1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include "ctree.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "btrfs_inode.h" 23 #include "print-tree.h" 24 #include "tree-log.h" 25 #include "locking.h" 26 #include "volumes.h" 27 #include "qgroup.h" 28 #include "compression.h" 29 #include "delalloc-space.h" 30 #include "reflink.h" 31 32 static struct kmem_cache *btrfs_inode_defrag_cachep; 33 /* 34 * when auto defrag is enabled we 35 * queue up these defrag structs to remember which 36 * inodes need defragging passes 37 */ 38 struct inode_defrag { 39 struct rb_node rb_node; 40 /* objectid */ 41 u64 ino; 42 /* 43 * transid where the defrag was added, we search for 44 * extents newer than this 45 */ 46 u64 transid; 47 48 /* root objectid */ 49 u64 root; 50 51 /* last offset we were able to defrag */ 52 u64 last_offset; 53 54 /* if we've wrapped around back to zero once already */ 55 int cycled; 56 }; 57 58 static int __compare_inode_defrag(struct inode_defrag *defrag1, 59 struct inode_defrag *defrag2) 60 { 61 if (defrag1->root > defrag2->root) 62 return 1; 63 else if (defrag1->root < defrag2->root) 64 return -1; 65 else if (defrag1->ino > defrag2->ino) 66 return 1; 67 else if (defrag1->ino < defrag2->ino) 68 return -1; 69 else 70 return 0; 71 } 72 73 /* pop a record for an inode into the defrag tree. The lock 74 * must be held already 75 * 76 * If you're inserting a record for an older transid than an 77 * existing record, the transid already in the tree is lowered 78 * 79 * If an existing record is found the defrag item you 80 * pass in is freed 81 */ 82 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 83 struct inode_defrag *defrag) 84 { 85 struct btrfs_fs_info *fs_info = inode->root->fs_info; 86 struct inode_defrag *entry; 87 struct rb_node **p; 88 struct rb_node *parent = NULL; 89 int ret; 90 91 p = &fs_info->defrag_inodes.rb_node; 92 while (*p) { 93 parent = *p; 94 entry = rb_entry(parent, struct inode_defrag, rb_node); 95 96 ret = __compare_inode_defrag(defrag, entry); 97 if (ret < 0) 98 p = &parent->rb_left; 99 else if (ret > 0) 100 p = &parent->rb_right; 101 else { 102 /* if we're reinserting an entry for 103 * an old defrag run, make sure to 104 * lower the transid of our existing record 105 */ 106 if (defrag->transid < entry->transid) 107 entry->transid = defrag->transid; 108 if (defrag->last_offset > entry->last_offset) 109 entry->last_offset = defrag->last_offset; 110 return -EEXIST; 111 } 112 } 113 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 114 rb_link_node(&defrag->rb_node, parent, p); 115 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 116 return 0; 117 } 118 119 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 120 { 121 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 122 return 0; 123 124 if (btrfs_fs_closing(fs_info)) 125 return 0; 126 127 return 1; 128 } 129 130 /* 131 * insert a defrag record for this inode if auto defrag is 132 * enabled 133 */ 134 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 135 struct btrfs_inode *inode) 136 { 137 struct btrfs_root *root = inode->root; 138 struct btrfs_fs_info *fs_info = root->fs_info; 139 struct inode_defrag *defrag; 140 u64 transid; 141 int ret; 142 143 if (!__need_auto_defrag(fs_info)) 144 return 0; 145 146 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 147 return 0; 148 149 if (trans) 150 transid = trans->transid; 151 else 152 transid = inode->root->last_trans; 153 154 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 155 if (!defrag) 156 return -ENOMEM; 157 158 defrag->ino = btrfs_ino(inode); 159 defrag->transid = transid; 160 defrag->root = root->root_key.objectid; 161 162 spin_lock(&fs_info->defrag_inodes_lock); 163 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 164 /* 165 * If we set IN_DEFRAG flag and evict the inode from memory, 166 * and then re-read this inode, this new inode doesn't have 167 * IN_DEFRAG flag. At the case, we may find the existed defrag. 168 */ 169 ret = __btrfs_add_inode_defrag(inode, defrag); 170 if (ret) 171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 172 } else { 173 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 174 } 175 spin_unlock(&fs_info->defrag_inodes_lock); 176 return 0; 177 } 178 179 /* 180 * Requeue the defrag object. If there is a defrag object that points to 181 * the same inode in the tree, we will merge them together (by 182 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 183 */ 184 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode, 185 struct inode_defrag *defrag) 186 { 187 struct btrfs_fs_info *fs_info = inode->root->fs_info; 188 int ret; 189 190 if (!__need_auto_defrag(fs_info)) 191 goto out; 192 193 /* 194 * Here we don't check the IN_DEFRAG flag, because we need merge 195 * them together. 196 */ 197 spin_lock(&fs_info->defrag_inodes_lock); 198 ret = __btrfs_add_inode_defrag(inode, defrag); 199 spin_unlock(&fs_info->defrag_inodes_lock); 200 if (ret) 201 goto out; 202 return; 203 out: 204 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 205 } 206 207 /* 208 * pick the defragable inode that we want, if it doesn't exist, we will get 209 * the next one. 210 */ 211 static struct inode_defrag * 212 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 213 { 214 struct inode_defrag *entry = NULL; 215 struct inode_defrag tmp; 216 struct rb_node *p; 217 struct rb_node *parent = NULL; 218 int ret; 219 220 tmp.ino = ino; 221 tmp.root = root; 222 223 spin_lock(&fs_info->defrag_inodes_lock); 224 p = fs_info->defrag_inodes.rb_node; 225 while (p) { 226 parent = p; 227 entry = rb_entry(parent, struct inode_defrag, rb_node); 228 229 ret = __compare_inode_defrag(&tmp, entry); 230 if (ret < 0) 231 p = parent->rb_left; 232 else if (ret > 0) 233 p = parent->rb_right; 234 else 235 goto out; 236 } 237 238 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 239 parent = rb_next(parent); 240 if (parent) 241 entry = rb_entry(parent, struct inode_defrag, rb_node); 242 else 243 entry = NULL; 244 } 245 out: 246 if (entry) 247 rb_erase(parent, &fs_info->defrag_inodes); 248 spin_unlock(&fs_info->defrag_inodes_lock); 249 return entry; 250 } 251 252 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 253 { 254 struct inode_defrag *defrag; 255 struct rb_node *node; 256 257 spin_lock(&fs_info->defrag_inodes_lock); 258 node = rb_first(&fs_info->defrag_inodes); 259 while (node) { 260 rb_erase(node, &fs_info->defrag_inodes); 261 defrag = rb_entry(node, struct inode_defrag, rb_node); 262 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 263 264 cond_resched_lock(&fs_info->defrag_inodes_lock); 265 266 node = rb_first(&fs_info->defrag_inodes); 267 } 268 spin_unlock(&fs_info->defrag_inodes_lock); 269 } 270 271 #define BTRFS_DEFRAG_BATCH 1024 272 273 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 274 struct inode_defrag *defrag) 275 { 276 struct btrfs_root *inode_root; 277 struct inode *inode; 278 struct btrfs_ioctl_defrag_range_args range; 279 int num_defrag; 280 int ret; 281 282 /* get the inode */ 283 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); 284 if (IS_ERR(inode_root)) { 285 ret = PTR_ERR(inode_root); 286 goto cleanup; 287 } 288 289 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root); 290 btrfs_put_root(inode_root); 291 if (IS_ERR(inode)) { 292 ret = PTR_ERR(inode); 293 goto cleanup; 294 } 295 296 /* do a chunk of defrag */ 297 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 298 memset(&range, 0, sizeof(range)); 299 range.len = (u64)-1; 300 range.start = defrag->last_offset; 301 302 sb_start_write(fs_info->sb); 303 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 304 BTRFS_DEFRAG_BATCH); 305 sb_end_write(fs_info->sb); 306 /* 307 * if we filled the whole defrag batch, there 308 * must be more work to do. Queue this defrag 309 * again 310 */ 311 if (num_defrag == BTRFS_DEFRAG_BATCH) { 312 defrag->last_offset = range.start; 313 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 314 } else if (defrag->last_offset && !defrag->cycled) { 315 /* 316 * we didn't fill our defrag batch, but 317 * we didn't start at zero. Make sure we loop 318 * around to the start of the file. 319 */ 320 defrag->last_offset = 0; 321 defrag->cycled = 1; 322 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 323 } else { 324 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 325 } 326 327 iput(inode); 328 return 0; 329 cleanup: 330 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 331 return ret; 332 } 333 334 /* 335 * run through the list of inodes in the FS that need 336 * defragging 337 */ 338 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 339 { 340 struct inode_defrag *defrag; 341 u64 first_ino = 0; 342 u64 root_objectid = 0; 343 344 atomic_inc(&fs_info->defrag_running); 345 while (1) { 346 /* Pause the auto defragger. */ 347 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 348 &fs_info->fs_state)) 349 break; 350 351 if (!__need_auto_defrag(fs_info)) 352 break; 353 354 /* find an inode to defrag */ 355 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 356 first_ino); 357 if (!defrag) { 358 if (root_objectid || first_ino) { 359 root_objectid = 0; 360 first_ino = 0; 361 continue; 362 } else { 363 break; 364 } 365 } 366 367 first_ino = defrag->ino + 1; 368 root_objectid = defrag->root; 369 370 __btrfs_run_defrag_inode(fs_info, defrag); 371 } 372 atomic_dec(&fs_info->defrag_running); 373 374 /* 375 * during unmount, we use the transaction_wait queue to 376 * wait for the defragger to stop 377 */ 378 wake_up(&fs_info->transaction_wait); 379 return 0; 380 } 381 382 /* simple helper to fault in pages and copy. This should go away 383 * and be replaced with calls into generic code. 384 */ 385 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 386 struct page **prepared_pages, 387 struct iov_iter *i) 388 { 389 size_t copied = 0; 390 size_t total_copied = 0; 391 int pg = 0; 392 int offset = offset_in_page(pos); 393 394 while (write_bytes > 0) { 395 size_t count = min_t(size_t, 396 PAGE_SIZE - offset, write_bytes); 397 struct page *page = prepared_pages[pg]; 398 /* 399 * Copy data from userspace to the current page 400 */ 401 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 402 403 /* Flush processor's dcache for this page */ 404 flush_dcache_page(page); 405 406 /* 407 * if we get a partial write, we can end up with 408 * partially up to date pages. These add 409 * a lot of complexity, so make sure they don't 410 * happen by forcing this copy to be retried. 411 * 412 * The rest of the btrfs_file_write code will fall 413 * back to page at a time copies after we return 0. 414 */ 415 if (!PageUptodate(page) && copied < count) 416 copied = 0; 417 418 iov_iter_advance(i, copied); 419 write_bytes -= copied; 420 total_copied += copied; 421 422 /* Return to btrfs_file_write_iter to fault page */ 423 if (unlikely(copied == 0)) 424 break; 425 426 if (copied < PAGE_SIZE - offset) { 427 offset += copied; 428 } else { 429 pg++; 430 offset = 0; 431 } 432 } 433 return total_copied; 434 } 435 436 /* 437 * unlocks pages after btrfs_file_write is done with them 438 */ 439 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 440 { 441 size_t i; 442 for (i = 0; i < num_pages; i++) { 443 /* page checked is some magic around finding pages that 444 * have been modified without going through btrfs_set_page_dirty 445 * clear it here. There should be no need to mark the pages 446 * accessed as prepare_pages should have marked them accessed 447 * in prepare_pages via find_or_create_page() 448 */ 449 ClearPageChecked(pages[i]); 450 unlock_page(pages[i]); 451 put_page(pages[i]); 452 } 453 } 454 455 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 456 const u64 start, 457 const u64 len, 458 struct extent_state **cached_state) 459 { 460 u64 search_start = start; 461 const u64 end = start + len - 1; 462 463 while (search_start < end) { 464 const u64 search_len = end - search_start + 1; 465 struct extent_map *em; 466 u64 em_len; 467 int ret = 0; 468 469 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 470 if (IS_ERR(em)) 471 return PTR_ERR(em); 472 473 if (em->block_start != EXTENT_MAP_HOLE) 474 goto next; 475 476 em_len = em->len; 477 if (em->start < search_start) 478 em_len -= search_start - em->start; 479 if (em_len > search_len) 480 em_len = search_len; 481 482 ret = set_extent_bit(&inode->io_tree, search_start, 483 search_start + em_len - 1, 484 EXTENT_DELALLOC_NEW, 485 NULL, cached_state, GFP_NOFS); 486 next: 487 search_start = extent_map_end(em); 488 free_extent_map(em); 489 if (ret) 490 return ret; 491 } 492 return 0; 493 } 494 495 /* 496 * after copy_from_user, pages need to be dirtied and we need to make 497 * sure holes are created between the current EOF and the start of 498 * any next extents (if required). 499 * 500 * this also makes the decision about creating an inline extent vs 501 * doing real data extents, marking pages dirty and delalloc as required. 