1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/time.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/backing-dev.h> 26 #include <linux/mpage.h> 27 #include <linux/falloc.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/compat.h> 31 #include <linux/slab.h> 32 #include <linux/btrfs.h> 33 #include <linux/uio.h> 34 #include <linux/iversion.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "print-tree.h" 40 #include "tree-log.h" 41 #include "locking.h" 42 #include "volumes.h" 43 #include "qgroup.h" 44 #include "compression.h" 45 46 static struct kmem_cache *btrfs_inode_defrag_cachep; 47 /* 48 * when auto defrag is enabled we 49 * queue up these defrag structs to remember which 50 * inodes need defragging passes 51 */ 52 struct inode_defrag { 53 struct rb_node rb_node; 54 /* objectid */ 55 u64 ino; 56 /* 57 * transid where the defrag was added, we search for 58 * extents newer than this 59 */ 60 u64 transid; 61 62 /* root objectid */ 63 u64 root; 64 65 /* last offset we were able to defrag */ 66 u64 last_offset; 67 68 /* if we've wrapped around back to zero once already */ 69 int cycled; 70 }; 71 72 static int __compare_inode_defrag(struct inode_defrag *defrag1, 73 struct inode_defrag *defrag2) 74 { 75 if (defrag1->root > defrag2->root) 76 return 1; 77 else if (defrag1->root < defrag2->root) 78 return -1; 79 else if (defrag1->ino > defrag2->ino) 80 return 1; 81 else if (defrag1->ino < defrag2->ino) 82 return -1; 83 else 84 return 0; 85 } 86 87 /* pop a record for an inode into the defrag tree. The lock 88 * must be held already 89 * 90 * If you're inserting a record for an older transid than an 91 * existing record, the transid already in the tree is lowered 92 * 93 * If an existing record is found the defrag item you 94 * pass in is freed 95 */ 96 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 97 struct inode_defrag *defrag) 98 { 99 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 100 struct inode_defrag *entry; 101 struct rb_node **p; 102 struct rb_node *parent = NULL; 103 int ret; 104 105 p = &fs_info->defrag_inodes.rb_node; 106 while (*p) { 107 parent = *p; 108 entry = rb_entry(parent, struct inode_defrag, rb_node); 109 110 ret = __compare_inode_defrag(defrag, entry); 111 if (ret < 0) 112 p = &parent->rb_left; 113 else if (ret > 0) 114 p = &parent->rb_right; 115 else { 116 /* if we're reinserting an entry for 117 * an old defrag run, make sure to 118 * lower the transid of our existing record 119 */ 120 if (defrag->transid < entry->transid) 121 entry->transid = defrag->transid; 122 if (defrag->last_offset > entry->last_offset) 123 entry->last_offset = defrag->last_offset; 124 return -EEXIST; 125 } 126 } 127 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 128 rb_link_node(&defrag->rb_node, parent, p); 129 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 130 return 0; 131 } 132 133 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 134 { 135 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 136 return 0; 137 138 if (btrfs_fs_closing(fs_info)) 139 return 0; 140 141 return 1; 142 } 143 144 /* 145 * insert a defrag record for this inode if auto defrag is 146 * enabled 147 */ 148 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 149 struct btrfs_inode *inode) 150 { 151 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 152 struct btrfs_root *root = inode->root; 153 struct inode_defrag *defrag; 154 u64 transid; 155 int ret; 156 157 if (!__need_auto_defrag(fs_info)) 158 return 0; 159 160 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 161 return 0; 162 163 if (trans) 164 transid = trans->transid; 165 else 166 transid = inode->root->last_trans; 167 168 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 169 if (!defrag) 170 return -ENOMEM; 171 172 defrag->ino = btrfs_ino(inode); 173 defrag->transid = transid; 174 defrag->root = root->root_key.objectid; 175 176 spin_lock(&fs_info->defrag_inodes_lock); 177 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 178 /* 179 * If we set IN_DEFRAG flag and evict the inode from memory, 180 * and then re-read this inode, this new inode doesn't have 181 * IN_DEFRAG flag. At the case, we may find the existed defrag. 182 */ 183 ret = __btrfs_add_inode_defrag(inode, defrag); 184 if (ret) 185 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 186 } else { 187 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 188 } 189 spin_unlock(&fs_info->defrag_inodes_lock); 190 return 0; 191 } 192 193 /* 194 * Requeue the defrag object. If there is a defrag object that points to 195 * the same inode in the tree, we will merge them together (by 196 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 197 */ 198 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode, 199 struct inode_defrag *defrag) 200 { 201 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 202 int ret; 203 204 if (!__need_auto_defrag(fs_info)) 205 goto out; 206 207 /* 208 * Here we don't check the IN_DEFRAG flag, because we need merge 209 * them together. 210 */ 211 spin_lock(&fs_info->defrag_inodes_lock); 212 ret = __btrfs_add_inode_defrag(inode, defrag); 213 spin_unlock(&fs_info->defrag_inodes_lock); 214 if (ret) 215 goto out; 216 return; 217 out: 218 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 219 } 220 221 /* 222 * pick the defragable inode that we want, if it doesn't exist, we will get 223 * the next one. 224 */ 225 static struct inode_defrag * 226 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 227 { 228 struct inode_defrag *entry = NULL; 229 struct inode_defrag tmp; 230 struct rb_node *p; 231 struct rb_node *parent = NULL; 232 int ret; 233 234 tmp.ino = ino; 235 tmp.root = root; 236 237 spin_lock(&fs_info->defrag_inodes_lock); 238 p = fs_info->defrag_inodes.rb_node; 239 while (p) { 240 parent = p; 241 entry = rb_entry(parent, struct inode_defrag, rb_node); 242 243 ret = __compare_inode_defrag(&tmp, entry); 244 if (ret < 0) 245 p = parent->rb_left; 246 else if (ret > 0) 247 p = parent->rb_right; 248 else 249 goto out; 250 } 251 252 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 253 parent = rb_next(parent); 254 if (parent) 255 entry = rb_entry(parent, struct inode_defrag, rb_node); 256 else 257 entry = NULL; 258 } 259 out: 260 if (entry) 261 rb_erase(parent, &fs_info->defrag_inodes); 262 spin_unlock(&fs_info->defrag_inodes_lock); 263 return entry; 264 } 265 266 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 267 { 268 struct inode_defrag *defrag; 269 struct rb_node *node; 270 271 spin_lock(&fs_info->defrag_inodes_lock); 272 node = rb_first(&fs_info->defrag_inodes); 273 while (node) { 274 rb_erase(node, &fs_info->defrag_inodes); 275 defrag = rb_entry(node, struct inode_defrag, rb_node); 276 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 277 278 cond_resched_lock(&fs_info->defrag_inodes_lock); 279 280 node = rb_first(&fs_info->defrag_inodes); 281 } 282 spin_unlock(&fs_info->defrag_inodes_lock); 283 } 284 285 #define BTRFS_DEFRAG_BATCH 1024 286 287 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 288 struct inode_defrag *defrag) 289 { 290 struct btrfs_root *inode_root; 291 struct inode *inode; 292 struct btrfs_key key; 293 struct btrfs_ioctl_defrag_range_args range; 294 int num_defrag; 295 int index; 296 int ret; 297 298 /* get the inode */ 299 key.objectid = defrag->root; 300 key.type = BTRFS_ROOT_ITEM_KEY; 301 key.offset = (u64)-1; 302 303 index = srcu_read_lock(&fs_info->subvol_srcu); 304 305 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 306 if (IS_ERR(inode_root)) { 307 ret = PTR_ERR(inode_root); 308 goto cleanup; 309 } 310 311 key.objectid = defrag->ino; 312 key.type = BTRFS_INODE_ITEM_KEY; 313 key.offset = 0; 314 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 315 if (IS_ERR(inode)) { 316 ret = PTR_ERR(inode); 317 goto cleanup; 318 } 319 srcu_read_unlock(&fs_info->subvol_srcu, index); 320 321 /* do a chunk of defrag */ 322 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 323 memset(&range, 0, sizeof(range)); 324 range.len = (u64)-1; 325 range.start = defrag->last_offset; 326 327 sb_start_write(fs_info->sb); 328 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 329 BTRFS_DEFRAG_BATCH); 330 sb_end_write(fs_info->sb); 331 /* 332 * if we filled the whole defrag batch, there 333 * must be more work to do. Queue this defrag 334 * again 335 */ 336 if (num_defrag == BTRFS_DEFRAG_BATCH) { 337 defrag->last_offset = range.start; 338 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 339 } else if (defrag->last_offset && !defrag->cycled) { 340 /* 341 * we didn't fill our defrag batch, but 342 * we didn't start at zero. Make sure we loop 343 * around to the start of the file. 344 */ 345 defrag->last_offset = 0; 346 defrag->cycled = 1; 347 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 348 } else { 349 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 350 } 351 352 iput(inode); 353 return 0; 354 cleanup: 355 srcu_read_unlock(&fs_info->subvol_srcu, index); 356 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 357 return ret; 358 } 359 360 /* 361 * run through the list of inodes in the FS that need 362 * defragging 363 */ 364 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 365 { 366 struct inode_defrag *defrag; 367 u64 first_ino = 0; 368 u64 root_objectid = 0; 369 370 atomic_inc(&fs_info->defrag_running); 371 while (1) { 372 /* Pause the auto defragger. */ 373 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 374 &fs_info->fs_state)) 375 break; 376 377 if (!__need_auto_defrag(fs_info)) 378 break; 379 380 /* find an inode to defrag */ 381 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 382 first_ino); 383 if (!defrag) { 384 if (root_objectid || first_ino) { 385 root_objectid = 0; 386 first_ino = 0; 387 continue; 388 } else { 389 break; 390 } 391 } 392 393 first_ino = defrag->ino + 1; 394 root_objectid = defrag->root; 395 396 __btrfs_run_defrag_inode(fs_info, defrag); 397 } 398 atomic_dec(&fs_info->defrag_running); 399 400 /* 401 * during unmount, we use the transaction_wait queue to 402 * wait for the defragger to stop 403 */ 404 wake_up(&fs_info->transaction_wait); 405 return 0; 406 } 407 408 /* simple helper to fault in pages and copy. This should go away 409 * and be replaced with calls into generic code. 410 */ 411 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 412 struct page **prepared_pages, 413 struct iov_iter *i) 414 { 415 size_t copied = 0; 416 size_t total_copied = 0; 417 int pg = 0; 418 int offset = pos & (PAGE_SIZE - 1); 419 420 while (write_bytes > 0) { 421 size_t count = min_t(size_t, 422 PAGE_SIZE - offset, write_bytes); 423 struct page *page = prepared_pages[pg]; 424 /* 425 * Copy data from userspace to the current page 426 */ 427 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 428 429 /* Flush processor's dcache for this page */ 430 flush_dcache_page(page); 431 432 /* 433 * if we get a partial write, we can end up with 434 * partially up to date pages. These add 435 * a lot of complexity, so make sure they don't 436 * happen by forcing this copy to be retried. 437 * 438 * The rest of the btrfs_file_write code will fall 439 * back to page at a time copies after we return 0. 440 */ 441 if (!PageUptodate(page) && copied < count) 442 copied = 0; 443 444 iov_iter_advance(i, copied); 445 write_bytes -= copied; 446 total_copied += copied; 447 448 /* Return to btrfs_file_write_iter to fault page */ 449 if (unlikely(copied == 0)) 450 break; 451 452 if (copied < PAGE_SIZE - offset) { 453 offset += copied; 454 } else { 455 pg++; 456 offset = 0; 457 } 458 } 459 return total_copied; 460 } 461 462 /* 463 * unlocks pages after btrfs_file_write is done with them 464 */ 465 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 466 { 467 size_t i; 468 for (i = 0; i < num_pages; i++) { 469 /* page checked is some magic around finding pages that 470 * have been modified without going through btrfs_set_page_dirty 471 * clear it here. There should be no need to mark the pages 472 * accessed as prepare_pages should have marked them accessed 473 * in prepare_pages via find_or_create_page() 474 */ 475 ClearPageChecked(pages[i]); 476 unlock_page(pages[i]); 477 put_page(pages[i]); 478 } 479 } 480 481 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 482 const u64 start, 483 const u64 len, 484 struct extent_state **cached_state) 485 { 486 u64 search_start = start; 487 const u64 end = start + len - 1; 488 489 while (search_start < end) { 490 const u64 search_len = end - search_start + 1; 491 struct extent_map *em; 492 u64 em_len; 493 int ret = 0; 494 495 em = btrfs_get_extent(inode, NULL, 0, search_start, 496 search_len, 0); 497 if (IS_ERR(em)) 498 return PTR_ERR(em); 499 500 if (em->block_start != EXTENT_MAP_HOLE) 501 goto next; 502 503 em_len = em->len; 504 if (em->start < search_start) 505 em_len -= search_start - em->start; 506 if (em_len > search_len) 507 em_len = search_len; 508 509 ret = set_extent_bit(&inode->io_tree, search_start, 510 search_start + em_len - 1, 511 EXTENT_DELALLOC_NEW, 512 NULL, cached_state, GFP_NOFS); 513 next: 514 search_start = extent_map_end(em); 515 free_extent_map(em); 516 if (ret) 517 return ret; 518 } 519 return 0; 520 } 521 522 /* 523 * after copy_from_user, pages need to be dirtied and we need to make 524 * sure holes are created between the current EOF and the start of 525 * any next extents (if required). 