xref: /openbmc/linux/fs/btrfs/file.c (revision 84d517f3)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 
44 static struct kmem_cache *btrfs_inode_defrag_cachep;
45 /*
46  * when auto defrag is enabled we
47  * queue up these defrag structs to remember which
48  * inodes need defragging passes
49  */
50 struct inode_defrag {
51 	struct rb_node rb_node;
52 	/* objectid */
53 	u64 ino;
54 	/*
55 	 * transid where the defrag was added, we search for
56 	 * extents newer than this
57 	 */
58 	u64 transid;
59 
60 	/* root objectid */
61 	u64 root;
62 
63 	/* last offset we were able to defrag */
64 	u64 last_offset;
65 
66 	/* if we've wrapped around back to zero once already */
67 	int cycled;
68 };
69 
70 static int __compare_inode_defrag(struct inode_defrag *defrag1,
71 				  struct inode_defrag *defrag2)
72 {
73 	if (defrag1->root > defrag2->root)
74 		return 1;
75 	else if (defrag1->root < defrag2->root)
76 		return -1;
77 	else if (defrag1->ino > defrag2->ino)
78 		return 1;
79 	else if (defrag1->ino < defrag2->ino)
80 		return -1;
81 	else
82 		return 0;
83 }
84 
85 /* pop a record for an inode into the defrag tree.  The lock
86  * must be held already
87  *
88  * If you're inserting a record for an older transid than an
89  * existing record, the transid already in the tree is lowered
90  *
91  * If an existing record is found the defrag item you
92  * pass in is freed
93  */
94 static int __btrfs_add_inode_defrag(struct inode *inode,
95 				    struct inode_defrag *defrag)
96 {
97 	struct btrfs_root *root = BTRFS_I(inode)->root;
98 	struct inode_defrag *entry;
99 	struct rb_node **p;
100 	struct rb_node *parent = NULL;
101 	int ret;
102 
103 	p = &root->fs_info->defrag_inodes.rb_node;
104 	while (*p) {
105 		parent = *p;
106 		entry = rb_entry(parent, struct inode_defrag, rb_node);
107 
108 		ret = __compare_inode_defrag(defrag, entry);
109 		if (ret < 0)
110 			p = &parent->rb_left;
111 		else if (ret > 0)
112 			p = &parent->rb_right;
113 		else {
114 			/* if we're reinserting an entry for
115 			 * an old defrag run, make sure to
116 			 * lower the transid of our existing record
117 			 */
118 			if (defrag->transid < entry->transid)
119 				entry->transid = defrag->transid;
120 			if (defrag->last_offset > entry->last_offset)
121 				entry->last_offset = defrag->last_offset;
122 			return -EEXIST;
123 		}
124 	}
125 	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126 	rb_link_node(&defrag->rb_node, parent, p);
127 	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
128 	return 0;
129 }
130 
131 static inline int __need_auto_defrag(struct btrfs_root *root)
132 {
133 	if (!btrfs_test_opt(root, AUTO_DEFRAG))
134 		return 0;
135 
136 	if (btrfs_fs_closing(root->fs_info))
137 		return 0;
138 
139 	return 1;
140 }
141 
142 /*
143  * insert a defrag record for this inode if auto defrag is
144  * enabled
145  */
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147 			   struct inode *inode)
148 {
149 	struct btrfs_root *root = BTRFS_I(inode)->root;
150 	struct inode_defrag *defrag;
151 	u64 transid;
152 	int ret;
153 
154 	if (!__need_auto_defrag(root))
155 		return 0;
156 
157 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
158 		return 0;
159 
160 	if (trans)
161 		transid = trans->transid;
162 	else
163 		transid = BTRFS_I(inode)->root->last_trans;
164 
165 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
166 	if (!defrag)
167 		return -ENOMEM;
168 
169 	defrag->ino = btrfs_ino(inode);
170 	defrag->transid = transid;
171 	defrag->root = root->root_key.objectid;
172 
173 	spin_lock(&root->fs_info->defrag_inodes_lock);
174 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175 		/*
176 		 * If we set IN_DEFRAG flag and evict the inode from memory,
177 		 * and then re-read this inode, this new inode doesn't have
178 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
179 		 */
180 		ret = __btrfs_add_inode_defrag(inode, defrag);
181 		if (ret)
182 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183 	} else {
184 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 	}
186 	spin_unlock(&root->fs_info->defrag_inodes_lock);
187 	return 0;
188 }
189 
190 /*
191  * Requeue the defrag object. If there is a defrag object that points to
192  * the same inode in the tree, we will merge them together (by
193  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
194  */
195 static void btrfs_requeue_inode_defrag(struct inode *inode,
196 				       struct inode_defrag *defrag)
197 {
198 	struct btrfs_root *root = BTRFS_I(inode)->root;
199 	int ret;
200 
201 	if (!__need_auto_defrag(root))
202 		goto out;
203 
204 	/*
205 	 * Here we don't check the IN_DEFRAG flag, because we need merge
206 	 * them together.
