xref: /openbmc/linux/fs/btrfs/file.c (revision b34e08d5)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 
44 static struct kmem_cache *btrfs_inode_defrag_cachep;
45 /*
46  * when auto defrag is enabled we
47  * queue up these defrag structs to remember which
48  * inodes need defragging passes
49  */
50 struct inode_defrag {
51 	struct rb_node rb_node;
52 	/* objectid */
53 	u64 ino;
54 	/*
55 	 * transid where the defrag was added, we search for
56 	 * extents newer than this
57 	 */
58 	u64 transid;
59 
60 	/* root objectid */
61 	u64 root;
62 
63 	/* last offset we were able to defrag */
64 	u64 last_offset;
65 
66 	/* if we've wrapped around back to zero once already */
67 	int cycled;
68 };
69 
70 static int __compare_inode_defrag(struct inode_defrag *defrag1,
71 				  struct inode_defrag *defrag2)
72 {
73 	if (defrag1->root > defrag2->root)
74 		return 1;
75 	else if (defrag1->root < defrag2->root)
76 		return -1;
77 	else if (defrag1->ino > defrag2->ino)
78 		return 1;
79 	else if (defrag1->ino < defrag2->ino)
80 		return -1;
81 	else
82 		return 0;
83 }
84 
85 /* pop a record for an inode into the defrag tree.  The lock
86  * must be held already
87  *
88  * If you're inserting a record for an older transid than an
89  * existing record, the transid already in the tree is lowered
90  *
91  * If an existing record is found the defrag item you
92  * pass in is freed
93  */
94 static int __btrfs_add_inode_defrag(struct inode *inode,
95 				    struct inode_defrag *defrag)
96 {
97 	struct btrfs_root *root = BTRFS_I(inode)->root;
98 	struct inode_defrag *entry;
99 	struct rb_node **p;
100 	struct rb_node *parent = NULL;
101 	int ret;
102 
103 	p = &root->fs_info->defrag_inodes.rb_node;
104 	while (*p) {
105 		parent = *p;
106 		entry = rb_entry(parent, struct inode_defrag, rb_node);
107 
108 		ret = __compare_inode_defrag(defrag, entry);
109 		if (ret < 0)
110 			p = &parent->rb_left;
111 		else if (ret > 0)
112 			p = &parent->rb_right;
113 		else {
114 			/* if we're reinserting an entry for
115 			 * an old defrag run, make sure to
116 			 * lower the transid of our existing record
117 			 */
118 			if (defrag->transid < entry->transid)
119 				entry->transid = defrag->transid;
120 			if (defrag->last_offset > entry->last_offset)
121 				entry->last_offset = defrag->last_offset;
122 			return -EEXIST;
123 		}
124 	}
125 	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126 	rb_link_node(&defrag->rb_node, parent, p);
127 	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
128 	return 0;
129 }
130 
131 static inline int __need_auto_defrag(struct btrfs_root *root)
132 {
133 	if (!btrfs_test_opt(root, AUTO_DEFRAG))
134 		return 0;
135 
136 	if (btrfs_fs_closing(root->fs_info))
137 		return 0;
138 
139 	return 1;
140 }
141 
142 /*
143  * insert a defrag record for this inode if auto defrag is
144  * enabled
145  */
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147 			   struct inode *inode)
148 {
149 	struct btrfs_root *root = BTRFS_I(inode)->root;
150 	struct inode_defrag *defrag;
151 	u64 transid;
152 	int ret;
153 
154 	if (!__need_auto_defrag(root))
155 		return 0;
156 
157 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
158 		return 0;
159 
160 	if (trans)
161 		transid = trans->transid;
162 	else
163 		transid = BTRFS_I(inode)->root->last_trans;
164 
165 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
166 	if (!defrag)
167 		return -ENOMEM;
168 
169 	defrag->ino = btrfs_ino(inode);
170 	defrag->transid = transid;
171 	defrag->root = root->root_key.objectid;
172 
173 	spin_lock(&root->fs_info->defrag_inodes_lock);
174 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175 		/*
176 		 * If we set IN_DEFRAG flag and evict the inode from memory,
177 		 * and then re-read this inode, this new inode doesn't have
178 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
179 		 */
180 		ret = __btrfs_add_inode_defrag(inode, defrag);
181 		if (ret)
182 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183 	} else {
184 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 	}
186 	spin_unlock(&root->fs_info->defrag_inodes_lock);
187 	return 0;
188 }
189 
190 /*
191  * Requeue the defrag object. If there is a defrag object that points to
192  * the same inode in the tree, we will merge them together (by
193  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
194  */
195 static void btrfs_requeue_inode_defrag(struct inode *inode,
196 				       struct inode_defrag *defrag)
197 {
198 	struct btrfs_root *root = BTRFS_I(inode)->root;
199 	int ret;
200 
201 	if (!__need_auto_defrag(root))
202 		goto out;
203 
204 	/*
205 	 * Here we don't check the IN_DEFRAG flag, because we need merge
206 	 * them together.
207 	 */
208 	spin_lock(&root->fs_info->defrag_inodes_lock);
209 	ret = __btrfs_add_inode_defrag(inode, defrag);
210 	spin_unlock(&root->fs_info->defrag_inodes_lock);
211 	if (ret)
212 		goto out;
213 	return;
214 out:
215 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216 }
217 
218 /*
219  * pick the defragable inode that we want, if it doesn't exist, we will get
220  * the next one.
221  */
222 static struct inode_defrag *
223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
224 {
225 	struct inode_defrag *entry = NULL;
226 	struct inode_defrag tmp;
227 	struct rb_node *p;
228 	struct rb_node *parent = NULL;
229 	int ret;
230 
231 	tmp.ino = ino;
232 	tmp.root = root;
233 
234 	spin_lock(&fs_info->defrag_inodes_lock);
235 	p = fs_info->defrag_inodes.rb_node;
236 	while (p) {
237 		parent = p;
238 		entry = rb_entry(parent, struct inode_defrag, rb_node);
239 
240 		ret = __compare_inode_defrag(&tmp, entry);
241 		if (ret < 0)
242 			p = parent->rb_left;
243 		else if (ret > 0)
244 			p = parent->rb_right;
245 		else
246 			goto out;
247 	}
248 
249 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250 		parent = rb_next(parent);
251 		if (parent)
252 			entry = rb_entry(parent, struct inode_defrag, rb_node);
253 		else
254 			entry = NULL;
255 	}
256 out:
257 	if (entry)
258 		rb_erase(parent, &fs_info->defrag_inodes);
259 	spin_unlock(&fs_info->defrag_inodes_lock);
260 	return entry;
261 }
262 
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
264 {
265 	struct inode_defrag *defrag;
266 	struct rb_node *node;
267 
268 	spin_lock(&fs_info->defrag_inodes_lock);
269 	node = rb_first(&fs_info->defrag_inodes);
270 	while (node) {
271 		rb_erase(node, &fs_info->defrag_inodes);
272 		defrag = rb_entry(node, struct inode_defrag, rb_node);
273 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274 
275 		if (need_resched()) {
276 			spin_unlock(&fs_info->defrag_inodes_lock);
277 			cond_resched();
278 			spin_lock(&fs_info->defrag_inodes_lock);
279 		}
280 
281 		node = rb_first(&fs_info->defrag_inodes);
282 	}
283 	spin_unlock(&fs_info->defrag_inodes_lock);
284 }
285 
286 #define BTRFS_DEFRAG_BATCH	1024
287 
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289 				    struct inode_defrag *defrag)
290 {
291 	struct btrfs_root *inode_root;
292 	struct inode *inode;
293 	struct btrfs_key key;
294 	struct btrfs_ioctl_defrag_range_args range;
295 	int num_defrag;
296 	int index;
297 	int ret;
298 
299 	/* get the inode */
300 	key.objectid = defrag->root;
301 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302 	key.offset = (u64)-1;
303 
304 	index = srcu_read_lock(&fs_info->subvol_srcu);
305 
306 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307 	if (IS_ERR(inode_root)) {
308 		ret = PTR_ERR(inode_root);
309 		goto cleanup;
310 	}
311 
312 	key.objectid = defrag->ino;
313 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
314 	key.offset = 0;
315 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
316 	if (IS_ERR(inode)) {
317 		ret = PTR_ERR(inode);
318 		goto cleanup;
319 	}
320 	srcu_read_unlock(&fs_info->subvol_srcu, index);
321 
322 	/* do a chunk of defrag */
323 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
324 	memset(&range, 0, sizeof(range));
325 	range.len = (u64)-1;
326 	range.start = defrag->last_offset;
327 
328 	sb_start_write(fs_info->sb);
329 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
330 				       BTRFS_DEFRAG_BATCH);
331 	sb_end_write(fs_info->sb);
332 	/*
333 	 * if we filled the whole defrag batch, there
334 	 * must be more work to do.  Queue this defrag
335 	 * again
336 	 */
337 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
338 		defrag->last_offset = range.start;
339 		btrfs_requeue_inode_defrag(inode, defrag);
340 	} else if (defrag->last_offset && !defrag->cycled) {
341 		/*
342 		 * we didn't fill our defrag batch, but
343 		 * we didn't start at zero.  Make sure we loop
344 		 * around to the start of the file.
345 		 */
346 		defrag->last_offset = 0;
347 		defrag->cycled = 1;
348 		btrfs_requeue_inode_defrag(inode, defrag);
349 	} else {
350 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
351 	}
352 
353 	iput(inode);
354 	return 0;
355 cleanup:
356 	srcu_read_unlock(&fs_info->subvol_srcu, index);
357 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
358 	return ret;
359 }
360 
361 /*
362  * run through the list of inodes in the FS that need
363  * defragging
364  */
365 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
366 {
367 	struct inode_defrag *defrag;
368 	u64 first_ino = 0;
369 	u64 root_objectid = 0;
370 
371 	atomic_inc(&fs_info->defrag_running);
372 	while (1) {
373 		/* Pause the auto defragger. */
374 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
375 			     &fs_info->fs_state))
376 			break;
377 
378 		if (!__need_auto_defrag(fs_info->tree_root))
379 			break;
380 
381 		/* find an inode to defrag */
382 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
383 						 first_ino);
384 		if (!defrag) {
385 			if (root_objectid || first_ino) {
386 				root_objectid = 0;
387 				first_ino = 0;
388 				continue;
389 			} else {
390 				break;
391 			}
392 		}
393 
394 		first_ino = defrag->ino + 1;
395 		root_objectid = defrag->root;
396 
397 		__btrfs_run_defrag_inode(fs_info, defrag);
398 	}
399 	atomic_dec(&fs_info->defrag_running);
400 
401 	/*
402 	 * during unmount, we use the transaction_wait queue to
403 	 * wait for the defragger to stop
404 	 */
405 	wake_up(&fs_info->transaction_wait);
406 	return 0;
407 }
408 
409 /* simple helper to fault in pages and copy.  This should go away
410  * and be replaced with calls into generic code.
