!IS_ALIGNED(offset, sectorsize)) {
3281 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3282 							    offset);
3283 		if (ret < 0)
3284 			goto out;
3285 		if (ret == RANGE_BOUNDARY_HOLE) {
3286 			alloc_start = round_down(offset, sectorsize);
3287 			ret = 0;
3288 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3289 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3290 			if (ret)
3291 				goto out;
3292 		} else {
3293 			ret = 0;
3294 		}
3295 	}
3296 
3297 	if (!IS_ALIGNED(offset + len, sectorsize)) {
3298 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3299 							    offset + len);
3300 		if (ret < 0)
3301 			goto out;
3302 		if (ret == RANGE_BOUNDARY_HOLE) {
3303 			alloc_end = round_up(offset + len, sectorsize);
3304 			ret = 0;
3305 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3306 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3307 						   0, 1);
3308 			if (ret)
3309 				goto out;
3310 		} else {
3311 			ret = 0;
3312 		}
3313 	}
3314 
3315 reserve_space:
3316 	if (alloc_start < alloc_end) {
3317 		struct extent_state *cached_state = NULL;
3318 		const u64 lockstart = alloc_start;
3319 		const u64 lockend = alloc_end - 1;
3320 
3321 		bytes_to_reserve = alloc_end - alloc_start;
3322 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3323 						      bytes_to_reserve);
3324 		if (ret < 0)
3325 			goto out;
3326 		space_reserved = true;
3327 		ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3328 						  &cached_state);
3329 		if (ret)
3330 			goto out;
3331 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3332 						alloc_start, bytes_to_reserve);
3333 		if (ret) {
3334 			unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3335 					     lockend, &cached_state);
3336 			goto out;
3337 		}
3338 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3339 						alloc_end - alloc_start,
3340 						i_blocksize(inode),
3341 						offset + len, &alloc_hint);
3342 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3343 				     lockend, &cached_state);
3344 		/* btrfs_prealloc_file_range releases reserved space on error */
3345 		if (ret) {
3346 			space_reserved = false;
3347 			goto out;
3348 		}
3349 	}
3350 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3351  out:
3352 	if (ret && space_reserved)
3353 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3354 					       alloc_start, bytes_to_reserve);
3355 	extent_changeset_free(data_reserved);
3356 
3357 	return ret;
3358 }
3359 
3360 static long btrfs_fallocate(struct file *file, int mode,
3361 			    loff_t offset, loff_t len)
3362 {
3363 	struct inode *inode = file_inode(file);
3364 	struct extent_state *cached_state = NULL;
3365 	struct extent_changeset *data_reserved = NULL;
3366 	struct falloc_range *range;
3367 	struct falloc_range *tmp;
3368 	struct list_head reserve_list;
3369 	u64 cur_offset;
3370 	u64 last_byte;
3371 	u64 alloc_start;
3372 	u64 alloc_end;
3373 	u64 alloc_hint = 0;
3374 	u64 locked_end;
3375 	u64 actual_end = 0;
3376 	struct extent_map *em;
3377 	int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3378 	int ret;
3379 
3380 	/* Do not allow fallocate in ZONED mode */
3381 	if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3382 		return -EOPNOTSUPP;
3383 
3384 	alloc_start = round_down(offset, blocksize);
3385 	alloc_end = round_up(offset + len, blocksize);
3386 	cur_offset = alloc_start;
3387 
3388 	/* Make sure we aren't being give some crap mode */
3389 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3390 		     FALLOC_FL_ZERO_RANGE))
3391 		return -EOPNOTSUPP;
3392 
3393 	if (mode & FALLOC_FL_PUNCH_HOLE)
3394 		return btrfs_punch_hole(inode, offset, len);
3395 
3396 	/*
3397 	 * Only trigger disk allocation, don't trigger qgroup reserve
3398 	 *
3399 	 * For qgroup space, it will be checked later.
3400 	 */
3401 	if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3402 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3403 						      alloc_end - alloc_start);
3404 		if (ret < 0)
3405 			return ret;
3406 	}
3407 
3408 	btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
3409 
3410 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3411 		ret = inode_newsize_ok(inode, offset + len);
3412 		if (ret)
3413 			goto out;
3414 	}
3415 
3416 	/*
3417 	 * TODO: Move these two operations after we have checked
3418 	 * accurate reserved space, or fallocate can still fail but
3419 	 * with page truncated or size expanded.
3420 	 *
3421 	 * But that's a minor problem and won't do much harm BTW.
