1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/time.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/backing-dev.h> 26 #include <linux/mpage.h> 27 #include <linux/aio.h> 28 #include <linux/falloc.h> 29 #include <linux/swap.h> 30 #include <linux/writeback.h> 31 #include <linux/statfs.h> 32 #include <linux/compat.h> 33 #include <linux/slab.h> 34 #include <linux/btrfs.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "print-tree.h" 40 #include "tree-log.h" 41 #include "locking.h" 42 #include "volumes.h" 43 #include "qgroup.h" 44 45 static struct kmem_cache *btrfs_inode_defrag_cachep; 46 /* 47 * when auto defrag is enabled we 48 * queue up these defrag structs to remember which 49 * inodes need defragging passes 50 */ 51 struct inode_defrag { 52 struct rb_node rb_node; 53 /* objectid */ 54 u64 ino; 55 /* 56 * transid where the defrag was added, we search for 57 * extents newer than this 58 */ 59 u64 transid; 60 61 /* root objectid */ 62 u64 root; 63 64 /* last offset we were able to defrag */ 65 u64 last_offset; 66 67 /* if we've wrapped around back to zero once already */ 68 int cycled; 69 }; 70 71 static int __compare_inode_defrag(struct inode_defrag *defrag1, 72 struct inode_defrag *defrag2) 73 { 74 if (defrag1->root > defrag2->root) 75 return 1; 76 else if (defrag1->root < defrag2->root) 77 return -1; 78 else if (defrag1->ino > defrag2->ino) 79 return 1; 80 else if (defrag1->ino < defrag2->ino) 81 return -1; 82 else 83 return 0; 84 } 85 86 /* pop a record for an inode into the defrag tree. The lock 87 * must be held already 88 * 89 * If you're inserting a record for an older transid than an 90 * existing record, the transid already in the tree is lowered 91 * 92 * If an existing record is found the defrag item you 93 * pass in is freed 94 */ 95 static int __btrfs_add_inode_defrag(struct inode *inode, 96 struct inode_defrag *defrag) 97 { 98 struct btrfs_root *root = BTRFS_I(inode)->root; 99 struct inode_defrag *entry; 100 struct rb_node **p; 101 struct rb_node *parent = NULL; 102 int ret; 103 104 p = &root->fs_info->defrag_inodes.rb_node; 105 while (*p) { 106 parent = *p; 107 entry = rb_entry(parent, struct inode_defrag, rb_node); 108 109 ret = __compare_inode_defrag(defrag, entry); 110 if (ret < 0) 111 p = &parent->rb_left; 112 else if (ret > 0) 113 p = &parent->rb_right; 114 else { 115 /* if we're reinserting an entry for 116 * an old defrag run, make sure to 117 * lower the transid of our existing record 118 */ 119 if (defrag->transid < entry->transid) 120 entry->transid = defrag->transid; 121 if (defrag->last_offset > entry->last_offset) 122 entry->last_offset = defrag->last_offset; 123 return -EEXIST; 124 } 125 } 126 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 127 rb_link_node(&defrag->rb_node, parent, p); 128 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes); 129 return 0; 130 } 131 132 static inline int __need_auto_defrag(struct btrfs_root *root) 133 { 134 if (!btrfs_test_opt(root, AUTO_DEFRAG)) 135 return 0; 136 137 if (btrfs_fs_closing(root->fs_info)) 138 return 0; 139 140 return 1; 141 } 142 143 /* 144 * insert a defrag record for this inode if auto defrag is 145 * enabled 146 */ 147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 148 struct inode *inode) 149 { 150 struct btrfs_root *root = BTRFS_I(inode)->root; 151 struct inode_defrag *defrag; 152 u64 transid; 153 int ret; 154 155 if (!__need_auto_defrag(root)) 156 return 0; 157 158 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) 159 return 0; 160 161 if (trans) 162 transid = trans->transid; 163 else 164 transid = BTRFS_I(inode)->root->last_trans; 165 166 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 167 if (!defrag) 168 return -ENOMEM; 169 170 defrag->ino = btrfs_ino(inode); 171 defrag->transid = transid; 172 defrag->root = root->root_key.objectid; 173 174 spin_lock(&root->fs_info->defrag_inodes_lock); 175 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) { 176 /* 177 * If we set IN_DEFRAG flag and evict the inode from memory, 178 * and then re-read this inode, this new inode doesn't have 179 * IN_DEFRAG flag. At the case, we may find the existed defrag. 180 */ 181 ret = __btrfs_add_inode_defrag(inode, defrag); 182 if (ret) 183 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 184 } else { 185 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 186 } 187 spin_unlock(&root->fs_info->defrag_inodes_lock); 188 return 0; 189 } 190 191 /* 192 * Requeue the defrag object. If there is a defrag object that points to 193 * the same inode in the tree, we will merge them together (by 194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 195 */ 196 static void btrfs_requeue_inode_defrag(struct inode *inode, 197 struct inode_defrag *defrag) 198 { 199 struct btrfs_root *root = BTRFS_I(inode)->root; 200 int ret; 201 202 if (!__need_auto_defrag(root)) 203 goto out; 204 205 /* 206 * Here we don't check the IN_DEFRAG flag, because we need merge 207 * them together. 208 */ 209 spin_lock(&root->fs_info->defrag_inodes_lock); 210 ret = __btrfs_add_inode_defrag(inode, defrag); 211 spin_unlock(&root->fs_info->defrag_inodes_lock); 212 if (ret) 213 goto out; 214 return; 215 out: 216 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 217 } 218 219 /* 220 * pick the defragable inode that we want, if it doesn't exist, we will get 221 * the next one. 222 */ 223 static struct inode_defrag * 224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 225 { 226 struct inode_defrag *entry = NULL; 227 struct inode_defrag tmp; 228 struct rb_node *p; 229 struct rb_node *parent = NULL; 230 int ret; 231 232 tmp.ino = ino; 233 tmp.root = root; 234 235 spin_lock(&fs_info->defrag_inodes_lock); 236 p = fs_info->defrag_inodes.rb_node; 237 while (p) { 238 parent = p; 239 entry = rb_entry(parent, struct inode_defrag, rb_node); 240 241 ret = __compare_inode_defrag(&tmp, entry); 242 if (ret < 0) 243 p = parent->rb_left; 244 else if (ret > 0) 245 p = parent->rb_right; 246 else 247 goto out; 248 } 249 250 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 251 parent = rb_next(parent); 252 if (parent) 253 entry = rb_entry(parent, struct inode_defrag, rb_node); 254 else 255 entry = NULL; 256 } 257 out: 258 if (entry) 259 rb_erase(parent, &fs_info->defrag_inodes); 260 spin_unlock(&fs_info->defrag_inodes_lock); 261 return entry; 262 } 263 264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 265 { 266 struct inode_defrag *defrag; 267 struct rb_node *node; 268 269 spin_lock(&fs_info->defrag_inodes_lock); 270 node = rb_first(&fs_info->defrag_inodes); 271 while (node) { 272 rb_erase(node, &fs_info->defrag_inodes); 273 defrag = rb_entry(node, struct inode_defrag, rb_node); 274 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 275 276 if (need_resched()) { 277 spin_unlock(&fs_info->defrag_inodes_lock); 278 cond_resched(); 279 spin_lock(&fs_info->defrag_inodes_lock); 280 } 281 282 node = rb_first(&fs_info->defrag_inodes); 283 } 284 spin_unlock(&fs_info->defrag_inodes_lock); 285 } 286 287 #define BTRFS_DEFRAG_BATCH 1024 288 289 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 290 struct inode_defrag *defrag) 291 { 292 struct btrfs_root *inode_root; 293 struct inode *inode; 294 struct btrfs_key key; 295 struct btrfs_ioctl_defrag_range_args range; 296 int num_defrag; 297 int index; 298 int ret; 299 300 /* get the inode */ 301 key.objectid = defrag->root; 302 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 303 key.offset = (u64)-1; 304 305 index = srcu_read_lock(&fs_info->subvol_srcu); 306 307 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 308 if (IS_ERR(inode_root)) { 309 ret = PTR_ERR(inode_root); 310 goto cleanup; 311 } 312 313 key.objectid = defrag->ino; 314 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 315 key.offset = 0; 316 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 317 if (IS_ERR(inode)) { 318 ret = PTR_ERR(inode); 319 goto cleanup; 320 } 321 srcu_read_unlock(&fs_info->subvol_srcu, index); 322 323 /* do a chunk of defrag */ 324 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 325 memset(&range, 0, sizeof(range)); 326 range.len = (u64)-1; 327 range.start = defrag->last_offset; 328 329 sb_start_write(fs_info->sb); 330 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 331 BTRFS_DEFRAG_BATCH); 332 sb_end_write(fs_info->sb); 333 /* 334 * if we filled the whole defrag batch, there 335 * must be more work to do. Queue this defrag 336 * again 337 */ 338 if (num_defrag == BTRFS_DEFRAG_BATCH) { 339 defrag->last_offset = range.start; 340 btrfs_requeue_inode_defrag(inode, defrag); 341 } else if (defrag->last_offset && !defrag->cycled) { 342 /* 343 * we didn't fill our defrag batch, but 344 * we didn't start at zero. Make sure we loop 345 * around to the start of the file. 346 */ 347 defrag->last_offset = 0; 348 defrag->cycled = 1; 349 btrfs_requeue_inode_defrag(inode, defrag); 350 } else { 351 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 352 } 353 354 iput(inode); 355 return 0; 356 cleanup: 357 srcu_read_unlock(&fs_info->subvol_srcu, index); 358 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 359 return ret; 360 } 361 362 /* 363 * run through the list of inodes in the FS that need 364 * defragging 365 */ 366 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 367 { 368 struct inode_defrag *defrag; 369 u64 first_ino = 0; 370 u64 root_objectid = 0; 371 372 atomic_inc(&fs_info->defrag_running); 373 while (1) { 374 /* Pause the auto defragger. */ 375 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 376 &fs_info->fs_state)) 377 break; 378 379 if (!