411  */
412 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
413 					 size_t write_bytes,
414 					 struct page **prepared_pages,
415 					 struct iov_iter *i)
416 {
417 	size_t copied = 0;
418 	size_t total_copied = 0;
419 	int pg = 0;
420 	int offset = pos & (PAGE_CACHE_SIZE - 1);
421 
422 	while (write_bytes > 0) {
423 		size_t count = min_t(size_t,
424 				     PAGE_CACHE_SIZE - offset, write_bytes);
425 		struct page *page = prepared_pages[pg];
426 		/*
427 		 * Copy data from userspace to the current page
428 		 */
429 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
430 
431 		/* Flush processor's dcache for this page */
432 		flush_dcache_page(page);
433 
434 		/*
435 		 * if we get a partial write, we can end up with
436 		 * partially up to date pages.  These add
437 		 * a lot of complexity, so make sure they don't
438 		 * happen by forcing this copy to be retried.
439 		 *
440 		 * The rest of the btrfs_file_write code will fall
441 		 * back to page at a time copies after we return 0.
442 		 */
443 		if (!PageUptodate(page) && copied < count)
444 			copied = 0;
445 
446 		iov_iter_advance(i, copied);
447 		write_bytes -= copied;
448 		total_copied += copied;
449 
450 		/* Return to btrfs_file_aio_write to fault page */
451 		if (unlikely(copied == 0))
452 			break;
453 
454 		if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
455 			offset += copied;
456 		} else {
457 			pg++;
458 			offset = 0;
459 		}
460 	}
461 	return total_copied;
462 }
463 
464 /*
465  * unlocks pages after btrfs_file_write is done with them
466  */
467 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
468 {
469 	size_t i;
470 	for (i = 0; i < num_pages; i++) {
471 		/* page checked is some magic around finding pages that
472 		 * have been modified without going through btrfs_set_page_dirty
473 		 * clear it here
474 		 */
475 		ClearPageChecked(pages[i]);
476 		unlock_page(pages[i]);
477 		mark_page_accessed(pages[i]);
478 		page_cache_release(pages[i]);
479 	}
480 }
481 
482 /*
483  * after copy_from_user, pages need to be dirtied and we need to make
484  * sure holes are created between the current EOF and the start of
485  * any next extents (if required).
486  *
487  * this also makes the decision about creating an inline extent vs
488  * doing real data extents, marking pages dirty and delalloc as required.
489  */
490 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
491 			     struct page **pages, size_t num_pages,
492 			     loff_t pos, size_t write_bytes,
493 			     struct extent_state **cached)
494 {
495 	int err = 0;
496 	int i;
497 	u64 num_bytes;
498 	u64 start_pos;
499 	u64 end_of_last_block;
500 	u64 end_pos = pos + write_bytes;
501 	loff_t isize = i_size_read(inode);
502 
503 	start_pos = pos & ~((u64)root->sectorsize - 1);
504 	num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
505 
506 	end_of_last_block = start_pos + num_bytes - 1;
507 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
508 					cached);
509 	if (err)
510 		return err;
511 
512 	for (i = 0; i < num_pages; i++) {
513 		struct page *p = pages[i];
514 		SetPageUptodate(p);
515 		ClearPageChecked(p);
516 		set_page_dirty(p);
517 	}
518 
519 	/*
520 	 * we've only changed i_size in ram, and we haven't updated
521 	 * the disk i_size.  There is no need to log the inode
522 	 * at this time.
523 	 */
524 	if (end_pos > isize)
525 		i_size_write(inode, end_pos);
526 	return 0;
527 }
528 
529 /*
530  * this drops all the extents in the cache that intersect the range
531  * [start, end].  Existing extents are split as required.
532  */
533 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
534 			     int skip_pinned)
535 {
536 	struct extent_map *em;
537 	struct extent_map *split = NULL;
538 	struct extent_map *split2 = NULL;
539 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
540 	u64 len = end - start + 1;
541 	u64 gen;
542 	int ret;
543 	int testend = 1;
544 	unsigned long flags;
545 	int compressed = 0;
546 	bool modified;
547 
548 	WARN_ON(end < start);
549 	if (end == (u64)-1) {
550 		len = (u64)-1;
551 		testend = 0;
552 	}
553 	while (1) {
554 		int no_splits = 0;
555 
556 		modified = false;
557 		if (!split)
558 			split = alloc_extent_map();
559 		if (!split2)
560 			split2 = alloc_extent_map();
561 		if (!split || !split2)
562 			no_splits = 1;
563 
564 		write_lock(&em_tree->lock);
565 		em = lookup_extent_mapping(em_tree, start, len);
566 		if (!em) {
567 			write_unlock(&em_tree->lock);
568 			break;
569 		}
570 		flags = em->flags;
571 		gen = em->generation;
572 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
573 			if (testend && em->start + em->len >= start + len) {
574 				free_extent_map(em);
575 				write_unlock(&em_tree->lock);
576 				break;
577 			}
578 			start = em->start + em->len;
579 			if (testend)
580 				len = start + len - (em->start + em->len);
581 			free_extent_map(em);
582 			write_unlock(&em_tree->lock);
583 			continue;
584 		}
585 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
586 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
587 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
588 		modified = !list_empty(&em->list);
589 		if (no_splits)
590 			goto next;
591 
592 		if (em->start < start) {
593 			split->start = em->start;
594 			split->len = start - em->start;
595 
596 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
597 				split->orig_start = em->orig_start;
598 				split->block_start = em->block_start;
599 
600 				if (compressed)
601 					split->block_len = em->block_len;
602 				else
603 					split->block_len = split->len;
604 				split->orig_block_len = max(split->block_len,
605 						em->orig_block_len);
606 				split->ram_bytes = em->ram_bytes;
607 			} else {
608 				split->orig_start = split->start;
609 				split->block_len = 0;
610 				split->block_start = em->block_start;
611 				split->orig_block_len = 0;
612 				split->ram_bytes = split->len;
613 			}
614 
615 			split->generation = gen;
616 			split->bdev = em->bdev;
617 			split->flags = flags;
618 			split->compress_type = em->compress_type;
619 			replace_extent_mapping(em_tree, em, split, modified);
620 			free_extent_map(split);
621 			split = split2;
622 			split2 = NULL;
623 		}
624 		if (testend && em->start + em->len > start + len) {
625 			u64 diff = start + len - em->start;
626 
627 			split->start = start + len;
628 			split->len = em->start + em->len - (start + len);
629 			split->bdev = em->bdev;
630 			split->flags = flags;
631 			split->compress_type = em->compress_type;
632 			split->generation = gen;
633 
634 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
635 				split->orig_block_len = max(em->block_len,
636 						    em->orig_block_len);
637 
638 				split->ram_bytes = em->ram_bytes;
639 				if (compressed) {
640 					split->block_len = em->block_len;
641 					split->block_start = em->block_start;
642 					split->orig_start = em->orig_start;
643 				} else {
644 					split->block_len = split->len;
645 					split->block_start = em->block_start
646 						+ diff;
647 					split->orig_start = em->orig_start;
648 				}
649 			} else {
650 				split->ram_bytes = split->len;
651 				split->orig_start = split->start;
652 				split->block_len = 0;
653 				split->block_start = em->block_start;
654 				split->orig_block_len = 0;
655 			}
656 
657 			if (extent_map_in_tree(em)) {
658 				replace_extent_mapping(em_tree, em, split,
659 						       modified);
660 			} else {
661 				ret = add_extent_mapping(em_tree, split,
662 							 modified);
663 				ASSERT(ret == 0); /* Logic error */
664 			}
665 			free_extent_map(split);
666 			split = NULL;
667 		}
668 next:
669 		if (extent_map_in_tree(em))
670 			remove_extent_mapping(em_tree, em);
671 		write_unlock(&em_tree->lock);
672 
673 		/* once for us */
674 		free_extent_map(em);
675 		/* once for the tree*/
676 		free_extent_map(em);
677 	}
678 	if (split)
679 		free_extent_map(split);
680 	if (split2)
681 		free_extent_map(split2);
682 }
683 
684 /*
685  * this is very complex, but the basic idea is to drop all extents
686  * in the range start - end.  hint_block is filled in with a block number
687  * that would be a good hint to the block allocator for this file.
688  *
689  * If an extent intersects the range but is not entirely inside the range
690  * it is either truncated or split.  Anything entirely inside the range
691  * is deleted from the tree.