3422 	 */
3423 	if (alloc_start > inode->i_size) {
3424 		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3425 					alloc_start);
3426 		if (ret)
3427 			goto out;
3428 	} else if (offset + len > inode->i_size) {
3429 		/*
3430 		 * If we are fallocating from the end of the file onward we
3431 		 * need to zero out the end of the block if i_size lands in the
3432 		 * middle of a block.
3433 		 */
3434 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3435 		if (ret)
3436 			goto out;
3437 	}
3438 
3439 	/*
3440 	 * wait for ordered IO before we have any locks.  We'll loop again
3441 	 * below with the locks held.
3442 	 */
3443 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3444 				       alloc_end - alloc_start);
3445 	if (ret)
3446 		goto out;
3447 
3448 	if (mode & FALLOC_FL_ZERO_RANGE) {
3449 		ret = btrfs_zero_range(inode, offset, len, mode);
3450 		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3451 		return ret;
3452 	}
3453 
3454 	locked_end = alloc_end - 1;
3455 	while (1) {
3456 		struct btrfs_ordered_extent *ordered;
3457 
3458 		/* the extent lock is ordered inside the running
3459 		 * transaction
3460 		 */
3461 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3462 				 locked_end, &cached_state);
3463 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3464 							    locked_end);
3465 
3466 		if (ordered &&
3467 		    ordered->file_offset + ordered->num_bytes > alloc_start &&
3468 		    ordered->file_offset < alloc_end) {
3469 			btrfs_put_ordered_extent(ordered);
3470 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3471 					     alloc_start, locked_end,
3472 					     &cached_state);
3473 			/*
3474 			 * we can't wait on the range with the transaction
3475 			 * running or with the extent lock held
3476 			 */
3477 			ret = btrfs_wait_ordered_range(inode, alloc_start,
3478 						       alloc_end - alloc_start);
3479 			if (ret)
3480 				goto out;
3481 		} else {
3482 			if (ordered)
3483 				btrfs_put_ordered_extent(ordered);
3484 			break;
3485 		}
3486 	}
3487 
3488 	/* First, check if we exceed the qgroup limit */
3489 	INIT_LIST_HEAD(&reserve_list);
3490 	while (cur_offset < alloc_end) {
3491 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3492 				      alloc_end - cur_offset);
3493 		if (IS_ERR(em)) {
3494 			ret = PTR_ERR(em);
3495 			break;
3496 		}
3497 		last_byte = min(extent_map_end(em), alloc_end);
3498 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3499 		last_byte = ALIGN(last_byte, blocksize);
3500 		if (em->block_start == EXTENT_MAP_HOLE ||
3501 		    (cur_offset >= inode->i_size &&
3502 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3503 			ret = add_falloc_range(&reserve_list, cur_offset,
3504 					       last_byte - cur_offset);
3505 			if (ret < 0) {
3506 				free_extent_map(em);
3507 				break;
3508 			}
3509 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3510 					&data_reserved, cur_offset,
3511 					last_byte - cur_offset);
3512 			if (ret < 0) {
3513 				cur_offset = last_byte;
3514 				free_extent_map(em);
3515 				break;
3516 			}
3517 		} else {
3518 			/*
3519 			 * Do not need to reserve unwritten extent for this
3520 			 * range, free reserved data space first, otherwise
3521 			 * it'll result in false ENOSPC error.
3522 			 */
3523 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3524 				data_reserved, cur_offset,
3525 				last_byte - cur_offset);
3526 		}
3527 		free_extent_map(em);
3528 		cur_offset = last_byte;
3529 	}
3530 
3531 	/*
3532 	 * If ret is still 0, means we're OK to fallocate.
3533 	 * Or just cleanup the list and exit.
3534 	 */
3535 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3536 		if (!ret)
3537 			ret = btrfs_prealloc_file_range(inode, mode,
3538 					range->start,
3539 					range->len, i_blocksize(inode),
3540 					offset + len, &alloc_hint);
3541 		else
3542 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3543 					data_reserved, range->start,
3544 					range->len);
3545 		list_del(&range->list);
3546 		kfree(range);
3547 	}
3548 	if (ret < 0)
3549 		goto out_unlock;
3550 
3551 	/*
3552 	 * We didn't need to allocate any more space, but we still extended the
3553 	 * size of the file so we need to update i_size and the inode item.