502 */ 503 int btrfs_dirty_pages(struct inode *inode, struct page **pages, 504 size_t num_pages, loff_t pos, size_t write_bytes, 505 struct extent_state **cached) 506 { 507 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 508 int err = 0; 509 int i; 510 u64 num_bytes; 511 u64 start_pos; 512 u64 end_of_last_block; 513 u64 end_pos = pos + write_bytes; 514 loff_t isize = i_size_read(inode); 515 unsigned int extra_bits = 0; 516 517 start_pos = pos & ~((u64) fs_info->sectorsize - 1); 518 num_bytes = round_up(write_bytes + pos - start_pos, 519 fs_info->sectorsize); 520 521 end_of_last_block = start_pos + num_bytes - 1; 522 523 /* 524 * The pages may have already been dirty, clear out old accounting so 525 * we can set things up properly 526 */ 527 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block, 528 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 529 0, 0, cached); 530 531 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) { 532 if (start_pos >= isize && 533 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) { 534 /* 535 * There can't be any extents following eof in this case 536 * so just set the delalloc new bit for the range 537 * directly. 538 */ 539 extra_bits |= EXTENT_DELALLOC_NEW; 540 } else { 541 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode), 542 start_pos, 543 num_bytes, cached); 544 if (err) 545 return err; 546 } 547 } 548 549 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 550 extra_bits, cached); 551 if (err) 552 return err; 553 554 for (i = 0; i < num_pages; i++) { 555 struct page *p = pages[i]; 556 SetPageUptodate(p); 557 ClearPageChecked(p); 558 set_page_dirty(p); 559 } 560 561 /* 562 * we've only changed i_size in ram, and we haven't updated 563 * the disk i_size. There is no need to log the inode 564 * at this time. 565 */ 566 if (end_pos > isize) 567 i_size_write(inode, end_pos); 568 return 0; 569 } 570 571 /* 572 * this drops all the extents in the cache that intersect the range 573 * [start, end]. Existing extents are split as required. 574 */ 575 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 576 int skip_pinned) 577 { 578 struct extent_map *em; 579 struct extent_map *split = NULL; 580 struct extent_map *split2 = NULL; 581 struct extent_map_tree *em_tree = &inode->extent_tree; 582 u64 len = end - start + 1; 583 u64 gen; 584 int ret; 585 int testend = 1; 586 unsigned long flags; 587 int compressed = 0; 588 bool modified; 589 590 WARN_ON(end < start); 591 if (end == (u64)-1) { 592 len = (u64)-1; 593 testend = 0; 594 } 595 while (1) { 596 int no_splits = 0; 597 598 modified = false; 599 if (!split) 600 split = alloc_extent_map(); 601 if (!split2) 602 split2 = alloc_extent_map(); 603 if (!split || !split2) 604 no_splits = 1; 605 606 write_lock(&em_tree->lock); 607 em = lookup_extent_mapping(em_tree, start, len); 608 if (!em) { 609 write_unlock(&em_tree->lock); 610 break; 611 } 612 flags = em->flags; 613 gen = em->generation; 614 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 615 if (testend && em->start + em->len >= start + len) { 616 free_extent_map(em); 617 write_unlock(&em_tree->lock); 618 break; 619 } 620 start = em->start + em->len; 621 if (testend) 622 len = start + len - (em->start + em->len); 623 free_extent_map(em); 624 write_unlock(&em_tree->lock); 625 continue; 626 } 627 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 628 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 629 clear_bit(EXTENT_FLAG_LOGGING, &flags); 630 modified = !list_empty(&em->list); 631 if (no_splits) 632 goto next; 633 634 if (em->start < start) { 635 split->start = em->start; 636 split->len = start - em->start; 637 638 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 639 split->orig_start = em->orig_start; 640 split->block_start = em->block_start; 641 642 if (compressed) 643 split->block_len = em->block_len; 644 else 645 split->block_len = split->len; 646 split->orig_block_len = max(split->block_len, 647 em->orig_block_len); 648 split->ram_bytes = em->ram_bytes; 649 } else { 650 split->orig_start = split->start; 651 split->block_len = 0; 652 split->block_start = em->block_start; 653 split->orig_block_len = 0; 654 split->ram_bytes = split->len; 655 } 656 657 split->generation = gen; 658 split->flags = flags; 659 split->compress_type = em->compress_type; 660 replace_extent_mapping(em_tree, em, split, modified); 661 free_extent_map(split); 662 split = split2; 663 split2 = NULL; 664 } 665 if (testend && em->start + em->len > start + len) { 666 u64 diff = start + len - em->start; 667 668 split->start = start + len; 669 split->len = em->start + em->len - (start + len); 670 split->flags = flags; 671 split->compress_type = em->compress_type; 672 split->generation = gen; 673 674 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 675 split->orig_block_len = max(em->block_len, 676 em->orig_block_len); 677 678 split->ram_bytes = em->ram_bytes; 679 if (compressed) { 680 split->block_len = em->block_len; 681 split->block_start = em->block_start; 682 split->orig_start = em->orig_start; 683 } else { 684 split->block_len = split->len; 685 split->block_start = em->block_start 686 + diff; 687 split->orig_start = em->orig_start; 688 } 689 } else { 690 split->ram_bytes = split->len; 691 split->orig_start = split->start; 692 split->block_len = 0; 693 split->block_start = em->block_start; 694 split->orig_block_len = 0; 695 } 696 697 if (extent_map_in_tree(em)) { 698 replace_extent_mapping(em_tree, em, split, 699 modified); 700 } else { 701 ret = add_extent_mapping(em_tree, split, 702 modified); 703 ASSERT(ret == 0); /* Logic error */ 704 } 705 free_extent_map(split); 706 split = NULL; 707 } 708 next: 709 if (extent_map_in_tree(em)) 710 remove_extent_mapping(em_tree, em); 711 write_unlock(&em_tree->lock); 712 713 /* once for us */ 714 free_extent_map(em); 715 /* once for the tree*/ 716 free_extent_map(em); 717 } 718 if (split) 719 free_extent_map(split); 720 if (split2) 721 free_extent_map(split2); 722 } 723 724 /* 725 * this is very complex, but the basic idea is to drop all extents 726 * in the range start - end. hint_block is filled in with a block number 727 * that would be a good hint to the block allocator for this file. 728 * 729 * If an extent intersects the range but is not entirely inside the range 730 * it is either truncated or split. Anything entirely inside the range 731 * is deleted from the tree. 732 */ 733 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 734 struct btrfs_root *root, struct inode *inode, 735 struct btrfs_path *path, u64 start, u64 end, 736 u64 *drop_end, int drop_cache, 737 int replace_extent, 738 u32 extent_item_size, 739 int *key_inserted) 740 { 741 struct btrfs_fs_info *fs_info = root->fs_info; 742 struct extent_buffer *leaf; 743 struct btrfs_file_extent_item *fi; 744 struct btrfs_ref ref = { 0 }; 745 struct btrfs_key key; 746 struct btrfs_key new_key; 747 u64 ino = btrfs_ino(BTRFS_I(inode)); 748 u64 search_start = start; 749 u64 disk_bytenr = 0; 750 u64 num_bytes = 0; 751 u64 extent_offset = 0; 752 u64 extent_end = 0; 753 u64 last_end = start; 754 int del_nr = 0; 755 int del_slot = 0; 756 int extent_type; 757 int recow; 758 int ret; 759 int modify_tree = -1; 760 int update_refs; 761 int found = 0; 762 int leafs_visited = 0; 763 764 if (drop_cache) 765 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0); 766 767 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 768 modify_tree = 0; 769 770 update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 771 root == fs_info->tree_root); 772 while (1) { 773 recow = 0; 774 ret = btrfs_lookup_file_extent(trans, root, path, ino, 775 search_start, modify_tree); 776 if (ret < 0) 777 break; 778 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 779 leaf = path->nodes[0]; 780 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 781 if (key.objectid == ino && 782 key.type == BTRFS_EXTENT_DATA_KEY) 783 path->slots[0]--; 784 } 785 ret = 0; 786 leafs_visited++; 787 next_slot: 788 leaf = path->nodes[0]; 789 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 790 BUG_ON(del_nr > 0); 791 ret = btrfs_next_leaf(root, path); 792 if (ret < 0) 793 break; 794 if (ret > 0) { 795 ret = 0; 796 break; 797 } 798 leafs_visited++; 799 leaf = path->nodes[0]; 800 recow = 1; 801 } 802 803 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 804 805 if (key.objectid > ino) 806 break; 807 if (WARN_ON_ONCE(key.objectid < ino) || 808 key.type < BTRFS_EXTENT_DATA_KEY) { 809 ASSERT(del_nr == 0); 810 path->slots[0]++; 811 goto next_slot; 812 } 813 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 814 break; 815 816 fi = btrfs_item_ptr(leaf, path->slots[0], 817 struct btrfs_file_extent_item); 818 extent_type = btrfs_file_extent_type(leaf, fi); 819 820 if (extent_type == BTRFS_FILE_EXTENT_REG || 821 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 822 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 823 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 824 extent_offset = btrfs_file_extent_offset(leaf, fi); 825 extent_end = key.offset + 826 btrfs_file_extent_num_bytes(leaf, fi); 827 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 828 extent_end = key.offset + 829 btrfs_file_extent_ram_bytes(leaf, fi); 830 } else { 831 /* can't happen */ 832 BUG(); 833 } 834 835 /* 836 * Don't skip extent items representing 0 byte lengths. They 837 * used to be created (bug) if while punching holes we hit 838 * -ENOSPC condition. So if we find one here, just ensure we 839 * delete it, otherwise we would insert a new file extent item 840 * with the same key (offset) as that 0 bytes length file 841 * extent item in the call to setup_items_for_insert() later 842 * in this function. 843 */ 844 if (extent_end == key.offset && extent_end >= search_start) { 845 last_end = extent_end; 846 goto delete_extent_item; 847 } 848 849 if (extent_end <= search_start) { 850 path->slots[0]++; 851 goto next_slot; 852 } 853 854 found = 1; 855 search_start = max(key.offset, start); 856 if (recow || !modify_tree) { 857 modify_tree = -1; 858 btrfs_release_path(path); 859 continue; 860 } 861 862 /* 863 * | - range to drop - | 864 * | -------- extent -------- | 865 */ 866 if (start > key.offset && end < extent_end) { 867 BUG_ON(del_nr > 0); 868 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 869 ret = -EOPNOTSUPP; 870 break; 871 } 872 873 memcpy(&new_key, &key, sizeof(new_key)); 874 new_key.offset = start; 875 ret = btrfs_duplicate_item(trans, root, path, 876 &new_key); 877 if (ret == -EAGAIN) { 878 btrfs_release_path(path); 879 continue; 880 } 881 if (ret < 0) 882 break; 883 884 leaf = path->nodes[0]; 885 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 886 struct btrfs_file_extent_item); 887 btrfs_set_file_extent_num_bytes(leaf, fi, 888 start - key.offset); 889 890 fi = btrfs_item_ptr(leaf, path->slots[0], 891 struct btrfs_file_extent_item); 892 893 extent_offset += start - key.offset; 894 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 895 btrfs_set_file_extent_num_bytes(leaf, fi, 896 extent_end - start); 897 btrfs_mark_buffer_dirty(leaf); 898 899 if (update_refs && disk_bytenr > 0) { 900 btrfs_init_generic_ref(&ref, 901 BTRFS_ADD_DELAYED_REF, 902 disk_bytenr, num_bytes, 0); 903 btrfs_init_data_ref(&ref, 904 root->root_key.objectid, 905 new_key.objectid, 906 start - extent_offset); 907 ret = btrfs_inc_extent_ref(trans, &ref); 908 BUG_ON(ret); /* -ENOMEM */ 909 } 910 key.offset = start; 911 } 912 /* 913 * From here on out we will have actually dropped something, so 914 * last_end can be updated. 