692  */
693 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
694 			 struct btrfs_root *root, struct inode *inode,
695 			 struct btrfs_path *path, u64 start, u64 end,
696 			 u64 *drop_end, int drop_cache,
697 			 int replace_extent,
698 			 u32 extent_item_size,
699 			 int *key_inserted)
700 {
701 	struct extent_buffer *leaf;
702 	struct btrfs_file_extent_item *fi;
703 	struct btrfs_key key;
704 	struct btrfs_key new_key;
705 	u64 ino = btrfs_ino(inode);
706 	u64 search_start = start;
707 	u64 disk_bytenr = 0;
708 	u64 num_bytes = 0;
709 	u64 extent_offset = 0;
710 	u64 extent_end = 0;
711 	int del_nr = 0;
712 	int del_slot = 0;
713 	int extent_type;
714 	int recow;
715 	int ret;
716 	int modify_tree = -1;
717 	int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
718 	int found = 0;
719 	int leafs_visited = 0;
720 
721 	if (drop_cache)
722 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
723 
724 	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
725 		modify_tree = 0;
726 
727 	while (1) {
728 		recow = 0;
729 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
730 					       search_start, modify_tree);
731 		if (ret < 0)
732 			break;
733 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
734 			leaf = path->nodes[0];
735 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
736 			if (key.objectid == ino &&
737 			    key.type == BTRFS_EXTENT_DATA_KEY)
738 				path->slots[0]--;
739 		}
740 		ret = 0;
741 		leafs_visited++;
742 next_slot:
743 		leaf = path->nodes[0];
744 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745 			BUG_ON(del_nr > 0);
746 			ret = btrfs_next_leaf(root, path);
747 			if (ret < 0)
748 				break;
749 			if (ret > 0) {
750 				ret = 0;
751 				break;
752 			}
753 			leafs_visited++;
754 			leaf = path->nodes[0];
755 			recow = 1;
756 		}
757 
758 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
759 		if (key.objectid > ino ||
760 		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
761 			break;
762 
763 		fi = btrfs_item_ptr(leaf, path->slots[0],
764 				    struct btrfs_file_extent_item);
765 		extent_type = btrfs_file_extent_type(leaf, fi);
766 
767 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
768 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
769 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
770 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
771 			extent_offset = btrfs_file_extent_offset(leaf, fi);
772 			extent_end = key.offset +
773 				btrfs_file_extent_num_bytes(leaf, fi);
774 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
775 			extent_end = key.offset +
776 				btrfs_file_extent_inline_len(leaf,
777 						     path->slots[0], fi);
778 		} else {
779 			WARN_ON(1);
780 			extent_end = search_start;
781 		}
782 
783 		if (extent_end <= search_start) {
784 			path->slots[0]++;
785 			goto next_slot;
786 		}
787 
788 		found = 1;
789 		search_start = max(key.offset, start);
790 		if (recow || !modify_tree) {
791 			modify_tree = -1;
792 			btrfs_release_path(path);
793 			continue;
794 		}
795 
796 		/*
797 		 *     | - range to drop - |
798 		 *  | -------- extent -------- |
799 		 */
800 		if (start > key.offset && end < extent_end) {
801 			BUG_ON(del_nr > 0);
802 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
803 				ret = -EINVAL;
804 				break;
805 			}
806 
807 			memcpy(&new_key, &key, sizeof(new_key));
808 			new_key.offset = start;
809 			ret = btrfs_duplicate_item(trans, root, path,
810 						   &new_key);
811 			if (ret == -EAGAIN) {
812 				btrfs_release_path(path);
813 				continue;
814 			}
815 			if (ret < 0)
816 				break;
817 
818 			leaf = path->nodes[0];
819 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
820 					    struct btrfs_file_extent_item);
821 			btrfs_set_file_extent_num_bytes(leaf, fi,
822 							start - key.offset);
823 
824 			fi = btrfs_item_ptr(leaf, path->slots[0],
825 					    struct btrfs_file_extent_item);
826 
827 			extent_offset += start - key.offset;
828 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
829 			btrfs_set_file_extent_num_bytes(leaf, fi,
830 							extent_end - start);
831 			btrfs_mark_buffer_dirty(leaf);
832 
833 			if (update_refs && disk_bytenr > 0) {
834 				ret = btrfs_inc_extent_ref(trans, root,
835 						disk_bytenr, num_bytes, 0,
836 						root->root_key.objectid,
837 						new_key.objectid,
838 						start - extent_offset, 0);
839 				BUG_ON(ret); /* -ENOMEM */
840 			}
841 			key.offset = start;
842 		}
843 		/*
844 		 *  | ---- range to drop ----- |
845 		 *      | -------- extent -------- |
846 		 */
847 		if (start <= key.offset && end < extent_end) {
848 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
849 				ret = -EINVAL;
850 				break;
851 			}
852 
853 			memcpy(&new_key, &key, sizeof(new_key));
854 			new_key.offset = end;
855 			btrfs_set_item_key_safe(root, path, &new_key);
856 
857 			extent_offset += end - key.offset;
858 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
859 			btrfs_set_file_extent_num_bytes(leaf, fi,
860 							extent_end - end);
861 			btrfs_mark_buffer_dirty(leaf);
862 			if (update_refs && disk_bytenr > 0)
863 				inode_sub_bytes(inode, end - key.offset);
864 			break;
865 		}
866 
867 		search_start = extent_end;
868 		/*
869 		 *       | ---- range to drop ----- |
870 		 *  | -------- extent -------- |
871 		 */
872 		if (start > key.offset && end >= extent_end) {
873 			BUG_ON(del_nr > 0);
874 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
875 				ret = -EINVAL;
876 				break;
877 			}
878 
879 			btrfs_set_file_extent_num_bytes(leaf, fi,
880 							start - key.offset);
881 			btrfs_mark_buffer_dirty(leaf);
882 			if (update_refs && disk_bytenr > 0)
883 				inode_sub_bytes(inode, extent_end - start);
884 			if (end == extent_end)
885 				break;
886 
887 			path->slots[0]++;
888 			goto next_slot;
889 		}
890 
891 		/*
892 		 *  | ---- range to drop ----- |
893 		 *    | ------ extent ------ |
894 		 */
895 		if (start <= key.offset && end >= extent_end) {
896 			if (del_nr == 0) {
897 				del_slot = path->slots[0];
898 				del_nr = 1;
899 			} else {
900 				BUG_ON(del_slot + del_nr != path->slots[0]);
901 				del_nr++;
902 			}
903 
904 			if (update_refs &&
905 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
906 				inode_sub_bytes(inode,
907 						extent_end - key.offset);
908 				extent_end = ALIGN(extent_end,
909 						   root->sectorsize);
910 			} else if (update_refs && disk_bytenr > 0) {
911 				ret = btrfs_free_extent(trans, root,
912 						disk_bytenr, num_bytes, 0,
913 						root->root_key.objectid,
914 						key.objectid, key.offset -
915 						extent_offset, 0);
916 				BUG_ON(ret); /* -ENOMEM */
917 				inode_sub_bytes(inode,
918 						extent_end - key.offset);
919 			}
920 
921 			if (end == extent_end)
922 				break;
923 
924 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
925 				path->slots[0]++;
926 				goto next_slot;
927 			}
928 
929 			ret = btrfs_del_items(trans, root, path, del_slot,
930 					      del_nr);
931 			if (ret) {
932 				btrfs_abort_transaction(trans, root, ret);
933 				break;
934 			}
935 
936 			del_nr = 0;
937 			del_slot = 0;
938 
939 			btrfs_release_path(path);
940 			continue;
941 		}
942 
943 		BUG_ON(1);
944 	}
945 
946 	if (!ret && del_nr > 0) {
947 		/*
948 		 * Set path->slots[0] to first slot, so that after the delete
949 		 * if items are move off from our leaf to its immediate left or
950 		 * right neighbor leafs, we end up with a correct and adjusted
951 		 * path->slots[0] for our insertion (if replace_extent != 0).
952 		 */
953 		path->slots[0] = del_slot;
954 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
955 		if (ret)
956 			btrfs_abort_transaction(trans, root, ret);
957 	}
958 
959 	leaf = path->nodes[0];
960 	/*
961 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
962 	 * which case it unlocked our path, so check path->locks[0] matches a
963 	 * write lock.
964 	 */
965 	if (!ret && replace_extent && leafs_visited == 1 &&
966 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
967 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
968 	    btrfs_leaf_free_space(root, leaf) >=
969 	    sizeof(struct btrfs_item) + extent_item_size) {
970 
971 		key.objectid = ino;
972 		key.type = BTRFS_EXTENT_DATA_KEY;
973 		key.offset = start;
974 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
975 			struct btrfs_key slot_key;
976 
977 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
978 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
979 				path->slots[0]++;
980 		}
981 		setup_items_for_insert(root, path, &key,
982 				       &extent_item_size,
983 				       extent_item_size,
984 				       sizeof(struct btrfs_item) +
985 				       extent_item_size, 1);
986 		*key_inserted = 1;
987 	}
988 
989 	if (!replace_extent || !(*key_inserted))
990 		btrfs_release_path(path);
991 	if (drop_end)
992 		*drop_end = found ? min(end, extent_end) : end;
993 	return ret;
994 }
995 
996 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
997 		       struct btrfs_root *root, struct inode *inode, u64 start,
998 		       u64 end, int drop_cache)
999 {
1000 	struct btrfs_path *path;
1001 	int ret;
1002 
1003 	path = btrfs_alloc_path();
1004 	if (!path)
1005 		return -ENOMEM;
1006 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1007 				   drop_cache, 0, 0, NULL);
1008 	btrfs_free_path(path);
1009 	return ret;
1010 }
1011 
1012 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1013 			    u64 objectid, u64 bytenr, u64 orig_offset,
1014 			    u64 *start, u64 *end)
1015 {
1016 	struct btrfs_file_extent_item *fi;
1017 	struct btrfs_key key;
1018 	u64 extent_end;
1019 
1020 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1021 		return 0;
1022 
1023 	btrfs_item_key_to_cpu(leaf, &key, slot);
1024 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1025 		return 0;
1026 
1027 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1028 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1029 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1030 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1031 	    btrfs_file_extent_compression(leaf, fi) ||
1032 	    btrfs_file_extent_encryption(leaf, fi) ||
1033 	    btrfs_file_extent_other_encoding(leaf, fi))
1034 		return 0;
1035 
1036 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1037 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1038 		return 0;
1039 
1040 	*start = key.offset;
1041 	*end = extent_end;
1042 	return 1;
1043 }
1044 
1045 /*
1046  * Mark extent in the range start - end as written.
1047  *
1048  * This changes extent type from 'pre-allocated' to 'regular'. If only
1049  * part of extent is marked as written, the extent will be split into
1050  * two or three.