526 * 527 * this also makes the decision about creating an inline extent vs 528 * doing real data extents, marking pages dirty and delalloc as required. 529 */ 530 int btrfs_dirty_pages(struct inode *inode, struct page **pages, 531 size_t num_pages, loff_t pos, size_t write_bytes, 532 struct extent_state **cached) 533 { 534 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 535 int err = 0; 536 int i; 537 u64 num_bytes; 538 u64 start_pos; 539 u64 end_of_last_block; 540 u64 end_pos = pos + write_bytes; 541 loff_t isize = i_size_read(inode); 542 unsigned int extra_bits = 0; 543 544 start_pos = pos & ~((u64) fs_info->sectorsize - 1); 545 num_bytes = round_up(write_bytes + pos - start_pos, 546 fs_info->sectorsize); 547 548 end_of_last_block = start_pos + num_bytes - 1; 549 550 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) { 551 if (start_pos >= isize && 552 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) { 553 /* 554 * There can't be any extents following eof in this case 555 * so just set the delalloc new bit for the range 556 * directly. 557 */ 558 extra_bits |= EXTENT_DELALLOC_NEW; 559 } else { 560 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode), 561 start_pos, 562 num_bytes, cached); 563 if (err) 564 return err; 565 } 566 } 567 568 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 569 extra_bits, cached, 0); 570 if (err) 571 return err; 572 573 for (i = 0; i < num_pages; i++) { 574 struct page *p = pages[i]; 575 SetPageUptodate(p); 576 ClearPageChecked(p); 577 set_page_dirty(p); 578 } 579 580 /* 581 * we've only changed i_size in ram, and we haven't updated 582 * the disk i_size. There is no need to log the inode 583 * at this time. 584 */ 585 if (end_pos > isize) 586 i_size_write(inode, end_pos); 587 return 0; 588 } 589 590 /* 591 * this drops all the extents in the cache that intersect the range 592 * [start, end]. Existing extents are split as required. 593 */ 594 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 595 int skip_pinned) 596 { 597 struct extent_map *em; 598 struct extent_map *split = NULL; 599 struct extent_map *split2 = NULL; 600 struct extent_map_tree *em_tree = &inode->extent_tree; 601 u64 len = end - start + 1; 602 u64 gen; 603 int ret; 604 int testend = 1; 605 unsigned long flags; 606 int compressed = 0; 607 bool modified; 608 609 WARN_ON(end < start); 610 if (end == (u64)-1) { 611 len = (u64)-1; 612 testend = 0; 613 } 614 while (1) { 615 int no_splits = 0; 616 617 modified = false; 618 if (!split) 619 split = alloc_extent_map(); 620 if (!split2) 621 split2 = alloc_extent_map(); 622 if (!split || !split2) 623 no_splits = 1; 624 625 write_lock(&em_tree->lock); 626 em = lookup_extent_mapping(em_tree, start, len); 627 if (!em) { 628 write_unlock(&em_tree->lock); 629 break; 630 } 631 flags = em->flags; 632 gen = em->generation; 633 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 634 if (testend && em->start + em->len >= start + len) { 635 free_extent_map(em); 636 write_unlock(&em_tree->lock); 637 break; 638 } 639 start = em->start + em->len; 640 if (testend) 641 len = start + len - (em->start + em->len); 642 free_extent_map(em); 643 write_unlock(&em_tree->lock); 644 continue; 645 } 646 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 647 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 648 clear_bit(EXTENT_FLAG_LOGGING, &flags); 649 modified = !list_empty(&em->list); 650 if (no_splits) 651 goto next; 652 653 if (em->start < start) { 654 split->start = em->start; 655 split->len = start - em->start; 656 657 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 658 split->orig_start = em->orig_start; 659 split->block_start = em->block_start; 660 661 if (compressed) 662 split->block_len = em->block_len; 663 else 664 split->block_len = split->len; 665 split->orig_block_len = max(split->block_len, 666 em->orig_block_len); 667 split->ram_bytes = em->ram_bytes; 668 } else { 669 split->orig_start = split->start; 670 split->block_len = 0; 671 split->block_start = em->block_start; 672 split->orig_block_len = 0; 673 split->ram_bytes = split->len; 674 } 675 676 split->generation = gen; 677 split->bdev = em->bdev; 678 split->flags = flags; 679 split->compress_type = em->compress_type; 680 replace_extent_mapping(em_tree, em, split, modified); 681 free_extent_map(split); 682 split = split2; 683 split2 = NULL; 684 } 685 if (testend && em->start + em->len > start + len) { 686 u64 diff = start + len - em->start; 687 688 split->start = start + len; 689 split->len = em->start + em->len - (start + len); 690 split->bdev = em->bdev; 691 split->flags = flags; 692 split->compress_type = em->compress_type; 693 split->generation = gen; 694 695 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 696 split->orig_block_len = max(em->block_len, 697 em->orig_block_len); 698 699 split->ram_bytes = em->ram_bytes; 700 if (compressed) { 701 split->block_len = em->block_len; 702 split->block_start = em->block_start; 703 split->orig_start = em->orig_start; 704 } else { 705 split->block_len = split->len; 706 split->block_start = em->block_start 707 + diff; 708 split->orig_start = em->orig_start; 709 } 710 } else { 711 split->ram_bytes = split->len; 712 split->orig_start = split->start; 713 split->block_len = 0; 714 split->block_start = em->block_start; 715 split->orig_block_len = 0; 716 } 717 718 if (extent_map_in_tree(em)) { 719 replace_extent_mapping(em_tree, em, split, 720 modified); 721 } else { 722 ret = add_extent_mapping(em_tree, split, 723 modified); 724 ASSERT(ret == 0); /* Logic error */ 725 } 726 free_extent_map(split); 727 split = NULL; 728 } 729 next: 730 if (extent_map_in_tree(em)) 731 remove_extent_mapping(em_tree, em); 732 write_unlock(&em_tree->lock); 733 734 /* once for us */ 735 free_extent_map(em); 736 /* once for the tree*/ 737 free_extent_map(em); 738 } 739 if (split) 740 free_extent_map(split); 741 if (split2) 742 free_extent_map(split2); 743 } 744 745 /* 746 * this is very complex, but the basic idea is to drop all extents 747 * in the range start - end. hint_block is filled in with a block number 748 * that would be a good hint to the block allocator for this file. 749 * 750 * If an extent intersects the range but is not entirely inside the range 751 * it is either truncated or split. Anything entirely inside the range 752 * is deleted from the tree. 753 */ 754 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 755 struct btrfs_root *root, struct inode *inode, 756 struct btrfs_path *path, u64 start, u64 end, 757 u64 *drop_end, int drop_cache, 758 int replace_extent, 759 u32 extent_item_size, 760 int *key_inserted) 761 { 762 struct btrfs_fs_info *fs_info = root->fs_info; 763 struct extent_buffer *leaf; 764 struct btrfs_file_extent_item *fi; 765 struct btrfs_key key; 766 struct btrfs_key new_key; 767 u64 ino = btrfs_ino(BTRFS_I(inode)); 768 u64 search_start = start; 769 u64 disk_bytenr = 0; 770 u64 num_bytes = 0; 771 u64 extent_offset = 0; 772 u64 extent_end = 0; 773 u64 last_end = start; 774 int del_nr = 0; 775 int del_slot = 0; 776 int extent_type; 777 int recow; 778 int ret; 779 int modify_tree = -1; 780 int update_refs; 781 int found = 0; 782 int leafs_visited = 0; 783 784 if (drop_cache) 785 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0); 786 787 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 788 modify_tree = 0; 789 790 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 791 root == fs_info->tree_root); 792 while (1) { 793 recow = 0; 794 ret = btrfs_lookup_file_extent(trans, root, path, ino, 795 search_start, modify_tree); 796 if (ret < 0) 797 break; 798 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 799 leaf = path->nodes[0]; 800 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 801 if (key.objectid == ino && 802 key.type == BTRFS_EXTENT_DATA_KEY) 803 path->slots[0]--; 804 } 805 ret = 0; 806 leafs_visited++; 807 next_slot: 808 leaf = path->nodes[0]; 809 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 810 BUG_ON(del_nr > 0); 811 ret = btrfs_next_leaf(root, path); 812 if (ret < 0) 813 break; 814 if (ret > 0) { 815 ret = 0; 816 break; 817 } 818 leafs_visited++; 819 leaf = path->nodes[0]; 820 recow = 1; 821 } 822 823 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 824 825 if (key.objectid > ino) 826 break; 827 if (WARN_ON_ONCE(key.objectid < ino) || 828 key.type < BTRFS_EXTENT_DATA_KEY) { 829 ASSERT(del_nr == 0); 830 path->slots[0]++; 831 goto next_slot; 832 } 833 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 834 break; 835 836 fi = btrfs_item_ptr(leaf, path->slots[0], 837 struct btrfs_file_extent_item); 838 extent_type = btrfs_file_extent_type(leaf, fi); 839 840 if (extent_type == BTRFS_FILE_EXTENT_REG || 841 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 842 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 843 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 844 extent_offset = btrfs_file_extent_offset(leaf, fi); 845 extent_end = key.offset + 846 btrfs_file_extent_num_bytes(leaf, fi); 847 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 848 extent_end = key.offset + 849 btrfs_file_extent_inline_len(leaf, 850 path->slots[0], fi); 851 } else { 852 /* can't happen */ 853 BUG(); 854 } 855 856 /* 857 * Don't skip extent items representing 0 byte lengths. They 858 * used to be created (bug) if while punching holes we hit 859 * -ENOSPC condition. So if we find one here, just ensure we 860 * delete it, otherwise we would insert a new file extent item 861 * with the same key (offset) as that 0 bytes length file 862 * extent item in the call to setup_items_for_insert() later 863 * in this function. 864 */ 865 if (extent_end == key.offset && extent_end >= search_start) { 866 last_end = extent_end; 867 goto delete_extent_item; 868 } 869 870 if (extent_end <= search_start) { 871 path->slots[0]++; 872 goto next_slot; 873 } 874 875 found = 1; 876 search_start = max(key.offset, start); 877 if (recow || !modify_tree) { 878 modify_tree = -1; 879 btrfs_release_path(path); 880 continue; 881 } 882 883 /* 884 * | - range to drop - | 885 * | -------- extent -------- | 886 */ 887 if (start > key.offset && end < extent_end) { 888 BUG_ON(del_nr > 0); 889 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 890 ret = -EOPNOTSUPP; 891 break; 892 } 893 894 memcpy(&new_key, &key, sizeof(new_key)); 895 new_key.offset = start; 896 ret = btrfs_duplicate_item(trans, root, path, 897 &new_key); 898 if (ret == -EAGAIN) { 899 btrfs_release_path(path); 900 continue; 901 } 902 if (ret < 0) 903 break; 904 905 leaf = path->nodes[0]; 906 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 907 struct btrfs_file_extent_item); 908 btrfs_set_file_extent_num_bytes(leaf, fi, 909 start - key.offset); 910 911 fi = btrfs_item_ptr(leaf, path->slots[0], 912 struct btrfs_file_extent_item); 913 914 extent_offset += start - key.offset; 915 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 916 btrfs_set_file_extent_num_bytes(leaf, fi, 917 extent_end - start); 918 btrfs_mark_buffer_dirty(leaf); 919 920 if (update_refs && disk_bytenr > 0) { 921 ret = btrfs_inc_extent_ref(trans, root, 922 disk_bytenr, num_bytes, 0, 923 root->root_key.objectid, 924 new_key.objectid, 925 start - extent_offset); 926 BUG_ON(ret); /* -ENOMEM */ 927 } 928 key.offset = start; 929 } 930 /* 931 * From here on out we will have actually dropped something, so 932 * last_end can be updated. 