xref: /openbmc/linux/fs/btrfs/file.c (revision a4767912)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31 
32 static struct kmem_cache *btrfs_inode_defrag_cachep;
33 /*
34  * when auto defrag is enabled we
35  * queue up these defrag structs to remember which
36  * inodes need defragging passes
37  */
38 struct inode_defrag {
39 	struct rb_node rb_node;
40 	/* objectid */
41 	u64 ino;
42 	/*
43 	 * transid where the defrag was added, we search for
44 	 * extents newer than this
45 	 */
46 	u64 transid;
47 
48 	/* root objectid */
49 	u64 root;
50 
51 	/* last offset we were able to defrag */
52 	u64 last_offset;
53 
54 	/* if we've wrapped around back to zero once already */
55 	int cycled;
56 };
57 
58 static int __compare_inode_defrag(struct inode_defrag *defrag1,
59 				  struct inode_defrag *defrag2)
60 {
61 	if (defrag1->root > defrag2->root)
62 		return 1;
63 	else if (defrag1->root < defrag2->root)
64 		return -1;
65 	else if (defrag1->ino > defrag2->ino)
66 		return 1;
67 	else if (defrag1->ino < defrag2->ino)
68 		return -1;
69 	else
70 		return 0;
71 }
72 
73 /* pop a record for an inode into the defrag tree.  The lock
74  * must be held already
75  *
76  * If you're inserting a record for an older transid than an
77  * existing record, the transid already in the tree is lowered
78  *
79  * If an existing record is found the defrag item you
80  * pass in is freed
81  */
82 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
83 				    struct inode_defrag *defrag)
84 {
85 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
86 	struct inode_defrag *entry;
87 	struct rb_node **p;
88 	struct rb_node *parent = NULL;
89 	int ret;
90 
91 	p = &fs_info->defrag_inodes.rb_node;
92 	while (*p) {
93 		parent = *p;
94 		entry = rb_entry(parent, struct inode_defrag, rb_node);
95 
96 		ret = __compare_inode_defrag(defrag, entry);
97 		if (ret < 0)
98 			p = &parent->rb_left;
99 		else if (ret > 0)
100 			p = &parent->rb_right;
101 		else {
102 			/* if we're reinserting an entry for
103 			 * an old defrag run, make sure to
104 			 * lower the transid of our existing record
105 			 */
106 			if (defrag->transid < entry->transid)
107 				entry->transid = defrag->transid;
108 			if (defrag->last_offset > entry->last_offset)
109 				entry->last_offset = defrag->last_offset;
110 			return -EEXIST;
111 		}
112 	}
113 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
114 	rb_link_node(&defrag->rb_node, parent, p);
115 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
116 	return 0;
117 }
118 
119 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
120 {
121 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
122 		return 0;
123 
124 	if (btrfs_fs_closing(fs_info))
125 		return 0;
126 
127 	return 1;
128 }
129 
130 /*
131  * insert a defrag record for this inode if auto defrag is
132  * enabled
133  */
134 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
135 			   struct btrfs_inode *inode)
136 {
137 	struct btrfs_root *root = inode->root;
138 	struct btrfs_fs_info *fs_info = root->fs_info;
139 	struct inode_defrag *defrag;
140 	u64 transid;
141 	int ret;
142 
143 	if (!__need_auto_defrag(fs_info))
144 		return 0;
145 
146 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
147 		return 0;
148 
149 	if (trans)
150 		transid = trans->transid;
151 	else
152 		transid = inode->root->last_trans;
153 
154 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
155 	if (!defrag)
156 		return -ENOMEM;
157 
158 	defrag->ino = btrfs_ino(inode);
159 	defrag->transid = transid;
160 	defrag->root = root->root_key.objectid;
161 
162 	spin_lock(&fs_info->defrag_inodes_lock);
163 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
164 		/*
165 		 * If we set IN_DEFRAG flag and evict the inode from memory,
166 		 * and then re-read this inode, this new inode doesn't have
167 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
168 		 */
169 		ret = __btrfs_add_inode_defrag(inode, defrag);
170 		if (ret)
171 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
172 	} else {
173 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174 	}
175 	spin_unlock(&fs_info->defrag_inodes_lock);
176 	return 0;
177 }
178 
179 /*
180  * Requeue the defrag object. If there is a defrag object that points to
181  * the same inode in the tree, we will merge them together (by
182  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
183  */
184 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
185 				       struct inode_defrag *defrag)
186 {
187 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
188 	int ret;
189 
190 	if (!__need_auto_defrag(fs_info))
191 		goto out;
192 
193 	/*
194 	 * Here we don't check the IN_DEFRAG flag, because we need merge
195 	 * them together.
196 	 */
197 	spin_lock(&fs_info->defrag_inodes_lock);
198 	ret = __btrfs_add_inode_defrag(inode, defrag);
199 	spin_unlock(&fs_info->defrag_inodes_lock);
200 	if (ret)
201 		goto out;
202 	return;
203 out:
204 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
205 }
206 
207 /*
208  * pick the defragable inode that we want, if it doesn't exist, we will get
209  * the next one.
210  */
211 static struct inode_defrag *
212 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
213 {
214 	struct inode_defrag *entry = NULL;
215 	struct inode_defrag tmp;
216 	struct rb_node *p;
217 	struct rb_node *parent = NULL;
218 	int ret;
219 
220 	tmp.ino = ino;
221 	tmp.root = root;
222 
223 	spin_lock(&fs_info->defrag_inodes_lock);
224 	p = fs_info->defrag_inodes.rb_node;
225 	while (p) {
226 		parent = p;
227 		entry = rb_entry(parent, struct inode_defrag, rb_node);
228 
229 		ret = __compare_inode_defrag(&tmp, entry);
230 		if (ret < 0)
231 			p = parent->rb_left;
232 		else if (ret > 0)
233 			p = parent->rb_right;
234 		else
235 			goto out;
236 	}
237 
238 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
239 		parent = rb_next(parent);
240 		if (parent)
241 			entry = rb_entry(parent, struct inode_defrag, rb_node);
242 		else
243 			entry = NULL;
244 	}
245 out:
246 	if (entry)
247 		rb_erase(parent, &fs_info->defrag_inodes);
248 	spin_unlock(&fs_info->defrag_inodes_lock);
249 	return entry;
250 }
251 
252 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
253 {
254 	struct inode_defrag *defrag;
255 	struct rb_node *node;
256 
257 	spin_lock(&fs_info->defrag_inodes_lock);
258 	node = rb_first(&fs_info->defrag_inodes);
259 	while (node) {
260 		rb_erase(node, &fs_info->defrag_inodes);
261 		defrag = rb_entry(node, struct inode_defrag, rb_node);
262 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
263 
264 		cond_resched_lock(&fs_info->defrag_inodes_lock);
265 
266 		node = rb_first(&fs_info->defrag_inodes);
267 	}
268 	spin_unlock(&fs_info->defrag_inodes_lock);
269 }
270 
271 #define BTRFS_DEFRAG_BATCH	1024
272 
273 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
274 				    struct inode_defrag *defrag)
275 {
276 	struct btrfs_root *inode_root;
277 	struct inode *inode;
278 	struct btrfs_ioctl_defrag_range_args range;
279 	int num_defrag;
280 	int ret;
281 
282 	/* get the inode */
283 	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
284 	if (IS_ERR(inode_root)) {
285 		ret = PTR_ERR(inode_root);
286 		goto cleanup;
287 	}
288 
289 	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
290 	btrfs_put_root(inode_root);
291 	if (IS_ERR(inode)) {
292 		ret = PTR_ERR(inode);
293 		goto cleanup;
294 	}
295 
296 	/* do a chunk of defrag */
297 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
298 	memset(&range, 0, sizeof(range));
299 	range.len = (u64)-1;
300 	range.start = defrag->last_offset;
301 
302 	sb_start_write(fs_info->sb);
303 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
304 				       BTRFS_DEFRAG_BATCH);
305 	sb_end_write(fs_info->sb);
306 	/*
307 	 * if we filled the whole defrag batch, there
308 	 * must be more work to do.  Queue this defrag
309 	 * again
310 	 */
311 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
312 		defrag->last_offset = range.start;
313 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
314 	} else if (defrag->last_offset && !defrag->cycled) {
315 		/*
316 		 * we didn't fill our defrag batch, but
317 		 * we didn't start at zero.  Make sure we loop
318 		 * around to the start of the file.
319 		 */
320 		defrag->last_offset = 0;
321 		defrag->cycled = 1;
322 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
323 	} else {
324 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
325 	}
326 
327 	iput(inode);
328 	return 0;
329 cleanup:
330 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
331 	return ret;
332 }
333 
334 /*
335  * run through the list of inodes in the FS that need
336  * defragging
337  */
338 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
339 {
340 	struct inode_defrag *defrag;
341 	u64 first_ino = 0;
342 	u64 root_objectid = 0;
343 
344 	atomic_inc(&fs_info->defrag_running);
345 	while (1) {
346 		/* Pause the auto defragger. */
347 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
348 			     &fs_info->fs_state))
349 			break;
350 
351 		if (!__need_auto_defrag(fs_info))
352 			break;
353 
354 		/* find an inode to defrag */
355 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
356 						 first_ino);
357 		if (!defrag) {
358 			if (root_objectid || first_ino) {
359 				root_objectid = 0;
360 				first_ino = 0;
361 				continue;
362 			} else {
363 				break;
364 			}
365 		}
366 
367 		first_ino = defrag->ino + 1;
368 		root_objectid = defrag->root;
369 
370 		__btrfs_run_defrag_inode(fs_info, defrag);
371 	}
372 	atomic_dec(&fs_info->defrag_running);
373 
374 	/*
375 	 * during unmount, we use the transaction_wait queue to
376 	 * wait for the defragger to stop
377 	 */
378 	wake_up(&fs_info->transaction_wait);
379 	return 0;
380 }
381 
382 /* simple helper to fault in pages and copy.  This should go away
383  * and be replaced with calls into generic code.
384  */
385 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
386 					 struct page **prepared_pages,
387 					 struct iov_iter *i)
388 {
389 	size_t copied = 0;
390 	size_t total_copied = 0;
391 	int pg = 0;
392 	int offset = offset_in_page(pos);
393 
394 	while (write_bytes > 0) {
395 		size_t count = min_t(size_t,
396 				     PAGE_SIZE - offset, write_bytes);
397 		struct page *page = prepared_pages[pg];
398 		/*
399 		 * Copy data from userspace to the current page
400 		 */
401 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
402 
403 		/* Flush processor's dcache for this page */
404 		flush_dcache_page(page);
405 
406 		/*
407 		 * if we get a partial write, we can end up with
408 		 * partially up to date pages.  These add
409 		 * a lot of complexity, so make sure they don't
410 		 * happen by forcing this copy to be retried.
411 		 *
412 		 * The rest of the btrfs_file_write code will fall
413 		 * back to page at a time copies after we return 0.
414 		 */
415 		if (!PageUptodate(page) && copied < count)
416 			copied = 0;
417 
418 		iov_iter_advance(i, copied);
419 		write_bytes -= copied;
420 		total_copied += copied;
421 
422 		/* Return to btrfs_file_write_iter to fault page */
423 		if (unlikely(copied == 0))
424 			break;
425 
426 		if (copied < PAGE_SIZE - offset) {
427 			offset += copied;
428 		} else {
429 			pg++;
430 			offset = 0;
431 		}
432 	}
433 	return total_copied;
434 }
435 
436 /*
437  * unlocks pages after btrfs_file_write is done with them
438  */
439 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
440 {
441 	size_t i;
442 	for (i = 0; i < num_pages; i++) {
443 		/* page checked is some magic around finding pages that
444 		 * have been modified without going through btrfs_set_page_dirty
445 		 * clear it here. There should be no need to mark the pages
446 		 * accessed as prepare_pages should have marked them accessed
447 		 * in prepare_pages via find_or_create_page()
448 		 */
449 		ClearPageChecked(pages[i]);
450 		unlock_page(pages[i]);
451 		put_page(pages[i]);
452 	}
453 }
454 
455 /*
456  * after copy_from_user, pages need to be dirtied and we need to make
457  * sure holes are created between the current EOF and the start of
458  * any next extents (if required).
459  *
460  * this also makes the decision about creating an inline extent vs
461  * doing real data extents, marking pages dirty and delalloc as required.
462  */
463 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
464 		      size_t num_pages, loff_t pos, size_t write_bytes,
465 		      struct extent_state **cached)
466 {
467 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
468 	int err = 0;
469 	int i;
470 	u64 num_bytes;
471 	u64 start_pos;
472 	u64 end_of_last_block;
473 	u64 end_pos = pos + write_bytes;
474 	loff_t isize = i_size_read(&inode->vfs_inode);
475 	unsigned int extra_bits = 0;
476 
477 	start_pos = pos & ~((u64) fs_info->sectorsize - 1);
478 	num_bytes = round_up(write_bytes + pos - start_pos,
479 			     fs_info->sectorsize);
480 
481 	end_of_last_block = start_pos + num_bytes - 1;
482 
483 	/*
484 	 * The pages may have already been dirty, clear out old accounting so
485 	 * we can set things up properly
486 	 */
487 	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
488 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
489 			 0, 0, cached);
490 
491 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
492 					extra_bits, cached);
493 	if (err)
494 		return err;
495 
496 	for (i = 0; i < num_pages; i++) {
497 		struct page *p = pages[i];
498 		SetPageUptodate(p);
499 		ClearPageChecked(p);
500 		set_page_dirty(p);
501 	}
502 
503 	/*
504 	 * we've only changed i_size in ram, and we haven't updated
505 	 * the disk i_size.  There is no need to log the inode
506 	 * at this time.
507 	 */
508 	if (end_pos > isize)
509 		i_size_write(&inode->vfs_inode, end_pos);
510 	return 0;
511 }
512 
513 /*
514  * this drops all the extents in the cache that intersect the range
515  * [start, end].  Existing extents are split as required.