1051  */
1052 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1053 			      struct inode *inode, u64 start, u64 end)
1054 {
1055 	struct btrfs_root *root = BTRFS_I(inode)->root;
1056 	struct extent_buffer *leaf;
1057 	struct btrfs_path *path;
1058 	struct btrfs_file_extent_item *fi;
1059 	struct btrfs_key key;
1060 	struct btrfs_key new_key;
1061 	u64 bytenr;
1062 	u64 num_bytes;
1063 	u64 extent_end;
1064 	u64 orig_offset;
1065 	u64 other_start;
1066 	u64 other_end;
1067 	u64 split;
1068 	int del_nr = 0;
1069 	int del_slot = 0;
1070 	int recow;
1071 	int ret;
1072 	u64 ino = btrfs_ino(inode);
1073 
1074 	path = btrfs_alloc_path();
1075 	if (!path)
1076 		return -ENOMEM;
1077 again:
1078 	recow = 0;
1079 	split = start;
1080 	key.objectid = ino;
1081 	key.type = BTRFS_EXTENT_DATA_KEY;
1082 	key.offset = split;
1083 
1084 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1085 	if (ret < 0)
1086 		goto out;
1087 	if (ret > 0 && path->slots[0] > 0)
1088 		path->slots[0]--;
1089 
1090 	leaf = path->nodes[0];
1091 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1092 	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1093 	fi = btrfs_item_ptr(leaf, path->slots[0],
1094 			    struct btrfs_file_extent_item);
1095 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1096 	       BTRFS_FILE_EXTENT_PREALLOC);
1097 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1098 	BUG_ON(key.offset > start || extent_end < end);
1099 
1100 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1101 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1102 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1103 	memcpy(&new_key, &key, sizeof(new_key));
1104 
1105 	if (start == key.offset && end < extent_end) {
1106 		other_start = 0;
1107 		other_end = start;
1108 		if (extent_mergeable(leaf, path->slots[0] - 1,
1109 				     ino, bytenr, orig_offset,
1110 				     &other_start, &other_end)) {
1111 			new_key.offset = end;
1112 			btrfs_set_item_key_safe(root, path, &new_key);
1113 			fi = btrfs_item_ptr(leaf, path->slots[0],
1114 					    struct btrfs_file_extent_item);
1115 			btrfs_set_file_extent_generation(leaf, fi,
1116 							 trans->transid);
1117 			btrfs_set_file_extent_num_bytes(leaf, fi,
1118 							extent_end - end);
1119 			btrfs_set_file_extent_offset(leaf, fi,
1120 						     end - orig_offset);
1121 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1122 					    struct btrfs_file_extent_item);
1123 			btrfs_set_file_extent_generation(leaf, fi,
1124 							 trans->transid);
1125 			btrfs_set_file_extent_num_bytes(leaf, fi,
1126 							end - other_start);
1127 			btrfs_mark_buffer_dirty(leaf);
1128 			goto out;
1129 		}
1130 	}
1131 
1132 	if (start > key.offset && end == extent_end) {
1133 		other_start = end;
1134 		other_end = 0;
1135 		if (extent_mergeable(leaf, path->slots[0] + 1,
1136 				     ino, bytenr, orig_offset,
1137 				     &other_start, &other_end)) {
1138 			fi = btrfs_item_ptr(leaf, path->slots[0],
1139 					    struct btrfs_file_extent_item);
1140 			btrfs_set_file_extent_num_bytes(leaf, fi,
1141 							start - key.offset);
1142 			btrfs_set_file_extent_generation(leaf, fi,
1143 							 trans->transid);
1144 			path->slots[0]++;
1145 			new_key.offset = start;
1146 			btrfs_set_item_key_safe(root, path, &new_key);
1147 
1148 			fi = btrfs_item_ptr(leaf, path->slots[0],
1149 					    struct btrfs_file_extent_item);
1150 			btrfs_set_file_extent_generation(leaf, fi,
1151 							 trans->transid);
1152 			btrfs_set_file_extent_num_bytes(leaf, fi,
1153 							other_end - start);
1154 			btrfs_set_file_extent_offset(leaf, fi,
1155 						     start - orig_offset);
1156 			btrfs_mark_buffer_dirty(leaf);
1157 			goto out;
1158 		}
1159 	}
1160 
1161 	while (start > key.offset || end < extent_end) {
1162 		if (key.offset == start)
1163 			split = end;
1164 
1165 		new_key.offset = split;
1166 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1167 		if (ret == -EAGAIN) {
1168 			btrfs_release_path(path);
1169 			goto again;
1170 		}
1171 		if (ret < 0) {
1172 			btrfs_abort_transaction(trans, root, ret);
1173 			goto out;
1174 		}
1175 
1176 		leaf = path->nodes[0];
1177 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1178 				    struct btrfs_file_extent_item);
1179 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1180 		btrfs_set_file_extent_num_bytes(leaf, fi,
1181 						split - key.offset);
1182 
1183 		fi = btrfs_item_ptr(leaf, path->slots[0],
1184 				    struct btrfs_file_extent_item);
1185 
1186 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1187 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1188 		btrfs_set_file_extent_num_bytes(leaf, fi,
1189 						extent_end - split);
1190 		btrfs_mark_buffer_dirty(leaf);
1191 
1192 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1193 					   root->root_key.objectid,
1194 					   ino, orig_offset, 0);
1195 		BUG_ON(ret); /* -ENOMEM */
1196 
1197 		if (split == start) {
1198 			key.offset = start;
1199 		} else {
1200 			BUG_ON(start != key.offset);
1201 			path->slots[0]--;
1202 			extent_end = end;
1203 		}
1204 		recow = 1;
1205 	}
1206 
1207 	other_start = end;
1208 	other_end = 0;
1209 	if (extent_mergeable(leaf, path->slots[0] + 1,
1210 			     ino, bytenr, orig_offset,
1211 			     &other_start, &other_end)) {
1212 		if (recow) {
1213 			btrfs_release_path(path);
1214 			goto again;
1215 		}
1216 		extent_end = other_end;
1217 		del_slot = path->slots[0] + 1;
1218 		del_nr++;
1219 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1220 					0, root->root_key.objectid,
1221 					ino, orig_offset, 0);
1222 		BUG_ON(ret); /* -ENOMEM */
1223 	}
1224 	other_start = 0;
1225 	other_end = start;
1226 	if (extent_mergeable(leaf, path->slots[0] - 1,
1227 			     ino, bytenr, orig_offset,
1228 			     &other_start, &other_end)) {
1229 		if (recow) {
1230 			btrfs_release_path(path);
1231 			goto again;
1232 		}
1233 		key.offset = other_start;
1234 		del_slot = path->slots[0];
1235 		del_nr++;
1236 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1237 					0, root->root_key.objectid,
1238 					ino, orig_offset, 0);
1239 		BUG_ON(ret); /* -ENOMEM */
1240 	}
1241 	if (del_nr == 0) {
1242 		fi = btrfs_item_ptr(leaf, path->slots[0],
1243 			   struct btrfs_file_extent_item);
1244 		btrfs_set_file_extent_type(leaf, fi,
1245 					   BTRFS_FILE_EXTENT_REG);
1246 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1247 		btrfs_mark_buffer_dirty(leaf);
1248 	} else {
1249 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1250 			   struct btrfs_file_extent_item);
1251 		btrfs_set_file_extent_type(leaf, fi,
1252 					   BTRFS_FILE_EXTENT_REG);
1253 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1254 		btrfs_set_file_extent_num_bytes(leaf, fi,
1255 						extent_end - key.offset);
1256 		btrfs_mark_buffer_dirty(leaf);
1257 
1258 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1259 		if (ret < 0) {
1260 			btrfs_abort_transaction(trans, root, ret);
1261 			goto out;
1262 		}
1263 	}
1264 out:
1265 	btrfs_free_path(path);
1266 	return 0;
1267 }
1268 
1269 /*
1270  * on error we return an unlocked page and the error value
1271  * on success we return a locked page and 0
1272  */
1273 static int prepare_uptodate_page(struct page *page, u64 pos,
1274 				 bool force_uptodate)
1275 {
1276 	int ret = 0;
1277 
1278 	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1279 	    !PageUptodate(page)) {
1280 		ret = btrfs_readpage(NULL, page);
1281 		if (ret)
1282 			return ret;
1283 		lock_page(page);
1284 		if (!PageUptodate(page)) {
1285 			unlock_page(page);
1286 			return -EIO;
1287 		}
1288 	}
1289 	return 0;
1290 }
1291 
1292 /*
1293  * this just gets pages into the page cache and locks them down.
1294  */
1295 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1296 				  size_t num_pages, loff_t pos,
1297 				  size_t write_bytes, bool force_uptodate)
1298 {
1299 	int i;
1300 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
1301 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1302 	int err = 0;
1303 	int faili;
1304 
1305 	for (i = 0; i < num_pages; i++) {
1306 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1307 					       mask | __GFP_WRITE);
1308 		if (!pages[i]) {
1309 			faili = i - 1;
1310 			err = -ENOMEM;
1311 			goto fail;
1312 		}
1313 
1314 		if (i == 0)
1315 			err = prepare_uptodate_page(pages[i], pos,
1316 						    force_uptodate);
1317 		if (i == num_pages - 1)
1318 			err = prepare_uptodate_page(pages[i],
1319 						    pos + write_bytes, false);
1320 		if (err) {
1321 			page_cache_release(pages[i]);
1322 			faili = i - 1;
1323 			goto fail;
1324 		}
1325 		wait_on_page_writeback(pages[i]);
1326 	}
1327 
1328 	return 0;
1329 fail:
1330 	while (faili >= 0) {
1331 		unlock_page(pages[faili]);
1332 		page_cache_release(pages[faili]);
1333 		faili--;
1334 	}
1335 	return err;
1336 
1337 }
1338 
1339 /*
1340  * This function locks the extent and properly waits for data=ordered extents
1341  * to finish before allowing the pages to be modified if need.