933 */ 934 last_end = extent_end; 935 936 /* 937 * | ---- range to drop ----- | 938 * | -------- extent -------- | 939 */ 940 if (start <= key.offset && end < extent_end) { 941 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 942 ret = -EOPNOTSUPP; 943 break; 944 } 945 946 memcpy(&new_key, &key, sizeof(new_key)); 947 new_key.offset = end; 948 btrfs_set_item_key_safe(fs_info, path, &new_key); 949 950 extent_offset += end - key.offset; 951 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 952 btrfs_set_file_extent_num_bytes(leaf, fi, 953 extent_end - end); 954 btrfs_mark_buffer_dirty(leaf); 955 if (update_refs && disk_bytenr > 0) 956 inode_sub_bytes(inode, end - key.offset); 957 break; 958 } 959 960 search_start = extent_end; 961 /* 962 * | ---- range to drop ----- | 963 * | -------- extent -------- | 964 */ 965 if (start > key.offset && end >= extent_end) { 966 BUG_ON(del_nr > 0); 967 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 968 ret = -EOPNOTSUPP; 969 break; 970 } 971 972 btrfs_set_file_extent_num_bytes(leaf, fi, 973 start - key.offset); 974 btrfs_mark_buffer_dirty(leaf); 975 if (update_refs && disk_bytenr > 0) 976 inode_sub_bytes(inode, extent_end - start); 977 if (end == extent_end) 978 break; 979 980 path->slots[0]++; 981 goto next_slot; 982 } 983 984 /* 985 * | ---- range to drop ----- | 986 * | ------ extent ------ | 987 */ 988 if (start <= key.offset && end >= extent_end) { 989 delete_extent_item: 990 if (del_nr == 0) { 991 del_slot = path->slots[0]; 992 del_nr = 1; 993 } else { 994 BUG_ON(del_slot + del_nr != path->slots[0]); 995 del_nr++; 996 } 997 998 if (update_refs && 999 extent_type == BTRFS_FILE_EXTENT_INLINE) { 1000 inode_sub_bytes(inode, 1001 extent_end - key.offset); 1002 extent_end = ALIGN(extent_end, 1003 fs_info->sectorsize); 1004 } else if (update_refs && disk_bytenr > 0) { 1005 ret = btrfs_free_extent(trans, root, 1006 disk_bytenr, num_bytes, 0, 1007 root->root_key.objectid, 1008 key.objectid, key.offset - 1009 extent_offset); 1010 BUG_ON(ret); /* -ENOMEM */ 1011 inode_sub_bytes(inode, 1012 extent_end - key.offset); 1013 } 1014 1015 if (end == extent_end) 1016 break; 1017 1018 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 1019 path->slots[0]++; 1020 goto next_slot; 1021 } 1022 1023 ret = btrfs_del_items(trans, root, path, del_slot, 1024 del_nr); 1025 if (ret) { 1026 btrfs_abort_transaction(trans, ret); 1027 break; 1028 } 1029 1030 del_nr = 0; 1031 del_slot = 0; 1032 1033 btrfs_release_path(path); 1034 continue; 1035 } 1036 1037 BUG_ON(1); 1038 } 1039 1040 if (!ret && del_nr > 0) { 1041 /* 1042 * Set path->slots[0] to first slot, so that after the delete 1043 * if items are move off from our leaf to its immediate left or 1044 * right neighbor leafs, we end up with a correct and adjusted 1045 * path->slots[0] for our insertion (if replace_extent != 0). 1046 */ 1047 path->slots[0] = del_slot; 1048 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1049 if (ret) 1050 btrfs_abort_transaction(trans, ret); 1051 } 1052 1053 leaf = path->nodes[0]; 1054 /* 1055 * If btrfs_del_items() was called, it might have deleted a leaf, in 1056 * which case it unlocked our path, so check path->locks[0] matches a 1057 * write lock. 1058 */ 1059 if (!ret && replace_extent && leafs_visited == 1 && 1060 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 1061 path->locks[0] == BTRFS_WRITE_LOCK) && 1062 btrfs_leaf_free_space(fs_info, leaf) >= 1063 sizeof(struct btrfs_item) + extent_item_size) { 1064 1065 key.objectid = ino; 1066 key.type = BTRFS_EXTENT_DATA_KEY; 1067 key.offset = start; 1068 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 1069 struct btrfs_key slot_key; 1070 1071 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 1072 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1073 path->slots[0]++; 1074 } 1075 setup_items_for_insert(root, path, &key, 1076 &extent_item_size, 1077 extent_item_size, 1078 sizeof(struct btrfs_item) + 1079 extent_item_size, 1); 1080 *key_inserted = 1; 1081 } 1082 1083 if (!replace_extent || !(*key_inserted)) 1084 btrfs_release_path(path); 1085 if (drop_end) 1086 *drop_end = found ? min(end, last_end) : end; 1087 return ret; 1088 } 1089 1090 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1091 struct btrfs_root *root, struct inode *inode, u64 start, 1092 u64 end, int drop_cache) 1093 { 1094 struct btrfs_path *path; 1095 int ret; 1096 1097 path = btrfs_alloc_path(); 1098 if (!path) 1099 return -ENOMEM; 1100 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1101 drop_cache, 0, 0, NULL); 1102 btrfs_free_path(path); 1103 return ret; 1104 } 1105 1106 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1107 u64 objectid, u64 bytenr, u64 orig_offset, 1108 u64 *start, u64 *end) 1109 { 1110 struct btrfs_file_extent_item *fi; 1111 struct btrfs_key key; 1112 u64 extent_end; 1113 1114 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1115 return 0; 1116 1117 btrfs_item_key_to_cpu(leaf, &key, slot); 1118 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1119 return 0; 1120 1121 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1122 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1123 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1124 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1125 btrfs_file_extent_compression(leaf, fi) || 1126 btrfs_file_extent_encryption(leaf, fi) || 1127 btrfs_file_extent_other_encoding(leaf, fi)) 1128 return 0; 1129 1130 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1131 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1132 return 0; 1133 1134 *start = key.offset; 1135 *end = extent_end; 1136 return 1; 1137 } 1138 1139 /* 1140 * Mark extent in the range start - end as written. 1141 * 1142 * This changes extent type from 'pre-allocated' to 'regular'. If only 1143 * part of extent is marked as written, the extent will be split into 1144 * two or three. 1145 */ 1146 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1147 struct btrfs_inode *inode, u64 start, u64 end) 1148 { 1149 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1150 struct btrfs_root *root = inode->root; 1151 struct extent_buffer *leaf; 1152 struct btrfs_path *path; 1153 struct btrfs_file_extent_item *fi; 1154 struct btrfs_key key; 1155 struct btrfs_key new_key; 1156 u64 bytenr; 1157 u64 num_bytes; 1158 u64 extent_end; 1159 u64 orig_offset; 1160 u64 other_start; 1161 u64 other_end; 1162 u64 split; 1163 int del_nr = 0; 1164 int del_slot = 0; 1165 int recow; 1166 int ret; 1167 u64 ino = btrfs_ino(inode); 1168 1169 path = btrfs_alloc_path(); 1170 if (!path) 1171 return -ENOMEM; 1172 again: 1173 recow = 0; 1174 split = start; 1175 key.objectid = ino; 1176 key.type = BTRFS_EXTENT_DATA_KEY; 1177 key.offset = split; 1178 1179 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1180 if (ret < 0) 1181 goto out; 1182 if (ret > 0 && path->slots[0] > 0) 1183 path->slots[0]--; 1184 1185 leaf = path->nodes[0]; 1186 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1187 if (key.objectid != ino || 1188 key.type != BTRFS_EXTENT_DATA_KEY) { 1189 ret = -EINVAL; 1190 btrfs_abort_transaction(trans, ret); 1191 goto out; 1192 } 1193 fi = btrfs_item_ptr(leaf, path->slots[0], 1194 struct btrfs_file_extent_item); 1195 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1196 ret = -EINVAL; 1197 btrfs_abort_transaction(trans, ret); 1198 goto out; 1199 } 1200 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1201 if (key.offset > start || extent_end < end) { 1202 ret = -EINVAL; 1203 btrfs_abort_transaction(trans, ret); 1204 goto out; 1205 } 1206 1207 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1208 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1209 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1210 memcpy(&new_key, &key, sizeof(new_key)); 1211 1212 if (start == key.offset && end < extent_end) { 1213 other_start = 0; 1214 other_end = start; 1215 if (extent_mergeable(leaf, path->slots[0] - 1, 1216 ino, bytenr, orig_offset, 1217 &other_start, &other_end)) { 1218 new_key.offset = end; 1219 btrfs_set_item_key_safe(fs_info, path, &new_key); 1220 fi = btrfs_item_ptr(leaf, path->slots[0], 1221 struct btrfs_file_extent_item); 1222 btrfs_set_file_extent_generation(leaf, fi, 1223 trans->transid); 1224 btrfs_set_file_extent_num_bytes(leaf, fi, 1225 extent_end - end); 1226 btrfs_set_file_extent_offset(leaf, fi, 1227 end - orig_offset); 1228 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1229 struct btrfs_file_extent_item); 1230 btrfs_set_file_extent_generation(leaf, fi, 1231 trans->transid); 1232 btrfs_set_file_extent_num_bytes(leaf, fi, 1233 end - other_start); 1234 btrfs_mark_buffer_dirty(leaf); 1235 goto out; 1236 } 1237 } 1238 1239 if (start > key.offset && end == extent_end) { 1240 other_start = end; 1241 other_end = 0; 1242 if (extent_mergeable(leaf, path->slots[0] + 1, 1243 ino, bytenr, orig_offset, 1244 &other_start, &other_end)) { 1245 fi = btrfs_item_ptr(leaf, path->slots[0], 1246 struct btrfs_file_extent_item); 1247 btrfs_set_file_extent_num_bytes(leaf, fi, 1248 start - key.offset); 1249 btrfs_set_file_extent_generation(leaf, fi, 1250 trans->transid); 1251 path->slots[0]++; 1252 new_key.offset = start; 1253 btrfs_set_item_key_safe(fs_info, path, &new_key); 1254 1255 fi = btrfs_item_ptr(leaf, path->slots[0], 1256 struct btrfs_file_extent_item); 1257 btrfs_set_file_extent_generation(leaf, fi, 1258 trans->transid); 1259 btrfs_set_file_extent_num_bytes(leaf, fi, 1260 other_end - start); 1261 btrfs_set_file_extent_offset(leaf, fi, 1262 start - orig_offset); 1263 btrfs_mark_buffer_dirty(leaf); 1264 goto out; 1265 } 1266 } 1267 1268 while (start > key.offset || end < extent_end) { 1269 if (key.offset == start) 1270 split = end; 1271 1272 new_key.offset = split; 1273 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1274 if (ret == -EAGAIN) { 1275 btrfs_release_path(path); 1276 goto again; 1277 } 1278 if (ret < 0) { 1279 btrfs_abort_transaction(trans, ret); 1280 goto out; 1281 } 1282 1283 leaf = path->nodes[0]; 1284 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1285 struct btrfs_file_extent_item); 1286 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1287 btrfs_set_file_extent_num_bytes(leaf, fi, 1288 split - key.offset); 1289 1290 fi = btrfs_item_ptr(leaf, path->slots[0], 1291 struct btrfs_file_extent_item); 1292 1293 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1294 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1295 btrfs_set_file_extent_num_bytes(leaf, fi, 1296 extent_end - split); 1297 btrfs_mark_buffer_dirty(leaf); 1298 1299 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 1300 0, root->root_key.objectid, 1301 ino, orig_offset); 1302 if (ret) { 1303 btrfs_abort_transaction(trans, ret); 1304 goto out; 1305 } 1306 1307 if (split == start) { 1308 key.offset = start; 1309 } else { 1310 if (start != key.offset) { 1311 ret = -EINVAL; 1312 btrfs_abort_transaction(trans, ret); 1313 goto out; 1314 } 1315 path->slots[0]--; 1316 extent_end = end; 1317 } 1318 recow = 1; 1319 } 1320 1321 other_start = end; 1322 other_end = 0; 1323 if (extent_mergeable(leaf, path->slots[0] + 1, 1324 ino, bytenr, orig_offset, 1325 &other_start, &other_end)) { 1326 if (recow) { 1327 btrfs_release_path(path); 1328 goto again; 1329 } 1330 extent_end = other_end; 1331 del_slot = path->slots[0] + 1; 1332 del_nr++; 1333 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1334 0, root->root_key.objectid, 1335 ino, orig_offset); 1336 if (ret) { 1337 btrfs_abort_transaction(trans, ret); 1338 goto out; 1339 } 1340 } 1341 other_start = 0; 1342 other_end = start; 1343 if (extent_mergeable(leaf, path->slots[0] - 1, 1344 ino, bytenr, orig_offset, 1345 &other_start, &other_end)) { 1346 if (recow) { 1347 btrfs_release_path(path); 1348 goto again; 1349 } 1350 key.offset = other_start; 1351 del_slot = path->slots[0]; 1352 del_nr++; 1353 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1354 0, root->root_key.objectid, 1355 ino, orig_offset); 1356 if (ret) { 1357 btrfs_abort_transaction(trans, ret); 1358 goto out; 1359 } 1360 } 1361 if (del_nr == 0) { 1362 fi = btrfs_item_ptr(leaf, path->slots[0], 1363 struct btrfs_file_extent_item); 1364 btrfs_set_file_extent_type(leaf, fi, 1365 BTRFS_FILE_EXTENT_REG); 1366 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1367 btrfs_mark_buffer_dirty(leaf); 1368 } else { 1369 fi = btrfs_item_ptr(leaf, del_slot - 1, 1370 struct btrfs_file_extent_item); 1371 btrfs_set_file_extent_type(leaf, fi, 1372 BTRFS_FILE_EXTENT_REG); 1373 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1374 btrfs_set_file_extent_num_bytes(leaf, fi, 