__need_auto_defrag(fs_info->tree_root)) 380 break; 381 382 /* find an inode to defrag */ 383 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 384 first_ino); 385 if (!defrag) { 386 if (root_objectid || first_ino) { 387 root_objectid = 0; 388 first_ino = 0; 389 continue; 390 } else { 391 break; 392 } 393 } 394 395 first_ino = defrag->ino + 1; 396 root_objectid = defrag->root; 397 398 __btrfs_run_defrag_inode(fs_info, defrag); 399 } 400 atomic_dec(&fs_info->defrag_running); 401 402 /* 403 * during unmount, we use the transaction_wait queue to 404 * wait for the defragger to stop 405 */ 406 wake_up(&fs_info->transaction_wait); 407 return 0; 408 } 409 410 /* simple helper to fault in pages and copy. This should go away 411 * and be replaced with calls into generic code. 412 */ 413 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages, 414 size_t write_bytes, 415 struct page **prepared_pages, 416 struct iov_iter *i) 417 { 418 size_t copied = 0; 419 size_t total_copied = 0; 420 int pg = 0; 421 int offset = pos & (PAGE_CACHE_SIZE - 1); 422 423 while (write_bytes > 0) { 424 size_t count = min_t(size_t, 425 PAGE_CACHE_SIZE - offset, write_bytes); 426 struct page *page = prepared_pages[pg]; 427 /* 428 * Copy data from userspace to the current page 429 */ 430 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 431 432 /* Flush processor's dcache for this page */ 433 flush_dcache_page(page); 434 435 /* 436 * if we get a partial write, we can end up with 437 * partially up to date pages. These add 438 * a lot of complexity, so make sure they don't 439 * happen by forcing this copy to be retried. 440 * 441 * The rest of the btrfs_file_write code will fall 442 * back to page at a time copies after we return 0. 443 */ 444 if (!PageUptodate(page) && copied < count) 445 copied = 0; 446 447 iov_iter_advance(i, copied); 448 write_bytes -= copied; 449 total_copied += copied; 450 451 /* Return to btrfs_file_write_iter to fault page */ 452 if (unlikely(copied == 0)) 453 break; 454 455 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) { 456 offset += copied; 457 } else { 458 pg++; 459 offset = 0; 460 } 461 } 462 return total_copied; 463 } 464 465 /* 466 * unlocks pages after btrfs_file_write is done with them 467 */ 468 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 469 { 470 size_t i; 471 for (i = 0; i < num_pages; i++) { 472 /* page checked is some magic around finding pages that 473 * have been modified without going through btrfs_set_page_dirty 474 * clear it here. There should be no need to mark the pages 475 * accessed as prepare_pages should have marked them accessed 476 * in prepare_pages via find_or_create_page() 477 */ 478 ClearPageChecked(pages[i]); 479 unlock_page(pages[i]); 480 page_cache_release(pages[i]); 481 } 482 } 483 484 /* 485 * after copy_from_user, pages need to be dirtied and we need to make 486 * sure holes are created between the current EOF and the start of 487 * any next extents (if required). 488 * 489 * this also makes the decision about creating an inline extent vs 490 * doing real data extents, marking pages dirty and delalloc as required. 491 */ 492 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, 493 struct page **pages, size_t num_pages, 494 loff_t pos, size_t write_bytes, 495 struct extent_state **cached) 496 { 497 int err = 0; 498 int i; 499 u64 num_bytes; 500 u64 start_pos; 501 u64 end_of_last_block; 502 u64 end_pos = pos + write_bytes; 503 loff_t isize = i_size_read(inode); 504 505 start_pos = pos & ~((u64)root->sectorsize - 1); 506 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize); 507 508 end_of_last_block = start_pos + num_bytes - 1; 509 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 510 cached); 511 if (err) 512 return err; 513 514 for (i = 0; i < num_pages; i++) { 515 struct page *p = pages[i]; 516 SetPageUptodate(p); 517 ClearPageChecked(p); 518 set_page_dirty(p); 519 } 520 521 /* 522 * we've only changed i_size in ram, and we haven't updated 523 * the disk i_size. There is no need to log the inode 524 * at this time. 525 */ 526 if (end_pos > isize) 527 i_size_write(inode, end_pos); 528 return 0; 529 } 530 531 /* 532 * this drops all the extents in the cache that intersect the range 533 * [start, end]. Existing extents are split as required. 534 */ 535 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, 536 int skip_pinned) 537 { 538 struct extent_map *em; 539 struct extent_map *split = NULL; 540 struct extent_map *split2 = NULL; 541 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 542 u64 len = end - start + 1; 543 u64 gen; 544 int ret; 545 int testend = 1; 546 unsigned long flags; 547 int compressed = 0; 548 bool modified; 549 550 WARN_ON(end < start); 551 if (end == (u64)-1) { 552 len = (u64)-1; 553 testend = 0; 554 } 555 while (1) { 556 int no_splits = 0; 557 558 modified = false; 559 if (!split) 560 split = alloc_extent_map(); 561 if (!split2) 562 split2 = alloc_extent_map(); 563 if (!split || !split2) 564 no_splits = 1; 565 566 write_lock(&em_tree->lock); 567 em = lookup_extent_mapping(em_tree, start, len); 568 if (!em) { 569 write_unlock(&em_tree->lock); 570 break; 571 } 572 flags = em->flags; 573 gen = em->generation; 574 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 575 if (testend && em->start + em->len >= start + len) { 576 free_extent_map(em); 577 write_unlock(&em_tree->lock); 578 break; 579 } 580 start = em->start + em->len; 581 if (testend) 582 len = start + len - (em->start + em->len); 583 free_extent_map(em); 584 write_unlock(&em_tree->lock); 585 continue; 586 } 587 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 588 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 589 clear_bit(EXTENT_FLAG_LOGGING, &flags); 590 modified = !list_empty(&em->list); 591 if (no_splits) 592 goto next; 593 594 if (em->start < start) { 595 split->start = em->start; 596 split->len = start - em->start; 597 598 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 599 split->orig_start = em->orig_start; 600 split->block_start = em->block_start; 601 602 if (compressed) 603 split->block_len = em->block_len; 604 else 605 split->block_len = split->len; 606 split->orig_block_len = max(split->block_len, 607 em->orig_block_len); 608 split->ram_bytes = em->ram_bytes; 609 } else { 610 split->orig_start = split->start; 611 split->block_len = 0; 612 split->block_start = em->block_start; 613 split->orig_block_len = 0; 614 split->ram_bytes = split->len; 615 } 616 617 split->generation = gen; 618 split->bdev = em->bdev; 619 split->flags = flags; 620 split->compress_type = em->compress_type; 621 replace_extent_mapping(em_tree, em, split, modified); 622 free_extent_map(split); 623 split = split2; 624 split2 = NULL; 625 } 626 if (testend && em->start + em->len > start + len) { 627 u64 diff = start + len - em->start; 628 629 split->start = start + len; 630 split->len = em->start + em->len - (start + len); 631 split->bdev = em->bdev; 632 split->flags = flags; 633 split->compress_type = em->compress_type; 634 split->generation = gen; 635 636 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 637 split->orig_block_len = max(em->block_len, 638 em->orig_block_len); 639 640 split->ram_bytes = em->ram_bytes; 641 if (compressed) { 642 split->block_len = em->block_len; 643 split->block_start = em->block_start; 644 split->orig_start = em->orig_start; 645 } else { 646 split->block_len = split->len; 647 split->block_start = em->block_start 648 + diff; 649 split->orig_start = em->orig_start; 650 } 651 } else { 652 split->ram_bytes = split->len; 653 split->orig_start = split->start; 654 split->block_len = 0; 655 split->block_start = em->block_start; 656 split->orig_block_len = 0; 657 } 658 659 if (extent_map_in_tree(em)) { 660 replace_extent_mapping(em_tree, em, split, 661 modified); 662 } else { 663 ret = add_extent_mapping(em_tree, split, 664 modified); 665 ASSERT(ret == 0); /* Logic error */ 666 } 667 free_extent_map(split); 668 split = NULL; 669 } 670 next: 671 if (extent_map_in_tree(em)) 672 remove_extent_mapping(em_tree, em); 673 write_unlock(&em_tree->lock); 674 675 /* once for us */ 676 free_extent_map(em); 677 /* once for the tree*/ 678 free_extent_map(em); 679 } 680 if (split) 681 free_extent_map(split); 682 if (split2) 683 free_extent_map(split2); 684 } 685 686 /* 687 * this is very complex, but the basic idea is to drop all extents 688 * in the range start - end. hint_block is filled in with a block number 689 * that would be a good hint to the block allocator for this file. 690 * 691 * If an extent intersects the range but is not entirely inside the range 692 * it is either truncated or split. Anything entirely inside the range 693 * is deleted from the tree. 694 */ 695 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 696 struct btrfs_root *root, struct inode *inode, 697 struct btrfs_path *path, u64 start, u64 end, 698 u64 *drop_end, int drop_cache, 699 int replace_extent, 700 u32 extent_item_size, 701 int *key_inserted) 702 { 703 struct extent_buffer *leaf; 704 struct btrfs_file_extent_item *fi; 705 struct btrfs_key key; 706 struct btrfs_key new_key; 707 u64 ino = btrfs_ino(inode); 708 u64 search_start = start; 709 u64 disk_bytenr = 0; 710 u64 num_bytes = 0; 711 u64 extent_offset = 0; 712 u64 extent_end = 0; 713 int del_nr = 0; 714 int del_slot = 0; 715 int extent_type; 716 int recow; 717 int ret; 718 int modify_tree = -1; 719 int update_refs; 720 int found = 0; 721 int leafs_visited = 0; 722 723 if (drop_cache) 724 btrfs_drop_extent_cache(inode, start, end - 1, 0); 725 726 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 727 modify_tree = 0; 728 729 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 730 root == root->fs_info->tree_root); 731 while (1) { 732 recow = 0; 733 ret = btrfs_lookup_file_extent(trans, root, path, ino, 734 search_start, modify_tree); 735 if (ret < 0) 736 break; 737 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 