1342  *
1343  * The return value:
1344  * 1 - the extent is locked
1345  * 0 - the extent is not locked, and everything is OK
1346  * -EAGAIN - need re-prepare the pages
1347  * the other < 0 number - Something wrong happens
1348  */
1349 static noinline int
1350 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1351 				size_t num_pages, loff_t pos,
1352 				u64 *lockstart, u64 *lockend,
1353 				struct extent_state **cached_state)
1354 {
1355 	u64 start_pos;
1356 	u64 last_pos;
1357 	int i;
1358 	int ret = 0;
1359 
1360 	start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1361 	last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1362 
1363 	if (start_pos < inode->i_size) {
1364 		struct btrfs_ordered_extent *ordered;
1365 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1366 				 start_pos, last_pos, 0, cached_state);
1367 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1368 						     last_pos - start_pos + 1);
1369 		if (ordered &&
1370 		    ordered->file_offset + ordered->len > start_pos &&
1371 		    ordered->file_offset <= last_pos) {
1372 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1373 					     start_pos, last_pos,
1374 					     cached_state, GFP_NOFS);
1375 			for (i = 0; i < num_pages; i++) {
1376 				unlock_page(pages[i]);
1377 				page_cache_release(pages[i]);
1378 			}
1379 			btrfs_start_ordered_extent(inode, ordered, 1);
1380 			btrfs_put_ordered_extent(ordered);
1381 			return -EAGAIN;
1382 		}
1383 		if (ordered)
1384 			btrfs_put_ordered_extent(ordered);
1385 
1386 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1387 				  last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1388 				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1389 				  0, 0, cached_state, GFP_NOFS);
1390 		*lockstart = start_pos;
1391 		*lockend = last_pos;
1392 		ret = 1;
1393 	}
1394 
1395 	for (i = 0; i < num_pages; i++) {
1396 		if (clear_page_dirty_for_io(pages[i]))
1397 			account_page_redirty(pages[i]);
1398 		set_page_extent_mapped(pages[i]);
1399 		WARN_ON(!PageLocked(pages[i]));
1400 	}
1401 
1402 	return ret;
1403 }
1404 
1405 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1406 				    size_t *write_bytes)
1407 {
1408 	struct btrfs_root *root = BTRFS_I(inode)->root;
1409 	struct btrfs_ordered_extent *ordered;
1410 	u64 lockstart, lockend;
1411 	u64 num_bytes;
1412 	int ret;
1413 
1414 	ret = btrfs_start_nocow_write(root);
1415 	if (!ret)
1416 		return -ENOSPC;
1417 
1418 	lockstart = round_down(pos, root->sectorsize);
1419 	lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1420 
1421 	while (1) {
1422 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1423 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1424 						     lockend - lockstart + 1);
1425 		if (!ordered) {
1426 			break;
1427 		}
1428 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1429 		btrfs_start_ordered_extent(inode, ordered, 1);
1430 		btrfs_put_ordered_extent(ordered);
1431 	}
1432 
1433 	num_bytes = lockend - lockstart + 1;
1434 	ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1435 	if (ret <= 0) {
1436 		ret = 0;
1437 		btrfs_end_nocow_write(root);
1438 	} else {
1439 		*write_bytes = min_t(size_t, *write_bytes ,
1440 				     num_bytes - pos + lockstart);
1441 	}
1442 
1443 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1444 
1445 	return ret;
1446 }
1447 
1448 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1449 					       struct iov_iter *i,
1450 					       loff_t pos)
1451 {
1452 	struct inode *inode = file_inode(file);
1453 	struct btrfs_root *root = BTRFS_I(inode)->root;
1454 	struct page **pages = NULL;
1455 	struct extent_state *cached_state = NULL;
1456 	u64 release_bytes = 0;
1457 	u64 lockstart;
1458 	u64 lockend;
1459 	unsigned long first_index;
1460 	size_t num_written = 0;
1461 	int nrptrs;
1462 	int ret = 0;
1463 	bool only_release_metadata = false;
1464 	bool force_page_uptodate = false;
1465 	bool need_unlock;
1466 
1467 	nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1468 		     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1469 		     (sizeof(struct page *)));
1470 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1471 	nrptrs = max(nrptrs, 8);
1472 	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1473 	if (!pages)
1474 		return -ENOMEM;
1475 
1476 	first_index = pos >> PAGE_CACHE_SHIFT;
1477 
1478 	while (iov_iter_count(i) > 0) {
1479 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1480 		size_t write_bytes = min(iov_iter_count(i),
1481 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
1482 					 offset);
1483 		size_t num_pages = (write_bytes + offset +
1484 				    PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1485 		size_t reserve_bytes;
1486 		size_t dirty_pages;
1487 		size_t copied;
1488 
1489 		WARN_ON(num_pages > nrptrs);
1490 
1491 		/*
1492 		 * Fault pages before locking them in prepare_pages
1493 		 * to avoid recursive lock
1494 		 */
1495 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1496 			ret = -EFAULT;
1497 			break;
1498 		}
1499 
1500 		reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1501 		ret = btrfs_check_data_free_space(inode, reserve_bytes);
1502 		if (ret == -ENOSPC &&
1503 		    (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1504 					      BTRFS_INODE_PREALLOC))) {
1505 			ret = check_can_nocow(inode, pos, &write_bytes);
1506 			if (ret > 0) {
1507 				only_release_metadata = true;
1508 				/*
1509 				 * our prealloc extent may be smaller than
1510 				 * write_bytes, so scale down.
1511 				 */
1512 				num_pages = (write_bytes + offset +
1513 					     PAGE_CACHE_SIZE - 1) >>
1514 					PAGE_CACHE_SHIFT;
1515 				reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1516 				ret = 0;
1517 			} else {
1518 				ret = -ENOSPC;
1519 			}
1520 		}
1521 
1522 		if (ret)
1523 			break;
1524 
1525 		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1526 		if (ret) {
1527 			if (!only_release_metadata)
1528 				btrfs_free_reserved_data_space(inode,
1529 							       reserve_bytes);
1530 			else
1531 				btrfs_end_nocow_write(root);
1532 			break;
1533 		}
1534 
1535 		release_bytes = reserve_bytes;
1536 		need_unlock = false;
1537 again:
1538 		/*
1539 		 * This is going to setup the pages array with the number of
1540 		 * pages we want, so we don't really need to worry about the
1541 		 * contents of pages from loop to loop
1542 		 */
1543 		ret = prepare_pages(inode, pages, num_pages,
1544 				    pos, write_bytes,
1545 				    force_page_uptodate);
1546 		if (ret)
1547 			break;
1548 
1549 		ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1550 						      pos, &lockstart, &lockend,
1551 						      &cached_state);
1552 		if (ret < 0) {
1553 			if (ret == -EAGAIN)
1554 				goto again;
1555 			break;
1556 		} else if (ret > 0) {
1557 			need_unlock = true;
1558 			ret = 0;
1559 		}
1560 
1561 		copied = btrfs_copy_from_user(pos, num_pages,
1562 					   write_bytes, pages, i);
1563 
1564 		/*
1565 		 * if we have trouble faulting in the pages, fall
1566 		 * back to one page at a time
1567 		 */
1568 		if (copied < write_bytes)
1569 			nrptrs = 1;
1570 
1571 		if (copied == 0) {
1572 			force_page_uptodate = true;
1573 			dirty_pages = 0;
1574 		} else {
1575 			force_page_uptodate = false;
1576 			dirty_pages = (copied + offset +
1577 				       PAGE_CACHE_SIZE - 1) >>
1578 				       PAGE_CACHE_SHIFT;
1579 		}
1580 
1581 		/*
1582 		 * If we had a short copy we need to release the excess delaloc
1583 		 * bytes we reserved.  We need to increment outstanding_extents
1584 		 * because btrfs_delalloc_release_space will decrement it, but
1585 		 * we still have an outstanding extent for the chunk we actually
1586 		 * managed to copy.
1587 		 */
1588 		if (num_pages > dirty_pages) {
1589 			release_bytes = (num_pages - dirty_pages) <<
1590 				PAGE_CACHE_SHIFT;
1591 			if (copied > 0) {
1592 				spin_lock(&BTRFS_I(inode)->lock);
1593 				BTRFS_I(inode)->outstanding_extents++;
1594 				spin_unlock(&BTRFS_I(inode)->lock);
1595 			}
1596 			if (only_release_metadata)
1597 				btrfs_delalloc_release_metadata(inode,
1598 								release_bytes);
1599 			else
1600 				btrfs_delalloc_release_space(inode,
1601 							     release_bytes);
1602 		}
1603 
1604 		release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1605 
1606 		if (copied > 0)
1607 			ret = btrfs_dirty_pages(root, inode, pages,
1608 						dirty_pages, pos, copied,
1609 						NULL);
1610 		if (need_unlock)
1611 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1612 					     lockstart, lockend, &cached_state,
1613 					     GFP_NOFS);
1614 		if (ret) {
1615 			btrfs_drop_pages(pages, num_pages);
1616 			break;
1617 		}
1618 
1619 		release_bytes = 0;
1620 		if (only_release_metadata)
1621 			btrfs_end_nocow_write(root);
1622 
1623 		if (only_release_metadata && copied > 0) {
1624 			u64 lockstart = round_down(pos, root->sectorsize);
1625 			u64 lockend = lockstart +
1626 				(dirty_pages << PAGE_CACHE_SHIFT) - 1;
1627 
1628 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1629 				       lockend, EXTENT_NORESERVE, NULL,
1630 				       NULL, GFP_NOFS);
1631 			only_release_metadata = false;
1632 		}
1633 
1634 		btrfs_drop_pages(pages, num_pages);
1635 
1636 		cond_resched();
1637 
1638 		balance_dirty_pages_ratelimited(inode->i_mapping);
1639 		if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1640 			btrfs_btree_balance_dirty(root);
1641 
1642 		pos += copied;
1643 		num_written += copied;
1644 	}
1645 
1646 	kfree(pages);
1647 
1648 	if (release_bytes) {
1649 		if (only_release_metadata) {
1650 			btrfs_end_nocow_write(root);
1651 			btrfs_delalloc_release_metadata(inode, release_bytes);
1652 		} else {
1653 			btrfs_delalloc_release_space(inode, release_bytes);
1654 		}
1655 	}
1656 
1657 	return num_written ? num_written : ret;
1658 }
1659 
1660 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1661 				    const struct iovec *iov,
1662 				    unsigned long nr_segs, loff_t pos,
1663 				    size_t count, size_t ocount)
1664 {
1665 	struct file *file = iocb->ki_filp;
1666 	struct iov_iter i;
1667 	ssize_t written;
1668 	ssize_t written_buffered;
1669 	loff_t endbyte;
1670 	int err;
1671 
1672 	written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
1673 					    count, ocount);
1674 
1675 	if (written < 0 || written == count)
1676 		return written;
1677 
1678 	pos += written;
1679 	count -= written;
1680 	iov_iter_init(&i, iov, nr_segs, count, written);
1681 	written_buffered = __btrfs_buffered_write(file, &i, pos);
1682 	if (written_buffered < 0) {
1683 		err = written_buffered;
1684 		goto out;
1685 	}
1686 	endbyte = pos + written_buffered - 1;
1687 	err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1688 	if (err)
1689 		goto out;
1690 	written += written_buffered;
1691 	iocb->ki_pos = pos + written_buffered;
1692 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1693 				 endbyte >> PAGE_CACHE_SHIFT);
1694 out:
1695 	return written ? written : err;
1696 }
1697 
1698 static void update_time_for_write(struct inode *inode)
1699 {
1700 	struct timespec now;
1701 
1702 	if (IS_NOCMTIME(inode))
1703 		return;
1704 
1705 	now = current_fs_time(inode->i_sb);
1706 	if (!timespec_equal(&inode->i_mtime, &now))
1707 		inode->i_mtime = now;
1708 
1709 	if (!timespec_equal(&inode->i_ctime, &now))
1710 		inode->i_ctime = now;
1711 
1712 	if (IS_I_VERSION(inode))
1713 		inode_inc_iversion(inode);
1714 }
1715 
1716 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1717 				    const struct iovec *iov,
1718 				    unsigned long nr_segs, loff_t pos)
1719 {
1720 	struct file *file = iocb->ki_filp;
1721 	struct inode *inode = file_inode(file);
1722 	struct btrfs_root *root = BTRFS_I(inode)->root;
1723 	u64 start_pos;
1724 	u64 end_pos;
1725 	ssize_t num_written = 0;
1726 	ssize_t err = 0;
1727 	size_t count, ocount;
1728 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1729 
1730 	mutex_lock(&inode->i_mutex);
1731 
1732 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1733 	if (err) {
1734 		mutex_unlock(&inode->i_mutex);
1735 		goto out;
1736 	}
1737 	count = ocount;
1738 
1739 	current->backing_dev_info = inode->i_mapping->backing_dev_info;
1740 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1741 	if (err) {
1742 		mutex_unlock(&inode->i_mutex);
1743 		goto out;
1744 	}
1745 
1746 	if (count == 0) {
1747 		mutex_unlock(&inode->i_mutex);
1748 		goto out;
1749 	}
1750 
1751 	err = file_remove_suid(file);
1752 	if (err) {
1753 		mutex_unlock(&inode->i_mutex);
1754 		goto out;
1755 	}
1756 
1757 	/*
1758 	 * If BTRFS flips readonly due to some impossible error
1759 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1760 	 * although we have opened a file as writable, we have
1761 	 * to stop this write operation to ensure FS consistency.