1375 extent_end - key.offset); 1376 btrfs_mark_buffer_dirty(leaf); 1377 1378 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1379 if (ret < 0) { 1380 btrfs_abort_transaction(trans, ret); 1381 goto out; 1382 } 1383 } 1384 out: 1385 btrfs_free_path(path); 1386 return 0; 1387 } 1388 1389 /* 1390 * on error we return an unlocked page and the error value 1391 * on success we return a locked page and 0 1392 */ 1393 static int prepare_uptodate_page(struct inode *inode, 1394 struct page *page, u64 pos, 1395 bool force_uptodate) 1396 { 1397 int ret = 0; 1398 1399 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1400 !PageUptodate(page)) { 1401 ret = btrfs_readpage(NULL, page); 1402 if (ret) 1403 return ret; 1404 lock_page(page); 1405 if (!PageUptodate(page)) { 1406 unlock_page(page); 1407 return -EIO; 1408 } 1409 if (page->mapping != inode->i_mapping) { 1410 unlock_page(page); 1411 return -EAGAIN; 1412 } 1413 } 1414 return 0; 1415 } 1416 1417 /* 1418 * this just gets pages into the page cache and locks them down. 1419 */ 1420 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1421 size_t num_pages, loff_t pos, 1422 size_t write_bytes, bool force_uptodate) 1423 { 1424 int i; 1425 unsigned long index = pos >> PAGE_SHIFT; 1426 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1427 int err = 0; 1428 int faili; 1429 1430 for (i = 0; i < num_pages; i++) { 1431 again: 1432 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1433 mask | __GFP_WRITE); 1434 if (!pages[i]) { 1435 faili = i - 1; 1436 err = -ENOMEM; 1437 goto fail; 1438 } 1439 1440 if (i == 0) 1441 err = prepare_uptodate_page(inode, pages[i], pos, 1442 force_uptodate); 1443 if (!err && i == num_pages - 1) 1444 err = prepare_uptodate_page(inode, pages[i], 1445 pos + write_bytes, false); 1446 if (err) { 1447 put_page(pages[i]); 1448 if (err == -EAGAIN) { 1449 err = 0; 1450 goto again; 1451 } 1452 faili = i - 1; 1453 goto fail; 1454 } 1455 wait_on_page_writeback(pages[i]); 1456 } 1457 1458 return 0; 1459 fail: 1460 while (faili >= 0) { 1461 unlock_page(pages[faili]); 1462 put_page(pages[faili]); 1463 faili--; 1464 } 1465 return err; 1466 1467 } 1468 1469 /* 1470 * This function locks the extent and properly waits for data=ordered extents 1471 * to finish before allowing the pages to be modified if need. 1472 * 1473 * The return value: 1474 * 1 - the extent is locked 1475 * 0 - the extent is not locked, and everything is OK 1476 * -EAGAIN - need re-prepare the pages 1477 * the other < 0 number - Something wrong happens 1478 */ 1479 static noinline int 1480 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1481 size_t num_pages, loff_t pos, 1482 size_t write_bytes, 1483 u64 *lockstart, u64 *lockend, 1484 struct extent_state **cached_state) 1485 { 1486 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1487 u64 start_pos; 1488 u64 last_pos; 1489 int i; 1490 int ret = 0; 1491 1492 start_pos = round_down(pos, fs_info->sectorsize); 1493 last_pos = start_pos 1494 + round_up(pos + write_bytes - start_pos, 1495 fs_info->sectorsize) - 1; 1496 1497 if (start_pos < inode->vfs_inode.i_size) { 1498 struct btrfs_ordered_extent *ordered; 1499 1500 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1501 cached_state); 1502 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1503 last_pos - start_pos + 1); 1504 if (ordered && 1505 ordered->file_offset + ordered->len > start_pos && 1506 ordered->file_offset <= last_pos) { 1507 unlock_extent_cached(&inode->io_tree, start_pos, 1508 last_pos, cached_state); 1509 for (i = 0; i < num_pages; i++) { 1510 unlock_page(pages[i]); 1511 put_page(pages[i]); 1512 } 1513 btrfs_start_ordered_extent(&inode->vfs_inode, 1514 ordered, 1); 1515 btrfs_put_ordered_extent(ordered); 1516 return -EAGAIN; 1517 } 1518 if (ordered) 1519 btrfs_put_ordered_extent(ordered); 1520 clear_extent_bit(&inode->io_tree, start_pos, last_pos, 1521 EXTENT_DIRTY | EXTENT_DELALLOC | 1522 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1523 0, 0, cached_state); 1524 *lockstart = start_pos; 1525 *lockend = last_pos; 1526 ret = 1; 1527 } 1528 1529 for (i = 0; i < num_pages; i++) { 1530 if (clear_page_dirty_for_io(pages[i])) 1531 account_page_redirty(pages[i]); 1532 set_page_extent_mapped(pages[i]); 1533 WARN_ON(!PageLocked(pages[i])); 1534 } 1535 1536 return ret; 1537 } 1538 1539 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1540 size_t *write_bytes) 1541 { 1542 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1543 struct btrfs_root *root = inode->root; 1544 struct btrfs_ordered_extent *ordered; 1545 u64 lockstart, lockend; 1546 u64 num_bytes; 1547 int ret; 1548 1549 ret = btrfs_start_write_no_snapshotting(root); 1550 if (!ret) 1551 return -ENOSPC; 1552 1553 lockstart = round_down(pos, fs_info->sectorsize); 1554 lockend = round_up(pos + *write_bytes, 1555 fs_info->sectorsize) - 1; 1556 1557 while (1) { 1558 lock_extent(&inode->io_tree, lockstart, lockend); 1559 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1560 lockend - lockstart + 1); 1561 if (!ordered) { 1562 break; 1563 } 1564 unlock_extent(&inode->io_tree, lockstart, lockend); 1565 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1); 1566 btrfs_put_ordered_extent(ordered); 1567 } 1568 1569 num_bytes = lockend - lockstart + 1; 1570 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1571 NULL, NULL, NULL); 1572 if (ret <= 0) { 1573 ret = 0; 1574 btrfs_end_write_no_snapshotting(root); 1575 } else { 1576 *write_bytes = min_t(size_t, *write_bytes , 1577 num_bytes - pos + lockstart); 1578 } 1579 1580 unlock_extent(&inode->io_tree, lockstart, lockend); 1581 1582 return ret; 1583 } 1584 1585 static noinline ssize_t __btrfs_buffered_write(struct file *file, 1586 struct iov_iter *i, 1587 loff_t pos) 1588 { 1589 struct inode *inode = file_inode(file); 1590 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1591 struct btrfs_root *root = BTRFS_I(inode)->root; 1592 struct page **pages = NULL; 1593 struct extent_state *cached_state = NULL; 1594 struct extent_changeset *data_reserved = NULL; 1595 u64 release_bytes = 0; 1596 u64 lockstart; 1597 u64 lockend; 1598 size_t num_written = 0; 1599 int nrptrs; 1600 int ret = 0; 1601 bool only_release_metadata = false; 1602 bool force_page_uptodate = false; 1603 1604 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1605 PAGE_SIZE / (sizeof(struct page *))); 1606 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1607 nrptrs = max(nrptrs, 8); 1608 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1609 if (!pages) 1610 return -ENOMEM; 1611 1612 while (iov_iter_count(i) > 0) { 1613 size_t offset = pos & (PAGE_SIZE - 1); 1614 size_t sector_offset; 1615 size_t write_bytes = min(iov_iter_count(i), 1616 nrptrs * (size_t)PAGE_SIZE - 1617 offset); 1618 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1619 PAGE_SIZE); 1620 size_t reserve_bytes; 1621 size_t dirty_pages; 1622 size_t copied; 1623 size_t dirty_sectors; 1624 size_t num_sectors; 1625 int extents_locked; 1626 1627 WARN_ON(num_pages > nrptrs); 1628 1629 /* 1630 * Fault pages before locking them in prepare_pages 1631 * to avoid recursive lock 1632 */ 1633 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1634 ret = -EFAULT; 1635 break; 1636 } 1637 1638 sector_offset = pos & (fs_info->sectorsize - 1); 1639 reserve_bytes = round_up(write_bytes + sector_offset, 1640 fs_info->sectorsize); 1641 1642 extent_changeset_release(data_reserved); 1643 ret = btrfs_check_data_free_space(inode, &data_reserved, pos, 1644 write_bytes); 1645 if (ret < 0) { 1646 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1647 BTRFS_INODE_PREALLOC)) && 1648 check_can_nocow(BTRFS_I(inode), pos, 1649 &write_bytes) > 0) { 1650 /* 1651 * For nodata cow case, no need to reserve 1652 * data space. 1653 */ 1654 only_release_metadata = true; 1655 /* 1656 * our prealloc extent may be smaller than 1657 * write_bytes, so scale down. 1658 */ 1659 num_pages = DIV_ROUND_UP(write_bytes + offset, 1660 PAGE_SIZE); 1661 reserve_bytes = round_up(write_bytes + 1662 sector_offset, 1663 fs_info->sectorsize); 1664 } else { 1665 break; 1666 } 1667 } 1668 1669 WARN_ON(reserve_bytes == 0); 1670 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1671 reserve_bytes); 1672 if (ret) { 1673 if (!only_release_metadata) 1674 btrfs_free_reserved_data_space(inode, 1675 data_reserved, pos, 1676 write_bytes); 1677 else 1678 btrfs_end_write_no_snapshotting(root); 1679 break; 1680 } 1681 1682 release_bytes = reserve_bytes; 1683 again: 1684 /* 1685 * This is going to setup the pages array with the number of 1686 * pages we want, so we don't really need to worry about the 1687 * contents of pages from loop to loop 1688 */ 1689 ret = prepare_pages(inode, pages, num_pages, 1690 pos, write_bytes, 1691 force_page_uptodate); 1692 if (ret) { 1693 btrfs_delalloc_release_extents(BTRFS_I(inode), 1694 reserve_bytes, true); 1695 break; 1696 } 1697 1698 extents_locked = lock_and_cleanup_extent_if_need( 1699 BTRFS_I(inode), pages, 1700 num_pages, pos, write_bytes, &lockstart, 1701 &lockend, &cached_state); 1702 if (extents_locked < 0) { 1703 if (extents_locked == -EAGAIN) 1704 goto again; 1705 btrfs_delalloc_release_extents(BTRFS_I(inode), 1706 reserve_bytes, true); 1707 ret = extents_locked; 1708 break; 1709 } 1710 1711 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1712 1713 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1714 dirty_sectors = round_up(copied + sector_offset, 1715 fs_info->sectorsize); 1716 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1717 1718 /* 1719 * if we have trouble faulting in the pages, fall 1720 * back to one page at a time 1721 */ 1722 if (copied < write_bytes) 1723 nrptrs = 1; 1724 1725 if (copied == 0) { 1726 force_page_uptodate = true; 1727 dirty_sectors = 0; 1728 dirty_pages = 0; 1729 } else { 1730 force_page_uptodate = false; 1731 dirty_pages = DIV_ROUND_UP(copied + offset, 1732 PAGE_SIZE); 1733 } 1734 1735 if (num_sectors > dirty_sectors) { 1736 /* release everything except the sectors we dirtied */ 1737 release_bytes -= dirty_sectors << 1738 fs_info->sb->s_blocksize_bits; 1739 if (only_release_metadata) { 1740 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1741 release_bytes, true); 1742 } else { 1743 u64 __pos; 1744 1745 __pos = round_down(pos, 1746 fs_info->sectorsize) + 1747 (dirty_pages << PAGE_SHIFT); 1748 btrfs_delalloc_release_space(inode, 1749 data_reserved, __pos, 1750 release_bytes, true); 1751 } 1752 } 1753 1754 release_bytes = round_up(copied + sector_offset, 1755 fs_info->sectorsize); 1756 1757 if (copied > 0) 1758 ret = btrfs_dirty_pages(inode, pages, dirty_pages, 1759 pos, copied, &cached_state); 1760 if (extents_locked) 1761 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1762 lockstart, lockend, &cached_state); 1763 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes, 1764 (ret != 0)); 1765 if (ret) { 1766 btrfs_drop_pages(pages, num_pages); 1767 break; 1768 } 1769 1770 release_bytes = 0; 1771 if (only_release_metadata) 1772 btrfs_end_write_no_snapshotting(root); 1773 1774 if (only_release_metadata && copied > 0) { 1775 lockstart = round_down(pos, 1776 fs_info->sectorsize); 1777 lockend = round_up(pos + copied, 1778 fs_info->sectorsize) - 1; 1779 1780 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1781 lockend, EXTENT_NORESERVE, NULL, 1782 NULL, GFP_NOFS); 1783 only_release_metadata = false; 1784 } 1785 1786 btrfs_drop_pages(pages, num_pages); 1787 1788 cond_resched(); 1789 1790 balance_dirty_pages_ratelimited(inode->i_mapping); 1791 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1) 1792 btrfs_btree_balance_dirty(fs_info); 1793 1794 pos += copied; 1795 num_written += copied; 1796 } 1797 1798 kfree(pages); 1799 1800 if (release_bytes) { 1801 if (only_release_metadata) { 1802 btrfs_end_write_no_snapshotting(root); 1803 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1804 release_bytes, true); 1805 } else { 1806 btrfs_delalloc_release_space(inode, data_reserved, 1807 round_down(pos, fs_info->sectorsize), 1808 release_bytes, true); 1809 } 1810 } 1811 1812 extent_changeset_free(data_reserved); 1813 return num_written ? num_written : ret; 1814 } 1815 1816 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1817 { 1818 struct file *file = iocb->ki_filp; 1819 struct inode *inode = file_inode(file); 1820 loff_t pos = iocb->ki_pos; 1821 ssize_t written; 1822 ssize_t written_buffered; 1823 loff_t endbyte; 1824 int err; 1825 1826 written = generic_file_direct_write(iocb, from); 1827 1828 if (written < 0 || !iov_iter_count(from)) 1829 return written; 1830 1831 pos += written; 1832 written_buffered = __btrfs_buffered_write(file, from, pos); 1833 if (written_buffered < 0) { 1834 err = written_buffered; 1835 goto out; 1836 } 1837 /* 1838 * Ensure all data is persisted. We want the next direct IO read to be 1839 * able to read what was just written. 