207 	 */
208 	spin_lock(&root->fs_info->defrag_inodes_lock);
209 	ret = __btrfs_add_inode_defrag(inode, defrag);
210 	spin_unlock(&root->fs_info->defrag_inodes_lock);
211 	if (ret)
212 		goto out;
213 	return;
214 out:
215 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216 }
217 
218 /*
219  * pick the defragable inode that we want, if it doesn't exist, we will get
220  * the next one.
221  */
222 static struct inode_defrag *
223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
224 {
225 	struct inode_defrag *entry = NULL;
226 	struct inode_defrag tmp;
227 	struct rb_node *p;
228 	struct rb_node *parent = NULL;
229 	int ret;
230 
231 	tmp.ino = ino;
232 	tmp.root = root;
233 
234 	spin_lock(&fs_info->defrag_inodes_lock);
235 	p = fs_info->defrag_inodes.rb_node;
236 	while (p) {
237 		parent = p;
238 		entry = rb_entry(parent, struct inode_defrag, rb_node);
239 
240 		ret = __compare_inode_defrag(&tmp, entry);
241 		if (ret < 0)
242 			p = parent->rb_left;
243 		else if (ret > 0)
244 			p = parent->rb_right;
245 		else
246 			goto out;
247 	}
248 
249 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250 		parent = rb_next(parent);
251 		if (parent)
252 			entry = rb_entry(parent, struct inode_defrag, rb_node);
253 		else
254 			entry = NULL;
255 	}
256 out:
257 	if (entry)
258 		rb_erase(parent, &fs_info->defrag_inodes);
259 	spin_unlock(&fs_info->defrag_inodes_lock);
260 	return entry;
261 }
262 
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
264 {
265 	struct inode_defrag *defrag;
266 	struct rb_node *node;
267 
268 	spin_lock(&fs_info->defrag_inodes_lock);
269 	node = rb_first(&fs_info->defrag_inodes);
270 	while (node) {
271 		rb_erase(node, &fs_info->defrag_inodes);
272 		defrag = rb_entry(node, struct inode_defrag, rb_node);
273 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274 
275 		if (need_resched()) {
276 			spin_unlock(&fs_info->defrag_inodes_lock);
277 			cond_resched();
278 			spin_lock(&fs_info->defrag_inodes_lock);
279 		}
280 
281 		node = rb_first(&fs_info->defrag_inodes);
282 	}
283 	spin_unlock(&fs_info->defrag_inodes_lock);
284 }
285 
286 #define BTRFS_DEFRAG_BATCH	1024
287 
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289 				    struct inode_defrag *defrag)
290 {
291 	struct btrfs_root *inode_root;
292 	struct inode *inode;
293 	struct btrfs_key key;
294 	struct btrfs_ioctl_defrag_range_args range;
295 	int num_defrag;
296 	int index;
297 	int ret;
298 
299 	/* get the inode */
300 	key.objectid = defrag->root;
301 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302 	key.offset = (u64)-1;
303 
304 	index = srcu_read_lock(&fs_info->subvol_srcu);
305 
306 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307 	if (IS_ERR(inode_root)) {
308 		ret = PTR_ERR(inode_root);
309 		goto cleanup;
310 	}
311 
312 	key.objectid = defrag->ino;
313 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
314 	key.offset = 0;
315 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
316 	if (IS_ERR(inode)) {
317 		ret = PTR_ERR(inode);
318 		goto cleanup;
319 	}
320 	srcu_read_unlock(&fs_info->subvol_srcu, index);
321 
322 	/* do a chunk of defrag */
323 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
324 	memset(&range, 0, sizeof(range));
325 	range.len = (u64)-1;
326 	range.start = defrag->last_offset;
327 
328 	sb_start_write(fs_info->sb);
329 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
330 				       BTRFS_DEFRAG_BATCH);
331 	sb_end_write(fs_info->sb);
332 	/*
333 	 * if we filled the whole defrag batch, there
334 	 * must be more work to do.  Queue this defrag
335 	 * again
336 	 */
337 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
338 		defrag->last_offset = range.start;
339 		btrfs_requeue_inode_defrag(inode, defrag);
340 	} else if (defrag->last_offset && !defrag->cycled) {
341 		/*
342 		 * we didn't fill our defrag batch, but
343 		 * we didn't start at zero.  Make sure we loop
344 		 * around to the start of the file.