1762 	 */
1763 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1764 		mutex_unlock(&inode->i_mutex);
1765 		err = -EROFS;
1766 		goto out;
1767 	}
1768 
1769 	/*
1770 	 * We reserve space for updating the inode when we reserve space for the
1771 	 * extent we are going to write, so we will enospc out there.  We don't
1772 	 * need to start yet another transaction to update the inode as we will
1773 	 * update the inode when we finish writing whatever data we write.
1774 	 */
1775 	update_time_for_write(inode);
1776 
1777 	start_pos = round_down(pos, root->sectorsize);
1778 	if (start_pos > i_size_read(inode)) {
1779 		/* Expand hole size to cover write data, preventing empty gap */
1780 		end_pos = round_up(pos + iov->iov_len, root->sectorsize);
1781 		err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
1782 		if (err) {
1783 			mutex_unlock(&inode->i_mutex);
1784 			goto out;
1785 		}
1786 	}
1787 
1788 	if (sync)
1789 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1790 
1791 	if (unlikely(file->f_flags & O_DIRECT)) {
1792 		num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1793 						   pos, count, ocount);
1794 	} else {
1795 		struct iov_iter i;
1796 
1797 		iov_iter_init(&i, iov, nr_segs, count, num_written);
1798 
1799 		num_written = __btrfs_buffered_write(file, &i, pos);
1800 		if (num_written > 0)
1801 			iocb->ki_pos = pos + num_written;
1802 	}
1803 
1804 	mutex_unlock(&inode->i_mutex);
1805 
1806 	/*
1807 	 * we want to make sure fsync finds this change
1808 	 * but we haven't joined a transaction running right now.
1809 	 *
1810 	 * Later on, someone is sure to update the inode and get the
1811 	 * real transid recorded.
1812 	 *
1813 	 * We set last_trans now to the fs_info generation + 1,
1814 	 * this will either be one more than the running transaction
1815 	 * or the generation used for the next transaction if there isn't
1816 	 * one running right now.
1817 	 *
1818 	 * We also have to set last_sub_trans to the current log transid,
1819 	 * otherwise subsequent syncs to a file that's been synced in this
1820 	 * transaction will appear to have already occured.
1821 	 */
1822 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1823 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1824 	if (num_written > 0) {
1825 		err = generic_write_sync(file, pos, num_written);
1826 		if (err < 0)
1827 			num_written = err;
1828 	}
1829 
1830 	if (sync)
1831 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1832 out:
1833 	current->backing_dev_info = NULL;
1834 	return num_written ? num_written : err;
1835 }
1836 
1837 int btrfs_release_file(struct inode *inode, struct file *filp)
1838 {
1839 	/*
1840 	 * ordered_data_close is set by settattr when we are about to truncate
1841 	 * a file from a non-zero size to a zero size.  This tries to
1842 	 * flush down new bytes that may have been written if the
1843 	 * application were using truncate to replace a file in place.
1844 	 */
1845 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1846 			       &BTRFS_I(inode)->runtime_flags)) {
1847 		struct btrfs_trans_handle *trans;
1848 		struct btrfs_root *root = BTRFS_I(inode)->root;
1849 
1850 		/*
1851 		 * We need to block on a committing transaction to keep us from
1852 		 * throwing a ordered operation on to the list and causing
1853 		 * something like sync to deadlock trying to flush out this
1854 		 * inode.
1855 		 */
1856 		trans = btrfs_start_transaction(root, 0);
1857 		if (IS_ERR(trans))
1858 			return PTR_ERR(trans);
1859 		btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1860 		btrfs_end_transaction(trans, root);
1861 		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1862 			filemap_flush(inode->i_mapping);
1863 	}
1864 	if (filp->private_data)
1865 		btrfs_ioctl_trans_end(filp);
1866 	return 0;
1867 }
1868 
1869 /*
1870  * fsync call for both files and directories.  This logs the inode into
1871  * the tree log instead of forcing full commits whenever possible.
1872  *
1873  * It needs to call filemap_fdatawait so that all ordered extent updates are
1874  * in the metadata btree are up to date for copying to the log.
1875  *
1876  * It drops the inode mutex before doing the tree log commit.  This is an
1877  * important optimization for directories because holding the mutex prevents
1878  * new operations on the dir while we write to disk.
1879  */
1880 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1881 {
1882 	struct dentry *dentry = file->f_path.dentry;
1883 	struct inode *inode = dentry->d_inode;
1884 	struct btrfs_root *root = BTRFS_I(inode)->root;
1885 	struct btrfs_trans_handle *trans;
1886 	struct btrfs_log_ctx ctx;
1887 	int ret = 0;
1888 	bool full_sync = 0;
1889 
1890 	trace_btrfs_sync_file(file, datasync);
1891 
1892 	/*
1893 	 * We write the dirty pages in the range and wait until they complete
1894 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1895 	 * multi-task, and make the performance up.  See
1896 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1897 	 */
1898 	atomic_inc(&BTRFS_I(inode)->sync_writers);
1899 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1900 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1901 			     &BTRFS_I(inode)->runtime_flags))
1902 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1903 	atomic_dec(&BTRFS_I(inode)->sync_writers);
1904 	if (ret)
1905 		return ret;
1906 
1907 	mutex_lock(&inode->i_mutex);
1908 
1909 	/*
1910 	 * We flush the dirty pages again to avoid some dirty pages in the
1911 	 * range being left.
1912 	 */
1913 	atomic_inc(&root->log_batch);
1914 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1915 			     &BTRFS_I(inode)->runtime_flags);
1916 	if (full_sync) {
1917 		ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1918 		if (ret) {
1919 			mutex_unlock(&inode->i_mutex);
1920 			goto out;
1921 		}
1922 	}
1923 	atomic_inc(&root->log_batch);
1924 
1925 	/*
1926 	 * check the transaction that last modified this inode
1927 	 * and see if its already been committed
1928 	 */
1929 	if (!BTRFS_I(inode)->last_trans) {
1930 		mutex_unlock(&inode->i_mutex);
1931 		goto out;
1932 	}
1933 
1934 	/*
1935 	 * if the last transaction that changed this file was before
1936 	 * the current transaction, we can bail out now without any
1937 	 * syncing
1938 	 */
1939 	smp_mb();
1940 	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1941 	    BTRFS_I(inode)->last_trans <=
1942 	    root->fs_info->last_trans_committed) {
1943 		BTRFS_I(inode)->last_trans = 0;
1944 
1945 		/*
1946 		 * We'v had everything committed since the last time we were
1947 		 * modified so clear this flag in case it was set for whatever
1948 		 * reason, it's no longer relevant.
1949 		 */
1950 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1951 			  &BTRFS_I(inode)->runtime_flags);
1952 		mutex_unlock(&inode->i_mutex);
1953 		goto out;
1954 	}
1955 
1956 	/*
1957 	 * ok we haven't committed the transaction yet, lets do a commit
1958 	 */
1959 	if (file->private_data)
1960 		btrfs_ioctl_trans_end(file);
1961 
1962 	/*
1963 	 * We use start here because we will need to wait on the IO to complete
1964 	 * in btrfs_sync_log, which could require joining a transaction (for
1965 	 * example checking cross references in the nocow path).  If we use join
1966 	 * here we could get into a situation where we're waiting on IO to
1967 	 * happen that is blocked on a transaction trying to commit.  With start
1968 	 * we inc the extwriter counter, so we wait for all extwriters to exit
1969 	 * before we start blocking join'ers.  This comment is to keep somebody
1970 	 * from thinking they are super smart and changing this to
1971 	 * btrfs_join_transaction *cough*Josef*cough*.
1972 	 */
1973 	trans = btrfs_start_transaction(root, 0);
1974 	if (IS_ERR(trans)) {
1975 		ret = PTR_ERR(trans);
1976 		mutex_unlock(&inode->i_mutex);
1977 		goto out;
1978 	}
1979 	trans->sync = true;
1980 
1981 	btrfs_init_log_ctx(&ctx);
1982 
1983 	ret = btrfs_log_dentry_safe(trans, root, dentry, &ctx);
1984 	if (ret < 0) {
1985 		/* Fallthrough and commit/free transaction. */
1986 		ret = 1;
1987 	}
1988 
1989 	/* we've logged all the items and now have a consistent
1990 	 * version of the file in the log.  It is possible that
1991 	 * someone will come in and modify the file, but that's
1992 	 * fine because the log is consistent on disk, and we
1993 	 * have references to all of the file's extents
1994 	 *
1995 	 * It is possible that someone will come in and log the
1996 	 * file again, but that will end up using the synchronization
1997 	 * inside btrfs_sync_log to keep things safe.
