1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include "ctree.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "btrfs_inode.h" 23 #include "print-tree.h" 24 #include "tree-log.h" 25 #include "locking.h" 26 #include "volumes.h" 27 #include "qgroup.h" 28 #include "compression.h" 29 #include "delalloc-space.h" 30 #include "reflink.h" 31 32 static struct kmem_cache *btrfs_inode_defrag_cachep; 33 /* 34 * when auto defrag is enabled we 35 * queue up these defrag structs to remember which 36 * inodes need defragging passes 37 */ 38 struct inode_defrag { 39 struct rb_node rb_node; 40 /* objectid */ 41 u64 ino; 42 /* 43 * transid where the defrag was added, we search for 44 * extents newer than this 45 */ 46 u64 transid; 47 48 /* root objectid */ 49 u64 root; 50 51 /* last offset we were able to defrag */ 52 u64 last_offset; 53 54 /* if we've wrapped around back to zero once already */ 55 int cycled; 56 }; 57 58 static int __compare_inode_defrag(struct inode_defrag *defrag1, 59 struct inode_defrag *defrag2) 60 { 61 if (defrag1->root > defrag2->root) 62 return 1; 63 else if (defrag1->root < defrag2->root) 64 return -1; 65 else if (defrag1->ino > defrag2->ino) 66 return 1; 67 else if (defrag1->ino < defrag2->ino) 68 return -1; 69 else 70 return 0; 71 } 72 73 /* pop a record for an inode into the defrag tree. The lock 74 * must be held already 75 * 76 * If you're inserting a record for an older transid than an 77 * existing record, the transid already in the tree is lowered 78 * 79 * If an existing record is found the defrag item you 80 * pass in is freed 81 */ 82 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 83 struct inode_defrag *defrag) 84 { 85 struct btrfs_fs_info *fs_info = inode->root->fs_info; 86 struct inode_defrag *entry; 87 struct rb_node **p; 88 struct rb_node *parent = NULL; 89 int ret; 90 91 p = &fs_info->defrag_inodes.rb_node; 92 while (*p) { 93 parent = *p; 94 entry = rb_entry(parent, struct inode_defrag, rb_node); 95 96 ret = __compare_inode_defrag(defrag, entry); 97 if (ret < 0) 98 p = &parent->rb_left; 99 else if (ret > 0) 100 p = &parent->rb_right; 101 else { 102 /* if we're reinserting an entry for 103 * an old defrag run, make sure to 104 * lower the transid of our existing record 105 */ 106 if (defrag->transid < entry->transid) 107 entry->transid = defrag->transid; 108 if (defrag->last_offset > entry->last_offset) 109 entry->last_offset = defrag->last_offset; 110 return -EEXIST; 111 } 112 } 113 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 114 rb_link_node(&defrag->rb_node, parent, p); 115 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 116 return 0; 117 } 118 119 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 120 { 121 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 122 return 0; 123 124 if (btrfs_fs_closing(fs_info)) 125 return 0; 126 127 return 1; 128 } 129 130 /* 131 * insert a defrag record for this inode if auto defrag is 132 * enabled 133 */ 134 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 135 struct btrfs_inode *inode) 136 { 137 struct btrfs_root *root = inode->root; 138 struct btrfs_fs_info *fs_info = root->fs_info; 139 struct inode_defrag *defrag; 140 u64 transid; 141 int ret; 142 143 if (!__need_auto_defrag(fs_info)) 144 return 0; 145 146 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 147 return 0; 148 149 if (trans) 150 transid = trans->transid; 151 else 152 transid = inode->root->last_trans; 153 154 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 155 if (!defrag) 156 return -ENOMEM; 157 158 defrag->ino = btrfs_ino(inode); 159 defrag->transid = transid; 160 defrag->root = root->root_key.objectid; 161 162 spin_lock(&fs_info->defrag_inodes_lock); 163 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 164 /* 165 * If we set IN_DEFRAG flag and evict the inode from memory, 166 * and then re-read this inode, this new inode doesn't have 167 * IN_DEFRAG flag. At the case, we may find the existed defrag. 168 */ 169 ret = __btrfs_add_inode_defrag(inode, defrag); 170 if (ret) 171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 172 } else { 173 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 174 } 175 spin_unlock(&fs_info->defrag_inodes_lock); 176 return 0; 177 } 178 179 /* 180 * Requeue the defrag object. If there is a defrag object that points to 181 * the same inode in the tree, we will merge them together (by 182 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 183 */ 184 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode, 185 struct inode_defrag *defrag) 186 { 187 struct btrfs_fs_info *fs_info = inode->root->fs_info; 188 int ret; 189 190 if (!__need_auto_defrag(fs_info)) 191 goto out; 192 193 /* 194 * Here we don't check the IN_DEFRAG flag, because we need merge 195 * them together. 196 */ 197 spin_lock(&fs_info->defrag_inodes_lock); 198 ret = __btrfs_add_inode_defrag(inode, defrag); 199 spin_unlock(&fs_info->defrag_inodes_lock); 200 if (ret) 201 goto out; 202 return; 203 out: 204 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 205 } 206 207 /* 208 * pick the defragable inode that we want, if it doesn't exist, we will get 209 * the next one. 210 */ 211 static struct inode_defrag * 212 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 213 { 214 struct inode_defrag *entry = NULL; 215 struct inode_defrag tmp; 216 struct rb_node *p; 217 struct rb_node *parent = NULL; 218 int ret; 219 220 tmp.ino = ino; 221 tmp.root = root; 222 223 spin_lock(&fs_info->defrag_inodes_lock); 224 p = fs_info->defrag_inodes.rb_node; 225 while (p) { 226 parent = p; 227 entry = rb_entry(parent, struct inode_defrag, rb_node); 228 229 ret = __compare_inode_defrag(&tmp, entry); 230 if (ret < 0) 231 p = parent->rb_left; 232 else if (ret > 0) 233 p = parent->rb_right; 234 else 235 goto out; 236 } 237 238 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 239 parent = rb_next(parent); 240 if (parent) 241 entry = rb_entry(parent, struct inode_defrag, rb_node); 242 else 243 entry = NULL; 244 } 245 out: 246 if (entry) 247 rb_erase(parent, &fs_info->defrag_inodes); 248 spin_unlock(&fs_info->defrag_inodes_lock); 249 return entry; 250 } 251 252 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 253 { 254 struct inode_defrag *defrag; 255 struct rb_node *node; 256 257 spin_lock(&fs_info->defrag_inodes_lock); 258 node = rb_first(&fs_info->defrag_inodes); 259 while (node) { 260 rb_erase(node, &fs_info->defrag_inodes); 261 defrag = rb_entry(node, struct inode_defrag, rb_node); 262 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 263 264 cond_resched_lock(&fs_info->defrag_inodes_lock); 265 266 node = rb_first(&fs_info->defrag_inodes); 267 } 268 spin_unlock(&fs_info->defrag_inodes_lock); 269 } 270 271 #define BTRFS_DEFRAG_BATCH 1024 272 273 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 274 struct inode_defrag *defrag) 275 { 276 struct btrfs_root *inode_root; 277 struct inode *inode; 278 struct btrfs_key key; 279 struct btrfs_ioctl_defrag_range_args range; 280 int num_defrag; 281 int ret; 282 283 /* get the inode */ 284 key.objectid = defrag->root; 285 key.type = BTRFS_ROOT_ITEM_KEY; 286 key.offset = (u64)-1; 287 288 inode_root = btrfs_get_fs_root(fs_info, &key, true); 289 if (IS_ERR(inode_root)) { 290 ret = PTR_ERR(inode_root); 291 goto cleanup; 292 } 293 294 key.objectid = defrag->ino; 295 key.type = BTRFS_INODE_ITEM_KEY; 296 key.offset = 0; 297 inode = btrfs_iget(fs_info->sb, &key, inode_root); 298 btrfs_put_root(inode_root); 299 if (IS_ERR(inode)) { 300 ret = PTR_ERR(inode); 301 goto cleanup; 302 } 303 304 /* do a chunk of defrag */ 305 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 306 memset(&range, 0, sizeof(range)); 307 range.len = (u64)-1; 308 range.start = defrag->last_offset; 309 310 sb_start_write(fs_info->sb); 311 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 312 BTRFS_DEFRAG_BATCH); 313 sb_end_write(fs_info->sb); 314 /* 315 * if we filled the whole defrag batch, there 316 * must be more work to do. Queue this defrag 317 * again 318 */ 319 if (num_defrag == BTRFS_DEFRAG_BATCH) { 320 defrag->last_offset = range.start; 321 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 322 } else if (defrag->last_offset && !defrag->cycled) { 323 /* 324 * we didn't fill our defrag batch, but 325 * we didn't start at zero. Make sure we loop 326 * around to the start of the file. 327 */ 328 defrag->last_offset = 0; 329 defrag->cycled = 1; 330 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 331 } else { 332 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 333 } 334 335 iput(inode); 336 return 0; 337 cleanup: 338 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 339 return ret; 340 } 341 342 /* 343 * run through the list of inodes in the FS that need 344 * defragging 345 */ 346 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 347 { 348 struct inode_defrag *defrag; 349 u64 first_ino = 0; 350 u64 root_objectid = 0; 351 352 atomic_inc(&fs_info->defrag_running); 353 while (1) { 354 /* Pause the auto defragger. */ 355 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 356 &fs_info->fs_state)) 357 break; 358 359 if (!__need_auto_defrag(fs_info)) 360 break; 361 362 /* find an inode to defrag */ 363 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 364 first_ino); 365 if (!defrag) { 366 if (root_objectid || first_ino) { 367 root_objectid = 0; 368 first_ino = 0; 369 continue; 370 } else { 371 break; 372 } 373 } 374 375 first_ino = defrag->ino + 1; 376 root_objectid = defrag->root; 377 378 __btrfs_run_defrag_inode(fs_info, defrag); 379 } 380 atomic_dec(&fs_info->defrag_running); 381 382 /* 383 * during unmount, we use the transaction_wait queue to 384 * wait for the defragger to stop 385 */ 386 wake_up(&fs_info->transaction_wait); 387 return 0; 388 } 389 390 /* simple helper to fault in pages and copy. This should go away 391 * and be replaced with calls into generic code. 392 */ 393 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 394 struct page **prepared_pages, 395 struct iov_iter *i) 396 { 397 size_t copied = 0; 398 size_t total_copied = 0; 399 int pg = 0; 400 int offset = offset_in_page(pos); 401 402 while (write_bytes > 0) { 403 size_t count = min_t(size_t, 404 PAGE_SIZE - offset, write_bytes); 405 struct page *page = prepared_pages[pg]; 406 /* 407 * Copy data from userspace to the current page 408 */ 409 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 410 411 /* Flush processor's dcache for this page */ 412 flush_dcache_page(page); 413 414 /* 415 * if we get a partial write, we can end up with 416 * partially up to date pages. These add 417 * a lot of complexity, so make sure they don't 418 * happen by forcing this copy to be retried. 419 * 420 * The rest of the btrfs_file_write code will fall 421 * back to page at a time copies after we return 0. 422 */ 423 if (!PageUptodate(page) && copied < count) 424 copied = 0; 425 426 iov_iter_advance(i, copied); 427 write_bytes -= copied; 428 total_copied += copied; 429 430 /* Return to btrfs_file_write_iter to fault page */ 431 if (unlikely(copied == 0)) 432 break; 433 434 if (copied < PAGE_SIZE - offset) { 435 offset += copied; 436 } else { 437 pg++; 438 offset = 0; 439 } 440 } 441 return total_copied; 442 } 443 444 /* 445 * unlocks pages after btrfs_file_write is done with them 446 */ 447 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 448 { 449 size_t i; 450 for (i = 0; i < num_pages; i++) { 451 /* page checked is some magic around finding pages that 452 * have been modified without going through btrfs_set_page_dirty 453 * clear it here. There should be no need to mark the pages 454 * accessed as prepare_pages should have marked them accessed 455 * in prepare_pages via find_or_create_page() 456 */ 457 ClearPageChecked(pages[i]); 458 unlock_page(pages[i]); 459 put_page(pages[i]); 460 } 461 } 462 463 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 464 const u64 start, 465 const u64 len, 466 struct extent_state **cached_state) 467 { 468 u64 search_start = start; 469 const u64 end = start + len - 1; 470 471 while (search_start < end) { 472 const u64 search_len = end - search_start + 1; 473 struct extent_map *em; 474 u64 em_len; 475 int ret = 0; 476 477 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 478 if (IS_ERR(em)) 479 return PTR_ERR(em); 480 481 if (em->block_start != EXTENT_MAP_HOLE) 482 goto next; 483 484 em_len = em->len; 485 if (em->start < search_start) 486 em_len -= search_start - em->start; 487 if (em_len > search_len) 488 em_len = search_len; 489 490 ret = set_extent_bit(&inode->io_tree, search_start, 491 search_start + em_len - 1, 492 EXTENT_DELALLOC_NEW, 493 NULL, cached_state, GFP_NOFS); 494 next: 495 search_start = extent_map_end(em); 496 free_extent_map(em); 497 if (ret) 498 return ret; 499 } 500 return 0; 501 } 502 503 /* 504 * after copy_from_user, pages need to be dirtied and we need to make 505 * sure holes are created between the current EOF and the start of 506 * any next extents (if required). 