1840 */ 1841 endbyte = pos + written_buffered - 1; 1842 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1843 if (err) 1844 goto out; 1845 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1846 if (err) 1847 goto out; 1848 written += written_buffered; 1849 iocb->ki_pos = pos + written_buffered; 1850 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1851 endbyte >> PAGE_SHIFT); 1852 out: 1853 return written ? written : err; 1854 } 1855 1856 static void update_time_for_write(struct inode *inode) 1857 { 1858 struct timespec now; 1859 1860 if (IS_NOCMTIME(inode)) 1861 return; 1862 1863 now = current_time(inode); 1864 if (!timespec_equal(&inode->i_mtime, &now)) 1865 inode->i_mtime = now; 1866 1867 if (!timespec_equal(&inode->i_ctime, &now)) 1868 inode->i_ctime = now; 1869 1870 if (IS_I_VERSION(inode)) 1871 inode_inc_iversion(inode); 1872 } 1873 1874 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1875 struct iov_iter *from) 1876 { 1877 struct file *file = iocb->ki_filp; 1878 struct inode *inode = file_inode(file); 1879 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1880 struct btrfs_root *root = BTRFS_I(inode)->root; 1881 u64 start_pos; 1882 u64 end_pos; 1883 ssize_t num_written = 0; 1884 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1885 ssize_t err; 1886 loff_t pos; 1887 size_t count = iov_iter_count(from); 1888 loff_t oldsize; 1889 int clean_page = 0; 1890 1891 if (!(iocb->ki_flags & IOCB_DIRECT) && 1892 (iocb->ki_flags & IOCB_NOWAIT)) 1893 return -EOPNOTSUPP; 1894 1895 if (!inode_trylock(inode)) { 1896 if (iocb->ki_flags & IOCB_NOWAIT) 1897 return -EAGAIN; 1898 inode_lock(inode); 1899 } 1900 1901 err = generic_write_checks(iocb, from); 1902 if (err <= 0) { 1903 inode_unlock(inode); 1904 return err; 1905 } 1906 1907 pos = iocb->ki_pos; 1908 if (iocb->ki_flags & IOCB_NOWAIT) { 1909 /* 1910 * We will allocate space in case nodatacow is not set, 1911 * so bail 1912 */ 1913 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1914 BTRFS_INODE_PREALLOC)) || 1915 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) { 1916 inode_unlock(inode); 1917 return -EAGAIN; 1918 } 1919 } 1920 1921 current->backing_dev_info = inode_to_bdi(inode); 1922 err = file_remove_privs(file); 1923 if (err) { 1924 inode_unlock(inode); 1925 goto out; 1926 } 1927 1928 /* 1929 * If BTRFS flips readonly due to some impossible error 1930 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1931 * although we have opened a file as writable, we have 1932 * to stop this write operation to ensure FS consistency. 1933 */ 1934 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1935 inode_unlock(inode); 1936 err = -EROFS; 1937 goto out; 1938 } 1939 1940 /* 1941 * We reserve space for updating the inode when we reserve space for the 1942 * extent we are going to write, so we will enospc out there. We don't 1943 * need to start yet another transaction to update the inode as we will 1944 * update the inode when we finish writing whatever data we write. 1945 */ 1946 update_time_for_write(inode); 1947 1948 start_pos = round_down(pos, fs_info->sectorsize); 1949 oldsize = i_size_read(inode); 1950 if (start_pos > oldsize) { 1951 /* Expand hole size to cover write data, preventing empty gap */ 1952 end_pos = round_up(pos + count, 1953 fs_info->sectorsize); 1954 err = btrfs_cont_expand(inode, oldsize, end_pos); 1955 if (err) { 1956 inode_unlock(inode); 1957 goto out; 1958 } 1959 if (start_pos > round_up(oldsize, fs_info->sectorsize)) 1960 clean_page = 1; 1961 } 1962 1963 if (sync) 1964 atomic_inc(&BTRFS_I(inode)->sync_writers); 1965 1966 if (iocb->ki_flags & IOCB_DIRECT) { 1967 num_written = __btrfs_direct_write(iocb, from); 1968 } else { 1969 num_written = __btrfs_buffered_write(file, from, pos); 1970 if (num_written > 0) 1971 iocb->ki_pos = pos + num_written; 1972 if (clean_page) 1973 pagecache_isize_extended(inode, oldsize, 1974 i_size_read(inode)); 1975 } 1976 1977 inode_unlock(inode); 1978 1979 /* 1980 * We also have to set last_sub_trans to the current log transid, 1981 * otherwise subsequent syncs to a file that's been synced in this 1982 * transaction will appear to have already occurred. 1983 */ 1984 spin_lock(&BTRFS_I(inode)->lock); 1985 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1986 spin_unlock(&BTRFS_I(inode)->lock); 1987 if (num_written > 0) 1988 num_written = generic_write_sync(iocb, num_written); 1989 1990 if (sync) 1991 atomic_dec(&BTRFS_I(inode)->sync_writers); 1992 out: 1993 current->backing_dev_info = NULL; 1994 return num_written ? num_written : err; 1995 } 1996 1997 int btrfs_release_file(struct inode *inode, struct file *filp) 1998 { 1999 struct btrfs_file_private *private = filp->private_data; 2000 2001 if (private && private->filldir_buf) 2002 kfree(private->filldir_buf); 2003 kfree(private); 2004 filp->private_data = NULL; 2005 2006 /* 2007 * ordered_data_close is set by settattr when we are about to truncate 2008 * a file from a non-zero size to a zero size. This tries to 2009 * flush down new bytes that may have been written if the 2010 * application were using truncate to replace a file in place. 2011 */ 2012 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 2013 &BTRFS_I(inode)->runtime_flags)) 2014 filemap_flush(inode->i_mapping); 2015 return 0; 2016 } 2017 2018 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2019 { 2020 int ret; 2021 struct blk_plug plug; 2022 2023 /* 2024 * This is only called in fsync, which would do synchronous writes, so 2025 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2026 * multiple disks using raid profile, a large IO can be split to 2027 * several segments of stripe length (currently 64K). 2028 */ 2029 blk_start_plug(&plug); 2030 atomic_inc(&BTRFS_I(inode)->sync_writers); 2031 ret = btrfs_fdatawrite_range(inode, start, end); 2032 atomic_dec(&BTRFS_I(inode)->sync_writers); 2033 blk_finish_plug(&plug); 2034 2035 return ret; 2036 } 2037 2038 /* 2039 * fsync call for both files and directories. This logs the inode into 2040 * the tree log instead of forcing full commits whenever possible. 2041 * 2042 * It needs to call filemap_fdatawait so that all ordered extent updates are 2043 * in the metadata btree are up to date for copying to the log. 2044 * 2045 * It drops the inode mutex before doing the tree log commit. This is an 2046 * important optimization for directories because holding the mutex prevents 2047 * new operations on the dir while we write to disk. 2048 */ 2049 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2050 { 2051 struct dentry *dentry = file_dentry(file); 2052 struct inode *inode = d_inode(dentry); 2053 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2054 struct btrfs_root *root = BTRFS_I(inode)->root; 2055 struct btrfs_trans_handle *trans; 2056 struct btrfs_log_ctx ctx; 2057 int ret = 0, err; 2058 bool full_sync = false; 2059 u64 len; 2060 2061 /* 2062 * The range length can be represented by u64, we have to do the typecasts 2063 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync() 2064 */ 2065 len = (u64)end - (u64)start + 1; 2066 trace_btrfs_sync_file(file, datasync); 2067 2068 btrfs_init_log_ctx(&ctx, inode); 2069 2070 /* 2071 * We write the dirty pages in the range and wait until they complete 2072 * out of the ->i_mutex. If so, we can flush the dirty pages by 2073 * multi-task, and make the performance up. See 2074 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2075 */ 2076 ret = start_ordered_ops(inode, start, end); 2077 if (ret) 2078 goto out; 2079 2080 inode_lock(inode); 2081 atomic_inc(&root->log_batch); 2082 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2083 &BTRFS_I(inode)->runtime_flags); 2084 /* 2085 * We might have have had more pages made dirty after calling 2086 * start_ordered_ops and before acquiring the inode's i_mutex. 2087 */ 2088 if (full_sync) { 2089 /* 2090 * For a full sync, we need to make sure any ordered operations 2091 * start and finish before we start logging the inode, so that 2092 * all extents are persisted and the respective file extent 2093 * items are in the fs/subvol btree. 2094 */ 2095 ret = btrfs_wait_ordered_range(inode, start, len); 2096 } else { 2097 /* 2098 * Start any new ordered operations before starting to log the 2099 * inode. We will wait for them to finish in btrfs_sync_log(). 2100 * 2101 * Right before acquiring the inode's mutex, we might have new 2102 * writes dirtying pages, which won't immediately start the 2103 * respective ordered operations - that is done through the 2104 * fill_delalloc callbacks invoked from the writepage and 2105 * writepages address space operations. So make sure we start 2106 * all ordered operations before starting to log our inode. Not 2107 * doing this means that while logging the inode, writeback 2108 * could start and invoke writepage/writepages, which would call 2109 * the fill_delalloc callbacks (cow_file_range, 2110 * submit_compressed_extents). These callbacks add first an 2111 * extent map to the modified list of extents and then create 2112 * the respective ordered operation, which means in 2113 * tree-log.c:btrfs_log_inode() we might capture all existing 2114 * ordered operations (with btrfs_get_logged_extents()) before 2115 * the fill_delalloc callback adds its ordered operation, and by 2116 * the time we visit the modified list of extent maps (with 2117 * btrfs_log_changed_extents()), we see and process the extent 2118 * map they created. We then use the extent map to construct a 2119 * file extent item for logging without waiting for the 2120 * respective ordered operation to finish - this file extent 2121 * item points to a disk location that might not have yet been 2122 * written to, containing random data - so after a crash a log 2123 * replay will make our inode have file extent items that point 2124 * to disk locations containing invalid data, as we returned 2125 * success to userspace without waiting for the respective 2126 * ordered operation to finish, because it wasn't captured by 2127 * btrfs_get_logged_extents(). 2128 */ 2129 ret = start_ordered_ops(inode, start, end); 2130 } 2131 if (ret) { 2132 inode_unlock(inode); 2133 goto out; 2134 } 2135 atomic_inc(&root->log_batch); 2136 2137 /* 2138 * If the last transaction that changed this file was before the current 2139 * transaction and we have the full sync flag set in our inode, we can 2140 * bail out now without any syncing. 2141 * 2142 * Note that we can't bail out if the full sync flag isn't set. This is 2143 * because when the full sync flag is set we start all ordered extents 2144 * and wait for them to fully complete - when they complete they update 2145 * the inode's last_trans field through: 2146 * 2147 * btrfs_finish_ordered_io() -> 2148 * btrfs_update_inode_fallback() -> 2149 * btrfs_update_inode() -> 2150 * btrfs_set_inode_last_trans() 2151 * 2152 * So we are sure that last_trans is up to date and can do this check to 2153 * bail out safely. For the fast path, when the full sync flag is not 2154 * set in our inode, we can not do it because we start only our ordered 2155 * extents and don't wait for them to complete (that is when 2156 * btrfs_finish_ordered_io runs), so here at this point their last_trans 2157 * value might be less than or equals to fs_info->last_trans_committed, 2158 * and setting a speculative last_trans for an inode when a buffered 2159 * write is made (such as fs_info->generation + 1 for example) would not 2160 * be reliable since after setting the value and before fsync is called 2161 * any number of transactions can start and commit (transaction kthread 2162 * commits the current transaction periodically), and a transaction 2163 * commit does not start nor waits for ordered extents to complete. 2164 */ 2165 smp_mb(); 2166 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) || 2167 (full_sync && BTRFS_I(inode)->last_trans <= 2168 fs_info->last_trans_committed) || 2169 (!btrfs_have_ordered_extents_in_range(inode, start, len) && 2170 BTRFS_I(inode)->last_trans 2171 <= fs_info->last_trans_committed)) { 2172 /* 2173 * We've had everything committed since the last time we were 2174 * modified so clear this flag in case it was set for whatever 2175 * reason, it's no longer relevant. 