516  */
517 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
518 			     int skip_pinned)
519 {
520 	struct extent_map *em;
521 	struct extent_map *split = NULL;
522 	struct extent_map *split2 = NULL;
523 	struct extent_map_tree *em_tree = &inode->extent_tree;
524 	u64 len = end - start + 1;
525 	u64 gen;
526 	int ret;
527 	int testend = 1;
528 	unsigned long flags;
529 	int compressed = 0;
530 	bool modified;
531 
532 	WARN_ON(end < start);
533 	if (end == (u64)-1) {
534 		len = (u64)-1;
535 		testend = 0;
536 	}
537 	while (1) {
538 		int no_splits = 0;
539 
540 		modified = false;
541 		if (!split)
542 			split = alloc_extent_map();
543 		if (!split2)
544 			split2 = alloc_extent_map();
545 		if (!split || !split2)
546 			no_splits = 1;
547 
548 		write_lock(&em_tree->lock);
549 		em = lookup_extent_mapping(em_tree, start, len);
550 		if (!em) {
551 			write_unlock(&em_tree->lock);
552 			break;
553 		}
554 		flags = em->flags;
555 		gen = em->generation;
556 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
557 			if (testend && em->start + em->len >= start + len) {
558 				free_extent_map(em);
559 				write_unlock(&em_tree->lock);
560 				break;
561 			}
562 			start = em->start + em->len;
563 			if (testend)
564 				len = start + len - (em->start + em->len);
565 			free_extent_map(em);
566 			write_unlock(&em_tree->lock);
567 			continue;
568 		}
569 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
570 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
571 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
572 		modified = !list_empty(&em->list);
573 		if (no_splits)
574 			goto next;
575 
576 		if (em->start < start) {
577 			split->start = em->start;
578 			split->len = start - em->start;
579 
580 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
581 				split->orig_start = em->orig_start;
582 				split->block_start = em->block_start;
583 
584 				if (compressed)
585 					split->block_len = em->block_len;
586 				else
587 					split->block_len = split->len;
588 				split->orig_block_len = max(split->block_len,
589 						em->orig_block_len);
590 				split->ram_bytes = em->ram_bytes;
591 			} else {
592 				split->orig_start = split->start;
593 				split->block_len = 0;
594 				split->block_start = em->block_start;
595 				split->orig_block_len = 0;
596 				split->ram_bytes = split->len;
597 			}
598 
599 			split->generation = gen;
600 			split->flags = flags;
601 			split->compress_type = em->compress_type;
602 			replace_extent_mapping(em_tree, em, split, modified);
603 			free_extent_map(split);
604 			split = split2;
605 			split2 = NULL;
606 		}
607 		if (testend && em->start + em->len > start + len) {
608 			u64 diff = start + len - em->start;
609 
610 			split->start = start + len;
611 			split->len = em->start + em->len - (start + len);
612 			split->flags = flags;
613 			split->compress_type = em->compress_type;
614 			split->generation = gen;
615 
616 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
617 				split->orig_block_len = max(em->block_len,
618 						    em->orig_block_len);
619 
620 				split->ram_bytes = em->ram_bytes;
621 				if (compressed) {
622 					split->block_len = em->block_len;
623 					split->block_start = em->block_start;
624 					split->orig_start = em->orig_start;
625 				} else {
626 					split->block_len = split->len;
627 					split->block_start = em->block_start
628 						+ diff;
629 					split->orig_start = em->orig_start;
630 				}
631 			} else {
632 				split->ram_bytes = split->len;
633 				split->orig_start = split->start;
634 				split->block_len = 0;
635 				split->block_start = em->block_start;
636 				split->orig_block_len = 0;
637 			}
638 
639 			if (extent_map_in_tree(em)) {
640 				replace_extent_mapping(em_tree, em, split,
641 						       modified);
642 			} else {
643 				ret = add_extent_mapping(em_tree, split,
644 							 modified);
645 				ASSERT(ret == 0); /* Logic error */
646 			}
647 			free_extent_map(split);
648 			split = NULL;
649 		}
650 next:
651 		if (extent_map_in_tree(em))
652 			remove_extent_mapping(em_tree, em);
653 		write_unlock(&em_tree->lock);
654 
655 		/* once for us */
656 		free_extent_map(em);
657 		/* once for the tree*/
658 		free_extent_map(em);
659 	}
660 	if (split)
661 		free_extent_map(split);
662 	if (split2)
663 		free_extent_map(split2);
664 }
665 
666 /*
667  * this is very complex, but the basic idea is to drop all extents
668  * in the range start - end.  hint_block is filled in with a block number
669  * that would be a good hint to the block allocator for this file.
670  *
671  * If an extent intersects the range but is not entirely inside the range
672  * it is either truncated or split.  Anything entirely inside the range
673  * is deleted from the tree.
674  */
675 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
676 			 struct btrfs_root *root, struct btrfs_inode *inode,
677 			 struct btrfs_path *path, u64 start, u64 end,
678 			 u64 *drop_end, int drop_cache,
679 			 int replace_extent,
680 			 u32 extent_item_size,
681 			 int *key_inserted)
682 {
683 	struct btrfs_fs_info *fs_info = root->fs_info;
684 	struct extent_buffer *leaf;
685 	struct btrfs_file_extent_item *fi;
686 	struct btrfs_ref ref = { 0 };
687 	struct btrfs_key key;
688 	struct btrfs_key new_key;
689 	struct inode *vfs_inode = &inode->vfs_inode;
690 	u64 ino = btrfs_ino(inode);
691 	u64 search_start = start;
692 	u64 disk_bytenr = 0;
693 	u64 num_bytes = 0;
694 	u64 extent_offset = 0;
695 	u64 extent_end = 0;
696 	u64 last_end = start;
697 	int del_nr = 0;
698 	int del_slot = 0;
699 	int extent_type;
700 	int recow;
701 	int ret;
702 	int modify_tree = -1;
703 	int update_refs;
704 	int found = 0;
705 	int leafs_visited = 0;
706 
707 	if (drop_cache)
708 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
709 
710 	if (start >= inode->disk_i_size && !replace_extent)
711 		modify_tree = 0;
712 
713 	update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
714 		       root == fs_info->tree_root);
715 	while (1) {
716 		recow = 0;
717 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
718 					       search_start, modify_tree);
719 		if (ret < 0)
720 			break;
721 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
722 			leaf = path->nodes[0];
723 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
724 			if (key.objectid == ino &&
725 			    key.type == BTRFS_EXTENT_DATA_KEY)
726 				path->slots[0]--;
727 		}
728 		ret = 0;
729 		leafs_visited++;
730 next_slot:
731 		leaf = path->nodes[0];
732 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
733 			BUG_ON(del_nr > 0);
734 			ret = btrfs_next_leaf(root, path);
735 			if (ret < 0)
736 				break;
737 			if (ret > 0) {
738 				ret = 0;
739 				break;
740 			}
741 			leafs_visited++;
742 			leaf = path->nodes[0];
743 			recow = 1;
744 		}
745 
746 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
747 
748 		if (key.objectid > ino)
749 			break;
750 		if (WARN_ON_ONCE(key.objectid < ino) ||
751 		    key.type < BTRFS_EXTENT_DATA_KEY) {
752 			ASSERT(del_nr == 0);
753 			path->slots[0]++;
754 			goto next_slot;
755 		}
756 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
757 			break;
758 
759 		fi = btrfs_item_ptr(leaf, path->slots[0],
760 				    struct btrfs_file_extent_item);
761 		extent_type = btrfs_file_extent_type(leaf, fi);
762 
763 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
764 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
765 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
766 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
767 			extent_offset = btrfs_file_extent_offset(leaf, fi);
768 			extent_end = key.offset +
769 				btrfs_file_extent_num_bytes(leaf, fi);
770 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
771 			extent_end = key.offset +
772 				btrfs_file_extent_ram_bytes(leaf, fi);
773 		} else {
774 			/* can't happen */
775 			BUG();
776 		}
777 
778 		/*
779 		 * Don't skip extent items representing 0 byte lengths. They
780 		 * used to be created (bug) if while punching holes we hit
781 		 * -ENOSPC condition. So if we find one here, just ensure we
782 		 * delete it, otherwise we would insert a new file extent item
783 		 * with the same key (offset) as that 0 bytes length file
784 		 * extent item in the call to setup_items_for_insert() later
785 		 * in this function.
786 		 */
787 		if (extent_end == key.offset && extent_end >= search_start) {
788 			last_end = extent_end;
789 			goto delete_extent_item;
790 		}
791 
792 		if (extent_end <= search_start) {
793 			path->slots[0]++;
794 			goto next_slot;
795 		}
796 
797 		found = 1;
798 		search_start = max(key.offset, start);
799 		if (recow || !modify_tree) {
800 			modify_tree = -1;
801 			btrfs_release_path(path);
802 			continue;
803 		}
804 
805 		/*
806 		 *     | - range to drop - |
807 		 *  | -------- extent -------- |
808 		 */
809 		if (start > key.offset && end < extent_end) {
810 			BUG_ON(del_nr > 0);
811 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
812 				ret = -EOPNOTSUPP;
813 				break;
814 			}
815 
816 			memcpy(&new_key, &key, sizeof(new_key));
817 			new_key.offset = start;
818 			ret = btrfs_duplicate_item(trans, root, path,
819 						   &new_key);
820 			if (ret == -EAGAIN) {
821 				btrfs_release_path(path);
822 				continue;
823 			}
824 			if (ret < 0)
825 				break;
826 
827 			leaf = path->nodes[0];
828 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
829 					    struct btrfs_file_extent_item);
830 			btrfs_set_file_extent_num_bytes(leaf, fi,
831 							start - key.offset);
832 
833 			fi = btrfs_item_ptr(leaf, path->slots[0],
834 					    struct btrfs_file_extent_item);
835 
836 			extent_offset += start - key.offset;
837 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
838 			btrfs_set_file_extent_num_bytes(leaf, fi,
839 							extent_end - start);
840 			btrfs_mark_buffer_dirty(leaf);
841 
842 			if (update_refs && disk_bytenr > 0) {
843 				btrfs_init_generic_ref(&ref,
844 						BTRFS_ADD_DELAYED_REF,
845 						disk_bytenr, num_bytes, 0);
846 				btrfs_init_data_ref(&ref,
847 						root->root_key.objectid,
848 						new_key.objectid,
849 						start - extent_offset);
850 				ret = btrfs_inc_extent_ref(trans, &ref);
851 				BUG_ON(ret); /* -ENOMEM */
852 			}
853 			key.offset = start;
854 		}
855 		/*
856 		 * From here on out we will have actually dropped something, so
857 		 * last_end can be updated.
858 		 */
859 		last_end = extent_end;
860 
861 		/*
862 		 *  | ---- range to drop ----- |
863 		 *      | -------- extent -------- |
864 		 */
865 		if (start <= key.offset && end < extent_end) {
866 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
867 				ret = -EOPNOTSUPP;
868 				break;
869 			}
870 
871 			memcpy(&new_key, &key, sizeof(new_key));
872 			new_key.offset = end;
873 			btrfs_set_item_key_safe(fs_info, path, &new_key);
874 
875 			extent_offset += end - key.offset;
876 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
877 			btrfs_set_file_extent_num_bytes(leaf, fi,
878 							extent_end - end);
879 			btrfs_mark_buffer_dirty(leaf);
880 			if (update_refs && disk_bytenr > 0)
881 				inode_sub_bytes(vfs_inode, end - key.offset);
882 			break;
883 		}
884 
885 		search_start = extent_end;
886 		/*
887 		 *       | ---- range to drop ----- |
888 		 *  | -------- extent -------- |
889 		 */
890 		if (start > key.offset && end >= extent_end) {
891 			BUG_ON(del_nr > 0);
892 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
893 				ret = -EOPNOTSUPP;
894 				break;
895 			}
896 
897 			btrfs_set_file_extent_num_bytes(leaf, fi,
898 							start - key.offset);
899 			btrfs_mark_buffer_dirty(leaf);
900 			if (update_refs && disk_bytenr > 0)
901 				inode_sub_bytes(vfs_inode, extent_end - start);
902 			if (end == extent_end)
903 				break;
904 
905 			path->slots[0]++;
906 			goto next_slot;
907 		}
908 
909 		/*
910 		 *  | ---- range to drop ----- |
911 		 *    | ------ extent ------ |
912 		 */
913 		if (start <= key.offset && end >= extent_end) {
914 delete_extent_item:
915 			if (del_nr == 0) {
916 				del_slot = path->slots[0];
917 				del_nr = 1;
918 			} else {
919 				BUG_ON(del_slot + del_nr != path->slots[0]);
920 				del_nr++;
921 			}
922 
923 			if (update_refs &&
924 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
925 				inode_sub_bytes(vfs_inode,
926 						extent_end - key.offset);
927 				extent_end = ALIGN(extent_end,
928 						   fs_info->sectorsize);
929 			} else if (update_refs && disk_bytenr > 0) {
930 				btrfs_init_generic_ref(&ref,
931 						BTRFS_DROP_DELAYED_REF,
932 						disk_bytenr, num_bytes, 0);
933 				btrfs_init_data_ref(&ref,
934 						root->root_key.objectid,
935 						key.objectid,
936 						key.offset - extent_offset);
937 				ret = btrfs_free_extent(trans, &ref);
938 				BUG_ON(ret); /* -ENOMEM */
939 				inode_sub_bytes(vfs_inode,
940 						extent_end - key.offset);
941 			}
942 
943 			if (end == extent_end)
944 				break;
945 
946 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
947 				path->slots[0]++;
948 				goto next_slot;
949 			}
950 
951 			ret = btrfs_del_items(trans, root, path, del_slot,
952 					      del_nr);
953 			if (ret) {
954 				btrfs_abort_transaction(trans, ret);
955 				break;
956 			}
957 
958 			del_nr = 0;
959 			del_slot = 0;
960 
961 			btrfs_release_path(path);
962 			continue;
963 		}
964 
965 		BUG();
966 	}
967 
968 	if (!ret && del_nr > 0) {
969 		/*
970 		 * Set path->slots[0] to first slot, so that after the delete
971 		 * if items are move off from our leaf to its immediate left or
972 		 * right neighbor leafs, we end up with a correct and adjusted
973 		 * path->slots[0] for our insertion (if replace_extent != 0).
974 		 */
975 		path->slots[0] = del_slot;
976 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
977 		if (ret)
978 			btrfs_abort_transaction(trans, ret);
979 	}
980 
981 	leaf = path->nodes[0];
982 	/*
983 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
984 	 * which case it unlocked our path, so check path->locks[0] matches a
985 	 * write lock.