507 * 508 * this also makes the decision about creating an inline extent vs 509 * doing real data extents, marking pages dirty and delalloc as required. 510 */ 511 int btrfs_dirty_pages(struct inode *inode, struct page **pages, 512 size_t num_pages, loff_t pos, size_t write_bytes, 513 struct extent_state **cached) 514 { 515 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 516 int err = 0; 517 int i; 518 u64 num_bytes; 519 u64 start_pos; 520 u64 end_of_last_block; 521 u64 end_pos = pos + write_bytes; 522 loff_t isize = i_size_read(inode); 523 unsigned int extra_bits = 0; 524 525 start_pos = pos & ~((u64) fs_info->sectorsize - 1); 526 num_bytes = round_up(write_bytes + pos - start_pos, 527 fs_info->sectorsize); 528 529 end_of_last_block = start_pos + num_bytes - 1; 530 531 /* 532 * The pages may have already been dirty, clear out old accounting so 533 * we can set things up properly 534 */ 535 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block, 536 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 537 0, 0, cached); 538 539 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) { 540 if (start_pos >= isize && 541 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) { 542 /* 543 * There can't be any extents following eof in this case 544 * so just set the delalloc new bit for the range 545 * directly. 546 */ 547 extra_bits |= EXTENT_DELALLOC_NEW; 548 } else { 549 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode), 550 start_pos, 551 num_bytes, cached); 552 if (err) 553 return err; 554 } 555 } 556 557 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 558 extra_bits, cached); 559 if (err) 560 return err; 561 562 for (i = 0; i < num_pages; i++) { 563 struct page *p = pages[i]; 564 SetPageUptodate(p); 565 ClearPageChecked(p); 566 set_page_dirty(p); 567 } 568 569 /* 570 * we've only changed i_size in ram, and we haven't updated 571 * the disk i_size. There is no need to log the inode 572 * at this time. 573 */ 574 if (end_pos > isize) 575 i_size_write(inode, end_pos); 576 return 0; 577 } 578 579 /* 580 * this drops all the extents in the cache that intersect the range 581 * [start, end]. Existing extents are split as required. 582 */ 583 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 584 int skip_pinned) 585 { 586 struct extent_map *em; 587 struct extent_map *split = NULL; 588 struct extent_map *split2 = NULL; 589 struct extent_map_tree *em_tree = &inode->extent_tree; 590 u64 len = end - start + 1; 591 u64 gen; 592 int ret; 593 int testend = 1; 594 unsigned long flags; 595 int compressed = 0; 596 bool modified; 597 598 WARN_ON(end < start); 599 if (end == (u64)-1) { 600 len = (u64)-1; 601 testend = 0; 602 } 603 while (1) { 604 int no_splits = 0; 605 606 modified = false; 607 if (!split) 608 split = alloc_extent_map(); 609 if (!split2) 610 split2 = alloc_extent_map(); 611 if (!split || !split2) 612 no_splits = 1; 613 614 write_lock(&em_tree->lock); 615 em = lookup_extent_mapping(em_tree, start, len); 616 if (!em) { 617 write_unlock(&em_tree->lock); 618 break; 619 } 620 flags = em->flags; 621 gen = em->generation; 622 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 623 if (testend && em->start + em->len >= start + len) { 624 free_extent_map(em); 625 write_unlock(&em_tree->lock); 626 break; 627 } 628 start = em->start + em->len; 629 if (testend) 630 len = start + len - (em->start + em->len); 631 free_extent_map(em); 632 write_unlock(&em_tree->lock); 633 continue; 634 } 635 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 636 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 637 clear_bit(EXTENT_FLAG_LOGGING, &flags); 638 modified = !list_empty(&em->list); 639 if (no_splits) 640 goto next; 641 642 if (em->start < start) { 643 split->start = em->start; 644 split->len = start - em->start; 645 646 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 647 split->orig_start = em->orig_start; 648 split->block_start = em->block_start; 649 650 if (compressed) 651 split->block_len = em->block_len; 652 else 653 split->block_len = split->len; 654 split->orig_block_len = max(split->block_len, 655 em->orig_block_len); 656 split->ram_bytes = em->ram_bytes; 657 } else { 658 split->orig_start = split->start; 659 split->block_len = 0; 660 split->block_start = em->block_start; 661 split->orig_block_len = 0; 662 split->ram_bytes = split->len; 663 } 664 665 split->generation = gen; 666 split->flags = flags; 667 split->compress_type = em->compress_type; 668 replace_extent_mapping(em_tree, em, split, modified); 669 free_extent_map(split); 670 split = split2; 671 split2 = NULL; 672 } 673 if (testend && em->start + em->len > start + len) { 674 u64 diff = start + len - em->start; 675 676 split->start = start + len; 677 split->len = em->start + em->len - (start + len); 678 split->flags = flags; 679 split->compress_type = em->compress_type; 680 split->generation = gen; 681 682 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 683 split->orig_block_len = max(em->block_len, 684 em->orig_block_len); 685 686 split->ram_bytes = em->ram_bytes; 687 if (compressed) { 688 split->block_len = em->block_len; 689 split->block_start = em->block_start; 690 split->orig_start = em->orig_start; 691 } else { 692 split->block_len = split->len; 693 split->block_start = em->block_start 694 + diff; 695 split->orig_start = em->orig_start; 696 } 697 } else { 698 split->ram_bytes = split->len; 699 split->orig_start = split->start; 700 split->block_len = 0; 701 split->block_start = em->block_start; 702 split->orig_block_len = 0; 703 } 704 705 if (extent_map_in_tree(em)) { 706 replace_extent_mapping(em_tree, em, split, 707 modified); 708 } else { 709 ret = add_extent_mapping(em_tree, split, 710 modified); 711 ASSERT(ret == 0); /* Logic error */ 712 } 713 free_extent_map(split); 714 split = NULL; 715 } 716 next: 717 if (extent_map_in_tree(em)) 718 remove_extent_mapping(em_tree, em); 719 write_unlock(&em_tree->lock); 720 721 /* once for us */ 722 free_extent_map(em); 723 /* once for the tree*/ 724 free_extent_map(em); 725 } 726 if (split) 727 free_extent_map(split); 728 if (split2) 729 free_extent_map(split2); 730 } 731 732 /* 733 * this is very complex, but the basic idea is to drop all extents 734 * in the range start - end. hint_block is filled in with a block number 735 * that would be a good hint to the block allocator for this file. 736 * 737 * If an extent intersects the range but is not entirely inside the range 738 * it is either truncated or split. Anything entirely inside the range 739 * is deleted from the tree. 740 */ 741 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 742 struct btrfs_root *root, struct inode *inode, 743 struct btrfs_path *path, u64 start, u64 end, 744 u64 *drop_end, int drop_cache, 745 int replace_extent, 746 u32 extent_item_size, 747 int *key_inserted) 748 { 749 struct btrfs_fs_info *fs_info = root->fs_info; 750 struct extent_buffer *leaf; 751 struct btrfs_file_extent_item *fi; 752 struct btrfs_ref ref = { 0 }; 753 struct btrfs_key key; 754 struct btrfs_key new_key; 755 u64 ino = btrfs_ino(BTRFS_I(inode)); 756 u64 search_start = start; 757 u64 disk_bytenr = 0; 758 u64 num_bytes = 0; 759 u64 extent_offset = 0; 760 u64 extent_end = 0; 761 u64 last_end = start; 762 int del_nr = 0; 763 int del_slot = 0; 764 int extent_type; 765 int recow; 766 int ret; 767 int modify_tree = -1; 768 int update_refs; 769 int found = 0; 770 int leafs_visited = 0; 771 772 if (drop_cache) 773 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0); 774 775 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 776 modify_tree = 0; 777 778 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 779 root == fs_info->tree_root); 780 while (1) { 781 recow = 0; 782 ret = btrfs_lookup_file_extent(trans, root, path, ino, 783 search_start, modify_tree); 784 if (ret < 0) 785 break; 786 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 787 leaf = path->nodes[0]; 788 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 789 if (key.objectid == ino && 790 key.type == BTRFS_EXTENT_DATA_KEY) 791 path->slots[0]--; 792 } 793 ret = 0; 794 leafs_visited++; 795 next_slot: 796 leaf = path->nodes[0]; 797 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 798 BUG_ON(del_nr > 0); 799 ret = btrfs_next_leaf(root, path); 800 if (ret < 0) 801 break; 802 if (ret > 0) { 803 ret = 0; 804 break; 805 } 806 leafs_visited++; 807 leaf = path->nodes[0]; 808 recow = 1; 809 } 810 811 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 812 813 if (key.objectid > ino) 814 break; 815 if (WARN_ON_ONCE(key.objectid < ino) || 816 key.type < BTRFS_EXTENT_DATA_KEY) { 817 ASSERT(del_nr == 0); 818 path->slots[0]++; 819 goto next_slot; 820 } 821 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 822 break; 823 824 fi = btrfs_item_ptr(leaf, path->slots[0], 825 struct btrfs_file_extent_item); 826 extent_type = btrfs_file_extent_type(leaf, fi); 827 828 if (extent_type == BTRFS_FILE_EXTENT_REG || 829 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 830 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 831 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 832 extent_offset = btrfs_file_extent_offset(leaf, fi); 833 extent_end = key.offset + 834 btrfs_file_extent_num_bytes(leaf, fi); 835 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 836 extent_end = key.offset + 837 btrfs_file_extent_ram_bytes(leaf, fi); 838 } else { 839 /* can't happen */ 840 BUG(); 841 } 842 843 /* 844 * Don't skip extent items representing 0 byte lengths. They 845 * used to be created (bug) if while punching holes we hit 846 * -ENOSPC condition. So if we find one here, just ensure we 847 * delete it, otherwise we would insert a new file extent item 848 * with the same key (offset) as that 0 bytes length file 849 * extent item in the call to setup_items_for_insert() later 850 * in this function. 851 */ 852 if (extent_end == key.offset && extent_end >= search_start) { 853 last_end = extent_end; 854 goto delete_extent_item; 855 } 856 857 if (extent_end <= search_start) { 858 path->slots[0]++; 859 goto next_slot; 860 } 861 862 found = 1; 863 search_start = max(key.offset, start); 864 if (recow || !modify_tree) { 865 modify_tree = -1; 866 btrfs_release_path(path); 867 continue; 868 } 869 870 /* 871 * | - range to drop - | 872 * | -------- extent -------- | 873 */ 874 if (start > key.offset && end < extent_end) { 875 BUG_ON(del_nr > 0); 876 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 877 ret = -EOPNOTSUPP; 878 break; 879 } 880 881 memcpy(&new_key, &key, sizeof(new_key)); 882 new_key.offset = start; 883 ret = btrfs_duplicate_item(trans, root, path, 884 &new_key); 885 if (ret == -EAGAIN) { 886 btrfs_release_path(path); 887 continue; 888 } 889 if (ret < 0) 890 break; 891 892 leaf = path->nodes[0]; 893 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 894 struct btrfs_file_extent_item); 895 btrfs_set_file_extent_num_bytes(leaf, fi, 896 start - key.offset); 897 898 fi = btrfs_item_ptr(leaf, path->slots[0], 899 struct btrfs_file_extent_item); 900 901 extent_offset += start - key.offset; 902 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 903 btrfs_set_file_extent_num_bytes(leaf, fi, 904 extent_end - start); 905 btrfs_mark_buffer_dirty(leaf); 906 907 if (update_refs && disk_bytenr > 0) { 908 btrfs_init_generic_ref(&ref, 909 BTRFS_ADD_DELAYED_REF, 910 disk_bytenr, num_bytes, 0); 911 btrfs_init_data_ref(&ref, 912 root->root_key.objectid, 913 new_key.objectid, 914 start - extent_offset); 915 ret = btrfs_inc_extent_ref(trans, &ref); 916 BUG_ON(ret); /* -ENOMEM */ 917 } 918 key.offset = start; 919 } 920 /* 921 * From here on out we will have actually dropped something, so 922 * last_end can be updated. 