915 */ 916 last_end = extent_end; 917 918 /* 919 * | ---- range to drop ----- | 920 * | -------- extent -------- | 921 */ 922 if (start <= key.offset && end < extent_end) { 923 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 924 ret = -EOPNOTSUPP; 925 break; 926 } 927 928 memcpy(&new_key, &key, sizeof(new_key)); 929 new_key.offset = end; 930 btrfs_set_item_key_safe(fs_info, path, &new_key); 931 932 extent_offset += end - key.offset; 933 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 934 btrfs_set_file_extent_num_bytes(leaf, fi, 935 extent_end - end); 936 btrfs_mark_buffer_dirty(leaf); 937 if (update_refs && disk_bytenr > 0) 938 inode_sub_bytes(inode, end - key.offset); 939 break; 940 } 941 942 search_start = extent_end; 943 /* 944 * | ---- range to drop ----- | 945 * | -------- extent -------- | 946 */ 947 if (start > key.offset && end >= extent_end) { 948 BUG_ON(del_nr > 0); 949 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 950 ret = -EOPNOTSUPP; 951 break; 952 } 953 954 btrfs_set_file_extent_num_bytes(leaf, fi, 955 start - key.offset); 956 btrfs_mark_buffer_dirty(leaf); 957 if (update_refs && disk_bytenr > 0) 958 inode_sub_bytes(inode, extent_end - start); 959 if (end == extent_end) 960 break; 961 962 path->slots[0]++; 963 goto next_slot; 964 } 965 966 /* 967 * | ---- range to drop ----- | 968 * | ------ extent ------ | 969 */ 970 if (start <= key.offset && end >= extent_end) { 971 delete_extent_item: 972 if (del_nr == 0) { 973 del_slot = path->slots[0]; 974 del_nr = 1; 975 } else { 976 BUG_ON(del_slot + del_nr != path->slots[0]); 977 del_nr++; 978 } 979 980 if (update_refs && 981 extent_type == BTRFS_FILE_EXTENT_INLINE) { 982 inode_sub_bytes(inode, 983 extent_end - key.offset); 984 extent_end = ALIGN(extent_end, 985 fs_info->sectorsize); 986 } else if (update_refs && disk_bytenr > 0) { 987 btrfs_init_generic_ref(&ref, 988 BTRFS_DROP_DELAYED_REF, 989 disk_bytenr, num_bytes, 0); 990 btrfs_init_data_ref(&ref, 991 root->root_key.objectid, 992 key.objectid, 993 key.offset - extent_offset); 994 ret = btrfs_free_extent(trans, &ref); 995 BUG_ON(ret); /* -ENOMEM */ 996 inode_sub_bytes(inode, 997 extent_end - key.offset); 998 } 999 1000 if (end == extent_end) 1001 break; 1002 1003 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 1004 path->slots[0]++; 1005 goto next_slot; 1006 } 1007 1008 ret = btrfs_del_items(trans, root, path, del_slot, 1009 del_nr); 1010 if (ret) { 1011 btrfs_abort_transaction(trans, ret); 1012 break; 1013 } 1014 1015 del_nr = 0; 1016 del_slot = 0; 1017 1018 btrfs_release_path(path); 1019 continue; 1020 } 1021 1022 BUG(); 1023 } 1024 1025 if (!ret && del_nr > 0) { 1026 /* 1027 * Set path->slots[0] to first slot, so that after the delete 1028 * if items are move off from our leaf to its immediate left or 1029 * right neighbor leafs, we end up with a correct and adjusted 1030 * path->slots[0] for our insertion (if replace_extent != 0). 1031 */ 1032 path->slots[0] = del_slot; 1033 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1034 if (ret) 1035 btrfs_abort_transaction(trans, ret); 1036 } 1037 1038 leaf = path->nodes[0]; 1039 /* 1040 * If btrfs_del_items() was called, it might have deleted a leaf, in 1041 * which case it unlocked our path, so check path->locks[0] matches a 1042 * write lock. 1043 */ 1044 if (!ret && replace_extent && leafs_visited == 1 && 1045 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 1046 path->locks[0] == BTRFS_WRITE_LOCK) && 1047 btrfs_leaf_free_space(leaf) >= 1048 sizeof(struct btrfs_item) + extent_item_size) { 1049 1050 key.objectid = ino; 1051 key.type = BTRFS_EXTENT_DATA_KEY; 1052 key.offset = start; 1053 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 1054 struct btrfs_key slot_key; 1055 1056 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 1057 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1058 path->slots[0]++; 1059 } 1060 setup_items_for_insert(root, path, &key, 1061 &extent_item_size, 1062 extent_item_size, 1063 sizeof(struct btrfs_item) + 1064 extent_item_size, 1); 1065 *key_inserted = 1; 1066 } 1067 1068 if (!replace_extent || !(*key_inserted)) 1069 btrfs_release_path(path); 1070 if (drop_end) 1071 *drop_end = found ? min(end, last_end) : end; 1072 return ret; 1073 } 1074 1075 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1076 struct btrfs_root *root, struct inode *inode, u64 start, 1077 u64 end, int drop_cache) 1078 { 1079 struct btrfs_path *path; 1080 int ret; 1081 1082 path = btrfs_alloc_path(); 1083 if (!path) 1084 return -ENOMEM; 1085 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1086 drop_cache, 0, 0, NULL); 1087 btrfs_free_path(path); 1088 return ret; 1089 } 1090 1091 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1092 u64 objectid, u64 bytenr, u64 orig_offset, 1093 u64 *start, u64 *end) 1094 { 1095 struct btrfs_file_extent_item *fi; 1096 struct btrfs_key key; 1097 u64 extent_end; 1098 1099 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1100 return 0; 1101 1102 btrfs_item_key_to_cpu(leaf, &key, slot); 1103 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1104 return 0; 1105 1106 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1107 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1108 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1109 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1110 btrfs_file_extent_compression(leaf, fi) || 1111 btrfs_file_extent_encryption(leaf, fi) || 1112 btrfs_file_extent_other_encoding(leaf, fi)) 1113 return 0; 1114 1115 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1116 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1117 return 0; 1118 1119 *start = key.offset; 1120 *end = extent_end; 1121 return 1; 1122 } 1123 1124 /* 1125 * Mark extent in the range start - end as written. 1126 * 1127 * This changes extent type from 'pre-allocated' to 'regular'. If only 1128 * part of extent is marked as written, the extent will be split into 1129 * two or three. 1130 */ 1131 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1132 struct btrfs_inode *inode, u64 start, u64 end) 1133 { 1134 struct btrfs_fs_info *fs_info = trans->fs_info; 1135 struct btrfs_root *root = inode->root; 1136 struct extent_buffer *leaf; 1137 struct btrfs_path *path; 1138 struct btrfs_file_extent_item *fi; 1139 struct btrfs_ref ref = { 0 }; 1140 struct btrfs_key key; 1141 struct btrfs_key new_key; 1142 u64 bytenr; 1143 u64 num_bytes; 1144 u64 extent_end; 1145 u64 orig_offset; 1146 u64 other_start; 1147 u64 other_end; 1148 u64 split; 1149 int del_nr = 0; 1150 int del_slot = 0; 1151 int recow; 1152 int ret; 1153 u64 ino = btrfs_ino(inode); 1154 1155 path = btrfs_alloc_path(); 1156 if (!path) 1157 return -ENOMEM; 1158 again: 1159 recow = 0; 1160 split = start; 1161 key.objectid = ino; 1162 key.type = BTRFS_EXTENT_DATA_KEY; 1163 key.offset = split; 1164 1165 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1166 if (ret < 0) 1167 goto out; 1168 if (ret > 0 && path->slots[0] > 0) 1169 path->slots[0]--; 1170 1171 leaf = path->nodes[0]; 1172 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1173 if (key.objectid != ino || 1174 key.type != BTRFS_EXTENT_DATA_KEY) { 1175 ret = -EINVAL; 1176 btrfs_abort_transaction(trans, ret); 1177 goto out; 1178 } 1179 fi = btrfs_item_ptr(leaf, path->slots[0], 1180 struct btrfs_file_extent_item); 1181 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1182 ret = -EINVAL; 1183 btrfs_abort_transaction(trans, ret); 1184 goto out; 1185 } 1186 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1187 if (key.offset > start || extent_end < end) { 1188 ret = -EINVAL; 1189 btrfs_abort_transaction(trans, ret); 1190 goto out; 1191 } 1192 1193 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1194 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1195 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1196 memcpy(&new_key, &key, sizeof(new_key)); 1197 1198 if (start == key.offset && end < extent_end) { 1199 other_start = 0; 1200 other_end = start; 1201 if (extent_mergeable(leaf, path->slots[0] - 1, 1202 ino, bytenr, orig_offset, 1203 &other_start, &other_end)) { 1204 new_key.offset = end; 1205 btrfs_set_item_key_safe(fs_info, path, &new_key); 1206 fi = btrfs_item_ptr(leaf, path->slots[0], 1207 struct btrfs_file_extent_item); 1208 btrfs_set_file_extent_generation(leaf, fi, 1209 trans->transid); 1210 btrfs_set_file_extent_num_bytes(leaf, fi, 1211 extent_end - end); 1212 btrfs_set_file_extent_offset(leaf, fi, 1213 end - orig_offset); 1214 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1215 struct btrfs_file_extent_item); 1216 btrfs_set_file_extent_generation(leaf, fi, 1217 trans->transid); 1218 btrfs_set_file_extent_num_bytes(leaf, fi, 1219 end - other_start); 1220 btrfs_mark_buffer_dirty(leaf); 1221 goto out; 1222 } 1223 } 1224 1225 if (start > key.offset && end == extent_end) { 1226 other_start = end; 1227 other_end = 0; 1228 if (extent_mergeable(leaf, path->slots[0] + 1, 1229 ino, bytenr, orig_offset, 1230 &other_start, &other_end)) { 1231 fi = btrfs_item_ptr(leaf, path->slots[0], 1232 struct btrfs_file_extent_item); 1233 btrfs_set_file_extent_num_bytes(leaf, fi, 1234 start - key.offset); 1235 btrfs_set_file_extent_generation(leaf, fi, 1236 trans->transid); 1237 path->slots[0]++; 1238 new_key.offset = start; 1239 btrfs_set_item_key_safe(fs_info, path, &new_key); 1240 1241 fi = btrfs_item_ptr(leaf, path->slots[0], 1242 struct btrfs_file_extent_item); 1243 btrfs_set_file_extent_generation(leaf, fi, 1244 trans->transid); 1245 btrfs_set_file_extent_num_bytes(leaf, fi, 1246 other_end - start); 1247 btrfs_set_file_extent_offset(leaf, fi, 1248 start - orig_offset); 1249 btrfs_mark_buffer_dirty(leaf); 1250 goto out; 1251 } 1252 } 1253 1254 while (start > key.offset || end < extent_end) { 1255 if (key.offset == start) 1256 split = end; 1257 1258 new_key.offset = split; 1259 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1260 if (ret == -EAGAIN) { 1261 btrfs_release_path(path); 1262 goto again; 1263 } 1264 if (ret < 0) { 1265 btrfs_abort_transaction(trans, ret); 1266 goto out; 1267 } 1268 1269 leaf = path->nodes[0]; 1270 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1271 struct btrfs_file_extent_item); 1272 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1273 btrfs_set_file_extent_num_bytes(leaf, fi, 1274 split - key.offset); 1275 1276 fi = btrfs_item_ptr(leaf, path->slots[0], 1277 struct btrfs_file_extent_item); 1278 1279 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1280 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1281 btrfs_set_file_extent_num_bytes(leaf, fi, 1282 extent_end - split); 1283 btrfs_mark_buffer_dirty(leaf); 1284 1285 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 1286 num_bytes, 0); 1287 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 1288 orig_offset); 1289 ret = btrfs_inc_extent_ref(trans, &ref); 1290 if (ret) { 1291 btrfs_abort_transaction(trans, ret); 1292 goto out; 1293 } 1294 1295 if (split == start) { 1296 key.offset = start; 1297 } else { 1298 if (start != key.offset) { 1299 ret = -EINVAL; 1300 btrfs_abort_transaction(trans, ret); 1301 goto out; 1302 } 1303 path->slots[0]--; 1304 extent_end = end; 1305 } 1306 recow = 1; 1307 } 1308 1309 other_start = end; 1310 other_end = 0; 1311 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1312 num_bytes, 0); 1313 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset); 1314 if (extent_mergeable(leaf, path->slots[0] + 1, 1315 ino, bytenr, orig_offset, 1316 &other_start, &other_end)) { 1317 if (recow) { 1318 btrfs_release_path(path); 1319 goto again; 1320 } 1321 extent_end = other_end; 1322 del_slot = path->slots[0] + 1; 1323 del_nr++; 1324 ret = btrfs_free_extent(trans, &ref); 1325 if (ret) { 1326 btrfs_abort_transaction(trans, ret); 1327 goto out; 1328 } 1329 } 1330 other_start = 0; 1331 other_end = start; 1332 if (extent_mergeable(leaf, path->slots[0] - 1, 1333 ino, bytenr, orig_offset, 1334 &other_start, &other_end)) { 1335 if (recow) { 1336 btrfs_release_path(path); 1337 goto again; 1338 } 1339 key.offset = other_start; 1340 del_slot = path->slots[0]; 1341 del_nr++; 1342 ret = btrfs_free_extent(trans, &ref); 1343 if (ret) { 1344 btrfs_abort_transaction(trans, ret); 1345 goto out; 1346 } 1347 } 1348 if (del_nr == 0) { 1349 fi = btrfs_item_ptr(leaf, path->slots[0], 1350 struct btrfs_file_extent_item); 1351 btrfs_set_file_extent_type(leaf, fi, 1352 BTRFS_FILE_EXTENT_REG); 1353 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1354 btrfs_mark_buffer_dirty(leaf); 1355 } else { 1356 fi = btrfs_item_ptr(leaf, del_slot - 1, 1357 struct btrfs_file_extent_item); 1358 btrfs_set_file_extent_type(leaf, fi, 1359 BTRFS_FILE_EXTENT_REG); 1360 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1361 btrfs_set_file_extent_num_bytes(leaf, fi, 1362 extent_end - key.offset); 1363 btrfs_mark_buffer_dirty(leaf); 1364 1365 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1366 if (ret < 0) { 1367 btrfs_abort_transaction(trans, ret); 1368 goto out; 1369 } 1370 } 1371 out: 1372 btrfs_free_path(path); 1373 return 0; 1374 } 1375 1376 /* 1377 * on error we return an unlocked page and the error value 1378 * on success we return a locked page and 0 1379 */ 1380 static int prepare_uptodate_page(struct inode *inode, 1381 struct page *page, u64 pos, 1382 bool force_uptodate) 1383 { 1384 int ret = 0; 1385 1386 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1387 !PageUptodate(page)) { 1388 ret = btrfs_readpage(NULL, page); 1389 if (ret) 1390 return ret; 1391 lock_page(page); 1392 if (!PageUptodate(page)) { 1393 unlock_page(page); 1394 return -EIO; 1395 } 1396 if (page->mapping != inode->i_mapping) { 1397 unlock_page(page); 1398 return -EAGAIN; 1399 } 1400 } 1401 return 0; 1402 } 1403 1404 /* 1405 * this just gets pages into the page cache and locks them down. 1406 */ 1407 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1408 size_t num_pages, loff_t pos, 1409 size_t write_bytes, bool force_uptodate) 1410 { 1411 int i; 1412 unsigned long index = pos >> PAGE_SHIFT; 1413 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1414 int err = 0; 1415 int faili; 1416 1417 for (i = 0; i < num_pages; i++) { 1418 again: 1419 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1420 mask | __GFP_WRITE); 1421 if (!pages[i]) { 1422 faili = i - 1; 1423 err = -ENOMEM; 1424 goto fail; 1425 } 1426 1427 if (i == 0) 1428 