986 	 */
987 	if (!ret && replace_extent && leafs_visited == 1 &&
988 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
989 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
990 	    btrfs_leaf_free_space(leaf) >=
991 	    sizeof(struct btrfs_item) + extent_item_size) {
992 
993 		key.objectid = ino;
994 		key.type = BTRFS_EXTENT_DATA_KEY;
995 		key.offset = start;
996 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
997 			struct btrfs_key slot_key;
998 
999 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1000 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1001 				path->slots[0]++;
1002 		}
1003 		setup_items_for_insert(root, path, &key, &extent_item_size, 1);
1004 		*key_inserted = 1;
1005 	}
1006 
1007 	if (!replace_extent || !(*key_inserted))
1008 		btrfs_release_path(path);
1009 	if (drop_end)
1010 		*drop_end = found ? min(end, last_end) : end;
1011 	return ret;
1012 }
1013 
1014 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1015 		       struct btrfs_root *root, struct inode *inode, u64 start,
1016 		       u64 end, int drop_cache)
1017 {
1018 	struct btrfs_path *path;
1019 	int ret;
1020 
1021 	path = btrfs_alloc_path();
1022 	if (!path)
1023 		return -ENOMEM;
1024 	ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path, start,
1025 				   end, NULL, drop_cache, 0, 0, NULL);
1026 	btrfs_free_path(path);
1027 	return ret;
1028 }
1029 
1030 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1031 			    u64 objectid, u64 bytenr, u64 orig_offset,
1032 			    u64 *start, u64 *end)
1033 {
1034 	struct btrfs_file_extent_item *fi;
1035 	struct btrfs_key key;
1036 	u64 extent_end;
1037 
1038 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1039 		return 0;
1040 
1041 	btrfs_item_key_to_cpu(leaf, &key, slot);
1042 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1043 		return 0;
1044 
1045 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1046 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1047 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1048 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1049 	    btrfs_file_extent_compression(leaf, fi) ||
1050 	    btrfs_file_extent_encryption(leaf, fi) ||
1051 	    btrfs_file_extent_other_encoding(leaf, fi))
1052 		return 0;
1053 
1054 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1055 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1056 		return 0;
1057 
1058 	*start = key.offset;
1059 	*end = extent_end;
1060 	return 1;
1061 }
1062 
1063 /*
1064  * Mark extent in the range start - end as written.
1065  *
1066  * This changes extent type from 'pre-allocated' to 'regular'. If only
1067  * part of extent is marked as written, the extent will be split into
1068  * two or three.
1069  */
1070 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1071 			      struct btrfs_inode *inode, u64 start, u64 end)
1072 {
1073 	struct btrfs_fs_info *fs_info = trans->fs_info;
1074 	struct btrfs_root *root = inode->root;
1075 	struct extent_buffer *leaf;
1076 	struct btrfs_path *path;
1077 	struct btrfs_file_extent_item *fi;
1078 	struct btrfs_ref ref = { 0 };
1079 	struct btrfs_key key;
1080 	struct btrfs_key new_key;
1081 	u64 bytenr;
1082 	u64 num_bytes;
1083 	u64 extent_end;
1084 	u64 orig_offset;
1085 	u64 other_start;
1086 	u64 other_end;
1087 	u64 split;
1088 	int del_nr = 0;
1089 	int del_slot = 0;
1090 	int recow;
1091 	int ret;
1092 	u64 ino = btrfs_ino(inode);
1093 
1094 	path = btrfs_alloc_path();
1095 	if (!path)
1096 		return -ENOMEM;
1097 again:
1098 	recow = 0;
1099 	split = start;
1100 	key.objectid = ino;
1101 	key.type = BTRFS_EXTENT_DATA_KEY;
1102 	key.offset = split;
1103 
1104 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1105 	if (ret < 0)
1106 		goto out;
1107 	if (ret > 0 && path->slots[0] > 0)
1108 		path->slots[0]--;
1109 
1110 	leaf = path->nodes[0];
1111 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1112 	if (key.objectid != ino ||
1113 	    key.type != BTRFS_EXTENT_DATA_KEY) {
1114 		ret = -EINVAL;
1115 		btrfs_abort_transaction(trans, ret);
1116 		goto out;
1117 	}
1118 	fi = btrfs_item_ptr(leaf, path->slots[0],
1119 			    struct btrfs_file_extent_item);
1120 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1121 		ret = -EINVAL;
1122 		btrfs_abort_transaction(trans, ret);
1123 		goto out;
1124 	}
1125 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1126 	if (key.offset > start || extent_end < end) {
1127 		ret = -EINVAL;
1128 		btrfs_abort_transaction(trans, ret);
1129 		goto out;
1130 	}
1131 
1132 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1133 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1134 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1135 	memcpy(&new_key, &key, sizeof(new_key));
1136 
1137 	if (start == key.offset && end < extent_end) {
1138 		other_start = 0;
1139 		other_end = start;
1140 		if (extent_mergeable(leaf, path->slots[0] - 1,
1141 				     ino, bytenr, orig_offset,
1142 				     &other_start, &other_end)) {
1143 			new_key.offset = end;
1144 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1145 			fi = btrfs_item_ptr(leaf, path->slots[0],
1146 					    struct btrfs_file_extent_item);
1147 			btrfs_set_file_extent_generation(leaf, fi,
1148 							 trans->transid);
1149 			btrfs_set_file_extent_num_bytes(leaf, fi,
1150 							extent_end - end);
1151 			btrfs_set_file_extent_offset(leaf, fi,
1152 						     end - orig_offset);
1153 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1154 					    struct btrfs_file_extent_item);
1155 			btrfs_set_file_extent_generation(leaf, fi,
1156 							 trans->transid);
1157 			btrfs_set_file_extent_num_bytes(leaf, fi,
1158 							end - other_start);
1159 			btrfs_mark_buffer_dirty(leaf);
1160 			goto out;
1161 		}
1162 	}
1163 
1164 	if (start > key.offset && end == extent_end) {
1165 		other_start = end;
1166 		other_end = 0;
1167 		if (extent_mergeable(leaf, path->slots[0] + 1,
1168 				     ino, bytenr, orig_offset,
1169 				     &other_start, &other_end)) {
1170 			fi = btrfs_item_ptr(leaf, path->slots[0],
1171 					    struct btrfs_file_extent_item);
1172 			btrfs_set_file_extent_num_bytes(leaf, fi,
1173 							start - key.offset);
1174 			btrfs_set_file_extent_generation(leaf, fi,
1175 							 trans->transid);
1176 			path->slots[0]++;
1177 			new_key.offset = start;
1178 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1179 
1180 			fi = btrfs_item_ptr(leaf, path->slots[0],
1181 					    struct btrfs_file_extent_item);
1182 			btrfs_set_file_extent_generation(leaf, fi,
1183 							 trans->transid);
1184 			btrfs_set_file_extent_num_bytes(leaf, fi,
1185 							other_end - start);
1186 			btrfs_set_file_extent_offset(leaf, fi,
1187 						     start - orig_offset);
1188 			btrfs_mark_buffer_dirty(leaf);
1189 			goto out;
1190 		}
1191 	}
1192 
1193 	while (start > key.offset || end < extent_end) {
1194 		if (key.offset == start)
1195 			split = end;
1196 
1197 		new_key.offset = split;
1198 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1199 		if (ret == -EAGAIN) {
1200 			btrfs_release_path(path);
1201 			goto again;
1202 		}
1203 		if (ret < 0) {
1204 			btrfs_abort_transaction(trans, ret);
1205 			goto out;
1206 		}
1207 
1208 		leaf = path->nodes[0];
1209 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1210 				    struct btrfs_file_extent_item);
1211 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1212 		btrfs_set_file_extent_num_bytes(leaf, fi,
1213 						split - key.offset);
1214 
1215 		fi = btrfs_item_ptr(leaf, path->slots[0],
1216 				    struct btrfs_file_extent_item);
1217 
1218 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1219 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1220 		btrfs_set_file_extent_num_bytes(leaf, fi,
1221 						extent_end - split);
1222 		btrfs_mark_buffer_dirty(leaf);
1223 
1224 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1225 				       num_bytes, 0);
1226 		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1227 				    orig_offset);
1228 		ret = btrfs_inc_extent_ref(trans, &ref);
1229 		if (ret) {
1230 			btrfs_abort_transaction(trans, ret);
1231 			goto out;
1232 		}
1233 
1234 		if (split == start) {
1235 			key.offset = start;
1236 		} else {
1237 			if (start != key.offset) {
1238 				ret = -EINVAL;
1239 				btrfs_abort_transaction(trans, ret);
1240 				goto out;
1241 			}
1242 			path->slots[0]--;
1243 			extent_end = end;
1244 		}
1245 		recow = 1;
1246 	}
1247 
1248 	other_start = end;
1249 	other_end = 0;
1250 	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1251 			       num_bytes, 0);
1252 	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1253 	if (extent_mergeable(leaf, path->slots[0] + 1,
1254 			     ino, bytenr, orig_offset,
1255 			     &other_start, &other_end)) {
1256 		if (recow) {
1257 			btrfs_release_path(path);
1258 			goto again;
1259 		}
1260 		extent_end = other_end;
1261 		del_slot = path->slots[0] + 1;
1262 		del_nr++;
1263 		ret = btrfs_free_extent(trans, &ref);
1264 		if (ret) {
1265 			btrfs_abort_transaction(trans, ret);
1266 			goto out;
1267 		}
1268 	}
1269 	other_start = 0;
1270 	other_end = start;
1271 	if (extent_mergeable(leaf, path->slots[0] - 1,
1272 			     ino, bytenr, orig_offset,
1273 			     &other_start, &other_end)) {
1274 		if (recow) {
1275 			btrfs_release_path(path);
1276 			goto again;
1277 		}
1278 		key.offset = other_start;
1279 		del_slot = path->slots[0];
1280 		del_nr++;
1281 		ret = btrfs_free_extent(trans, &ref);
1282 		if (ret) {
1283 			btrfs_abort_transaction(trans, ret);
1284 			goto out;
1285 		}
1286 	}
1287 	if (del_nr == 0) {
1288 		fi = btrfs_item_ptr(leaf, path->slots[0],
1289 			   struct btrfs_file_extent_item);
1290 		btrfs_set_file_extent_type(leaf, fi,
1291 					   BTRFS_FILE_EXTENT_REG);
1292 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1293 		btrfs_mark_buffer_dirty(leaf);
1294 	} else {
1295 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1296 			   struct btrfs_file_extent_item);
1297 		btrfs_set_file_extent_type(leaf, fi,
1298 					   BTRFS_FILE_EXTENT_REG);
1299 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1300 		btrfs_set_file_extent_num_bytes(leaf, fi,
1301 						extent_end - key.offset);
1302 		btrfs_mark_buffer_dirty(leaf);
1303 
1304 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1305 		if (ret < 0) {
1306 			btrfs_abort_transaction(trans, ret);
1307 			goto out;
1308 		}
1309 	}
1310 out:
1311 	btrfs_free_path(path);
1312 	return 0;
1313 }
1314 
1315 /*
1316  * on error we return an unlocked page and the error value
1317  * on success we return a locked page and 0
1318  */
1319 static int prepare_uptodate_page(struct inode *inode,
1320 				 struct page *page, u64 pos,
1321 				 bool force_uptodate)
1322 {
1323 	int ret = 0;
1324 
1325 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1326 	    !PageUptodate(page)) {
1327 		ret = btrfs_readpage(NULL, page);
1328 		if (ret)
1329 			return ret;
1330 		lock_page(page);
1331 		if (!PageUptodate(page)) {
1332 			unlock_page(page);
1333 			return -EIO;
1334 		}
1335 		if (page->mapping != inode->i_mapping) {
1336 			unlock_page(page);
1337 			return -EAGAIN;
1338 		}
1339 	}
1340 	return 0;
1341 }
1342 
1343 /*
1344  * this just gets pages into the page cache and locks them down.
1345  */
1346 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1347 				  size_t num_pages, loff_t pos,
1348 				  size_t write_bytes, bool force_uptodate)
1349 {
1350 	int i;
1351 	unsigned long index = pos >> PAGE_SHIFT;
1352 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1353 	int err = 0;
1354 	int faili;
1355 
1356 	for (i = 0; i < num_pages; i++) {
1357 again:
1358 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1359 					       mask | __GFP_WRITE);
1360 		if (!pages[i]) {
1361 			faili = i - 1;
1362 			err = -ENOMEM;
1363 			goto fail;
1364 		}
1365 
1366 		if (i == 0)
1367 			err = prepare_uptodate_page(inode, pages[i], pos,
1368 						    force_uptodate);
1369 		if (!err && i == num_pages - 1)
1370 			err = prepare_uptodate_page(inode, pages[i],
1371 						    pos + write_bytes, false);
1372 		if (err) {
1373 			put_page(pages[i]);
1374 			if (err == -EAGAIN) {
1375 				err = 0;
1376 				goto again;
1377 			}
1378 			faili = i - 1;
1379 			goto fail;
1380 		}
1381 		wait_on_page_writeback(pages[i]);
1382 	}
1383 
1384 	return 0;
1385 fail:
1386 	while (faili >= 0) {
1387 		unlock_page(pages[faili]);
1388 		put_page(pages[faili]);
1389 		faili--;
1390 	}
1391 	return err;
1392 
1393 }
1394 
1395 /*
1396  * This function locks the extent and properly waits for data=ordered extents
1397  * to finish before allowing the pages to be modified if need.
1398  *
1399  * The return value:
1400  * 1 - the extent is locked
1401  * 0 - the extent is not locked, and everything is OK
1402  * -EAGAIN - need re-prepare the pages
1403  * the other < 0 number - Something wrong happens
1404  */
1405 static noinline int
1406 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1407 				size_t num_pages, loff_t pos,
1408 				size_t write_bytes,
1409 				u64 *lockstart, u64 *lockend,
1410 				struct extent_state **cached_state)
1411 {
1412 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1413 	u64 start_pos;
1414 	u64 last_pos;
1415 	int i;
1416 	int ret = 0;
1417 
1418 	start_pos = round_down(pos, fs_info->sectorsize);
1419 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1420 
1421 	if (start_pos < inode->vfs_inode.i_size) {
1422 		struct btrfs_ordered_extent *ordered;
1423 
1424 		lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1425 				cached_state);
1426 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1427 						     last_pos - start_pos + 1);
1428 		if (ordered &&
1429 		    ordered->file_offset + ordered->num_bytes > start_pos &&
1430 		    ordered->file_offset <= last_pos) {
1431 			unlock_extent_cached(&inode->io_tree, start_pos,
1432 					last_pos, cached_state);
1433 			for (i = 0; i < num_pages; i++) {
1434 				unlock_page(pages[i]);
1435 				put_page(pages[i]);
1436 			}
1437 			btrfs_start_ordered_extent(ordered, 1);
1438 			btrfs_put_ordered_extent(ordered);
1439 			return -EAGAIN;
1440 		}
1441 		if (ordered)
1442 			btrfs_put_ordered_extent(ordered);
1443 
1444 		*lockstart = start_pos;
1445 		*lockend = last_pos;
1446 		ret = 1;
1447 	}
1448 
1449 	/*
1450 	 * It's possible the pages are dirty right now, but we don't want
1451 	 * to clean them yet because copy_from_user may catch a page fault
1452 	 * and we might have to fall back to one page at a time.  If that
1453 	 * happens, we'll unlock these pages and we'd have a window where
1454 	 * reclaim could sneak in and drop the once-dirty page on the floor
1455 	 * without writing it.