738 leaf = path->nodes[0]; 739 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 740 if (key.objectid == ino && 741 key.type == BTRFS_EXTENT_DATA_KEY) 742 path->slots[0]--; 743 } 744 ret = 0; 745 leafs_visited++; 746 next_slot: 747 leaf = path->nodes[0]; 748 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 749 BUG_ON(del_nr > 0); 750 ret = btrfs_next_leaf(root, path); 751 if (ret < 0) 752 break; 753 if (ret > 0) { 754 ret = 0; 755 break; 756 } 757 leafs_visited++; 758 leaf = path->nodes[0]; 759 recow = 1; 760 } 761 762 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 763 if (key.objectid > ino || 764 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 765 break; 766 767 fi = btrfs_item_ptr(leaf, path->slots[0], 768 struct btrfs_file_extent_item); 769 extent_type = btrfs_file_extent_type(leaf, fi); 770 771 if (extent_type == BTRFS_FILE_EXTENT_REG || 772 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 773 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 774 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 775 extent_offset = btrfs_file_extent_offset(leaf, fi); 776 extent_end = key.offset + 777 btrfs_file_extent_num_bytes(leaf, fi); 778 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 779 extent_end = key.offset + 780 btrfs_file_extent_inline_len(leaf, 781 path->slots[0], fi); 782 } else { 783 WARN_ON(1); 784 extent_end = search_start; 785 } 786 787 /* 788 * Don't skip extent items representing 0 byte lengths. They 789 * used to be created (bug) if while punching holes we hit 790 * -ENOSPC condition. So if we find one here, just ensure we 791 * delete it, otherwise we would insert a new file extent item 792 * with the same key (offset) as that 0 bytes length file 793 * extent item in the call to setup_items_for_insert() later 794 * in this function. 795 */ 796 if (extent_end == key.offset && extent_end >= search_start) 797 goto delete_extent_item; 798 799 if (extent_end <= search_start) { 800 path->slots[0]++; 801 goto next_slot; 802 } 803 804 found = 1; 805 search_start = max(key.offset, start); 806 if (recow || !modify_tree) { 807 modify_tree = -1; 808 btrfs_release_path(path); 809 continue; 810 } 811 812 /* 813 * | - range to drop - | 814 * | -------- extent -------- | 815 */ 816 if (start > key.offset && end < extent_end) { 817 BUG_ON(del_nr > 0); 818 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 819 ret = -EOPNOTSUPP; 820 break; 821 } 822 823 memcpy(&new_key, &key, sizeof(new_key)); 824 new_key.offset = start; 825 ret = btrfs_duplicate_item(trans, root, path, 826 &new_key); 827 if (ret == -EAGAIN) { 828 btrfs_release_path(path); 829 continue; 830 } 831 if (ret < 0) 832 break; 833 834 leaf = path->nodes[0]; 835 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 836 struct btrfs_file_extent_item); 837 btrfs_set_file_extent_num_bytes(leaf, fi, 838 start - key.offset); 839 840 fi = btrfs_item_ptr(leaf, path->slots[0], 841 struct btrfs_file_extent_item); 842 843 extent_offset += start - key.offset; 844 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 845 btrfs_set_file_extent_num_bytes(leaf, fi, 846 extent_end - start); 847 btrfs_mark_buffer_dirty(leaf); 848 849 if (update_refs && disk_bytenr > 0) { 850 ret = btrfs_inc_extent_ref(trans, root, 851 disk_bytenr, num_bytes, 0, 852 root->root_key.objectid, 853 new_key.objectid, 854 start - extent_offset, 1); 855 BUG_ON(ret); /* -ENOMEM */ 856 } 857 key.offset = start; 858 } 859 /* 860 * | ---- range to drop ----- | 861 * | -------- extent -------- | 862 */ 863 if (start <= key.offset && end < extent_end) { 864 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 865 ret = -EOPNOTSUPP; 866 break; 867 } 868 869 memcpy(&new_key, &key, sizeof(new_key)); 870 new_key.offset = end; 871 btrfs_set_item_key_safe(root, path, &new_key); 872 873 extent_offset += end - key.offset; 874 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 875 btrfs_set_file_extent_num_bytes(leaf, fi, 876 extent_end - end); 877 btrfs_mark_buffer_dirty(leaf); 878 if (update_refs && disk_bytenr > 0) 879 inode_sub_bytes(inode, end - key.offset); 880 break; 881 } 882 883 search_start = extent_end; 884 /* 885 * | ---- range to drop ----- | 886 * | -------- extent -------- | 887 */ 888 if (start > key.offset && end >= extent_end) { 889 BUG_ON(del_nr > 0); 890 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 891 ret = -EOPNOTSUPP; 892 break; 893 } 894 895 btrfs_set_file_extent_num_bytes(leaf, fi, 896 start - key.offset); 897 btrfs_mark_buffer_dirty(leaf); 898 if (update_refs && disk_bytenr > 0) 899 inode_sub_bytes(inode, extent_end - start); 900 if (end == extent_end) 901 break; 902 903 path->slots[0]++; 904 goto next_slot; 905 } 906 907 /* 908 * | ---- range to drop ----- | 909 * | ------ extent ------ | 910 */ 911 if (start <= key.offset && end >= extent_end) { 912 delete_extent_item: 913 if (del_nr == 0) { 914 del_slot = path->slots[0]; 915 del_nr = 1; 916 } else { 917 BUG_ON(del_slot + del_nr != path->slots[0]); 918 del_nr++; 919 } 920 921 if (update_refs && 922 extent_type == BTRFS_FILE_EXTENT_INLINE) { 923 inode_sub_bytes(inode, 924 extent_end - key.offset); 925 extent_end = ALIGN(extent_end, 926 root->sectorsize); 927 } else if (update_refs && disk_bytenr > 0) { 928 ret = btrfs_free_extent(trans, root, 929 disk_bytenr, num_bytes, 0, 930 root->root_key.objectid, 931 key.objectid, key.offset - 932 extent_offset, 0); 933 BUG_ON(ret); /* -ENOMEM */ 934 inode_sub_bytes(inode, 935 extent_end - key.offset); 936 } 937 938 if (end == extent_end) 939 break; 940 941 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 942 path->slots[0]++; 943 goto next_slot; 944 } 945 946 ret = btrfs_del_items(trans, root, path, del_slot, 947 del_nr); 948 if (ret) { 949 btrfs_abort_transaction(trans, root, ret); 950 break; 951 } 952 953 del_nr = 0; 954 del_slot = 0; 955 956 btrfs_release_path(path); 957 continue; 958 } 959 960 BUG_ON(1); 961 } 962 963 if (!ret && del_nr > 0) { 964 /* 965 * Set path->slots[0] to first slot, so that after the delete 966 * if items are move off from our leaf to its immediate left or 967 * right neighbor leafs, we end up with a correct and adjusted 968 * path->slots[0] for our insertion (if replace_extent != 0). 969 */ 970 path->slots[0] = del_slot; 971 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 972 if (ret) 973 btrfs_abort_transaction(trans, root, ret); 974 } 975 976 leaf = path->nodes[0]; 977 /* 978 * If btrfs_del_items() was called, it might have deleted a leaf, in 979 * which case it unlocked our path, so check path->locks[0] matches a 980 * write lock. 981 */ 982 if (!ret && replace_extent && leafs_visited == 1 && 983 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 984 path->locks[0] == BTRFS_WRITE_LOCK) && 985 btrfs_leaf_free_space(root, leaf) >= 986 sizeof(struct btrfs_item) + extent_item_size) { 987 988 key.objectid = ino; 989 key.type = BTRFS_EXTENT_DATA_KEY; 990 key.offset = start; 991 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 992 struct btrfs_key slot_key; 993 994 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 995 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 996 path->slots[0]++; 997 } 998 setup_items_for_insert(root, path, &key, 999 &extent_item_size, 1000 extent_item_size, 1001 sizeof(struct btrfs_item) + 1002 extent_item_size, 1); 1003 *key_inserted = 1; 1004 } 1005 1006 if (!replace_extent || !(*key_inserted)) 1007 btrfs_release_path(path); 1008 if (drop_end) 1009 *drop_end = found ? min(end, extent_end) : end; 1010 return ret; 1011 } 1012 1013 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1014 struct btrfs_root *root, struct inode *inode, u64 start, 1015 u64 end, int drop_cache) 1016 { 1017 struct btrfs_path *path; 1018 int ret; 1019 1020 path = btrfs_alloc_path(); 1021 if (!path) 1022 return -ENOMEM; 1023 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1024 drop_cache, 0, 0, NULL); 1025 btrfs_free_path(path); 1026 return ret; 1027 } 1028 1029 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1030 u64 objectid, u64 bytenr, u64 orig_offset, 1031 u64 *start, u64 *end) 1032 { 1033 struct btrfs_file_extent_item *fi; 1034 struct btrfs_key key; 1035 u64 extent_end; 1036 1037 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1038 return 0; 1039 1040 btrfs_item_key_to_cpu(leaf, &key, slot); 1041 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1042 return 0; 1043 1044 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1045 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1046 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1047 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1048 btrfs_file_extent_compression(leaf, fi) || 1049 btrfs_file_extent_encryption(leaf, fi) || 1050 btrfs_file_extent_other_encoding(leaf, fi)) 1051 return 0; 1052 1053 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1054 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1055 return 0; 1056 1057 *start = key.offset; 1058 *end = extent_end; 1059 return 1; 1060 } 1061 1062 /* 1063 * Mark extent in the range start - end as written. 1064 * 1065 * This changes extent type from 'pre-allocated' to 'regular'. If only 1066 * part of extent is marked as written, the extent will be split into 1067 * two or three. 