err = prepare_uptodate_page(inode, pages[i], pos, 1429 force_uptodate); 1430 if (!err && i == num_pages - 1) 1431 err = prepare_uptodate_page(inode, pages[i], 1432 pos + write_bytes, false); 1433 if (err) { 1434 put_page(pages[i]); 1435 if (err == -EAGAIN) { 1436 err = 0; 1437 goto again; 1438 } 1439 faili = i - 1; 1440 goto fail; 1441 } 1442 wait_on_page_writeback(pages[i]); 1443 } 1444 1445 return 0; 1446 fail: 1447 while (faili >= 0) { 1448 unlock_page(pages[faili]); 1449 put_page(pages[faili]); 1450 faili--; 1451 } 1452 return err; 1453 1454 } 1455 1456 /* 1457 * This function locks the extent and properly waits for data=ordered extents 1458 * to finish before allowing the pages to be modified if need. 1459 * 1460 * The return value: 1461 * 1 - the extent is locked 1462 * 0 - the extent is not locked, and everything is OK 1463 * -EAGAIN - need re-prepare the pages 1464 * the other < 0 number - Something wrong happens 1465 */ 1466 static noinline int 1467 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1468 size_t num_pages, loff_t pos, 1469 size_t write_bytes, 1470 u64 *lockstart, u64 *lockend, 1471 struct extent_state **cached_state) 1472 { 1473 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1474 u64 start_pos; 1475 u64 last_pos; 1476 int i; 1477 int ret = 0; 1478 1479 start_pos = round_down(pos, fs_info->sectorsize); 1480 last_pos = start_pos 1481 + round_up(pos + write_bytes - start_pos, 1482 fs_info->sectorsize) - 1; 1483 1484 if (start_pos < inode->vfs_inode.i_size) { 1485 struct btrfs_ordered_extent *ordered; 1486 1487 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1488 cached_state); 1489 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1490 last_pos - start_pos + 1); 1491 if (ordered && 1492 ordered->file_offset + ordered->num_bytes > start_pos && 1493 ordered->file_offset <= last_pos) { 1494 unlock_extent_cached(&inode->io_tree, start_pos, 1495 last_pos, cached_state); 1496 for (i = 0; i < num_pages; i++) { 1497 unlock_page(pages[i]); 1498 put_page(pages[i]); 1499 } 1500 btrfs_start_ordered_extent(&inode->vfs_inode, 1501 ordered, 1); 1502 btrfs_put_ordered_extent(ordered); 1503 return -EAGAIN; 1504 } 1505 if (ordered) 1506 btrfs_put_ordered_extent(ordered); 1507 1508 *lockstart = start_pos; 1509 *lockend = last_pos; 1510 ret = 1; 1511 } 1512 1513 /* 1514 * It's possible the pages are dirty right now, but we don't want 1515 * to clean them yet because copy_from_user may catch a page fault 1516 * and we might have to fall back to one page at a time. If that 1517 * happens, we'll unlock these pages and we'd have a window where 1518 * reclaim could sneak in and drop the once-dirty page on the floor 1519 * without writing it. 1520 * 1521 * We have the pages locked and the extent range locked, so there's 1522 * no way someone can start IO on any dirty pages in this range. 1523 * 1524 * We'll call btrfs_dirty_pages() later on, and that will flip around 1525 * delalloc bits and dirty the pages as required. 1526 */ 1527 for (i = 0; i < num_pages; i++) { 1528 set_page_extent_mapped(pages[i]); 1529 WARN_ON(!PageLocked(pages[i])); 1530 } 1531 1532 return ret; 1533 } 1534 1535 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1536 size_t *write_bytes, bool nowait) 1537 { 1538 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1539 struct btrfs_root *root = inode->root; 1540 u64 lockstart, lockend; 1541 u64 num_bytes; 1542 int ret; 1543 1544 if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock)) 1545 return -EAGAIN; 1546 1547 lockstart = round_down(pos, fs_info->sectorsize); 1548 lockend = round_up(pos + *write_bytes, 1549 fs_info->sectorsize) - 1; 1550 num_bytes = lockend - lockstart + 1; 1551 1552 if (nowait) { 1553 struct btrfs_ordered_extent *ordered; 1554 1555 if (!try_lock_extent(&inode->io_tree, lockstart, lockend)) 1556 return -EAGAIN; 1557 1558 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1559 num_bytes); 1560 if (ordered) { 1561 btrfs_put_ordered_extent(ordered); 1562 ret = -EAGAIN; 1563 goto out_unlock; 1564 } 1565 } else { 1566 btrfs_lock_and_flush_ordered_range(inode, lockstart, 1567 lockend, NULL); 1568 } 1569 1570 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1571 NULL, NULL, NULL); 1572 if (ret <= 0) { 1573 ret = 0; 1574 if (!nowait) 1575 btrfs_drew_write_unlock(&root->snapshot_lock); 1576 } else { 1577 *write_bytes = min_t(size_t, *write_bytes , 1578 num_bytes - pos + lockstart); 1579 } 1580 out_unlock: 1581 unlock_extent(&inode->io_tree, lockstart, lockend); 1582 1583 return ret; 1584 } 1585 1586 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1587 struct iov_iter *i) 1588 { 1589 struct file *file = iocb->ki_filp; 1590 loff_t pos = iocb->ki_pos; 1591 struct inode *inode = file_inode(file); 1592 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1593 struct btrfs_root *root = BTRFS_I(inode)->root; 1594 struct page **pages = NULL; 1595 struct extent_changeset *data_reserved = NULL; 1596 u64 release_bytes = 0; 1597 u64 lockstart; 1598 u64 lockend; 1599 size_t num_written = 0; 1600 int nrptrs; 1601 int ret = 0; 1602 bool only_release_metadata = false; 1603 bool force_page_uptodate = false; 1604 1605 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1606 PAGE_SIZE / (sizeof(struct page *))); 1607 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1608 nrptrs = max(nrptrs, 8); 1609 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1610 if (!pages) 1611 return -ENOMEM; 1612 1613 while (iov_iter_count(i) > 0) { 1614 struct extent_state *cached_state = NULL; 1615 size_t offset = offset_in_page(pos); 1616 size_t sector_offset; 1617 size_t write_bytes = min(iov_iter_count(i), 1618 nrptrs * (size_t)PAGE_SIZE - 1619 offset); 1620 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1621 PAGE_SIZE); 1622 size_t reserve_bytes; 1623 size_t dirty_pages; 1624 size_t copied; 1625 size_t dirty_sectors; 1626 size_t num_sectors; 1627 int extents_locked; 1628 1629 WARN_ON(num_pages > nrptrs); 1630 1631 /* 1632 * Fault pages before locking them in prepare_pages 1633 * to avoid recursive lock 1634 */ 1635 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1636 ret = -EFAULT; 1637 break; 1638 } 1639 1640 only_release_metadata = false; 1641 sector_offset = pos & (fs_info->sectorsize - 1); 1642 reserve_bytes = round_up(write_bytes + sector_offset, 1643 fs_info->sectorsize); 1644 1645 extent_changeset_release(data_reserved); 1646 ret = btrfs_check_data_free_space(inode, &data_reserved, pos, 1647 write_bytes); 1648 if (ret < 0) { 1649 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1650 BTRFS_INODE_PREALLOC)) && 1651 check_can_nocow(BTRFS_I(inode), pos, 1652 &write_bytes, false) > 0) { 1653 /* 1654 * For nodata cow case, no need to reserve 1655 * data space. 1656 */ 1657 only_release_metadata = true; 1658 /* 1659 * our prealloc extent may be smaller than 1660 * write_bytes, so scale down. 1661 */ 1662 num_pages = DIV_ROUND_UP(write_bytes + offset, 1663 PAGE_SIZE); 1664 reserve_bytes = round_up(write_bytes + 1665 sector_offset, 1666 fs_info->sectorsize); 1667 } else { 1668 break; 1669 } 1670 } 1671 1672 WARN_ON(reserve_bytes == 0); 1673 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1674 reserve_bytes); 1675 if (ret) { 1676 if (!only_release_metadata) 1677 btrfs_free_reserved_data_space(inode, 1678 data_reserved, pos, 1679 write_bytes); 1680 else 1681 btrfs_drew_write_unlock(&root->snapshot_lock); 1682 break; 1683 } 1684 1685 release_bytes = reserve_bytes; 1686 again: 1687 /* 1688 * This is going to setup the pages array with the number of 1689 * pages we want, so we don't really need to worry about the 1690 * contents of pages from loop to loop 1691 */ 1692 ret = prepare_pages(inode, pages, num_pages, 1693 pos, write_bytes, 1694 force_page_uptodate); 1695 if (ret) { 1696 btrfs_delalloc_release_extents(BTRFS_I(inode), 1697 reserve_bytes); 1698 break; 1699 } 1700 1701 extents_locked = lock_and_cleanup_extent_if_need( 1702 BTRFS_I(inode), pages, 1703 num_pages, pos, write_bytes, &lockstart, 1704 &lockend, &cached_state); 1705 if (extents_locked < 0) { 1706 if (extents_locked == -EAGAIN) 1707 goto again; 1708 btrfs_delalloc_release_extents(BTRFS_I(inode), 1709 reserve_bytes); 1710 ret = extents_locked; 1711 break; 1712 } 1713 1714 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1715 1716 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1717 dirty_sectors = round_up(copied + sector_offset, 1718 fs_info->sectorsize); 1719 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1720 1721 /* 1722 * if we have trouble faulting in the pages, fall 1723 * back to one page at a time 1724 */ 1725 if (copied < write_bytes) 1726 nrptrs = 1; 1727 1728 if (copied == 0) { 1729 force_page_uptodate = true; 1730 dirty_sectors = 0; 1731 dirty_pages = 0; 1732 } else { 1733 force_page_uptodate = false; 1734 dirty_pages = DIV_ROUND_UP(copied + offset, 1735 PAGE_SIZE); 1736 } 1737 1738 if (num_sectors > dirty_sectors) { 1739 /* release everything except the sectors we dirtied */ 1740 release_bytes -= dirty_sectors << 1741 fs_info->sb->s_blocksize_bits; 1742 if (only_release_metadata) { 1743 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1744 release_bytes, true); 1745 } else { 1746 u64 __pos; 1747 1748 __pos = round_down(pos, 1749 fs_info->sectorsize) + 1750 (dirty_pages << PAGE_SHIFT); 1751 btrfs_delalloc_release_space(inode, 1752 data_reserved, __pos, 1753 release_bytes, true); 1754 } 1755 } 1756 1757 release_bytes = round_up(copied + sector_offset, 1758 fs_info->sectorsize); 1759 1760 if (copied > 0) 1761 ret = btrfs_dirty_pages(inode, pages, dirty_pages, 1762 pos, copied, &cached_state); 1763 1764 /* 1765 * If we have not locked the extent range, because the range's 1766 * start offset is >= i_size, we might still have a non-NULL 1767 * cached extent state, acquired while marking the extent range 1768 * as delalloc through btrfs_dirty_pages(). Therefore free any 1769 * possible cached extent state to avoid a memory leak. 1770 */ 1771 if (extents_locked) 1772 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1773 lockstart, lockend, &cached_state); 1774 else 1775 free_extent_state(cached_state); 1776 1777 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1778 if (ret) { 1779 btrfs_drop_pages(pages, num_pages); 1780 break; 1781 } 1782 1783 release_bytes = 0; 1784 if (only_release_metadata) 1785 btrfs_drew_write_unlock(&root->snapshot_lock); 1786 1787 if (only_release_metadata && copied > 0) { 1788 lockstart = round_down(pos, 1789 fs_info->sectorsize); 1790 lockend = round_up(pos + copied, 1791 fs_info->sectorsize) - 1; 1792 1793 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1794 lockend, EXTENT_NORESERVE, NULL, 1795 NULL, GFP_NOFS); 1796 } 1797 1798 btrfs_drop_pages(pages, num_pages); 1799 1800 cond_resched(); 1801 1802 balance_dirty_pages_ratelimited(inode->i_mapping); 1803 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1) 1804 btrfs_btree_balance_dirty(fs_info); 1805 1806 pos += copied; 1807 num_written += copied; 1808 } 1809 1810 kfree(pages); 1811 1812 if (release_bytes) { 1813 if (only_release_metadata) { 1814 btrfs_drew_write_unlock(&root->snapshot_lock); 1815 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1816 release_bytes, true); 1817 } else { 1818 btrfs_delalloc_release_space(inode, data_reserved, 1819 round_down(pos, fs_info->sectorsize), 1820 release_bytes, true); 1821 } 1822 } 1823 1824 extent_changeset_free(data_reserved); 1825 return num_written ? num_written : ret; 1826 } 1827 1828 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1829 { 1830 struct file *file = iocb->ki_filp; 1831 struct inode *inode = file_inode(file); 1832 loff_t pos; 1833 ssize_t written; 1834 ssize_t written_buffered; 1835 loff_t endbyte; 1836 int err; 1837 1838 written = generic_file_direct_write(iocb, from); 1839 1840 if (written < 0 || !iov_iter_count(from)) 1841 return written; 1842 1843 pos = iocb->ki_pos; 1844 written_buffered = btrfs_buffered_write(iocb, from); 1845 if (written_buffered < 0) { 1846 err = written_buffered; 1847 goto out; 1848 } 1849 /* 1850 * Ensure all data is persisted. We want the next direct IO read to be 1851 * able to read what was just written. 1852 */ 1853 endbyte = pos + written_buffered - 1; 1854 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1855 if (err) 1856 goto out; 1857 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1858 if (err) 1859 goto out; 1860 written += written_buffered; 1861 iocb->ki_pos = pos + written_buffered; 1862 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1863 endbyte >> PAGE_SHIFT); 1864 out: 1865 return written ? written : err; 1866 } 1867 1868 static void update_time_for_write(struct inode *inode) 1869 { 1870 struct timespec64 now; 1871 1872 if (IS_NOCMTIME(inode)) 1873 return; 1874 1875 now = current_time(inode); 1876 if (!timespec64_equal(&inode->i_mtime, &now)) 1877 inode->i_mtime = now; 1878 1879 if (!timespec64_equal(&inode->i_ctime, &now)) 1880 inode->i_ctime = now; 1881 1882 if (IS_I_VERSION(inode)) 1883 inode_inc_iversion(inode); 1884 } 1885 1886 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1887 struct iov_iter *from) 1888 { 1889 struct file *file = iocb->ki_filp; 1890 struct inode *inode = file_inode(file); 1891 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1892 struct btrfs_root *root = BTRFS_I(inode)->root; 1893 u64 start_pos; 1894 u64 end_pos; 1895 ssize_t num_written = 0; 1896 const bool sync = iocb->ki_flags & IOCB_DSYNC; 1897 ssize_t err; 1898 loff_t pos; 1899 size_t count; 1900 loff_t oldsize; 1901 int clean_page = 0; 1902 1903 if (!