1456 	 *
1457 	 * We have the pages locked and the extent range locked, so there's
1458 	 * no way someone can start IO on any dirty pages in this range.
1459 	 *
1460 	 * We'll call btrfs_dirty_pages() later on, and that will flip around
1461 	 * delalloc bits and dirty the pages as required.
1462 	 */
1463 	for (i = 0; i < num_pages; i++) {
1464 		set_page_extent_mapped(pages[i]);
1465 		WARN_ON(!PageLocked(pages[i]));
1466 	}
1467 
1468 	return ret;
1469 }
1470 
1471 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1472 			   size_t *write_bytes, bool nowait)
1473 {
1474 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1475 	struct btrfs_root *root = inode->root;
1476 	u64 lockstart, lockend;
1477 	u64 num_bytes;
1478 	int ret;
1479 
1480 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1481 		return 0;
1482 
1483 	if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1484 		return -EAGAIN;
1485 
1486 	lockstart = round_down(pos, fs_info->sectorsize);
1487 	lockend = round_up(pos + *write_bytes,
1488 			   fs_info->sectorsize) - 1;
1489 	num_bytes = lockend - lockstart + 1;
1490 
1491 	if (nowait) {
1492 		struct btrfs_ordered_extent *ordered;
1493 
1494 		if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1495 			return -EAGAIN;
1496 
1497 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1498 						     num_bytes);
1499 		if (ordered) {
1500 			btrfs_put_ordered_extent(ordered);
1501 			ret = -EAGAIN;
1502 			goto out_unlock;
1503 		}
1504 	} else {
1505 		btrfs_lock_and_flush_ordered_range(inode, lockstart,
1506 						   lockend, NULL);
1507 	}
1508 
1509 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1510 			NULL, NULL, NULL, false);
1511 	if (ret <= 0) {
1512 		ret = 0;
1513 		if (!nowait)
1514 			btrfs_drew_write_unlock(&root->snapshot_lock);
1515 	} else {
1516 		*write_bytes = min_t(size_t, *write_bytes ,
1517 				     num_bytes - pos + lockstart);
1518 	}
1519 out_unlock:
1520 	unlock_extent(&inode->io_tree, lockstart, lockend);
1521 
1522 	return ret;
1523 }
1524 
1525 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1526 			      size_t *write_bytes)
1527 {
1528 	return check_can_nocow(inode, pos, write_bytes, true);
1529 }
1530 
1531 /*
1532  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1533  *
1534  * @pos:	 File offset
1535  * @write_bytes: The length to write, will be updated to the nocow writeable
1536  *		 range
1537  *
1538  * This function will flush ordered extents in the range to ensure proper
1539  * nocow checks.
1540  *
1541  * Return:
1542  * >0		and update @write_bytes if we can do nocow write
1543  *  0		if we can't do nocow write
1544  * -EAGAIN	if we can't get the needed lock or there are ordered extents
1545  * 		for * (nowait == true) case
1546  * <0		if other error happened
1547  *
1548  * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1549  */
1550 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1551 			   size_t *write_bytes)
1552 {
1553 	return check_can_nocow(inode, pos, write_bytes, false);
1554 }
1555 
1556 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1557 {
1558 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1559 }
1560 
1561 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1562 					       struct iov_iter *i)
1563 {
1564 	struct file *file = iocb->ki_filp;
1565 	loff_t pos = iocb->ki_pos;
1566 	struct inode *inode = file_inode(file);
1567 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1568 	struct page **pages = NULL;
1569 	struct extent_changeset *data_reserved = NULL;
1570 	u64 release_bytes = 0;
1571 	u64 lockstart;
1572 	u64 lockend;
1573 	size_t num_written = 0;
1574 	int nrptrs;
1575 	int ret = 0;
1576 	bool only_release_metadata = false;
1577 	bool force_page_uptodate = false;
1578 
1579 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1580 			PAGE_SIZE / (sizeof(struct page *)));
1581 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1582 	nrptrs = max(nrptrs, 8);
1583 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1584 	if (!pages)
1585 		return -ENOMEM;
1586 
1587 	while (iov_iter_count(i) > 0) {
1588 		struct extent_state *cached_state = NULL;
1589 		size_t offset = offset_in_page(pos);
1590 		size_t sector_offset;
1591 		size_t write_bytes = min(iov_iter_count(i),
1592 					 nrptrs * (size_t)PAGE_SIZE -
1593 					 offset);
1594 		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1595 						PAGE_SIZE);
1596 		size_t reserve_bytes;
1597 		size_t dirty_pages;
1598 		size_t copied;
1599 		size_t dirty_sectors;
1600 		size_t num_sectors;
1601 		int extents_locked;
1602 
1603 		WARN_ON(num_pages > nrptrs);
1604 
1605 		/*
1606 		 * Fault pages before locking them in prepare_pages
1607 		 * to avoid recursive lock
1608 		 */
1609 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1610 			ret = -EFAULT;
1611 			break;
1612 		}
1613 
1614 		only_release_metadata = false;
1615 		sector_offset = pos & (fs_info->sectorsize - 1);
1616 		reserve_bytes = round_up(write_bytes + sector_offset,
1617 				fs_info->sectorsize);
1618 
1619 		extent_changeset_release(data_reserved);
1620 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1621 						  &data_reserved, pos,
1622 						  write_bytes);
1623 		if (ret < 0) {
1624 			if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1625 						   &write_bytes) > 0) {
1626 				/*
1627 				 * For nodata cow case, no need to reserve
1628 				 * data space.
1629 				 */
1630 				only_release_metadata = true;
1631 				/*
1632 				 * our prealloc extent may be smaller than
1633 				 * write_bytes, so scale down.
1634 				 */
1635 				num_pages = DIV_ROUND_UP(write_bytes + offset,
1636 							 PAGE_SIZE);
1637 				reserve_bytes = round_up(write_bytes +
1638 							 sector_offset,
1639 							 fs_info->sectorsize);
1640 			} else {
1641 				break;
1642 			}
1643 		}
1644 
1645 		WARN_ON(reserve_bytes == 0);
1646 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1647 				reserve_bytes);
1648 		if (ret) {
1649 			if (!only_release_metadata)
1650 				btrfs_free_reserved_data_space(BTRFS_I(inode),
1651 						data_reserved, pos,
1652 						write_bytes);
1653 			else
1654 				btrfs_check_nocow_unlock(BTRFS_I(inode));
1655 			break;
1656 		}
1657 
1658 		release_bytes = reserve_bytes;
1659 again:
1660 		/*
1661 		 * This is going to setup the pages array with the number of
1662 		 * pages we want, so we don't really need to worry about the
1663 		 * contents of pages from loop to loop
1664 		 */
1665 		ret = prepare_pages(inode, pages, num_pages,
1666 				    pos, write_bytes,
1667 				    force_page_uptodate);
1668 		if (ret) {
1669 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1670 						       reserve_bytes);
1671 			break;
1672 		}
1673 
1674 		extents_locked = lock_and_cleanup_extent_if_need(
1675 				BTRFS_I(inode), pages,
1676 				num_pages, pos, write_bytes, &lockstart,
1677 				&lockend, &cached_state);
1678 		if (extents_locked < 0) {
1679 			if (extents_locked == -EAGAIN)
1680 				goto again;
1681 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1682 						       reserve_bytes);
1683 			ret = extents_locked;
1684 			break;
1685 		}
1686 
1687 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1688 
1689 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1690 		dirty_sectors = round_up(copied + sector_offset,
1691 					fs_info->sectorsize);
1692 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1693 
1694 		/*
1695 		 * if we have trouble faulting in the pages, fall
1696 		 * back to one page at a time
1697 		 */
1698 		if (copied < write_bytes)
1699 			nrptrs = 1;
1700 
1701 		if (copied == 0) {
1702 			force_page_uptodate = true;
1703 			dirty_sectors = 0;
1704 			dirty_pages = 0;
1705 		} else {
1706 			force_page_uptodate = false;
1707 			dirty_pages = DIV_ROUND_UP(copied + offset,
1708 						   PAGE_SIZE);
1709 		}
1710 
1711 		if (num_sectors > dirty_sectors) {
1712 			/* release everything except the sectors we dirtied */
1713 			release_bytes -= dirty_sectors <<
1714 						fs_info->sb->s_blocksize_bits;
1715 			if (only_release_metadata) {
1716 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1717 							release_bytes, true);
1718 			} else {
1719 				u64 __pos;
1720 
1721 				__pos = round_down(pos,
1722 						   fs_info->sectorsize) +
1723 					(dirty_pages << PAGE_SHIFT);
1724 				btrfs_delalloc_release_space(BTRFS_I(inode),
1725 						data_reserved, __pos,
1726 						release_bytes, true);
1727 			}
1728 		}
1729 
1730 		release_bytes = round_up(copied + sector_offset,
1731 					fs_info->sectorsize);
1732 
1733 		if (copied > 0)
1734 			ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1735 						dirty_pages, pos, copied,
1736 						&cached_state);
1737 
1738 		/*
1739 		 * If we have not locked the extent range, because the range's
1740 		 * start offset is >= i_size, we might still have a non-NULL
1741 		 * cached extent state, acquired while marking the extent range
1742 		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1743 		 * possible cached extent state to avoid a memory leak.
1744 		 */
1745 		if (extents_locked)
1746 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1747 					     lockstart, lockend, &cached_state);
1748 		else
1749 			free_extent_state(cached_state);
1750 
1751 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1752 		if (ret) {
1753 			btrfs_drop_pages(pages, num_pages);
1754 			break;
1755 		}
1756 
1757 		release_bytes = 0;
1758 		if (only_release_metadata)
1759 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1760 
1761 		if (only_release_metadata && copied > 0) {
1762 			lockstart = round_down(pos,
1763 					       fs_info->sectorsize);
1764 			lockend = round_up(pos + copied,
1765 					   fs_info->sectorsize) - 1;
1766 
1767 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1768 				       lockend, EXTENT_NORESERVE, NULL,
1769 				       NULL, GFP_NOFS);
1770 		}
1771 
1772 		btrfs_drop_pages(pages, num_pages);
1773 
1774 		cond_resched();
1775 
1776 		balance_dirty_pages_ratelimited(inode->i_mapping);
1777 
1778 		pos += copied;
1779 		num_written += copied;
1780 	}
1781 
1782 	kfree(pages);
1783 
1784 	if (release_bytes) {
1785 		if (only_release_metadata) {
1786 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1787 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1788 					release_bytes, true);
1789 		} else {
1790 			btrfs_delalloc_release_space(BTRFS_I(inode),
1791 					data_reserved,
1792 					round_down(pos, fs_info->sectorsize),
1793 					release_bytes, true);
1794 		}
1795 	}
1796 
1797 	extent_changeset_free(data_reserved);
1798 	return num_written ? num_written : ret;
1799 }
1800 
1801 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1802 {
1803 	struct file *file = iocb->ki_filp;
1804 	struct inode *inode = file_inode(file);
1805 	loff_t pos;
1806 	ssize_t written;
1807 	ssize_t written_buffered;
1808 	loff_t endbyte;
1809 	int err;
1810 
1811 	written = btrfs_direct_IO(iocb, from);
1812 
1813 	if (written < 0 || !iov_iter_count(from))
1814 		return written;
1815 
1816 	pos = iocb->ki_pos;
1817 	written_buffered = btrfs_buffered_write(iocb, from);
1818 	if (written_buffered < 0) {
1819 		err = written_buffered;
1820 		goto out;
1821 	}
1822 	/*
1823 	 * Ensure all data is persisted. We want the next direct IO read to be
1824 	 * able to read what was just written.
1825 	 */
1826 	endbyte = pos + written_buffered - 1;
1827 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1828 	if (err)
1829 		goto out;
1830 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1831 	if (err)
1832 		goto out;
1833 	written += written_buffered;
1834 	iocb->ki_pos = pos + written_buffered;
1835 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1836 				 endbyte >> PAGE_SHIFT);
1837 out:
1838 	return written ? written : err;
1839 }
1840 
1841 static void update_time_for_write(struct inode *inode)
1842 {
1843 	struct timespec64 now;
1844 
1845 	if (IS_NOCMTIME(inode))
1846 		return;
1847 
1848 	now = current_time(inode);
1849 	if (!timespec64_equal(&inode->i_mtime, &now))
1850 		inode->i_mtime = now;
1851 
1852 	if (!timespec64_equal(&inode->i_ctime, &now))
1853 		inode->i_ctime = now;
1854 
1855 	if (IS_I_VERSION(inode))
1856 		inode_inc_iversion(inode);
1857 }
1858 
1859 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1860 				    struct iov_iter *from)
1861 {
1862 	struct file *file = iocb->ki_filp;
1863 	struct inode *inode = file_inode(file);
1864 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1865 	struct btrfs_root *root = BTRFS_I(inode)->root;
1866 	u64 start_pos;
1867 	u64 end_pos;
1868 	ssize_t num_written = 0;
1869 	const bool sync = iocb->ki_flags & IOCB_DSYNC;
1870 	ssize_t err;
1871 	loff_t pos;
1872 	size_t count;
1873 	loff_t oldsize;
1874 	int clean_page = 0;
1875 
1876 	if (!(iocb->ki_flags & IOCB_DIRECT) &&
1877 	    (iocb->ki_flags & IOCB_NOWAIT))
1878 		return -EOPNOTSUPP;
1879 
1880 	if (iocb->ki_flags & IOCB_NOWAIT) {
1881 		if (!inode_trylock(inode))
1882 			return -EAGAIN;
1883 	} else {
1884 		inode_lock(inode);
1885 	}
1886 
1887 	err = generic_write_checks(iocb, from);
1888 	if (err <= 0) {
1889 		inode_unlock(inode);
1890 		return err;
1891 	}
1892 
1893 	pos = iocb->ki_pos;
1894 	count = iov_iter_count(from);
1895 	if (iocb->ki_flags & IOCB_NOWAIT) {
1896 		size_t nocow_bytes = count;
1897 
1898 		/*
1899 		 * We will allocate space in case nodatacow is not set,
1900 		 * so bail
1901 		 */
1902 		if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes)
1903 		    <= 0) {
1904 			inode_unlock(inode);
1905 			return -EAGAIN;
1906 		}
1907 		/*
1908 		 * There are holes in the range or parts of the range that must
1909 		 * be COWed (shared extents, RO block groups, etc), so just bail
1910 		 * out.