923 */ 924 last_end = extent_end; 925 926 /* 927 * | ---- range to drop ----- | 928 * | -------- extent -------- | 929 */ 930 if (start <= key.offset && end < extent_end) { 931 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 932 ret = -EOPNOTSUPP; 933 break; 934 } 935 936 memcpy(&new_key, &key, sizeof(new_key)); 937 new_key.offset = end; 938 btrfs_set_item_key_safe(fs_info, path, &new_key); 939 940 extent_offset += end - key.offset; 941 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 942 btrfs_set_file_extent_num_bytes(leaf, fi, 943 extent_end - end); 944 btrfs_mark_buffer_dirty(leaf); 945 if (update_refs && disk_bytenr > 0) 946 inode_sub_bytes(inode, end - key.offset); 947 break; 948 } 949 950 search_start = extent_end; 951 /* 952 * | ---- range to drop ----- | 953 * | -------- extent -------- | 954 */ 955 if (start > key.offset && end >= extent_end) { 956 BUG_ON(del_nr > 0); 957 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 958 ret = -EOPNOTSUPP; 959 break; 960 } 961 962 btrfs_set_file_extent_num_bytes(leaf, fi, 963 start - key.offset); 964 btrfs_mark_buffer_dirty(leaf); 965 if (update_refs && disk_bytenr > 0) 966 inode_sub_bytes(inode, extent_end - start); 967 if (end == extent_end) 968 break; 969 970 path->slots[0]++; 971 goto next_slot; 972 } 973 974 /* 975 * | ---- range to drop ----- | 976 * | ------ extent ------ | 977 */ 978 if (start <= key.offset && end >= extent_end) { 979 delete_extent_item: 980 if (del_nr == 0) { 981 del_slot = path->slots[0]; 982 del_nr = 1; 983 } else { 984 BUG_ON(del_slot + del_nr != path->slots[0]); 985 del_nr++; 986 } 987 988 if (update_refs && 989 extent_type == BTRFS_FILE_EXTENT_INLINE) { 990 inode_sub_bytes(inode, 991 extent_end - key.offset); 992 extent_end = ALIGN(extent_end, 993 fs_info->sectorsize); 994 } else if (update_refs && disk_bytenr > 0) { 995 btrfs_init_generic_ref(&ref, 996 BTRFS_DROP_DELAYED_REF, 997 disk_bytenr, num_bytes, 0); 998 btrfs_init_data_ref(&ref, 999 root->root_key.objectid, 1000 key.objectid, 1001 key.offset - extent_offset); 1002 ret = btrfs_free_extent(trans, &ref); 1003 BUG_ON(ret); /* -ENOMEM */ 1004 inode_sub_bytes(inode, 1005 extent_end - key.offset); 1006 } 1007 1008 if (end == extent_end) 1009 break; 1010 1011 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 1012 path->slots[0]++; 1013 goto next_slot; 1014 } 1015 1016 ret = btrfs_del_items(trans, root, path, del_slot, 1017 del_nr); 1018 if (ret) { 1019 btrfs_abort_transaction(trans, ret); 1020 break; 1021 } 1022 1023 del_nr = 0; 1024 del_slot = 0; 1025 1026 btrfs_release_path(path); 1027 continue; 1028 } 1029 1030 BUG(); 1031 } 1032 1033 if (!ret && del_nr > 0) { 1034 /* 1035 * Set path->slots[0] to first slot, so that after the delete 1036 * if items are move off from our leaf to its immediate left or 1037 * right neighbor leafs, we end up with a correct and adjusted 1038 * path->slots[0] for our insertion (if replace_extent != 0). 1039 */ 1040 path->slots[0] = del_slot; 1041 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1042 if (ret) 1043 btrfs_abort_transaction(trans, ret); 1044 } 1045 1046 leaf = path->nodes[0]; 1047 /* 1048 * If btrfs_del_items() was called, it might have deleted a leaf, in 1049 * which case it unlocked our path, so check path->locks[0] matches a 1050 * write lock. 1051 */ 1052 if (!ret && replace_extent && leafs_visited == 1 && 1053 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 1054 path->locks[0] == BTRFS_WRITE_LOCK) && 1055 btrfs_leaf_free_space(leaf) >= 1056 sizeof(struct btrfs_item) + extent_item_size) { 1057 1058 key.objectid = ino; 1059 key.type = BTRFS_EXTENT_DATA_KEY; 1060 key.offset = start; 1061 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 1062 struct btrfs_key slot_key; 1063 1064 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 1065 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1066 path->slots[0]++; 1067 } 1068 setup_items_for_insert(root, path, &key, 1069 &extent_item_size, 1070 extent_item_size, 1071 sizeof(struct btrfs_item) + 1072 extent_item_size, 1); 1073 *key_inserted = 1; 1074 } 1075 1076 if (!replace_extent || !(*key_inserted)) 1077 btrfs_release_path(path); 1078 if (drop_end) 1079 *drop_end = found ? min(end, last_end) : end; 1080 return ret; 1081 } 1082 1083 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1084 struct btrfs_root *root, struct inode *inode, u64 start, 1085 u64 end, int drop_cache) 1086 { 1087 struct btrfs_path *path; 1088 int ret; 1089 1090 path = btrfs_alloc_path(); 1091 if (!path) 1092 return -ENOMEM; 1093 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1094 drop_cache, 0, 0, NULL); 1095 btrfs_free_path(path); 1096 return ret; 1097 } 1098 1099 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1100 u64 objectid, u64 bytenr, u64 orig_offset, 1101 u64 *start, u64 *end) 1102 { 1103 struct btrfs_file_extent_item *fi; 1104 struct btrfs_key key; 1105 u64 extent_end; 1106 1107 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1108 return 0; 1109 1110 btrfs_item_key_to_cpu(leaf, &key, slot); 1111 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1112 return 0; 1113 1114 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1115 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1116 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1117 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1118 btrfs_file_extent_compression(leaf, fi) || 1119 btrfs_file_extent_encryption(leaf, fi) || 1120 btrfs_file_extent_other_encoding(leaf, fi)) 1121 return 0; 1122 1123 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1124 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1125 return 0; 1126 1127 *start = key.offset; 1128 *end = extent_end; 1129 return 1; 1130 } 1131 1132 /* 1133 * Mark extent in the range start - end as written. 1134 * 1135 * This changes extent type from 'pre-allocated' to 'regular'. If only 1136 * part of extent is marked as written, the extent will be split into 1137 * two or three. 1138 */ 1139 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1140 struct btrfs_inode *inode, u64 start, u64 end) 1141 { 1142 struct btrfs_fs_info *fs_info = trans->fs_info; 1143 struct btrfs_root *root = inode->root; 1144 struct extent_buffer *leaf; 1145 struct btrfs_path *path; 1146 struct btrfs_file_extent_item *fi; 1147 struct btrfs_ref ref = { 0 }; 1148 struct btrfs_key key; 1149 struct btrfs_key new_key; 1150 u64 bytenr; 1151 u64 num_bytes; 1152 u64 extent_end; 1153 u64 orig_offset; 1154 u64 other_start; 1155 u64 other_end; 1156 u64 split; 1157 int del_nr = 0; 1158 int del_slot = 0; 1159 int recow; 1160 int ret; 1161 u64 ino = btrfs_ino(inode); 1162 1163 path = btrfs_alloc_path(); 1164 if (!path) 1165 return -ENOMEM; 1166 again: 1167 recow = 0; 1168 split = start; 1169 key.objectid = ino; 1170 key.type = BTRFS_EXTENT_DATA_KEY; 1171 key.offset = split; 1172 1173 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1174 if (ret < 0) 1175 goto out; 1176 if (ret > 0 && path->slots[0] > 0) 1177 path->slots[0]--; 1178 1179 leaf = path->nodes[0]; 1180 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1181 if (key.objectid != ino || 1182 key.type != BTRFS_EXTENT_DATA_KEY) { 1183 ret = -EINVAL; 1184 btrfs_abort_transaction(trans, ret); 1185 goto out; 1186 } 1187 fi = btrfs_item_ptr(leaf, path->slots[0], 1188 struct btrfs_file_extent_item); 1189 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1190 ret = -EINVAL; 1191 btrfs_abort_transaction(trans, ret); 1192 goto out; 1193 } 1194 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1195 if (key.offset > start || extent_end < end) { 1196 ret = -EINVAL; 1197 btrfs_abort_transaction(trans, ret); 1198 goto out; 1199 } 1200 1201 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1202 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1203 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1204 memcpy(&new_key, &key, sizeof(new_key)); 1205 1206 if (start == key.offset && end < extent_end) { 1207 other_start = 0; 1208 other_end = start; 1209 if (extent_mergeable(leaf, path->slots[0] - 1, 1210 ino, bytenr, orig_offset, 1211 &other_start, &other_end)) { 1212 new_key.offset = end; 1213 btrfs_set_item_key_safe(fs_info, path, &new_key); 1214 fi = btrfs_item_ptr(leaf, path->slots[0], 1215 struct btrfs_file_extent_item); 1216 btrfs_set_file_extent_generation(leaf, fi, 1217 trans->transid); 1218 btrfs_set_file_extent_num_bytes(leaf, fi, 1219 extent_end - end); 1220 btrfs_set_file_extent_offset(leaf, fi, 1221 end - orig_offset); 1222 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1223 struct btrfs_file_extent_item); 1224 btrfs_set_file_extent_generation(leaf, fi, 1225 trans->transid); 1226 btrfs_set_file_extent_num_bytes(leaf, fi, 1227 end - other_start); 1228 btrfs_mark_buffer_dirty(leaf); 1229 goto out; 1230 } 1231 } 1232 1233 if (start > key.offset && end == extent_end) { 1234 other_start = end; 1235 other_end = 0; 1236 if (extent_mergeable(leaf, path->slots[0] + 1, 1237 ino, bytenr, orig_offset, 1238 &other_start, &other_end)) { 1239 fi = btrfs_item_ptr(leaf, path->slots[0], 1240 struct btrfs_file_extent_item); 1241 btrfs_set_file_extent_num_bytes(leaf, fi, 1242 start - key.offset); 1243 btrfs_set_file_extent_generation(leaf, fi, 1244 trans->transid); 1245 path->slots[0]++; 1246 new_key.offset = start; 1247 btrfs_set_item_key_safe(fs_info, path, &new_key); 1248 1249 fi = btrfs_item_ptr(leaf, path->slots[0], 1250 struct btrfs_file_extent_item); 1251 btrfs_set_file_extent_generation(leaf, fi, 1252 trans->transid); 1253 btrfs_set_file_extent_num_bytes(leaf, fi, 1254 other_end - start); 1255 btrfs_set_file_extent_offset(leaf, fi, 1256 start - orig_offset); 1257 btrfs_mark_buffer_dirty(leaf); 1258 goto out; 1259 } 1260 } 1261 1262 while (start > key.offset || end < extent_end) { 1263 if (key.offset == start) 1264 split = end; 1265 1266 new_key.offset = split; 1267 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1268 if (ret == -EAGAIN) { 1269 btrfs_release_path(path); 1270 goto again; 1271 } 1272 if (ret < 0) { 1273 btrfs_abort_transaction(trans, ret); 1274 goto out; 1275 } 1276 1277 leaf = path->nodes[0]; 1278 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1279 struct btrfs_file_extent_item); 1280 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1281 btrfs_set_file_extent_num_bytes(leaf, fi, 1282 split - key.offset); 1283 1284 fi = btrfs_item_ptr(leaf, path->slots[0], 1285 struct btrfs_file_extent_item); 1286 1287 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1288 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1289 btrfs_set_file_extent_num_bytes(leaf, fi, 1290 extent_end - split); 1291 btrfs_mark_buffer_dirty(leaf); 1292 1293 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 1294 num_bytes, 0); 1295 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 1296 orig_offset); 1297 ret = btrfs_inc_extent_ref(trans, &ref); 1298 if (ret) { 1299 btrfs_abort_transaction(trans, ret); 1300 goto out; 1301 } 1302 1303 if (split == start) { 1304 key.offset = start; 1305 } else { 1306 if (start != key.offset) { 1307 ret = -EINVAL; 1308 btrfs_abort_transaction(trans, ret); 1309 goto out; 1310 } 1311 path->slots[0]--; 1312 extent_end = end; 1313 } 1314 recow = 1; 1315 } 1316 1317 other_start = end; 1318 other_end = 0; 1319 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1320 num_bytes, 0); 1321 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset); 1322 if (extent_mergeable(leaf, path->slots[0] + 1, 1323 ino, bytenr, orig_offset, 1324 &other_start, &other_end)) { 1325 if (recow) { 1326 btrfs_release_path(path); 1327 goto again; 1328 } 1329 extent_end = other_end; 1330 del_slot = path->slots[0] + 1; 1331 del_nr++; 1332 ret = btrfs_free_extent(trans, &ref); 1333 if (ret) { 1334 btrfs_abort_transaction(trans, ret); 1335 goto out; 1336 } 1337 } 1338 other_start = 0; 1339 other_end = start; 1340 if (extent_mergeable(leaf, path->slots[0] - 1, 1341 ino, bytenr, orig_offset, 1342 &other_start, &other_end)) { 1343 if (recow) { 1344 btrfs_release_path(path); 1345 goto again; 1346 } 1347 key.offset = other_start; 1348 del_slot = path->slots[0]; 1349 del_nr++; 1350 ret = btrfs_free_extent(trans, &ref); 1351 if (ret) { 1352 btrfs_abort_transaction(trans, ret); 1353 goto out; 1354 } 1355 } 1356 if (del_nr == 0) { 1357 fi = btrfs_item_ptr(leaf, path->slots[0], 1358 struct btrfs_file_extent_item); 1359 btrfs_set_file_extent_type(leaf, fi, 1360 BTRFS_FILE_EXTENT_REG); 1361 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1362 btrfs_mark_buffer_dirty(leaf); 1363 } else { 1364 fi = btrfs_item_ptr(leaf, del_slot - 1, 1365 struct btrfs_file_extent_item); 1366 btrfs_set_file_extent_type(leaf, fi, 1367 BTRFS_FILE_EXTENT_REG); 1368 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1369 btrfs_set_file_extent_num_bytes(leaf, fi, 1370 extent_end - key.offset); 1371 btrfs_mark_buffer_dirty(leaf); 1372 1373 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1374 if (ret < 0) { 1375 btrfs_abort_transaction(trans, ret); 1376 goto out; 1377 } 1378 } 1379 out: 1380 btrfs_free_path(path); 1381 return 0; 1382 } 1383 1384 /* 1385 * on error we return an unlocked page and the error value 1386 * on success we return a locked page and 0 1387 */ 1388 static int prepare_uptodate_page(struct inode *inode, 1389 struct page *page, u64 pos, 1390 bool force_uptodate) 1391 { 1392 int ret = 0; 1393 1394 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1395 !PageUptodate(page)) { 1396 ret = btrfs_readpage(NULL, page); 1397 if (ret) 1398 return ret; 1399 lock_page(page); 1400 if (!PageUptodate(page)) { 1401 unlock_page(page); 1402 return -EIO; 1403 } 1404 if (page->mapping != inode->i_mapping) { 1405 unlock_page(page); 1406 return -EAGAIN; 1407 } 1408 } 1409 return 0; 1410 } 1411 