1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "btrfs_inode.h" 24 #include "print-tree.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "volumes.h" 28 #include "qgroup.h" 29 #include "compression.h" 30 #include "delalloc-space.h" 31 #include "reflink.h" 32 #include "subpage.h" 33 #include "fs.h" 34 #include "accessors.h" 35 #include "extent-tree.h" 36 #include "file-item.h" 37 #include "ioctl.h" 38 #include "file.h" 39 #include "super.h" 40 41 /* simple helper to fault in pages and copy. This should go away 42 * and be replaced with calls into generic code. 43 */ 44 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 45 struct page **prepared_pages, 46 struct iov_iter *i) 47 { 48 size_t copied = 0; 49 size_t total_copied = 0; 50 int pg = 0; 51 int offset = offset_in_page(pos); 52 53 while (write_bytes > 0) { 54 size_t count = min_t(size_t, 55 PAGE_SIZE - offset, write_bytes); 56 struct page *page = prepared_pages[pg]; 57 /* 58 * Copy data from userspace to the current page 59 */ 60 copied = copy_page_from_iter_atomic(page, offset, count, i); 61 62 /* Flush processor's dcache for this page */ 63 flush_dcache_page(page); 64 65 /* 66 * if we get a partial write, we can end up with 67 * partially up to date pages. These add 68 * a lot of complexity, so make sure they don't 69 * happen by forcing this copy to be retried. 70 * 71 * The rest of the btrfs_file_write code will fall 72 * back to page at a time copies after we return 0. 73 */ 74 if (unlikely(copied < count)) { 75 if (!PageUptodate(page)) { 76 iov_iter_revert(i, copied); 77 copied = 0; 78 } 79 if (!copied) 80 break; 81 } 82 83 write_bytes -= copied; 84 total_copied += copied; 85 offset += copied; 86 if (offset == PAGE_SIZE) { 87 pg++; 88 offset = 0; 89 } 90 } 91 return total_copied; 92 } 93 94 /* 95 * unlocks pages after btrfs_file_write is done with them 96 */ 97 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, 98 struct page **pages, size_t num_pages, 99 u64 pos, u64 copied) 100 { 101 size_t i; 102 u64 block_start = round_down(pos, fs_info->sectorsize); 103 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 104 105 ASSERT(block_len <= U32_MAX); 106 for (i = 0; i < num_pages; i++) { 107 /* page checked is some magic around finding pages that 108 * have been modified without going through btrfs_set_page_dirty 109 * clear it here. There should be no need to mark the pages 110 * accessed as prepare_pages should have marked them accessed 111 * in prepare_pages via find_or_create_page() 112 */ 113 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start, 114 block_len); 115 unlock_page(pages[i]); 116 put_page(pages[i]); 117 } 118 } 119 120 /* 121 * After btrfs_copy_from_user(), update the following things for delalloc: 122 * - Mark newly dirtied pages as DELALLOC in the io tree. 123 * Used to advise which range is to be written back. 124 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 125 * - Update inode size for past EOF write 126 */ 127 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 128 size_t num_pages, loff_t pos, size_t write_bytes, 129 struct extent_state **cached, bool noreserve) 130 { 131 struct btrfs_fs_info *fs_info = inode->root->fs_info; 132 int err = 0; 133 int i; 134 u64 num_bytes; 135 u64 start_pos; 136 u64 end_of_last_block; 137 u64 end_pos = pos + write_bytes; 138 loff_t isize = i_size_read(&inode->vfs_inode); 139 unsigned int extra_bits = 0; 140 141 if (write_bytes == 0) 142 return 0; 143 144 if (noreserve) 145 extra_bits |= EXTENT_NORESERVE; 146 147 start_pos = round_down(pos, fs_info->sectorsize); 148 num_bytes = round_up(write_bytes + pos - start_pos, 149 fs_info->sectorsize); 150 ASSERT(num_bytes <= U32_MAX); 151 152 end_of_last_block = start_pos + num_bytes - 1; 153 154 /* 155 * The pages may have already been dirty, clear out old accounting so 156 * we can set things up properly 157 */ 158 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 159 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 160 cached); 161 162 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 163 extra_bits, cached); 164 if (err) 165 return err; 166 167 for (i = 0; i < num_pages; i++) { 168 struct page *p = pages[i]; 169 170 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes); 171 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes); 172 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes); 173 } 174 175 /* 176 * we've only changed i_size in ram, and we haven't updated 177 * the disk i_size. There is no need to log the inode 178 * at this time. 179 */ 180 if (end_pos > isize) 181 i_size_write(&inode->vfs_inode, end_pos); 182 return 0; 183 } 184 185 /* 186 * this is very complex, but the basic idea is to drop all extents 187 * in the range start - end. hint_block is filled in with a block number 188 * that would be a good hint to the block allocator for this file. 189 * 190 * If an extent intersects the range but is not entirely inside the range 191 * it is either truncated or split. Anything entirely inside the range 192 * is deleted from the tree. 193 * 194 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 195 * to deal with that. We set the field 'bytes_found' of the arguments structure 196 * with the number of allocated bytes found in the target range, so that the 197 * caller can update the inode's number of bytes in an atomic way when 198 * replacing extents in a range to avoid races with stat(2). 199 */ 200 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 201 struct btrfs_root *root, struct btrfs_inode *inode, 202 struct btrfs_drop_extents_args *args) 203 { 204 struct btrfs_fs_info *fs_info = root->fs_info; 205 struct extent_buffer *leaf; 206 struct btrfs_file_extent_item *fi; 207 struct btrfs_ref ref = { 0 }; 208 struct btrfs_key key; 209 struct btrfs_key new_key; 210 u64 ino = btrfs_ino(inode); 211 u64 search_start = args->start; 212 u64 disk_bytenr = 0; 213 u64 num_bytes = 0; 214 u64 extent_offset = 0; 215 u64 extent_end = 0; 216 u64 last_end = args->start; 217 int del_nr = 0; 218 int del_slot = 0; 219 int extent_type; 220 int recow; 221 int ret; 222 int modify_tree = -1; 223 int update_refs; 224 int found = 0; 225 struct btrfs_path *path = args->path; 226 227 args->bytes_found = 0; 228 args->extent_inserted = false; 229 230 /* Must always have a path if ->replace_extent is true */ 231 ASSERT(!(args->replace_extent && !args->path)); 232 233 if (!path) { 234 path = btrfs_alloc_path(); 235 if (!path) { 236 ret = -ENOMEM; 237 goto out; 238 } 239 } 240 241 if (args->drop_cache) 242 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false); 243 244 if (args->start >= inode->disk_i_size && !args->replace_extent) 245 modify_tree = 0; 246 247 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); 248 while (1) { 249 recow = 0; 250 ret = btrfs_lookup_file_extent(trans, root, path, ino, 251 search_start, modify_tree); 252 if (ret < 0) 253 break; 254 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 255 leaf = path->nodes[0]; 256 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 257 if (key.objectid == ino && 258 key.type == BTRFS_EXTENT_DATA_KEY) 259 path->slots[0]--; 260 } 261 ret = 0; 262 next_slot: 263 leaf = path->nodes[0]; 264 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 265 BUG_ON(del_nr > 0); 266 ret = btrfs_next_leaf(root, path); 267 if (ret < 0) 268 break; 269 if (ret > 0) { 270 ret = 0; 271 break; 272 } 273 leaf = path->nodes[0]; 274 recow = 1; 275 } 276 277 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 278 279 if (key.objectid > ino) 280 break; 281 if (WARN_ON_ONCE(key.objectid < ino) || 282 key.type < BTRFS_EXTENT_DATA_KEY) { 283 ASSERT(del_nr == 0); 284 path->slots[0]++; 285 goto next_slot; 286 } 287 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 288 break; 289 290 fi = btrfs_item_ptr(leaf, path->slots[0], 291 struct btrfs_file_extent_item); 292 extent_type = btrfs_file_extent_type(leaf, fi); 293 294 if (extent_type == BTRFS_FILE_EXTENT_REG || 295 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 296 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 297 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 298 extent_offset = btrfs_file_extent_offset(leaf, fi); 299 extent_end = key.offset + 300 btrfs_file_extent_num_bytes(leaf, fi); 301 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 302 extent_end = key.offset + 303 btrfs_file_extent_ram_bytes(leaf, fi); 304 } else { 305 /* can't happen */ 306 BUG(); 307 } 308 309 /* 310 * Don't skip extent items representing 0 byte lengths. They 311 * used to be created (bug) if while punching holes we hit 312 * -ENOSPC condition. So if we find one here, just ensure we 313 * delete it, otherwise we would insert a new file extent item 314 * with the same key (offset) as that 0 bytes length file 315 * extent item in the call to setup_items_for_insert() later 316 * in this function. 317 */ 318 if (extent_end == key.offset && extent_end >= search_start) { 319 last_end = extent_end; 320 goto delete_extent_item; 321 } 322 323 if (extent_end <= search_start) { 324 path->slots[0]++; 325 goto next_slot; 326 } 327 328 found = 1; 329 search_start = max(key.offset, args->start); 330 if (recow || !modify_tree) { 331 modify_tree = -1; 332 btrfs_release_path(path); 333 continue; 334 } 335 336 /* 337 * | - range to drop - | 338 * | -------- extent -------- | 339 */ 340 if (args->start > key.offset && args->end < extent_end) { 341 BUG_ON(del_nr > 0); 342 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 343 ret = -EOPNOTSUPP; 344 break; 345 } 346 347 memcpy(&new_key, &key, sizeof(new_key)); 348 new_key.offset = args->start; 349 ret = btrfs_duplicate_item(trans, root, path, 350 &new_key); 351 if (ret == -EAGAIN) { 352 btrfs_release_path(path); 353 continue; 354 } 355 if (ret < 0) 356 break; 357 358 leaf = path->nodes[0]; 359 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 360 struct btrfs_file_extent_item); 361 btrfs_set_file_extent_num_bytes(leaf, fi, 362 args->start - key.offset); 363 364 fi = btrfs_item_ptr(leaf, path->slots[0], 365 struct btrfs_file_extent_item); 366 367 extent_offset += args->start - key.offset; 368 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 369 btrfs_set_file_extent_num_bytes(leaf, fi, 370 extent_end - args->start); 371 btrfs_mark_buffer_dirty(leaf); 372 373 if (update_refs && disk_bytenr > 0) { 374 btrfs_init_generic_ref(&ref, 375 BTRFS_ADD_DELAYED_REF, 376 disk_bytenr, num_bytes, 0); 377 btrfs_init_data_ref(&ref, 378 root->root_key.objectid, 379 new_key.objectid, 380 args->start - extent_offset, 381 0, false); 382 ret = btrfs_inc_extent_ref(trans, &ref); 383 if (ret) { 384 btrfs_abort_transaction(trans, ret); 385 break; 386 } 387 } 388 key.offset = args->start; 389 } 390 /* 391 * From here on out we will have actually dropped something, so 392 * last_end can be updated. 393 */ 394 last_end = extent_end; 395 396 /* 397 * | ---- range to drop ----- | 398 * | -------- extent -------- | 399 */ 400 if (args->start <= key.offset && args->end < extent_end) { 401 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 402 ret = -EOPNOTSUPP; 403 break; 404 } 405 406 memcpy(&new_key, &key, sizeof(new_key)); 407 new_key.offset = args->end; 408 btrfs_set_item_key_safe(fs_info, path, &new_key); 409 410 extent_offset += args->end - key.offset; 411 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 412 btrfs_set_file_extent_num_bytes(leaf, fi, 413 extent_end - args->end); 414 btrfs_mark_buffer_dirty(leaf); 415 if (update_refs && disk_bytenr > 0) 416 args->bytes_found += args->end - key.offset; 417 break; 418 } 419 420 search_start = extent_end; 421 /* 422 * | ---- range to drop ----- | 423 * | -------- extent -------- | 424 */ 425 if (args->start > key.offset && args->end >= extent_end) { 426 BUG_ON(del_nr > 0); 427 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 428 ret = -EOPNOTSUPP; 429 break; 430 } 431 432 btrfs_set_file_extent_num_bytes(leaf, fi, 433 args->start - key.offset); 434 btrfs_mark_buffer_dirty(leaf); 435 if (update_refs && disk_bytenr > 0) 436 args->bytes_found += extent_end - args->start; 437 if (args->end == extent_end) 438 break; 439 440 path->slots[0]++; 441 goto next_slot; 442 } 443 444 /* 445 * | ---- range to drop ----- | 446 * | ------ extent ------ | 447 */ 448 if (args->start <= key.offset && args->end >= extent_end) { 449 delete_extent_item: 450 if (del_nr == 0) { 451 del_slot = path->slots[0]; 452 del_nr = 1; 453 } else { 454 BUG_ON(del_slot + del_nr != path->slots[0]); 455 del_nr++; 456 } 457 458 if (update_refs && 459 extent_type == BTRFS_FILE_EXTENT_INLINE) { 460 args->bytes_found += extent_end - key.offset; 461 extent_end = ALIGN(extent_end, 462 fs_info->sectorsize); 463 } else if (update_refs && disk_bytenr > 0) { 464 btrfs_init_generic_ref(&ref, 465 BTRFS_DROP_DELAYED_REF, 466 disk_bytenr, num_bytes, 0); 467 btrfs_init_data_ref(&ref, 468 root->root_key.objectid, 469 key.objectid, 470 key.offset - extent_offset, 0, 471 false); 472 ret = btrfs_free_extent(trans, &ref); 473 if (ret) { 474 btrfs_abort_transaction(trans, ret); 475 break; 476 } 477 args->bytes_found += extent_end - key.offset; 478 } 479 480 if (args->end == extent_end) 481 break; 482 483 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 484 path->slots[0]++; 485 goto next_slot; 486 } 487 488 ret = btrfs_del_items(trans, root, path, del_slot, 489 del_nr); 490 if (ret) { 491 btrfs_abort_transaction(trans, ret); 492 break; 493 } 494 495 del_nr = 0; 496 del_slot = 0; 497 498 btrfs_release_path(path); 499 continue; 500 } 501 502 BUG(); 503 } 504 505 if (!ret && del_nr > 0) { 506 /* 507 * Set path->slots[0] to first slot, so that after the delete 508 * if items are move off from our leaf to its immediate left or 509 * right neighbor leafs, we end up with a correct and adjusted 510 * path->slots[0] for our insertion (if args->replace_extent). 