1911 		 */
1912 		if (nocow_bytes < count) {
1913 			inode_unlock(inode);
1914 			return -EAGAIN;
1915 		}
1916 	}
1917 
1918 	current->backing_dev_info = inode_to_bdi(inode);
1919 	err = file_remove_privs(file);
1920 	if (err) {
1921 		inode_unlock(inode);
1922 		goto out;
1923 	}
1924 
1925 	/*
1926 	 * If BTRFS flips readonly due to some impossible error
1927 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1928 	 * although we have opened a file as writable, we have
1929 	 * to stop this write operation to ensure FS consistency.
1930 	 */
1931 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1932 		inode_unlock(inode);
1933 		err = -EROFS;
1934 		goto out;
1935 	}
1936 
1937 	/*
1938 	 * We reserve space for updating the inode when we reserve space for the
1939 	 * extent we are going to write, so we will enospc out there.  We don't
1940 	 * need to start yet another transaction to update the inode as we will
1941 	 * update the inode when we finish writing whatever data we write.
1942 	 */
1943 	update_time_for_write(inode);
1944 
1945 	start_pos = round_down(pos, fs_info->sectorsize);
1946 	oldsize = i_size_read(inode);
1947 	if (start_pos > oldsize) {
1948 		/* Expand hole size to cover write data, preventing empty gap */
1949 		end_pos = round_up(pos + count,
1950 				   fs_info->sectorsize);
1951 		err = btrfs_cont_expand(inode, oldsize, end_pos);
1952 		if (err) {
1953 			inode_unlock(inode);
1954 			goto out;
1955 		}
1956 		if (start_pos > round_up(oldsize, fs_info->sectorsize))
1957 			clean_page = 1;
1958 	}
1959 
1960 	if (sync)
1961 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1962 
1963 	if (iocb->ki_flags & IOCB_DIRECT) {
1964 		/*
1965 		 * 1. We must always clear IOCB_DSYNC in order to not deadlock
1966 		 *    in iomap, as it calls generic_write_sync() in this case.
1967 		 * 2. If we are async, we can call iomap_dio_complete() either
1968 		 *    in
1969 		 *
1970 		 *    2.1. A worker thread from the last bio completed.  In this
1971 		 *	   case we need to mark the btrfs_dio_data that it is
1972 		 *	   async in order to call generic_write_sync() properly.
1973 		 *	   This is handled by setting BTRFS_DIO_SYNC_STUB in the
1974 		 *	   current->journal_info.
1975 		 *    2.2  The submitter context, because all IO completed
1976 		 *         before we exited iomap_dio_rw().  In this case we can
1977 		 *         just re-set the IOCB_DSYNC on the iocb and we'll do
1978 		 *         the sync below.  If our ->end_io() gets called and
1979 		 *         current->journal_info is set, then we know we're in
1980 		 *         our current context and we will clear
1981 		 *         current->journal_info to indicate that we need to
1982 		 *         sync below.
1983 		 */
1984 		if (sync) {
1985 			ASSERT(current->journal_info == NULL);
1986 			iocb->ki_flags &= ~IOCB_DSYNC;
1987 			current->journal_info = BTRFS_DIO_SYNC_STUB;
1988 		}
1989 		num_written = __btrfs_direct_write(iocb, from);
1990 
1991 		/*
1992 		 * As stated above, we cleared journal_info, so we need to do
1993 		 * the sync ourselves.
1994 		 */
1995 		if (sync && current->journal_info == NULL)
1996 			iocb->ki_flags |= IOCB_DSYNC;
1997 		current->journal_info = NULL;
1998 	} else {
1999 		num_written = btrfs_buffered_write(iocb, from);
2000 		if (num_written > 0)
2001 			iocb->ki_pos = pos + num_written;
2002 		if (clean_page)
2003 			pagecache_isize_extended(inode, oldsize,
2004 						i_size_read(inode));
2005 	}
2006 
2007 	inode_unlock(inode);
2008 
2009 	/*
2010 	 * We also have to set last_sub_trans to the current log transid,
2011 	 * otherwise subsequent syncs to a file that's been synced in this
2012 	 * transaction will appear to have already occurred.
2013 	 */
2014 	spin_lock(&BTRFS_I(inode)->lock);
2015 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
2016 	spin_unlock(&BTRFS_I(inode)->lock);
2017 	if (num_written > 0)
2018 		num_written = generic_write_sync(iocb, num_written);
2019 
2020 	if (sync)
2021 		atomic_dec(&BTRFS_I(inode)->sync_writers);
2022 out:
2023 	current->backing_dev_info = NULL;
2024 	return num_written ? num_written : err;
2025 }
2026 
2027 int btrfs_release_file(struct inode *inode, struct file *filp)
2028 {
2029 	struct btrfs_file_private *private = filp->private_data;
2030 
2031 	if (private && private->filldir_buf)
2032 		kfree(private->filldir_buf);
2033 	kfree(private);
2034 	filp->private_data = NULL;
2035 
2036 	/*
2037 	 * Set by setattr when we are about to truncate a file from a non-zero
2038 	 * size to a zero size.  This tries to flush down new bytes that may
2039 	 * have been written if the application were using truncate to replace
2040 	 * a file in place.
2041 	 */
2042 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2043 			       &BTRFS_I(inode)->runtime_flags))
2044 			filemap_flush(inode->i_mapping);
2045 	return 0;
2046 }
2047 
2048 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2049 {
2050 	int ret;
2051 	struct blk_plug plug;
2052 
2053 	/*
2054 	 * This is only called in fsync, which would do synchronous writes, so
2055 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2056 	 * multiple disks using raid profile, a large IO can be split to
2057 	 * several segments of stripe length (currently 64K).
2058 	 */
2059 	blk_start_plug(&plug);
2060 	atomic_inc(&BTRFS_I(inode)->sync_writers);
2061 	ret = btrfs_fdatawrite_range(inode, start, end);
2062 	atomic_dec(&BTRFS_I(inode)->sync_writers);
2063 	blk_finish_plug(&plug);
2064 
2065 	return ret;
2066 }
2067 
2068 /*
2069  * fsync call for both files and directories.  This logs the inode into
2070  * the tree log instead of forcing full commits whenever possible.
2071  *
2072  * It needs to call filemap_fdatawait so that all ordered extent updates are
2073  * in the metadata btree are up to date for copying to the log.
2074  *
2075  * It drops the inode mutex before doing the tree log commit.  This is an
2076  * important optimization for directories because holding the mutex prevents
2077  * new operations on the dir while we write to disk.
2078  */
2079 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2080 {
2081 	struct dentry *dentry = file_dentry(file);
2082 	struct inode *inode = d_inode(dentry);
2083 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2084 	struct btrfs_root *root = BTRFS_I(inode)->root;
2085 	struct btrfs_trans_handle *trans;
2086 	struct btrfs_log_ctx ctx;
2087 	int ret = 0, err;
2088 	u64 len;
2089 	bool full_sync;
2090 
2091 	trace_btrfs_sync_file(file, datasync);
2092 
2093 	btrfs_init_log_ctx(&ctx, inode);
2094 
2095 	/*
2096 	 * Always set the range to a full range, otherwise we can get into
2097 	 * several problems, from missing file extent items to represent holes
2098 	 * when not using the NO_HOLES feature, to log tree corruption due to
2099 	 * races between hole detection during logging and completion of ordered
2100 	 * extents outside the range, to missing checksums due to ordered extents
2101 	 * for which we flushed only a subset of their pages.
2102 	 */
2103 	start = 0;
2104 	end = LLONG_MAX;
2105 	len = (u64)LLONG_MAX + 1;
2106 
2107 	/*
2108 	 * We write the dirty pages in the range and wait until they complete
2109 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
2110 	 * multi-task, and make the performance up.  See
2111 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2112 	 */
2113 	ret = start_ordered_ops(inode, start, end);
2114 	if (ret)
2115 		goto out;
2116 
2117 	inode_lock(inode);
2118 
2119 	/*
2120 	 * We take the dio_sem here because the tree log stuff can race with
2121 	 * lockless dio writes and get an extent map logged for an extent we
2122 	 * never waited on.  We need it this high up for lockdep reasons.
2123 	 */
2124 	down_write(&BTRFS_I(inode)->dio_sem);
2125 
2126 	atomic_inc(&root->log_batch);
2127 
2128 	/*
2129 	 * Always check for the full sync flag while holding the inode's lock,
2130 	 * to avoid races with other tasks. The flag must be either set all the
2131 	 * time during logging or always off all the time while logging.
2132 	 */
2133 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2134 			     &BTRFS_I(inode)->runtime_flags);
2135 
2136 	/*
2137 	 * Before we acquired the inode's lock, someone may have dirtied more
2138 	 * pages in the target range. We need to make sure that writeback for
2139 	 * any such pages does not start while we are logging the inode, because
2140 	 * if it does, any of the following might happen when we are not doing a
2141 	 * full inode sync:
2142 	 *
2143 	 * 1) We log an extent after its writeback finishes but before its
2144 	 *    checksums are added to the csum tree, leading to -EIO errors
2145 	 *    when attempting to read the extent after a log replay.
2146 	 *
2147 	 * 2) We can end up logging an extent before its writeback finishes.
2148 	 *    Therefore after the log replay we will have a file extent item
2149 	 *    pointing to an unwritten extent (and no data checksums as well).
2150 	 *
2151 	 * So trigger writeback for any eventual new dirty pages and then we
2152 	 * wait for all ordered extents to complete below.
2153 	 */
2154 	ret = start_ordered_ops(inode, start, end);
2155 	if (ret) {
2156 		up_write(&BTRFS_I(inode)->dio_sem);
2157 		inode_unlock(inode);
2158 		goto out;
2159 	}
2160 
2161 	/*
2162 	 * We have to do this here to avoid the priority inversion of waiting on
2163 	 * IO of a lower priority task while holding a transaction open.
2164 	 *
2165 	 * For a full fsync we wait for the ordered extents to complete while
2166 	 * for a fast fsync we wait just for writeback to complete, and then
2167 	 * attach the ordered extents to the transaction so that a transaction
2168 	 * commit waits for their completion, to avoid data loss if we fsync,
2169 	 * the current transaction commits before the ordered extents complete
2170 	 * and a power failure happens right after that.
2171 	 */
2172 	if (full_sync) {
2173 		ret = btrfs_wait_ordered_range(inode, start, len);
2174 	} else {
2175 		/*
2176 		 * Get our ordered extents as soon as possible to avoid doing
2177 		 * checksum lookups in the csum tree, and use instead the
2178 		 * checksums attached to the ordered extents.
2179 		 */
2180 		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2181 						      &ctx.ordered_extents);
2182 		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2183 	}
2184 
2185 	if (ret)
2186 		goto out_release_extents;
2187 
2188 	atomic_inc(&root->log_batch);
2189 
2190 	/*
2191 	 * If we are doing a fast fsync we can not bail out if the inode's
2192 	 * last_trans is <= then the last committed transaction, because we only
2193 	 * update the last_trans of the inode during ordered extent completion,
2194 	 * and for a fast fsync we don't wait for that, we only wait for the
2195 	 * writeback to complete.
2196 	 */
2197 	smp_mb();
2198 	if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2199 	    (BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed &&
2200 	     (full_sync || list_empty(&ctx.ordered_extents)))) {
2201 		/*
2202 		 * We've had everything committed since the last time we were
2203 		 * modified so clear this flag in case it was set for whatever
2204 		 * reason, it's no longer relevant.
2205 		 */
2206 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2207 			  &BTRFS_I(inode)->runtime_flags);
2208 		/*
2209 		 * An ordered extent might have started before and completed
2210 		 * already with io errors, in which case the inode was not
2211 		 * updated and we end up here. So check the inode's mapping
2212 		 * for any errors that might have happened since we last
2213 		 * checked called fsync.
2214 		 */
2215 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2216 		goto out_release_extents;
2217 	}
2218 
2219 	/*
2220 	 * We use start here because we will need to wait on the IO to complete
2221 	 * in btrfs_sync_log, which could require joining a transaction (for
2222 	 * example checking cross references in the nocow path).  If we use join
2223 	 * here we could get into a situation where we're waiting on IO to
2224 	 * happen that is blocked on a transaction trying to commit.  With start
2225 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2226 	 * before we start blocking joiners.  This comment is to keep somebody
2227 	 * from thinking they are super smart and changing this to
2228 	 * btrfs_join_transaction *cough*Josef*cough*.
2229 	 */
2230 	trans = btrfs_start_transaction(root, 0);
2231 	if (IS_ERR(trans)) {
2232 		ret = PTR_ERR(trans);
2233 		goto out_release_extents;
2234 	}
2235 
2236 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2237 	btrfs_release_log_ctx_extents(&ctx);
2238 	if (ret < 0) {
2239 		/* Fallthrough and commit/free transaction. */
2240 		ret = 1;
2241 	}
2242 
2243 	/* we've logged all the items and now have a consistent
2244 	 * version of the file in the log.  It is possible that
2245 	 * someone will come in and modify the file, but that's
2246 	 * fine because the log is consistent on disk, and we
2247 	 * have references to all of the file's extents
2248 	 *
2249 	 * It is possible that someone will come in and log the
2250 	 * file again, but that will end up using the synchronization
2251 	 * inside btrfs_sync_log to keep things safe.