(iocb->ki_flags & IOCB_DIRECT) && 1904 (iocb->ki_flags & IOCB_NOWAIT)) 1905 return -EOPNOTSUPP; 1906 1907 if (iocb->ki_flags & IOCB_NOWAIT) { 1908 if (!inode_trylock(inode)) 1909 return -EAGAIN; 1910 } else { 1911 inode_lock(inode); 1912 } 1913 1914 err = generic_write_checks(iocb, from); 1915 if (err <= 0) { 1916 inode_unlock(inode); 1917 return err; 1918 } 1919 1920 pos = iocb->ki_pos; 1921 count = iov_iter_count(from); 1922 if (iocb->ki_flags & IOCB_NOWAIT) { 1923 size_t nocow_bytes = count; 1924 1925 /* 1926 * We will allocate space in case nodatacow is not set, 1927 * so bail 1928 */ 1929 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1930 BTRFS_INODE_PREALLOC)) || 1931 check_can_nocow(BTRFS_I(inode), pos, &nocow_bytes, 1932 true) <= 0) { 1933 inode_unlock(inode); 1934 return -EAGAIN; 1935 } 1936 /* 1937 * There are holes in the range or parts of the range that must 1938 * be COWed (shared extents, RO block groups, etc), so just bail 1939 * out. 1940 */ 1941 if (nocow_bytes < count) { 1942 inode_unlock(inode); 1943 return -EAGAIN; 1944 } 1945 } 1946 1947 current->backing_dev_info = inode_to_bdi(inode); 1948 err = file_remove_privs(file); 1949 if (err) { 1950 inode_unlock(inode); 1951 goto out; 1952 } 1953 1954 /* 1955 * If BTRFS flips readonly due to some impossible error 1956 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1957 * although we have opened a file as writable, we have 1958 * to stop this write operation to ensure FS consistency. 1959 */ 1960 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1961 inode_unlock(inode); 1962 err = -EROFS; 1963 goto out; 1964 } 1965 1966 /* 1967 * We reserve space for updating the inode when we reserve space for the 1968 * extent we are going to write, so we will enospc out there. We don't 1969 * need to start yet another transaction to update the inode as we will 1970 * update the inode when we finish writing whatever data we write. 1971 */ 1972 update_time_for_write(inode); 1973 1974 start_pos = round_down(pos, fs_info->sectorsize); 1975 oldsize = i_size_read(inode); 1976 if (start_pos > oldsize) { 1977 /* Expand hole size to cover write data, preventing empty gap */ 1978 end_pos = round_up(pos + count, 1979 fs_info->sectorsize); 1980 err = btrfs_cont_expand(inode, oldsize, end_pos); 1981 if (err) { 1982 inode_unlock(inode); 1983 goto out; 1984 } 1985 if (start_pos > round_up(oldsize, fs_info->sectorsize)) 1986 clean_page = 1; 1987 } 1988 1989 if (sync) 1990 atomic_inc(&BTRFS_I(inode)->sync_writers); 1991 1992 if (iocb->ki_flags & IOCB_DIRECT) { 1993 num_written = __btrfs_direct_write(iocb, from); 1994 } else { 1995 num_written = btrfs_buffered_write(iocb, from); 1996 if (num_written > 0) 1997 iocb->ki_pos = pos + num_written; 1998 if (clean_page) 1999 pagecache_isize_extended(inode, oldsize, 2000 i_size_read(inode)); 2001 } 2002 2003 inode_unlock(inode); 2004 2005 /* 2006 * We also have to set last_sub_trans to the current log transid, 2007 * otherwise subsequent syncs to a file that's been synced in this 2008 * transaction will appear to have already occurred. 2009 */ 2010 spin_lock(&BTRFS_I(inode)->lock); 2011 BTRFS_I(inode)->last_sub_trans = root->log_transid; 2012 spin_unlock(&BTRFS_I(inode)->lock); 2013 if (num_written > 0) 2014 num_written = generic_write_sync(iocb, num_written); 2015 2016 if (sync) 2017 atomic_dec(&BTRFS_I(inode)->sync_writers); 2018 out: 2019 current->backing_dev_info = NULL; 2020 return num_written ? num_written : err; 2021 } 2022 2023 int btrfs_release_file(struct inode *inode, struct file *filp) 2024 { 2025 struct btrfs_file_private *private = filp->private_data; 2026 2027 if (private && private->filldir_buf) 2028 kfree(private->filldir_buf); 2029 kfree(private); 2030 filp->private_data = NULL; 2031 2032 /* 2033 * ordered_data_close is set by setattr when we are about to truncate 2034 * a file from a non-zero size to a zero size. This tries to 2035 * flush down new bytes that may have been written if the 2036 * application were using truncate to replace a file in place. 2037 */ 2038 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 2039 &BTRFS_I(inode)->runtime_flags)) 2040 filemap_flush(inode->i_mapping); 2041 return 0; 2042 } 2043 2044 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2045 { 2046 int ret; 2047 struct blk_plug plug; 2048 2049 /* 2050 * This is only called in fsync, which would do synchronous writes, so 2051 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2052 * multiple disks using raid profile, a large IO can be split to 2053 * several segments of stripe length (currently 64K). 2054 */ 2055 blk_start_plug(&plug); 2056 atomic_inc(&BTRFS_I(inode)->sync_writers); 2057 ret = btrfs_fdatawrite_range(inode, start, end); 2058 atomic_dec(&BTRFS_I(inode)->sync_writers); 2059 blk_finish_plug(&plug); 2060 2061 return ret; 2062 } 2063 2064 /* 2065 * fsync call for both files and directories. This logs the inode into 2066 * the tree log instead of forcing full commits whenever possible. 2067 * 2068 * It needs to call filemap_fdatawait so that all ordered extent updates are 2069 * in the metadata btree are up to date for copying to the log. 2070 * 2071 * It drops the inode mutex before doing the tree log commit. This is an 2072 * important optimization for directories because holding the mutex prevents 2073 * new operations on the dir while we write to disk. 2074 */ 2075 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2076 { 2077 struct dentry *dentry = file_dentry(file); 2078 struct inode *inode = d_inode(dentry); 2079 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2080 struct btrfs_root *root = BTRFS_I(inode)->root; 2081 struct btrfs_trans_handle *trans; 2082 struct btrfs_log_ctx ctx; 2083 int ret = 0, err; 2084 2085 trace_btrfs_sync_file(file, datasync); 2086 2087 btrfs_init_log_ctx(&ctx, inode); 2088 2089 /* 2090 * Set the range to full if the NO_HOLES feature is not enabled. 2091 * This is to avoid missing file extent items representing holes after 2092 * replaying the log. 2093 */ 2094 if (!btrfs_fs_incompat(fs_info, NO_HOLES)) { 2095 start = 0; 2096 end = LLONG_MAX; 2097 } 2098 2099 /* 2100 * We write the dirty pages in the range and wait until they complete 2101 * out of the ->i_mutex. If so, we can flush the dirty pages by 2102 * multi-task, and make the performance up. See 2103 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2104 */ 2105 ret = start_ordered_ops(inode, start, end); 2106 if (ret) 2107 goto out; 2108 2109 inode_lock(inode); 2110 2111 /* 2112 * We take the dio_sem here because the tree log stuff can race with 2113 * lockless dio writes and get an extent map logged for an extent we 2114 * never waited on. We need it this high up for lockdep reasons. 2115 */ 2116 down_write(&BTRFS_I(inode)->dio_sem); 2117 2118 atomic_inc(&root->log_batch); 2119 2120 /* 2121 * If the inode needs a full sync, make sure we use a full range to 2122 * avoid log tree corruption, due to hole detection racing with ordered 2123 * extent completion for adjacent ranges and races between logging and 2124 * completion of ordered extents for adjancent ranges - both races 2125 * could lead to file extent items in the log with overlapping ranges. 2126 * Do this while holding the inode lock, to avoid races with other 2127 * tasks. 2128 */ 2129 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2130 &BTRFS_I(inode)->runtime_flags)) { 2131 start = 0; 2132 end = LLONG_MAX; 2133 } 2134 2135 /* 2136 * Before we acquired the inode's lock, someone may have dirtied more 2137 * pages in the target range. We need to make sure that writeback for 2138 * any such pages does not start while we are logging the inode, because 2139 * if it does, any of the following might happen when we are not doing a 2140 * full inode sync: 2141 * 2142 * 1) We log an extent after its writeback finishes but before its 2143 * checksums are added to the csum tree, leading to -EIO errors 2144 * when attempting to read the extent after a log replay. 2145 * 2146 * 2) We can end up logging an extent before its writeback finishes. 2147 * Therefore after the log replay we will have a file extent item 2148 * pointing to an unwritten extent (and no data checksums as well). 2149 * 2150 * So trigger writeback for any eventual new dirty pages and then we 2151 * wait for all ordered extents to complete below. 2152 */ 2153 ret = start_ordered_ops(inode, start, end); 2154 if (ret) { 2155 up_write(&BTRFS_I(inode)->dio_sem); 2156 inode_unlock(inode); 2157 goto out; 2158 } 2159 2160 /* 2161 * We have to do this here to avoid the priority inversion of waiting on 2162 * IO of a lower priority task while holding a transaction open. 2163 * 2164 * Also, the range length can be represented by u64, we have to do the 2165 * typecasts to avoid signed overflow if it's [0, LLONG_MAX]. 2166 */ 2167 ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1); 2168 if (ret) { 2169 up_write(&BTRFS_I(inode)->dio_sem); 2170 inode_unlock(inode); 2171 goto out; 2172 } 2173 atomic_inc(&root->log_batch); 2174 2175 smp_mb(); 2176 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) || 2177 BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) { 2178 /* 2179 * We've had everything committed since the last time we were 2180 * modified so clear this flag in case it was set for whatever 2181 * reason, it's no longer relevant. 2182 */ 2183 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2184 &BTRFS_I(inode)->runtime_flags); 2185 /* 2186 * An ordered extent might have started before and completed 2187 * already with io errors, in which case the inode was not 2188 * updated and we end up here. So check the inode's mapping 2189 * for any errors that might have happened since we last 2190 * checked called fsync. 2191 */ 2192 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2193 up_write(&BTRFS_I(inode)->dio_sem); 2194 inode_unlock(inode); 2195 goto out; 2196 } 2197 2198 /* 2199 * We use start here because we will need to wait on the IO to complete 2200 * in btrfs_sync_log, which could require joining a transaction (for 2201 * example checking cross references in the nocow path). If we use join 2202 * here we could get into a situation where we're waiting on IO to 2203 * happen that is blocked on a transaction trying to commit. With start 2204 * we inc the extwriter counter, so we wait for all extwriters to exit 2205 * before we start blocking joiners. This comment is to keep somebody 2206 * from thinking they are super smart and changing this to 2207 * btrfs_join_transaction *cough*Josef*cough*. 2208 */ 2209 trans = btrfs_start_transaction(root, 0); 2210 if (IS_ERR(trans)) { 2211 ret = PTR_ERR(trans); 2212 up_write(&BTRFS_I(inode)->dio_sem); 2213 inode_unlock(inode); 2214 goto out; 2215 } 2216 2217 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx); 2218 if (ret < 0) { 2219 /* Fallthrough and commit/free transaction. */ 2220 ret = 1; 2221 } 2222 2223 /* we've logged all the items and now have a consistent 2224 * version of the file in the log. It is possible that 2225 * someone will come in and modify the file, but that's 2226 * fine because the log is consistent on disk, and we 2227 * have references to all of the file's extents 2228 * 2229 * It is possible that someone will come in and log the 2230 * file again, but that will end up using the synchronization 2231 * inside btrfs_sync_log to keep things safe. 2232 */ 2233 up_write(&BTRFS_I(inode)->dio_sem); 2234 inode_unlock(inode); 2235 2236 if (ret != BTRFS_NO_LOG_SYNC) { 2237 if (!ret) { 2238 ret = btrfs_sync_log(trans, root, &ctx); 2239 if (!ret) { 2240 ret = btrfs_end_transaction(trans); 2241 goto out; 2242 } 2243 } 2244 ret = btrfs_commit_transaction(trans); 2245 } else { 2246 ret = btrfs_end_transaction(trans); 2247 } 2248 out: 2249 ASSERT(list_empty(&ctx.list)); 2250 err = file_check_and_advance_wb_err(file); 2251 if (!ret) 2252 ret = err; 2253 return ret > 0 ? -EIO : ret; 2254 } 2255 2256 static const struct vm_operations_struct btrfs_file_vm_ops = { 2257 .fault = filemap_fault, 2258 .map_pages = filemap_map_pages, 2259 .page_mkwrite = btrfs_page_mkwrite, 2260 }; 2261 2262 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2263 { 2264 struct address_space *mapping = filp->f_mapping; 2265 2266 if (!mapping->a_ops->readpage) 2267 return -ENOEXEC; 2268 2269 file_accessed(filp); 2270 vma->vm_ops = &btrfs_file_vm_ops; 2271 2272 return 0; 2273 } 2274 2275 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2276 int slot, u64 start, u64 end) 2277 { 2278 struct btrfs_file_extent_item *fi; 2279 struct btrfs_key key; 2280 2281 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2282 return 0; 2283 2284 btrfs_item_key_to_cpu(leaf, &key, slot); 2285 if (key.objectid != btrfs_ino(inode) || 2286 key.type != BTRFS_EXTENT_DATA_KEY) 2287 return 0; 2288 2289 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2290 2291 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2292 return 0; 2293 2294 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2295 return 0; 2296 2297 if (key.offset == end) 2298 return 1; 2299 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2300 return 1; 2301 return 0; 2302 } 2303 2304 static int fill_holes(struct btrfs_trans_handle *trans, 2305 struct btrfs_inode *inode, 2306 struct btrfs_path *path, u64 offset, u64 end) 2307 { 2308 struct btrfs_fs_info *fs_info = trans->fs_info; 2309 struct btrfs_root *root = inode->root; 2310 struct extent_buffer *leaf; 2311 struct btrfs_file_extent_item *fi; 2312 struct extent_map *hole_em; 2313 struct extent_map_tree *em_tree = &inode->extent_tree; 2314 struct btrfs_key key; 2315 int ret; 2316 2317 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2318 goto out; 2319 2320 key.objectid = btrfs_ino(inode); 2321 key.type = BTRFS_EXTENT_DATA_KEY; 2322 key.offset = offset; 2323 2324 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2325 if (ret <= 0) { 2326 /* 2327 * We should have dropped this offset, so if we find it then 2328 * something has gone horribly wrong. 