345 		 */
346 		defrag->last_offset = 0;
347 		defrag->cycled = 1;
348 		btrfs_requeue_inode_defrag(inode, defrag);
349 	} else {
350 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
351 	}
352 
353 	iput(inode);
354 	return 0;
355 cleanup:
356 	srcu_read_unlock(&fs_info->subvol_srcu, index);
357 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
358 	return ret;
359 }
360 
361 /*
362  * run through the list of inodes in the FS that need
363  * defragging
364  */
365 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
366 {
367 	struct inode_defrag *defrag;
368 	u64 first_ino = 0;
369 	u64 root_objectid = 0;
370 
371 	atomic_inc(&fs_info->defrag_running);
372 	while (1) {
373 		/* Pause the auto defragger. */
374 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
375 			     &fs_info->fs_state))
376 			break;
377 
378 		if (!__need_auto_defrag(fs_info->tree_root))
379 			break;
380 
381 		/* find an inode to defrag */
382 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
383 						 first_ino);
384 		if (!defrag) {
385 			if (root_objectid || first_ino) {
386 				root_objectid = 0;
387 				first_ino = 0;
388 				continue;
389 			} else {
390 				break;
391 			}
392 		}
393 
394 		first_ino = defrag->ino + 1;
395 		root_objectid = defrag->root;
396 
397 		__btrfs_run_defrag_inode(fs_info, defrag);
398 	}
399 	atomic_dec(&fs_info->defrag_running);
400 
401 	/*
402 	 * during unmount, we use the transaction_wait queue to
403 	 * wait for the defragger to stop
404 	 */
405 	wake_up(&fs_info->transaction_wait);
406 	return 0;
407 }
408 
409 /* simple helper to fault in pages and copy.  This should go away
410  * and be replaced with calls into generic code.
411  */
412 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
413 					 size_t write_bytes,
414 					 struct page **prepared_pages,
415 					 struct iov_iter *i)
416 {
417 	size_t copied = 0;
418 	size_t total_copied = 0;
419 	int pg = 0;
420 	int offset = pos & (PAGE_CACHE_SIZE - 1);
421 
422 	while (write_bytes > 0) {
423 		size_t count = min_t(size_t,
424 				     PAGE_CACHE_SIZE - offset, write_bytes);
425 		struct page *page = prepared_pages[pg];
426 		/*
427 		 * Copy data from userspace to the current page
428 		 */
429 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
430 
431 		/* Flush processor's dcache for this page */
432 		flush_dcache_page(page);
433 
434 		/*
435 		 * if we get a partial write, we can end up with
436 		 * partially up to date pages.  These add
437 		 * a lot of complexity, so make sure they don't
438 		 * happen by forcing this copy to be retried.
439 		 *
440 		 * The rest of the btrfs_file_write code will fall
441 		 * back to page at a time copies after we return 0.
442 		 */
443 		if (!PageUptodate(page) && copied < count)
444 			copied = 0;
445 
446 		iov_iter_advance(i, copied);
447 		write_bytes -= copied;
448 		total_copied += copied;
449 
450 		/* Return to btrfs_file_aio_write to fault page */
451 		if (unlikely(copied == 0))
452 			break;
453 
454 		if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
455 			offset += copied;
456 		} else {
457 			pg++;
458 			offset = 0;
459 		}
460 	}
461 	return total_copied;
462 }
463 
464 /*
465  * unlocks pages after btrfs_file_write is done with them
466  */
467 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
468 {
469 	size_t i;
470 	for (i = 0; i < num_pages; i++) {
471 		/* page checked is some magic around finding pages that
472 		 * have been modified without going through btrfs_set_page_dirty
473 		 * clear it here. There should be no need to mark the pages
474 		 * accessed as prepare_pages should have marked them accessed
475 		 * in prepare_pages via find_or_create_page()
476 		 */
477 		ClearPageChecked(pages[i]);
478 		unlock_page(pages[i]);
479 		page_cache_release(pages[i]);
480 	}
481 }
482 
483 /*
484  * after copy_from_user, pages need to be dirtied and we need to make
485  * sure holes are created between the current EOF and the start of
486  * any next extents (if required).
487  *
488  * this also makes the decision about creating an inline extent vs
489  * doing real data extents, marking pages dirty and delalloc as required.