1068 */ 1069 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1070 struct inode *inode, u64 start, u64 end) 1071 { 1072 struct btrfs_root *root = BTRFS_I(inode)->root; 1073 struct extent_buffer *leaf; 1074 struct btrfs_path *path; 1075 struct btrfs_file_extent_item *fi; 1076 struct btrfs_key key; 1077 struct btrfs_key new_key; 1078 u64 bytenr; 1079 u64 num_bytes; 1080 u64 extent_end; 1081 u64 orig_offset; 1082 u64 other_start; 1083 u64 other_end; 1084 u64 split; 1085 int del_nr = 0; 1086 int del_slot = 0; 1087 int recow; 1088 int ret; 1089 u64 ino = btrfs_ino(inode); 1090 1091 path = btrfs_alloc_path(); 1092 if (!path) 1093 return -ENOMEM; 1094 again: 1095 recow = 0; 1096 split = start; 1097 key.objectid = ino; 1098 key.type = BTRFS_EXTENT_DATA_KEY; 1099 key.offset = split; 1100 1101 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1102 if (ret < 0) 1103 goto out; 1104 if (ret > 0 && path->slots[0] > 0) 1105 path->slots[0]--; 1106 1107 leaf = path->nodes[0]; 1108 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1109 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY); 1110 fi = btrfs_item_ptr(leaf, path->slots[0], 1111 struct btrfs_file_extent_item); 1112 BUG_ON(btrfs_file_extent_type(leaf, fi) != 1113 BTRFS_FILE_EXTENT_PREALLOC); 1114 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1115 BUG_ON(key.offset > start || extent_end < end); 1116 1117 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1118 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1119 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1120 memcpy(&new_key, &key, sizeof(new_key)); 1121 1122 if (start == key.offset && end < extent_end) { 1123 other_start = 0; 1124 other_end = start; 1125 if (extent_mergeable(leaf, path->slots[0] - 1, 1126 ino, bytenr, orig_offset, 1127 &other_start, &other_end)) { 1128 new_key.offset = end; 1129 btrfs_set_item_key_safe(root, path, &new_key); 1130 fi = btrfs_item_ptr(leaf, path->slots[0], 1131 struct btrfs_file_extent_item); 1132 btrfs_set_file_extent_generation(leaf, fi, 1133 trans->transid); 1134 btrfs_set_file_extent_num_bytes(leaf, fi, 1135 extent_end - end); 1136 btrfs_set_file_extent_offset(leaf, fi, 1137 end - orig_offset); 1138 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1139 struct btrfs_file_extent_item); 1140 btrfs_set_file_extent_generation(leaf, fi, 1141 trans->transid); 1142 btrfs_set_file_extent_num_bytes(leaf, fi, 1143 end - other_start); 1144 btrfs_mark_buffer_dirty(leaf); 1145 goto out; 1146 } 1147 } 1148 1149 if (start > key.offset && end == extent_end) { 1150 other_start = end; 1151 other_end = 0; 1152 if (extent_mergeable(leaf, path->slots[0] + 1, 1153 ino, bytenr, orig_offset, 1154 &other_start, &other_end)) { 1155 fi = btrfs_item_ptr(leaf, path->slots[0], 1156 struct btrfs_file_extent_item); 1157 btrfs_set_file_extent_num_bytes(leaf, fi, 1158 start - key.offset); 1159 btrfs_set_file_extent_generation(leaf, fi, 1160 trans->transid); 1161 path->slots[0]++; 1162 new_key.offset = start; 1163 btrfs_set_item_key_safe(root, path, &new_key); 1164 1165 fi = btrfs_item_ptr(leaf, path->slots[0], 1166 struct btrfs_file_extent_item); 1167 btrfs_set_file_extent_generation(leaf, fi, 1168 trans->transid); 1169 btrfs_set_file_extent_num_bytes(leaf, fi, 1170 other_end - start); 1171 btrfs_set_file_extent_offset(leaf, fi, 1172 start - orig_offset); 1173 btrfs_mark_buffer_dirty(leaf); 1174 goto out; 1175 } 1176 } 1177 1178 while (start > key.offset || end < extent_end) { 1179 if (key.offset == start) 1180 split = end; 1181 1182 new_key.offset = split; 1183 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1184 if (ret == -EAGAIN) { 1185 btrfs_release_path(path); 1186 goto again; 1187 } 1188 if (ret < 0) { 1189 btrfs_abort_transaction(trans, root, ret); 1190 goto out; 1191 } 1192 1193 leaf = path->nodes[0]; 1194 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1195 struct btrfs_file_extent_item); 1196 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1197 btrfs_set_file_extent_num_bytes(leaf, fi, 1198 split - key.offset); 1199 1200 fi = btrfs_item_ptr(leaf, path->slots[0], 1201 struct btrfs_file_extent_item); 1202 1203 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1204 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1205 btrfs_set_file_extent_num_bytes(leaf, fi, 1206 extent_end - split); 1207 btrfs_mark_buffer_dirty(leaf); 1208 1209 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, 1210 root->root_key.objectid, 1211 ino, orig_offset, 1); 1212 BUG_ON(ret); /* -ENOMEM */ 1213 1214 if (split == start) { 1215 key.offset = start; 1216 } else { 1217 BUG_ON(start != key.offset); 1218 path->slots[0]--; 1219 extent_end = end; 1220 } 1221 recow = 1; 1222 } 1223 1224 other_start = end; 1225 other_end = 0; 1226 if (extent_mergeable(leaf, path->slots[0] + 1, 1227 ino, bytenr, orig_offset, 1228 &other_start, &other_end)) { 1229 if (recow) { 1230 btrfs_release_path(path); 1231 goto again; 1232 } 1233 extent_end = other_end; 1234 del_slot = path->slots[0] + 1; 1235 del_nr++; 1236 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1237 0, root->root_key.objectid, 1238 ino, orig_offset, 0); 1239 BUG_ON(ret); /* -ENOMEM */ 1240 } 1241 other_start = 0; 1242 other_end = start; 1243 if (extent_mergeable(leaf, path->slots[0] - 1, 1244 ino, bytenr, orig_offset, 1245 &other_start, &other_end)) { 1246 if (recow) { 1247 btrfs_release_path(path); 1248 goto again; 1249 } 1250 key.offset = other_start; 1251 del_slot = path->slots[0]; 1252 del_nr++; 1253 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1254 0, root->root_key.objectid, 1255 ino, orig_offset, 0); 1256 BUG_ON(ret); /* -ENOMEM */ 1257 } 1258 if (del_nr == 0) { 1259 fi = btrfs_item_ptr(leaf, path->slots[0], 1260 struct btrfs_file_extent_item); 1261 btrfs_set_file_extent_type(leaf, fi, 1262 BTRFS_FILE_EXTENT_REG); 1263 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1264 btrfs_mark_buffer_dirty(leaf); 1265 } else { 1266 fi = btrfs_item_ptr(leaf, del_slot - 1, 1267 struct btrfs_file_extent_item); 1268 btrfs_set_file_extent_type(leaf, fi, 1269 BTRFS_FILE_EXTENT_REG); 1270 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1271 btrfs_set_file_extent_num_bytes(leaf, fi, 1272 extent_end - key.offset); 1273 btrfs_mark_buffer_dirty(leaf); 1274 1275 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1276 if (ret < 0) { 1277 btrfs_abort_transaction(trans, root, ret); 1278 goto out; 1279 } 1280 } 1281 out: 1282 btrfs_free_path(path); 1283 return 0; 1284 } 1285 1286 /* 1287 * on error we return an unlocked page and the error value 1288 * on success we return a locked page and 0 1289 */ 1290 static int prepare_uptodate_page(struct page *page, u64 pos, 1291 bool force_uptodate) 1292 { 1293 int ret = 0; 1294 1295 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) && 1296 !PageUptodate(page)) { 1297 ret = btrfs_readpage(NULL, page); 1298 if (ret) 1299 return ret; 1300 lock_page(page); 1301 if (!PageUptodate(page)) { 1302 unlock_page(page); 1303 return -EIO; 1304 } 1305 } 1306 return 0; 1307 } 1308 1309 /* 1310 * this just gets pages into the page cache and locks them down. 1311 */ 1312 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1313 size_t num_pages, loff_t pos, 1314 size_t write_bytes, bool force_uptodate) 1315 { 1316 int i; 1317 unsigned long index = pos >> PAGE_CACHE_SHIFT; 1318 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1319 int err = 0; 1320 int faili; 1321 1322 for (i = 0; i < num_pages; i++) { 1323 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1324 mask | __GFP_WRITE); 1325 if (!pages[i]) { 1326 faili = i - 1; 1327 err = -ENOMEM; 1328 goto fail; 1329 } 1330 1331 if (i == 0) 1332 err = prepare_uptodate_page(pages[i], pos, 1333 force_uptodate); 1334 if (i == num_pages - 1) 1335 err = prepare_uptodate_page(pages[i], 1336 pos + write_bytes, false); 1337 if (err) { 1338 page_cache_release(pages[i]); 1339 faili = i - 1; 1340 goto fail; 1341 } 1342 wait_on_page_writeback(pages[i]); 1343 } 1344 1345 return 0; 1346 fail: 1347 while (faili >= 0) { 1348 unlock_page(pages[faili]); 1349 page_cache_release(pages[faili]); 1350 faili--; 1351 } 1352 return err; 1353 1354 } 1355 1356 /* 1357 * This function locks the extent and properly waits for data=ordered extents 1358 * to finish before allowing the pages to be modified if need. 1359 * 1360 * The return value: 1361 * 1 - the extent is locked 1362 * 0 - the extent is not locked, and everything is OK 1363 * -EAGAIN - need re-prepare the pages 1364 * the other < 0 number - Something wrong happens 1365 */ 1366 static noinline int 1367 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages, 1368 size_t num_pages, loff_t pos, 1369 u64 *lockstart, u64 *lockend, 1370 struct extent_state **cached_state) 1371 { 1372 u64 start_pos; 1373 u64 last_pos; 1374 int i; 1375 int ret = 0; 1376 1377 start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1); 1378 last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1; 1379 1380 if (start_pos < inode->i_size) { 1381 struct btrfs_ordered_extent *ordered; 1382 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1383 start_pos, last_pos, 0, cached_state); 1384 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1385 last_pos - start_pos + 1); 1386 if (ordered && 1387 ordered->file_offset + ordered->len > start_pos && 1388 ordered->file_offset <= last_pos) { 1389 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1390 start_pos, last_pos, 1391 cached_state, GFP_NOFS); 1392 for (i = 0; i < num_pages; i++) { 1393 unlock_page(pages[i]); 1394 page_cache_release(pages[i]); 1395 } 1396 btrfs_start_ordered_extent(inode, ordered, 1); 1397 btrfs_put_ordered_extent(ordered); 1398 return -EAGAIN; 1399 } 1400 if (ordered) 1401 btrfs_put_ordered_extent(ordered); 1402 1403 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, 1404 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC | 1405 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1406 0, 0, cached_state, GFP_NOFS); 1407 *lockstart = start_pos; 1408 *lockend = last_pos; 1409 ret = 1; 1410 } 1411 1412 for (i = 0; i < num_pages; i++) { 1413 if (clear_page_dirty_for_io(pages[i])) 1414 account_page_redirty(pages[i]); 1415 set_page_extent_mapped(pages[i]); 