511 */ 512 path->slots[0] = del_slot; 513 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 514 if (ret) 515 btrfs_abort_transaction(trans, ret); 516 } 517 518 leaf = path->nodes[0]; 519 /* 520 * If btrfs_del_items() was called, it might have deleted a leaf, in 521 * which case it unlocked our path, so check path->locks[0] matches a 522 * write lock. 523 */ 524 if (!ret && args->replace_extent && 525 path->locks[0] == BTRFS_WRITE_LOCK && 526 btrfs_leaf_free_space(leaf) >= 527 sizeof(struct btrfs_item) + args->extent_item_size) { 528 529 key.objectid = ino; 530 key.type = BTRFS_EXTENT_DATA_KEY; 531 key.offset = args->start; 532 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 533 struct btrfs_key slot_key; 534 535 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 536 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 537 path->slots[0]++; 538 } 539 btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size); 540 args->extent_inserted = true; 541 } 542 543 if (!args->path) 544 btrfs_free_path(path); 545 else if (!args->extent_inserted) 546 btrfs_release_path(path); 547 out: 548 args->drop_end = found ? min(args->end, last_end) : args->end; 549 550 return ret; 551 } 552 553 static int extent_mergeable(struct extent_buffer *leaf, int slot, 554 u64 objectid, u64 bytenr, u64 orig_offset, 555 u64 *start, u64 *end) 556 { 557 struct btrfs_file_extent_item *fi; 558 struct btrfs_key key; 559 u64 extent_end; 560 561 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 562 return 0; 563 564 btrfs_item_key_to_cpu(leaf, &key, slot); 565 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 566 return 0; 567 568 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 569 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 570 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 571 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 572 btrfs_file_extent_compression(leaf, fi) || 573 btrfs_file_extent_encryption(leaf, fi) || 574 btrfs_file_extent_other_encoding(leaf, fi)) 575 return 0; 576 577 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 578 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 579 return 0; 580 581 *start = key.offset; 582 *end = extent_end; 583 return 1; 584 } 585 586 /* 587 * Mark extent in the range start - end as written. 588 * 589 * This changes extent type from 'pre-allocated' to 'regular'. If only 590 * part of extent is marked as written, the extent will be split into 591 * two or three. 592 */ 593 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 594 struct btrfs_inode *inode, u64 start, u64 end) 595 { 596 struct btrfs_fs_info *fs_info = trans->fs_info; 597 struct btrfs_root *root = inode->root; 598 struct extent_buffer *leaf; 599 struct btrfs_path *path; 600 struct btrfs_file_extent_item *fi; 601 struct btrfs_ref ref = { 0 }; 602 struct btrfs_key key; 603 struct btrfs_key new_key; 604 u64 bytenr; 605 u64 num_bytes; 606 u64 extent_end; 607 u64 orig_offset; 608 u64 other_start; 609 u64 other_end; 610 u64 split; 611 int del_nr = 0; 612 int del_slot = 0; 613 int recow; 614 int ret = 0; 615 u64 ino = btrfs_ino(inode); 616 617 path = btrfs_alloc_path(); 618 if (!path) 619 return -ENOMEM; 620 again: 621 recow = 0; 622 split = start; 623 key.objectid = ino; 624 key.type = BTRFS_EXTENT_DATA_KEY; 625 key.offset = split; 626 627 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 628 if (ret < 0) 629 goto out; 630 if (ret > 0 && path->slots[0] > 0) 631 path->slots[0]--; 632 633 leaf = path->nodes[0]; 634 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 635 if (key.objectid != ino || 636 key.type != BTRFS_EXTENT_DATA_KEY) { 637 ret = -EINVAL; 638 btrfs_abort_transaction(trans, ret); 639 goto out; 640 } 641 fi = btrfs_item_ptr(leaf, path->slots[0], 642 struct btrfs_file_extent_item); 643 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 644 ret = -EINVAL; 645 btrfs_abort_transaction(trans, ret); 646 goto out; 647 } 648 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 649 if (key.offset > start || extent_end < end) { 650 ret = -EINVAL; 651 btrfs_abort_transaction(trans, ret); 652 goto out; 653 } 654 655 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 656 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 657 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 658 memcpy(&new_key, &key, sizeof(new_key)); 659 660 if (start == key.offset && end < extent_end) { 661 other_start = 0; 662 other_end = start; 663 if (extent_mergeable(leaf, path->slots[0] - 1, 664 ino, bytenr, orig_offset, 665 &other_start, &other_end)) { 666 new_key.offset = end; 667 btrfs_set_item_key_safe(fs_info, path, &new_key); 668 fi = btrfs_item_ptr(leaf, path->slots[0], 669 struct btrfs_file_extent_item); 670 btrfs_set_file_extent_generation(leaf, fi, 671 trans->transid); 672 btrfs_set_file_extent_num_bytes(leaf, fi, 673 extent_end - end); 674 btrfs_set_file_extent_offset(leaf, fi, 675 end - orig_offset); 676 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 677 struct btrfs_file_extent_item); 678 btrfs_set_file_extent_generation(leaf, fi, 679 trans->transid); 680 btrfs_set_file_extent_num_bytes(leaf, fi, 681 end - other_start); 682 btrfs_mark_buffer_dirty(leaf); 683 goto out; 684 } 685 } 686 687 if (start > key.offset && end == extent_end) { 688 other_start = end; 689 other_end = 0; 690 if (extent_mergeable(leaf, path->slots[0] + 1, 691 ino, bytenr, orig_offset, 692 &other_start, &other_end)) { 693 fi = btrfs_item_ptr(leaf, path->slots[0], 694 struct btrfs_file_extent_item); 695 btrfs_set_file_extent_num_bytes(leaf, fi, 696 start - key.offset); 697 btrfs_set_file_extent_generation(leaf, fi, 698 trans->transid); 699 path->slots[0]++; 700 new_key.offset = start; 701 btrfs_set_item_key_safe(fs_info, path, &new_key); 702 703 fi = btrfs_item_ptr(leaf, path->slots[0], 704 struct btrfs_file_extent_item); 705 btrfs_set_file_extent_generation(leaf, fi, 706 trans->transid); 707 btrfs_set_file_extent_num_bytes(leaf, fi, 708 other_end - start); 709 btrfs_set_file_extent_offset(leaf, fi, 710 start - orig_offset); 711 btrfs_mark_buffer_dirty(leaf); 712 goto out; 713 } 714 } 715 716 while (start > key.offset || end < extent_end) { 717 if (key.offset == start) 718 split = end; 719 720 new_key.offset = split; 721 ret = btrfs_duplicate_item(trans, root, path, &new_key); 722 if (ret == -EAGAIN) { 723 btrfs_release_path(path); 724 goto again; 725 } 726 if (ret < 0) { 727 btrfs_abort_transaction(trans, ret); 728 goto out; 729 } 730 731 leaf = path->nodes[0]; 732 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 733 struct btrfs_file_extent_item); 734 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 735 btrfs_set_file_extent_num_bytes(leaf, fi, 736 split - key.offset); 737 738 fi = btrfs_item_ptr(leaf, path->slots[0], 739 struct btrfs_file_extent_item); 740 741 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 742 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 743 btrfs_set_file_extent_num_bytes(leaf, fi, 744 extent_end - split); 745 btrfs_mark_buffer_dirty(leaf); 746 747 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 748 num_bytes, 0); 749 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 750 orig_offset, 0, false); 751 ret = btrfs_inc_extent_ref(trans, &ref); 752 if (ret) { 753 btrfs_abort_transaction(trans, ret); 754 goto out; 755 } 756 757 if (split == start) { 758 key.offset = start; 759 } else { 760 if (start != key.offset) { 761 ret = -EINVAL; 762 btrfs_abort_transaction(trans, ret); 763 goto out; 764 } 765 path->slots[0]--; 766 extent_end = end; 767 } 768 recow = 1; 769 } 770 771 other_start = end; 772 other_end = 0; 773 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 774 num_bytes, 0); 775 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset, 776 0, false); 777 if (extent_mergeable(leaf, path->slots[0] + 1, 778 ino, bytenr, orig_offset, 779 &other_start, &other_end)) { 780 if (recow) { 781 btrfs_release_path(path); 782 goto again; 783 } 784 extent_end = other_end; 785 del_slot = path->slots[0] + 1; 786 del_nr++; 787 ret = btrfs_free_extent(trans, &ref); 788 if (ret) { 789 btrfs_abort_transaction(trans, ret); 790 goto out; 791 } 792 } 793 other_start = 0; 794 other_end = start; 795 if (extent_mergeable(leaf, path->slots[0] - 1, 796 ino, bytenr, orig_offset, 797 &other_start, &other_end)) { 798 if (recow) { 799 btrfs_release_path(path); 800 goto again; 801 } 802 key.offset = other_start; 803 del_slot = path->slots[0]; 804 del_nr++; 805 ret = btrfs_free_extent(trans, &ref); 806 if (ret) { 807 btrfs_abort_transaction(trans, ret); 808 goto out; 809 } 810 } 811 if (del_nr == 0) { 812 fi = btrfs_item_ptr(leaf, path->slots[0], 813 struct btrfs_file_extent_item); 814 btrfs_set_file_extent_type(leaf, fi, 815 BTRFS_FILE_EXTENT_REG); 816 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 817 btrfs_mark_buffer_dirty(leaf); 818 } else { 819 fi = btrfs_item_ptr(leaf, del_slot - 1, 820 struct btrfs_file_extent_item); 821 btrfs_set_file_extent_type(leaf, fi, 822 BTRFS_FILE_EXTENT_REG); 823 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 824 btrfs_set_file_extent_num_bytes(leaf, fi, 825 extent_end - key.offset); 826 btrfs_mark_buffer_dirty(leaf); 827 828 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 829 if (ret < 0) { 830 btrfs_abort_transaction(trans, ret); 831 goto out; 832 } 833 } 834 out: 835 btrfs_free_path(path); 836 return ret; 837 } 838 839 /* 840 * on error we return an unlocked page and the error value 841 * on success we return a locked page and 0 842 */ 843 static int prepare_uptodate_page(struct inode *inode, 844 struct page *page, u64 pos, 845 bool force_uptodate) 846 { 847 struct folio *folio = page_folio(page); 848 int ret = 0; 849 850 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 851 !PageUptodate(page)) { 852 ret = btrfs_read_folio(NULL, folio); 853 if (ret) 854 return ret; 855 lock_page(page); 856 if (!PageUptodate(page)) { 857 unlock_page(page); 858 return -EIO; 859 } 860 861 /* 862 * Since btrfs_read_folio() will unlock the folio before it 863 * returns, there is a window where btrfs_release_folio() can be 864 * called to release the page. Here we check both inode 865 * mapping and PagePrivate() to make sure the page was not 866 * released. 867 * 868 * The private flag check is essential for subpage as we need 869 * to store extra bitmap using page->private. 870 */ 871 if (page->mapping != inode->i_mapping || !PagePrivate(page)) { 872 unlock_page(page); 873 return -EAGAIN; 874 } 875 } 876 return 0; 877 } 878 879 static unsigned int get_prepare_fgp_flags(bool nowait) 880 { 881 unsigned int fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT; 882 883 if (nowait) 884 fgp_flags |= FGP_NOWAIT; 885 886 return fgp_flags; 887 } 888 889 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait) 890 { 891 gfp_t gfp; 892 893 gfp = btrfs_alloc_write_mask(inode->i_mapping); 894 if (nowait) { 895 gfp &= ~__GFP_DIRECT_RECLAIM; 896 gfp |= GFP_NOWAIT; 897 } 898 899 return gfp; 900 } 901 902 /* 903 * this just gets pages into the page cache and locks them down. 904 */ 905 static noinline int prepare_pages(struct inode *inode, struct page **pages, 906 size_t num_pages, loff_t pos, 907 size_t write_bytes, bool force_uptodate, 908 bool nowait) 909 { 910 int i; 911 unsigned long index = pos >> PAGE_SHIFT; 912 gfp_t mask = get_prepare_gfp_flags(inode, nowait); 913 unsigned int fgp_flags = get_prepare_fgp_flags(nowait); 914 int err = 0; 915 int faili; 916 917 for (i = 0; i < num_pages; i++) { 918 again: 919 pages[i] = pagecache_get_page(inode->i_mapping, index + i, 920 fgp_flags, mask | __GFP_WRITE); 921 if (!pages[i]) { 922 faili = i - 1; 923 if (nowait) 924 err = -EAGAIN; 925 else 926 err = -ENOMEM; 927 goto fail; 928 } 929 930 err = set_page_extent_mapped(pages[i]); 931 if (err < 0) { 932 faili = i; 933 goto fail; 934 } 935 936 if (i == 0) 937 err = prepare_uptodate_page(inode, pages[i], pos, 938 force_uptodate); 939 if (!err && i == num_pages - 1) 940 err = prepare_uptodate_page(inode, pages[i], 941 pos + write_bytes, false); 942 if (err) { 943 put_page(pages[i]); 944 if (!nowait && err == -EAGAIN) { 945 err = 0; 946 goto again; 947 } 948 faili = i - 1; 949 goto fail; 950 } 951 wait_on_page_writeback(pages[i]); 952 } 953 954 return 0; 955 fail: 956 while (faili >= 0) { 957 unlock_page(pages[faili]); 958 put_page(pages[faili]); 959 faili--; 960 } 961 return err; 962 963 } 964 965 /* 966 * This function locks the extent and properly waits for data=ordered extents 967 * to finish before allowing the pages to be modified if need. 968 * 969 * The return value: 970 * 1 - the extent is locked 971 * 0 - the extent is not locked, and everything is OK 972 * -EAGAIN - need re-prepare the pages 973 * the other < 0 number - Something wrong happens 974 */ 975 static noinline int 976 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 977 size_t num_pages, loff_t pos, 978 size_t write_bytes, 979 u64 *lockstart, u64 *lockend, bool nowait, 980 struct extent_state **cached_state) 981 { 982 struct btrfs_fs_info *fs_info = inode->root->fs_info; 983 u64 start_pos; 984 u64 last_pos; 985 int i; 986 int ret = 0; 987 988 start_pos = round_down(pos, fs_info->sectorsize); 989 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 990 991 if (start_pos < inode->vfs_inode.i_size) { 992 struct btrfs_ordered_extent *ordered; 993 994 if (nowait) { 995 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos, 996 cached_state)) { 997 for (i = 0; i < num_pages; i++) { 998 unlock_page(pages[i]); 999 put_page(pages[i]); 1000 pages[i] = NULL; 1001 } 1002 1003 return -EAGAIN; 1004 } 1005 } else { 1006 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state); 1007 } 1008 1009 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1010 last_pos - start_pos + 1); 1011 if (ordered && 1012 ordered->file_offset + ordered->num_bytes > start_pos && 1013 ordered->file_offset <= last_pos) { 1014 unlock_extent(&inode->io_tree, start_pos, last_pos, 1015 cached_state); 1016 for (i = 0; i < num_pages; i++) { 1017 unlock_page(pages[i]); 1018 put_page(pages[i]); 1019 } 1020 btrfs_start_ordered_extent(ordered); 1021 btrfs_put_ordered_extent(ordered); 1022 return -EAGAIN; 1023 } 1024 if (ordered) 1025 btrfs_put_ordered_extent(ordered); 1026 1027 *lockstart = start_pos; 1028 *lockend = last_pos; 1029 ret = 1; 1030 } 1031 1032 /* 1033 * We should be called after prepare_pages() which should have locked 1034 * all pages in the range. 1035 */ 1036 for (i = 0; i < num_pages; i++) 1037 WARN_ON(!PageLocked(pages[i])); 1038 1039 return ret; 1040 } 1041 1042 /* 1043 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1044 * 1045 * @pos: File offset. 1046 * @write_bytes: The length to write, will be updated to the nocow writeable 1047 * range. 1048 * 1049 * This function will flush ordered extents in the range to ensure proper 1050 * nocow checks. 1051 * 1052 * Return: 1053 * > 0 If we can nocow, and updates @write_bytes. 1054 * 0 If we can't do a nocow write. 1055 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's 1056 * root is in progress. 1057 * < 0 If an error happened. 