1998 	 */
1999 	mutex_unlock(&inode->i_mutex);
2000 
2001 	if (ret != BTRFS_NO_LOG_SYNC) {
2002 		if (!ret) {
2003 			ret = btrfs_sync_log(trans, root, &ctx);
2004 			if (!ret) {
2005 				ret = btrfs_end_transaction(trans, root);
2006 				goto out;
2007 			}
2008 		}
2009 		if (!full_sync) {
2010 			ret = btrfs_wait_ordered_range(inode, start,
2011 						       end - start + 1);
2012 			if (ret)
2013 				goto out;
2014 		}
2015 		ret = btrfs_commit_transaction(trans, root);
2016 	} else {
2017 		ret = btrfs_end_transaction(trans, root);
2018 	}
2019 out:
2020 	return ret > 0 ? -EIO : ret;
2021 }
2022 
2023 static const struct vm_operations_struct btrfs_file_vm_ops = {
2024 	.fault		= filemap_fault,
2025 	.map_pages	= filemap_map_pages,
2026 	.page_mkwrite	= btrfs_page_mkwrite,
2027 	.remap_pages	= generic_file_remap_pages,
2028 };
2029 
2030 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2031 {
2032 	struct address_space *mapping = filp->f_mapping;
2033 
2034 	if (!mapping->a_ops->readpage)
2035 		return -ENOEXEC;
2036 
2037 	file_accessed(filp);
2038 	vma->vm_ops = &btrfs_file_vm_ops;
2039 
2040 	return 0;
2041 }
2042 
2043 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2044 			  int slot, u64 start, u64 end)
2045 {
2046 	struct btrfs_file_extent_item *fi;
2047 	struct btrfs_key key;
2048 
2049 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2050 		return 0;
2051 
2052 	btrfs_item_key_to_cpu(leaf, &key, slot);
2053 	if (key.objectid != btrfs_ino(inode) ||
2054 	    key.type != BTRFS_EXTENT_DATA_KEY)
2055 		return 0;
2056 
2057 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2058 
2059 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2060 		return 0;
2061 
2062 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2063 		return 0;
2064 
2065 	if (key.offset == end)
2066 		return 1;
2067 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2068 		return 1;
2069 	return 0;
2070 }
2071 
2072 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2073 		      struct btrfs_path *path, u64 offset, u64 end)
2074 {
2075 	struct btrfs_root *root = BTRFS_I(inode)->root;
2076 	struct extent_buffer *leaf;
2077 	struct btrfs_file_extent_item *fi;
2078 	struct extent_map *hole_em;
2079 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2080 	struct btrfs_key key;
2081 	int ret;
2082 
2083 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2084 		goto out;
2085 
2086 	key.objectid = btrfs_ino(inode);
2087 	key.type = BTRFS_EXTENT_DATA_KEY;
2088 	key.offset = offset;
2089 
2090 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2091 	if (ret < 0)
2092 		return ret;
2093 	BUG_ON(!ret);
2094 
2095 	leaf = path->nodes[0];
2096 	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2097 		u64 num_bytes;
2098 
2099 		path->slots[0]--;
2100 		fi = btrfs_item_ptr(leaf, path->slots[0],
2101 				    struct btrfs_file_extent_item);
2102 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2103 			end - offset;
2104 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2105 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2106 		btrfs_set_file_extent_offset(leaf, fi, 0);
2107 		btrfs_mark_buffer_dirty(leaf);
2108 		goto out;
2109 	}
2110 
2111 	if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
2112 		u64 num_bytes;
2113 
2114 		path->slots[0]++;
2115 		key.offset = offset;
2116 		btrfs_set_item_key_safe(root, path, &key);
2117 		fi = btrfs_item_ptr(leaf, path->slots[0],
2118 				    struct btrfs_file_extent_item);
2119 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2120 			offset;
2121 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2122 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2123 		btrfs_set_file_extent_offset(leaf, fi, 0);
2124 		btrfs_mark_buffer_dirty(leaf);
2125 		goto out;
2126 	}
2127 	btrfs_release_path(path);
2128 
2129 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2130 				       0, 0, end - offset, 0, end - offset,
2131 				       0, 0, 0);
2132 	if (ret)
2133 		return ret;
2134 
2135 out:
2136 	btrfs_release_path(path);
2137 
2138 	hole_em = alloc_extent_map();
2139 	if (!hole_em) {
2140 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2141 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2142 			&BTRFS_I(inode)->runtime_flags);
2143 	} else {
2144 		hole_em->start = offset;
2145 		hole_em->len = end - offset;
2146 		hole_em->ram_bytes = hole_em->len;
2147 		hole_em->orig_start = offset;
2148 
2149 		hole_em->block_start = EXTENT_MAP_HOLE;
2150 		hole_em->block_len = 0;
2151 		hole_em->orig_block_len = 0;
2152 		hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2153 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2154 		hole_em->generation = trans->transid;
2155 
2156 		do {
2157 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2158 			write_lock(&em_tree->lock);
2159 			ret = add_extent_mapping(em_tree, hole_em, 1);
2160 			write_unlock(&em_tree->lock);
2161 		} while (ret == -EEXIST);
2162 		free_extent_map(hole_em);
2163 		if (ret)
2164 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2165 				&BTRFS_I(inode)->runtime_flags);
2166 	}
2167 
2168 	return 0;
2169 }
2170 
2171 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2172 {
2173 	struct btrfs_root *root = BTRFS_I(inode)->root;
2174 	struct extent_state *cached_state = NULL;
2175 	struct btrfs_path *path;
2176 	struct btrfs_block_rsv *rsv;
2177 	struct btrfs_trans_handle *trans;
2178 	u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2179 	u64 lockend = round_down(offset + len,
2180 				 BTRFS_I(inode)->root->sectorsize) - 1;
2181 	u64 cur_offset = lockstart;
2182 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2183 	u64 drop_end;
2184 	int ret = 0;
2185 	int err = 0;
2186 	int rsv_count;
2187 	bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2188 			  ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2189 	bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2190 	u64 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2191 
2192 	ret = btrfs_wait_ordered_range(inode, offset, len);
2193 	if (ret)
2194 		return ret;
2195 
2196 	mutex_lock(&inode->i_mutex);
2197 	/*
2198 	 * We needn't truncate any page which is beyond the end of the file
2199 	 * because we are sure there is no data there.
2200 	 */
2201 	/*
2202 	 * Only do this if we are in the same page and we aren't doing the
2203 	 * entire page.
2204 	 */
2205 	if (same_page && len < PAGE_CACHE_SIZE) {
2206 		if (offset < ino_size)
2207 			ret = btrfs_truncate_page(inode, offset, len, 0);
2208 		mutex_unlock(&inode->i_mutex);
2209 		return ret;
2210 	}
2211 
2212 	/* zero back part of the first page */
2213 	if (offset < ino_size) {
2214 		ret = btrfs_truncate_page(inode, offset, 0, 0);
2215 		if (ret) {
2216 			mutex_unlock(&inode->i_mutex);
2217 			return ret;
2218 		}
2219 	}
2220 
2221 	/* zero the front end of the last page */
2222 	if (offset + len < ino_size) {
2223 		ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2224 		if (ret) {
2225 			mutex_unlock(&inode->i_mutex);
2226 			return ret;
2227 		}
2228 	}
2229 
2230 	if (lockend < lockstart) {
2231 		mutex_unlock(&inode->i_mutex);
2232 		return 0;
2233 	}
2234 
2235 	while (1) {
2236 		struct btrfs_ordered_extent *ordered;
2237 
2238 		truncate_pagecache_range(inode, lockstart, lockend);
2239 
2240 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2241 				 0, &cached_state);
2242 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2243 
2244 		/*
2245 		 * We need to make sure we have no ordered extents in this range
2246 		 * and nobody raced in and read a page in this range, if we did
2247 		 * we need to try again.
2248 		 */
2249 		if ((!ordered ||
2250 		    (ordered->file_offset + ordered->len <= lockstart ||
2251 		     ordered->file_offset > lockend)) &&
2252 		     !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2253 				     lockend, EXTENT_UPTODATE, 0,
2254 				     cached_state)) {
2255 			if (ordered)
2256 				btrfs_put_ordered_extent(ordered);
2257 			break;
2258 		}
2259 		if (ordered)
2260 			btrfs_put_ordered_extent(ordered);
2261 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2262 				     lockend, &cached_state, GFP_NOFS);
2263 		ret = btrfs_wait_ordered_range(inode, lockstart,
2264 					       lockend - lockstart + 1);
2265 		if (ret) {
2266 			mutex_unlock(&inode->i_mutex);
2267 			return ret;
2268 		}
2269 	}
2270 
2271 	path = btrfs_alloc_path();
2272 	if (!path) {
2273 		ret = -ENOMEM;
2274 		goto out;
2275 	}
2276 
2277 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2278 	if (!rsv) {
2279 		ret = -ENOMEM;
2280 		goto out_free;
2281 	}
2282 	rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2283 	rsv->failfast = 1;
2284 
2285 	/*
2286 	 * 1 - update the inode
2287 	 * 1 - removing the extents in the range
2288 	 * 1 - adding the hole extent if no_holes isn't set
2289 	 */
2290 	rsv_count = no_holes ? 2 : 3;
2291 	trans = btrfs_start_transaction(root, rsv_count);
2292 	if (IS_ERR(trans)) {
2293 		err = PTR_ERR(trans);
2294 		goto out_free;
2295 	}
2296 
2297 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2298 				      min_size);
2299 	BUG_ON(ret);
2300 	trans->block_rsv = rsv;
2301 
2302 	while (cur_offset < lockend) {
2303 		ret = __btrfs_drop_extents(trans, root, inode, path,
2304 					   cur_offset, lockend + 1,
2305 					   &drop_end, 1, 0, 0, NULL);
2306 		if (ret != -ENOSPC)
2307 			break;
2308 
2309 		trans->block_rsv = &root->fs_info->trans_block_rsv;
2310 
2311 		if (cur_offset < ino_size) {
2312 			ret = fill_holes(trans, inode, path, cur_offset,
2313 					 drop_end);
2314 			if (ret) {
2315 				err = ret;
2316 				break;
2317 			}
2318 		}
2319 
2320 		cur_offset = drop_end;
2321 
2322 		ret = btrfs_update_inode(trans, root, inode);
2323 		if (ret) {
2324 			err = ret;
2325 			break;
2326 		}
2327 
2328 		btrfs_end_transaction(trans, root);
2329 		btrfs_btree_balance_dirty(root);
2330 
2331 		trans = btrfs_start_transaction(root, rsv_count);
2332 		if (IS_ERR(trans)) {
2333 			ret = PTR_ERR(trans);
2334 			trans = NULL;
2335 			break;
2336 		}
2337 
2338 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2339 					      rsv, min_size);
2340 		BUG_ON(ret);	/* shouldn't happen */
2341 		trans->block_rsv = rsv;
2342 	}
2343 
2344 	if (ret) {
2345 		err = ret;
2346 		goto out_trans;
2347 	}
2348 
2349 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2350 	if (cur_offset < ino_size) {
2351 		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2352 		if (ret) {
2353 			err = ret;
2354 			goto out_trans;
2355 		}
2356 	}
2357 
2358 out_trans:
2359 	if (!trans)
2360 		goto out_free;
2361 
2362 	inode_inc_iversion(inode);
2363 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2364 
2365 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2366 	ret = btrfs_update_inode(trans, root, inode);
2367 	btrfs_end_transaction(trans, root);
2368 	btrfs_btree_balance_dirty(root);
2369 out_free:
2370 	btrfs_free_path(path);
2371 	btrfs_free_block_rsv(root, rsv);
2372 out:
2373 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2374 			     &cached_state, GFP_NOFS);
2375 	mutex_unlock(&inode->i_mutex);
2376 	if (ret && !err)
2377 		err = ret;
2378 	return err;
2379 }
2380 
2381 static long btrfs_fallocate(struct file *file, int mode,
2382 			    loff_t offset, loff_t len)
2383 {
2384 	struct inode *inode = file_inode(file);
2385 	struct extent_state *cached_state = NULL;
2386 	struct btrfs_root *root = BTRFS_I(inode)->root;
2387 	u64 cur_offset;
2388 	u64 last_byte;
2389 	u64 alloc_start;
2390 	u64 alloc_end;
2391 	u64 alloc_hint = 0;
2392 	u64 locked_end;
2393 	struct extent_map *em;
2394 	int blocksize = BTRFS_I(inode)->root->sectorsize;
2395 	int ret;
2396 
2397 	alloc_start = round_down(offset, blocksize);
2398 	alloc_end = round_up(offset + len, blocksize);
2399 
2400 	/* Make sure we aren't being give some crap mode */
2401 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2402 		return -EOPNOTSUPP;
2403 
2404 	if (mode & FALLOC_FL_PUNCH_HOLE)
2405 		return btrfs_punch_hole(inode, offset, len);
2406 
2407 	/*
2408 	 * Make sure we have enough space before we do the
2409 	 * allocation.