2252 	 */
2253 	up_write(&BTRFS_I(inode)->dio_sem);
2254 	inode_unlock(inode);
2255 
2256 	if (ret != BTRFS_NO_LOG_SYNC) {
2257 		if (!ret) {
2258 			ret = btrfs_sync_log(trans, root, &ctx);
2259 			if (!ret) {
2260 				ret = btrfs_end_transaction(trans);
2261 				goto out;
2262 			}
2263 		}
2264 		if (!full_sync) {
2265 			ret = btrfs_wait_ordered_range(inode, start, len);
2266 			if (ret) {
2267 				btrfs_end_transaction(trans);
2268 				goto out;
2269 			}
2270 		}
2271 		ret = btrfs_commit_transaction(trans);
2272 	} else {
2273 		ret = btrfs_end_transaction(trans);
2274 	}
2275 out:
2276 	ASSERT(list_empty(&ctx.list));
2277 	err = file_check_and_advance_wb_err(file);
2278 	if (!ret)
2279 		ret = err;
2280 	return ret > 0 ? -EIO : ret;
2281 
2282 out_release_extents:
2283 	btrfs_release_log_ctx_extents(&ctx);
2284 	up_write(&BTRFS_I(inode)->dio_sem);
2285 	inode_unlock(inode);
2286 	goto out;
2287 }
2288 
2289 static const struct vm_operations_struct btrfs_file_vm_ops = {
2290 	.fault		= filemap_fault,
2291 	.map_pages	= filemap_map_pages,
2292 	.page_mkwrite	= btrfs_page_mkwrite,
2293 };
2294 
2295 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2296 {
2297 	struct address_space *mapping = filp->f_mapping;
2298 
2299 	if (!mapping->a_ops->readpage)
2300 		return -ENOEXEC;
2301 
2302 	file_accessed(filp);
2303 	vma->vm_ops = &btrfs_file_vm_ops;
2304 
2305 	return 0;
2306 }
2307 
2308 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2309 			  int slot, u64 start, u64 end)
2310 {
2311 	struct btrfs_file_extent_item *fi;
2312 	struct btrfs_key key;
2313 
2314 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2315 		return 0;
2316 
2317 	btrfs_item_key_to_cpu(leaf, &key, slot);
2318 	if (key.objectid != btrfs_ino(inode) ||
2319 	    key.type != BTRFS_EXTENT_DATA_KEY)
2320 		return 0;
2321 
2322 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2323 
2324 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2325 		return 0;
2326 
2327 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2328 		return 0;
2329 
2330 	if (key.offset == end)
2331 		return 1;
2332 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2333 		return 1;
2334 	return 0;
2335 }
2336 
2337 static int fill_holes(struct btrfs_trans_handle *trans,
2338 		struct btrfs_inode *inode,
2339 		struct btrfs_path *path, u64 offset, u64 end)
2340 {
2341 	struct btrfs_fs_info *fs_info = trans->fs_info;
2342 	struct btrfs_root *root = inode->root;
2343 	struct extent_buffer *leaf;
2344 	struct btrfs_file_extent_item *fi;
2345 	struct extent_map *hole_em;
2346 	struct extent_map_tree *em_tree = &inode->extent_tree;
2347 	struct btrfs_key key;
2348 	int ret;
2349 
2350 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2351 		goto out;
2352 
2353 	key.objectid = btrfs_ino(inode);
2354 	key.type = BTRFS_EXTENT_DATA_KEY;
2355 	key.offset = offset;
2356 
2357 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2358 	if (ret <= 0) {
2359 		/*
2360 		 * We should have dropped this offset, so if we find it then
2361 		 * something has gone horribly wrong.
2362 		 */
2363 		if (ret == 0)
2364 			ret = -EINVAL;
2365 		return ret;
2366 	}
2367 
2368 	leaf = path->nodes[0];
2369 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2370 		u64 num_bytes;
2371 
2372 		path->slots[0]--;
2373 		fi = btrfs_item_ptr(leaf, path->slots[0],
2374 				    struct btrfs_file_extent_item);
2375 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2376 			end - offset;
2377 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2378 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2379 		btrfs_set_file_extent_offset(leaf, fi, 0);
2380 		btrfs_mark_buffer_dirty(leaf);
2381 		goto out;
2382 	}
2383 
2384 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2385 		u64 num_bytes;
2386 
2387 		key.offset = offset;
2388 		btrfs_set_item_key_safe(fs_info, path, &key);
2389 		fi = btrfs_item_ptr(leaf, path->slots[0],
2390 				    struct btrfs_file_extent_item);
2391 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2392 			offset;
2393 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2394 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2395 		btrfs_set_file_extent_offset(leaf, fi, 0);
2396 		btrfs_mark_buffer_dirty(leaf);
2397 		goto out;
2398 	}
2399 	btrfs_release_path(path);
2400 
2401 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2402 			offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2403 	if (ret)
2404 		return ret;
2405 
2406 out:
2407 	btrfs_release_path(path);
2408 
2409 	hole_em = alloc_extent_map();
2410 	if (!hole_em) {
2411 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2412 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2413 	} else {
2414 		hole_em->start = offset;
2415 		hole_em->len = end - offset;
2416 		hole_em->ram_bytes = hole_em->len;
2417 		hole_em->orig_start = offset;
2418 
2419 		hole_em->block_start = EXTENT_MAP_HOLE;
2420 		hole_em->block_len = 0;
2421 		hole_em->orig_block_len = 0;
2422 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2423 		hole_em->generation = trans->transid;
2424 
2425 		do {
2426 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2427 			write_lock(&em_tree->lock);
2428 			ret = add_extent_mapping(em_tree, hole_em, 1);
2429 			write_unlock(&em_tree->lock);
2430 		} while (ret == -EEXIST);
2431 		free_extent_map(hole_em);
2432 		if (ret)
2433 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2434 					&inode->runtime_flags);
2435 	}
2436 
2437 	return 0;
2438 }
2439 
2440 /*
2441  * Find a hole extent on given inode and change start/len to the end of hole
2442  * extent.(hole/vacuum extent whose em->start <= start &&
2443  *	   em->start + em->len > start)
2444  * When a hole extent is found, return 1 and modify start/len.
2445  */
2446 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2447 {
2448 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2449 	struct extent_map *em;
2450 	int ret = 0;
2451 
2452 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2453 			      round_down(*start, fs_info->sectorsize),
2454 			      round_up(*len, fs_info->sectorsize));
2455 	if (IS_ERR(em))
2456 		return PTR_ERR(em);
2457 
2458 	/* Hole or vacuum extent(only exists in no-hole mode) */
2459 	if (em->block_start == EXTENT_MAP_HOLE) {
2460 		ret = 1;
2461 		*len = em->start + em->len > *start + *len ?
2462 		       0 : *start + *len - em->start - em->len;
2463 		*start = em->start + em->len;
2464 	}
2465 	free_extent_map(em);
2466 	return ret;
2467 }
2468 
2469 static int btrfs_punch_hole_lock_range(struct inode *inode,
2470 				       const u64 lockstart,
2471 				       const u64 lockend,
2472 				       struct extent_state **cached_state)
2473 {
2474 	while (1) {
2475 		struct btrfs_ordered_extent *ordered;
2476 		int ret;
2477 
2478 		truncate_pagecache_range(inode, lockstart, lockend);
2479 
2480 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2481 				 cached_state);
2482 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2483 							    lockend);
2484 
2485 		/*
2486 		 * We need to make sure we have no ordered extents in this range
2487 		 * and nobody raced in and read a page in this range, if we did
2488 		 * we need to try again.
2489 		 */
2490 		if ((!ordered ||
2491 		    (ordered->file_offset + ordered->num_bytes <= lockstart ||
2492 		     ordered->file_offset > lockend)) &&
2493 		     !filemap_range_has_page(inode->i_mapping,
2494 					     lockstart, lockend)) {
2495 			if (ordered)
2496 				btrfs_put_ordered_extent(ordered);
2497 			break;
2498 		}
2499 		if (ordered)
2500 			btrfs_put_ordered_extent(ordered);
2501 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2502 				     lockend, cached_state);
2503 		ret = btrfs_wait_ordered_range(inode, lockstart,
2504 					       lockend - lockstart + 1);
2505 		if (ret)
2506 			return ret;
2507 	}
2508 	return 0;
2509 }
2510 
2511 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2512 				     struct inode *inode,
2513 				     struct btrfs_path *path,
2514 				     struct btrfs_replace_extent_info *extent_info,
2515 				     const u64 replace_len)
2516 {
2517 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2518 	struct btrfs_root *root = BTRFS_I(inode)->root;
2519 	struct btrfs_file_extent_item *extent;
2520 	struct extent_buffer *leaf;
2521 	struct btrfs_key key;
2522 	int slot;
2523 	struct btrfs_ref ref = { 0 };
2524 	int ret;
2525 
2526 	if (replace_len == 0)
2527 		return 0;
2528 
2529 	if (extent_info->disk_offset == 0 &&
2530 	    btrfs_fs_incompat(fs_info, NO_HOLES))
2531 		return 0;
2532 
2533 	key.objectid = btrfs_ino(BTRFS_I(inode));
2534 	key.type = BTRFS_EXTENT_DATA_KEY;
2535 	key.offset = extent_info->file_offset;
2536 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2537 				      sizeof(struct btrfs_file_extent_item));
2538 	if (ret)
2539 		return ret;
2540 	leaf = path->nodes[0];
2541 	slot = path->slots[0];
2542 	write_extent_buffer(leaf, extent_info->extent_buf,
2543 			    btrfs_item_ptr_offset(leaf, slot),
2544 			    sizeof(struct btrfs_file_extent_item));
2545 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2546 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2547 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2548 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2549 	if (extent_info->is_new_extent)
2550 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2551 	btrfs_mark_buffer_dirty(leaf);
2552 	btrfs_release_path(path);
2553 
2554 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
2555 			extent_info->file_offset, replace_len);
2556 	if (ret)
2557 		return ret;
2558 
2559 	/* If it's a hole, nothing more needs to be done. */
2560 	if (extent_info->disk_offset == 0)
2561 		return 0;
2562 
2563 	inode_add_bytes(inode, replace_len);
2564 
2565 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2566 		key.objectid = extent_info->disk_offset;
2567 		key.type = BTRFS_EXTENT_ITEM_KEY;
2568 		key.offset = extent_info->disk_len;
2569 		ret = btrfs_alloc_reserved_file_extent(trans, root,
2570 						       btrfs_ino(BTRFS_I(inode)),
2571 						       extent_info->file_offset,
2572 						       extent_info->qgroup_reserved,
2573 						       &key);
2574 	} else {
2575 		u64 ref_offset;
2576 
2577 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2578 				       extent_info->disk_offset,
2579 				       extent_info->disk_len, 0);
2580 		ref_offset = extent_info->file_offset - extent_info->data_offset;
2581 		btrfs_init_data_ref(&ref, root->root_key.objectid,
2582 				    btrfs_ino(BTRFS_I(inode)), ref_offset);
2583 		ret = btrfs_inc_extent_ref(trans, &ref);
2584 	}
2585 
2586 	extent_info->insertions++;
2587 
2588 	return ret;
2589 }
2590 
2591 /*
2592  * The respective range must have been previously locked, as well as the inode.
2593  * The end offset is inclusive (last byte of the range).
2594  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2595  * the file range with an extent.
2596  * When not punching a hole, we don't want to end up in a state where we dropped
2597  * extents without inserting a new one, so we must abort the transaction to avoid
2598  * a corruption.
2599  */
2600 int btrfs_replace_file_extents(struct inode *inode, struct btrfs_path *path,
2601 			   const u64 start, const u64 end,
2602 			   struct btrfs_replace_extent_info *extent_info,
2603 			   struct btrfs_trans_handle **trans_out)
2604 {
2605 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2606 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2607 	u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2608 	struct btrfs_root *root = BTRFS_I(inode)->root;
2609 	struct btrfs_trans_handle *trans = NULL;
2610 	struct btrfs_block_rsv *rsv;
2611 	unsigned int rsv_count;
2612 	u64 cur_offset;
2613 	u64 drop_end;
2614 	u64 len = end - start;
2615 	int ret = 0;
2616 
2617 	if (end <= start)
2618 		return -EINVAL;
2619 
2620 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2621 	if (!rsv) {
2622 		ret = -ENOMEM;
2623 		goto out;
2624 	}
2625 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2626 	rsv->failfast = 1;
2627 
2628 	/*
2629 	 * 1 - update the inode
2630 	 * 1 - removing the extents in the range
2631 	 * 1 - adding the hole extent if no_holes isn't set or if we are
2632 	 *     replacing the range with a new extent
2633 	 */
2634 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2635 		rsv_count = 3;
2636 	else
2637 		rsv_count = 2;
2638 
2639 	trans = btrfs_start_transaction(root, rsv_count);
2640 	if (IS_ERR(trans)) {
2641 		ret = PTR_ERR(trans);
2642 		trans = NULL;
2643 		goto out_free;
2644 	}
2645 
2646 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2647 				      min_size, false);
2648 	BUG_ON(ret);
2649 	trans->block_rsv = rsv;
2650 
2651 	cur_offset = start;
2652 	while (cur_offset < end) {
2653 		ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path,
2654 					   cur_offset, end + 1, &drop_end,
2655 					   1, 0, 0, NULL);
2656 		if (ret != -ENOSPC) {
2657 			/*
2658 			 * When cloning we want to avoid transaction aborts when
2659 			 * nothing was done and we are attempting to clone parts
2660 			 * of inline extents, in such cases -EOPNOTSUPP is
2661 			 * returned by __btrfs_drop_extents() without having
2662 			 * changed anything in the file.
2663 			 */
2664 			if (extent_info && !extent_info->is_new_extent &&
2665 			    ret && ret != -EOPNOTSUPP)
2666 				btrfs_abort_transaction(trans, ret);
2667 			break;
2668 		}
2669 
2670 		trans->block_rsv = &fs_info->trans_block_rsv;
2671 
2672 		if (!extent_info && cur_offset < drop_end &&
2673 		    cur_offset < ino_size) {
2674 			ret = fill_holes(trans, BTRFS_I(inode), path,
2675 					cur_offset, drop_end);
2676 			if (ret) {
2677 				/*
2678 				 * If we failed then we didn't insert our hole
2679 				 * entries for the area we dropped, so now the
2680 				 * fs is corrupted, so we must abort the
2681 				 * transaction.
2682 				 */
2683 				btrfs_abort_transaction(trans, ret);
2684 				break;
2685 			}
2686 		} else if (!extent_info && cur_offset < drop_end) {
2687 			/*
2688 			 * We are past the i_size here, but since we didn't
2689 			 * insert holes we need to clear the mapped area so we
2690 			 * know to not set disk_i_size in this area until a new
2691 			 * file extent is inserted here.
2692 			 */
2693 			ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2694 					cur_offset, drop_end - cur_offset);
2695 			if (ret) {
2696 				/*
2697 				 * We couldn't clear our area, so we could
2698 				 * presumably adjust up and corrupt the fs, so
2699 				 * we need to abort.
2700 				 */
2701 				btrfs_abort_transaction(trans, ret);
2702 				break;
2703 			}
2704 		}
2705 
2706 		if (extent_info && drop_end > extent_info->file_offset) {
2707 			u64 replace_len = drop_end - extent_info->file_offset;
2708 
2709 			ret = btrfs_insert_replace_extent(trans, inode, path,
2710 							extent_info, replace_len);
2711 			if (ret) {
2712 				btrfs_abort_transaction(trans, ret);
2713 				break;
2714 			}
2715 			extent_info->data_len -= replace_len;
2716 			extent_info->data_offset += replace_len;
2717 			extent_info->file_offset += replace_len;
2718 		}
2719 
2720 		cur_offset = drop_end;
2721 
2722 		ret = btrfs_update_inode(trans, root, inode);
2723 		if (ret)
2724 			break;
2725 
2726 		btrfs_end_transaction(trans);
2727 		btrfs_btree_balance_dirty(fs_info);
2728 
2729 		trans = btrfs_start_transaction(root, rsv_count);
2730 		if (IS_ERR(trans)) {
2731 			ret = PTR_ERR(trans);
2732 			trans = NULL;
2733 			break;
2734 		}
2735 
2736 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2737 					      rsv, min_size, false);
2738 		BUG_ON(ret);	/* shouldn't happen */
2739 		trans->block_rsv = rsv;
2740 
2741 		if (!extent_info) {
2742 			ret = find_first_non_hole(inode, &cur_offset, &len);
2743 			if (unlikely(ret < 0))
2744 				break;
2745 			if (ret && !len) {
2746 				ret = 0;
2747 				break;
2748 			}
2749 		}
2750 	}
2751 
2752 	/*
2753 	 * If we were cloning, force the next fsync to be a full one since we
2754 	 * we replaced (or just dropped in the case of cloning holes when
2755 	 * NO_HOLES is enabled) extents and extent maps.