2329 */ 2330 if (ret == 0) 2331 ret = -EINVAL; 2332 return ret; 2333 } 2334 2335 leaf = path->nodes[0]; 2336 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2337 u64 num_bytes; 2338 2339 path->slots[0]--; 2340 fi = btrfs_item_ptr(leaf, path->slots[0], 2341 struct btrfs_file_extent_item); 2342 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2343 end - offset; 2344 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2345 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2346 btrfs_set_file_extent_offset(leaf, fi, 0); 2347 btrfs_mark_buffer_dirty(leaf); 2348 goto out; 2349 } 2350 2351 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2352 u64 num_bytes; 2353 2354 key.offset = offset; 2355 btrfs_set_item_key_safe(fs_info, path, &key); 2356 fi = btrfs_item_ptr(leaf, path->slots[0], 2357 struct btrfs_file_extent_item); 2358 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2359 offset; 2360 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2361 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2362 btrfs_set_file_extent_offset(leaf, fi, 0); 2363 btrfs_mark_buffer_dirty(leaf); 2364 goto out; 2365 } 2366 btrfs_release_path(path); 2367 2368 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2369 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2370 if (ret) 2371 return ret; 2372 2373 out: 2374 btrfs_release_path(path); 2375 2376 hole_em = alloc_extent_map(); 2377 if (!hole_em) { 2378 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2379 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2380 } else { 2381 hole_em->start = offset; 2382 hole_em->len = end - offset; 2383 hole_em->ram_bytes = hole_em->len; 2384 hole_em->orig_start = offset; 2385 2386 hole_em->block_start = EXTENT_MAP_HOLE; 2387 hole_em->block_len = 0; 2388 hole_em->orig_block_len = 0; 2389 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2390 hole_em->generation = trans->transid; 2391 2392 do { 2393 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2394 write_lock(&em_tree->lock); 2395 ret = add_extent_mapping(em_tree, hole_em, 1); 2396 write_unlock(&em_tree->lock); 2397 } while (ret == -EEXIST); 2398 free_extent_map(hole_em); 2399 if (ret) 2400 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2401 &inode->runtime_flags); 2402 } 2403 2404 return 0; 2405 } 2406 2407 /* 2408 * Find a hole extent on given inode and change start/len to the end of hole 2409 * extent.(hole/vacuum extent whose em->start <= start && 2410 * em->start + em->len > start) 2411 * When a hole extent is found, return 1 and modify start/len. 2412 */ 2413 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2414 { 2415 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2416 struct extent_map *em; 2417 int ret = 0; 2418 2419 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2420 round_down(*start, fs_info->sectorsize), 2421 round_up(*len, fs_info->sectorsize)); 2422 if (IS_ERR(em)) 2423 return PTR_ERR(em); 2424 2425 /* Hole or vacuum extent(only exists in no-hole mode) */ 2426 if (em->block_start == EXTENT_MAP_HOLE) { 2427 ret = 1; 2428 *len = em->start + em->len > *start + *len ? 2429 0 : *start + *len - em->start - em->len; 2430 *start = em->start + em->len; 2431 } 2432 free_extent_map(em); 2433 return ret; 2434 } 2435 2436 static int btrfs_punch_hole_lock_range(struct inode *inode, 2437 const u64 lockstart, 2438 const u64 lockend, 2439 struct extent_state **cached_state) 2440 { 2441 while (1) { 2442 struct btrfs_ordered_extent *ordered; 2443 int ret; 2444 2445 truncate_pagecache_range(inode, lockstart, lockend); 2446 2447 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2448 cached_state); 2449 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2450 2451 /* 2452 * We need to make sure we have no ordered extents in this range 2453 * and nobody raced in and read a page in this range, if we did 2454 * we need to try again. 2455 */ 2456 if ((!ordered || 2457 (ordered->file_offset + ordered->num_bytes <= lockstart || 2458 ordered->file_offset > lockend)) && 2459 !filemap_range_has_page(inode->i_mapping, 2460 lockstart, lockend)) { 2461 if (ordered) 2462 btrfs_put_ordered_extent(ordered); 2463 break; 2464 } 2465 if (ordered) 2466 btrfs_put_ordered_extent(ordered); 2467 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2468 lockend, cached_state); 2469 ret = btrfs_wait_ordered_range(inode, lockstart, 2470 lockend - lockstart + 1); 2471 if (ret) 2472 return ret; 2473 } 2474 return 0; 2475 } 2476 2477 static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans, 2478 struct inode *inode, 2479 struct btrfs_path *path, 2480 struct btrfs_clone_extent_info *clone_info, 2481 const u64 clone_len) 2482 { 2483 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2484 struct btrfs_root *root = BTRFS_I(inode)->root; 2485 struct btrfs_file_extent_item *extent; 2486 struct extent_buffer *leaf; 2487 struct btrfs_key key; 2488 int slot; 2489 struct btrfs_ref ref = { 0 }; 2490 u64 ref_offset; 2491 int ret; 2492 2493 if (clone_len == 0) 2494 return 0; 2495 2496 if (clone_info->disk_offset == 0 && 2497 btrfs_fs_incompat(fs_info, NO_HOLES)) 2498 return 0; 2499 2500 key.objectid = btrfs_ino(BTRFS_I(inode)); 2501 key.type = BTRFS_EXTENT_DATA_KEY; 2502 key.offset = clone_info->file_offset; 2503 ret = btrfs_insert_empty_item(trans, root, path, &key, 2504 clone_info->item_size); 2505 if (ret) 2506 return ret; 2507 leaf = path->nodes[0]; 2508 slot = path->slots[0]; 2509 write_extent_buffer(leaf, clone_info->extent_buf, 2510 btrfs_item_ptr_offset(leaf, slot), 2511 clone_info->item_size); 2512 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2513 btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset); 2514 btrfs_set_file_extent_num_bytes(leaf, extent, clone_len); 2515 btrfs_mark_buffer_dirty(leaf); 2516 btrfs_release_path(path); 2517 2518 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), 2519 clone_info->file_offset, clone_len); 2520 if (ret) 2521 return ret; 2522 2523 /* If it's a hole, nothing more needs to be done. */ 2524 if (clone_info->disk_offset == 0) 2525 return 0; 2526 2527 inode_add_bytes(inode, clone_len); 2528 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2529 clone_info->disk_offset, 2530 clone_info->disk_len, 0); 2531 ref_offset = clone_info->file_offset - clone_info->data_offset; 2532 btrfs_init_data_ref(&ref, root->root_key.objectid, 2533 btrfs_ino(BTRFS_I(inode)), ref_offset); 2534 ret = btrfs_inc_extent_ref(trans, &ref); 2535 2536 return ret; 2537 } 2538 2539 /* 2540 * The respective range must have been previously locked, as well as the inode. 2541 * The end offset is inclusive (last byte of the range). 2542 * @clone_info is NULL for fallocate's hole punching and non-NULL for extent 2543 * cloning. 2544 * When cloning, we don't want to end up in a state where we dropped extents 2545 * without inserting a new one, so we must abort the transaction to avoid a 2546 * corruption. 2547 */ 2548 int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path, 2549 const u64 start, const u64 end, 2550 struct btrfs_clone_extent_info *clone_info, 2551 struct btrfs_trans_handle **trans_out) 2552 { 2553 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2554 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2555 u64 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2556 struct btrfs_root *root = BTRFS_I(inode)->root; 2557 struct btrfs_trans_handle *trans = NULL; 2558 struct btrfs_block_rsv *rsv; 2559 unsigned int rsv_count; 2560 u64 cur_offset; 2561 u64 drop_end; 2562 u64 len = end - start; 2563 int ret = 0; 2564 2565 if (end <= start) 2566 return -EINVAL; 2567 2568 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2569 if (!rsv) { 2570 ret = -ENOMEM; 2571 goto out; 2572 } 2573 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2574 rsv->failfast = 1; 2575 2576 /* 2577 * 1 - update the inode 2578 * 1 - removing the extents in the range 2579 * 1 - adding the hole extent if no_holes isn't set or if we are cloning 2580 * an extent 2581 */ 2582 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info) 2583 rsv_count = 3; 2584 else 2585 rsv_count = 2; 2586 2587 trans = btrfs_start_transaction(root, rsv_count); 2588 if (IS_ERR(trans)) { 2589 ret = PTR_ERR(trans); 2590 trans = NULL; 2591 goto out_free; 2592 } 2593 2594 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2595 min_size, false); 2596 BUG_ON(ret); 2597 trans->block_rsv = rsv; 2598 2599 cur_offset = start; 2600 while (cur_offset < end) { 2601 ret = __btrfs_drop_extents(trans, root, inode, path, 2602 cur_offset, end + 1, &drop_end, 2603 1, 0, 0, NULL); 2604 if (ret != -ENOSPC) { 2605 /* 2606 * When cloning we want to avoid transaction aborts when 2607 * nothing was done and we are attempting to clone parts 2608 * of inline extents, in such cases -EOPNOTSUPP is 2609 * returned by __btrfs_drop_extents() without having 2610 * changed anything in the file. 2611 */ 2612 if (clone_info && ret && ret != -EOPNOTSUPP) 2613 btrfs_abort_transaction(trans, ret); 2614 break; 2615 } 2616 2617 trans->block_rsv = &fs_info->trans_block_rsv; 2618 2619 if (!clone_info && cur_offset < drop_end && 2620 cur_offset < ino_size) { 2621 ret = fill_holes(trans, BTRFS_I(inode), path, 2622 cur_offset, drop_end); 2623 if (ret) { 2624 /* 2625 * If we failed then we didn't insert our hole 2626 * entries for the area we dropped, so now the 2627 * fs is corrupted, so we must abort the 2628 * transaction. 2629 */ 2630 btrfs_abort_transaction(trans, ret); 2631 break; 2632 } 2633 } else if (!clone_info && cur_offset < drop_end) { 2634 /* 2635 * We are past the i_size here, but since we didn't 2636 * insert holes we need to clear the mapped area so we 2637 * know to not set disk_i_size in this area until a new 2638 * file extent is inserted here. 2639 */ 2640 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 2641 cur_offset, drop_end - cur_offset); 2642 if (ret) { 2643 /* 2644 * We couldn't clear our area, so we could 2645 * presumably adjust up and corrupt the fs, so 2646 * we need to abort. 2647 */ 2648 btrfs_abort_transaction(trans, ret); 2649 break; 2650 } 2651 } 2652 2653 if (clone_info && drop_end > clone_info->file_offset) { 2654 u64 clone_len = drop_end - clone_info->file_offset; 2655 2656 ret = btrfs_insert_clone_extent(trans, inode, path, 2657 clone_info, clone_len); 2658 if (ret) { 2659 btrfs_abort_transaction(trans, ret); 2660 break; 2661 } 2662 clone_info->data_len -= clone_len; 2663 clone_info->data_offset += clone_len; 2664 clone_info->file_offset += clone_len; 2665 } 2666 2667 cur_offset = drop_end; 2668 2669 ret = btrfs_update_inode(trans, root, inode); 2670 if (ret) 2671 break; 2672 2673 btrfs_end_transaction(trans); 2674 btrfs_btree_balance_dirty(fs_info); 2675 2676 trans = btrfs_start_transaction(root, rsv_count); 2677 if (IS_ERR(trans)) { 2678 ret = PTR_ERR(trans); 2679 trans = NULL; 2680 break; 2681 } 2682 2683 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2684 rsv, min_size, false); 2685 BUG_ON(ret); /* shouldn't happen */ 2686 trans->block_rsv = rsv; 2687 2688 if (!clone_info) { 2689 ret = find_first_non_hole(inode, &cur_offset, &len); 2690 if (unlikely(ret < 0)) 2691 break; 2692 if (ret && !len) { 2693 ret = 0; 2694 break; 2695 } 2696 } 2697 } 2698 2699 /* 2700 * If we were cloning, force the next fsync to be a full one since we 2701 * we replaced (or just dropped in the case of cloning holes when 2702 * NO_HOLES is enabled) extents and extent maps. 2703 * This is for the sake of simplicity, and cloning into files larger 2704 * than 16Mb would force the full fsync any way (when 2705 * try_release_extent_mapping() is invoked during page cache truncation. 