1412 /* 1413 * this just gets pages into the page cache and locks them down. 1414 */ 1415 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1416 size_t num_pages, loff_t pos, 1417 size_t write_bytes, bool force_uptodate) 1418 { 1419 int i; 1420 unsigned long index = pos >> PAGE_SHIFT; 1421 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1422 int err = 0; 1423 int faili; 1424 1425 for (i = 0; i < num_pages; i++) { 1426 again: 1427 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1428 mask | __GFP_WRITE); 1429 if (!pages[i]) { 1430 faili = i - 1; 1431 err = -ENOMEM; 1432 goto fail; 1433 } 1434 1435 if (i == 0) 1436 err = prepare_uptodate_page(inode, pages[i], pos, 1437 force_uptodate); 1438 if (!err && i == num_pages - 1) 1439 err = prepare_uptodate_page(inode, pages[i], 1440 pos + write_bytes, false); 1441 if (err) { 1442 put_page(pages[i]); 1443 if (err == -EAGAIN) { 1444 err = 0; 1445 goto again; 1446 } 1447 faili = i - 1; 1448 goto fail; 1449 } 1450 wait_on_page_writeback(pages[i]); 1451 } 1452 1453 return 0; 1454 fail: 1455 while (faili >= 0) { 1456 unlock_page(pages[faili]); 1457 put_page(pages[faili]); 1458 faili--; 1459 } 1460 return err; 1461 1462 } 1463 1464 /* 1465 * This function locks the extent and properly waits for data=ordered extents 1466 * to finish before allowing the pages to be modified if need. 1467 * 1468 * The return value: 1469 * 1 - the extent is locked 1470 * 0 - the extent is not locked, and everything is OK 1471 * -EAGAIN - need re-prepare the pages 1472 * the other < 0 number - Something wrong happens 1473 */ 1474 static noinline int 1475 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1476 size_t num_pages, loff_t pos, 1477 size_t write_bytes, 1478 u64 *lockstart, u64 *lockend, 1479 struct extent_state **cached_state) 1480 { 1481 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1482 u64 start_pos; 1483 u64 last_pos; 1484 int i; 1485 int ret = 0; 1486 1487 start_pos = round_down(pos, fs_info->sectorsize); 1488 last_pos = start_pos 1489 + round_up(pos + write_bytes - start_pos, 1490 fs_info->sectorsize) - 1; 1491 1492 if (start_pos < inode->vfs_inode.i_size) { 1493 struct btrfs_ordered_extent *ordered; 1494 1495 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1496 cached_state); 1497 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1498 last_pos - start_pos + 1); 1499 if (ordered && 1500 ordered->file_offset + ordered->num_bytes > start_pos && 1501 ordered->file_offset <= last_pos) { 1502 unlock_extent_cached(&inode->io_tree, start_pos, 1503 last_pos, cached_state); 1504 for (i = 0; i < num_pages; i++) { 1505 unlock_page(pages[i]); 1506 put_page(pages[i]); 1507 } 1508 btrfs_start_ordered_extent(&inode->vfs_inode, 1509 ordered, 1); 1510 btrfs_put_ordered_extent(ordered); 1511 return -EAGAIN; 1512 } 1513 if (ordered) 1514 btrfs_put_ordered_extent(ordered); 1515 1516 *lockstart = start_pos; 1517 *lockend = last_pos; 1518 ret = 1; 1519 } 1520 1521 /* 1522 * It's possible the pages are dirty right now, but we don't want 1523 * to clean them yet because copy_from_user may catch a page fault 1524 * and we might have to fall back to one page at a time. If that 1525 * happens, we'll unlock these pages and we'd have a window where 1526 * reclaim could sneak in and drop the once-dirty page on the floor 1527 * without writing it. 1528 * 1529 * We have the pages locked and the extent range locked, so there's 1530 * no way someone can start IO on any dirty pages in this range. 1531 * 1532 * We'll call btrfs_dirty_pages() later on, and that will flip around 1533 * delalloc bits and dirty the pages as required. 1534 */ 1535 for (i = 0; i < num_pages; i++) { 1536 set_page_extent_mapped(pages[i]); 1537 WARN_ON(!PageLocked(pages[i])); 1538 } 1539 1540 return ret; 1541 } 1542 1543 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1544 size_t *write_bytes) 1545 { 1546 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1547 struct btrfs_root *root = inode->root; 1548 u64 lockstart, lockend; 1549 u64 num_bytes; 1550 int ret; 1551 1552 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1553 return -EAGAIN; 1554 1555 lockstart = round_down(pos, fs_info->sectorsize); 1556 lockend = round_up(pos + *write_bytes, 1557 fs_info->sectorsize) - 1; 1558 1559 btrfs_lock_and_flush_ordered_range(inode, lockstart, 1560 lockend, NULL); 1561 1562 num_bytes = lockend - lockstart + 1; 1563 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1564 NULL, NULL, NULL); 1565 if (ret <= 0) { 1566 ret = 0; 1567 btrfs_drew_write_unlock(&root->snapshot_lock); 1568 } else { 1569 *write_bytes = min_t(size_t, *write_bytes , 1570 num_bytes - pos + lockstart); 1571 } 1572 1573 unlock_extent(&inode->io_tree, lockstart, lockend); 1574 1575 return ret; 1576 } 1577 1578 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1579 struct iov_iter *i) 1580 { 1581 struct file *file = iocb->ki_filp; 1582 loff_t pos = iocb->ki_pos; 1583 struct inode *inode = file_inode(file); 1584 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1585 struct btrfs_root *root = BTRFS_I(inode)->root; 1586 struct page **pages = NULL; 1587 struct extent_changeset *data_reserved = NULL; 1588 u64 release_bytes = 0; 1589 u64 lockstart; 1590 u64 lockend; 1591 size_t num_written = 0; 1592 int nrptrs; 1593 int ret = 0; 1594 bool only_release_metadata = false; 1595 bool force_page_uptodate = false; 1596 1597 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1598 PAGE_SIZE / (sizeof(struct page *))); 1599 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1600 nrptrs = max(nrptrs, 8); 1601 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1602 if (!pages) 1603 return -ENOMEM; 1604 1605 while (iov_iter_count(i) > 0) { 1606 struct extent_state *cached_state = NULL; 1607 size_t offset = offset_in_page(pos); 1608 size_t sector_offset; 1609 size_t write_bytes = min(iov_iter_count(i), 1610 nrptrs * (size_t)PAGE_SIZE - 1611 offset); 1612 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1613 PAGE_SIZE); 1614 size_t reserve_bytes; 1615 size_t dirty_pages; 1616 size_t copied; 1617 size_t dirty_sectors; 1618 size_t num_sectors; 1619 int extents_locked; 1620 1621 WARN_ON(num_pages > nrptrs); 1622 1623 /* 1624 * Fault pages before locking them in prepare_pages 1625 * to avoid recursive lock 1626 */ 1627 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1628 ret = -EFAULT; 1629 break; 1630 } 1631 1632 only_release_metadata = false; 1633 sector_offset = pos & (fs_info->sectorsize - 1); 1634 reserve_bytes = round_up(write_bytes + sector_offset, 1635 fs_info->sectorsize); 1636 1637 extent_changeset_release(data_reserved); 1638 ret = btrfs_check_data_free_space(inode, &data_reserved, pos, 1639 write_bytes); 1640 if (ret < 0) { 1641 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1642 BTRFS_INODE_PREALLOC)) && 1643 check_can_nocow(BTRFS_I(inode), pos, 1644 &write_bytes) > 0) { 1645 /* 1646 * For nodata cow case, no need to reserve 1647 * data space. 1648 */ 1649 only_release_metadata = true; 1650 /* 1651 * our prealloc extent may be smaller than 1652 * write_bytes, so scale down. 1653 */ 1654 num_pages = DIV_ROUND_UP(write_bytes + offset, 1655 PAGE_SIZE); 1656 reserve_bytes = round_up(write_bytes + 1657 sector_offset, 1658 fs_info->sectorsize); 1659 } else { 1660 break; 1661 } 1662 } 1663 1664 WARN_ON(reserve_bytes == 0); 1665 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1666 reserve_bytes); 1667 if (ret) { 1668 if (!only_release_metadata) 1669 btrfs_free_reserved_data_space(inode, 1670 data_reserved, pos, 1671 write_bytes); 1672 else 1673 btrfs_drew_write_unlock(&root->snapshot_lock); 1674 break; 1675 } 1676 1677 release_bytes = reserve_bytes; 1678 again: 1679 /* 1680 * This is going to setup the pages array with the number of 1681 * pages we want, so we don't really need to worry about the 1682 * contents of pages from loop to loop 1683 */ 1684 ret = prepare_pages(inode, pages, num_pages, 1685 pos, write_bytes, 1686 force_page_uptodate); 1687 if (ret) { 1688 btrfs_delalloc_release_extents(BTRFS_I(inode), 1689 reserve_bytes); 1690 break; 1691 } 1692 1693 extents_locked = lock_and_cleanup_extent_if_need( 1694 BTRFS_I(inode), pages, 1695 num_pages, pos, write_bytes, &lockstart, 1696 &lockend, &cached_state); 1697 if (extents_locked < 0) { 1698 if (extents_locked == -EAGAIN) 1699 goto again; 1700 btrfs_delalloc_release_extents(BTRFS_I(inode), 1701 reserve_bytes); 1702 ret = extents_locked; 1703 break; 1704 } 1705 1706 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1707 1708 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1709 dirty_sectors = round_up(copied + sector_offset, 1710 fs_info->sectorsize); 1711 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1712 1713 /* 1714 * if we have trouble faulting in the pages, fall 1715 * back to one page at a time 1716 */ 1717 if (copied < write_bytes) 1718 nrptrs = 1; 1719 1720 if (copied == 0) { 1721 force_page_uptodate = true; 1722 dirty_sectors = 0; 1723 dirty_pages = 0; 1724 } else { 1725 force_page_uptodate = false; 1726 dirty_pages = DIV_ROUND_UP(copied + offset, 1727 PAGE_SIZE); 1728 } 1729 1730 if (num_sectors > dirty_sectors) { 1731 /* release everything except the sectors we dirtied */ 1732 release_bytes -= dirty_sectors << 1733 fs_info->sb->s_blocksize_bits; 1734 if (only_release_metadata) { 1735 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1736 release_bytes, true); 1737 } else { 1738 u64 __pos; 1739 1740 __pos = round_down(pos, 1741 fs_info->sectorsize) + 1742 (dirty_pages << PAGE_SHIFT); 1743 btrfs_delalloc_release_space(inode, 1744 data_reserved, __pos, 1745 release_bytes, true); 1746 } 1747 } 1748 1749 release_bytes = round_up(copied + sector_offset, 1750 fs_info->sectorsize); 1751 1752 if (copied > 0) 1753 ret = btrfs_dirty_pages(inode, pages, dirty_pages, 1754 pos, copied, &cached_state); 1755 1756 /* 1757 * If we have not locked the extent range, because the range's 1758 * start offset is >= i_size, we might still have a non-NULL 1759 * cached extent state, acquired while marking the extent range 1760 * as delalloc through btrfs_dirty_pages(). Therefore free any 1761 * possible cached extent state to avoid a memory leak. 1762 */ 1763 if (extents_locked) 1764 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1765 lockstart, lockend, &cached_state); 1766 else 1767 free_extent_state(cached_state); 1768 1769 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1770 if (ret) { 1771 btrfs_drop_pages(pages, num_pages); 1772 break; 1773 } 1774 1775 release_bytes = 0; 1776 if (only_release_metadata) 1777 btrfs_drew_write_unlock(&root->snapshot_lock); 1778 1779 if (only_release_metadata && copied > 0) { 1780 lockstart = round_down(pos, 1781 fs_info->sectorsize); 1782 lockend = round_up(pos + copied, 1783 fs_info->sectorsize) - 1; 1784 1785 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1786 lockend, EXTENT_NORESERVE, NULL, 1787 NULL, GFP_NOFS); 1788 } 1789 1790 btrfs_drop_pages(pages, num_pages); 1791 1792 cond_resched(); 1793 1794 balance_dirty_pages_ratelimited(inode->i_mapping); 1795 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1) 1796 btrfs_btree_balance_dirty(fs_info); 1797 1798 pos += copied; 1799 num_written += copied; 1800 } 1801 1802 kfree(pages); 1803 1804 if (release_bytes) { 1805 if (only_release_metadata) { 1806 btrfs_drew_write_unlock(&root->snapshot_lock); 1807 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1808 release_bytes, true); 1809 } else { 1810 btrfs_delalloc_release_space(inode, data_reserved, 1811 round_down(pos, fs_info->sectorsize), 1812 release_bytes, true); 1813 } 1814 } 1815 1816 extent_changeset_free(data_reserved); 1817 return num_written ? num_written : ret; 1818 } 1819 1820 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1821 { 1822 struct file *file = iocb->ki_filp; 1823 struct inode *inode = file_inode(file); 1824 loff_t pos; 1825 ssize_t written; 1826 ssize_t written_buffered; 1827 loff_t endbyte; 1828 int err; 1829 1830 written = generic_file_direct_write(iocb, from); 1831 1832 if (written < 0 || !iov_iter_count(from)) 1833 return written; 1834 1835 pos = iocb->ki_pos; 1836 written_buffered = btrfs_buffered_write(iocb, from); 1837 if (written_buffered < 0) { 1838 err = written_buffered; 1839 goto out; 1840 } 1841 /* 1842 * Ensure all data is persisted. We want the next direct IO read to be 1843 * able to read what was just written. 