2176 */ 2177 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2178 &BTRFS_I(inode)->runtime_flags); 2179 /* 2180 * An ordered extent might have started before and completed 2181 * already with io errors, in which case the inode was not 2182 * updated and we end up here. So check the inode's mapping 2183 * for any errors that might have happened since we last 2184 * checked called fsync. 2185 */ 2186 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2187 inode_unlock(inode); 2188 goto out; 2189 } 2190 2191 /* 2192 * We use start here because we will need to wait on the IO to complete 2193 * in btrfs_sync_log, which could require joining a transaction (for 2194 * example checking cross references in the nocow path). If we use join 2195 * here we could get into a situation where we're waiting on IO to 2196 * happen that is blocked on a transaction trying to commit. With start 2197 * we inc the extwriter counter, so we wait for all extwriters to exit 2198 * before we start blocking join'ers. This comment is to keep somebody 2199 * from thinking they are super smart and changing this to 2200 * btrfs_join_transaction *cough*Josef*cough*. 2201 */ 2202 trans = btrfs_start_transaction(root, 0); 2203 if (IS_ERR(trans)) { 2204 ret = PTR_ERR(trans); 2205 inode_unlock(inode); 2206 goto out; 2207 } 2208 trans->sync = true; 2209 2210 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx); 2211 if (ret < 0) { 2212 /* Fallthrough and commit/free transaction. */ 2213 ret = 1; 2214 } 2215 2216 /* we've logged all the items and now have a consistent 2217 * version of the file in the log. It is possible that 2218 * someone will come in and modify the file, but that's 2219 * fine because the log is consistent on disk, and we 2220 * have references to all of the file's extents 2221 * 2222 * It is possible that someone will come in and log the 2223 * file again, but that will end up using the synchronization 2224 * inside btrfs_sync_log to keep things safe. 2225 */ 2226 inode_unlock(inode); 2227 2228 /* 2229 * If any of the ordered extents had an error, just return it to user 2230 * space, so that the application knows some writes didn't succeed and 2231 * can take proper action (retry for e.g.). Blindly committing the 2232 * transaction in this case, would fool userspace that everything was 2233 * successful. And we also want to make sure our log doesn't contain 2234 * file extent items pointing to extents that weren't fully written to - 2235 * just like in the non fast fsync path, where we check for the ordered 2236 * operation's error flag before writing to the log tree and return -EIO 2237 * if any of them had this flag set (btrfs_wait_ordered_range) - 2238 * therefore we need to check for errors in the ordered operations, 2239 * which are indicated by ctx.io_err. 2240 */ 2241 if (ctx.io_err) { 2242 btrfs_end_transaction(trans); 2243 ret = ctx.io_err; 2244 goto out; 2245 } 2246 2247 if (ret != BTRFS_NO_LOG_SYNC) { 2248 if (!ret) { 2249 ret = btrfs_sync_log(trans, root, &ctx); 2250 if (!ret) { 2251 ret = btrfs_end_transaction(trans); 2252 goto out; 2253 } 2254 } 2255 if (!full_sync) { 2256 ret = btrfs_wait_ordered_range(inode, start, len); 2257 if (ret) { 2258 btrfs_end_transaction(trans); 2259 goto out; 2260 } 2261 } 2262 ret = btrfs_commit_transaction(trans); 2263 } else { 2264 ret = btrfs_end_transaction(trans); 2265 } 2266 out: 2267 ASSERT(list_empty(&ctx.list)); 2268 err = file_check_and_advance_wb_err(file); 2269 if (!ret) 2270 ret = err; 2271 return ret > 0 ? -EIO : ret; 2272 } 2273 2274 static const struct vm_operations_struct btrfs_file_vm_ops = { 2275 .fault = filemap_fault, 2276 .map_pages = filemap_map_pages, 2277 .page_mkwrite = btrfs_page_mkwrite, 2278 }; 2279 2280 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2281 { 2282 struct address_space *mapping = filp->f_mapping; 2283 2284 if (!mapping->a_ops->readpage) 2285 return -ENOEXEC; 2286 2287 file_accessed(filp); 2288 vma->vm_ops = &btrfs_file_vm_ops; 2289 2290 return 0; 2291 } 2292 2293 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2294 int slot, u64 start, u64 end) 2295 { 2296 struct btrfs_file_extent_item *fi; 2297 struct btrfs_key key; 2298 2299 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2300 return 0; 2301 2302 btrfs_item_key_to_cpu(leaf, &key, slot); 2303 if (key.objectid != btrfs_ino(inode) || 2304 key.type != BTRFS_EXTENT_DATA_KEY) 2305 return 0; 2306 2307 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2308 2309 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2310 return 0; 2311 2312 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2313 return 0; 2314 2315 if (key.offset == end) 2316 return 1; 2317 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2318 return 1; 2319 return 0; 2320 } 2321 2322 static int fill_holes(struct btrfs_trans_handle *trans, 2323 struct btrfs_inode *inode, 2324 struct btrfs_path *path, u64 offset, u64 end) 2325 { 2326 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 2327 struct btrfs_root *root = inode->root; 2328 struct extent_buffer *leaf; 2329 struct btrfs_file_extent_item *fi; 2330 struct extent_map *hole_em; 2331 struct extent_map_tree *em_tree = &inode->extent_tree; 2332 struct btrfs_key key; 2333 int ret; 2334 2335 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2336 goto out; 2337 2338 key.objectid = btrfs_ino(inode); 2339 key.type = BTRFS_EXTENT_DATA_KEY; 2340 key.offset = offset; 2341 2342 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2343 if (ret <= 0) { 2344 /* 2345 * We should have dropped this offset, so if we find it then 2346 * something has gone horribly wrong. 2347 */ 2348 if (ret == 0) 2349 ret = -EINVAL; 2350 return ret; 2351 } 2352 2353 leaf = path->nodes[0]; 2354 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2355 u64 num_bytes; 2356 2357 path->slots[0]--; 2358 fi = btrfs_item_ptr(leaf, path->slots[0], 2359 struct btrfs_file_extent_item); 2360 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2361 end - offset; 2362 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2363 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2364 btrfs_set_file_extent_offset(leaf, fi, 0); 2365 btrfs_mark_buffer_dirty(leaf); 2366 goto out; 2367 } 2368 2369 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2370 u64 num_bytes; 2371 2372 key.offset = offset; 2373 btrfs_set_item_key_safe(fs_info, path, &key); 2374 fi = btrfs_item_ptr(leaf, path->slots[0], 2375 struct btrfs_file_extent_item); 2376 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2377 offset; 2378 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2379 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2380 btrfs_set_file_extent_offset(leaf, fi, 0); 2381 btrfs_mark_buffer_dirty(leaf); 2382 goto out; 2383 } 2384 btrfs_release_path(path); 2385 2386 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2387 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2388 if (ret) 2389 return ret; 2390 2391 out: 2392 btrfs_release_path(path); 2393 2394 hole_em = alloc_extent_map(); 2395 if (!hole_em) { 2396 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2397 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2398 } else { 2399 hole_em->start = offset; 2400 hole_em->len = end - offset; 2401 hole_em->ram_bytes = hole_em->len; 2402 hole_em->orig_start = offset; 2403 2404 hole_em->block_start = EXTENT_MAP_HOLE; 2405 hole_em->block_len = 0; 2406 hole_em->orig_block_len = 0; 2407 hole_em->bdev = fs_info->fs_devices->latest_bdev; 2408 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2409 hole_em->generation = trans->transid; 2410 2411 do { 2412 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2413 write_lock(&em_tree->lock); 2414 ret = add_extent_mapping(em_tree, hole_em, 1); 2415 write_unlock(&em_tree->lock); 2416 } while (ret == -EEXIST); 2417 free_extent_map(hole_em); 2418 if (ret) 2419 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2420 &inode->runtime_flags); 2421 } 2422 2423 return 0; 2424 } 2425 2426 /* 2427 * Find a hole extent on given inode and change start/len to the end of hole 2428 * extent.(hole/vacuum extent whose em->start <= start && 2429 * em->start + em->len > start) 2430 * When a hole extent is found, return 1 and modify start/len. 2431 */ 2432 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2433 { 2434 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2435 struct extent_map *em; 2436 int ret = 0; 2437 2438 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2439 round_down(*start, fs_info->sectorsize), 2440 round_up(*len, fs_info->sectorsize), 0); 2441 if (IS_ERR(em)) 2442 return PTR_ERR(em); 2443 2444 /* Hole or vacuum extent(only exists in no-hole mode) */ 2445 if (em->block_start == EXTENT_MAP_HOLE) { 2446 ret = 1; 2447 *len = em->start + em->len > *start + *len ? 2448 0 : *start + *len - em->start - em->len; 2449 *start = em->start + em->len; 2450 } 2451 free_extent_map(em); 2452 return ret; 2453 } 2454 2455 static int btrfs_punch_hole_lock_range(struct inode *inode, 2456 const u64 lockstart, 2457 const u64 lockend, 2458 struct extent_state **cached_state) 2459 { 2460 while (1) { 2461 struct btrfs_ordered_extent *ordered; 2462 int ret; 2463 2464 truncate_pagecache_range(inode, lockstart, lockend); 2465 2466 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2467 cached_state); 2468 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2469 2470 /* 2471 * We need to make sure we have no ordered extents in this range 2472 * and nobody raced in and read a page in this range, if we did 2473 * we need to try again. 2474 */ 2475 if ((!ordered || 2476 (ordered->file_offset + ordered->len <= lockstart || 2477 ordered->file_offset > lockend)) && 2478 !filemap_range_has_page(inode->i_mapping, 2479 lockstart, lockend)) { 2480 if (ordered) 2481 btrfs_put_ordered_extent(ordered); 2482 break; 2483 } 2484 if (ordered) 2485 btrfs_put_ordered_extent(ordered); 2486 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2487 lockend, cached_state); 2488 ret = btrfs_wait_ordered_range(inode, lockstart, 2489 lockend - lockstart + 1); 2490 if (ret) 2491 return ret; 2492 } 2493 return 0; 2494 } 2495 2496 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2497 { 2498 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2499 struct btrfs_root *root = BTRFS_I(inode)->root; 2500 struct extent_state *cached_state = NULL; 2501 struct btrfs_path *path; 2502 struct btrfs_block_rsv *rsv; 2503 struct btrfs_trans_handle *trans; 2504 u64 lockstart; 2505 u64 lockend; 2506 u64 tail_start; 2507 u64 tail_len; 2508 u64 orig_start = offset; 2509 u64 cur_offset; 2510 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1); 2511 u64 drop_end; 2512 int ret = 0; 2513 int err = 0; 2514 unsigned int rsv_count; 2515 bool same_block; 2516 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES); 2517 u64 ino_size; 2518 bool truncated_block = false; 2519 bool updated_inode = false; 2520 2521 ret = btrfs_wait_ordered_range(inode, offset, len); 2522 if (ret) 2523 return ret; 2524 2525 inode_lock(inode); 2526 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2527 ret = find_first_non_hole(inode, &offset, &len); 2528 if (ret < 0) 2529 goto out_only_mutex; 2530 if (ret && !len) { 2531 /* Already in a large hole */ 2532 ret = 0; 2533 goto out_only_mutex; 2534 } 2535 2536 lockstart = round_up(offset, btrfs_inode_sectorsize(inode)); 2537 lockend = round_down(offset + len, 2538 btrfs_inode_sectorsize(inode)) - 1; 2539 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2540 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2541 /* 2542 * We needn't truncate any block which is beyond the end of the file 2543 * because we are sure there is no data there. 2544 */ 2545 /* 2546 * Only do this if we are in the same block and we aren't doing the 2547 * entire block. 