2410 	 */
2411 	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2412 	if (ret)
2413 		return ret;
2414 	if (root->fs_info->quota_enabled) {
2415 		ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2416 		if (ret)
2417 			goto out_reserve_fail;
2418 	}
2419 
2420 	mutex_lock(&inode->i_mutex);
2421 	ret = inode_newsize_ok(inode, alloc_end);
2422 	if (ret)
2423 		goto out;
2424 
2425 	if (alloc_start > inode->i_size) {
2426 		ret = btrfs_cont_expand(inode, i_size_read(inode),
2427 					alloc_start);
2428 		if (ret)
2429 			goto out;
2430 	} else {
2431 		/*
2432 		 * If we are fallocating from the end of the file onward we
2433 		 * need to zero out the end of the page if i_size lands in the
2434 		 * middle of a page.
2435 		 */
2436 		ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2437 		if (ret)
2438 			goto out;
2439 	}
2440 
2441 	/*
2442 	 * wait for ordered IO before we have any locks.  We'll loop again
2443 	 * below with the locks held.
2444 	 */
2445 	ret = btrfs_wait_ordered_range(inode, alloc_start,
2446 				       alloc_end - alloc_start);
2447 	if (ret)
2448 		goto out;
2449 
2450 	locked_end = alloc_end - 1;
2451 	while (1) {
2452 		struct btrfs_ordered_extent *ordered;
2453 
2454 		/* the extent lock is ordered inside the running
2455 		 * transaction
2456 		 */
2457 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2458 				 locked_end, 0, &cached_state);
2459 		ordered = btrfs_lookup_first_ordered_extent(inode,
2460 							    alloc_end - 1);
2461 		if (ordered &&
2462 		    ordered->file_offset + ordered->len > alloc_start &&
2463 		    ordered->file_offset < alloc_end) {
2464 			btrfs_put_ordered_extent(ordered);
2465 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2466 					     alloc_start, locked_end,
2467 					     &cached_state, GFP_NOFS);
2468 			/*
2469 			 * we can't wait on the range with the transaction
2470 			 * running or with the extent lock held
2471 			 */
2472 			ret = btrfs_wait_ordered_range(inode, alloc_start,
2473 						       alloc_end - alloc_start);
2474 			if (ret)
2475 				goto out;
2476 		} else {
2477 			if (ordered)
2478 				btrfs_put_ordered_extent(ordered);
2479 			break;
2480 		}
2481 	}
2482 
2483 	cur_offset = alloc_start;
2484 	while (1) {
2485 		u64 actual_end;
2486 
2487 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2488 				      alloc_end - cur_offset, 0);
2489 		if (IS_ERR_OR_NULL(em)) {
2490 			if (!em)
2491 				ret = -ENOMEM;
2492 			else
2493 				ret = PTR_ERR(em);
2494 			break;
2495 		}
2496 		last_byte = min(extent_map_end(em), alloc_end);
2497 		actual_end = min_t(u64, extent_map_end(em), offset + len);
2498 		last_byte = ALIGN(last_byte, blocksize);
2499 
2500 		if (em->block_start == EXTENT_MAP_HOLE ||
2501 		    (cur_offset >= inode->i_size &&
2502 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2503 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2504 							last_byte - cur_offset,
2505 							1 << inode->i_blkbits,
2506 							offset + len,
2507 							&alloc_hint);
2508 
2509 			if (ret < 0) {
2510 				free_extent_map(em);
2511 				break;
2512 			}
2513 		} else if (actual_end > inode->i_size &&
2514 			   !(mode & FALLOC_FL_KEEP_SIZE)) {
2515 			/*
2516 			 * We didn't need to allocate any more space, but we
2517 			 * still extended the size of the file so we need to
2518 			 * update i_size.
2519 			 */
2520 			inode->i_ctime = CURRENT_TIME;
2521 			i_size_write(inode, actual_end);
2522 			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2523 		}
2524 		free_extent_map(em);
2525 
2526 		cur_offset = last_byte;
2527 		if (cur_offset >= alloc_end) {
2528 			ret = 0;
2529 			break;
2530 		}
2531 	}
2532 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2533 			     &cached_state, GFP_NOFS);
2534 out:
2535 	mutex_unlock(&inode->i_mutex);
2536 	if (root->fs_info->quota_enabled)
2537 		btrfs_qgroup_free(root, alloc_end - alloc_start);
2538 out_reserve_fail:
2539 	/* Let go of our reservation. */
2540 	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2541 	return ret;
2542 }
2543 
2544 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2545 {
2546 	struct btrfs_root *root = BTRFS_I(inode)->root;
2547 	struct extent_map *em = NULL;
2548 	struct extent_state *cached_state = NULL;
2549 	u64 lockstart = *offset;
2550 	u64 lockend = i_size_read(inode);
2551 	u64 start = *offset;
2552 	u64 len = i_size_read(inode);
2553 	int ret = 0;
2554 
2555 	lockend = max_t(u64, root->sectorsize, lockend);
2556 	if (lockend <= lockstart)
2557 		lockend = lockstart + root->sectorsize;
2558 
2559 	lockend--;
2560 	len = lockend - lockstart + 1;
2561 
2562 	len = max_t(u64, len, root->sectorsize);
2563 	if (inode->i_size == 0)
2564 		return -ENXIO;
2565 
2566 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2567 			 &cached_state);
2568 
2569 	while (start < inode->i_size) {
2570 		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2571 		if (IS_ERR(em)) {
2572 			ret = PTR_ERR(em);
2573 			em = NULL;
2574 			break;
2575 		}
2576 
2577 		if (whence == SEEK_HOLE &&
2578 		    (em->block_start == EXTENT_MAP_HOLE ||
2579 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2580 			break;
2581 		else if (whence == SEEK_DATA &&
2582 			   (em->block_start != EXTENT_MAP_HOLE &&
2583 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2584 			break;
2585 
2586 		start = em->start + em->len;
2587 		free_extent_map(em);
2588 		em = NULL;
2589 		cond_resched();
2590 	}
2591 	free_extent_map(em);
2592 	if (!ret) {
2593 		if (whence == SEEK_DATA && start >= inode->i_size)
2594 			ret = -ENXIO;
2595 		else
2596 			*offset = min_t(loff_t, start, inode->i_size);
2597 	}
2598 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2599 			     &cached_state, GFP_NOFS);
2600 	return ret;
2601 }
2602 
2603 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2604 {
2605 	struct inode *inode = file->f_mapping->host;
2606 	int ret;
2607 
2608 	mutex_lock(&inode->i_mutex);
2609 	switch (whence) {
2610 	case SEEK_END:
2611 	case SEEK_CUR:
2612 		offset = generic_file_llseek(file, offset, whence);
2613 		goto out;
2614 	case SEEK_DATA:
2615 	case SEEK_HOLE:
2616 		if (offset >= i_size_read(inode)) {
2617 			mutex_unlock(&inode->i_mutex);
2618 			return -ENXIO;
2619 		}
2620 
2621 		ret = find_desired_extent(inode, &offset, whence);
2622 		if (ret) {
2623 			mutex_unlock(&inode->i_mutex);
2624 			return ret;
2625 		}
2626 	}
2627 
2628 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2629 out:
2630 	mutex_unlock(&inode->i_mutex);
2631 	return offset;
2632 }
2633 
2634 const struct file_operations btrfs_file_operations = {
2635 	.llseek		= btrfs_file_llseek,
2636 	.read		= do_sync_read,
2637 	.write		= do_sync_write,
2638 	.aio_read       = generic_file_aio_read,
2639 	.splice_read	= generic_file_splice_read,
2640 	.aio_write	= btrfs_file_aio_write,
2641 	.mmap		= btrfs_file_mmap,
2642 	.open		= generic_file_open,
2643 	.release	= btrfs_release_file,
2644 	.fsync		= btrfs_sync_file,
2645 	.fallocate	= btrfs_fallocate,
2646 	.unlocked_ioctl	= btrfs_ioctl,
2647 #ifdef CONFIG_COMPAT
2648 	.compat_ioctl	= btrfs_ioctl,
2649 #endif
2650 };
2651 
2652 void btrfs_auto_defrag_exit(void)
2653 {
2654 	if (btrfs_inode_defrag_cachep)
2655 		kmem_cache_destroy(btrfs_inode_defrag_cachep);
2656 }
2657 
2658 int btrfs_auto_defrag_init(void)
2659 {
2660 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2661 					sizeof(struct inode_defrag), 0,
2662 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2663 					NULL);
2664 	if (!btrfs_inode_defrag_cachep)
2665 		return -ENOMEM;
2666 
2667 	return 0;
2668 }
2669