1844 */ 1845 endbyte = pos + written_buffered - 1; 1846 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1847 if (err) 1848 goto out; 1849 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1850 if (err) 1851 goto out; 1852 written += written_buffered; 1853 iocb->ki_pos = pos + written_buffered; 1854 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1855 endbyte >> PAGE_SHIFT); 1856 out: 1857 return written ? written : err; 1858 } 1859 1860 static void update_time_for_write(struct inode *inode) 1861 { 1862 struct timespec64 now; 1863 1864 if (IS_NOCMTIME(inode)) 1865 return; 1866 1867 now = current_time(inode); 1868 if (!timespec64_equal(&inode->i_mtime, &now)) 1869 inode->i_mtime = now; 1870 1871 if (!timespec64_equal(&inode->i_ctime, &now)) 1872 inode->i_ctime = now; 1873 1874 if (IS_I_VERSION(inode)) 1875 inode_inc_iversion(inode); 1876 } 1877 1878 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1879 struct iov_iter *from) 1880 { 1881 struct file *file = iocb->ki_filp; 1882 struct inode *inode = file_inode(file); 1883 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1884 struct btrfs_root *root = BTRFS_I(inode)->root; 1885 u64 start_pos; 1886 u64 end_pos; 1887 ssize_t num_written = 0; 1888 const bool sync = iocb->ki_flags & IOCB_DSYNC; 1889 ssize_t err; 1890 loff_t pos; 1891 size_t count; 1892 loff_t oldsize; 1893 int clean_page = 0; 1894 1895 if (!(iocb->ki_flags & IOCB_DIRECT) && 1896 (iocb->ki_flags & IOCB_NOWAIT)) 1897 return -EOPNOTSUPP; 1898 1899 if (iocb->ki_flags & IOCB_NOWAIT) { 1900 if (!inode_trylock(inode)) 1901 return -EAGAIN; 1902 } else { 1903 inode_lock(inode); 1904 } 1905 1906 err = generic_write_checks(iocb, from); 1907 if (err <= 0) { 1908 inode_unlock(inode); 1909 return err; 1910 } 1911 1912 pos = iocb->ki_pos; 1913 count = iov_iter_count(from); 1914 if (iocb->ki_flags & IOCB_NOWAIT) { 1915 /* 1916 * We will allocate space in case nodatacow is not set, 1917 * so bail 1918 */ 1919 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1920 BTRFS_INODE_PREALLOC)) || 1921 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) { 1922 inode_unlock(inode); 1923 return -EAGAIN; 1924 } 1925 } 1926 1927 current->backing_dev_info = inode_to_bdi(inode); 1928 err = file_remove_privs(file); 1929 if (err) { 1930 inode_unlock(inode); 1931 goto out; 1932 } 1933 1934 /* 1935 * If BTRFS flips readonly due to some impossible error 1936 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1937 * although we have opened a file as writable, we have 1938 * to stop this write operation to ensure FS consistency. 1939 */ 1940 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1941 inode_unlock(inode); 1942 err = -EROFS; 1943 goto out; 1944 } 1945 1946 /* 1947 * We reserve space for updating the inode when we reserve space for the 1948 * extent we are going to write, so we will enospc out there. We don't 1949 * need to start yet another transaction to update the inode as we will 1950 * update the inode when we finish writing whatever data we write. 1951 */ 1952 update_time_for_write(inode); 1953 1954 start_pos = round_down(pos, fs_info->sectorsize); 1955 oldsize = i_size_read(inode); 1956 if (start_pos > oldsize) { 1957 /* Expand hole size to cover write data, preventing empty gap */ 1958 end_pos = round_up(pos + count, 1959 fs_info->sectorsize); 1960 err = btrfs_cont_expand(inode, oldsize, end_pos); 1961 if (err) { 1962 inode_unlock(inode); 1963 goto out; 1964 } 1965 if (start_pos > round_up(oldsize, fs_info->sectorsize)) 1966 clean_page = 1; 1967 } 1968 1969 if (sync) 1970 atomic_inc(&BTRFS_I(inode)->sync_writers); 1971 1972 if (iocb->ki_flags & IOCB_DIRECT) { 1973 num_written = __btrfs_direct_write(iocb, from); 1974 } else { 1975 num_written = btrfs_buffered_write(iocb, from); 1976 if (num_written > 0) 1977 iocb->ki_pos = pos + num_written; 1978 if (clean_page) 1979 pagecache_isize_extended(inode, oldsize, 1980 i_size_read(inode)); 1981 } 1982 1983 inode_unlock(inode); 1984 1985 /* 1986 * We also have to set last_sub_trans to the current log transid, 1987 * otherwise subsequent syncs to a file that's been synced in this 1988 * transaction will appear to have already occurred. 1989 */ 1990 spin_lock(&BTRFS_I(inode)->lock); 1991 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1992 spin_unlock(&BTRFS_I(inode)->lock); 1993 if (num_written > 0) 1994 num_written = generic_write_sync(iocb, num_written); 1995 1996 if (sync) 1997 atomic_dec(&BTRFS_I(inode)->sync_writers); 1998 out: 1999 current->backing_dev_info = NULL; 2000 return num_written ? num_written : err; 2001 } 2002 2003 int btrfs_release_file(struct inode *inode, struct file *filp) 2004 { 2005 struct btrfs_file_private *private = filp->private_data; 2006 2007 if (private && private->filldir_buf) 2008 kfree(private->filldir_buf); 2009 kfree(private); 2010 filp->private_data = NULL; 2011 2012 /* 2013 * ordered_data_close is set by setattr when we are about to truncate 2014 * a file from a non-zero size to a zero size. This tries to 2015 * flush down new bytes that may have been written if the 2016 * application were using truncate to replace a file in place. 2017 */ 2018 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 2019 &BTRFS_I(inode)->runtime_flags)) 2020 filemap_flush(inode->i_mapping); 2021 return 0; 2022 } 2023 2024 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2025 { 2026 int ret; 2027 struct blk_plug plug; 2028 2029 /* 2030 * This is only called in fsync, which would do synchronous writes, so 2031 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2032 * multiple disks using raid profile, a large IO can be split to 2033 * several segments of stripe length (currently 64K). 2034 */ 2035 blk_start_plug(&plug); 2036 atomic_inc(&BTRFS_I(inode)->sync_writers); 2037 ret = btrfs_fdatawrite_range(inode, start, end); 2038 atomic_dec(&BTRFS_I(inode)->sync_writers); 2039 blk_finish_plug(&plug); 2040 2041 return ret; 2042 } 2043 2044 /* 2045 * fsync call for both files and directories. This logs the inode into 2046 * the tree log instead of forcing full commits whenever possible. 2047 * 2048 * It needs to call filemap_fdatawait so that all ordered extent updates are 2049 * in the metadata btree are up to date for copying to the log. 2050 * 2051 * It drops the inode mutex before doing the tree log commit. This is an 2052 * important optimization for directories because holding the mutex prevents 2053 * new operations on the dir while we write to disk. 2054 */ 2055 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2056 { 2057 struct dentry *dentry = file_dentry(file); 2058 struct inode *inode = d_inode(dentry); 2059 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2060 struct btrfs_root *root = BTRFS_I(inode)->root; 2061 struct btrfs_trans_handle *trans; 2062 struct btrfs_log_ctx ctx; 2063 int ret = 0, err; 2064 2065 trace_btrfs_sync_file(file, datasync); 2066 2067 btrfs_init_log_ctx(&ctx, inode); 2068 2069 /* 2070 * Set the range to full if the NO_HOLES feature is not enabled. 2071 * This is to avoid missing file extent items representing holes after 2072 * replaying the log. 2073 */ 2074 if (!btrfs_fs_incompat(fs_info, NO_HOLES)) { 2075 start = 0; 2076 end = LLONG_MAX; 2077 } 2078 2079 /* 2080 * We write the dirty pages in the range and wait until they complete 2081 * out of the ->i_mutex. If so, we can flush the dirty pages by 2082 * multi-task, and make the performance up. See 2083 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2084 */ 2085 ret = start_ordered_ops(inode, start, end); 2086 if (ret) 2087 goto out; 2088 2089 inode_lock(inode); 2090 2091 /* 2092 * We take the dio_sem here because the tree log stuff can race with 2093 * lockless dio writes and get an extent map logged for an extent we 2094 * never waited on. We need it this high up for lockdep reasons. 2095 */ 2096 down_write(&BTRFS_I(inode)->dio_sem); 2097 2098 atomic_inc(&root->log_batch); 2099 2100 /* 2101 * Before we acquired the inode's lock, someone may have dirtied more 2102 * pages in the target range. We need to make sure that writeback for 2103 * any such pages does not start while we are logging the inode, because 2104 * if it does, any of the following might happen when we are not doing a 2105 * full inode sync: 2106 * 2107 * 1) We log an extent after its writeback finishes but before its 2108 * checksums are added to the csum tree, leading to -EIO errors 2109 * when attempting to read the extent after a log replay. 2110 * 2111 * 2) We can end up logging an extent before its writeback finishes. 2112 * Therefore after the log replay we will have a file extent item 2113 * pointing to an unwritten extent (and no data checksums as well). 2114 * 2115 * So trigger writeback for any eventual new dirty pages and then we 2116 * wait for all ordered extents to complete below. 2117 */ 2118 ret = start_ordered_ops(inode, start, end); 2119 if (ret) { 2120 up_write(&BTRFS_I(inode)->dio_sem); 2121 inode_unlock(inode); 2122 goto out; 2123 } 2124 2125 /* 2126 * We have to do this here to avoid the priority inversion of waiting on 2127 * IO of a lower priority task while holding a transaction open. 2128 * 2129 * Also, the range length can be represented by u64, we have to do the 2130 * typecasts to avoid signed overflow if it's [0, LLONG_MAX]. 2131 */ 2132 ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1); 2133 if (ret) { 2134 up_write(&BTRFS_I(inode)->dio_sem); 2135 inode_unlock(inode); 2136 goto out; 2137 } 2138 atomic_inc(&root->log_batch); 2139 2140 smp_mb(); 2141 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) || 2142 BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) { 2143 /* 2144 * We've had everything committed since the last time we were 2145 * modified so clear this flag in case it was set for whatever 2146 * reason, it's no longer relevant. 2147 */ 2148 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2149 &BTRFS_I(inode)->runtime_flags); 2150 /* 2151 * An ordered extent might have started before and completed 2152 * already with io errors, in which case the inode was not 2153 * updated and we end up here. So check the inode's mapping 2154 * for any errors that might have happened since we last 2155 * checked called fsync. 2156 */ 2157 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2158 up_write(&BTRFS_I(inode)->dio_sem); 2159 inode_unlock(inode); 2160 goto out; 2161 } 2162 2163 /* 2164 * We use start here because we will need to wait on the IO to complete 2165 * in btrfs_sync_log, which could require joining a transaction (for 2166 * example checking cross references in the nocow path). If we use join 2167 * here we could get into a situation where we're waiting on IO to 2168 * happen that is blocked on a transaction trying to commit. With start 2169 * we inc the extwriter counter, so we wait for all extwriters to exit 2170 * before we start blocking joiners. This comment is to keep somebody 2171 * from thinking they are super smart and changing this to 2172 * btrfs_join_transaction *cough*Josef*cough*. 2173 */ 2174 trans = btrfs_start_transaction(root, 0); 2175 if (IS_ERR(trans)) { 2176 ret = PTR_ERR(trans); 2177 up_write(&BTRFS_I(inode)->dio_sem); 2178 inode_unlock(inode); 2179 goto out; 2180 } 2181 2182 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx); 2183 if (ret < 0) { 2184 /* Fallthrough and commit/free transaction. */ 2185 ret = 1; 2186 } 2187 2188 /* we've logged all the items and now have a consistent 2189 * version of the file in the log. It is possible that 2190 * someone will come in and modify the file, but that's 2191 * fine because the log is consistent on disk, and we 2192 * have references to all of the file's extents 2193 * 2194 * It is possible that someone will come in and log the 2195 * file again, but that will end up using the synchronization 2196 * inside btrfs_sync_log to keep things safe. 2197 */ 2198 up_write(&BTRFS_I(inode)->dio_sem); 2199 inode_unlock(inode); 2200 2201 if (ret != BTRFS_NO_LOG_SYNC) { 2202 if (!ret) { 2203 ret = btrfs_sync_log(trans, root, &ctx); 2204 if (!ret) { 2205 ret = btrfs_end_transaction(trans); 2206 goto out; 2207 } 2208 } 2209 ret = btrfs_commit_transaction(trans); 2210 } else { 2211 ret = btrfs_end_transaction(trans); 2212 } 2213 out: 2214 ASSERT(list_empty(&ctx.list)); 2215 err = file_check_and_advance_wb_err(file); 2216 if (!ret) 2217 ret = err; 2218 return ret > 0 ? -EIO : ret; 2219 } 2220 2221 static const struct vm_operations_struct btrfs_file_vm_ops = { 2222 .fault = filemap_fault, 2223 .map_pages = filemap_map_pages, 2224 .page_mkwrite = btrfs_page_mkwrite, 2225 }; 2226 2227 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2228 { 2229 struct address_space *mapping = filp->f_mapping; 2230 2231 if (!mapping->a_ops->readpage) 2232 return -ENOEXEC; 2233 2234 file_accessed(filp); 2235 vma->vm_ops = &btrfs_file_vm_ops; 2236 2237 return 0; 2238 } 2239 2240 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2241 int slot, u64 start, u64 end) 2242 { 2243 struct btrfs_file_extent_item *fi; 2244 struct btrfs_key key; 2245 2246 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2247 return 0; 2248 2249 btrfs_item_key_to_cpu(leaf, &key, slot); 2250 if (key.objectid != btrfs_ino(inode) || 2251 key.type != BTRFS_EXTENT_DATA_KEY) 2252 return 0; 2253 2254 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2255 2256 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2257 return 0; 2258 2259 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2260 return 0; 2261 2262 if (key.offset == end) 2263 return 1; 2264 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2265 return 1; 2266 return 0; 2267 } 2268 2269 static int fill_holes(struct btrfs_trans_handle *trans, 2270 struct btrfs_inode *inode, 2271 struct btrfs_path *path, u64 offset, u64 end) 2272 { 2273 struct btrfs_fs_info *fs_info = trans->fs_info; 2274 struct btrfs_root *root = inode->root; 2275 struct extent_buffer *leaf; 2276 struct btrfs_file_extent_item *fi; 2277 struct extent_map *hole_em; 2278 struct extent_map_tree *em_tree = &inode->extent_tree; 2279 struct btrfs_key key; 2280 int ret; 2281 2282 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2283 goto out; 2284 2285 key.objectid = btrfs_ino(inode); 2286 key.type = BTRFS_EXTENT_DATA_KEY; 2287 key.offset = offset; 2288 2289 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2290 if (ret <= 0) { 2291 /* 2292 * We should have dropped this offset, so if we find it then 2293 * something has gone horribly wrong. 