2756 	 * This is for the sake of simplicity, and cloning into files larger
2757 	 * than 16Mb would force the full fsync any way (when
2758 	 * try_release_extent_mapping() is invoked during page cache truncation.
2759 	 */
2760 	if (extent_info && !extent_info->is_new_extent)
2761 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2762 			&BTRFS_I(inode)->runtime_flags);
2763 
2764 	if (ret)
2765 		goto out_trans;
2766 
2767 	trans->block_rsv = &fs_info->trans_block_rsv;
2768 	/*
2769 	 * If we are using the NO_HOLES feature we might have had already an
2770 	 * hole that overlaps a part of the region [lockstart, lockend] and
2771 	 * ends at (or beyond) lockend. Since we have no file extent items to
2772 	 * represent holes, drop_end can be less than lockend and so we must
2773 	 * make sure we have an extent map representing the existing hole (the
2774 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2775 	 * map representing the existing hole), otherwise the fast fsync path
2776 	 * will not record the existence of the hole region
2777 	 * [existing_hole_start, lockend].
2778 	 */
2779 	if (drop_end <= end)
2780 		drop_end = end + 1;
2781 	/*
2782 	 * Don't insert file hole extent item if it's for a range beyond eof
2783 	 * (because it's useless) or if it represents a 0 bytes range (when
2784 	 * cur_offset == drop_end).
2785 	 */
2786 	if (!extent_info && cur_offset < ino_size && cur_offset < drop_end) {
2787 		ret = fill_holes(trans, BTRFS_I(inode), path,
2788 				cur_offset, drop_end);
2789 		if (ret) {
2790 			/* Same comment as above. */
2791 			btrfs_abort_transaction(trans, ret);
2792 			goto out_trans;
2793 		}
2794 	} else if (!extent_info && cur_offset < drop_end) {
2795 		/* See the comment in the loop above for the reasoning here. */
2796 		ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2797 					cur_offset, drop_end - cur_offset);
2798 		if (ret) {
2799 			btrfs_abort_transaction(trans, ret);
2800 			goto out_trans;
2801 		}
2802 
2803 	}
2804 	if (extent_info) {
2805 		ret = btrfs_insert_replace_extent(trans, inode, path, extent_info,
2806 						extent_info->data_len);
2807 		if (ret) {
2808 			btrfs_abort_transaction(trans, ret);
2809 			goto out_trans;
2810 		}
2811 	}
2812 
2813 out_trans:
2814 	if (!trans)
2815 		goto out_free;
2816 
2817 	trans->block_rsv = &fs_info->trans_block_rsv;
2818 	if (ret)
2819 		btrfs_end_transaction(trans);
2820 	else
2821 		*trans_out = trans;
2822 out_free:
2823 	btrfs_free_block_rsv(fs_info, rsv);
2824 out:
2825 	return ret;
2826 }
2827 
2828 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2829 {
2830 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2831 	struct btrfs_root *root = BTRFS_I(inode)->root;
2832 	struct extent_state *cached_state = NULL;
2833 	struct btrfs_path *path;
2834 	struct btrfs_trans_handle *trans = NULL;
2835 	u64 lockstart;
2836 	u64 lockend;
2837 	u64 tail_start;
2838 	u64 tail_len;
2839 	u64 orig_start = offset;
2840 	int ret = 0;
2841 	bool same_block;
2842 	u64 ino_size;
2843 	bool truncated_block = false;
2844 	bool updated_inode = false;
2845 
2846 	ret = btrfs_wait_ordered_range(inode, offset, len);
2847 	if (ret)
2848 		return ret;
2849 
2850 	inode_lock(inode);
2851 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2852 	ret = find_first_non_hole(inode, &offset, &len);
2853 	if (ret < 0)
2854 		goto out_only_mutex;
2855 	if (ret && !len) {
2856 		/* Already in a large hole */
2857 		ret = 0;
2858 		goto out_only_mutex;
2859 	}
2860 
2861 	lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2862 	lockend = round_down(offset + len,
2863 			     btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2864 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2865 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2866 	/*
2867 	 * We needn't truncate any block which is beyond the end of the file
2868 	 * because we are sure there is no data there.
2869 	 */
2870 	/*
2871 	 * Only do this if we are in the same block and we aren't doing the
2872 	 * entire block.
2873 	 */
2874 	if (same_block && len < fs_info->sectorsize) {
2875 		if (offset < ino_size) {
2876 			truncated_block = true;
2877 			ret = btrfs_truncate_block(inode, offset, len, 0);
2878 		} else {
2879 			ret = 0;
2880 		}
2881 		goto out_only_mutex;
2882 	}
2883 
2884 	/* zero back part of the first block */
2885 	if (offset < ino_size) {
2886 		truncated_block = true;
2887 		ret = btrfs_truncate_block(inode, offset, 0, 0);
2888 		if (ret) {
2889 			inode_unlock(inode);
2890 			return ret;
2891 		}
2892 	}
2893 
2894 	/* Check the aligned pages after the first unaligned page,
2895 	 * if offset != orig_start, which means the first unaligned page
2896 	 * including several following pages are already in holes,
2897 	 * the extra check can be skipped */
2898 	if (offset == orig_start) {
2899 		/* after truncate page, check hole again */
2900 		len = offset + len - lockstart;
2901 		offset = lockstart;
2902 		ret = find_first_non_hole(inode, &offset, &len);
2903 		if (ret < 0)
2904 			goto out_only_mutex;
2905 		if (ret && !len) {
2906 			ret = 0;
2907 			goto out_only_mutex;
2908 		}
2909 		lockstart = offset;
2910 	}
2911 
2912 	/* Check the tail unaligned part is in a hole */
2913 	tail_start = lockend + 1;
2914 	tail_len = offset + len - tail_start;
2915 	if (tail_len) {
2916 		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2917 		if (unlikely(ret < 0))
2918 			goto out_only_mutex;
2919 		if (!ret) {
2920 			/* zero the front end of the last page */
2921 			if (tail_start + tail_len < ino_size) {
2922 				truncated_block = true;
2923 				ret = btrfs_truncate_block(inode,
2924 							tail_start + tail_len,
2925 							0, 1);
2926 				if (ret)
2927 					goto out_only_mutex;
2928 			}
2929 		}
2930 	}
2931 
2932 	if (lockend < lockstart) {
2933 		ret = 0;
2934 		goto out_only_mutex;
2935 	}
2936 
2937 	ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2938 					  &cached_state);
2939 	if (ret)
2940 		goto out_only_mutex;
2941 
2942 	path = btrfs_alloc_path();
2943 	if (!path) {
2944 		ret = -ENOMEM;
2945 		goto out;
2946 	}
2947 
2948 	ret = btrfs_replace_file_extents(inode, path, lockstart, lockend, NULL,
2949 				     &trans);
2950 	btrfs_free_path(path);
2951 	if (ret)
2952 		goto out;
2953 
2954 	ASSERT(trans != NULL);
2955 	inode_inc_iversion(inode);
2956 	inode->i_mtime = inode->i_ctime = current_time(inode);
2957 	ret = btrfs_update_inode(trans, root, inode);
2958 	updated_inode = true;
2959 	btrfs_end_transaction(trans);
2960 	btrfs_btree_balance_dirty(fs_info);
2961 out:
2962 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2963 			     &cached_state);
2964 out_only_mutex:
2965 	if (!updated_inode && truncated_block && !ret) {
2966 		/*
2967 		 * If we only end up zeroing part of a page, we still need to
2968 		 * update the inode item, so that all the time fields are
2969 		 * updated as well as the necessary btrfs inode in memory fields
2970 		 * for detecting, at fsync time, if the inode isn't yet in the
2971 		 * log tree or it's there but not up to date.
2972 		 */
2973 		struct timespec64 now = current_time(inode);
2974 
2975 		inode_inc_iversion(inode);
2976 		inode->i_mtime = now;
2977 		inode->i_ctime = now;
2978 		trans = btrfs_start_transaction(root, 1);
2979 		if (IS_ERR(trans)) {
2980 			ret = PTR_ERR(trans);
2981 		} else {
2982 			int ret2;
2983 
2984 			ret = btrfs_update_inode(trans, root, inode);
2985 			ret2 = btrfs_end_transaction(trans);
2986 			if (!ret)
2987 				ret = ret2;
2988 		}
2989 	}
2990 	inode_unlock(inode);
2991 	return ret;
2992 }
2993 
2994 /* Helper structure to record which range is already reserved */
2995 struct falloc_range {
2996 	struct list_head list;
2997 	u64 start;
2998 	u64 len;
2999 };
3000 
3001 /*
3002  * Helper function to add falloc range
3003  *
3004  * Caller should have locked the larger range of extent containing
3005  * [start, len)
3006  */
3007 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3008 {
3009 	struct falloc_range *prev = NULL;
3010 	struct falloc_range *range = NULL;
3011 
3012 	if (list_empty(head))
3013 		goto insert;
3014 
3015 	/*
3016 	 * As fallocate iterate by bytenr order, we only need to check
3017 	 * the last range.
3018 	 */
3019 	prev = list_entry(head->prev, struct falloc_range, list);
3020 	if (prev->start + prev->len == start) {
3021 		prev->len += len;
3022 		return 0;
3023 	}
3024 insert:
3025 	range = kmalloc(sizeof(*range), GFP_KERNEL);
3026 	if (!range)
3027 		return -ENOMEM;
3028 	range->start = start;
3029 	range->len = len;
3030 	list_add_tail(&range->list, head);
3031 	return 0;
3032 }
3033 
3034 static int btrfs_fallocate_update_isize(struct inode *inode,
3035 					const u64 end,
3036 					const int mode)
3037 {
3038 	struct btrfs_trans_handle *trans;
3039 	struct btrfs_root *root = BTRFS_I(inode)->root;
3040 	int ret;
3041 	int ret2;
3042 
3043 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3044 		return 0;
3045 
3046 	trans = btrfs_start_transaction(root, 1);
3047 	if (IS_ERR(trans))
3048 		return PTR_ERR(trans);
3049 
3050 	inode->i_ctime = current_time(inode);
3051 	i_size_write(inode, end);
3052 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3053 	ret = btrfs_update_inode(trans, root, inode);
3054 	ret2 = btrfs_end_transaction(trans);
3055 
3056 	return ret ? ret : ret2;
3057 }
3058 
3059 enum {
3060 	RANGE_BOUNDARY_WRITTEN_EXTENT,
3061 	RANGE_BOUNDARY_PREALLOC_EXTENT,
3062 	RANGE_BOUNDARY_HOLE,
3063 };
3064 
3065 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3066 						 u64 offset)
3067 {
3068 	const u64 sectorsize = btrfs_inode_sectorsize(inode);
3069 	struct extent_map *em;
3070 	int ret;
3071 
3072 	offset = round_down(offset, sectorsize);
3073 	em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3074 	if (IS_ERR(em))
3075 		return PTR_ERR(em);
3076 
3077 	if (em->block_start == EXTENT_MAP_HOLE)
3078 		ret = RANGE_BOUNDARY_HOLE;
3079 	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3080 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3081 	else
3082 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3083 
3084 	free_extent_map(em);
3085 	return ret;
3086 }
3087 
3088 static int btrfs_zero_range(struct inode *inode,
3089 			    loff_t offset,
3090 			    loff_t len,
3091 			    const int mode)
3092 {
3093 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3094 	struct extent_map *em;
3095 	struct extent_changeset *data_reserved = NULL;
3096 	int ret;
3097 	u64 alloc_hint = 0;
3098 	const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3099 	u64 alloc_start = round_down(offset, sectorsize);
3100 	u64 alloc_end = round_up(offset + len, sectorsize);
3101 	u64 bytes_to_reserve = 0;
3102 	bool space_reserved = false;
3103 
3104 	inode_dio_wait(inode);
3105 
3106 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3107 			      alloc_end - alloc_start);
3108 	if (IS_ERR(em)) {
3109 		ret = PTR_ERR(em);
3110 		goto out;
3111 	}
3112 
3113 	/*
3114 	 * Avoid hole punching and extent allocation for some cases. More cases
3115 	 * could be considered, but these are unlikely common and we keep things
3116 	 * as simple as possible for now. Also, intentionally, if the target
3117 	 * range contains one or more prealloc extents together with regular
3118 	 * extents and holes, we drop all the existing extents and allocate a
3119 	 * new prealloc extent, so that we get a larger contiguous disk extent.
3120 	 */
3121 	if (em->start <= alloc_start &&
3122 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3123 		const u64 em_end = em->start + em->len;
3124 
3125 		if (em_end >= offset + len) {
3126 			/*
3127 			 * The whole range is already a prealloc extent,
3128 			 * do nothing except updating the inode's i_size if
3129 			 * needed.
3130 			 */
3131 			free_extent_map(em);
3132 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3133 							   mode);
3134 			goto out;
3135 		}
3136 		/*
3137 		 * Part of the range is already a prealloc extent, so operate
3138 		 * only on the remaining part of the range.
3139 		 */
3140 		alloc_start = em_end;
3141 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3142 		len = offset + len - alloc_start;
3143 		offset = alloc_start;
3144 		alloc_hint = em->block_start + em->len;
3145 	}
3146 	free_extent_map(em);
3147 
3148 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3149 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3150 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3151 				      sectorsize);
3152 		if (IS_ERR(em)) {
3153 			ret = PTR_ERR(em);
3154 			goto out;
3155 		}
3156 
3157 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3158 			free_extent_map(em);
3159 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3160 							   mode);
3161 			goto out;
3162 		}
3163 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3164 			free_extent_map(em);
3165 			ret = btrfs_truncate_block(inode, offset, len, 0);
3166 			if (!ret)
3167 				ret = btrfs_fallocate_update_isize(inode,
3168 								   offset + len,
3169 								   mode);
3170 			return ret;
3171 		}
3172 		free_extent_map(em);
3173 		alloc_start = round_down(offset, sectorsize);
3174 		alloc_end = alloc_start + sectorsize;
3175 		goto reserve_space;
3176 	}
3177 
3178 	alloc_start = round_up(offset, sectorsize);
3179 	alloc_end = round_down(offset + len, sectorsize);
3180 
3181 	/*
3182 	 * For unaligned ranges, check the pages at the boundaries, they might
3183 	 * map to an extent, in which case we need to partially zero them, or
3184 	 * they might map to a hole, in which case we need our allocation range
3185 	 * to cover them.