1058 * 1059 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 1060 */ 1061 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1062 size_t *write_bytes, bool nowait) 1063 { 1064 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1065 struct btrfs_root *root = inode->root; 1066 struct extent_state *cached_state = NULL; 1067 u64 lockstart, lockend; 1068 u64 num_bytes; 1069 int ret; 1070 1071 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1072 return 0; 1073 1074 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1075 return -EAGAIN; 1076 1077 lockstart = round_down(pos, fs_info->sectorsize); 1078 lockend = round_up(pos + *write_bytes, 1079 fs_info->sectorsize) - 1; 1080 num_bytes = lockend - lockstart + 1; 1081 1082 if (nowait) { 1083 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend, 1084 &cached_state)) { 1085 btrfs_drew_write_unlock(&root->snapshot_lock); 1086 return -EAGAIN; 1087 } 1088 } else { 1089 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, 1090 &cached_state); 1091 } 1092 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1093 NULL, NULL, NULL, nowait, false); 1094 if (ret <= 0) 1095 btrfs_drew_write_unlock(&root->snapshot_lock); 1096 else 1097 *write_bytes = min_t(size_t, *write_bytes , 1098 num_bytes - pos + lockstart); 1099 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 1100 1101 return ret; 1102 } 1103 1104 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1105 { 1106 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1107 } 1108 1109 static void update_time_for_write(struct inode *inode) 1110 { 1111 struct timespec64 now; 1112 1113 if (IS_NOCMTIME(inode)) 1114 return; 1115 1116 now = current_time(inode); 1117 if (!timespec64_equal(&inode->i_mtime, &now)) 1118 inode->i_mtime = now; 1119 1120 if (!timespec64_equal(&inode->i_ctime, &now)) 1121 inode->i_ctime = now; 1122 1123 if (IS_I_VERSION(inode)) 1124 inode_inc_iversion(inode); 1125 } 1126 1127 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1128 size_t count) 1129 { 1130 struct file *file = iocb->ki_filp; 1131 struct inode *inode = file_inode(file); 1132 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1133 loff_t pos = iocb->ki_pos; 1134 int ret; 1135 loff_t oldsize; 1136 loff_t start_pos; 1137 1138 /* 1139 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1140 * prealloc flags, as without those flags we always have to COW. We will 1141 * later check if we can really COW into the target range (using 1142 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1143 */ 1144 if ((iocb->ki_flags & IOCB_NOWAIT) && 1145 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1146 return -EAGAIN; 1147 1148 ret = file_remove_privs(file); 1149 if (ret) 1150 return ret; 1151 1152 /* 1153 * We reserve space for updating the inode when we reserve space for the 1154 * extent we are going to write, so we will enospc out there. We don't 1155 * need to start yet another transaction to update the inode as we will 1156 * update the inode when we finish writing whatever data we write. 1157 */ 1158 update_time_for_write(inode); 1159 1160 start_pos = round_down(pos, fs_info->sectorsize); 1161 oldsize = i_size_read(inode); 1162 if (start_pos > oldsize) { 1163 /* Expand hole size to cover write data, preventing empty gap */ 1164 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1165 1166 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1167 if (ret) 1168 return ret; 1169 } 1170 1171 return 0; 1172 } 1173 1174 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1175 struct iov_iter *i) 1176 { 1177 struct file *file = iocb->ki_filp; 1178 loff_t pos; 1179 struct inode *inode = file_inode(file); 1180 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1181 struct page **pages = NULL; 1182 struct extent_changeset *data_reserved = NULL; 1183 u64 release_bytes = 0; 1184 u64 lockstart; 1185 u64 lockend; 1186 size_t num_written = 0; 1187 int nrptrs; 1188 ssize_t ret; 1189 bool only_release_metadata = false; 1190 bool force_page_uptodate = false; 1191 loff_t old_isize = i_size_read(inode); 1192 unsigned int ilock_flags = 0; 1193 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 1194 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0); 1195 1196 if (nowait) 1197 ilock_flags |= BTRFS_ILOCK_TRY; 1198 1199 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1200 if (ret < 0) 1201 return ret; 1202 1203 ret = generic_write_checks(iocb, i); 1204 if (ret <= 0) 1205 goto out; 1206 1207 ret = btrfs_write_check(iocb, i, ret); 1208 if (ret < 0) 1209 goto out; 1210 1211 pos = iocb->ki_pos; 1212 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1213 PAGE_SIZE / (sizeof(struct page *))); 1214 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1215 nrptrs = max(nrptrs, 8); 1216 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1217 if (!pages) { 1218 ret = -ENOMEM; 1219 goto out; 1220 } 1221 1222 while (iov_iter_count(i) > 0) { 1223 struct extent_state *cached_state = NULL; 1224 size_t offset = offset_in_page(pos); 1225 size_t sector_offset; 1226 size_t write_bytes = min(iov_iter_count(i), 1227 nrptrs * (size_t)PAGE_SIZE - 1228 offset); 1229 size_t num_pages; 1230 size_t reserve_bytes; 1231 size_t dirty_pages; 1232 size_t copied; 1233 size_t dirty_sectors; 1234 size_t num_sectors; 1235 int extents_locked; 1236 1237 /* 1238 * Fault pages before locking them in prepare_pages 1239 * to avoid recursive lock 1240 */ 1241 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1242 ret = -EFAULT; 1243 break; 1244 } 1245 1246 only_release_metadata = false; 1247 sector_offset = pos & (fs_info->sectorsize - 1); 1248 1249 extent_changeset_release(data_reserved); 1250 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1251 &data_reserved, pos, 1252 write_bytes, nowait); 1253 if (ret < 0) { 1254 int can_nocow; 1255 1256 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) { 1257 ret = -EAGAIN; 1258 break; 1259 } 1260 1261 /* 1262 * If we don't have to COW at the offset, reserve 1263 * metadata only. write_bytes may get smaller than 1264 * requested here. 1265 */ 1266 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1267 &write_bytes, nowait); 1268 if (can_nocow < 0) 1269 ret = can_nocow; 1270 if (can_nocow > 0) 1271 ret = 0; 1272 if (ret) 1273 break; 1274 only_release_metadata = true; 1275 } 1276 1277 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1278 WARN_ON(num_pages > nrptrs); 1279 reserve_bytes = round_up(write_bytes + sector_offset, 1280 fs_info->sectorsize); 1281 WARN_ON(reserve_bytes == 0); 1282 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1283 reserve_bytes, 1284 reserve_bytes, nowait); 1285 if (ret) { 1286 if (!only_release_metadata) 1287 btrfs_free_reserved_data_space(BTRFS_I(inode), 1288 data_reserved, pos, 1289 write_bytes); 1290 else 1291 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1292 1293 if (nowait && ret == -ENOSPC) 1294 ret = -EAGAIN; 1295 break; 1296 } 1297 1298 release_bytes = reserve_bytes; 1299 again: 1300 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags); 1301 if (ret) { 1302 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1303 break; 1304 } 1305 1306 /* 1307 * This is going to setup the pages array with the number of 1308 * pages we want, so we don't really need to worry about the 1309 * contents of pages from loop to loop 1310 */ 1311 ret = prepare_pages(inode, pages, num_pages, 1312 pos, write_bytes, force_page_uptodate, false); 1313 if (ret) { 1314 btrfs_delalloc_release_extents(BTRFS_I(inode), 1315 reserve_bytes); 1316 break; 1317 } 1318 1319 extents_locked = lock_and_cleanup_extent_if_need( 1320 BTRFS_I(inode), pages, 1321 num_pages, pos, write_bytes, &lockstart, 1322 &lockend, nowait, &cached_state); 1323 if (extents_locked < 0) { 1324 if (!nowait && extents_locked == -EAGAIN) 1325 goto again; 1326 1327 btrfs_delalloc_release_extents(BTRFS_I(inode), 1328 reserve_bytes); 1329 ret = extents_locked; 1330 break; 1331 } 1332 1333 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1334 1335 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1336 dirty_sectors = round_up(copied + sector_offset, 1337 fs_info->sectorsize); 1338 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1339 1340 /* 1341 * if we have trouble faulting in the pages, fall 1342 * back to one page at a time 1343 */ 1344 if (copied < write_bytes) 1345 nrptrs = 1; 1346 1347 if (copied == 0) { 1348 force_page_uptodate = true; 1349 dirty_sectors = 0; 1350 dirty_pages = 0; 1351 } else { 1352 force_page_uptodate = false; 1353 dirty_pages = DIV_ROUND_UP(copied + offset, 1354 PAGE_SIZE); 1355 } 1356 1357 if (num_sectors > dirty_sectors) { 1358 /* release everything except the sectors we dirtied */ 1359 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1360 if (only_release_metadata) { 1361 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1362 release_bytes, true); 1363 } else { 1364 u64 __pos; 1365 1366 __pos = round_down(pos, 1367 fs_info->sectorsize) + 1368 (dirty_pages << PAGE_SHIFT); 1369 btrfs_delalloc_release_space(BTRFS_I(inode), 1370 data_reserved, __pos, 1371 release_bytes, true); 1372 } 1373 } 1374 1375 release_bytes = round_up(copied + sector_offset, 1376 fs_info->sectorsize); 1377 1378 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1379 dirty_pages, pos, copied, 1380 &cached_state, only_release_metadata); 1381 1382 /* 1383 * If we have not locked the extent range, because the range's 1384 * start offset is >= i_size, we might still have a non-NULL 1385 * cached extent state, acquired while marking the extent range 1386 * as delalloc through btrfs_dirty_pages(). Therefore free any 1387 * possible cached extent state to avoid a memory leak. 1388 */ 1389 if (extents_locked) 1390 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 1391 lockend, &cached_state); 1392 else 1393 free_extent_state(cached_state); 1394 1395 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1396 if (ret) { 1397 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1398 break; 1399 } 1400 1401 release_bytes = 0; 1402 if (only_release_metadata) 1403 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1404 1405 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1406 1407 cond_resched(); 1408 1409 pos += copied; 1410 num_written += copied; 1411 } 1412 1413 kfree(pages); 1414 1415 if (release_bytes) { 1416 if (only_release_metadata) { 1417 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1418 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1419 release_bytes, true); 1420 } else { 1421 btrfs_delalloc_release_space(BTRFS_I(inode), 1422 data_reserved, 1423 round_down(pos, fs_info->sectorsize), 1424 release_bytes, true); 1425 } 1426 } 1427 1428 extent_changeset_free(data_reserved); 1429 if (num_written > 0) { 1430 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1431 iocb->ki_pos += num_written; 1432 } 1433 out: 1434 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1435 return num_written ? num_written : ret; 1436 } 1437 1438 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1439 const struct iov_iter *iter, loff_t offset) 1440 { 1441 const u32 blocksize_mask = fs_info->sectorsize - 1; 1442 1443 if (offset & blocksize_mask) 1444 return -EINVAL; 1445 1446 if (iov_iter_alignment(iter) & blocksize_mask) 1447 return -EINVAL; 1448 1449 return 0; 1450 } 1451 1452 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1453 { 1454 struct file *file = iocb->ki_filp; 1455 struct inode *inode = file_inode(file); 1456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1457 loff_t pos; 1458 ssize_t written = 0; 1459 ssize_t written_buffered; 1460 size_t prev_left = 0; 1461 loff_t endbyte; 1462 ssize_t err; 1463 unsigned int ilock_flags = 0; 1464 struct iomap_dio *dio; 1465 1466 if (iocb->ki_flags & IOCB_NOWAIT) 1467 ilock_flags |= BTRFS_ILOCK_TRY; 1468 1469 /* If the write DIO is within EOF, use a shared lock */ 1470 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode)) 1471 ilock_flags |= BTRFS_ILOCK_SHARED; 1472 1473 relock: 1474 err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1475 if (err < 0) 1476 return err; 1477 1478 err = generic_write_checks(iocb, from); 1479 if (err <= 0) { 1480 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1481 return err; 1482 } 1483 1484 err = btrfs_write_check(iocb, from, err); 1485 if (err < 0) { 1486 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1487 goto out; 1488 } 1489 1490 pos = iocb->ki_pos; 1491 /* 1492 * Re-check since file size may have changed just before taking the 1493 * lock or pos may have changed because of O_APPEND in generic_write_check() 1494 */ 1495 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1496 pos + iov_iter_count(from) > i_size_read(inode)) { 1497 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1498 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1499 goto relock; 1500 } 1501 1502 if (check_direct_IO(fs_info, from, pos)) { 1503 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1504 goto buffered; 1505 } 1506 1507 /* 1508 * The iov_iter can be mapped to the same file range we are writing to. 1509 * If that's the case, then we will deadlock in the iomap code, because 1510 * it first calls our callback btrfs_dio_iomap_begin(), which will create 1511 * an ordered extent, and after that it will fault in the pages that the 1512 * iov_iter refers to. During the fault in we end up in the readahead 1513 * pages code (starting at btrfs_readahead()), which will lock the range, 1514 * find that ordered extent and then wait for it to complete (at 1515 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since 1516 * obviously the ordered extent can never complete as we didn't submit 1517 * yet the respective bio(s). This always happens when the buffer is 1518 * memory mapped to the same file range, since the iomap DIO code always 1519 * invalidates pages in the target file range (after starting and waiting 1520 * for any writeback). 1521 * 1522 * So here we disable page faults in the iov_iter and then retry if we 1523 * got -EFAULT, faulting in the pages before the retry. 1524 */ 1525 from->nofault = true; 1526 dio = btrfs_dio_write(iocb, from, written); 1527 from->nofault = false; 1528 1529 /* 1530 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync 1531 * iocb, and that needs to lock the inode. So unlock it before calling 1532 * iomap_dio_complete() to avoid a deadlock. 1533 */ 1534 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1535 1536 if (IS_ERR_OR_NULL(dio)) 1537 err = PTR_ERR_OR_ZERO(dio); 1538 else 1539 err = iomap_dio_complete(dio); 1540 1541 /* No increment (+=) because iomap returns a cumulative value. */ 1542 if (err > 0) 1543 written = err; 1544 1545 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) { 1546 const size_t left = iov_iter_count(from); 1547 /* 1548 * We have more data left to write. Try to fault in as many as 1549 * possible of the remainder pages and retry. We do this without 1550 * releasing and locking again the inode, to prevent races with 1551 * truncate. 