2294 */ 2295 if (ret == 0) 2296 ret = -EINVAL; 2297 return ret; 2298 } 2299 2300 leaf = path->nodes[0]; 2301 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2302 u64 num_bytes; 2303 2304 path->slots[0]--; 2305 fi = btrfs_item_ptr(leaf, path->slots[0], 2306 struct btrfs_file_extent_item); 2307 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2308 end - offset; 2309 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2310 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2311 btrfs_set_file_extent_offset(leaf, fi, 0); 2312 btrfs_mark_buffer_dirty(leaf); 2313 goto out; 2314 } 2315 2316 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2317 u64 num_bytes; 2318 2319 key.offset = offset; 2320 btrfs_set_item_key_safe(fs_info, path, &key); 2321 fi = btrfs_item_ptr(leaf, path->slots[0], 2322 struct btrfs_file_extent_item); 2323 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2324 offset; 2325 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2326 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2327 btrfs_set_file_extent_offset(leaf, fi, 0); 2328 btrfs_mark_buffer_dirty(leaf); 2329 goto out; 2330 } 2331 btrfs_release_path(path); 2332 2333 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2334 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2335 if (ret) 2336 return ret; 2337 2338 out: 2339 btrfs_release_path(path); 2340 2341 hole_em = alloc_extent_map(); 2342 if (!hole_em) { 2343 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2344 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2345 } else { 2346 hole_em->start = offset; 2347 hole_em->len = end - offset; 2348 hole_em->ram_bytes = hole_em->len; 2349 hole_em->orig_start = offset; 2350 2351 hole_em->block_start = EXTENT_MAP_HOLE; 2352 hole_em->block_len = 0; 2353 hole_em->orig_block_len = 0; 2354 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2355 hole_em->generation = trans->transid; 2356 2357 do { 2358 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2359 write_lock(&em_tree->lock); 2360 ret = add_extent_mapping(em_tree, hole_em, 1); 2361 write_unlock(&em_tree->lock); 2362 } while (ret == -EEXIST); 2363 free_extent_map(hole_em); 2364 if (ret) 2365 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2366 &inode->runtime_flags); 2367 } 2368 2369 return 0; 2370 } 2371 2372 /* 2373 * Find a hole extent on given inode and change start/len to the end of hole 2374 * extent.(hole/vacuum extent whose em->start <= start && 2375 * em->start + em->len > start) 2376 * When a hole extent is found, return 1 and modify start/len. 2377 */ 2378 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2379 { 2380 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2381 struct extent_map *em; 2382 int ret = 0; 2383 2384 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2385 round_down(*start, fs_info->sectorsize), 2386 round_up(*len, fs_info->sectorsize)); 2387 if (IS_ERR(em)) 2388 return PTR_ERR(em); 2389 2390 /* Hole or vacuum extent(only exists in no-hole mode) */ 2391 if (em->block_start == EXTENT_MAP_HOLE) { 2392 ret = 1; 2393 *len = em->start + em->len > *start + *len ? 2394 0 : *start + *len - em->start - em->len; 2395 *start = em->start + em->len; 2396 } 2397 free_extent_map(em); 2398 return ret; 2399 } 2400 2401 static int btrfs_punch_hole_lock_range(struct inode *inode, 2402 const u64 lockstart, 2403 const u64 lockend, 2404 struct extent_state **cached_state) 2405 { 2406 while (1) { 2407 struct btrfs_ordered_extent *ordered; 2408 int ret; 2409 2410 truncate_pagecache_range(inode, lockstart, lockend); 2411 2412 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2413 cached_state); 2414 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2415 2416 /* 2417 * We need to make sure we have no ordered extents in this range 2418 * and nobody raced in and read a page in this range, if we did 2419 * we need to try again. 2420 */ 2421 if ((!ordered || 2422 (ordered->file_offset + ordered->num_bytes <= lockstart || 2423 ordered->file_offset > lockend)) && 2424 !filemap_range_has_page(inode->i_mapping, 2425 lockstart, lockend)) { 2426 if (ordered) 2427 btrfs_put_ordered_extent(ordered); 2428 break; 2429 } 2430 if (ordered) 2431 btrfs_put_ordered_extent(ordered); 2432 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2433 lockend, cached_state); 2434 ret = btrfs_wait_ordered_range(inode, lockstart, 2435 lockend - lockstart + 1); 2436 if (ret) 2437 return ret; 2438 } 2439 return 0; 2440 } 2441 2442 static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans, 2443 struct inode *inode, 2444 struct btrfs_path *path, 2445 struct btrfs_clone_extent_info *clone_info, 2446 const u64 clone_len) 2447 { 2448 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2449 struct btrfs_root *root = BTRFS_I(inode)->root; 2450 struct btrfs_file_extent_item *extent; 2451 struct extent_buffer *leaf; 2452 struct btrfs_key key; 2453 int slot; 2454 struct btrfs_ref ref = { 0 }; 2455 u64 ref_offset; 2456 int ret; 2457 2458 if (clone_len == 0) 2459 return 0; 2460 2461 if (clone_info->disk_offset == 0 && 2462 btrfs_fs_incompat(fs_info, NO_HOLES)) 2463 return 0; 2464 2465 key.objectid = btrfs_ino(BTRFS_I(inode)); 2466 key.type = BTRFS_EXTENT_DATA_KEY; 2467 key.offset = clone_info->file_offset; 2468 ret = btrfs_insert_empty_item(trans, root, path, &key, 2469 clone_info->item_size); 2470 if (ret) 2471 return ret; 2472 leaf = path->nodes[0]; 2473 slot = path->slots[0]; 2474 write_extent_buffer(leaf, clone_info->extent_buf, 2475 btrfs_item_ptr_offset(leaf, slot), 2476 clone_info->item_size); 2477 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2478 btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset); 2479 btrfs_set_file_extent_num_bytes(leaf, extent, clone_len); 2480 btrfs_mark_buffer_dirty(leaf); 2481 btrfs_release_path(path); 2482 2483 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), 2484 clone_info->file_offset, clone_len); 2485 if (ret) 2486 return ret; 2487 2488 /* If it's a hole, nothing more needs to be done. */ 2489 if (clone_info->disk_offset == 0) 2490 return 0; 2491 2492 inode_add_bytes(inode, clone_len); 2493 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2494 clone_info->disk_offset, 2495 clone_info->disk_len, 0); 2496 ref_offset = clone_info->file_offset - clone_info->data_offset; 2497 btrfs_init_data_ref(&ref, root->root_key.objectid, 2498 btrfs_ino(BTRFS_I(inode)), ref_offset); 2499 ret = btrfs_inc_extent_ref(trans, &ref); 2500 2501 return ret; 2502 } 2503 2504 /* 2505 * The respective range must have been previously locked, as well as the inode. 2506 * The end offset is inclusive (last byte of the range). 2507 * @clone_info is NULL for fallocate's hole punching and non-NULL for extent 2508 * cloning. 2509 * When cloning, we don't want to end up in a state where we dropped extents 2510 * without inserting a new one, so we must abort the transaction to avoid a 2511 * corruption. 2512 */ 2513 int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path, 2514 const u64 start, const u64 end, 2515 struct btrfs_clone_extent_info *clone_info, 2516 struct btrfs_trans_handle **trans_out) 2517 { 2518 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2519 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2520 u64 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2521 struct btrfs_root *root = BTRFS_I(inode)->root; 2522 struct btrfs_trans_handle *trans = NULL; 2523 struct btrfs_block_rsv *rsv; 2524 unsigned int rsv_count; 2525 u64 cur_offset; 2526 u64 drop_end; 2527 u64 len = end - start; 2528 int ret = 0; 2529 2530 if (end <= start) 2531 return -EINVAL; 2532 2533 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2534 if (!rsv) { 2535 ret = -ENOMEM; 2536 goto out; 2537 } 2538 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2539 rsv->failfast = 1; 2540 2541 /* 2542 * 1 - update the inode 2543 * 1 - removing the extents in the range 2544 * 1 - adding the hole extent if no_holes isn't set or if we are cloning 2545 * an extent 2546 */ 2547 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info) 2548 rsv_count = 3; 2549 else 2550 rsv_count = 2; 2551 2552 trans = btrfs_start_transaction(root, rsv_count); 2553 if (IS_ERR(trans)) { 2554 ret = PTR_ERR(trans); 2555 trans = NULL; 2556 goto out_free; 2557 } 2558 2559 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2560 min_size, false); 2561 BUG_ON(ret); 2562 trans->block_rsv = rsv; 2563 2564 cur_offset = start; 2565 while (cur_offset < end) { 2566 ret = __btrfs_drop_extents(trans, root, inode, path, 2567 cur_offset, end + 1, &drop_end, 2568 1, 0, 0, NULL); 2569 if (ret != -ENOSPC) { 2570 /* 2571 * When cloning we want to avoid transaction aborts when 2572 * nothing was done and we are attempting to clone parts 2573 * of inline extents, in such cases -EOPNOTSUPP is 2574 * returned by __btrfs_drop_extents() without having 2575 * changed anything in the file. 2576 */ 2577 if (clone_info && ret && ret != -EOPNOTSUPP) 2578 btrfs_abort_transaction(trans, ret); 2579 break; 2580 } 2581 2582 trans->block_rsv = &fs_info->trans_block_rsv; 2583 2584 if (!clone_info && cur_offset < drop_end && 2585 cur_offset < ino_size) { 2586 ret = fill_holes(trans, BTRFS_I(inode), path, 2587 cur_offset, drop_end); 2588 if (ret) { 2589 /* 2590 * If we failed then we didn't insert our hole 2591 * entries for the area we dropped, so now the 2592 * fs is corrupted, so we must abort the 2593 * transaction. 2594 */ 2595 btrfs_abort_transaction(trans, ret); 2596 break; 2597 } 2598 } else if (!clone_info && cur_offset < drop_end) { 2599 /* 2600 * We are past the i_size here, but since we didn't 2601 * insert holes we need to clear the mapped area so we 2602 * know to not set disk_i_size in this area until a new 2603 * file extent is inserted here. 2604 */ 2605 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 2606 cur_offset, drop_end - cur_offset); 2607 if (ret) { 2608 /* 2609 * We couldn't clear our area, so we could 2610 * presumably adjust up and corrupt the fs, so 2611 * we need to abort. 2612 */ 2613 btrfs_abort_transaction(trans, ret); 2614 break; 2615 } 2616 } 2617 2618 if (clone_info && drop_end > clone_info->file_offset) { 2619 u64 clone_len = drop_end - clone_info->file_offset; 2620 2621 ret = btrfs_insert_clone_extent(trans, inode, path, 2622 clone_info, clone_len); 2623 if (ret) { 2624 btrfs_abort_transaction(trans, ret); 2625 break; 2626 } 2627 clone_info->data_len -= clone_len; 2628 clone_info->data_offset += clone_len; 2629 clone_info->file_offset += clone_len; 2630 } 2631 2632 cur_offset = drop_end; 2633 2634 ret = btrfs_update_inode(trans, root, inode); 2635 if (ret) 2636 break; 2637 2638 btrfs_end_transaction(trans); 2639 btrfs_btree_balance_dirty(fs_info); 2640 2641 trans = btrfs_start_transaction(root, rsv_count); 2642 if (IS_ERR(trans)) { 2643 ret = PTR_ERR(trans); 2644 trans = NULL; 2645 break; 2646 } 2647 2648 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2649 rsv, min_size, false); 2650 BUG_ON(ret); /* shouldn't happen */ 2651 trans->block_rsv = rsv; 2652 2653 if (!clone_info) { 2654 ret = find_first_non_hole(inode, &cur_offset, &len); 2655 if (unlikely(ret < 0)) 2656 break; 2657 if (ret && !len) { 2658 ret = 0; 2659 break; 2660 } 2661 } 2662 } 2663 2664 /* 2665 * If we were cloning, force the next fsync to be a full one since we 2666 * we replaced (or just dropped in the case of cloning holes when 2667 * NO_HOLES is enabled) extents and extent maps. 2668 * This is for the sake of simplicity, and cloning into files larger 2669 * than 16Mb would force the full fsync any way (when 2670 * try_release_extent_mapping() is invoked during page cache truncation. 