490  */
491 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
492 			     struct page **pages, size_t num_pages,
493 			     loff_t pos, size_t write_bytes,
494 			     struct extent_state **cached)
495 {
496 	int err = 0;
497 	int i;
498 	u64 num_bytes;
499 	u64 start_pos;
500 	u64 end_of_last_block;
501 	u64 end_pos = pos + write_bytes;
502 	loff_t isize = i_size_read(inode);
503 
504 	start_pos = pos & ~((u64)root->sectorsize - 1);
505 	num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
506 
507 	end_of_last_block = start_pos + num_bytes - 1;
508 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
509 					cached);
510 	if (err)
511 		return err;
512 
513 	for (i = 0; i < num_pages; i++) {
514 		struct page *p = pages[i];
515 		SetPageUptodate(p);
516 		ClearPageChecked(p);
517 		set_page_dirty(p);
518 	}
519 
520 	/*
521 	 * we've only changed i_size in ram, and we haven't updated
522 	 * the disk i_size.  There is no need to log the inode
523 	 * at this time.
524 	 */
525 	if (end_pos > isize)
526 		i_size_write(inode, end_pos);
527 	return 0;
528 }
529 
530 /*
531  * this drops all the extents in the cache that intersect the range
532  * [start, end].  Existing extents are split as required.
533  */
534 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
535 			     int skip_pinned)
536 {
537 	struct extent_map *em;
538 	struct extent_map *split = NULL;
539 	struct extent_map *split2 = NULL;
540 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
541 	u64 len = end - start + 1;
542 	u64 gen;
543 	int ret;
544 	int testend = 1;
545 	unsigned long flags;
546 	int compressed = 0;
547 	bool modified;
548 
549 	WARN_ON(end < start);
550 	if (end == (u64)-1) {
551 		len = (u64)-1;
552 		testend = 0;
553 	}
554 	while (1) {
555 		int no_splits = 0;
556 
557 		modified = false;
558 		if (!split)
559 			split = alloc_extent_map();
560 		if (!split2)
561 			split2 = alloc_extent_map();
562 		if (!split || !split2)
563 			no_splits = 1;
564 
565 		write_lock(&em_tree->lock);
566 		em = lookup_extent_mapping(em_tree, start, len);
567 		if (!em) {
568 			write_unlock(&em_tree->lock);
569 			break;
570 		}
571 		flags = em->flags;
572 		gen = em->generation;
573 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
574 			if (testend && em->start + em->len >= start + len) {
575 				free_extent_map(em);
576 				write_unlock(&em_tree->lock);
577 				break;
578 			}
579 			start = em->start + em->len;
580 			if (testend)
581 				len = start + len - (em->start + em->len);
582 			free_extent_map(em);
583 			write_unlock(&em_tree->lock);
584 			continue;
585 		}
586 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
587 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
588 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
589 		modified = !list_empty(&em->list);
590 		if (no_splits)
591 			goto next;
592 
593 		if (em->start < start) {
594 			split->start = em->start;
595 			split->len = start - em->start;
596 
597 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
598 				split->orig_start = em->orig_start;
599 				split->block_start = em->block_start;
600 
601 				if (compressed)
602 					split->block_len = em->block_len;
603 				else
604 					split->block_len = split->len;
605 				split->orig_block_len = max(split->block_len,
606 						em->orig_block_len);
607 				split->ram_bytes = em->ram_bytes;
608 			} else {
609 				split->orig_start = split->start;
610 				split->block_len = 0;
611 				split->block_start = em->block_start;
612 				split->orig_block_len = 0;
613 				split->ram_bytes = split->len;
614 			}
615 
616 			split->generation = gen;
617 			split->bdev = em->bdev;
618 			split->flags = flags;
619 			split->compress_type = em->compress_type;
620 			replace_extent_mapping(em_tree, em, split, modified);
621 			free_extent_map(split);
622 			split = split2;
623 			split2 = NULL;
624 		}
625 		if (testend && em->start + em->len > start + len) {
626 			u64 diff = start + len - em->start;
627 
628 			split->start = start + len;
629 			split->len = em->start + em->len - (start + len);
630 			split->bdev = em->bdev;
631 			split->flags = flags;
632 			split->compress_type = em->compress_type;
633 			split->generation = gen;
634 
635 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
636 				split->orig_block_len = max(em->block_len,
637 						    em->orig_block_len);
638 
639 				split->ram_bytes = em->ram_bytes;
640 				if (compressed) {
641 					split->block_len = em->block_len;
642 					split->block_start = em->block_start;
643 					split->orig_start = em->orig_start;
644 				} else {
645 					split->block_len = split->len;
646 					split->block_start = em->block_start
647 						+ diff;
648 					split->orig_start = em->orig_start;
649 				}
650 			} else {
651 				split->ram_bytes = split->len;
652 				split->orig_start = split->start;
653 				split->block_len = 0;
654 				split->block_start = em->block_start;
655 				split->orig_block_len = 0;
656 			}
657 
658 			if (extent_map_in_tree(em)) {
659 				replace_extent_mapping(em_tree, em, split,
660 						       modified);
661 			} else {
662 				ret = add_extent_mapping(em_tree, split,
663 							 modified);
664 				ASSERT(ret == 0); /* Logic error */
665 			}
666 			free_extent_map(split);
667 			split = NULL;
668 		}
669 next:
670 		if (extent_map_in_tree(em))
671 			remove_extent_mapping(em_tree, em);
672 		write_unlock(&em_tree->lock);
673 
674 		/* once for us */
675 		free_extent_map(em);
676 		/* once for the tree*/
677 		free_extent_map(em);
678 	}
679 	if (split)
680 		free_extent_map(split);
681 	if (split2)
682 		free_extent_map(split2);
683 }
684 
685 /*
686  * this is very complex, but the basic idea is to drop all extents
687  * in the range start - end.  hint_block is filled in with a block number
688  * that would be a good hint to the block allocator for this file.