1552 * 1553 * Also, in case the iov refers to pages in the file range of the 1554 * file we want to write to (due to a mmap), we could enter an 1555 * infinite loop if we retry after faulting the pages in, since 1556 * iomap will invalidate any pages in the range early on, before 1557 * it tries to fault in the pages of the iov. So we keep track of 1558 * how much was left of iov in the previous EFAULT and fallback 1559 * to buffered IO in case we haven't made any progress. 1560 */ 1561 if (left == prev_left) { 1562 err = -ENOTBLK; 1563 } else { 1564 fault_in_iov_iter_readable(from, left); 1565 prev_left = left; 1566 goto relock; 1567 } 1568 } 1569 1570 /* 1571 * If 'err' is -ENOTBLK or we have not written all data, then it means 1572 * we must fallback to buffered IO. 1573 */ 1574 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from)) 1575 goto out; 1576 1577 buffered: 1578 /* 1579 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller 1580 * it must retry the operation in a context where blocking is acceptable, 1581 * because even if we end up not blocking during the buffered IO attempt 1582 * below, we will block when flushing and waiting for the IO. 1583 */ 1584 if (iocb->ki_flags & IOCB_NOWAIT) { 1585 err = -EAGAIN; 1586 goto out; 1587 } 1588 1589 pos = iocb->ki_pos; 1590 written_buffered = btrfs_buffered_write(iocb, from); 1591 if (written_buffered < 0) { 1592 err = written_buffered; 1593 goto out; 1594 } 1595 /* 1596 * Ensure all data is persisted. We want the next direct IO read to be 1597 * able to read what was just written. 1598 */ 1599 endbyte = pos + written_buffered - 1; 1600 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1601 if (err) 1602 goto out; 1603 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1604 if (err) 1605 goto out; 1606 written += written_buffered; 1607 iocb->ki_pos = pos + written_buffered; 1608 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1609 endbyte >> PAGE_SHIFT); 1610 out: 1611 return err < 0 ? err : written; 1612 } 1613 1614 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 1615 const struct btrfs_ioctl_encoded_io_args *encoded) 1616 { 1617 struct file *file = iocb->ki_filp; 1618 struct inode *inode = file_inode(file); 1619 loff_t count; 1620 ssize_t ret; 1621 1622 btrfs_inode_lock(BTRFS_I(inode), 0); 1623 count = encoded->len; 1624 ret = generic_write_checks_count(iocb, &count); 1625 if (ret == 0 && count != encoded->len) { 1626 /* 1627 * The write got truncated by generic_write_checks_count(). We 1628 * can't do a partial encoded write. 1629 */ 1630 ret = -EFBIG; 1631 } 1632 if (ret || encoded->len == 0) 1633 goto out; 1634 1635 ret = btrfs_write_check(iocb, from, encoded->len); 1636 if (ret < 0) 1637 goto out; 1638 1639 ret = btrfs_do_encoded_write(iocb, from, encoded); 1640 out: 1641 btrfs_inode_unlock(BTRFS_I(inode), 0); 1642 return ret; 1643 } 1644 1645 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 1646 const struct btrfs_ioctl_encoded_io_args *encoded) 1647 { 1648 struct file *file = iocb->ki_filp; 1649 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 1650 ssize_t num_written, num_sync; 1651 1652 /* 1653 * If the fs flips readonly due to some impossible error, although we 1654 * have opened a file as writable, we have to stop this write operation 1655 * to ensure consistency. 1656 */ 1657 if (BTRFS_FS_ERROR(inode->root->fs_info)) 1658 return -EROFS; 1659 1660 if (encoded && (iocb->ki_flags & IOCB_NOWAIT)) 1661 return -EOPNOTSUPP; 1662 1663 if (encoded) { 1664 num_written = btrfs_encoded_write(iocb, from, encoded); 1665 num_sync = encoded->len; 1666 } else if (iocb->ki_flags & IOCB_DIRECT) { 1667 num_written = btrfs_direct_write(iocb, from); 1668 num_sync = num_written; 1669 } else { 1670 num_written = btrfs_buffered_write(iocb, from); 1671 num_sync = num_written; 1672 } 1673 1674 btrfs_set_inode_last_sub_trans(inode); 1675 1676 if (num_sync > 0) { 1677 num_sync = generic_write_sync(iocb, num_sync); 1678 if (num_sync < 0) 1679 num_written = num_sync; 1680 } 1681 1682 return num_written; 1683 } 1684 1685 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1686 { 1687 return btrfs_do_write_iter(iocb, from, NULL); 1688 } 1689 1690 int btrfs_release_file(struct inode *inode, struct file *filp) 1691 { 1692 struct btrfs_file_private *private = filp->private_data; 1693 1694 if (private) { 1695 kfree(private->filldir_buf); 1696 free_extent_state(private->llseek_cached_state); 1697 kfree(private); 1698 filp->private_data = NULL; 1699 } 1700 1701 /* 1702 * Set by setattr when we are about to truncate a file from a non-zero 1703 * size to a zero size. This tries to flush down new bytes that may 1704 * have been written if the application were using truncate to replace 1705 * a file in place. 1706 */ 1707 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 1708 &BTRFS_I(inode)->runtime_flags)) 1709 filemap_flush(inode->i_mapping); 1710 return 0; 1711 } 1712 1713 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 1714 { 1715 int ret; 1716 struct blk_plug plug; 1717 1718 /* 1719 * This is only called in fsync, which would do synchronous writes, so 1720 * a plug can merge adjacent IOs as much as possible. Esp. in case of 1721 * multiple disks using raid profile, a large IO can be split to 1722 * several segments of stripe length (currently 64K). 1723 */ 1724 blk_start_plug(&plug); 1725 ret = btrfs_fdatawrite_range(inode, start, end); 1726 blk_finish_plug(&plug); 1727 1728 return ret; 1729 } 1730 1731 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 1732 { 1733 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 1734 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1735 1736 if (btrfs_inode_in_log(inode, fs_info->generation) && 1737 list_empty(&ctx->ordered_extents)) 1738 return true; 1739 1740 /* 1741 * If we are doing a fast fsync we can not bail out if the inode's 1742 * last_trans is <= then the last committed transaction, because we only 1743 * update the last_trans of the inode during ordered extent completion, 1744 * and for a fast fsync we don't wait for that, we only wait for the 1745 * writeback to complete. 1746 */ 1747 if (inode->last_trans <= fs_info->last_trans_committed && 1748 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 1749 list_empty(&ctx->ordered_extents))) 1750 return true; 1751 1752 return false; 1753 } 1754 1755 /* 1756 * fsync call for both files and directories. This logs the inode into 1757 * the tree log instead of forcing full commits whenever possible. 1758 * 1759 * It needs to call filemap_fdatawait so that all ordered extent updates are 1760 * in the metadata btree are up to date for copying to the log. 1761 * 1762 * It drops the inode mutex before doing the tree log commit. This is an 1763 * important optimization for directories because holding the mutex prevents 1764 * new operations on the dir while we write to disk. 1765 */ 1766 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1767 { 1768 struct dentry *dentry = file_dentry(file); 1769 struct inode *inode = d_inode(dentry); 1770 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1771 struct btrfs_root *root = BTRFS_I(inode)->root; 1772 struct btrfs_trans_handle *trans; 1773 struct btrfs_log_ctx ctx; 1774 int ret = 0, err; 1775 u64 len; 1776 bool full_sync; 1777 1778 trace_btrfs_sync_file(file, datasync); 1779 1780 btrfs_init_log_ctx(&ctx, inode); 1781 1782 /* 1783 * Always set the range to a full range, otherwise we can get into 1784 * several problems, from missing file extent items to represent holes 1785 * when not using the NO_HOLES feature, to log tree corruption due to 1786 * races between hole detection during logging and completion of ordered 1787 * extents outside the range, to missing checksums due to ordered extents 1788 * for which we flushed only a subset of their pages. 1789 */ 1790 start = 0; 1791 end = LLONG_MAX; 1792 len = (u64)LLONG_MAX + 1; 1793 1794 /* 1795 * We write the dirty pages in the range and wait until they complete 1796 * out of the ->i_mutex. If so, we can flush the dirty pages by 1797 * multi-task, and make the performance up. See 1798 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1799 */ 1800 ret = start_ordered_ops(inode, start, end); 1801 if (ret) 1802 goto out; 1803 1804 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1805 1806 atomic_inc(&root->log_batch); 1807 1808 /* 1809 * Before we acquired the inode's lock and the mmap lock, someone may 1810 * have dirtied more pages in the target range. We need to make sure 1811 * that writeback for any such pages does not start while we are logging 1812 * the inode, because if it does, any of the following might happen when 1813 * we are not doing a full inode sync: 1814 * 1815 * 1) We log an extent after its writeback finishes but before its 1816 * checksums are added to the csum tree, leading to -EIO errors 1817 * when attempting to read the extent after a log replay. 1818 * 1819 * 2) We can end up logging an extent before its writeback finishes. 1820 * Therefore after the log replay we will have a file extent item 1821 * pointing to an unwritten extent (and no data checksums as well). 1822 * 1823 * So trigger writeback for any eventual new dirty pages and then we 1824 * wait for all ordered extents to complete below. 1825 */ 1826 ret = start_ordered_ops(inode, start, end); 1827 if (ret) { 1828 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1829 goto out; 1830 } 1831 1832 /* 1833 * Always check for the full sync flag while holding the inode's lock, 1834 * to avoid races with other tasks. The flag must be either set all the 1835 * time during logging or always off all the time while logging. 1836 * We check the flag here after starting delalloc above, because when 1837 * running delalloc the full sync flag may be set if we need to drop 1838 * extra extent map ranges due to temporary memory allocation failures. 1839 */ 1840 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1841 &BTRFS_I(inode)->runtime_flags); 1842 1843 /* 1844 * We have to do this here to avoid the priority inversion of waiting on 1845 * IO of a lower priority task while holding a transaction open. 1846 * 1847 * For a full fsync we wait for the ordered extents to complete while 1848 * for a fast fsync we wait just for writeback to complete, and then 1849 * attach the ordered extents to the transaction so that a transaction 1850 * commit waits for their completion, to avoid data loss if we fsync, 1851 * the current transaction commits before the ordered extents complete 1852 * and a power failure happens right after that. 1853 * 1854 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 1855 * logical address recorded in the ordered extent may change. We need 1856 * to wait for the IO to stabilize the logical address. 1857 */ 1858 if (full_sync || btrfs_is_zoned(fs_info)) { 1859 ret = btrfs_wait_ordered_range(inode, start, len); 1860 } else { 1861 /* 1862 * Get our ordered extents as soon as possible to avoid doing 1863 * checksum lookups in the csum tree, and use instead the 1864 * checksums attached to the ordered extents. 1865 */ 1866 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 1867 &ctx.ordered_extents); 1868 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 1869 } 1870 1871 if (ret) 1872 goto out_release_extents; 1873 1874 atomic_inc(&root->log_batch); 1875 1876 smp_mb(); 1877 if (skip_inode_logging(&ctx)) { 1878 /* 1879 * We've had everything committed since the last time we were 1880 * modified so clear this flag in case it was set for whatever 1881 * reason, it's no longer relevant. 1882 */ 1883 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1884 &BTRFS_I(inode)->runtime_flags); 1885 /* 1886 * An ordered extent might have started before and completed 1887 * already with io errors, in which case the inode was not 1888 * updated and we end up here. So check the inode's mapping 1889 * for any errors that might have happened since we last 1890 * checked called fsync. 1891 */ 1892 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 1893 goto out_release_extents; 1894 } 1895 1896 /* 1897 * We use start here because we will need to wait on the IO to complete 1898 * in btrfs_sync_log, which could require joining a transaction (for 1899 * example checking cross references in the nocow path). If we use join 1900 * here we could get into a situation where we're waiting on IO to 1901 * happen that is blocked on a transaction trying to commit. With start 1902 * we inc the extwriter counter, so we wait for all extwriters to exit 1903 * before we start blocking joiners. This comment is to keep somebody 1904 * from thinking they are super smart and changing this to 1905 * btrfs_join_transaction *cough*Josef*cough*. 1906 */ 1907 trans = btrfs_start_transaction(root, 0); 1908 if (IS_ERR(trans)) { 1909 ret = PTR_ERR(trans); 1910 goto out_release_extents; 1911 } 1912 trans->in_fsync = true; 1913 1914 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 1915 btrfs_release_log_ctx_extents(&ctx); 1916 if (ret < 0) { 1917 /* Fallthrough and commit/free transaction. */ 1918 ret = BTRFS_LOG_FORCE_COMMIT; 1919 } 1920 1921 /* we've logged all the items and now have a consistent 1922 * version of the file in the log. It is possible that 1923 * someone will come in and modify the file, but that's 1924 * fine because the log is consistent on disk, and we 1925 * have references to all of the file's extents 1926 * 1927 * It is possible that someone will come in and log the 1928 * file again, but that will end up using the synchronization 1929 * inside btrfs_sync_log to keep things safe. 1930 */ 1931 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1932 1933 if (ret == BTRFS_NO_LOG_SYNC) { 1934 ret = btrfs_end_transaction(trans); 1935 goto out; 1936 } 1937 1938 /* We successfully logged the inode, attempt to sync the log. */ 1939 if (!ret) { 1940 ret = btrfs_sync_log(trans, root, &ctx); 1941 if (!ret) { 1942 ret = btrfs_end_transaction(trans); 1943 goto out; 1944 } 1945 } 1946 1947 /* 1948 * At this point we need to commit the transaction because we had 1949 * btrfs_need_log_full_commit() or some other error. 