2548 */ 2549 if (same_block && len < fs_info->sectorsize) { 2550 if (offset < ino_size) { 2551 truncated_block = true; 2552 ret = btrfs_truncate_block(inode, offset, len, 0); 2553 } else { 2554 ret = 0; 2555 } 2556 goto out_only_mutex; 2557 } 2558 2559 /* zero back part of the first block */ 2560 if (offset < ino_size) { 2561 truncated_block = true; 2562 ret = btrfs_truncate_block(inode, offset, 0, 0); 2563 if (ret) { 2564 inode_unlock(inode); 2565 return ret; 2566 } 2567 } 2568 2569 /* Check the aligned pages after the first unaligned page, 2570 * if offset != orig_start, which means the first unaligned page 2571 * including several following pages are already in holes, 2572 * the extra check can be skipped */ 2573 if (offset == orig_start) { 2574 /* after truncate page, check hole again */ 2575 len = offset + len - lockstart; 2576 offset = lockstart; 2577 ret = find_first_non_hole(inode, &offset, &len); 2578 if (ret < 0) 2579 goto out_only_mutex; 2580 if (ret && !len) { 2581 ret = 0; 2582 goto out_only_mutex; 2583 } 2584 lockstart = offset; 2585 } 2586 2587 /* Check the tail unaligned part is in a hole */ 2588 tail_start = lockend + 1; 2589 tail_len = offset + len - tail_start; 2590 if (tail_len) { 2591 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2592 if (unlikely(ret < 0)) 2593 goto out_only_mutex; 2594 if (!ret) { 2595 /* zero the front end of the last page */ 2596 if (tail_start + tail_len < ino_size) { 2597 truncated_block = true; 2598 ret = btrfs_truncate_block(inode, 2599 tail_start + tail_len, 2600 0, 1); 2601 if (ret) 2602 goto out_only_mutex; 2603 } 2604 } 2605 } 2606 2607 if (lockend < lockstart) { 2608 ret = 0; 2609 goto out_only_mutex; 2610 } 2611 2612 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2613 &cached_state); 2614 if (ret) { 2615 inode_unlock(inode); 2616 goto out_only_mutex; 2617 } 2618 2619 path = btrfs_alloc_path(); 2620 if (!path) { 2621 ret = -ENOMEM; 2622 goto out; 2623 } 2624 2625 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2626 if (!rsv) { 2627 ret = -ENOMEM; 2628 goto out_free; 2629 } 2630 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1); 2631 rsv->failfast = 1; 2632 2633 /* 2634 * 1 - update the inode 2635 * 1 - removing the extents in the range 2636 * 1 - adding the hole extent if no_holes isn't set 2637 */ 2638 rsv_count = no_holes ? 2 : 3; 2639 trans = btrfs_start_transaction(root, rsv_count); 2640 if (IS_ERR(trans)) { 2641 err = PTR_ERR(trans); 2642 goto out_free; 2643 } 2644 2645 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2646 min_size, 0); 2647 BUG_ON(ret); 2648 trans->block_rsv = rsv; 2649 2650 cur_offset = lockstart; 2651 len = lockend - cur_offset; 2652 while (cur_offset < lockend) { 2653 ret = __btrfs_drop_extents(trans, root, inode, path, 2654 cur_offset, lockend + 1, 2655 &drop_end, 1, 0, 0, NULL); 2656 if (ret != -ENOSPC) 2657 break; 2658 2659 trans->block_rsv = &fs_info->trans_block_rsv; 2660 2661 if (cur_offset < drop_end && cur_offset < ino_size) { 2662 ret = fill_holes(trans, BTRFS_I(inode), path, 2663 cur_offset, drop_end); 2664 if (ret) { 2665 /* 2666 * If we failed then we didn't insert our hole 2667 * entries for the area we dropped, so now the 2668 * fs is corrupted, so we must abort the 2669 * transaction. 2670 */ 2671 btrfs_abort_transaction(trans, ret); 2672 err = ret; 2673 break; 2674 } 2675 } 2676 2677 cur_offset = drop_end; 2678 2679 ret = btrfs_update_inode(trans, root, inode); 2680 if (ret) { 2681 err = ret; 2682 break; 2683 } 2684 2685 btrfs_end_transaction(trans); 2686 btrfs_btree_balance_dirty(fs_info); 2687 2688 trans = btrfs_start_transaction(root, rsv_count); 2689 if (IS_ERR(trans)) { 2690 ret = PTR_ERR(trans); 2691 trans = NULL; 2692 break; 2693 } 2694 2695 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2696 rsv, min_size, 0); 2697 BUG_ON(ret); /* shouldn't happen */ 2698 trans->block_rsv = rsv; 2699 2700 ret = find_first_non_hole(inode, &cur_offset, &len); 2701 if (unlikely(ret < 0)) 2702 break; 2703 if (ret && !len) { 2704 ret = 0; 2705 break; 2706 } 2707 } 2708 2709 if (ret) { 2710 err = ret; 2711 goto out_trans; 2712 } 2713 2714 trans->block_rsv = &fs_info->trans_block_rsv; 2715 /* 2716 * If we are using the NO_HOLES feature we might have had already an 2717 * hole that overlaps a part of the region [lockstart, lockend] and 2718 * ends at (or beyond) lockend. Since we have no file extent items to 2719 * represent holes, drop_end can be less than lockend and so we must 2720 * make sure we have an extent map representing the existing hole (the 2721 * call to __btrfs_drop_extents() might have dropped the existing extent 2722 * map representing the existing hole), otherwise the fast fsync path 2723 * will not record the existence of the hole region 2724 * [existing_hole_start, lockend]. 2725 */ 2726 if (drop_end <= lockend) 2727 drop_end = lockend + 1; 2728 /* 2729 * Don't insert file hole extent item if it's for a range beyond eof 2730 * (because it's useless) or if it represents a 0 bytes range (when 2731 * cur_offset == drop_end). 2732 */ 2733 if (cur_offset < ino_size && cur_offset < drop_end) { 2734 ret = fill_holes(trans, BTRFS_I(inode), path, 2735 cur_offset, drop_end); 2736 if (ret) { 2737 /* Same comment as above. */ 2738 btrfs_abort_transaction(trans, ret); 2739 err = ret; 2740 goto out_trans; 2741 } 2742 } 2743 2744 out_trans: 2745 if (!trans) 2746 goto out_free; 2747 2748 inode_inc_iversion(inode); 2749 inode->i_mtime = inode->i_ctime = current_time(inode); 2750 2751 trans->block_rsv = &fs_info->trans_block_rsv; 2752 ret = btrfs_update_inode(trans, root, inode); 2753 updated_inode = true; 2754 btrfs_end_transaction(trans); 2755 btrfs_btree_balance_dirty(fs_info); 2756 out_free: 2757 btrfs_free_path(path); 2758 btrfs_free_block_rsv(fs_info, rsv); 2759 out: 2760 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2761 &cached_state); 2762 out_only_mutex: 2763 if (!updated_inode && truncated_block && !ret && !err) { 2764 /* 2765 * If we only end up zeroing part of a page, we still need to 2766 * update the inode item, so that all the time fields are 2767 * updated as well as the necessary btrfs inode in memory fields 2768 * for detecting, at fsync time, if the inode isn't yet in the 2769 * log tree or it's there but not up to date. 2770 */ 2771 trans = btrfs_start_transaction(root, 1); 2772 if (IS_ERR(trans)) { 2773 err = PTR_ERR(trans); 2774 } else { 2775 err = btrfs_update_inode(trans, root, inode); 2776 ret = btrfs_end_transaction(trans); 2777 } 2778 } 2779 inode_unlock(inode); 2780 if (ret && !err) 2781 err = ret; 2782 return err; 2783 } 2784 2785 /* Helper structure to record which range is already reserved */ 2786 struct falloc_range { 2787 struct list_head list; 2788 u64 start; 2789 u64 len; 2790 }; 2791 2792 /* 2793 * Helper function to add falloc range 2794 * 2795 * Caller should have locked the larger range of extent containing 2796 * [start, len) 2797 */ 2798 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2799 { 2800 struct falloc_range *prev = NULL; 2801 struct falloc_range *range = NULL; 2802 2803 if (list_empty(head)) 2804 goto insert; 2805 2806 /* 2807 * As fallocate iterate by bytenr order, we only need to check 2808 * the last range. 2809 */ 2810 prev = list_entry(head->prev, struct falloc_range, list); 2811 if (prev->start + prev->len == start) { 2812 prev->len += len; 2813 return 0; 2814 } 2815 insert: 2816 range = kmalloc(sizeof(*range), GFP_KERNEL); 2817 if (!range) 2818 return -ENOMEM; 2819 range->start = start; 2820 range->len = len; 2821 list_add_tail(&range->list, head); 2822 return 0; 2823 } 2824 2825 static int btrfs_fallocate_update_isize(struct inode *inode, 2826 const u64 end, 2827 const int mode) 2828 { 2829 struct btrfs_trans_handle *trans; 2830 struct btrfs_root *root = BTRFS_I(inode)->root; 2831 int ret; 2832 int ret2; 2833 2834 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2835 return 0; 2836 2837 trans = btrfs_start_transaction(root, 1); 2838 if (IS_ERR(trans)) 2839 return PTR_ERR(trans); 2840 2841 inode->i_ctime = current_time(inode); 2842 i_size_write(inode, end); 2843 btrfs_ordered_update_i_size(inode, end, NULL); 2844 ret = btrfs_update_inode(trans, root, inode); 2845 ret2 = btrfs_end_transaction(trans); 2846 2847 return ret ? ret : ret2; 2848 } 2849 2850 enum { 2851 RANGE_BOUNDARY_WRITTEN_EXTENT = 0, 2852 RANGE_BOUNDARY_PREALLOC_EXTENT = 1, 2853 RANGE_BOUNDARY_HOLE = 2, 2854 }; 2855 2856 static int btrfs_zero_range_check_range_boundary(struct inode *inode, 2857 u64 offset) 2858 { 2859 const u64 sectorsize = btrfs_inode_sectorsize(inode); 2860 struct extent_map *em; 2861 int ret; 2862 2863 offset = round_down(offset, sectorsize); 2864 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0); 2865 if (IS_ERR(em)) 2866 return PTR_ERR(em); 2867 2868 if (em->block_start == EXTENT_MAP_HOLE) 2869 ret = RANGE_BOUNDARY_HOLE; 2870 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2871 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2872 else 2873 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2874 2875 free_extent_map(em); 2876 return ret; 2877 } 2878 2879 static int btrfs_zero_range(struct inode *inode, 2880 loff_t offset, 2881 loff_t len, 2882 const int mode) 2883 { 2884 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2885 struct extent_map *em; 2886 struct extent_changeset *data_reserved = NULL; 2887 int ret; 2888 u64 alloc_hint = 0; 2889 const u64 sectorsize = btrfs_inode_sectorsize(inode); 2890 u64 alloc_start = round_down(offset, sectorsize); 2891 u64 alloc_end = round_up(offset + len, sectorsize); 2892 u64 bytes_to_reserve = 0; 2893 bool space_reserved = false; 2894 2895 inode_dio_wait(inode); 2896 2897 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2898 alloc_start, alloc_end - alloc_start, 0); 2899 if (IS_ERR(em)) { 2900 ret = PTR_ERR(em); 2901 goto out; 2902 } 2903 2904 /* 2905 * Avoid hole punching and extent allocation for some cases. More cases 2906 * could be considered, but these are unlikely common and we keep things 2907 * as simple as possible for now. Also, intentionally, if the target 2908 * range contains one or more prealloc extents together with regular 2909 * extents and holes, we drop all the existing extents and allocate a 2910 * new prealloc extent, so that we get a larger contiguous disk extent. 2911 */ 2912 if (em->start <= alloc_start && 2913 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2914 const u64 em_end = em->start + em->len; 2915 2916 if (em_end >= offset + len) { 2917 /* 2918 * The whole range is already a prealloc extent, 2919 * do nothing except updating the inode's i_size if 2920 * needed. 2921 */ 2922 free_extent_map(em); 2923 ret = btrfs_fallocate_update_isize(inode, offset + len, 2924 mode); 2925 goto out; 2926 } 2927 /* 2928 * Part of the range is already a prealloc extent, so operate 2929 * only on the remaining part of the range. 2930 */ 2931 alloc_start = em_end; 2932 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2933 len = offset + len - alloc_start; 2934 offset = alloc_start; 2935 alloc_hint = em->block_start + em->len; 2936 } 2937 free_extent_map(em); 2938 2939 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2940 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2941 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2942 alloc_start, sectorsize, 0); 2943 if (IS_ERR(em)) { 2944 ret = PTR_ERR(em); 2945 goto out; 2946 } 2947 2948 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2949 free_extent_map(em); 2950 ret = btrfs_fallocate_update_isize(inode, offset + len, 2951 mode); 2952 goto out; 2953 } 2954 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 2955 free_extent_map(em); 2956 ret = btrfs_truncate_block(inode, offset, len, 0); 2957 if (!ret) 2958 ret = btrfs_fallocate_update_isize(inode, 2959 offset + len, 2960 mode); 2961 return ret; 2962 } 2963 free_extent_map(em); 2964 alloc_start = round_down(offset, sectorsize); 2965 alloc_end = alloc_start + sectorsize; 2966 goto reserve_space; 2967 } 2968 2969 alloc_start = round_up(offset, sectorsize); 2970 alloc_end = round_down(offset + len, sectorsize); 2971 2972 /* 2973 * For unaligned ranges, check the pages at the boundaries, they might 2974 * map to an extent, in which case we need to partially zero them, or 2975 * they might map to a hole, in which case we need our allocation range 2976 * to cover them. 2977 */ 2978 if (!IS_ALIGNED(offset, sectorsize)) { 2979 ret = btrfs_zero_range_check_range_boundary(inode, offset); 2980 if (ret < 0) 2981 goto out; 2982 if (ret == RANGE_BOUNDARY_HOLE) { 2983 alloc_start = round_down(offset, sectorsize); 2984 ret = 0; 2985 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2986 ret = btrfs_truncate_block(inode, offset, 0, 0); 2987 if (ret) 2988 goto out; 2989 } else { 2990 ret = 0; 2991 } 2992 } 2993 2994 if (!IS_ALIGNED(offset + len, sectorsize)) { 2995 ret = btrfs_zero_range_check_range_boundary(inode, 