1416 WARN_ON(!PageLocked(pages[i])); 1417 } 1418 1419 return ret; 1420 } 1421 1422 static noinline int check_can_nocow(struct inode *inode, loff_t pos, 1423 size_t *write_bytes) 1424 { 1425 struct btrfs_root *root = BTRFS_I(inode)->root; 1426 struct btrfs_ordered_extent *ordered; 1427 u64 lockstart, lockend; 1428 u64 num_bytes; 1429 int ret; 1430 1431 ret = btrfs_start_nocow_write(root); 1432 if (!ret) 1433 return -ENOSPC; 1434 1435 lockstart = round_down(pos, root->sectorsize); 1436 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1; 1437 1438 while (1) { 1439 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1440 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1441 lockend - lockstart + 1); 1442 if (!ordered) { 1443 break; 1444 } 1445 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1446 btrfs_start_ordered_extent(inode, ordered, 1); 1447 btrfs_put_ordered_extent(ordered); 1448 } 1449 1450 num_bytes = lockend - lockstart + 1; 1451 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL); 1452 if (ret <= 0) { 1453 ret = 0; 1454 btrfs_end_nocow_write(root); 1455 } else { 1456 *write_bytes = min_t(size_t, *write_bytes , 1457 num_bytes - pos + lockstart); 1458 } 1459 1460 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1461 1462 return ret; 1463 } 1464 1465 static noinline ssize_t __btrfs_buffered_write(struct file *file, 1466 struct iov_iter *i, 1467 loff_t pos) 1468 { 1469 struct inode *inode = file_inode(file); 1470 struct btrfs_root *root = BTRFS_I(inode)->root; 1471 struct page **pages = NULL; 1472 struct extent_state *cached_state = NULL; 1473 u64 release_bytes = 0; 1474 u64 lockstart; 1475 u64 lockend; 1476 unsigned long first_index; 1477 size_t num_written = 0; 1478 int nrptrs; 1479 int ret = 0; 1480 bool only_release_metadata = false; 1481 bool force_page_uptodate = false; 1482 bool need_unlock; 1483 1484 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) / 1485 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE / 1486 (sizeof(struct page *))); 1487 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1488 nrptrs = max(nrptrs, 8); 1489 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL); 1490 if (!pages) 1491 return -ENOMEM; 1492 1493 first_index = pos >> PAGE_CACHE_SHIFT; 1494 1495 while (iov_iter_count(i) > 0) { 1496 size_t offset = pos & (PAGE_CACHE_SIZE - 1); 1497 size_t write_bytes = min(iov_iter_count(i), 1498 nrptrs * (size_t)PAGE_CACHE_SIZE - 1499 offset); 1500 size_t num_pages = (write_bytes + offset + 1501 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1502 size_t reserve_bytes; 1503 size_t dirty_pages; 1504 size_t copied; 1505 1506 WARN_ON(num_pages > nrptrs); 1507 1508 /* 1509 * Fault pages before locking them in prepare_pages 1510 * to avoid recursive lock 1511 */ 1512 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1513 ret = -EFAULT; 1514 break; 1515 } 1516 1517 reserve_bytes = num_pages << PAGE_CACHE_SHIFT; 1518 ret = btrfs_check_data_free_space(inode, reserve_bytes); 1519 if (ret == -ENOSPC && 1520 (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1521 BTRFS_INODE_PREALLOC))) { 1522 ret = check_can_nocow(inode, pos, &write_bytes); 1523 if (ret > 0) { 1524 only_release_metadata = true; 1525 /* 1526 * our prealloc extent may be smaller than 1527 * write_bytes, so scale down. 1528 */ 1529 num_pages = (write_bytes + offset + 1530 PAGE_CACHE_SIZE - 1) >> 1531 PAGE_CACHE_SHIFT; 1532 reserve_bytes = num_pages << PAGE_CACHE_SHIFT; 1533 ret = 0; 1534 } else { 1535 ret = -ENOSPC; 1536 } 1537 } 1538 1539 if (ret) 1540 break; 1541 1542 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes); 1543 if (ret) { 1544 if (!only_release_metadata) 1545 btrfs_free_reserved_data_space(inode, 1546 reserve_bytes); 1547 else 1548 btrfs_end_nocow_write(root); 1549 break; 1550 } 1551 1552 release_bytes = reserve_bytes; 1553 need_unlock = false; 1554 again: 1555 /* 1556 * This is going to setup the pages array with the number of 1557 * pages we want, so we don't really need to worry about the 1558 * contents of pages from loop to loop 1559 */ 1560 ret = prepare_pages(inode, pages, num_pages, 1561 pos, write_bytes, 1562 force_page_uptodate); 1563 if (ret) 1564 break; 1565 1566 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages, 1567 pos, &lockstart, &lockend, 1568 &cached_state); 1569 if (ret < 0) { 1570 if (ret == -EAGAIN) 1571 goto again; 1572 break; 1573 } else if (ret > 0) { 1574 need_unlock = true; 1575 ret = 0; 1576 } 1577 1578 copied = btrfs_copy_from_user(pos, num_pages, 1579 write_bytes, pages, i); 1580 1581 /* 1582 * if we have trouble faulting in the pages, fall 1583 * back to one page at a time 1584 */ 1585 if (copied < write_bytes) 1586 nrptrs = 1; 1587 1588 if (copied == 0) { 1589 force_page_uptodate = true; 1590 dirty_pages = 0; 1591 } else { 1592 force_page_uptodate = false; 1593 dirty_pages = (copied + offset + 1594 PAGE_CACHE_SIZE - 1) >> 1595 PAGE_CACHE_SHIFT; 1596 } 1597 1598 /* 1599 * If we had a short copy we need to release the excess delaloc 1600 * bytes we reserved. We need to increment outstanding_extents 1601 * because btrfs_delalloc_release_space will decrement it, but 1602 * we still have an outstanding extent for the chunk we actually 1603 * managed to copy. 1604 */ 1605 if (num_pages > dirty_pages) { 1606 release_bytes = (num_pages - dirty_pages) << 1607 PAGE_CACHE_SHIFT; 1608 if (copied > 0) { 1609 spin_lock(&BTRFS_I(inode)->lock); 1610 BTRFS_I(inode)->outstanding_extents++; 1611 spin_unlock(&BTRFS_I(inode)->lock); 1612 } 1613 if (only_release_metadata) 1614 btrfs_delalloc_release_metadata(inode, 1615 release_bytes); 1616 else 1617 btrfs_delalloc_release_space(inode, 1618 release_bytes); 1619 } 1620 1621 release_bytes = dirty_pages << PAGE_CACHE_SHIFT; 1622 1623 if (copied > 0) 1624 ret = btrfs_dirty_pages(root, inode, pages, 1625 dirty_pages, pos, copied, 1626 NULL); 1627 if (need_unlock) 1628 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1629 lockstart, lockend, &cached_state, 1630 GFP_NOFS); 1631 if (ret) { 1632 btrfs_drop_pages(pages, num_pages); 1633 break; 1634 } 1635 1636 release_bytes = 0; 1637 if (only_release_metadata) 1638 btrfs_end_nocow_write(root); 1639 1640 if (only_release_metadata && copied > 0) { 1641 u64 lockstart = round_down(pos, root->sectorsize); 1642 u64 lockend = lockstart + 1643 (dirty_pages << PAGE_CACHE_SHIFT) - 1; 1644 1645 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1646 lockend, EXTENT_NORESERVE, NULL, 1647 NULL, GFP_NOFS); 1648 only_release_metadata = false; 1649 } 1650 1651 btrfs_drop_pages(pages, num_pages); 1652 1653 cond_resched(); 1654 1655 balance_dirty_pages_ratelimited(inode->i_mapping); 1656 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1) 1657 btrfs_btree_balance_dirty(root); 1658 1659 pos += copied; 1660 num_written += copied; 1661 } 1662 1663 kfree(pages); 1664 1665 if (release_bytes) { 1666 if (only_release_metadata) { 1667 btrfs_end_nocow_write(root); 1668 btrfs_delalloc_release_metadata(inode, release_bytes); 1669 } else { 1670 btrfs_delalloc_release_space(inode, release_bytes); 1671 } 1672 } 1673 1674 return num_written ? num_written : ret; 1675 } 1676 1677 static ssize_t __btrfs_direct_write(struct kiocb *iocb, 1678 struct iov_iter *from, 1679 loff_t pos) 1680 { 1681 struct file *file = iocb->ki_filp; 1682 ssize_t written; 1683 ssize_t written_buffered; 1684 loff_t endbyte; 1685 int err; 1686 1687 written = generic_file_direct_write(iocb, from, pos); 1688 1689 if (written < 0 || !iov_iter_count(from)) 1690 return written; 1691 1692 pos += written; 1693 written_buffered = __btrfs_buffered_write(file, from, pos); 1694 if (written_buffered < 0) { 1695 err = written_buffered; 1696 goto out; 1697 } 1698 endbyte = pos + written_buffered - 1; 1699 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 1700 if (err) 1701 goto out; 1702 written += written_buffered; 1703 iocb->ki_pos = pos + written_buffered; 1704 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT, 1705 endbyte >> PAGE_CACHE_SHIFT); 1706 out: 1707 return written ? written : err; 1708 } 1709 1710 static void update_time_for_write(struct inode *inode) 1711 { 1712 struct timespec now; 1713 1714 if (IS_NOCMTIME(inode)) 1715 return; 1716 1717 now = current_fs_time(inode->i_sb); 1718 if (!timespec_equal(&inode->i_mtime, &now)) 1719 inode->i_mtime = now; 1720 1721 if (!timespec_equal(&inode->i_ctime, &now)) 1722 inode->i_ctime = now; 1723 1724 if (IS_I_VERSION(inode)) 1725 inode_inc_iversion(inode); 1726 } 1727 1728 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1729 struct iov_iter *from) 1730 { 1731 struct file *file = iocb->ki_filp; 1732 struct inode *inode = file_inode(file); 1733 struct btrfs_root *root = BTRFS_I(inode)->root; 1734 u64 start_pos; 1735 u64 end_pos; 1736 ssize_t num_written = 0; 1737 ssize_t err = 0; 1738 size_t count = iov_iter_count(from); 1739 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1740 loff_t pos = iocb->ki_pos; 1741 1742 mutex_lock(&inode->i_mutex); 1743 1744 current->backing_dev_info = inode->i_mapping->backing_dev_info; 1745 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 1746 if (err) { 1747 mutex_unlock(&inode->i_mutex); 1748 goto out; 1749 } 1750 1751 if (count == 0) { 1752 mutex_unlock(&inode->i_mutex); 1753 goto out; 1754 } 1755 1756 iov_iter_truncate(from, count); 1757 1758 err = file_remove_suid(file); 1759 if (err) { 1760 mutex_unlock(&inode->i_mutex); 1761 goto out; 1762 } 1763 1764 /* 1765 * If BTRFS flips readonly due to some impossible error 1766 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1767 * although we have opened a file as writable, we have 1768 * to stop this write operation to ensure FS consistency. 