1950 * 1951 * If we didn't do a full sync we have to stop the trans handle, wait on 1952 * the ordered extents, start it again and commit the transaction. If 1953 * we attempt to wait on the ordered extents here we could deadlock with 1954 * something like fallocate() that is holding the extent lock trying to 1955 * start a transaction while some other thread is trying to commit the 1956 * transaction while we (fsync) are currently holding the transaction 1957 * open. 1958 */ 1959 if (!full_sync) { 1960 ret = btrfs_end_transaction(trans); 1961 if (ret) 1962 goto out; 1963 ret = btrfs_wait_ordered_range(inode, start, len); 1964 if (ret) 1965 goto out; 1966 1967 /* 1968 * This is safe to use here because we're only interested in 1969 * making sure the transaction that had the ordered extents is 1970 * committed. We aren't waiting on anything past this point, 1971 * we're purely getting the transaction and committing it. 1972 */ 1973 trans = btrfs_attach_transaction_barrier(root); 1974 if (IS_ERR(trans)) { 1975 ret = PTR_ERR(trans); 1976 1977 /* 1978 * We committed the transaction and there's no currently 1979 * running transaction, this means everything we care 1980 * about made it to disk and we are done. 1981 */ 1982 if (ret == -ENOENT) 1983 ret = 0; 1984 goto out; 1985 } 1986 } 1987 1988 ret = btrfs_commit_transaction(trans); 1989 out: 1990 ASSERT(list_empty(&ctx.list)); 1991 ASSERT(list_empty(&ctx.conflict_inodes)); 1992 err = file_check_and_advance_wb_err(file); 1993 if (!ret) 1994 ret = err; 1995 return ret > 0 ? -EIO : ret; 1996 1997 out_release_extents: 1998 btrfs_release_log_ctx_extents(&ctx); 1999 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2000 goto out; 2001 } 2002 2003 static const struct vm_operations_struct btrfs_file_vm_ops = { 2004 .fault = filemap_fault, 2005 .map_pages = filemap_map_pages, 2006 .page_mkwrite = btrfs_page_mkwrite, 2007 }; 2008 2009 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2010 { 2011 struct address_space *mapping = filp->f_mapping; 2012 2013 if (!mapping->a_ops->read_folio) 2014 return -ENOEXEC; 2015 2016 file_accessed(filp); 2017 vma->vm_ops = &btrfs_file_vm_ops; 2018 2019 return 0; 2020 } 2021 2022 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2023 int slot, u64 start, u64 end) 2024 { 2025 struct btrfs_file_extent_item *fi; 2026 struct btrfs_key key; 2027 2028 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2029 return 0; 2030 2031 btrfs_item_key_to_cpu(leaf, &key, slot); 2032 if (key.objectid != btrfs_ino(inode) || 2033 key.type != BTRFS_EXTENT_DATA_KEY) 2034 return 0; 2035 2036 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2037 2038 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2039 return 0; 2040 2041 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2042 return 0; 2043 2044 if (key.offset == end) 2045 return 1; 2046 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2047 return 1; 2048 return 0; 2049 } 2050 2051 static int fill_holes(struct btrfs_trans_handle *trans, 2052 struct btrfs_inode *inode, 2053 struct btrfs_path *path, u64 offset, u64 end) 2054 { 2055 struct btrfs_fs_info *fs_info = trans->fs_info; 2056 struct btrfs_root *root = inode->root; 2057 struct extent_buffer *leaf; 2058 struct btrfs_file_extent_item *fi; 2059 struct extent_map *hole_em; 2060 struct btrfs_key key; 2061 int ret; 2062 2063 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2064 goto out; 2065 2066 key.objectid = btrfs_ino(inode); 2067 key.type = BTRFS_EXTENT_DATA_KEY; 2068 key.offset = offset; 2069 2070 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2071 if (ret <= 0) { 2072 /* 2073 * We should have dropped this offset, so if we find it then 2074 * something has gone horribly wrong. 2075 */ 2076 if (ret == 0) 2077 ret = -EINVAL; 2078 return ret; 2079 } 2080 2081 leaf = path->nodes[0]; 2082 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2083 u64 num_bytes; 2084 2085 path->slots[0]--; 2086 fi = btrfs_item_ptr(leaf, path->slots[0], 2087 struct btrfs_file_extent_item); 2088 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2089 end - offset; 2090 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2091 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2092 btrfs_set_file_extent_offset(leaf, fi, 0); 2093 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2094 btrfs_mark_buffer_dirty(leaf); 2095 goto out; 2096 } 2097 2098 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2099 u64 num_bytes; 2100 2101 key.offset = offset; 2102 btrfs_set_item_key_safe(fs_info, path, &key); 2103 fi = btrfs_item_ptr(leaf, path->slots[0], 2104 struct btrfs_file_extent_item); 2105 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2106 offset; 2107 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2108 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2109 btrfs_set_file_extent_offset(leaf, fi, 0); 2110 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2111 btrfs_mark_buffer_dirty(leaf); 2112 goto out; 2113 } 2114 btrfs_release_path(path); 2115 2116 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, 2117 end - offset); 2118 if (ret) 2119 return ret; 2120 2121 out: 2122 btrfs_release_path(path); 2123 2124 hole_em = alloc_extent_map(); 2125 if (!hole_em) { 2126 btrfs_drop_extent_map_range(inode, offset, end - 1, false); 2127 btrfs_set_inode_full_sync(inode); 2128 } else { 2129 hole_em->start = offset; 2130 hole_em->len = end - offset; 2131 hole_em->ram_bytes = hole_em->len; 2132 hole_em->orig_start = offset; 2133 2134 hole_em->block_start = EXTENT_MAP_HOLE; 2135 hole_em->block_len = 0; 2136 hole_em->orig_block_len = 0; 2137 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2138 hole_em->generation = trans->transid; 2139 2140 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 2141 free_extent_map(hole_em); 2142 if (ret) 2143 btrfs_set_inode_full_sync(inode); 2144 } 2145 2146 return 0; 2147 } 2148 2149 /* 2150 * Find a hole extent on given inode and change start/len to the end of hole 2151 * extent.(hole/vacuum extent whose em->start <= start && 2152 * em->start + em->len > start) 2153 * When a hole extent is found, return 1 and modify start/len. 2154 */ 2155 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2156 { 2157 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2158 struct extent_map *em; 2159 int ret = 0; 2160 2161 em = btrfs_get_extent(inode, NULL, 0, 2162 round_down(*start, fs_info->sectorsize), 2163 round_up(*len, fs_info->sectorsize)); 2164 if (IS_ERR(em)) 2165 return PTR_ERR(em); 2166 2167 /* Hole or vacuum extent(only exists in no-hole mode) */ 2168 if (em->block_start == EXTENT_MAP_HOLE) { 2169 ret = 1; 2170 *len = em->start + em->len > *start + *len ? 2171 0 : *start + *len - em->start - em->len; 2172 *start = em->start + em->len; 2173 } 2174 free_extent_map(em); 2175 return ret; 2176 } 2177 2178 static void btrfs_punch_hole_lock_range(struct inode *inode, 2179 const u64 lockstart, 2180 const u64 lockend, 2181 struct extent_state **cached_state) 2182 { 2183 /* 2184 * For subpage case, if the range is not at page boundary, we could 2185 * have pages at the leading/tailing part of the range. 2186 * This could lead to dead loop since filemap_range_has_page() 2187 * will always return true. 2188 * So here we need to do extra page alignment for 2189 * filemap_range_has_page(). 2190 */ 2191 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2192 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2193 2194 while (1) { 2195 truncate_pagecache_range(inode, lockstart, lockend); 2196 2197 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2198 cached_state); 2199 /* 2200 * We can't have ordered extents in the range, nor dirty/writeback 2201 * pages, because we have locked the inode's VFS lock in exclusive 2202 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2203 * we have flushed all delalloc in the range and we have waited 2204 * for any ordered extents in the range to complete. 2205 * We can race with anyone reading pages from this range, so after 2206 * locking the range check if we have pages in the range, and if 2207 * we do, unlock the range and retry. 2208 */ 2209 if (!filemap_range_has_page(inode->i_mapping, page_lockstart, 2210 page_lockend)) 2211 break; 2212 2213 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2214 cached_state); 2215 } 2216 2217 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2218 } 2219 2220 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2221 struct btrfs_inode *inode, 2222 struct btrfs_path *path, 2223 struct btrfs_replace_extent_info *extent_info, 2224 const u64 replace_len, 2225 const u64 bytes_to_drop) 2226 { 2227 struct btrfs_fs_info *fs_info = trans->fs_info; 2228 struct btrfs_root *root = inode->root; 2229 struct btrfs_file_extent_item *extent; 2230 struct extent_buffer *leaf; 2231 struct btrfs_key key; 2232 int slot; 2233 struct btrfs_ref ref = { 0 }; 2234 int ret; 2235 2236 if (replace_len == 0) 2237 return 0; 2238 2239 if (extent_info->disk_offset == 0 && 2240 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2241 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2242 return 0; 2243 } 2244 2245 key.objectid = btrfs_ino(inode); 2246 key.type = BTRFS_EXTENT_DATA_KEY; 2247 key.offset = extent_info->file_offset; 2248 ret = btrfs_insert_empty_item(trans, root, path, &key, 2249 sizeof(struct btrfs_file_extent_item)); 2250 if (ret) 2251 return ret; 2252 leaf = path->nodes[0]; 2253 slot = path->slots[0]; 2254 write_extent_buffer(leaf, extent_info->extent_buf, 2255 btrfs_item_ptr_offset(leaf, slot), 2256 sizeof(struct btrfs_file_extent_item)); 2257 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2258 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2259 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2260 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2261 if (extent_info->is_new_extent) 2262 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2263 btrfs_mark_buffer_dirty(leaf); 2264 btrfs_release_path(path); 2265 2266 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2267 replace_len); 2268 if (ret) 2269 return ret; 2270 2271 /* If it's a hole, nothing more needs to be done. */ 2272 if (extent_info->disk_offset == 0) { 2273 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2274 return 0; 2275 } 2276 2277 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2278 2279 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2280 key.objectid = extent_info->disk_offset; 2281 key.type = BTRFS_EXTENT_ITEM_KEY; 2282 key.offset = extent_info->disk_len; 2283 ret = btrfs_alloc_reserved_file_extent(trans, root, 2284 btrfs_ino(inode), 2285 extent_info->file_offset, 2286 extent_info->qgroup_reserved, 2287 &key); 2288 } else { 2289 u64 ref_offset; 2290 2291 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2292 extent_info->disk_offset, 2293 extent_info->disk_len, 0); 2294 ref_offset = extent_info->file_offset - extent_info->data_offset; 2295 btrfs_init_data_ref(&ref, root->root_key.objectid, 2296 btrfs_ino(inode), ref_offset, 0, false); 2297 ret = btrfs_inc_extent_ref(trans, &ref); 2298 } 2299 2300 extent_info->insertions++; 2301 2302 return ret; 2303 } 2304 2305 /* 2306 * The respective range must have been previously locked, as well as the inode. 2307 * The end offset is inclusive (last byte of the range). 2308 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2309 * the file range with an extent. 2310 * When not punching a hole, we don't want to end up in a state where we dropped 2311 * extents without inserting a new one, so we must abort the transaction to avoid 2312 * a corruption. 2313 */ 2314 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2315 struct btrfs_path *path, const u64 start, 2316 const u64 end, 2317 struct btrfs_replace_extent_info *extent_info, 2318 struct btrfs_trans_handle **trans_out) 2319 { 2320 struct btrfs_drop_extents_args drop_args = { 0 }; 2321 struct btrfs_root *root = inode->root; 2322 struct btrfs_fs_info *fs_info = root->fs_info; 2323 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2324 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2325 struct btrfs_trans_handle *trans = NULL; 2326 struct btrfs_block_rsv *rsv; 2327 unsigned int rsv_count; 2328 u64 cur_offset; 2329 u64 len = end - start; 2330 int ret = 0; 2331 2332 if (end <= start) 2333 return -EINVAL; 2334 2335 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2336 if (!rsv) { 2337 ret = -ENOMEM; 2338 goto out; 2339 } 2340 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2341 rsv->failfast = true; 2342 2343 /* 2344 * 1 - update the inode 2345 * 1 - removing the extents in the range 2346 * 1 - adding the hole extent if no_holes isn't set or if we are 2347 * replacing the range with a new extent 2348 */ 2349 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2350 rsv_count = 3; 2351 else 2352 rsv_count = 2; 2353 2354 trans = btrfs_start_transaction(root, rsv_count); 2355 if (IS_ERR(trans)) { 2356 ret = PTR_ERR(trans); 2357 trans = NULL; 2358 goto out_free; 2359 } 2360 2361 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2362 min_size, false); 2363 if (WARN_ON(ret)) 2364 goto out_trans; 2365 trans->block_rsv = rsv; 2366 2367 cur_offset = start; 2368 drop_args.path = path; 2369 drop_args.end = end + 1; 2370 drop_args.drop_cache = true; 2371 while (cur_offset < end) { 2372 drop_args.start = cur_offset; 2373 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2374 /* If we are punching a hole decrement the inode's byte count */ 2375 if (!extent_info) 2376 btrfs_update_inode_bytes(inode, 0, 2377 drop_args.bytes_found); 2378 if (ret != -ENOSPC) { 2379 /* 2380 * The only time we don't want to abort is if we are 2381 * attempting to clone a partial inline extent, in which 2382 * case we'll get EOPNOTSUPP. However if we aren't 2383 * clone we need to abort no matter what, because if we 2384 * got EOPNOTSUPP via prealloc then we messed up and 2385 * need to abort. 2386 */ 2387 if (ret && 2388 (ret != -EOPNOTSUPP || 2389 (extent_info && extent_info->is_new_extent))) 2390 btrfs_abort_transaction(trans, ret); 2391 break; 2392 } 2393 2394 trans->block_rsv = &fs_info->trans_block_rsv; 2395 2396 if (!extent_info && cur_offset < drop_args.drop_end && 2397 cur_offset < ino_size) { 2398 ret = fill_holes(trans, inode, path, cur_offset, 2399 drop_args.drop_end); 2400 if (ret) { 2401 /* 2402 * If we failed then we didn't insert our hole 2403 * entries for the area we dropped, so now the 2404 * fs is corrupted, so we must abort the 2405 * transaction. 2406 */ 2407 btrfs_abort_transaction(trans, ret); 2408 break; 2409 } 2410 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2411 /* 2412 * We are past the i_size here, but since we didn't 2413 * insert holes we need to clear the mapped area so we 2414 * know to not set disk_i_size in this area until a new 2415 * file extent is inserted here. 2416 */ 2417 ret = btrfs_inode_clear_file_extent_range(inode, 2418 cur_offset, 2419 drop_args.drop_end - cur_offset); 2420 if (ret) { 2421 /* 2422 * We couldn't clear our area, so we could 2423 * presumably adjust up and corrupt the fs, so 2424 * we need to abort. 