689  *
690  * If an extent intersects the range but is not entirely inside the range
691  * it is either truncated or split.  Anything entirely inside the range
692  * is deleted from the tree.
693  */
694 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
695 			 struct btrfs_root *root, struct inode *inode,
696 			 struct btrfs_path *path, u64 start, u64 end,
697 			 u64 *drop_end, int drop_cache,
698 			 int replace_extent,
699 			 u32 extent_item_size,
700 			 int *key_inserted)
701 {
702 	struct extent_buffer *leaf;
703 	struct btrfs_file_extent_item *fi;
704 	struct btrfs_key key;
705 	struct btrfs_key new_key;
706 	u64 ino = btrfs_ino(inode);
707 	u64 search_start = start;
708 	u64 disk_bytenr = 0;
709 	u64 num_bytes = 0;
710 	u64 extent_offset = 0;
711 	u64 extent_end = 0;
712 	int del_nr = 0;
713 	int del_slot = 0;
714 	int extent_type;
715 	int recow;
716 	int ret;
717 	int modify_tree = -1;
718 	int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
719 	int found = 0;
720 	int leafs_visited = 0;
721 
722 	if (drop_cache)
723 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
724 
725 	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
726 		modify_tree = 0;
727 
728 	while (1) {
729 		recow = 0;
730 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
731 					       search_start, modify_tree);
732 		if (ret < 0)
733 			break;
734 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
735 			leaf = path->nodes[0];
736 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
737 			if (key.objectid == ino &&
738 			    key.type == BTRFS_EXTENT_DATA_KEY)
739 				path->slots[0]--;
740 		}
741 		ret = 0;
742 		leafs_visited++;
743 next_slot:
744 		leaf = path->nodes[0];
745 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
746 			BUG_ON(del_nr > 0);
747 			ret = btrfs_next_leaf(root, path);
748 			if (ret < 0)
749 				break;
750 			if (ret > 0) {
751 				ret = 0;
752 				break;
753 			}
754 			leafs_visited++;
755 			leaf = path->nodes[0];
756 			recow = 1;
757 		}
758 
759 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
760 		if (key.objectid > ino ||
761 		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
762 			break;
763 
764 		fi = btrfs_item_ptr(leaf, path->slots[0],
765 				    struct btrfs_file_extent_item);
766 		extent_type = btrfs_file_extent_type(leaf, fi);
767 
768 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
769 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
770 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
771 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
772 			extent_offset = btrfs_file_extent_offset(leaf, fi);
773 			extent_end = key.offset +
774 				btrfs_file_extent_num_bytes(leaf, fi);
775 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
776 			extent_end = key.offset +
777 				btrfs_file_extent_inline_len(leaf,
778 						     path->slots[0], fi);
779 		} else {
780 			WARN_ON(1);
781 			extent_end = search_start;
782 		}
783 
784 		if (extent_end <= search_start) {
785 			path->slots[0]++;
786 			goto next_slot;
787 		}
788 
789 		found = 1;
790 		search_start = max(key.offset, start);
791 		if (recow || !modify_tree) {
792 			modify_tree = -1;
793 			btrfs_release_path(path);
794 			continue;
795 		}
796 
797 		/*
798 		 *     | - range to drop - |
799 		 *  | -------- extent -------- |
800 		 */
801 		if (start > key.offset && end < extent_end) {
802 			BUG_ON(del_nr > 0);
803 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
804 				ret = -EOPNOTSUPP;
805 				break;
806 			}
807 
808 			memcpy(&new_key, &key, sizeof(new_key));
809 			new_key.offset = start;
810 			ret = btrfs_duplicate_item(trans, root, path,
811 						   &new_key);
812 			if (ret == -EAGAIN) {
813 				btrfs_release_path(path);
814 				continue;
815 			}
816 			if (ret < 0)
817 				break;
818 
819 			leaf = path->nodes[0];
820 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