1769 */ 1770 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1771 mutex_unlock(&inode->i_mutex); 1772 err = -EROFS; 1773 goto out; 1774 } 1775 1776 /* 1777 * We reserve space for updating the inode when we reserve space for the 1778 * extent we are going to write, so we will enospc out there. We don't 1779 * need to start yet another transaction to update the inode as we will 1780 * update the inode when we finish writing whatever data we write. 1781 */ 1782 update_time_for_write(inode); 1783 1784 start_pos = round_down(pos, root->sectorsize); 1785 if (start_pos > i_size_read(inode)) { 1786 /* Expand hole size to cover write data, preventing empty gap */ 1787 end_pos = round_up(pos + count, root->sectorsize); 1788 err = btrfs_cont_expand(inode, i_size_read(inode), end_pos); 1789 if (err) { 1790 mutex_unlock(&inode->i_mutex); 1791 goto out; 1792 } 1793 } 1794 1795 if (sync) 1796 atomic_inc(&BTRFS_I(inode)->sync_writers); 1797 1798 if (unlikely(file->f_flags & O_DIRECT)) { 1799 num_written = __btrfs_direct_write(iocb, from, pos); 1800 } else { 1801 num_written = __btrfs_buffered_write(file, from, pos); 1802 if (num_written > 0) 1803 iocb->ki_pos = pos + num_written; 1804 } 1805 1806 mutex_unlock(&inode->i_mutex); 1807 1808 /* 1809 * we want to make sure fsync finds this change 1810 * but we haven't joined a transaction running right now. 1811 * 1812 * Later on, someone is sure to update the inode and get the 1813 * real transid recorded. 1814 * 1815 * We set last_trans now to the fs_info generation + 1, 1816 * this will either be one more than the running transaction 1817 * or the generation used for the next transaction if there isn't 1818 * one running right now. 1819 * 1820 * We also have to set last_sub_trans to the current log transid, 1821 * otherwise subsequent syncs to a file that's been synced in this 1822 * transaction will appear to have already occured. 1823 */ 1824 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1; 1825 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1826 if (num_written > 0) { 1827 err = generic_write_sync(file, pos, num_written); 1828 if (err < 0) 1829 num_written = err; 1830 } 1831 1832 if (sync) 1833 atomic_dec(&BTRFS_I(inode)->sync_writers); 1834 out: 1835 current->backing_dev_info = NULL; 1836 return num_written ? num_written : err; 1837 } 1838 1839 int btrfs_release_file(struct inode *inode, struct file *filp) 1840 { 1841 /* 1842 * ordered_data_close is set by settattr when we are about to truncate 1843 * a file from a non-zero size to a zero size. This tries to 1844 * flush down new bytes that may have been written if the 1845 * application were using truncate to replace a file in place. 1846 */ 1847 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 1848 &BTRFS_I(inode)->runtime_flags)) { 1849 struct btrfs_trans_handle *trans; 1850 struct btrfs_root *root = BTRFS_I(inode)->root; 1851 1852 /* 1853 * We need to block on a committing transaction to keep us from 1854 * throwing a ordered operation on to the list and causing 1855 * something like sync to deadlock trying to flush out this 1856 * inode. 1857 */ 1858 trans = btrfs_start_transaction(root, 0); 1859 if (IS_ERR(trans)) 1860 return PTR_ERR(trans); 1861 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode); 1862 btrfs_end_transaction(trans, root); 1863 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 1864 filemap_flush(inode->i_mapping); 1865 } 1866 if (filp->private_data) 1867 btrfs_ioctl_trans_end(filp); 1868 return 0; 1869 } 1870 1871 /* 1872 * fsync call for both files and directories. This logs the inode into 1873 * the tree log instead of forcing full commits whenever possible. 1874 * 1875 * It needs to call filemap_fdatawait so that all ordered extent updates are 1876 * in the metadata btree are up to date for copying to the log. 1877 * 1878 * It drops the inode mutex before doing the tree log commit. This is an 1879 * important optimization for directories because holding the mutex prevents 1880 * new operations on the dir while we write to disk. 1881 */ 1882 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1883 { 1884 struct dentry *dentry = file->f_path.dentry; 1885 struct inode *inode = dentry->d_inode; 1886 struct btrfs_root *root = BTRFS_I(inode)->root; 1887 struct btrfs_trans_handle *trans; 1888 struct btrfs_log_ctx ctx; 1889 int ret = 0; 1890 bool full_sync = 0; 1891 1892 trace_btrfs_sync_file(file, datasync); 1893 1894 /* 1895 * We write the dirty pages in the range and wait until they complete 1896 * out of the ->i_mutex. If so, we can flush the dirty pages by 1897 * multi-task, and make the performance up. See 1898 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1899 */ 1900 atomic_inc(&BTRFS_I(inode)->sync_writers); 1901 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 1902 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1903 &BTRFS_I(inode)->runtime_flags)) 1904 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 1905 atomic_dec(&BTRFS_I(inode)->sync_writers); 1906 if (ret) 1907 return ret; 1908 1909 mutex_lock(&inode->i_mutex); 1910 1911 /* 1912 * We flush the dirty pages again to avoid some dirty pages in the 1913 * range being left. 1914 */ 1915 atomic_inc(&root->log_batch); 1916 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1917 &BTRFS_I(inode)->runtime_flags); 1918 if (full_sync) { 1919 ret = btrfs_wait_ordered_range(inode, start, end - start + 1); 1920 if (ret) { 1921 mutex_unlock(&inode->i_mutex); 1922 goto out; 1923 } 1924 } 1925 atomic_inc(&root->log_batch); 1926 1927 /* 1928 * check the transaction that last modified this inode 1929 * and see if its already been committed 1930 */ 1931 if (!BTRFS_I(inode)->last_trans) { 1932 mutex_unlock(&inode->i_mutex); 1933 goto out; 1934 } 1935 1936 /* 1937 * if the last transaction that changed this file was before 1938 * the current transaction, we can bail out now without any 1939 * syncing 1940 */ 1941 smp_mb(); 1942 if (btrfs_inode_in_log(inode, root->fs_info->generation) || 1943 BTRFS_I(inode)->last_trans <= 1944 root->fs_info->last_trans_committed) { 1945 BTRFS_I(inode)->last_trans = 0; 1946 1947 /* 1948 * We'v had everything committed since the last time we were 1949 * modified so clear this flag in case it was set for whatever 1950 * reason, it's no longer relevant. 1951 */ 1952 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1953 &BTRFS_I(inode)->runtime_flags); 1954 mutex_unlock(&inode->i_mutex); 1955 goto out; 1956 } 1957 1958 /* 1959 * ok we haven't committed the transaction yet, lets do a commit 1960 */ 1961 if (file->private_data) 1962 btrfs_ioctl_trans_end(file); 1963 1964 /* 1965 * We use start here because we will need to wait on the IO to complete 1966 * in btrfs_sync_log, which could require joining a transaction (for 1967 * example checking cross references in the nocow path). If we use join 1968 * here we could get into a situation where we're waiting on IO to 1969 * happen that is blocked on a transaction trying to commit. With start 1970 * we inc the extwriter counter, so we wait for all extwriters to exit 1971 * before we start blocking join'ers. This comment is to keep somebody 1972 * from thinking they are super smart and changing this to 1973 * btrfs_join_transaction *cough*Josef*cough*. 1974 */ 1975 trans = btrfs_start_transaction(root, 0); 1976 if (IS_ERR(trans)) { 1977 ret = PTR_ERR(trans); 1978 mutex_unlock(&inode->i_mutex); 1979 goto out; 1980 } 1981 trans->sync = true; 1982 1983 btrfs_init_log_ctx(&ctx); 1984 1985 ret = btrfs_log_dentry_safe(trans, root, dentry, &ctx); 1986 if (ret < 0) { 1987 /* Fallthrough and commit/free transaction. */ 1988 ret = 1; 1989 } 1990 1991 /* we've logged all the items and now have a consistent 1992 * version of the file in the log. It is possible that 1993 * someone will come in and modify the file, but that's 1994 * fine because the log is consistent on disk, and we 1995 * have references to all of the file's extents 1996 * 1997 * It is possible that someone will come in and log the 1998 * file again, but that will end up using the synchronization 1999 * inside btrfs_sync_log to keep things safe. 2000 */ 2001 mutex_unlock(&inode->i_mutex); 2002 2003 if (ret != BTRFS_NO_LOG_SYNC) { 2004 if (!ret) { 2005 ret = btrfs_sync_log(trans, root, &ctx); 2006 if (!ret) { 2007 ret = btrfs_end_transaction(trans, root); 2008 goto out; 2009 } 2010 } 2011 if (!full_sync) { 2012 ret = btrfs_wait_ordered_range(inode, start, 2013 end - start + 1); 2014 if (ret) { 2015 btrfs_end_transaction(trans, root); 2016 goto out; 2017 } 2018 } 2019 ret = btrfs_commit_transaction(trans, root); 2020 } else { 2021 ret = btrfs_end_transaction(trans, root); 2022 } 2023 out: 2024 return ret > 0 ? -EIO : ret; 2025 } 2026 2027 static const struct vm_operations_struct btrfs_file_vm_ops = { 2028 .fault = filemap_fault, 2029 .map_pages = filemap_map_pages, 2030 .page_mkwrite = btrfs_page_mkwrite, 2031 .remap_pages = generic_file_remap_pages, 2032 }; 2033 2034 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2035 { 2036 struct address_space *mapping = filp->f_mapping; 2037 2038 if (!mapping->a_ops->readpage) 2039 return -ENOEXEC; 2040 2041 file_accessed(filp); 2042 vma->vm_ops = &btrfs_file_vm_ops; 2043 2044 return 0; 2045 } 2046 2047 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf, 2048 int slot, u64 start, u64 end) 2049 { 2050 struct btrfs_file_extent_item *fi; 2051 struct btrfs_key key; 2052 2053 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2054 return 0; 2055 2056 btrfs_item_key_to_cpu(leaf, &key, slot); 2057 if (key.objectid != btrfs_ino(inode) || 2058 key.type != BTRFS_EXTENT_DATA_KEY) 2059 return 0; 2060 2061 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2062 2063 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2064 