3186 	 */
3187 	if (!IS_ALIGNED(offset, sectorsize)) {
3188 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3189 							    offset);
3190 		if (ret < 0)
3191 			goto out;
3192 		if (ret == RANGE_BOUNDARY_HOLE) {
3193 			alloc_start = round_down(offset, sectorsize);
3194 			ret = 0;
3195 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3196 			ret = btrfs_truncate_block(inode, offset, 0, 0);
3197 			if (ret)
3198 				goto out;
3199 		} else {
3200 			ret = 0;
3201 		}
3202 	}
3203 
3204 	if (!IS_ALIGNED(offset + len, sectorsize)) {
3205 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3206 							    offset + len);
3207 		if (ret < 0)
3208 			goto out;
3209 		if (ret == RANGE_BOUNDARY_HOLE) {
3210 			alloc_end = round_up(offset + len, sectorsize);
3211 			ret = 0;
3212 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3213 			ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3214 			if (ret)
3215 				goto out;
3216 		} else {
3217 			ret = 0;
3218 		}
3219 	}
3220 
3221 reserve_space:
3222 	if (alloc_start < alloc_end) {
3223 		struct extent_state *cached_state = NULL;
3224 		const u64 lockstart = alloc_start;
3225 		const u64 lockend = alloc_end - 1;
3226 
3227 		bytes_to_reserve = alloc_end - alloc_start;
3228 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3229 						      bytes_to_reserve);
3230 		if (ret < 0)
3231 			goto out;
3232 		space_reserved = true;
3233 		ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3234 						  &cached_state);
3235 		if (ret)
3236 			goto out;
3237 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3238 						alloc_start, bytes_to_reserve);
3239 		if (ret)
3240 			goto out;
3241 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3242 						alloc_end - alloc_start,
3243 						i_blocksize(inode),
3244 						offset + len, &alloc_hint);
3245 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3246 				     lockend, &cached_state);
3247 		/* btrfs_prealloc_file_range releases reserved space on error */
3248 		if (ret) {
3249 			space_reserved = false;
3250 			goto out;
3251 		}
3252 	}
3253 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3254  out:
3255 	if (ret && space_reserved)
3256 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3257 					       alloc_start, bytes_to_reserve);
3258 	extent_changeset_free(data_reserved);
3259 
3260 	return ret;
3261 }
3262 
3263 static long btrfs_fallocate(struct file *file, int mode,
3264 			    loff_t offset, loff_t len)
3265 {
3266 	struct inode *inode = file_inode(file);
3267 	struct extent_state *cached_state = NULL;
3268 	struct extent_changeset *data_reserved = NULL;
3269 	struct falloc_range *range;
3270 	struct falloc_range *tmp;
3271 	struct list_head reserve_list;
3272 	u64 cur_offset;
3273 	u64 last_byte;
3274 	u64 alloc_start;
3275 	u64 alloc_end;
3276 	u64 alloc_hint = 0;
3277 	u64 locked_end;
3278 	u64 actual_end = 0;
3279 	struct extent_map *em;
3280 	int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3281 	int ret;
3282 
3283 	alloc_start = round_down(offset, blocksize);
3284 	alloc_end = round_up(offset + len, blocksize);
3285 	cur_offset = alloc_start;
3286 
3287 	/* Make sure we aren't being give some crap mode */
3288 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3289 		     FALLOC_FL_ZERO_RANGE))
3290 		return -EOPNOTSUPP;
3291 
3292 	if (mode & FALLOC_FL_PUNCH_HOLE)
3293 		return btrfs_punch_hole(inode, offset, len);
3294 
3295 	/*
3296 	 * Only trigger disk allocation, don't trigger qgroup reserve
3297 	 *
3298 	 * For qgroup space, it will be checked later.
3299 	 */
3300 	if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3301 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3302 						      alloc_end - alloc_start);
3303 		if (ret < 0)
3304 			return ret;
3305 	}
3306 
3307 	inode_lock(inode);
3308 
3309 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3310 		ret = inode_newsize_ok(inode, offset + len);
3311 		if (ret)
3312 			goto out;
3313 	}
3314 
3315 	/*
3316 	 * TODO: Move these two operations after we have checked
3317 	 * accurate reserved space, or fallocate can still fail but
3318 	 * with page truncated or size expanded.
3319 	 *
3320 	 * But that's a minor problem and won't do much harm BTW.
3321 	 */
3322 	if (alloc_start > inode->i_size) {
3323 		ret = btrfs_cont_expand(inode, i_size_read(inode),
3324 					alloc_start);
3325 		if (ret)
3326 			goto out;
3327 	} else if (offset + len > inode->i_size) {
3328 		/*
3329 		 * If we are fallocating from the end of the file onward we
3330 		 * need to zero out the end of the block if i_size lands in the
3331 		 * middle of a block.
3332 		 */
3333 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3334 		if (ret)
3335 			goto out;
3336 	}
3337 
3338 	/*
3339 	 * wait for ordered IO before we have any locks.  We'll loop again
3340 	 * below with the locks held.
3341 	 */
3342 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3343 				       alloc_end - alloc_start);
3344 	if (ret)
3345 		goto out;
3346 
3347 	if (mode & FALLOC_FL_ZERO_RANGE) {
3348 		ret = btrfs_zero_range(inode, offset, len, mode);
3349 		inode_unlock(inode);
3350 		return ret;
3351 	}
3352 
3353 	locked_end = alloc_end - 1;
3354 	while (1) {
3355 		struct btrfs_ordered_extent *ordered;
3356 
3357 		/* the extent lock is ordered inside the running
3358 		 * transaction
3359 		 */
3360 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3361 				 locked_end, &cached_state);
3362 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3363 							    locked_end);
3364 
3365 		if (ordered &&
3366 		    ordered->file_offset + ordered->num_bytes > alloc_start &&
3367 		    ordered->file_offset < alloc_end) {
3368 			btrfs_put_ordered_extent(ordered);
3369 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3370 					     alloc_start, locked_end,
3371 					     &cached_state);
3372 			/*
3373 			 * we can't wait on the range with the transaction
3374 			 * running or with the extent lock held
3375 			 */
3376 			ret = btrfs_wait_ordered_range(inode, alloc_start,
3377 						       alloc_end - alloc_start);
3378 			if (ret)
3379 				goto out;
3380 		} else {
3381 			if (ordered)
3382 				btrfs_put_ordered_extent(ordered);
3383 			break;
3384 		}
3385 	}
3386 
3387 	/* First, check if we exceed the qgroup limit */
3388 	INIT_LIST_HEAD(&reserve_list);
3389 	while (cur_offset < alloc_end) {
3390 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3391 				      alloc_end - cur_offset);
3392 		if (IS_ERR(em)) {
3393 			ret = PTR_ERR(em);
3394 			break;
3395 		}
3396 		last_byte = min(extent_map_end(em), alloc_end);
3397 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3398 		last_byte = ALIGN(last_byte, blocksize);
3399 		if (em->block_start == EXTENT_MAP_HOLE ||
3400 		    (cur_offset >= inode->i_size &&
3401 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3402 			ret = add_falloc_range(&reserve_list, cur_offset,
3403 					       last_byte - cur_offset);
3404 			if (ret < 0) {
3405 				free_extent_map(em);
3406 				break;
3407 			}
3408 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3409 					&data_reserved, cur_offset,
3410 					last_byte - cur_offset);
3411 			if (ret < 0) {
3412 				cur_offset = last_byte;
3413 				free_extent_map(em);
3414 				break;
3415 			}
3416 		} else {
3417 			/*
3418 			 * Do not need to reserve unwritten extent for this
3419 			 * range, free reserved data space first, otherwise
3420 			 * it'll result in false ENOSPC error.
3421 			 */
3422 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3423 				data_reserved, cur_offset,
3424 				last_byte - cur_offset);
3425 		}
3426 		free_extent_map(em);
3427 		cur_offset = last_byte;
3428 	}
3429 
3430 	/*
3431 	 * If ret is still 0, means we're OK to fallocate.
3432 	 * Or just cleanup the list and exit.
3433 	 */
3434 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3435 		if (!ret)
3436 			ret = btrfs_prealloc_file_range(inode, mode,
3437 					range->start,
3438 					range->len, i_blocksize(inode),
3439 					offset + len, &alloc_hint);
3440 		else
3441 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3442 					data_reserved, range->start,
3443 					range->len);
3444 		list_del(&range->list);
3445 		kfree(range);
3446 	}
3447 	if (ret < 0)
3448 		goto out_unlock;
3449 
3450 	/*
3451 	 * We didn't need to allocate any more space, but we still extended the
3452 	 * size of the file so we need to update i_size and the inode item.
3453 	 */
3454 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3455 out_unlock:
3456 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3457 			     &cached_state);
3458 out:
3459 	inode_unlock(inode);
3460 	/* Let go of our reservation. */
3461 	if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3462 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3463 				cur_offset, alloc_end - cur_offset);
3464 	extent_changeset_free(data_reserved);
3465 	return ret;
3466 }
3467 
3468 static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3469 				  int whence)
3470 {
3471 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3472 	struct extent_map *em = NULL;
3473 	struct extent_state *cached_state = NULL;
3474 	loff_t i_size = inode->i_size;
3475 	u64 lockstart;
3476 	u64 lockend;
3477 	u64 start;
3478 	u64 len;
3479 	int ret = 0;
3480 
3481 	if (i_size == 0 || offset >= i_size)
3482 		return -ENXIO;
3483 
3484 	/*
3485 	 * offset can be negative, in this case we start finding DATA/HOLE from
3486 	 * the very start of the file.
3487 	 */
3488 	start = max_t(loff_t, 0, offset);
3489 
3490 	lockstart = round_down(start, fs_info->sectorsize);
3491 	lockend = round_up(i_size, fs_info->sectorsize);
3492 	if (lockend <= lockstart)
3493 		lockend = lockstart + fs_info->sectorsize;
3494 	lockend--;
3495 	len = lockend - lockstart + 1;
3496 
3497 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3498 			 &cached_state);
3499 
3500 	while (start < i_size) {
3501 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3502 		if (IS_ERR(em)) {
3503 			ret = PTR_ERR(em);
3504 			em = NULL;
3505 			break;
3506 		}
3507 
3508 		if (whence == SEEK_HOLE &&
3509 		    (em->block_start == EXTENT_MAP_HOLE ||
3510 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3511 			break;
3512 		else if (whence == SEEK_DATA &&
3513 			   (em->block_start != EXTENT_MAP_HOLE &&
3514 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3515 			break;
3516 
3517 		start = em->start + em->len;
3518 		free_extent_map(em);
3519 		em = NULL;
3520 		cond_resched();
3521 	}
3522 	free_extent_map(em);
3523 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3524 			     &cached_state);
3525 	if (ret) {
3526 		offset = ret;
3527 	} else {
3528 		if (whence == SEEK_DATA && start >= i_size)
3529 			offset = -ENXIO;
3530 		else
3531 			offset = min_t(loff_t, start, i_size);
3532 	}
3533 
3534 	return offset;
3535 }
3536 
3537 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3538 {
3539 	struct inode *inode = file->f_mapping->host;
3540 
3541 	switch (whence) {
3542 	default:
3543 		return generic_file_llseek(file, offset, whence);
3544 	case SEEK_DATA:
3545 	case SEEK_HOLE:
3546 		inode_lock_shared(inode);
3547 		offset = find_desired_extent(inode, offset, whence);
3548 		inode_unlock_shared(inode);
3549 		break;
3550 	}
3551 
3552 	if (offset < 0)
3553 		return offset;
3554 
3555 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3556 }
3557 
3558 static int btrfs_file_open(struct inode *inode, struct file *filp)
3559 {
3560 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3561 	return generic_file_open(inode, filp);
3562 }
3563 
3564 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3565 {
3566 	ssize_t ret = 0;
3567 
3568 	if (iocb->ki_flags & IOCB_DIRECT) {
3569 		struct inode *inode = file_inode(iocb->ki_filp);
3570 
3571 		inode_lock_shared(inode);
3572 		ret = btrfs_direct_IO(iocb, to);
3573 		inode_unlock_shared(inode);
3574 		if (ret < 0 || !iov_iter_count(to) ||
3575 		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3576 			return ret;
3577 	}
3578 
3579 	return generic_file_buffered_read(iocb, to, ret);
3580 }
3581 
3582 const struct file_operations btrfs_file_operations = {
3583 	.llseek		= btrfs_file_llseek,
3584 	.read_iter      = btrfs_file_read_iter,
3585 	.splice_read	= generic_file_splice_read,
3586 	.write_iter	= btrfs_file_write_iter,
3587 	.splice_write	= iter_file_splice_write,
3588 	.mmap		= btrfs_file_mmap,
3589 	.open		= btrfs_file_open,
3590 	.release	= btrfs_release_file,
3591 	.fsync		= btrfs_sync_file,
3592 	.fallocate	= btrfs_fallocate,
3593 	.unlocked_ioctl	= btrfs_ioctl,
3594 #ifdef CONFIG_COMPAT
3595 	.compat_ioctl	= btrfs_compat_ioctl,
3596 #endif
3597 	.remap_file_range = btrfs_remap_file_range,
3598 };
3599 
3600 void __cold btrfs_auto_defrag_exit(void)
3601 {
3602 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3603 }
3604 
3605 int __init btrfs_auto_defrag_init(void)
3606 {
3607 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3608 					sizeof(struct inode_defrag), 0,
3609 					SLAB_MEM_SPREAD,
3610 					NULL);
3611 	if (!btrfs_inode_defrag_cachep)
3612 		return -ENOMEM;
3613 
3614 	return 0;
3615 }
3616 
3617 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3618 {
3619 	int ret;
3620 
3621 	/*
3622 	 * So with compression we will find and lock a dirty page and clear the
3623 	 * first one as dirty, setup an async extent, and immediately return
3624 	 * with the entire range locked but with nobody actually marked with
3625 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3626 	 * expect it to work since it will just kick off a thread to do the
3627 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3628 	 * since it will wait on the page lock, which won't be unlocked until
3629 	 * after the pages have been marked as writeback and so we're good to go
3630 	 * from there.  We have to do this otherwise we'll miss the ordered
3631 	 * extents and that results in badness.  Please Josef, do not think you
3632 	 * know better and pull this out at some point in the future, it is
3633 	 * right and you are wrong.
3634 	 */
3635 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3636 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3637 			     &BTRFS_I(inode)->runtime_flags))
3638 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3639 
3640 	return ret;
3641 }
3642