3554 	 */
3555 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3556 out_unlock:
3557 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3558 			     &cached_state);
3559 out:
3560 	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3561 	/* Let go of our reservation. */
3562 	if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3563 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3564 				cur_offset, alloc_end - cur_offset);
3565 	extent_changeset_free(data_reserved);
3566 	return ret;
3567 }
3568 
3569 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
3570 				  int whence)
3571 {
3572 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3573 	struct extent_map *em = NULL;
3574 	struct extent_state *cached_state = NULL;
3575 	loff_t i_size = inode->vfs_inode.i_size;
3576 	u64 lockstart;
3577 	u64 lockend;
3578 	u64 start;
3579 	u64 len;
3580 	int ret = 0;
3581 
3582 	if (i_size == 0 || offset >= i_size)
3583 		return -ENXIO;
3584 
3585 	/*
3586 	 * offset can be negative, in this case we start finding DATA/HOLE from
3587 	 * the very start of the file.
3588 	 */
3589 	start = max_t(loff_t, 0, offset);
3590 
3591 	lockstart = round_down(start, fs_info->sectorsize);
3592 	lockend = round_up(i_size, fs_info->sectorsize);
3593 	if (lockend <= lockstart)
3594 		lockend = lockstart + fs_info->sectorsize;
3595 	lockend--;
3596 	len = lockend - lockstart + 1;
3597 
3598 	lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
3599 
3600 	while (start < i_size) {
3601 		em = btrfs_get_extent_fiemap(inode, start, len);
3602 		if (IS_ERR(em)) {
3603 			ret = PTR_ERR(em);
3604 			em = NULL;
3605 			break;
3606 		}
3607 
3608 		if (whence == SEEK_HOLE &&
3609 		    (em->block_start == EXTENT_MAP_HOLE ||
3610 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3611 			break;
3612 		else if (whence == SEEK_DATA &&
3613 			   (em->block_start != EXTENT_MAP_HOLE &&
3614 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3615 			break;
3616 
3617 		start = em->start + em->len;
3618 		free_extent_map(em);
3619 		em = NULL;
3620 		cond_resched();
3621 	}
3622 	free_extent_map(em);
3623 	unlock_extent_cached(&inode->io_tree, lockstart, lockend,
3624 			     &cached_state);
3625 	if (ret) {
3626 		offset = ret;
3627 	} else {
3628 		if (whence == SEEK_DATA && start >= i_size)
3629 			offset = -ENXIO;
3630 		else
3631 			offset = min_t(loff_t, start, i_size);
3632 	}
3633 
3634 	return offset;
3635 }
3636 
3637 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3638 {
3639 	struct inode *inode = file->f_mapping->host;
3640 
3641 	switch (whence) {
3642 	default:
3643 		return generic_file_llseek(file, offset, whence);
3644 	case SEEK_DATA:
3645 	case SEEK_HOLE:
3646 		btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3647 		offset = find_desired_extent(BTRFS_I(inode), offset, whence);
3648 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3649 		break;
3650 	}
3651 
3652 	if (offset < 0)
3653 		return offset;
3654 
3655 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3656 }
3657 
3658 static int btrfs_file_open(struct inode *inode, struct file *filp)
3659 {
3660 	int ret;
3661 
3662 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3663 
3664 	ret = fsverity_file_open(inode, filp);
3665 	if (ret)
3666 		return ret;
3667 	return generic_file_open(inode, filp);
3668 }
3669 
3670 static int check_direct_read(struct btrfs_fs_info *fs_info,
3671 			     const struct iov_iter *iter, loff_t offset)
3672 {
3673 	int ret;
3674 	int i, seg;
3675 
3676 	ret = check_direct_IO(fs_info, iter, offset);
3677 	if (ret < 0)
3678 		return ret;
3679 
3680 	if (!iter_is_iovec(iter))
3681 		return 0;
3682 
3683 	for (seg = 0; seg < iter->nr_segs; seg++)
3684 		for (i = seg + 1; i < iter->nr_segs; i++)
3685 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3686 				return -EINVAL;
3687 	return 0;
3688 }
3689 
3690 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3691 {
3692 	struct inode *inode = file_inode(iocb->ki_filp);
3693 	size_t prev_left = 0;
3694 	ssize_t read = 0;
3695 	ssize_t ret;
3696 
3697 	if (fsverity_active(inode))
3698 		return 0;
3699 
3700 	if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3701 		return 0;
3702 
3703 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3704 again:
3705 	/*
3706 	 * This is similar to what we do for direct IO writes, see the comment
3707 	 * at btrfs_direct_write(), but we also disable page faults in addition
3708 	 * to disabling them only at the iov_iter level. This is because when
3709 	 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3710 	 * which can still trigger page fault ins despite having set ->nofault
3711 	 * to true of our 'to' iov_iter.