2671 */ 2672 if (clone_info) 2673 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2674 &BTRFS_I(inode)->runtime_flags); 2675 2676 if (ret) 2677 goto out_trans; 2678 2679 trans->block_rsv = &fs_info->trans_block_rsv; 2680 /* 2681 * If we are using the NO_HOLES feature we might have had already an 2682 * hole that overlaps a part of the region [lockstart, lockend] and 2683 * ends at (or beyond) lockend. Since we have no file extent items to 2684 * represent holes, drop_end can be less than lockend and so we must 2685 * make sure we have an extent map representing the existing hole (the 2686 * call to __btrfs_drop_extents() might have dropped the existing extent 2687 * map representing the existing hole), otherwise the fast fsync path 2688 * will not record the existence of the hole region 2689 * [existing_hole_start, lockend]. 2690 */ 2691 if (drop_end <= end) 2692 drop_end = end + 1; 2693 /* 2694 * Don't insert file hole extent item if it's for a range beyond eof 2695 * (because it's useless) or if it represents a 0 bytes range (when 2696 * cur_offset == drop_end). 2697 */ 2698 if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) { 2699 ret = fill_holes(trans, BTRFS_I(inode), path, 2700 cur_offset, drop_end); 2701 if (ret) { 2702 /* Same comment as above. */ 2703 btrfs_abort_transaction(trans, ret); 2704 goto out_trans; 2705 } 2706 } else if (!clone_info && cur_offset < drop_end) { 2707 /* See the comment in the loop above for the reasoning here. */ 2708 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 2709 cur_offset, drop_end - cur_offset); 2710 if (ret) { 2711 btrfs_abort_transaction(trans, ret); 2712 goto out_trans; 2713 } 2714 2715 } 2716 if (clone_info) { 2717 ret = btrfs_insert_clone_extent(trans, inode, path, clone_info, 2718 clone_info->data_len); 2719 if (ret) { 2720 btrfs_abort_transaction(trans, ret); 2721 goto out_trans; 2722 } 2723 } 2724 2725 out_trans: 2726 if (!trans) 2727 goto out_free; 2728 2729 trans->block_rsv = &fs_info->trans_block_rsv; 2730 if (ret) 2731 btrfs_end_transaction(trans); 2732 else 2733 *trans_out = trans; 2734 out_free: 2735 btrfs_free_block_rsv(fs_info, rsv); 2736 out: 2737 return ret; 2738 } 2739 2740 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2741 { 2742 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2743 struct btrfs_root *root = BTRFS_I(inode)->root; 2744 struct extent_state *cached_state = NULL; 2745 struct btrfs_path *path; 2746 struct btrfs_trans_handle *trans = NULL; 2747 u64 lockstart; 2748 u64 lockend; 2749 u64 tail_start; 2750 u64 tail_len; 2751 u64 orig_start = offset; 2752 int ret = 0; 2753 bool same_block; 2754 u64 ino_size; 2755 bool truncated_block = false; 2756 bool updated_inode = false; 2757 2758 ret = btrfs_wait_ordered_range(inode, offset, len); 2759 if (ret) 2760 return ret; 2761 2762 inode_lock(inode); 2763 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2764 ret = find_first_non_hole(inode, &offset, &len); 2765 if (ret < 0) 2766 goto out_only_mutex; 2767 if (ret && !len) { 2768 /* Already in a large hole */ 2769 ret = 0; 2770 goto out_only_mutex; 2771 } 2772 2773 lockstart = round_up(offset, btrfs_inode_sectorsize(inode)); 2774 lockend = round_down(offset + len, 2775 btrfs_inode_sectorsize(inode)) - 1; 2776 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2777 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2778 /* 2779 * We needn't truncate any block which is beyond the end of the file 2780 * because we are sure there is no data there. 2781 */ 2782 /* 2783 * Only do this if we are in the same block and we aren't doing the 2784 * entire block. 2785 */ 2786 if (same_block && len < fs_info->sectorsize) { 2787 if (offset < ino_size) { 2788 truncated_block = true; 2789 ret = btrfs_truncate_block(inode, offset, len, 0); 2790 } else { 2791 ret = 0; 2792 } 2793 goto out_only_mutex; 2794 } 2795 2796 /* zero back part of the first block */ 2797 if (offset < ino_size) { 2798 truncated_block = true; 2799 ret = btrfs_truncate_block(inode, offset, 0, 0); 2800 if (ret) { 2801 inode_unlock(inode); 2802 return ret; 2803 } 2804 } 2805 2806 /* Check the aligned pages after the first unaligned page, 2807 * if offset != orig_start, which means the first unaligned page 2808 * including several following pages are already in holes, 2809 * the extra check can be skipped */ 2810 if (offset == orig_start) { 2811 /* after truncate page, check hole again */ 2812 len = offset + len - lockstart; 2813 offset = lockstart; 2814 ret = find_first_non_hole(inode, &offset, &len); 2815 if (ret < 0) 2816 goto out_only_mutex; 2817 if (ret && !len) { 2818 ret = 0; 2819 goto out_only_mutex; 2820 } 2821 lockstart = offset; 2822 } 2823 2824 /* Check the tail unaligned part is in a hole */ 2825 tail_start = lockend + 1; 2826 tail_len = offset + len - tail_start; 2827 if (tail_len) { 2828 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2829 if (unlikely(ret < 0)) 2830 goto out_only_mutex; 2831 if (!ret) { 2832 /* zero the front end of the last page */ 2833 if (tail_start + tail_len < ino_size) { 2834 truncated_block = true; 2835 ret = btrfs_truncate_block(inode, 2836 tail_start + tail_len, 2837 0, 1); 2838 if (ret) 2839 goto out_only_mutex; 2840 } 2841 } 2842 } 2843 2844 if (lockend < lockstart) { 2845 ret = 0; 2846 goto out_only_mutex; 2847 } 2848 2849 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2850 &cached_state); 2851 if (ret) 2852 goto out_only_mutex; 2853 2854 path = btrfs_alloc_path(); 2855 if (!path) { 2856 ret = -ENOMEM; 2857 goto out; 2858 } 2859 2860 ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL, 2861 &trans); 2862 btrfs_free_path(path); 2863 if (ret) 2864 goto out; 2865 2866 ASSERT(trans != NULL); 2867 inode_inc_iversion(inode); 2868 inode->i_mtime = inode->i_ctime = current_time(inode); 2869 ret = btrfs_update_inode(trans, root, inode); 2870 updated_inode = true; 2871 btrfs_end_transaction(trans); 2872 btrfs_btree_balance_dirty(fs_info); 2873 out: 2874 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2875 &cached_state); 2876 out_only_mutex: 2877 if (!updated_inode && truncated_block && !ret) { 2878 /* 2879 * If we only end up zeroing part of a page, we still need to 2880 * update the inode item, so that all the time fields are 2881 * updated as well as the necessary btrfs inode in memory fields 2882 * for detecting, at fsync time, if the inode isn't yet in the 2883 * log tree or it's there but not up to date. 2884 */ 2885 struct timespec64 now = current_time(inode); 2886 2887 inode_inc_iversion(inode); 2888 inode->i_mtime = now; 2889 inode->i_ctime = now; 2890 trans = btrfs_start_transaction(root, 1); 2891 if (IS_ERR(trans)) { 2892 ret = PTR_ERR(trans); 2893 } else { 2894 int ret2; 2895 2896 ret = btrfs_update_inode(trans, root, inode); 2897 ret2 = btrfs_end_transaction(trans); 2898 if (!ret) 2899 ret = ret2; 2900 } 2901 } 2902 inode_unlock(inode); 2903 return ret; 2904 } 2905 2906 /* Helper structure to record which range is already reserved */ 2907 struct falloc_range { 2908 struct list_head list; 2909 u64 start; 2910 u64 len; 2911 }; 2912 2913 /* 2914 * Helper function to add falloc range 2915 * 2916 * Caller should have locked the larger range of extent containing 2917 * [start, len) 2918 */ 2919 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2920 { 2921 struct falloc_range *prev = NULL; 2922 struct falloc_range *range = NULL; 2923 2924 if (list_empty(head)) 2925 goto insert; 2926 2927 /* 2928 * As fallocate iterate by bytenr order, we only need to check 2929 * the last range. 2930 */ 2931 prev = list_entry(head->prev, struct falloc_range, list); 2932 if (prev->start + prev->len == start) { 2933 prev->len += len; 2934 return 0; 2935 } 2936 insert: 2937 range = kmalloc(sizeof(*range), GFP_KERNEL); 2938 if (!range) 2939 return -ENOMEM; 2940 range->start = start; 2941 range->len = len; 2942 list_add_tail(&range->list, head); 2943 return 0; 2944 } 2945 2946 static int btrfs_fallocate_update_isize(struct inode *inode, 2947 const u64 end, 2948 const int mode) 2949 { 2950 struct btrfs_trans_handle *trans; 2951 struct btrfs_root *root = BTRFS_I(inode)->root; 2952 int ret; 2953 int ret2; 2954 2955 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2956 return 0; 2957 2958 trans = btrfs_start_transaction(root, 1); 2959 if (IS_ERR(trans)) 2960 return PTR_ERR(trans); 2961 2962 inode->i_ctime = current_time(inode); 2963 i_size_write(inode, end); 2964 btrfs_inode_safe_disk_i_size_write(inode, 0); 2965 ret = btrfs_update_inode(trans, root, inode); 2966 ret2 = btrfs_end_transaction(trans); 2967 2968 return ret ? ret : ret2; 2969 } 2970 2971 enum { 2972 RANGE_BOUNDARY_WRITTEN_EXTENT, 2973 RANGE_BOUNDARY_PREALLOC_EXTENT, 2974 RANGE_BOUNDARY_HOLE, 2975 }; 2976 2977 static int btrfs_zero_range_check_range_boundary(struct inode *inode, 2978 u64 offset) 2979 { 2980 const u64 sectorsize = btrfs_inode_sectorsize(inode); 2981 struct extent_map *em; 2982 int ret; 2983 2984 offset = round_down(offset, sectorsize); 2985 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize); 2986 if (IS_ERR(em)) 2987 return PTR_ERR(em); 2988 2989 if (em->block_start == EXTENT_MAP_HOLE) 2990 ret = RANGE_BOUNDARY_HOLE; 2991 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2992 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2993 else 2994 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2995 2996 free_extent_map(em); 2997 return ret; 2998 } 2999 3000 static int btrfs_zero_range(struct inode *inode, 3001 loff_t offset, 3002 loff_t len, 3003 const int mode) 3004 { 3005 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3006 struct extent_map *em; 3007 struct extent_changeset *data_reserved = NULL; 3008 int ret; 3009 u64 alloc_hint = 0; 3010 const u64 sectorsize = btrfs_inode_sectorsize(inode); 3011 u64 alloc_start = round_down(offset, sectorsize); 3012 u64 alloc_end = round_up(offset + len, sectorsize); 3013 u64 bytes_to_reserve = 0; 3014 bool space_reserved = false; 3015 3016 inode_dio_wait(inode); 3017 3018 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3019 alloc_end - alloc_start); 3020 if (IS_ERR(em)) { 3021 ret = PTR_ERR(em); 3022 goto out; 3023 } 3024 3025 /* 3026 * Avoid hole punching and extent allocation for some cases. More cases 3027 * could be considered, but these are unlikely common and we keep things 3028 * as simple as possible for now. Also, intentionally, if the target 3029 * range contains one or more prealloc extents together with regular 3030 * extents and holes, we drop all the existing extents and allocate a 3031 * new prealloc extent, so that we get a larger contiguous disk extent. 3032 */ 3033 if (em->start <= alloc_start && 3034 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3035 const u64 em_end = em->start + em->len; 3036 3037 if (em_end >= offset + len) { 3038 /* 3039 * The whole range is already a prealloc extent, 3040 * do nothing except updating the inode's i_size if 3041 * needed. 3042 */ 3043 free_extent_map(em); 3044 ret = btrfs_fallocate_update_isize(inode, offset + len, 3045 mode); 3046 goto out; 3047 } 3048 /* 3049 * Part of the range is already a prealloc extent, so operate 3050 * only on the remaining part of the range. 