2706 */ 2707 if (clone_info) 2708 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2709 &BTRFS_I(inode)->runtime_flags); 2710 2711 if (ret) 2712 goto out_trans; 2713 2714 trans->block_rsv = &fs_info->trans_block_rsv; 2715 /* 2716 * If we are using the NO_HOLES feature we might have had already an 2717 * hole that overlaps a part of the region [lockstart, lockend] and 2718 * ends at (or beyond) lockend. Since we have no file extent items to 2719 * represent holes, drop_end can be less than lockend and so we must 2720 * make sure we have an extent map representing the existing hole (the 2721 * call to __btrfs_drop_extents() might have dropped the existing extent 2722 * map representing the existing hole), otherwise the fast fsync path 2723 * will not record the existence of the hole region 2724 * [existing_hole_start, lockend]. 2725 */ 2726 if (drop_end <= end) 2727 drop_end = end + 1; 2728 /* 2729 * Don't insert file hole extent item if it's for a range beyond eof 2730 * (because it's useless) or if it represents a 0 bytes range (when 2731 * cur_offset == drop_end). 2732 */ 2733 if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) { 2734 ret = fill_holes(trans, BTRFS_I(inode), path, 2735 cur_offset, drop_end); 2736 if (ret) { 2737 /* Same comment as above. */ 2738 btrfs_abort_transaction(trans, ret); 2739 goto out_trans; 2740 } 2741 } else if (!clone_info && cur_offset < drop_end) { 2742 /* See the comment in the loop above for the reasoning here. */ 2743 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 2744 cur_offset, drop_end - cur_offset); 2745 if (ret) { 2746 btrfs_abort_transaction(trans, ret); 2747 goto out_trans; 2748 } 2749 2750 } 2751 if (clone_info) { 2752 ret = btrfs_insert_clone_extent(trans, inode, path, clone_info, 2753 clone_info->data_len); 2754 if (ret) { 2755 btrfs_abort_transaction(trans, ret); 2756 goto out_trans; 2757 } 2758 } 2759 2760 out_trans: 2761 if (!trans) 2762 goto out_free; 2763 2764 trans->block_rsv = &fs_info->trans_block_rsv; 2765 if (ret) 2766 btrfs_end_transaction(trans); 2767 else 2768 *trans_out = trans; 2769 out_free: 2770 btrfs_free_block_rsv(fs_info, rsv); 2771 out: 2772 return ret; 2773 } 2774 2775 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2776 { 2777 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2778 struct btrfs_root *root = BTRFS_I(inode)->root; 2779 struct extent_state *cached_state = NULL; 2780 struct btrfs_path *path; 2781 struct btrfs_trans_handle *trans = NULL; 2782 u64 lockstart; 2783 u64 lockend; 2784 u64 tail_start; 2785 u64 tail_len; 2786 u64 orig_start = offset; 2787 int ret = 0; 2788 bool same_block; 2789 u64 ino_size; 2790 bool truncated_block = false; 2791 bool updated_inode = false; 2792 2793 ret = btrfs_wait_ordered_range(inode, offset, len); 2794 if (ret) 2795 return ret; 2796 2797 inode_lock(inode); 2798 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2799 ret = find_first_non_hole(inode, &offset, &len); 2800 if (ret < 0) 2801 goto out_only_mutex; 2802 if (ret && !len) { 2803 /* Already in a large hole */ 2804 ret = 0; 2805 goto out_only_mutex; 2806 } 2807 2808 lockstart = round_up(offset, btrfs_inode_sectorsize(inode)); 2809 lockend = round_down(offset + len, 2810 btrfs_inode_sectorsize(inode)) - 1; 2811 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2812 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2813 /* 2814 * We needn't truncate any block which is beyond the end of the file 2815 * because we are sure there is no data there. 2816 */ 2817 /* 2818 * Only do this if we are in the same block and we aren't doing the 2819 * entire block. 2820 */ 2821 if (same_block && len < fs_info->sectorsize) { 2822 if (offset < ino_size) { 2823 truncated_block = true; 2824 ret = btrfs_truncate_block(inode, offset, len, 0); 2825 } else { 2826 ret = 0; 2827 } 2828 goto out_only_mutex; 2829 } 2830 2831 /* zero back part of the first block */ 2832 if (offset < ino_size) { 2833 truncated_block = true; 2834 ret = btrfs_truncate_block(inode, offset, 0, 0); 2835 if (ret) { 2836 inode_unlock(inode); 2837 return ret; 2838 } 2839 } 2840 2841 /* Check the aligned pages after the first unaligned page, 2842 * if offset != orig_start, which means the first unaligned page 2843 * including several following pages are already in holes, 2844 * the extra check can be skipped */ 2845 if (offset == orig_start) { 2846 /* after truncate page, check hole again */ 2847 len = offset + len - lockstart; 2848 offset = lockstart; 2849 ret = find_first_non_hole(inode, &offset, &len); 2850 if (ret < 0) 2851 goto out_only_mutex; 2852 if (ret && !len) { 2853 ret = 0; 2854 goto out_only_mutex; 2855 } 2856 lockstart = offset; 2857 } 2858 2859 /* Check the tail unaligned part is in a hole */ 2860 tail_start = lockend + 1; 2861 tail_len = offset + len - tail_start; 2862 if (tail_len) { 2863 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2864 if (unlikely(ret < 0)) 2865 goto out_only_mutex; 2866 if (!ret) { 2867 /* zero the front end of the last page */ 2868 if (tail_start + tail_len < ino_size) { 2869 truncated_block = true; 2870 ret = btrfs_truncate_block(inode, 2871 tail_start + tail_len, 2872 0, 1); 2873 if (ret) 2874 goto out_only_mutex; 2875 } 2876 } 2877 } 2878 2879 if (lockend < lockstart) { 2880 ret = 0; 2881 goto out_only_mutex; 2882 } 2883 2884 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2885 &cached_state); 2886 if (ret) 2887 goto out_only_mutex; 2888 2889 path = btrfs_alloc_path(); 2890 if (!path) { 2891 ret = -ENOMEM; 2892 goto out; 2893 } 2894 2895 ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL, 2896 &trans); 2897 btrfs_free_path(path); 2898 if (ret) 2899 goto out; 2900 2901 ASSERT(trans != NULL); 2902 inode_inc_iversion(inode); 2903 inode->i_mtime = inode->i_ctime = current_time(inode); 2904 ret = btrfs_update_inode(trans, root, inode); 2905 updated_inode = true; 2906 btrfs_end_transaction(trans); 2907 btrfs_btree_balance_dirty(fs_info); 2908 out: 2909 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2910 &cached_state); 2911 out_only_mutex: 2912 if (!updated_inode && truncated_block && !ret) { 2913 /* 2914 * If we only end up zeroing part of a page, we still need to 2915 * update the inode item, so that all the time fields are 2916 * updated as well as the necessary btrfs inode in memory fields 2917 * for detecting, at fsync time, if the inode isn't yet in the 2918 * log tree or it's there but not up to date. 2919 */ 2920 struct timespec64 now = current_time(inode); 2921 2922 inode_inc_iversion(inode); 2923 inode->i_mtime = now; 2924 inode->i_ctime = now; 2925 trans = btrfs_start_transaction(root, 1); 2926 if (IS_ERR(trans)) { 2927 ret = PTR_ERR(trans); 2928 } else { 2929 int ret2; 2930 2931 ret = btrfs_update_inode(trans, root, inode); 2932 ret2 = btrfs_end_transaction(trans); 2933 if (!ret) 2934 ret = ret2; 2935 } 2936 } 2937 inode_unlock(inode); 2938 return ret; 2939 } 2940 2941 /* Helper structure to record which range is already reserved */ 2942 struct falloc_range { 2943 struct list_head list; 2944 u64 start; 2945 u64 len; 2946 }; 2947 2948 /* 2949 * Helper function to add falloc range 2950 * 2951 * Caller should have locked the larger range of extent containing 2952 * [start, len) 2953 */ 2954 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2955 { 2956 struct falloc_range *prev = NULL; 2957 struct falloc_range *range = NULL; 2958 2959 if (list_empty(head)) 2960 goto insert; 2961 2962 /* 2963 * As fallocate iterate by bytenr order, we only need to check 2964 * the last range. 2965 */ 2966 prev = list_entry(head->prev, struct falloc_range, list); 2967 if (prev->start + prev->len == start) { 2968 prev->len += len; 2969 return 0; 2970 } 2971 insert: 2972 range = kmalloc(sizeof(*range), GFP_KERNEL); 2973 if (!range) 2974 return -ENOMEM; 2975 range->start = start; 2976 range->len = len; 2977 list_add_tail(&range->list, head); 2978 return 0; 2979 } 2980 2981 static int btrfs_fallocate_update_isize(struct inode *inode, 2982 const u64 end, 2983 const int mode) 2984 { 2985 struct btrfs_trans_handle *trans; 2986 struct btrfs_root *root = BTRFS_I(inode)->root; 2987 int ret; 2988 int ret2; 2989 2990 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2991 return 0; 2992 2993 trans = btrfs_start_transaction(root, 1); 2994 if (IS_ERR(trans)) 2995 return PTR_ERR(trans); 2996 2997 inode->i_ctime = current_time(inode); 2998 i_size_write(inode, end); 2999 btrfs_inode_safe_disk_i_size_write(inode, 0); 3000 ret = btrfs_update_inode(trans, root, inode); 3001 ret2 = btrfs_end_transaction(trans); 3002 3003 return ret ? ret : ret2; 3004 } 3005 3006 enum { 3007 RANGE_BOUNDARY_WRITTEN_EXTENT, 3008 RANGE_BOUNDARY_PREALLOC_EXTENT, 3009 RANGE_BOUNDARY_HOLE, 3010 }; 3011 3012 static int btrfs_zero_range_check_range_boundary(struct inode *inode, 3013 u64 offset) 3014 { 3015 const u64 sectorsize = btrfs_inode_sectorsize(inode); 3016 struct extent_map *em; 3017 int ret; 3018 3019 offset = round_down(offset, sectorsize); 3020 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize); 3021 if (IS_ERR(em)) 3022 return PTR_ERR(em); 3023 3024 if (em->block_start == EXTENT_MAP_HOLE) 3025 ret = RANGE_BOUNDARY_HOLE; 3026 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3027 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 3028 else 3029 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 3030 3031 free_extent_map(em); 3032 return ret; 3033 } 3034 3035 static int btrfs_zero_range(struct inode *inode, 3036 loff_t offset, 3037 loff_t len, 3038 const int mode) 3039 { 3040 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3041 struct extent_map *em; 3042 struct extent_changeset *data_reserved = NULL; 3043 int ret; 3044 u64 alloc_hint = 0; 3045 const u64 sectorsize = btrfs_inode_sectorsize(inode); 3046 u64 alloc_start = round_down(offset, sectorsize); 3047 u64 alloc_end = round_up(offset + len, sectorsize); 3048 u64 bytes_to_reserve = 0; 3049 bool space_reserved = false; 3050 3051 inode_dio_wait(inode); 3052 3053 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3054 alloc_end - alloc_start); 3055 if (IS_ERR(em)) { 3056 ret = PTR_ERR(em); 3057 goto out; 3058 } 3059 3060 /* 3061 * Avoid hole punching and extent allocation for some cases. More cases 3062 * could be considered, but these are unlikely common and we keep things 3063 * as simple as possible for now. Also, intentionally, if the target 3064 * range contains one or more prealloc extents together with regular 3065 * extents and holes, we drop all the existing extents and allocate a 3066 * new prealloc extent, so that we get a larger contiguous disk extent. 3067 */ 3068 if (em->start <= alloc_start && 3069 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3070 const u64 em_end = em->start + em->len; 3071 3072 if (em_end >= offset + len) { 3073 /* 3074 * The whole range is already a prealloc extent, 3075 * do nothing except updating the inode's i_size if 3076 * needed. 3077 */ 3078 free_extent_map(em); 3079 ret = btrfs_fallocate_update_isize(inode, offset + len, 3080 mode); 3081 goto out; 3082 } 3083 /* 3084 * Part of the range is already a prealloc extent, so operate 3085 * only on the remaining part of the range. 