return 0; 2065 2066 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2067 return 0; 2068 2069 if (key.offset == end) 2070 return 1; 2071 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2072 return 1; 2073 return 0; 2074 } 2075 2076 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode, 2077 struct btrfs_path *path, u64 offset, u64 end) 2078 { 2079 struct btrfs_root *root = BTRFS_I(inode)->root; 2080 struct extent_buffer *leaf; 2081 struct btrfs_file_extent_item *fi; 2082 struct extent_map *hole_em; 2083 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2084 struct btrfs_key key; 2085 int ret; 2086 2087 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) 2088 goto out; 2089 2090 key.objectid = btrfs_ino(inode); 2091 key.type = BTRFS_EXTENT_DATA_KEY; 2092 key.offset = offset; 2093 2094 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2095 if (ret < 0) 2096 return ret; 2097 BUG_ON(!ret); 2098 2099 leaf = path->nodes[0]; 2100 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) { 2101 u64 num_bytes; 2102 2103 path->slots[0]--; 2104 fi = btrfs_item_ptr(leaf, path->slots[0], 2105 struct btrfs_file_extent_item); 2106 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2107 end - offset; 2108 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2109 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2110 btrfs_set_file_extent_offset(leaf, fi, 0); 2111 btrfs_mark_buffer_dirty(leaf); 2112 goto out; 2113 } 2114 2115 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) { 2116 u64 num_bytes; 2117 2118 path->slots[0]++; 2119 key.offset = offset; 2120 btrfs_set_item_key_safe(root, path, &key); 2121 fi = btrfs_item_ptr(leaf, path->slots[0], 2122 struct btrfs_file_extent_item); 2123 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2124 offset; 2125 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2126 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2127 btrfs_set_file_extent_offset(leaf, fi, 0); 2128 btrfs_mark_buffer_dirty(leaf); 2129 goto out; 2130 } 2131 btrfs_release_path(path); 2132 2133 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 2134 0, 0, end - offset, 0, end - offset, 2135 0, 0, 0); 2136 if (ret) 2137 return ret; 2138 2139 out: 2140 btrfs_release_path(path); 2141 2142 hole_em = alloc_extent_map(); 2143 if (!hole_em) { 2144 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2145 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2146 &BTRFS_I(inode)->runtime_flags); 2147 } else { 2148 hole_em->start = offset; 2149 hole_em->len = end - offset; 2150 hole_em->ram_bytes = hole_em->len; 2151 hole_em->orig_start = offset; 2152 2153 hole_em->block_start = EXTENT_MAP_HOLE; 2154 hole_em->block_len = 0; 2155 hole_em->orig_block_len = 0; 2156 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 2157 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2158 hole_em->generation = trans->transid; 2159 2160 do { 2161 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2162 write_lock(&em_tree->lock); 2163 ret = add_extent_mapping(em_tree, hole_em, 1); 2164 write_unlock(&em_tree->lock); 2165 } while (ret == -EEXIST); 2166 free_extent_map(hole_em); 2167 if (ret) 2168 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2169 &BTRFS_I(inode)->runtime_flags); 2170 } 2171 2172 return 0; 2173 } 2174 2175 /* 2176 * Find a hole extent on given inode and change start/len to the end of hole 2177 * extent.(hole/vacuum extent whose em->start <= start && 2178 * em->start + em->len > start) 2179 * When a hole extent is found, return 1 and modify start/len. 2180 */ 2181 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2182 { 2183 struct extent_map *em; 2184 int ret = 0; 2185 2186 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0); 2187 if (IS_ERR_OR_NULL(em)) { 2188 if (!em) 2189 ret = -ENOMEM; 2190 else 2191 ret = PTR_ERR(em); 2192 return ret; 2193 } 2194 2195 /* Hole or vacuum extent(only exists in no-hole mode) */ 2196 if (em->block_start == EXTENT_MAP_HOLE) { 2197 ret = 1; 2198 *len = em->start + em->len > *start + *len ? 2199 0 : *start + *len - em->start - em->len; 2200 *start = em->start + em->len; 2201 } 2202 free_extent_map(em); 2203 return ret; 2204 } 2205 2206 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2207 { 2208 struct btrfs_root *root = BTRFS_I(inode)->root; 2209 struct extent_state *cached_state = NULL; 2210 struct btrfs_path *path; 2211 struct btrfs_block_rsv *rsv; 2212 struct btrfs_trans_handle *trans; 2213 u64 lockstart; 2214 u64 lockend; 2215 u64 tail_start; 2216 u64 tail_len; 2217 u64 orig_start = offset; 2218 u64 cur_offset; 2219 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 2220 u64 drop_end; 2221 int ret = 0; 2222 int err = 0; 2223 int rsv_count; 2224 bool same_page; 2225 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES); 2226 u64 ino_size; 2227 2228 ret = btrfs_wait_ordered_range(inode, offset, len); 2229 if (ret) 2230 return ret; 2231 2232 mutex_lock(&inode->i_mutex); 2233 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE); 2234 ret = find_first_non_hole(inode, &offset, &len); 2235 if (ret < 0) 2236 goto out_only_mutex; 2237 if (ret && !len) { 2238 /* Already in a large hole */ 2239 ret = 0; 2240 goto out_only_mutex; 2241 } 2242 2243 lockstart = round_up(offset , BTRFS_I(inode)->root->sectorsize); 2244 lockend = round_down(offset + len, 2245 BTRFS_I(inode)->root->sectorsize) - 1; 2246 same_page = ((offset >> PAGE_CACHE_SHIFT) == 2247 ((offset + len - 1) >> PAGE_CACHE_SHIFT)); 2248 2249 /* 2250 * We needn't truncate any page which is beyond the end of the file 2251 * because we are sure there is no data there. 2252 */ 2253 /* 2254 * Only do this if we are in the same page and we aren't doing the 2255 * entire page. 2256 */ 2257 if (same_page && len < PAGE_CACHE_SIZE) { 2258 if (offset < ino_size) 2259 ret = btrfs_truncate_page(inode, offset, len, 0); 2260 goto out_only_mutex; 2261 } 2262 2263 /* zero back part of the first page */ 2264 if (offset < ino_size) { 2265 ret = btrfs_truncate_page(inode, offset, 0, 0); 2266 if (ret) { 2267 mutex_unlock(&inode->i_mutex); 2268 return ret; 2269 } 2270 } 2271 2272 /* Check the aligned pages after the first unaligned page, 2273 * if offset != orig_start, which means the first unaligned page 2274 * including serveral following pages are already in holes, 2275 * the extra check can be skipped */ 2276 if (offset == orig_start) { 2277 /* after truncate page, check hole again */ 2278 len = offset + len - lockstart; 2279 offset = lockstart; 2280 ret = find_first_non_hole(inode, &offset, &len); 2281 if (ret < 0) 2282 goto out_only_mutex; 2283 if (ret && !len) { 2284 ret = 0; 2285 goto out_only_mutex; 2286 } 2287 lockstart = offset; 2288 } 2289 2290 /* Check the tail unaligned part is in a hole */ 2291 tail_start = lockend + 1; 2292 tail_len = offset + len - tail_start; 2293 if (tail_len) { 2294 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2295 if (unlikely(ret < 0)) 2296 goto out_only_mutex; 2297 if (!ret) { 2298 /* zero the front end of the last page */ 2299 if (tail_start + tail_len < ino_size) { 2300 ret = btrfs_truncate_page(inode, 2301 tail_start + tail_len, 0, 1); 2302 if (ret) 2303 goto out_only_mutex; 2304 } 2305 } 2306 } 2307 2308 if (lockend < lockstart) { 2309 mutex_unlock(&inode->i_mutex); 2310 return 0; 2311 } 2312 2313 while (1) { 2314 struct btrfs_ordered_extent *ordered; 2315 2316 truncate_pagecache_range(inode, lockstart, lockend); 2317 2318 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2319 0, &cached_state); 2320 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2321 2322 /* 2323 * We need to make sure we have no ordered extents in this range 2324 * and nobody raced in and read a page in this range, if we did 2325 * we need to try again. 2326 */ 2327 if ((!ordered || 2328 (ordered->file_offset + ordered->len <= lockstart || 2329 ordered->file_offset > lockend)) && 2330 !btrfs_page_exists_in_range(inode, lockstart, lockend)) { 2331 if (ordered) 2332 btrfs_put_ordered_extent(ordered); 2333 break; 2334 } 2335 if (ordered) 2336 btrfs_put_ordered_extent(ordered); 2337 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2338 lockend, &cached_state, GFP_NOFS); 2339 ret = btrfs_wait_ordered_range(inode, lockstart, 2340 lockend - lockstart + 1); 2341 if (ret) { 2342 mutex_unlock(&inode->i_mutex); 2343 return ret; 2344 } 2345 } 2346 2347 path = btrfs_alloc_path(); 2348 if (!path) { 2349 ret = -ENOMEM; 2350 goto out; 2351 } 2352 2353 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2354 if (!rsv) { 2355 ret = -ENOMEM; 2356 goto out_free; 2357 } 2358 rsv->size = btrfs_calc_trunc_metadata_size(root, 1); 2359 rsv->failfast = 1; 2360 2361 /* 2362 * 1 - update the inode 2363 * 1 - removing the extents in the range 2364 * 1 - adding the hole extent if no_holes isn't set 2365 */ 2366 rsv_count = no_holes ? 2 : 3; 2367 trans = btrfs_start_transaction(root, rsv_count); 2368 if (IS_ERR(trans)) { 2369 err = PTR_ERR(trans); 2370 goto out_free; 2371 } 2372 2373 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 2374 min_size); 2375 BUG_ON(ret); 2376 trans->block_rsv = rsv; 2377 2378 cur_offset = lockstart; 2379 len = lockend - cur_offset; 2380 while (cur_offset < lockend) { 2381 ret = __btrfs_drop_extents(trans, root, inode, path, 2382 cur_offset, lockend + 1, 2383 &drop_end, 1, 0, 0, NULL); 2384 if (ret != -ENOSPC) 2385 break; 2386 2387 trans->block_rsv = &root->fs_info->trans_block_rsv; 2388 2389 if (cur_offset < ino_size) { 2390 ret = fill_holes(trans, inode, path, cur_offset, 2391 drop_end); 2392 if (ret) { 2393 err = ret; 2394 break; 2395 } 2396 } 2397 2398 cur_offset = drop_end; 2399 2400 ret = btrfs_update_inode(trans, root, inode); 2401 if (ret) { 2402 err = ret; 2403 break; 2404 } 2405 2406 btrfs_end_transaction(trans, root); 2407 btrfs_btree_balance_dirty(root); 2408 2409 trans = btrfs_start_transaction(root, rsv_count); 2410 if (IS_ERR(trans)) { 2411 ret = PTR_ERR(trans); 2412 trans = NULL; 2413 break; 2414 } 2415 2416 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 2417 rsv, min_size); 2418 BUG_ON(ret); /* shouldn't happen */ 2419 trans->block_rsv = rsv; 2420 2421 ret = find_first_non_hole(inode, &cur_offset, &len); 2422 if (unlikely(ret < 0)) 2423 break; 2424 if (ret && !len) { 2425 ret = 0; 2426 break; 2427 } 2428 } 2429 2430 if (ret) { 2431 err = ret; 2432 goto out_trans; 2433 } 2434 2435 trans->block_rsv = &root->fs_info->trans_block_rsv; 2436 /* 2437 * Don't insert file hole extent item if it's for a range beyond eof 2438 * (because it's useless) or if it represents a 0 bytes range (when 2439 * cur_offset == drop_end). 