3712 	 *
3713 	 * The difference to direct IO writes is that we deadlock when trying
3714 	 * to lock the extent range in the inode's tree during he page reads
3715 	 * triggered by the fault in (while for writes it is due to waiting for
3716 	 * our own ordered extent). This is because for direct IO reads,
3717 	 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3718 	 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3719 	 */
3720 	pagefault_disable();
3721 	to->nofault = true;
3722 	ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
3723 			   IOMAP_DIO_PARTIAL, read);
3724 	to->nofault = false;
3725 	pagefault_enable();
3726 
3727 	/* No increment (+=) because iomap returns a cumulative value. */
3728 	if (ret > 0)
3729 		read = ret;
3730 
3731 	if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3732 		const size_t left = iov_iter_count(to);
3733 
3734 		if (left == prev_left) {
3735 			/*
3736 			 * We didn't make any progress since the last attempt,
3737 			 * fallback to a buffered read for the remainder of the
3738 			 * range. This is just to avoid any possibility of looping
3739 			 * for too long.
3740 			 */
3741 			ret = read;
3742 		} else {
3743 			/*
3744 			 * We made some progress since the last retry or this is
3745 			 * the first time we are retrying. Fault in as many pages
3746 			 * as possible and retry.
3747 			 */
3748 			fault_in_iov_iter_writeable(to, left);
3749 			prev_left = left;
3750 			goto again;
3751 		}
3752 	}
3753 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3754 	return ret < 0 ? ret : read;
3755 }
3756 
3757 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3758 {
3759 	ssize_t ret = 0;
3760 
3761 	if (iocb->ki_flags & IOCB_DIRECT) {
3762 		ret = btrfs_direct_read(iocb, to);
3763 		if (ret < 0 || !iov_iter_count(to) ||
3764 		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3765 			return ret;
3766 	}
3767 
3768 	return filemap_read(iocb, to, ret);
3769 }
3770 
3771 const struct file_operations btrfs_file_operations = {
3772 	.llseek		= btrfs_file_llseek,
3773 	.read_iter      = btrfs_file_read_iter,
3774 	.splice_read	= generic_file_splice_read,
3775 	.write_iter	= btrfs_file_write_iter,
3776 	.splice_write	= iter_file_splice_write,
3777 	.mmap		= btrfs_file_mmap,
3778 	.open		= btrfs_file_open,
3779 	.release	= btrfs_release_file,
3780 	.fsync		= btrfs_sync_file,
3781 	.fallocate	= btrfs_fallocate,
3782 	.unlocked_ioctl	= btrfs_ioctl,
3783 #ifdef CONFIG_COMPAT
3784 	.compat_ioctl	= btrfs_compat_ioctl,
3785 #endif
3786 	.remap_file_range = btrfs_remap_file_range,
3787 };
3788 
3789 void __cold btrfs_auto_defrag_exit(void)
3790 {
3791 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3792 }
3793 
3794 int __init btrfs_auto_defrag_init(void)
3795 {
3796 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3797 					sizeof(struct inode_defrag), 0,
3798 					SLAB_MEM_SPREAD,
3799 					NULL);
3800 	if (!btrfs_inode_defrag_cachep)
3801 		return -ENOMEM;
3802 
3803 	return 0;
3804 }
3805 
3806 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3807 {
3808 	int ret;
3809 
3810 	/*
3811 	 * So with compression we will find and lock a dirty page and clear the
3812 	 * first one as dirty, setup an async extent, and immediately return
3813 	 * with the entire range locked but with nobody actually marked with
3814 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3815 	 * expect it to work since it will just kick off a thread to do the
3816 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3817 	 * since it will wait on the page lock, which won't be unlocked until
3818 	 * after the pages have been marked as writeback and so we're good to go
3819 	 * from there.  We have to do this otherwise we'll miss the ordered
3820 	 * extents and that results in badness.  Please Josef, do not think you
3821 	 * know better and pull this out at some point in the future, it is
3822 	 * right and you are wrong.
3823 	 */
3824 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3825 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3826 			     &BTRFS_I(inode)->runtime_flags))
3827 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3828 
3829 	return ret;
3830 }
3831