2425 */ 2426 btrfs_abort_transaction(trans, ret); 2427 break; 2428 } 2429 } 2430 2431 if (extent_info && 2432 drop_args.drop_end > extent_info->file_offset) { 2433 u64 replace_len = drop_args.drop_end - 2434 extent_info->file_offset; 2435 2436 ret = btrfs_insert_replace_extent(trans, inode, path, 2437 extent_info, replace_len, 2438 drop_args.bytes_found); 2439 if (ret) { 2440 btrfs_abort_transaction(trans, ret); 2441 break; 2442 } 2443 extent_info->data_len -= replace_len; 2444 extent_info->data_offset += replace_len; 2445 extent_info->file_offset += replace_len; 2446 } 2447 2448 /* 2449 * We are releasing our handle on the transaction, balance the 2450 * dirty pages of the btree inode and flush delayed items, and 2451 * then get a new transaction handle, which may now point to a 2452 * new transaction in case someone else may have committed the 2453 * transaction we used to replace/drop file extent items. So 2454 * bump the inode's iversion and update mtime and ctime except 2455 * if we are called from a dedupe context. This is because a 2456 * power failure/crash may happen after the transaction is 2457 * committed and before we finish replacing/dropping all the 2458 * file extent items we need. 2459 */ 2460 inode_inc_iversion(&inode->vfs_inode); 2461 2462 if (!extent_info || extent_info->update_times) { 2463 inode->vfs_inode.i_mtime = current_time(&inode->vfs_inode); 2464 inode->vfs_inode.i_ctime = inode->vfs_inode.i_mtime; 2465 } 2466 2467 ret = btrfs_update_inode(trans, root, inode); 2468 if (ret) 2469 break; 2470 2471 btrfs_end_transaction(trans); 2472 btrfs_btree_balance_dirty(fs_info); 2473 2474 trans = btrfs_start_transaction(root, rsv_count); 2475 if (IS_ERR(trans)) { 2476 ret = PTR_ERR(trans); 2477 trans = NULL; 2478 break; 2479 } 2480 2481 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2482 rsv, min_size, false); 2483 if (WARN_ON(ret)) 2484 break; 2485 trans->block_rsv = rsv; 2486 2487 cur_offset = drop_args.drop_end; 2488 len = end - cur_offset; 2489 if (!extent_info && len) { 2490 ret = find_first_non_hole(inode, &cur_offset, &len); 2491 if (unlikely(ret < 0)) 2492 break; 2493 if (ret && !len) { 2494 ret = 0; 2495 break; 2496 } 2497 } 2498 } 2499 2500 /* 2501 * If we were cloning, force the next fsync to be a full one since we 2502 * we replaced (or just dropped in the case of cloning holes when 2503 * NO_HOLES is enabled) file extent items and did not setup new extent 2504 * maps for the replacement extents (or holes). 2505 */ 2506 if (extent_info && !extent_info->is_new_extent) 2507 btrfs_set_inode_full_sync(inode); 2508 2509 if (ret) 2510 goto out_trans; 2511 2512 trans->block_rsv = &fs_info->trans_block_rsv; 2513 /* 2514 * If we are using the NO_HOLES feature we might have had already an 2515 * hole that overlaps a part of the region [lockstart, lockend] and 2516 * ends at (or beyond) lockend. Since we have no file extent items to 2517 * represent holes, drop_end can be less than lockend and so we must 2518 * make sure we have an extent map representing the existing hole (the 2519 * call to __btrfs_drop_extents() might have dropped the existing extent 2520 * map representing the existing hole), otherwise the fast fsync path 2521 * will not record the existence of the hole region 2522 * [existing_hole_start, lockend]. 2523 */ 2524 if (drop_args.drop_end <= end) 2525 drop_args.drop_end = end + 1; 2526 /* 2527 * Don't insert file hole extent item if it's for a range beyond eof 2528 * (because it's useless) or if it represents a 0 bytes range (when 2529 * cur_offset == drop_end). 2530 */ 2531 if (!extent_info && cur_offset < ino_size && 2532 cur_offset < drop_args.drop_end) { 2533 ret = fill_holes(trans, inode, path, cur_offset, 2534 drop_args.drop_end); 2535 if (ret) { 2536 /* Same comment as above. */ 2537 btrfs_abort_transaction(trans, ret); 2538 goto out_trans; 2539 } 2540 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2541 /* See the comment in the loop above for the reasoning here. */ 2542 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2543 drop_args.drop_end - cur_offset); 2544 if (ret) { 2545 btrfs_abort_transaction(trans, ret); 2546 goto out_trans; 2547 } 2548 2549 } 2550 if (extent_info) { 2551 ret = btrfs_insert_replace_extent(trans, inode, path, 2552 extent_info, extent_info->data_len, 2553 drop_args.bytes_found); 2554 if (ret) { 2555 btrfs_abort_transaction(trans, ret); 2556 goto out_trans; 2557 } 2558 } 2559 2560 out_trans: 2561 if (!trans) 2562 goto out_free; 2563 2564 trans->block_rsv = &fs_info->trans_block_rsv; 2565 if (ret) 2566 btrfs_end_transaction(trans); 2567 else 2568 *trans_out = trans; 2569 out_free: 2570 btrfs_free_block_rsv(fs_info, rsv); 2571 out: 2572 return ret; 2573 } 2574 2575 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2576 { 2577 struct inode *inode = file_inode(file); 2578 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2579 struct btrfs_root *root = BTRFS_I(inode)->root; 2580 struct extent_state *cached_state = NULL; 2581 struct btrfs_path *path; 2582 struct btrfs_trans_handle *trans = NULL; 2583 u64 lockstart; 2584 u64 lockend; 2585 u64 tail_start; 2586 u64 tail_len; 2587 u64 orig_start = offset; 2588 int ret = 0; 2589 bool same_block; 2590 u64 ino_size; 2591 bool truncated_block = false; 2592 bool updated_inode = false; 2593 2594 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2595 2596 ret = btrfs_wait_ordered_range(inode, offset, len); 2597 if (ret) 2598 goto out_only_mutex; 2599 2600 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2601 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2602 if (ret < 0) 2603 goto out_only_mutex; 2604 if (ret && !len) { 2605 /* Already in a large hole */ 2606 ret = 0; 2607 goto out_only_mutex; 2608 } 2609 2610 ret = file_modified(file); 2611 if (ret) 2612 goto out_only_mutex; 2613 2614 lockstart = round_up(offset, fs_info->sectorsize); 2615 lockend = round_down(offset + len, fs_info->sectorsize) - 1; 2616 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2617 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2618 /* 2619 * We needn't truncate any block which is beyond the end of the file 2620 * because we are sure there is no data there. 2621 */ 2622 /* 2623 * Only do this if we are in the same block and we aren't doing the 2624 * entire block. 2625 */ 2626 if (same_block && len < fs_info->sectorsize) { 2627 if (offset < ino_size) { 2628 truncated_block = true; 2629 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2630 0); 2631 } else { 2632 ret = 0; 2633 } 2634 goto out_only_mutex; 2635 } 2636 2637 /* zero back part of the first block */ 2638 if (offset < ino_size) { 2639 truncated_block = true; 2640 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2641 if (ret) { 2642 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2643 return ret; 2644 } 2645 } 2646 2647 /* Check the aligned pages after the first unaligned page, 2648 * if offset != orig_start, which means the first unaligned page 2649 * including several following pages are already in holes, 2650 * the extra check can be skipped */ 2651 if (offset == orig_start) { 2652 /* after truncate page, check hole again */ 2653 len = offset + len - lockstart; 2654 offset = lockstart; 2655 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2656 if (ret < 0) 2657 goto out_only_mutex; 2658 if (ret && !len) { 2659 ret = 0; 2660 goto out_only_mutex; 2661 } 2662 lockstart = offset; 2663 } 2664 2665 /* Check the tail unaligned part is in a hole */ 2666 tail_start = lockend + 1; 2667 tail_len = offset + len - tail_start; 2668 if (tail_len) { 2669 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2670 if (unlikely(ret < 0)) 2671 goto out_only_mutex; 2672 if (!ret) { 2673 /* zero the front end of the last page */ 2674 if (tail_start + tail_len < ino_size) { 2675 truncated_block = true; 2676 ret = btrfs_truncate_block(BTRFS_I(inode), 2677 tail_start + tail_len, 2678 0, 1); 2679 if (ret) 2680 goto out_only_mutex; 2681 } 2682 } 2683 } 2684 2685 if (lockend < lockstart) { 2686 ret = 0; 2687 goto out_only_mutex; 2688 } 2689 2690 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 2691 2692 path = btrfs_alloc_path(); 2693 if (!path) { 2694 ret = -ENOMEM; 2695 goto out; 2696 } 2697 2698 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 2699 lockend, NULL, &trans); 2700 btrfs_free_path(path); 2701 if (ret) 2702 goto out; 2703 2704 ASSERT(trans != NULL); 2705 inode_inc_iversion(inode); 2706 inode->i_mtime = current_time(inode); 2707 inode->i_ctime = inode->i_mtime; 2708 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2709 updated_inode = true; 2710 btrfs_end_transaction(trans); 2711 btrfs_btree_balance_dirty(fs_info); 2712 out: 2713 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2714 &cached_state); 2715 out_only_mutex: 2716 if (!updated_inode && truncated_block && !ret) { 2717 /* 2718 * If we only end up zeroing part of a page, we still need to 2719 * update the inode item, so that all the time fields are 2720 * updated as well as the necessary btrfs inode in memory fields 2721 * for detecting, at fsync time, if the inode isn't yet in the 2722 * log tree or it's there but not up to date. 2723 */ 2724 struct timespec64 now = current_time(inode); 2725 2726 inode_inc_iversion(inode); 2727 inode->i_mtime = now; 2728 inode->i_ctime = now; 2729 trans = btrfs_start_transaction(root, 1); 2730 if (IS_ERR(trans)) { 2731 ret = PTR_ERR(trans); 2732 } else { 2733 int ret2; 2734 2735 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2736 ret2 = btrfs_end_transaction(trans); 2737 if (!ret) 2738 ret = ret2; 2739 } 2740 } 2741 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2742 return ret; 2743 } 2744 2745 /* Helper structure to record which range is already reserved */ 2746 struct falloc_range { 2747 struct list_head list; 2748 u64 start; 2749 u64 len; 2750 }; 2751 2752 /* 2753 * Helper function to add falloc range 2754 * 2755 * Caller should have locked the larger range of extent containing 2756 * [start, len) 2757 */ 2758 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2759 { 2760 struct falloc_range *range = NULL; 2761 2762 if (!list_empty(head)) { 2763 /* 2764 * As fallocate iterates by bytenr order, we only need to check 2765 * the last range. 2766 */ 2767 range = list_last_entry(head, struct falloc_range, list); 2768 if (range->start + range->len == start) { 2769 range->len += len; 2770 return 0; 2771 } 2772 } 2773 2774 range = kmalloc(sizeof(*range), GFP_KERNEL); 2775 if (!range) 2776 return -ENOMEM; 2777 range->start = start; 2778 range->len = len; 2779 list_add_tail(&range->list, head); 2780 return 0; 2781 } 2782 2783 static int btrfs_fallocate_update_isize(struct inode *inode, 2784 const u64 end, 2785 const int mode) 2786 { 2787 struct btrfs_trans_handle *trans; 2788 struct btrfs_root *root = BTRFS_I(inode)->root; 2789 int ret; 2790 int ret2; 2791 2792 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2793 return 0; 2794 2795 trans = btrfs_start_transaction(root, 1); 2796 if (IS_ERR(trans)) 2797 return PTR_ERR(trans); 2798 2799 inode->i_ctime = current_time(inode); 2800 i_size_write(inode, end); 2801 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 2802 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2803 ret2 = btrfs_end_transaction(trans); 2804 2805 return ret ? ret : ret2; 2806 } 2807 2808 enum { 2809 RANGE_BOUNDARY_WRITTEN_EXTENT, 2810 RANGE_BOUNDARY_PREALLOC_EXTENT, 2811 RANGE_BOUNDARY_HOLE, 2812 }; 2813 2814 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 2815 u64 offset) 2816 { 2817 const u64 sectorsize = inode->root->fs_info->sectorsize; 2818 struct extent_map *em; 2819 int ret; 2820 2821 offset = round_down(offset, sectorsize); 2822 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize); 2823 if (IS_ERR(em)) 2824 return PTR_ERR(em); 2825 2826 if (em->block_start == EXTENT_MAP_HOLE) 2827 ret = RANGE_BOUNDARY_HOLE; 2828 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2829 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2830 else 2831 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2832 2833 free_extent_map(em); 2834 return ret; 2835 } 2836 2837 static int btrfs_zero_range(struct inode *inode, 2838 loff_t offset, 2839 loff_t len, 2840 const int mode) 2841 { 2842 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2843 struct extent_map *em; 2844 struct extent_changeset *data_reserved = NULL; 2845 int ret; 2846 u64 alloc_hint = 0; 2847 const u64 sectorsize = fs_info->sectorsize; 2848 u64 alloc_start = round_down(offset, sectorsize); 2849 u64 alloc_end = round_up(offset + len, sectorsize); 2850 u64 bytes_to_reserve = 0; 2851 bool space_reserved = false; 2852 2853 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 2854 alloc_end - alloc_start); 2855 if (IS_ERR(em)) { 2856 ret = PTR_ERR(em); 2857 goto out; 2858 } 2859 2860 /* 2861 * Avoid hole punching and extent allocation for some cases. More cases 2862 * could be considered, but these are unlikely common and we keep things 2863 * as simple as possible for now. Also, intentionally, if the target 2864 * range contains one or more prealloc extents together with regular 2865 * extents and holes, we drop all the existing extents and allocate a 2866 * new prealloc extent, so that we get a larger contiguous disk extent. 2867 */ 2868 if (em->start <= alloc_start && 2869 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2870 const u64 em_end = em->start + em->len; 2871 2872 if (em_end >= offset + len) { 2873 /* 2874 * The whole range is already a prealloc extent, 2875 * do nothing except updating the inode's i_size if 2876 * needed. 2877 */ 2878 free_extent_map(em); 2879 ret = btrfs_fallocate_update_isize(inode, offset + len, 2880 mode); 2881 goto out; 2882 } 2883 /* 2884 * Part of the range is already a prealloc extent, so operate 2885 * only on the remaining part of the range. 