2440 */ 2441 if (cur_offset < ino_size && cur_offset < drop_end) { 2442 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2443 if (ret) { 2444 err = ret; 2445 goto out_trans; 2446 } 2447 } 2448 2449 out_trans: 2450 if (!trans) 2451 goto out_free; 2452 2453 inode_inc_iversion(inode); 2454 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2455 2456 trans->block_rsv = &root->fs_info->trans_block_rsv; 2457 ret = btrfs_update_inode(trans, root, inode); 2458 btrfs_end_transaction(trans, root); 2459 btrfs_btree_balance_dirty(root); 2460 out_free: 2461 btrfs_free_path(path); 2462 btrfs_free_block_rsv(root, rsv); 2463 out: 2464 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2465 &cached_state, GFP_NOFS); 2466 out_only_mutex: 2467 mutex_unlock(&inode->i_mutex); 2468 if (ret && !err) 2469 err = ret; 2470 return err; 2471 } 2472 2473 static long btrfs_fallocate(struct file *file, int mode, 2474 loff_t offset, loff_t len) 2475 { 2476 struct inode *inode = file_inode(file); 2477 struct extent_state *cached_state = NULL; 2478 struct btrfs_root *root = BTRFS_I(inode)->root; 2479 u64 cur_offset; 2480 u64 last_byte; 2481 u64 alloc_start; 2482 u64 alloc_end; 2483 u64 alloc_hint = 0; 2484 u64 locked_end; 2485 struct extent_map *em; 2486 int blocksize = BTRFS_I(inode)->root->sectorsize; 2487 int ret; 2488 2489 alloc_start = round_down(offset, blocksize); 2490 alloc_end = round_up(offset + len, blocksize); 2491 2492 /* Make sure we aren't being give some crap mode */ 2493 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2494 return -EOPNOTSUPP; 2495 2496 if (mode & FALLOC_FL_PUNCH_HOLE) 2497 return btrfs_punch_hole(inode, offset, len); 2498 2499 /* 2500 * Make sure we have enough space before we do the 2501 * allocation. 2502 */ 2503 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start); 2504 if (ret) 2505 return ret; 2506 if (root->fs_info->quota_enabled) { 2507 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start); 2508 if (ret) 2509 goto out_reserve_fail; 2510 } 2511 2512 mutex_lock(&inode->i_mutex); 2513 ret = inode_newsize_ok(inode, alloc_end); 2514 if (ret) 2515 goto out; 2516 2517 if (alloc_start > inode->i_size) { 2518 ret = btrfs_cont_expand(inode, i_size_read(inode), 2519 alloc_start); 2520 if (ret) 2521 goto out; 2522 } else { 2523 /* 2524 * If we are fallocating from the end of the file onward we 2525 * need to zero out the end of the page if i_size lands in the 2526 * middle of a page. 2527 */ 2528 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0); 2529 if (ret) 2530 goto out; 2531 } 2532 2533 /* 2534 * wait for ordered IO before we have any locks. We'll loop again 2535 * below with the locks held. 2536 */ 2537 ret = btrfs_wait_ordered_range(inode, alloc_start, 2538 alloc_end - alloc_start); 2539 if (ret) 2540 goto out; 2541 2542 locked_end = alloc_end - 1; 2543 while (1) { 2544 struct btrfs_ordered_extent *ordered; 2545 2546 /* the extent lock is ordered inside the running 2547 * transaction 2548 */ 2549 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 2550 locked_end, 0, &cached_state); 2551 ordered = btrfs_lookup_first_ordered_extent(inode, 2552 alloc_end - 1); 2553 if (ordered && 2554 ordered->file_offset + ordered->len > alloc_start && 2555 ordered->file_offset < alloc_end) { 2556 btrfs_put_ordered_extent(ordered); 2557 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 2558 alloc_start, locked_end, 2559 &cached_state, GFP_NOFS); 2560 /* 2561 * we can't wait on the range with the transaction 2562 * running or with the extent lock held 2563 */ 2564 ret = btrfs_wait_ordered_range(inode, alloc_start, 2565 alloc_end - alloc_start); 2566 if (ret) 2567 goto out; 2568 } else { 2569 if (ordered) 2570 btrfs_put_ordered_extent(ordered); 2571 break; 2572 } 2573 } 2574 2575 cur_offset = alloc_start; 2576 while (1) { 2577 u64 actual_end; 2578 2579 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2580 alloc_end - cur_offset, 0); 2581 if (IS_ERR_OR_NULL(em)) { 2582 if (!em) 2583 ret = -ENOMEM; 2584 else 2585 ret = PTR_ERR(em); 2586 break; 2587 } 2588 last_byte = min(extent_map_end(em), alloc_end); 2589 actual_end = min_t(u64, extent_map_end(em), offset + len); 2590 last_byte = ALIGN(last_byte, blocksize); 2591 2592 if (em->block_start == EXTENT_MAP_HOLE || 2593 (cur_offset >= inode->i_size && 2594 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 2595 ret = btrfs_prealloc_file_range(inode, mode, cur_offset, 2596 last_byte - cur_offset, 2597 1 << inode->i_blkbits, 2598 offset + len, 2599 &alloc_hint); 2600 2601 if (ret < 0) { 2602 free_extent_map(em); 2603 break; 2604 } 2605 } else if (actual_end > inode->i_size && 2606 !(mode & FALLOC_FL_KEEP_SIZE)) { 2607 /* 2608 * We didn't need to allocate any more space, but we 2609 * still extended the size of the file so we need to 2610 * update i_size. 2611 */ 2612 inode->i_ctime = CURRENT_TIME; 2613 i_size_write(inode, actual_end); 2614 btrfs_ordered_update_i_size(inode, actual_end, NULL); 2615 } 2616 free_extent_map(em); 2617 2618 cur_offset = last_byte; 2619 if (cur_offset >= alloc_end) { 2620 ret = 0; 2621 break; 2622 } 2623 } 2624 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 2625 &cached_state, GFP_NOFS); 2626 out: 2627 mutex_unlock(&inode->i_mutex); 2628 if (root->fs_info->quota_enabled) 2629 btrfs_qgroup_free(root, alloc_end - alloc_start); 2630 out_reserve_fail: 2631 /* Let go of our reservation. */ 2632 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start); 2633 return ret; 2634 } 2635 2636 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 2637 { 2638 struct btrfs_root *root = BTRFS_I(inode)->root; 2639 struct extent_map *em = NULL; 2640 struct extent_state *cached_state = NULL; 2641 u64 lockstart = *offset; 2642 u64 lockend = i_size_read(inode); 2643 u64 start = *offset; 2644 u64 len = i_size_read(inode); 2645 int ret = 0; 2646 2647 lockend = max_t(u64, root->sectorsize, lockend); 2648 if (lockend <= lockstart) 2649 lockend = lockstart + root->sectorsize; 2650 2651 lockend--; 2652 len = lockend - lockstart + 1; 2653 2654 len = max_t(u64, len, root->sectorsize); 2655 if (inode->i_size == 0) 2656 return -ENXIO; 2657 2658 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0, 2659 &cached_state); 2660 2661 while (start < inode->i_size) { 2662 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0); 2663 if (IS_ERR(em)) { 2664 ret = PTR_ERR(em); 2665 em = NULL; 2666 break; 2667 } 2668 2669 if (whence == SEEK_HOLE && 2670 (em->block_start == EXTENT_MAP_HOLE || 2671 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2672 break; 2673 else if (whence == SEEK_DATA && 2674 (em->block_start != EXTENT_MAP_HOLE && 2675 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2676 break; 2677 2678 start = em->start + em->len; 2679 free_extent_map(em); 2680 em = NULL; 2681 cond_resched(); 2682 } 2683 free_extent_map(em); 2684 if (!ret) { 2685 if (whence == SEEK_DATA && start >= inode->i_size) 2686 ret = -ENXIO; 2687 else 2688 *offset = min_t(loff_t, start, inode->i_size); 2689 } 2690 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2691 &cached_state, GFP_NOFS); 2692 return ret; 2693 } 2694 2695 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 2696 { 2697 struct inode *inode = file->f_mapping->host; 2698 int ret; 2699 2700 mutex_lock(&inode->i_mutex); 2701 switch (whence) { 2702 case SEEK_END: 2703 case SEEK_CUR: 2704 offset = generic_file_llseek(file, offset, whence); 2705 goto out; 2706 case SEEK_DATA: 2707 case SEEK_HOLE: 2708 if (offset >= i_size_read(inode)) { 2709 mutex_unlock(&inode->i_mutex); 2710 return -ENXIO; 2711 } 2712 2713 ret = find_desired_extent(inode, &offset, whence); 2714 if (ret) { 2715 mutex_unlock(&inode->i_mutex); 2716 return ret; 2717 } 2718 } 2719 2720 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2721 out: 2722 mutex_unlock(&inode->i_mutex); 2723 return offset; 2724 } 2725 2726 const struct file_operations btrfs_file_operations = { 2727 .llseek = btrfs_file_llseek, 2728 .read = new_sync_read, 2729 .write = new_sync_write, 2730 .read_iter = generic_file_read_iter, 2731 .splice_read = generic_file_splice_read, 2732 .write_iter = btrfs_file_write_iter, 2733 .mmap = btrfs_file_mmap, 2734 .open = generic_file_open, 2735 .release = btrfs_release_file, 2736 .fsync = btrfs_sync_file, 2737 .fallocate = btrfs_fallocate, 2738 .unlocked_ioctl = btrfs_ioctl, 2739 #ifdef CONFIG_COMPAT 2740 .compat_ioctl = btrfs_ioctl, 2741 #endif 2742 }; 2743 2744 void btrfs_auto_defrag_exit(void) 2745 { 2746 if (btrfs_inode_defrag_cachep) 2747 kmem_cache_destroy(btrfs_inode_defrag_cachep); 2748 } 2749 2750 int btrfs_auto_defrag_init(void) 2751 { 2752 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 2753 sizeof(struct inode_defrag), 0, 2754 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 2755 NULL); 2756 if (!btrfs_inode_defrag_cachep) 2757 return -ENOMEM; 2758 2759 return 0; 2760 } 2761