3051 */ 3052 alloc_start = em_end; 3053 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 3054 len = offset + len - alloc_start; 3055 offset = alloc_start; 3056 alloc_hint = em->block_start + em->len; 3057 } 3058 free_extent_map(em); 3059 3060 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 3061 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 3062 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3063 sectorsize); 3064 if (IS_ERR(em)) { 3065 ret = PTR_ERR(em); 3066 goto out; 3067 } 3068 3069 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3070 free_extent_map(em); 3071 ret = btrfs_fallocate_update_isize(inode, offset + len, 3072 mode); 3073 goto out; 3074 } 3075 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 3076 free_extent_map(em); 3077 ret = btrfs_truncate_block(inode, offset, len, 0); 3078 if (!ret) 3079 ret = btrfs_fallocate_update_isize(inode, 3080 offset + len, 3081 mode); 3082 return ret; 3083 } 3084 free_extent_map(em); 3085 alloc_start = round_down(offset, sectorsize); 3086 alloc_end = alloc_start + sectorsize; 3087 goto reserve_space; 3088 } 3089 3090 alloc_start = round_up(offset, sectorsize); 3091 alloc_end = round_down(offset + len, sectorsize); 3092 3093 /* 3094 * For unaligned ranges, check the pages at the boundaries, they might 3095 * map to an extent, in which case we need to partially zero them, or 3096 * they might map to a hole, in which case we need our allocation range 3097 * to cover them. 3098 */ 3099 if (!IS_ALIGNED(offset, sectorsize)) { 3100 ret = btrfs_zero_range_check_range_boundary(inode, offset); 3101 if (ret < 0) 3102 goto out; 3103 if (ret == RANGE_BOUNDARY_HOLE) { 3104 alloc_start = round_down(offset, sectorsize); 3105 ret = 0; 3106 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3107 ret = btrfs_truncate_block(inode, offset, 0, 0); 3108 if (ret) 3109 goto out; 3110 } else { 3111 ret = 0; 3112 } 3113 } 3114 3115 if (!IS_ALIGNED(offset + len, sectorsize)) { 3116 ret = btrfs_zero_range_check_range_boundary(inode, 3117 offset + len); 3118 if (ret < 0) 3119 goto out; 3120 if (ret == RANGE_BOUNDARY_HOLE) { 3121 alloc_end = round_up(offset + len, sectorsize); 3122 ret = 0; 3123 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3124 ret = btrfs_truncate_block(inode, offset + len, 0, 1); 3125 if (ret) 3126 goto out; 3127 } else { 3128 ret = 0; 3129 } 3130 } 3131 3132 reserve_space: 3133 if (alloc_start < alloc_end) { 3134 struct extent_state *cached_state = NULL; 3135 const u64 lockstart = alloc_start; 3136 const u64 lockend = alloc_end - 1; 3137 3138 bytes_to_reserve = alloc_end - alloc_start; 3139 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3140 bytes_to_reserve); 3141 if (ret < 0) 3142 goto out; 3143 space_reserved = true; 3144 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 3145 alloc_start, bytes_to_reserve); 3146 if (ret) 3147 goto out; 3148 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3149 &cached_state); 3150 if (ret) 3151 goto out; 3152 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3153 alloc_end - alloc_start, 3154 i_blocksize(inode), 3155 offset + len, &alloc_hint); 3156 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3157 lockend, &cached_state); 3158 /* btrfs_prealloc_file_range releases reserved space on error */ 3159 if (ret) { 3160 space_reserved = false; 3161 goto out; 3162 } 3163 } 3164 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3165 out: 3166 if (ret && space_reserved) 3167 btrfs_free_reserved_data_space(inode, data_reserved, 3168 alloc_start, bytes_to_reserve); 3169 extent_changeset_free(data_reserved); 3170 3171 return ret; 3172 } 3173 3174 static long btrfs_fallocate(struct file *file, int mode, 3175 loff_t offset, loff_t len) 3176 { 3177 struct inode *inode = file_inode(file); 3178 struct extent_state *cached_state = NULL; 3179 struct extent_changeset *data_reserved = NULL; 3180 struct falloc_range *range; 3181 struct falloc_range *tmp; 3182 struct list_head reserve_list; 3183 u64 cur_offset; 3184 u64 last_byte; 3185 u64 alloc_start; 3186 u64 alloc_end; 3187 u64 alloc_hint = 0; 3188 u64 locked_end; 3189 u64 actual_end = 0; 3190 struct extent_map *em; 3191 int blocksize = btrfs_inode_sectorsize(inode); 3192 int ret; 3193 3194 alloc_start = round_down(offset, blocksize); 3195 alloc_end = round_up(offset + len, blocksize); 3196 cur_offset = alloc_start; 3197 3198 /* Make sure we aren't being give some crap mode */ 3199 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3200 FALLOC_FL_ZERO_RANGE)) 3201 return -EOPNOTSUPP; 3202 3203 if (mode & FALLOC_FL_PUNCH_HOLE) 3204 return btrfs_punch_hole(inode, offset, len); 3205 3206 /* 3207 * Only trigger disk allocation, don't trigger qgroup reserve 3208 * 3209 * For qgroup space, it will be checked later. 3210 */ 3211 if (!(mode & FALLOC_FL_ZERO_RANGE)) { 3212 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3213 alloc_end - alloc_start); 3214 if (ret < 0) 3215 return ret; 3216 } 3217 3218 inode_lock(inode); 3219 3220 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3221 ret = inode_newsize_ok(inode, offset + len); 3222 if (ret) 3223 goto out; 3224 } 3225 3226 /* 3227 * TODO: Move these two operations after we have checked 3228 * accurate reserved space, or fallocate can still fail but 3229 * with page truncated or size expanded. 3230 * 3231 * But that's a minor problem and won't do much harm BTW. 3232 */ 3233 if (alloc_start > inode->i_size) { 3234 ret = btrfs_cont_expand(inode, i_size_read(inode), 3235 alloc_start); 3236 if (ret) 3237 goto out; 3238 } else if (offset + len > inode->i_size) { 3239 /* 3240 * If we are fallocating from the end of the file onward we 3241 * need to zero out the end of the block if i_size lands in the 3242 * middle of a block. 3243 */ 3244 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 3245 if (ret) 3246 goto out; 3247 } 3248 3249 /* 3250 * wait for ordered IO before we have any locks. We'll loop again 3251 * below with the locks held. 3252 */ 3253 ret = btrfs_wait_ordered_range(inode, alloc_start, 3254 alloc_end - alloc_start); 3255 if (ret) 3256 goto out; 3257 3258 if (mode & FALLOC_FL_ZERO_RANGE) { 3259 ret = btrfs_zero_range(inode, offset, len, mode); 3260 inode_unlock(inode); 3261 return ret; 3262 } 3263 3264 locked_end = alloc_end - 1; 3265 while (1) { 3266 struct btrfs_ordered_extent *ordered; 3267 3268 /* the extent lock is ordered inside the running 3269 * transaction 3270 */ 3271 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 3272 locked_end, &cached_state); 3273 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end); 3274 3275 if (ordered && 3276 ordered->file_offset + ordered->num_bytes > alloc_start && 3277 ordered->file_offset < alloc_end) { 3278 btrfs_put_ordered_extent(ordered); 3279 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 3280 alloc_start, locked_end, 3281 &cached_state); 3282 /* 3283 * we can't wait on the range with the transaction 3284 * running or with the extent lock held 3285 */ 3286 ret = btrfs_wait_ordered_range(inode, alloc_start, 3287 alloc_end - alloc_start); 3288 if (ret) 3289 goto out; 3290 } else { 3291 if (ordered) 3292 btrfs_put_ordered_extent(ordered); 3293 break; 3294 } 3295 } 3296 3297 /* First, check if we exceed the qgroup limit */ 3298 INIT_LIST_HEAD(&reserve_list); 3299 while (cur_offset < alloc_end) { 3300 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3301 alloc_end - cur_offset); 3302 if (IS_ERR(em)) { 3303 ret = PTR_ERR(em); 3304 break; 3305 } 3306 last_byte = min(extent_map_end(em), alloc_end); 3307 actual_end = min_t(u64, extent_map_end(em), offset + len); 3308 last_byte = ALIGN(last_byte, blocksize); 3309 if (em->block_start == EXTENT_MAP_HOLE || 3310 (cur_offset >= inode->i_size && 3311 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3312 ret = add_falloc_range(&reserve_list, cur_offset, 3313 last_byte - cur_offset); 3314 if (ret < 0) { 3315 free_extent_map(em); 3316 break; 3317 } 3318 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 3319 cur_offset, last_byte - cur_offset); 3320 if (ret < 0) { 3321 cur_offset = last_byte; 3322 free_extent_map(em); 3323 break; 3324 } 3325 } else { 3326 /* 3327 * Do not need to reserve unwritten extent for this 3328 * range, free reserved data space first, otherwise 3329 * it'll result in false ENOSPC error. 3330 */ 3331 btrfs_free_reserved_data_space(inode, data_reserved, 3332 cur_offset, last_byte - cur_offset); 3333 } 3334 free_extent_map(em); 3335 cur_offset = last_byte; 3336 } 3337 3338 /* 3339 * If ret is still 0, means we're OK to fallocate. 3340 * Or just cleanup the list and exit. 3341 */ 3342 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3343 if (!ret) 3344 ret = btrfs_prealloc_file_range(inode, mode, 3345 range->start, 3346 range->len, i_blocksize(inode), 3347 offset + len, &alloc_hint); 3348 else 3349 btrfs_free_reserved_data_space(inode, 3350 data_reserved, range->start, 3351 range->len); 3352 list_del(&range->list); 3353 kfree(range); 3354 } 3355 if (ret < 0) 3356 goto out_unlock; 3357 3358 /* 3359 * We didn't need to allocate any more space, but we still extended the 3360 * size of the file so we need to update i_size and the inode item. 3361 */ 3362 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3363 out_unlock: 3364 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3365 &cached_state); 3366 out: 3367 inode_unlock(inode); 3368 /* Let go of our reservation. */ 3369 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) 3370 btrfs_free_reserved_data_space(inode, data_reserved, 3371 cur_offset, alloc_end - cur_offset); 3372 extent_changeset_free(data_reserved); 3373 return ret; 3374 } 3375 3376 static loff_t find_desired_extent(struct inode *inode, loff_t offset, 3377 int whence) 3378 { 3379 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3380 struct extent_map *em = NULL; 3381 struct extent_state *cached_state = NULL; 3382 loff_t i_size = inode->i_size; 3383 u64 lockstart; 3384 u64 lockend; 3385 u64 start; 3386 u64 len; 3387 int ret = 0; 3388 3389 if (i_size == 0 || offset >= i_size) 3390 return -ENXIO; 3391 3392 /* 3393 * offset can be negative, in this case we start finding DATA/HOLE from 3394 * the very start of the file. 3395 */ 3396 start = max_t(loff_t, 0, offset); 3397 3398 lockstart = round_down(start, fs_info->sectorsize); 3399 lockend = round_up(i_size, fs_info->sectorsize); 3400 if (lockend <= lockstart) 3401 lockend = lockstart + fs_info->sectorsize; 3402 lockend--; 3403 len = lockend - lockstart + 1; 3404 3405 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3406 &cached_state); 3407 3408 while (start < i_size) { 3409 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len); 3410 if (IS_ERR(em)) { 3411 ret = PTR_ERR(em); 3412 em = NULL; 3413 break; 3414 } 3415 3416 if (whence == SEEK_HOLE && 3417 (em->block_start == EXTENT_MAP_HOLE || 3418 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3419 break; 3420 else if (whence == SEEK_DATA && 3421 (em->block_start != EXTENT_MAP_HOLE && 3422 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3423 break; 3424 3425 start = em->start + em->len; 3426 free_extent_map(em); 3427 em = NULL; 3428 cond_resched(); 3429 } 3430 free_extent_map(em); 3431 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3432 &cached_state); 3433 if (ret) { 3434 offset = ret; 3435 } else { 3436 if (whence == SEEK_DATA && start >= i_size) 3437 offset = -ENXIO; 3438 else 3439 offset = min_t(loff_t, start, i_size); 3440 } 3441 3442 return offset; 3443 } 3444 3445 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3446 { 3447 struct inode *inode = file->f_mapping->host; 3448 3449 switch (whence) { 3450 default: 3451 return generic_file_llseek(file, offset, whence); 3452 case SEEK_DATA: 3453 case SEEK_HOLE: 3454 inode_lock_shared(inode); 3455 offset = find_desired_extent(inode, offset, whence); 3456 inode_unlock_shared(inode); 3457 break; 3458 } 3459 3460 if (offset < 0) 3461 return offset; 3462 3463 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3464 } 3465 3466 static int btrfs_file_open(struct inode *inode, struct file *filp) 3467 { 3468 filp->f_mode |= FMODE_NOWAIT; 3469 return generic_file_open(inode, filp); 3470 } 3471 3472 const struct file_operations btrfs_file_operations = { 3473 .llseek = btrfs_file_llseek, 3474 .read_iter = generic_file_read_iter, 3475 .splice_read = generic_file_splice_read, 3476 .write_iter = btrfs_file_write_iter, 3477 .mmap = btrfs_file_mmap, 3478 .open = btrfs_file_open, 3479 .release = btrfs_release_file, 3480 .fsync = btrfs_sync_file, 3481 .fallocate = btrfs_fallocate, 3482 .unlocked_ioctl = btrfs_ioctl, 3483 #ifdef CONFIG_COMPAT 3484 .compat_ioctl = btrfs_compat_ioctl, 3485 #endif 3486 .remap_file_range = btrfs_remap_file_range, 3487 }; 3488 3489 void __cold btrfs_auto_defrag_exit(void) 3490 { 3491 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3492 } 3493 3494 int __init btrfs_auto_defrag_init(void) 3495 { 3496 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3497 sizeof(struct inode_defrag), 0, 3498 SLAB_MEM_SPREAD, 3499 NULL); 3500 if (!btrfs_inode_defrag_cachep) 3501 return -ENOMEM; 3502 3503 return 0; 3504 } 3505 3506 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3507 { 3508 int ret; 3509 3510 /* 3511 * So with compression we will find and lock a dirty page and clear the 3512 * first one as dirty, setup an async extent, and immediately return 3513 * with the entire range locked but with nobody actually marked with 3514 * writeback. So we can't just filemap_write_and_wait_range() and 3515 * expect it to work since it will just kick off a thread to do the 3516 * actual work. So we need to call filemap_fdatawrite_range _again_ 3517 * since it will wait on the page lock, which won't be unlocked until 3518 * after the pages have been marked as writeback and so we're good to go 3519 * from there. We have to do this otherwise we'll miss the ordered 3520 * extents and that results in badness. Please Josef, do not think you 3521 * know better and pull this out at some point in the future, it is 3522 * right and you are wrong. 3523 */ 3524 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3525 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3526 &BTRFS_I(inode)->runtime_flags)) 3527 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3528 3529 return ret; 3530 } 3531