2886 */ 2887 alloc_start = em_end; 2888 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2889 len = offset + len - alloc_start; 2890 offset = alloc_start; 2891 alloc_hint = em->block_start + em->len; 2892 } 2893 free_extent_map(em); 2894 2895 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2896 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2897 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 2898 sectorsize); 2899 if (IS_ERR(em)) { 2900 ret = PTR_ERR(em); 2901 goto out; 2902 } 2903 2904 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2905 free_extent_map(em); 2906 ret = btrfs_fallocate_update_isize(inode, offset + len, 2907 mode); 2908 goto out; 2909 } 2910 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 2911 free_extent_map(em); 2912 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2913 0); 2914 if (!ret) 2915 ret = btrfs_fallocate_update_isize(inode, 2916 offset + len, 2917 mode); 2918 return ret; 2919 } 2920 free_extent_map(em); 2921 alloc_start = round_down(offset, sectorsize); 2922 alloc_end = alloc_start + sectorsize; 2923 goto reserve_space; 2924 } 2925 2926 alloc_start = round_up(offset, sectorsize); 2927 alloc_end = round_down(offset + len, sectorsize); 2928 2929 /* 2930 * For unaligned ranges, check the pages at the boundaries, they might 2931 * map to an extent, in which case we need to partially zero them, or 2932 * they might map to a hole, in which case we need our allocation range 2933 * to cover them. 2934 */ 2935 if (!IS_ALIGNED(offset, sectorsize)) { 2936 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2937 offset); 2938 if (ret < 0) 2939 goto out; 2940 if (ret == RANGE_BOUNDARY_HOLE) { 2941 alloc_start = round_down(offset, sectorsize); 2942 ret = 0; 2943 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2944 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2945 if (ret) 2946 goto out; 2947 } else { 2948 ret = 0; 2949 } 2950 } 2951 2952 if (!IS_ALIGNED(offset + len, sectorsize)) { 2953 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2954 offset + len); 2955 if (ret < 0) 2956 goto out; 2957 if (ret == RANGE_BOUNDARY_HOLE) { 2958 alloc_end = round_up(offset + len, sectorsize); 2959 ret = 0; 2960 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2961 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 2962 0, 1); 2963 if (ret) 2964 goto out; 2965 } else { 2966 ret = 0; 2967 } 2968 } 2969 2970 reserve_space: 2971 if (alloc_start < alloc_end) { 2972 struct extent_state *cached_state = NULL; 2973 const u64 lockstart = alloc_start; 2974 const u64 lockend = alloc_end - 1; 2975 2976 bytes_to_reserve = alloc_end - alloc_start; 2977 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 2978 bytes_to_reserve); 2979 if (ret < 0) 2980 goto out; 2981 space_reserved = true; 2982 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2983 &cached_state); 2984 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 2985 alloc_start, bytes_to_reserve); 2986 if (ret) { 2987 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 2988 lockend, &cached_state); 2989 goto out; 2990 } 2991 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 2992 alloc_end - alloc_start, 2993 i_blocksize(inode), 2994 offset + len, &alloc_hint); 2995 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2996 &cached_state); 2997 /* btrfs_prealloc_file_range releases reserved space on error */ 2998 if (ret) { 2999 space_reserved = false; 3000 goto out; 3001 } 3002 } 3003 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3004 out: 3005 if (ret && space_reserved) 3006 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3007 alloc_start, bytes_to_reserve); 3008 extent_changeset_free(data_reserved); 3009 3010 return ret; 3011 } 3012 3013 static long btrfs_fallocate(struct file *file, int mode, 3014 loff_t offset, loff_t len) 3015 { 3016 struct inode *inode = file_inode(file); 3017 struct extent_state *cached_state = NULL; 3018 struct extent_changeset *data_reserved = NULL; 3019 struct falloc_range *range; 3020 struct falloc_range *tmp; 3021 struct list_head reserve_list; 3022 u64 cur_offset; 3023 u64 last_byte; 3024 u64 alloc_start; 3025 u64 alloc_end; 3026 u64 alloc_hint = 0; 3027 u64 locked_end; 3028 u64 actual_end = 0; 3029 u64 data_space_needed = 0; 3030 u64 data_space_reserved = 0; 3031 u64 qgroup_reserved = 0; 3032 struct extent_map *em; 3033 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize; 3034 int ret; 3035 3036 /* Do not allow fallocate in ZONED mode */ 3037 if (btrfs_is_zoned(btrfs_sb(inode->i_sb))) 3038 return -EOPNOTSUPP; 3039 3040 alloc_start = round_down(offset, blocksize); 3041 alloc_end = round_up(offset + len, blocksize); 3042 cur_offset = alloc_start; 3043 3044 /* Make sure we aren't being give some crap mode */ 3045 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3046 FALLOC_FL_ZERO_RANGE)) 3047 return -EOPNOTSUPP; 3048 3049 if (mode & FALLOC_FL_PUNCH_HOLE) 3050 return btrfs_punch_hole(file, offset, len); 3051 3052 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3053 3054 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3055 ret = inode_newsize_ok(inode, offset + len); 3056 if (ret) 3057 goto out; 3058 } 3059 3060 ret = file_modified(file); 3061 if (ret) 3062 goto out; 3063 3064 /* 3065 * TODO: Move these two operations after we have checked 3066 * accurate reserved space, or fallocate can still fail but 3067 * with page truncated or size expanded. 3068 * 3069 * But that's a minor problem and won't do much harm BTW. 3070 */ 3071 if (alloc_start > inode->i_size) { 3072 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3073 alloc_start); 3074 if (ret) 3075 goto out; 3076 } else if (offset + len > inode->i_size) { 3077 /* 3078 * If we are fallocating from the end of the file onward we 3079 * need to zero out the end of the block if i_size lands in the 3080 * middle of a block. 3081 */ 3082 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3083 if (ret) 3084 goto out; 3085 } 3086 3087 /* 3088 * We have locked the inode at the VFS level (in exclusive mode) and we 3089 * have locked the i_mmap_lock lock (in exclusive mode). Now before 3090 * locking the file range, flush all dealloc in the range and wait for 3091 * all ordered extents in the range to complete. After this we can lock 3092 * the file range and, due to the previous locking we did, we know there 3093 * can't be more delalloc or ordered extents in the range. 3094 */ 3095 ret = btrfs_wait_ordered_range(inode, alloc_start, 3096 alloc_end - alloc_start); 3097 if (ret) 3098 goto out; 3099 3100 if (mode & FALLOC_FL_ZERO_RANGE) { 3101 ret = btrfs_zero_range(inode, offset, len, mode); 3102 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3103 return ret; 3104 } 3105 3106 locked_end = alloc_end - 1; 3107 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3108 &cached_state); 3109 3110 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3111 3112 /* First, check if we exceed the qgroup limit */ 3113 INIT_LIST_HEAD(&reserve_list); 3114 while (cur_offset < alloc_end) { 3115 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3116 alloc_end - cur_offset); 3117 if (IS_ERR(em)) { 3118 ret = PTR_ERR(em); 3119 break; 3120 } 3121 last_byte = min(extent_map_end(em), alloc_end); 3122 actual_end = min_t(u64, extent_map_end(em), offset + len); 3123 last_byte = ALIGN(last_byte, blocksize); 3124 if (em->block_start == EXTENT_MAP_HOLE || 3125 (cur_offset >= inode->i_size && 3126 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3127 const u64 range_len = last_byte - cur_offset; 3128 3129 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3130 if (ret < 0) { 3131 free_extent_map(em); 3132 break; 3133 } 3134 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3135 &data_reserved, cur_offset, range_len); 3136 if (ret < 0) { 3137 free_extent_map(em); 3138 break; 3139 } 3140 qgroup_reserved += range_len; 3141 data_space_needed += range_len; 3142 } 3143 free_extent_map(em); 3144 cur_offset = last_byte; 3145 } 3146 3147 if (!ret && data_space_needed > 0) { 3148 /* 3149 * We are safe to reserve space here as we can't have delalloc 3150 * in the range, see above. 3151 */ 3152 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3153 data_space_needed); 3154 if (!ret) 3155 data_space_reserved = data_space_needed; 3156 } 3157 3158 /* 3159 * If ret is still 0, means we're OK to fallocate. 3160 * Or just cleanup the list and exit. 3161 */ 3162 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3163 if (!ret) { 3164 ret = btrfs_prealloc_file_range(inode, mode, 3165 range->start, 3166 range->len, i_blocksize(inode), 3167 offset + len, &alloc_hint); 3168 /* 3169 * btrfs_prealloc_file_range() releases space even 3170 * if it returns an error. 3171 */ 3172 data_space_reserved -= range->len; 3173 qgroup_reserved -= range->len; 3174 } else if (data_space_reserved > 0) { 3175 btrfs_free_reserved_data_space(BTRFS_I(inode), 3176 data_reserved, range->start, 3177 range->len); 3178 data_space_reserved -= range->len; 3179 qgroup_reserved -= range->len; 3180 } else if (qgroup_reserved > 0) { 3181 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3182 range->start, range->len); 3183 qgroup_reserved -= range->len; 3184 } 3185 list_del(&range->list); 3186 kfree(range); 3187 } 3188 if (ret < 0) 3189 goto out_unlock; 3190 3191 /* 3192 * We didn't need to allocate any more space, but we still extended the 3193 * size of the file so we need to update i_size and the inode item. 3194 */ 3195 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3196 out_unlock: 3197 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3198 &cached_state); 3199 out: 3200 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3201 extent_changeset_free(data_reserved); 3202 return ret; 3203 } 3204 3205 /* 3206 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range 3207 * that has unflushed and/or flushing delalloc. There might be other adjacent 3208 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps 3209 * looping while it gets adjacent subranges, and merging them together. 3210 */ 3211 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end, 3212 struct extent_state **cached_state, 3213 bool *search_io_tree, 3214 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3215 { 3216 u64 len = end + 1 - start; 3217 u64 delalloc_len = 0; 3218 struct btrfs_ordered_extent *oe; 3219 u64 oe_start; 3220 u64 oe_end; 3221 3222 /* 3223 * Search the io tree first for EXTENT_DELALLOC. If we find any, it 3224 * means we have delalloc (dirty pages) for which writeback has not 3225 * started yet. 3226 */ 3227 if (*search_io_tree) { 3228 spin_lock(&inode->lock); 3229 if (inode->delalloc_bytes > 0) { 3230 spin_unlock(&inode->lock); 3231 *delalloc_start_ret = start; 3232 delalloc_len = count_range_bits(&inode->io_tree, 3233 delalloc_start_ret, end, 3234 len, EXTENT_DELALLOC, 1, 3235 cached_state); 3236 } else { 3237 spin_unlock(&inode->lock); 3238 } 3239 } 3240 3241 if (delalloc_len > 0) { 3242 /* 3243 * If delalloc was found then *delalloc_start_ret has a sector size 3244 * aligned value (rounded down). 3245 */ 3246 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1; 3247 3248 if (*delalloc_start_ret == start) { 3249 /* Delalloc for the whole range, nothing more to do. */ 3250 if (*delalloc_end_ret == end) 3251 return true; 3252 /* Else trim our search range for ordered extents. */ 3253 start = *delalloc_end_ret + 1; 3254 len = end + 1 - start; 3255 } 3256 } else { 3257 /* No delalloc, future calls don't need to search again. */ 3258 *search_io_tree = false; 3259 } 3260 3261 /* 3262 * Now also check if there's any ordered extent in the range. 3263 * We do this because: 3264 * 3265 * 1) When delalloc is flushed, the file range is locked, we clear the 3266 * EXTENT_DELALLOC bit from the io tree and create an extent map and 3267 * an ordered extent for the write. So we might just have been called 3268 * after delalloc is flushed and before the ordered extent completes 3269 * and inserts the new file extent item in the subvolume's btree; 3270 * 3271 * 2) We may have an ordered extent created by flushing delalloc for a 3272 * subrange that starts before the subrange we found marked with 3273 * EXTENT_DELALLOC in the io tree. 3274 * 3275 * We could also use the extent map tree to find such delalloc that is 3276 * being flushed, but using the ordered extents tree is more efficient 3277 * because it's usually much smaller as ordered extents are removed from 3278 * the tree once they complete. With the extent maps, we mau have them 3279 * in the extent map tree for a very long time, and they were either 3280 * created by previous writes or loaded by read operations. 3281 */ 3282 oe = btrfs_lookup_first_ordered_range(inode, start, len); 3283 if (!oe) 3284 return (delalloc_len > 0); 3285 3286 /* The ordered extent may span beyond our search range. */ 3287 oe_start = max(oe->file_offset, start); 3288 oe_end = min(oe->file_offset + oe->num_bytes - 1, end); 3289 3290 btrfs_put_ordered_extent(oe); 3291 3292 /* Don't have unflushed delalloc, return the ordered extent range. */ 3293 if (delalloc_len == 0) { 3294 *delalloc_start_ret = oe_start; 3295 *delalloc_end_ret = oe_end; 3296 return true; 3297 } 3298 3299 /* 3300 * We have both unflushed delalloc (io_tree) and an ordered extent. 3301 * If the ranges are adjacent returned a combined range, otherwise 3302 * return the leftmost range. 3303 */ 3304 if (oe_start < *delalloc_start_ret) { 3305 if (oe_end < *delalloc_start_ret) 3306 *delalloc_end_ret = oe_end; 3307 *delalloc_start_ret = oe_start; 3308 } else if (*delalloc_end_ret + 1 == oe_start) { 3309 *delalloc_end_ret = oe_end; 3310 } 3311 3312 return true; 3313 } 3314 3315 /* 3316 * Check if there's delalloc in a given range. 3317 * 3318 * @inode: The inode. 3319 * @start: The start offset of the range. It does not need to be 3320 * sector size aligned. 3321 * @end: The end offset (inclusive value) of the search range. 3322 * It does not need to be sector size aligned. 3323 * @cached_state: Extent state record used for speeding up delalloc 3324 * searches in the inode's io_tree. Can be NULL. 3325 * @delalloc_start_ret: Output argument, set to the start offset of the 3326 * subrange found with delalloc (may not be sector size 3327 * aligned). 3328 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value) 3329 * of the subrange found with delalloc. 3330 * 3331 * Returns true if a subrange with delalloc is found within the given range, and 3332 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and 3333 * end offsets of the subrange. 3334 */ 3335 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, 3336 struct extent_state **cached_state, 3337 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3338 { 3339 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize); 3340 u64 prev_delalloc_end = 0; 3341 bool search_io_tree = true; 3342 bool ret = false; 3343 3344 while (cur_offset <= end) { 3345 u64 delalloc_start; 3346 u64 delalloc_end; 3347 bool delalloc; 3348 3349 delalloc = find_delalloc_subrange(inode, cur_offset, end, 3350 cached_state, &search_io_tree, 3351 &delalloc_start, 3352 &delalloc_end); 3353 if (!delalloc) 3354 break; 3355 3356 if (prev_delalloc_end == 0) { 3357 /* First subrange found. */ 3358 *delalloc_start_ret = max(delalloc_start, start); 3359 *delalloc_end_ret = delalloc_end; 3360 ret = true; 3361 } else if (delalloc_start == prev_delalloc_end + 1) { 3362 /* Subrange adjacent to the previous one, merge them. */ 3363 *delalloc_end_ret = delalloc_end; 3364 } else { 3365 /* Subrange not adjacent to the previous one, exit. */ 3366 break; 3367 } 3368 3369 prev_delalloc_end = delalloc_end; 3370 cur_offset = delalloc_end + 1; 3371 cond_resched(); 3372 } 3373 3374 return ret; 3375 } 3376 3377 /* 3378 * Check if there's a hole or delalloc range in a range representing a hole (or 3379 * prealloc extent) found in the inode's subvolume btree. 