821 					    struct btrfs_file_extent_item);
822 			btrfs_set_file_extent_num_bytes(leaf, fi,
823 							start - key.offset);
824 
825 			fi = btrfs_item_ptr(leaf, path->slots[0],
826 					    struct btrfs_file_extent_item);
827 
828 			extent_offset += start - key.offset;
829 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
830 			btrfs_set_file_extent_num_bytes(leaf, fi,
831 							extent_end - start);
832 			btrfs_mark_buffer_dirty(leaf);
833 
834 			if (update_refs && disk_bytenr > 0) {
835 				ret = btrfs_inc_extent_ref(trans, root,
836 						disk_bytenr, num_bytes, 0,
837 						root->root_key.objectid,
838 						new_key.objectid,
839 						start - extent_offset, 0);
840 				BUG_ON(ret); /* -ENOMEM */
841 			}
842 			key.offset = start;
843 		}
844 		/*
845 		 *  | ---- range to drop ----- |
846 		 *      | -------- extent -------- |
847 		 */
848 		if (start <= key.offset && end < extent_end) {
849 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
850 				ret = -EOPNOTSUPP;
851 				break;
852 			}
853 
854 			memcpy(&new_key, &key, sizeof(new_key));
855 			new_key.offset = end;
856 			btrfs_set_item_key_safe(root, path, &new_key);
857 
858 			extent_offset += end - key.offset;
859 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
860 			btrfs_set_file_extent_num_bytes(leaf, fi,
861 							extent_end - end);
862 			btrfs_mark_buffer_dirty(leaf);
863 			if (update_refs && disk_bytenr > 0)
864 				inode_sub_bytes(inode, end - key.offset);
865 			break;
866 		}
867 
868 		search_start = extent_end;
869 		/*
870 		 *       | ---- range to drop ----- |
871 		 *  | -------- extent -------- |
872 		 */
873 		if (start > key.offset && end >= extent_end) {
874 			BUG_ON(del_nr > 0);
875 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
876 				ret = -EOPNOTSUPP;
877 				break;
878 			}
879 
880 			btrfs_set_file_extent_num_bytes(leaf, fi,
881 							start - key.offset);
882 			btrfs_mark_buffer_dirty(leaf);
883 			if (update_refs && disk_bytenr > 0)
884 				inode_sub_bytes(inode, extent_end - start);
885 			if (end == extent_end)
886 				break;
887 
888 			path->slots[0]++;
889 			goto next_slot;
890 		}
891 
892 		/*
893 		 *  | ---- range to drop ----- |
894 		 *    | ------ extent ------ |
895 		 */
896 		if (start <= key.offset && end >= extent_end) {
897 			if (del_nr == 0) {
898 				del_slot = path->slots[0];
899 				del_nr = 1;
900 			} else {
901 				BUG_ON(del_slot + del_nr != path->slots[0]);
902 				del_nr++;
903 			}
904 
905 			if (update_refs &&
906 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
907 				inode_sub_bytes(inode,
908 						extent_end - key.offset);
909 				extent_end = ALIGN(extent_end,
910 						   root->sectorsize);
911 			} else if (update_refs && disk_bytenr > 0) {
912 				ret = btrfs_free_extent(trans, root,
913 						disk_bytenr, num_bytes, 0,
914 						root->root_key.objectid,
915 						key.objectid, key.offset -
916 						extent_offset, 0);
917 				BUG_ON(ret); /* -ENOMEM */
918 				inode_sub_bytes(inode,
919 						extent_end - key.offset);
920 			}
921 
922 			if (end == extent_end)
923 				break;
924 
925 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
926 				path->slots[0]++;
927 				goto next_slot;
928 			}
929 
930 			ret = btrfs_del_items(trans, root, path, del_slot,
931 					      del_nr);
932 			if (ret) {
933 				btrfs_abort_transaction(trans, root, ret);
934 				break;
935 			}
936 
937 			del_nr = 0;
938 			del_slot = 0;
939 
940 			btrfs_release_path(path);
941 			continue;
942 		}
943 
944 		BUG_ON(1);
945 	}
946 
947 	if (!ret && del_nr > 0) {
948 		/*
949 		 * Set path->slots[0] to first slot, so that after the delete
950 		 * if items are move off from our leaf to its immediate left or
951 		 * right neighbor leafs, we end up with a correct and adjusted
952 		 * path->slots[0] for our insertion (if replace_extent != 0).