3086 */ 3087 alloc_start = em_end; 3088 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 3089 len = offset + len - alloc_start; 3090 offset = alloc_start; 3091 alloc_hint = em->block_start + em->len; 3092 } 3093 free_extent_map(em); 3094 3095 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 3096 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 3097 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3098 sectorsize); 3099 if (IS_ERR(em)) { 3100 ret = PTR_ERR(em); 3101 goto out; 3102 } 3103 3104 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3105 free_extent_map(em); 3106 ret = btrfs_fallocate_update_isize(inode, offset + len, 3107 mode); 3108 goto out; 3109 } 3110 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 3111 free_extent_map(em); 3112 ret = btrfs_truncate_block(inode, offset, len, 0); 3113 if (!ret) 3114 ret = btrfs_fallocate_update_isize(inode, 3115 offset + len, 3116 mode); 3117 return ret; 3118 } 3119 free_extent_map(em); 3120 alloc_start = round_down(offset, sectorsize); 3121 alloc_end = alloc_start + sectorsize; 3122 goto reserve_space; 3123 } 3124 3125 alloc_start = round_up(offset, sectorsize); 3126 alloc_end = round_down(offset + len, sectorsize); 3127 3128 /* 3129 * For unaligned ranges, check the pages at the boundaries, they might 3130 * map to an extent, in which case we need to partially zero them, or 3131 * they might map to a hole, in which case we need our allocation range 3132 * to cover them. 3133 */ 3134 if (!IS_ALIGNED(offset, sectorsize)) { 3135 ret = btrfs_zero_range_check_range_boundary(inode, offset); 3136 if (ret < 0) 3137 goto out; 3138 if (ret == RANGE_BOUNDARY_HOLE) { 3139 alloc_start = round_down(offset, sectorsize); 3140 ret = 0; 3141 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3142 ret = btrfs_truncate_block(inode, offset, 0, 0); 3143 if (ret) 3144 goto out; 3145 } else { 3146 ret = 0; 3147 } 3148 } 3149 3150 if (!IS_ALIGNED(offset + len, sectorsize)) { 3151 ret = btrfs_zero_range_check_range_boundary(inode, 3152 offset + len); 3153 if (ret < 0) 3154 goto out; 3155 if (ret == RANGE_BOUNDARY_HOLE) { 3156 alloc_end = round_up(offset + len, sectorsize); 3157 ret = 0; 3158 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3159 ret = btrfs_truncate_block(inode, offset + len, 0, 1); 3160 if (ret) 3161 goto out; 3162 } else { 3163 ret = 0; 3164 } 3165 } 3166 3167 reserve_space: 3168 if (alloc_start < alloc_end) { 3169 struct extent_state *cached_state = NULL; 3170 const u64 lockstart = alloc_start; 3171 const u64 lockend = alloc_end - 1; 3172 3173 bytes_to_reserve = alloc_end - alloc_start; 3174 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3175 bytes_to_reserve); 3176 if (ret < 0) 3177 goto out; 3178 space_reserved = true; 3179 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 3180 alloc_start, bytes_to_reserve); 3181 if (ret) 3182 goto out; 3183 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3184 &cached_state); 3185 if (ret) 3186 goto out; 3187 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3188 alloc_end - alloc_start, 3189 i_blocksize(inode), 3190 offset + len, &alloc_hint); 3191 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3192 lockend, &cached_state); 3193 /* btrfs_prealloc_file_range releases reserved space on error */ 3194 if (ret) { 3195 space_reserved = false; 3196 goto out; 3197 } 3198 } 3199 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3200 out: 3201 if (ret && space_reserved) 3202 btrfs_free_reserved_data_space(inode, data_reserved, 3203 alloc_start, bytes_to_reserve); 3204 extent_changeset_free(data_reserved); 3205 3206 return ret; 3207 } 3208 3209 static long btrfs_fallocate(struct file *file, int mode, 3210 loff_t offset, loff_t len) 3211 { 3212 struct inode *inode = file_inode(file); 3213 struct extent_state *cached_state = NULL; 3214 struct extent_changeset *data_reserved = NULL; 3215 struct falloc_range *range; 3216 struct falloc_range *tmp; 3217 struct list_head reserve_list; 3218 u64 cur_offset; 3219 u64 last_byte; 3220 u64 alloc_start; 3221 u64 alloc_end; 3222 u64 alloc_hint = 0; 3223 u64 locked_end; 3224 u64 actual_end = 0; 3225 struct extent_map *em; 3226 int blocksize = btrfs_inode_sectorsize(inode); 3227 int ret; 3228 3229 alloc_start = round_down(offset, blocksize); 3230 alloc_end = round_up(offset + len, blocksize); 3231 cur_offset = alloc_start; 3232 3233 /* Make sure we aren't being give some crap mode */ 3234 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3235 FALLOC_FL_ZERO_RANGE)) 3236 return -EOPNOTSUPP; 3237 3238 if (mode & FALLOC_FL_PUNCH_HOLE) 3239 return btrfs_punch_hole(inode, offset, len); 3240 3241 /* 3242 * Only trigger disk allocation, don't trigger qgroup reserve 3243 * 3244 * For qgroup space, it will be checked later. 3245 */ 3246 if (!(mode & FALLOC_FL_ZERO_RANGE)) { 3247 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3248 alloc_end - alloc_start); 3249 if (ret < 0) 3250 return ret; 3251 } 3252 3253 inode_lock(inode); 3254 3255 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3256 ret = inode_newsize_ok(inode, offset + len); 3257 if (ret) 3258 goto out; 3259 } 3260 3261 /* 3262 * TODO: Move these two operations after we have checked 3263 * accurate reserved space, or fallocate can still fail but 3264 * with page truncated or size expanded. 3265 * 3266 * But that's a minor problem and won't do much harm BTW. 3267 */ 3268 if (alloc_start > inode->i_size) { 3269 ret = btrfs_cont_expand(inode, i_size_read(inode), 3270 alloc_start); 3271 if (ret) 3272 goto out; 3273 } else if (offset + len > inode->i_size) { 3274 /* 3275 * If we are fallocating from the end of the file onward we 3276 * need to zero out the end of the block if i_size lands in the 3277 * middle of a block. 3278 */ 3279 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 3280 if (ret) 3281 goto out; 3282 } 3283 3284 /* 3285 * wait for ordered IO before we have any locks. We'll loop again 3286 * below with the locks held. 3287 */ 3288 ret = btrfs_wait_ordered_range(inode, alloc_start, 3289 alloc_end - alloc_start); 3290 if (ret) 3291 goto out; 3292 3293 if (mode & FALLOC_FL_ZERO_RANGE) { 3294 ret = btrfs_zero_range(inode, offset, len, mode); 3295 inode_unlock(inode); 3296 return ret; 3297 } 3298 3299 locked_end = alloc_end - 1; 3300 while (1) { 3301 struct btrfs_ordered_extent *ordered; 3302 3303 /* the extent lock is ordered inside the running 3304 * transaction 3305 */ 3306 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 3307 locked_end, &cached_state); 3308 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end); 3309 3310 if (ordered && 3311 ordered->file_offset + ordered->num_bytes > alloc_start && 3312 ordered->file_offset < alloc_end) { 3313 btrfs_put_ordered_extent(ordered); 3314 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 3315 alloc_start, locked_end, 3316 &cached_state); 3317 /* 3318 * we can't wait on the range with the transaction 3319 * running or with the extent lock held 3320 */ 3321 ret = btrfs_wait_ordered_range(inode, alloc_start, 3322 alloc_end - alloc_start); 3323 if (ret) 3324 goto out; 3325 } else { 3326 if (ordered) 3327 btrfs_put_ordered_extent(ordered); 3328 break; 3329 } 3330 } 3331 3332 /* First, check if we exceed the qgroup limit */ 3333 INIT_LIST_HEAD(&reserve_list); 3334 while (cur_offset < alloc_end) { 3335 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3336 alloc_end - cur_offset); 3337 if (IS_ERR(em)) { 3338 ret = PTR_ERR(em); 3339 break; 3340 } 3341 last_byte = min(extent_map_end(em), alloc_end); 3342 actual_end = min_t(u64, extent_map_end(em), offset + len); 3343 last_byte = ALIGN(last_byte, blocksize); 3344 if (em->block_start == EXTENT_MAP_HOLE || 3345 (cur_offset >= inode->i_size && 3346 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3347 ret = add_falloc_range(&reserve_list, cur_offset, 3348 last_byte - cur_offset); 3349 if (ret < 0) { 3350 free_extent_map(em); 3351 break; 3352 } 3353 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 3354 cur_offset, last_byte - cur_offset); 3355 if (ret < 0) { 3356 cur_offset = last_byte; 3357 free_extent_map(em); 3358 break; 3359 } 3360 } else { 3361 /* 3362 * Do not need to reserve unwritten extent for this 3363 * range, free reserved data space first, otherwise 3364 * it'll result in false ENOSPC error. 3365 */ 3366 btrfs_free_reserved_data_space(inode, data_reserved, 3367 cur_offset, last_byte - cur_offset); 3368 } 3369 free_extent_map(em); 3370 cur_offset = last_byte; 3371 } 3372 3373 /* 3374 * If ret is still 0, means we're OK to fallocate. 3375 * Or just cleanup the list and exit. 3376 */ 3377 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3378 if (!ret) 3379 ret = btrfs_prealloc_file_range(inode, mode, 3380 range->start, 3381 range->len, i_blocksize(inode), 3382 offset + len, &alloc_hint); 3383 else 3384 btrfs_free_reserved_data_space(inode, 3385 data_reserved, range->start, 3386 range->len); 3387 list_del(&range->list); 3388 kfree(range); 3389 } 3390 if (ret < 0) 3391 goto out_unlock; 3392 3393 /* 3394 * We didn't need to allocate any more space, but we still extended the 3395 * size of the file so we need to update i_size and the inode item. 3396 */ 3397 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3398 out_unlock: 3399 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3400 &cached_state); 3401 out: 3402 inode_unlock(inode); 3403 /* Let go of our reservation. */ 3404 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) 3405 btrfs_free_reserved_data_space(inode, data_reserved, 3406 cur_offset, alloc_end - cur_offset); 3407 extent_changeset_free(data_reserved); 3408 return ret; 3409 } 3410 3411 static loff_t find_desired_extent(struct inode *inode, loff_t offset, 3412 int whence) 3413 { 3414 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3415 struct extent_map *em = NULL; 3416 struct extent_state *cached_state = NULL; 3417 loff_t i_size = inode->i_size; 3418 u64 lockstart; 3419 u64 lockend; 3420 u64 start; 3421 u64 len; 3422 int ret = 0; 3423 3424 if (i_size == 0 || offset >= i_size) 3425 return -ENXIO; 3426 3427 /* 3428 * offset can be negative, in this case we start finding DATA/HOLE from 3429 * the very start of the file. 3430 */ 3431 start = max_t(loff_t, 0, offset); 3432 3433 lockstart = round_down(start, fs_info->sectorsize); 3434 lockend = round_up(i_size, fs_info->sectorsize); 3435 if (lockend <= lockstart) 3436 lockend = lockstart + fs_info->sectorsize; 3437 lockend--; 3438 len = lockend - lockstart + 1; 3439 3440 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3441 &cached_state); 3442 3443 while (start < i_size) { 3444 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len); 3445 if (IS_ERR(em)) { 3446 ret = PTR_ERR(em); 3447 em = NULL; 3448 break; 3449 } 3450 3451 if (whence == SEEK_HOLE && 3452 (em->block_start == EXTENT_MAP_HOLE || 3453 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3454 break; 3455 else if (whence == SEEK_DATA && 3456 (em->block_start != EXTENT_MAP_HOLE && 3457 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3458 break; 3459 3460 start = em->start + em->len; 3461 free_extent_map(em); 3462 em = NULL; 3463 cond_resched(); 3464 } 3465 free_extent_map(em); 3466 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3467 &cached_state); 3468 if (ret) { 3469 offset = ret; 3470 } else { 3471 if (whence == SEEK_DATA && start >= i_size) 3472 offset = -ENXIO; 3473 else 3474 offset = min_t(loff_t, start, i_size); 3475 } 3476 3477 return offset; 3478 } 3479 3480 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3481 { 3482 struct inode *inode = file->f_mapping->host; 3483 3484 switch (whence) { 3485 default: 3486 return generic_file_llseek(file, offset, whence); 3487 case SEEK_DATA: 3488 case SEEK_HOLE: 3489 inode_lock_shared(inode); 3490 offset = find_desired_extent(inode, offset, whence); 3491 inode_unlock_shared(inode); 3492 break; 3493 } 3494 3495 if (offset < 0) 3496 return offset; 3497 3498 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3499 } 3500 3501 static int btrfs_file_open(struct inode *inode, struct file *filp) 3502 { 3503 filp->f_mode |= FMODE_NOWAIT; 3504 return generic_file_open(inode, filp); 3505 } 3506 3507 const struct file_operations btrfs_file_operations = { 3508 .llseek = btrfs_file_llseek, 3509 .read_iter = generic_file_read_iter, 3510 .splice_read = generic_file_splice_read, 3511 .write_iter = btrfs_file_write_iter, 3512 .mmap = btrfs_file_mmap, 3513 .open = btrfs_file_open, 3514 .release = btrfs_release_file, 3515 .fsync = btrfs_sync_file, 3516 .fallocate = btrfs_fallocate, 3517 .unlocked_ioctl = btrfs_ioctl, 3518 #ifdef CONFIG_COMPAT 3519 .compat_ioctl = btrfs_compat_ioctl, 3520 #endif 3521 .remap_file_range = btrfs_remap_file_range, 3522 }; 3523 3524 void __cold btrfs_auto_defrag_exit(void) 3525 { 3526 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3527 } 3528 3529 int __init btrfs_auto_defrag_init(void) 3530 { 3531 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3532 sizeof(struct inode_defrag), 0, 3533 SLAB_MEM_SPREAD, 3534 NULL); 3535 if (!btrfs_inode_defrag_cachep) 3536 return -ENOMEM; 3537 3538 return 0; 3539 } 3540 3541 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3542 { 3543 int ret; 3544 3545 /* 3546 * So with compression we will find and lock a dirty page and clear the 3547 * first one as dirty, setup an async extent, and immediately return 3548 * with the entire range locked but with nobody actually marked with 3549 * writeback. So we can't just filemap_write_and_wait_range() and 3550 * expect it to work since it will just kick off a thread to do the 3551 * actual work. So we need to call filemap_fdatawrite_range _again_ 3552 * since it will wait on the page lock, which won't be unlocked until 3553 * after the pages have been marked as writeback and so we're good to go 3554 * from there. We have to do this otherwise we'll miss the ordered 3555 * extents and that results in badness. Please Josef, do not think you 3556 * know better and pull this out at some point in the future, it is 3557 * right and you are wrong. 3558 */ 3559 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3560 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3561 &BTRFS_I(inode)->runtime_flags)) 3562 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3563 3564 return ret; 3565 } 3566