2996 offset + len); 2997 if (ret < 0) 2998 goto out; 2999 if (ret == RANGE_BOUNDARY_HOLE) { 3000 alloc_end = round_up(offset + len, sectorsize); 3001 ret = 0; 3002 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3003 ret = btrfs_truncate_block(inode, offset + len, 0, 1); 3004 if (ret) 3005 goto out; 3006 } else { 3007 ret = 0; 3008 } 3009 } 3010 3011 reserve_space: 3012 if (alloc_start < alloc_end) { 3013 struct extent_state *cached_state = NULL; 3014 const u64 lockstart = alloc_start; 3015 const u64 lockend = alloc_end - 1; 3016 3017 bytes_to_reserve = alloc_end - alloc_start; 3018 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3019 bytes_to_reserve); 3020 if (ret < 0) 3021 goto out; 3022 space_reserved = true; 3023 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 3024 alloc_start, bytes_to_reserve); 3025 if (ret) 3026 goto out; 3027 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3028 &cached_state); 3029 if (ret) 3030 goto out; 3031 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3032 alloc_end - alloc_start, 3033 i_blocksize(inode), 3034 offset + len, &alloc_hint); 3035 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3036 lockend, &cached_state); 3037 /* btrfs_prealloc_file_range releases reserved space on error */ 3038 if (ret) { 3039 space_reserved = false; 3040 goto out; 3041 } 3042 } 3043 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3044 out: 3045 if (ret && space_reserved) 3046 btrfs_free_reserved_data_space(inode, data_reserved, 3047 alloc_start, bytes_to_reserve); 3048 extent_changeset_free(data_reserved); 3049 3050 return ret; 3051 } 3052 3053 static long btrfs_fallocate(struct file *file, int mode, 3054 loff_t offset, loff_t len) 3055 { 3056 struct inode *inode = file_inode(file); 3057 struct extent_state *cached_state = NULL; 3058 struct extent_changeset *data_reserved = NULL; 3059 struct falloc_range *range; 3060 struct falloc_range *tmp; 3061 struct list_head reserve_list; 3062 u64 cur_offset; 3063 u64 last_byte; 3064 u64 alloc_start; 3065 u64 alloc_end; 3066 u64 alloc_hint = 0; 3067 u64 locked_end; 3068 u64 actual_end = 0; 3069 struct extent_map *em; 3070 int blocksize = btrfs_inode_sectorsize(inode); 3071 int ret; 3072 3073 alloc_start = round_down(offset, blocksize); 3074 alloc_end = round_up(offset + len, blocksize); 3075 cur_offset = alloc_start; 3076 3077 /* Make sure we aren't being give some crap mode */ 3078 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3079 FALLOC_FL_ZERO_RANGE)) 3080 return -EOPNOTSUPP; 3081 3082 if (mode & FALLOC_FL_PUNCH_HOLE) 3083 return btrfs_punch_hole(inode, offset, len); 3084 3085 /* 3086 * Only trigger disk allocation, don't trigger qgroup reserve 3087 * 3088 * For qgroup space, it will be checked later. 3089 */ 3090 if (!(mode & FALLOC_FL_ZERO_RANGE)) { 3091 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3092 alloc_end - alloc_start); 3093 if (ret < 0) 3094 return ret; 3095 } 3096 3097 inode_lock(inode); 3098 3099 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3100 ret = inode_newsize_ok(inode, offset + len); 3101 if (ret) 3102 goto out; 3103 } 3104 3105 /* 3106 * TODO: Move these two operations after we have checked 3107 * accurate reserved space, or fallocate can still fail but 3108 * with page truncated or size expanded. 3109 * 3110 * But that's a minor problem and won't do much harm BTW. 3111 */ 3112 if (alloc_start > inode->i_size) { 3113 ret = btrfs_cont_expand(inode, i_size_read(inode), 3114 alloc_start); 3115 if (ret) 3116 goto out; 3117 } else if (offset + len > inode->i_size) { 3118 /* 3119 * If we are fallocating from the end of the file onward we 3120 * need to zero out the end of the block if i_size lands in the 3121 * middle of a block. 3122 */ 3123 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 3124 if (ret) 3125 goto out; 3126 } 3127 3128 /* 3129 * wait for ordered IO before we have any locks. We'll loop again 3130 * below with the locks held. 3131 */ 3132 ret = btrfs_wait_ordered_range(inode, alloc_start, 3133 alloc_end - alloc_start); 3134 if (ret) 3135 goto out; 3136 3137 if (mode & FALLOC_FL_ZERO_RANGE) { 3138 ret = btrfs_zero_range(inode, offset, len, mode); 3139 inode_unlock(inode); 3140 return ret; 3141 } 3142 3143 locked_end = alloc_end - 1; 3144 while (1) { 3145 struct btrfs_ordered_extent *ordered; 3146 3147 /* the extent lock is ordered inside the running 3148 * transaction 3149 */ 3150 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 3151 locked_end, &cached_state); 3152 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end); 3153 3154 if (ordered && 3155 ordered->file_offset + ordered->len > alloc_start && 3156 ordered->file_offset < alloc_end) { 3157 btrfs_put_ordered_extent(ordered); 3158 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 3159 alloc_start, locked_end, 3160 &cached_state); 3161 /* 3162 * we can't wait on the range with the transaction 3163 * running or with the extent lock held 3164 */ 3165 ret = btrfs_wait_ordered_range(inode, alloc_start, 3166 alloc_end - alloc_start); 3167 if (ret) 3168 goto out; 3169 } else { 3170 if (ordered) 3171 btrfs_put_ordered_extent(ordered); 3172 break; 3173 } 3174 } 3175 3176 /* First, check if we exceed the qgroup limit */ 3177 INIT_LIST_HEAD(&reserve_list); 3178 while (cur_offset < alloc_end) { 3179 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3180 alloc_end - cur_offset, 0); 3181 if (IS_ERR(em)) { 3182 ret = PTR_ERR(em); 3183 break; 3184 } 3185 last_byte = min(extent_map_end(em), alloc_end); 3186 actual_end = min_t(u64, extent_map_end(em), offset + len); 3187 last_byte = ALIGN(last_byte, blocksize); 3188 if (em->block_start == EXTENT_MAP_HOLE || 3189 (cur_offset >= inode->i_size && 3190 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3191 ret = add_falloc_range(&reserve_list, cur_offset, 3192 last_byte - cur_offset); 3193 if (ret < 0) { 3194 free_extent_map(em); 3195 break; 3196 } 3197 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 3198 cur_offset, last_byte - cur_offset); 3199 if (ret < 0) { 3200 free_extent_map(em); 3201 break; 3202 } 3203 } else { 3204 /* 3205 * Do not need to reserve unwritten extent for this 3206 * range, free reserved data space first, otherwise 3207 * it'll result in false ENOSPC error. 3208 */ 3209 btrfs_free_reserved_data_space(inode, data_reserved, 3210 cur_offset, last_byte - cur_offset); 3211 } 3212 free_extent_map(em); 3213 cur_offset = last_byte; 3214 } 3215 3216 /* 3217 * If ret is still 0, means we're OK to fallocate. 3218 * Or just cleanup the list and exit. 3219 */ 3220 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3221 if (!ret) 3222 ret = btrfs_prealloc_file_range(inode, mode, 3223 range->start, 3224 range->len, i_blocksize(inode), 3225 offset + len, &alloc_hint); 3226 else 3227 btrfs_free_reserved_data_space(inode, 3228 data_reserved, range->start, 3229 range->len); 3230 list_del(&range->list); 3231 kfree(range); 3232 } 3233 if (ret < 0) 3234 goto out_unlock; 3235 3236 /* 3237 * We didn't need to allocate any more space, but we still extended the 3238 * size of the file so we need to update i_size and the inode item. 3239 */ 3240 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3241 out_unlock: 3242 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3243 &cached_state); 3244 out: 3245 inode_unlock(inode); 3246 /* Let go of our reservation. */ 3247 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) 3248 btrfs_free_reserved_data_space(inode, data_reserved, 3249 alloc_start, alloc_end - cur_offset); 3250 extent_changeset_free(data_reserved); 3251 return ret; 3252 } 3253 3254 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 3255 { 3256 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3257 struct extent_map *em = NULL; 3258 struct extent_state *cached_state = NULL; 3259 u64 lockstart; 3260 u64 lockend; 3261 u64 start; 3262 u64 len; 3263 int ret = 0; 3264 3265 if (inode->i_size == 0) 3266 return -ENXIO; 3267 3268 /* 3269 * *offset can be negative, in this case we start finding DATA/HOLE from 3270 * the very start of the file. 3271 */ 3272 start = max_t(loff_t, 0, *offset); 3273 3274 lockstart = round_down(start, fs_info->sectorsize); 3275 lockend = round_up(i_size_read(inode), 3276 fs_info->sectorsize); 3277 if (lockend <= lockstart) 3278 lockend = lockstart + fs_info->sectorsize; 3279 lockend--; 3280 len = lockend - lockstart + 1; 3281 3282 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3283 &cached_state); 3284 3285 while (start < inode->i_size) { 3286 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, 3287 start, len, 0); 3288 if (IS_ERR(em)) { 3289 ret = PTR_ERR(em); 3290 em = NULL; 3291 break; 3292 } 3293 3294 if (whence == SEEK_HOLE && 3295 (em->block_start == EXTENT_MAP_HOLE || 3296 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3297 break; 3298 else if (whence == SEEK_DATA && 3299 (em->block_start != EXTENT_MAP_HOLE && 3300 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3301 break; 3302 3303 start = em->start + em->len; 3304 free_extent_map(em); 3305 em = NULL; 3306 cond_resched(); 3307 } 3308 free_extent_map(em); 3309 if (!ret) { 3310 if (whence == SEEK_DATA && start >= inode->i_size) 3311 ret = -ENXIO; 3312 else 3313 *offset = min_t(loff_t, start, inode->i_size); 3314 } 3315 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3316 &cached_state); 3317 return ret; 3318 } 3319 3320 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3321 { 3322 struct inode *inode = file->f_mapping->host; 3323 int ret; 3324 3325 inode_lock(inode); 3326 switch (whence) { 3327 case SEEK_END: 3328 case SEEK_CUR: 3329 offset = generic_file_llseek(file, offset, whence); 3330 goto out; 3331 case SEEK_DATA: 3332 case SEEK_HOLE: 3333 if (offset >= i_size_read(inode)) { 3334 inode_unlock(inode); 3335 return -ENXIO; 3336 } 3337 3338 ret = find_desired_extent(inode, &offset, whence); 3339 if (ret) { 3340 inode_unlock(inode); 3341 return ret; 3342 } 3343 } 3344 3345 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3346 out: 3347 inode_unlock(inode); 3348 return offset; 3349 } 3350 3351 static int btrfs_file_open(struct inode *inode, struct file *filp) 3352 { 3353 filp->f_mode |= FMODE_NOWAIT; 3354 return generic_file_open(inode, filp); 3355 } 3356 3357 const struct file_operations btrfs_file_operations = { 3358 .llseek = btrfs_file_llseek, 3359 .read_iter = generic_file_read_iter, 3360 .splice_read = generic_file_splice_read, 3361 .write_iter = btrfs_file_write_iter, 3362 .mmap = btrfs_file_mmap, 3363 .open = btrfs_file_open, 3364 .release = btrfs_release_file, 3365 .fsync = btrfs_sync_file, 3366 .fallocate = btrfs_fallocate, 3367 .unlocked_ioctl = btrfs_ioctl, 3368 #ifdef CONFIG_COMPAT 3369 .compat_ioctl = btrfs_compat_ioctl, 3370 #endif 3371 .clone_file_range = btrfs_clone_file_range, 3372 .dedupe_file_range = btrfs_dedupe_file_range, 3373 }; 3374 3375 void __cold btrfs_auto_defrag_exit(void) 3376 { 3377 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3378 } 3379 3380 int __init btrfs_auto_defrag_init(void) 3381 { 3382 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3383 sizeof(struct inode_defrag), 0, 3384 SLAB_MEM_SPREAD, 3385 NULL); 3386 if (!btrfs_inode_defrag_cachep) 3387 return -ENOMEM; 3388 3389 return 0; 3390 } 3391 3392 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3393 { 3394 int ret; 3395 3396 /* 3397 * So with compression we will find and lock a dirty page and clear the 3398 * first one as dirty, setup an async extent, and immediately return 3399 * with the entire range locked but with nobody actually marked with 3400 * writeback. So we can't just filemap_write_and_wait_range() and 3401 * expect it to work since it will just kick off a thread to do the 3402 * actual work. So we need to call filemap_fdatawrite_range _again_ 3403 * since it will wait on the page lock, which won't be unlocked until 3404 * after the pages have been marked as writeback and so we're good to go 3405 * from there. We have to do this otherwise we'll miss the ordered 3406 * extents and that results in badness. Please Josef, do not think you 3407 * know better and pull this out at some point in the future, it is 3408 * right and you are wrong. 3409 */ 3410 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3411 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3412 &BTRFS_I(inode)->runtime_flags)) 3413 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3414 3415 return ret; 3416 } 3417