953 		 */
954 		path->slots[0] = del_slot;
955 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
956 		if (ret)
957 			btrfs_abort_transaction(trans, root, ret);
958 	}
959 
960 	leaf = path->nodes[0];
961 	/*
962 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
963 	 * which case it unlocked our path, so check path->locks[0] matches a
964 	 * write lock.
965 	 */
966 	if (!ret && replace_extent && leafs_visited == 1 &&
967 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
968 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
969 	    btrfs_leaf_free_space(root, leaf) >=
970 	    sizeof(struct btrfs_item) + extent_item_size) {
971 
972 		key.objectid = ino;
973 		key.type = BTRFS_EXTENT_DATA_KEY;
974 		key.offset = start;
975 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
976 			struct btrfs_key slot_key;
977 
978 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
979 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
980 				path->slots[0]++;
981 		}
982 		setup_items_for_insert(root, path, &key,
983 				       &extent_item_size,
984 				       extent_item_size,
985 				       sizeof(struct btrfs_item) +
986 				       extent_item_size, 1);
987 		*key_inserted = 1;
988 	}
989 
990 	if (!replace_extent || !(*key_inserted))
991 		btrfs_release_path(path);
992 	if (drop_end)
993 		*drop_end = found ? min(end, extent_end) : end;
994 	return ret;
995 }
996 
997 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
998 		       struct btrfs_root *root, struct inode *inode, u64 start,
999 		       u64 end, int drop_cache)
1000 {
1001 	struct btrfs_path *path;
1002 	int ret;
1003 
1004 	path = btrfs_alloc_path();
1005 	if (!path)
1006 		return -ENOMEM;
1007 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1008 				   drop_cache, 0, 0, NULL);
1009 	btrfs_free_path(path);
1010 	return ret;
1011 }
1012 
1013 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1014 			    u64 objectid, u64 bytenr, u64 orig_offset,
1015 			    u64 *start, u64 *end)
1016 {
1017 	struct btrfs_file_extent_item *fi;
1018 	struct btrfs_key key;
1019 	u64 extent_end;
1020 
1021 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1022 		return 0;
1023 
1024 	btrfs_item_key_to_cpu(leaf, &key, slot);
1025 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1026 		return 0;
1027 
1028 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1029 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1030 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1031 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1032 	    btrfs_file_extent_compression(leaf, fi) ||
1033 	    btrfs_file_extent_encryption(leaf, fi) ||
1034 	    btrfs_file_extent_other_encoding(leaf, fi))
1035 		return 0;
1036 
1037 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1038 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1039 		return 0;
1040 
1041 	*start = key.offset;
1042 	*end = extent_end;
1043 	return 1;
1044 }
1045 
1046 /*
1047  * Mark extent in the range start - end as written.
1048  *
1049  * This changes extent type from 'pre-allocated' to 'regular'. If only
1050  * part of extent is marked as written, the extent will be split into
1051  * two or three.