3380 * 3381 * @inode: The inode. 3382 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE). 3383 * @start: Start offset of the hole region. It does not need to be sector 3384 * size aligned. 3385 * @end: End offset (inclusive value) of the hole region. It does not 3386 * need to be sector size aligned. 3387 * @start_ret: Return parameter, used to set the start of the subrange in the 3388 * hole that matches the search criteria (seek mode), if such 3389 * subrange is found (return value of the function is true). 3390 * The value returned here may not be sector size aligned. 3391 * 3392 * Returns true if a subrange matching the given seek mode is found, and if one 3393 * is found, it updates @start_ret with the start of the subrange. 3394 */ 3395 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence, 3396 struct extent_state **cached_state, 3397 u64 start, u64 end, u64 *start_ret) 3398 { 3399 u64 delalloc_start; 3400 u64 delalloc_end; 3401 bool delalloc; 3402 3403 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state, 3404 &delalloc_start, &delalloc_end); 3405 if (delalloc && whence == SEEK_DATA) { 3406 *start_ret = delalloc_start; 3407 return true; 3408 } 3409 3410 if (delalloc && whence == SEEK_HOLE) { 3411 /* 3412 * We found delalloc but it starts after out start offset. So we 3413 * have a hole between our start offset and the delalloc start. 3414 */ 3415 if (start < delalloc_start) { 3416 *start_ret = start; 3417 return true; 3418 } 3419 /* 3420 * Delalloc range starts at our start offset. 3421 * If the delalloc range's length is smaller than our range, 3422 * then it means we have a hole that starts where the delalloc 3423 * subrange ends. 3424 */ 3425 if (delalloc_end < end) { 3426 *start_ret = delalloc_end + 1; 3427 return true; 3428 } 3429 3430 /* There's delalloc for the whole range. */ 3431 return false; 3432 } 3433 3434 if (!delalloc && whence == SEEK_HOLE) { 3435 *start_ret = start; 3436 return true; 3437 } 3438 3439 /* 3440 * No delalloc in the range and we are seeking for data. The caller has 3441 * to iterate to the next extent item in the subvolume btree. 3442 */ 3443 return false; 3444 } 3445 3446 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence) 3447 { 3448 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host); 3449 struct btrfs_file_private *private = file->private_data; 3450 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3451 struct extent_state *cached_state = NULL; 3452 struct extent_state **delalloc_cached_state; 3453 const loff_t i_size = i_size_read(&inode->vfs_inode); 3454 const u64 ino = btrfs_ino(inode); 3455 struct btrfs_root *root = inode->root; 3456 struct btrfs_path *path; 3457 struct btrfs_key key; 3458 u64 last_extent_end; 3459 u64 lockstart; 3460 u64 lockend; 3461 u64 start; 3462 int ret; 3463 bool found = false; 3464 3465 if (i_size == 0 || offset >= i_size) 3466 return -ENXIO; 3467 3468 /* 3469 * Quick path. If the inode has no prealloc extents and its number of 3470 * bytes used matches its i_size, then it can not have holes. 3471 */ 3472 if (whence == SEEK_HOLE && 3473 !(inode->flags & BTRFS_INODE_PREALLOC) && 3474 inode_get_bytes(&inode->vfs_inode) == i_size) 3475 return i_size; 3476 3477 if (!private) { 3478 private = kzalloc(sizeof(*private), GFP_KERNEL); 3479 /* 3480 * No worries if memory allocation failed. 3481 * The private structure is used only for speeding up multiple 3482 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc, 3483 * so everything will still be correct. 3484 */ 3485 file->private_data = private; 3486 } 3487 3488 if (private) 3489 delalloc_cached_state = &private->llseek_cached_state; 3490 else 3491 delalloc_cached_state = NULL; 3492 3493 /* 3494 * offset can be negative, in this case we start finding DATA/HOLE from 3495 * the very start of the file. 3496 */ 3497 start = max_t(loff_t, 0, offset); 3498 3499 lockstart = round_down(start, fs_info->sectorsize); 3500 lockend = round_up(i_size, fs_info->sectorsize); 3501 if (lockend <= lockstart) 3502 lockend = lockstart + fs_info->sectorsize; 3503 lockend--; 3504 3505 path = btrfs_alloc_path(); 3506 if (!path) 3507 return -ENOMEM; 3508 path->reada = READA_FORWARD; 3509 3510 key.objectid = ino; 3511 key.type = BTRFS_EXTENT_DATA_KEY; 3512 key.offset = start; 3513 3514 last_extent_end = lockstart; 3515 3516 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3517 3518 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3519 if (ret < 0) { 3520 goto out; 3521 } else if (ret > 0 && path->slots[0] > 0) { 3522 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3523 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3524 path->slots[0]--; 3525 } 3526 3527 while (start < i_size) { 3528 struct extent_buffer *leaf = path->nodes[0]; 3529 struct btrfs_file_extent_item *extent; 3530 u64 extent_end; 3531 u8 type; 3532 3533 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3534 ret = btrfs_next_leaf(root, path); 3535 if (ret < 0) 3536 goto out; 3537 else if (ret > 0) 3538 break; 3539 3540 leaf = path->nodes[0]; 3541 } 3542 3543 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3544 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3545 break; 3546 3547 extent_end = btrfs_file_extent_end(path); 3548 3549 /* 3550 * In the first iteration we may have a slot that points to an 3551 * extent that ends before our start offset, so skip it. 3552 */ 3553 if (extent_end <= start) { 3554 path->slots[0]++; 3555 continue; 3556 } 3557 3558 /* We have an implicit hole, NO_HOLES feature is likely set. */ 3559 if (last_extent_end < key.offset) { 3560 u64 search_start = last_extent_end; 3561 u64 found_start; 3562 3563 /* 3564 * First iteration, @start matches @offset and it's 3565 * within the hole. 3566 */ 3567 if (start == offset) 3568 search_start = offset; 3569 3570 found = find_desired_extent_in_hole(inode, whence, 3571 delalloc_cached_state, 3572 search_start, 3573 key.offset - 1, 3574 &found_start); 3575 if (found) { 3576 start = found_start; 3577 break; 3578 } 3579 /* 3580 * Didn't find data or a hole (due to delalloc) in the 3581 * implicit hole range, so need to analyze the extent. 3582 */ 3583 } 3584 3585 extent = btrfs_item_ptr(leaf, path->slots[0], 3586 struct btrfs_file_extent_item); 3587 type = btrfs_file_extent_type(leaf, extent); 3588 3589 /* 3590 * Can't access the extent's disk_bytenr field if this is an 3591 * inline extent, since at that offset, it's where the extent 3592 * data starts. 3593 */ 3594 if (type == BTRFS_FILE_EXTENT_PREALLOC || 3595 (type == BTRFS_FILE_EXTENT_REG && 3596 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) { 3597 /* 3598 * Explicit hole or prealloc extent, search for delalloc. 3599 * A prealloc extent is treated like a hole. 3600 */ 3601 u64 search_start = key.offset; 3602 u64 found_start; 3603 3604 /* 3605 * First iteration, @start matches @offset and it's 3606 * within the hole. 3607 */ 3608 if (start == offset) 3609 search_start = offset; 3610 3611 found = find_desired_extent_in_hole(inode, whence, 3612 delalloc_cached_state, 3613 search_start, 3614 extent_end - 1, 3615 &found_start); 3616 if (found) { 3617 start = found_start; 3618 break; 3619 } 3620 /* 3621 * Didn't find data or a hole (due to delalloc) in the 3622 * implicit hole range, so need to analyze the next 3623 * extent item. 3624 */ 3625 } else { 3626 /* 3627 * Found a regular or inline extent. 3628 * If we are seeking for data, adjust the start offset 3629 * and stop, we're done. 3630 */ 3631 if (whence == SEEK_DATA) { 3632 start = max_t(u64, key.offset, offset); 3633 found = true; 3634 break; 3635 } 3636 /* 3637 * Else, we are seeking for a hole, check the next file 3638 * extent item. 3639 */ 3640 } 3641 3642 start = extent_end; 3643 last_extent_end = extent_end; 3644 path->slots[0]++; 3645 if (fatal_signal_pending(current)) { 3646 ret = -EINTR; 3647 goto out; 3648 } 3649 cond_resched(); 3650 } 3651 3652 /* We have an implicit hole from the last extent found up to i_size. */ 3653 if (!found && start < i_size) { 3654 found = find_desired_extent_in_hole(inode, whence, 3655 delalloc_cached_state, start, 3656 i_size - 1, &start); 3657 if (!found) 3658 start = i_size; 3659 } 3660 3661 out: 3662 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3663 btrfs_free_path(path); 3664 3665 if (ret < 0) 3666 return ret; 3667 3668 if (whence == SEEK_DATA && start >= i_size) 3669 return -ENXIO; 3670 3671 return min_t(loff_t, start, i_size); 3672 } 3673 3674 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3675 { 3676 struct inode *inode = file->f_mapping->host; 3677 3678 switch (whence) { 3679 default: 3680 return generic_file_llseek(file, offset, whence); 3681 case SEEK_DATA: 3682 case SEEK_HOLE: 3683 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3684 offset = find_desired_extent(file, offset, whence); 3685 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3686 break; 3687 } 3688 3689 if (offset < 0) 3690 return offset; 3691 3692 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3693 } 3694 3695 static int btrfs_file_open(struct inode *inode, struct file *filp) 3696 { 3697 int ret; 3698 3699 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC | 3700 FMODE_CAN_ODIRECT; 3701 3702 ret = fsverity_file_open(inode, filp); 3703 if (ret) 3704 return ret; 3705 return generic_file_open(inode, filp); 3706 } 3707 3708 static int check_direct_read(struct btrfs_fs_info *fs_info, 3709 const struct iov_iter *iter, loff_t offset) 3710 { 3711 int ret; 3712 int i, seg; 3713 3714 ret = check_direct_IO(fs_info, iter, offset); 3715 if (ret < 0) 3716 return ret; 3717 3718 if (!iter_is_iovec(iter)) 3719 return 0; 3720 3721 for (seg = 0; seg < iter->nr_segs; seg++) { 3722 for (i = seg + 1; i < iter->nr_segs; i++) { 3723 const struct iovec *iov1 = iter_iov(iter) + seg; 3724 const struct iovec *iov2 = iter_iov(iter) + i; 3725 3726 if (iov1->iov_base == iov2->iov_base) 3727 return -EINVAL; 3728 } 3729 } 3730 return 0; 3731 } 3732 3733 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 3734 { 3735 struct inode *inode = file_inode(iocb->ki_filp); 3736 size_t prev_left = 0; 3737 ssize_t read = 0; 3738 ssize_t ret; 3739 3740 if (fsverity_active(inode)) 3741 return 0; 3742 3743 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos)) 3744 return 0; 3745 3746 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3747 again: 3748 /* 3749 * This is similar to what we do for direct IO writes, see the comment 3750 * at btrfs_direct_write(), but we also disable page faults in addition 3751 * to disabling them only at the iov_iter level. This is because when 3752 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(), 3753 * which can still trigger page fault ins despite having set ->nofault 3754 * to true of our 'to' iov_iter. 3755 * 3756 * The difference to direct IO writes is that we deadlock when trying 3757 * to lock the extent range in the inode's tree during he page reads 3758 * triggered by the fault in (while for writes it is due to waiting for 3759 * our own ordered extent). This is because for direct IO reads, 3760 * btrfs_dio_iomap_begin() returns with the extent range locked, which 3761 * is only unlocked in the endio callback (end_bio_extent_readpage()). 3762 */ 3763 pagefault_disable(); 3764 to->nofault = true; 3765 ret = btrfs_dio_read(iocb, to, read); 3766 to->nofault = false; 3767 pagefault_enable(); 3768 3769 /* No increment (+=) because iomap returns a cumulative value. */ 3770 if (ret > 0) 3771 read = ret; 3772 3773 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) { 3774 const size_t left = iov_iter_count(to); 3775 3776 if (left == prev_left) { 3777 /* 3778 * We didn't make any progress since the last attempt, 3779 * fallback to a buffered read for the remainder of the 3780 * range. This is just to avoid any possibility of looping 3781 * for too long. 3782 */ 3783 ret = read; 3784 } else { 3785 /* 3786 * We made some progress since the last retry or this is 3787 * the first time we are retrying. Fault in as many pages 3788 * as possible and retry. 3789 */ 3790 fault_in_iov_iter_writeable(to, left); 3791 prev_left = left; 3792 goto again; 3793 } 3794 } 3795 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3796 return ret < 0 ? ret : read; 3797 } 3798 3799 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3800 { 3801 ssize_t ret = 0; 3802 3803 if (iocb->ki_flags & IOCB_DIRECT) { 3804 ret = btrfs_direct_read(iocb, to); 3805 if (ret < 0 || !iov_iter_count(to) || 3806 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3807 return ret; 3808 } 3809 3810 return filemap_read(iocb, to, ret); 3811 } 3812 3813 const struct file_operations btrfs_file_operations = { 3814 .llseek = btrfs_file_llseek, 3815 .read_iter = btrfs_file_read_iter, 3816 .splice_read = filemap_splice_read, 3817 .write_iter = btrfs_file_write_iter, 3818 .splice_write = iter_file_splice_write, 3819 .mmap = btrfs_file_mmap, 3820 .open = btrfs_file_open, 3821 .release = btrfs_release_file, 3822 .get_unmapped_area = thp_get_unmapped_area, 3823 .fsync = btrfs_sync_file, 3824 .fallocate = btrfs_fallocate, 3825 .unlocked_ioctl = btrfs_ioctl, 3826 #ifdef CONFIG_COMPAT 3827 .compat_ioctl = btrfs_compat_ioctl, 3828 #endif 3829 .remap_file_range = btrfs_remap_file_range, 3830 }; 3831 3832 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3833 { 3834 int ret; 3835 3836 /* 3837 * So with compression we will find and lock a dirty page and clear the 3838 * first one as dirty, setup an async extent, and immediately return 3839 * with the entire range locked but with nobody actually marked with 3840 * writeback. So we can't just filemap_write_and_wait_range() and 3841 * expect it to work since it will just kick off a thread to do the 3842 * actual work. So we need to call filemap_fdatawrite_range _again_ 3843 * since it will wait on the page lock, which won't be unlocked until 3844 * after the pages have been marked as writeback and so we're good to go 3845 * from there. We have to do this otherwise we'll miss the ordered 3846 * extents and that results in badness. Please Josef, do not think you 3847 * know better and pull this out at some point in the future, it is 3848 * right and you are wrong. 3849 */ 3850 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3851 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3852 &BTRFS_I(inode)->runtime_flags)) 3853 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3854 3855 return ret; 3856 } 3857