1052  */
1053 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1054 			      struct inode *inode, u64 start, u64 end)
1055 {
1056 	struct btrfs_root *root = BTRFS_I(inode)->root;
1057 	struct extent_buffer *leaf;
1058 	struct btrfs_path *path;
1059 	struct btrfs_file_extent_item *fi;
1060 	struct btrfs_key key;
1061 	struct btrfs_key new_key;
1062 	u64 bytenr;
1063 	u64 num_bytes;
1064 	u64 extent_end;
1065 	u64 orig_offset;
1066 	u64 other_start;
1067 	u64 other_end;
1068 	u64 split;
1069 	int del_nr = 0;
1070 	int del_slot = 0;
1071 	int recow;
1072 	int ret;
1073 	u64 ino = btrfs_ino(inode);
1074 
1075 	path = btrfs_alloc_path();
1076 	if (!path)
1077 		return -ENOMEM;
1078 again:
1079 	recow = 0;
1080 	split = start;
1081 	key.objectid = ino;
1082 	key.type = BTRFS_EXTENT_DATA_KEY;
1083 	key.offset = split;
1084 
1085 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1086 	if (ret < 0)
1087 		goto out;
1088 	if (ret > 0 && path->slots[0] > 0)
1089 		path->slots[0]--;
1090 
1091 	leaf = path->nodes[0];
1092 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1093 	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1094 	fi = btrfs_item_ptr(leaf, path->slots[0],
1095 			    struct btrfs_file_extent_item);
1096 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1097 	       BTRFS_FILE_EXTENT_PREALLOC);
1098 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1099 	BUG_ON(key.offset > start || extent_end < end);
1100 
1101 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1102 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1103 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1104 	memcpy(&new_key, &key, sizeof(new_key));
1105 
1106 	if (start == key.offset && end < extent_end) {
1107 		other_start = 0;
1108 		other_end = start;
1109 		if (extent_mergeable(leaf, path->slots[0] - 1,
1110 				     ino, bytenr, orig_offset,
1111 				     &other_start, &other_end)) {
1112 			new_key.offset = end;
1113 			btrfs_set_item_key_safe(root, path, &new_key);
1114 			fi = btrfs_item_ptr(leaf, path->slots[0],
1115 					    struct btrfs_file_extent_item);
1116 			btrfs_set_file_extent_generation(leaf, fi,
1117 							 trans->transid);
1118 			btrfs_set_file_extent_num_bytes(leaf, fi,
1119 							extent_end - end);
1120 			btrfs_set_file_extent_offset(leaf, fi,
1121 						     end - orig_offset);
1122 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1123 					    struct btrfs_file_extent_item);
1124 			btrfs_set_file_extent_generation(leaf, fi,
1125 							 trans->transid);
1126 			btrfs_set_file_extent_num_bytes(leaf, fi,
1127 							end - other_start);
1128 			btrfs_mark_buffer_dirty(leaf);
1129 			goto out;
1130 		}
1131 	}
1132 
1133 	if (start > key.offset && end == extent_end) {
1134 		other_start = end;
1135 		other_end = 0;
1136 		if (extent_mergeable(leaf, path->slots[0] + 1,
1137 				     ino, bytenr, orig_offset,
1138 				     &other_start, &other_end)) {
1139 			fi = btrfs_item_ptr(leaf, path->slots[0],
1140 					    struct btrfs_file_extent_item);
1141 			btrfs_set_file_extent_num_bytes(leaf, fi,
1142 							start - key.offset);
1143 			btrfs_set_file_extent_generation(leaf, fi,
1144 							 trans->transid);
1145 			path->slots[0]++;
1146 			new_key.offset = start;
1147 			btrfs_set_item_key_safe(root, path, &new_key);
1148 
1149 			fi = btrfs_item_ptr(leaf, path->slots[0],
1150 					    struct btrfs_file_extent_item);
1151 			btrfs_set_file_extent_generation(leaf, fi,
1152 							 trans->transid);
1153 			btrfs_set_file_extent_num_bytes(leaf, fi,
1154 							other_end - start);
1155 			btrfs_set_file_extent_offset(leaf, fi,
1156 						     start - orig_offset);
1157 			btrfs_mark_buffer_dirty(leaf);
1158 			goto out;
1159 		}
1160 	}
1161 
1162 	while (start > key.offset || end < extent_end) {
1163 		if (key.offset == start)
1164 			split = end;
1165 
1166 		new_key.offset = split;
1167 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1168 		if (ret == -EAGAIN) {
1169 			btrfs_release_path(path);
1170 			goto again;
1171 		}
1172 		if (ret < 0) {
1173 			btrfs_abort_transaction(trans, root, ret);
1174 			goto out;
1175 		}
1176 
1177 		leaf = path->nodes[0];
1178 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1179 				    struct btrfs_file_extent_item);
1180 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1181 		btrfs_set_file_extent_num_bytes(leaf, fi,
1182 						split - key.offset);
1183 
1184 		fi = btrfs_item_ptr(leaf, path->slots[0],
1185 				    struct btrfs_file_extent_item);
1186 
1187 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1188 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1189 		btrfs_set_file_extent_num_bytes(leaf, fi,
1190 						extent_end - split);
1191 		btrfs_mark_buffer_dirty(leaf);
1192 
1193 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1194 					   root->root_key.objectid,
1195 					   ino, orig_offset, 0);
1196 		BUG_ON(ret); /* -ENOMEM */
1197 
1198 		if (split == start) {
1199 			key.offset = start;
1200 		} else {
1201 			BUG_ON(start != key.offset);
1202 			path->slots[0]--;
1203 			extent_end = end;
1204 		}
1205 		recow = 1;
1206 	}
1207 
1208 	other_start = end;
1209 	other_end = 0;
1210 	if (extent_mergeable(leaf, path->slots[0] + 1,
1211 			     ino, bytenr, orig_offset,
1212 			     &other_start, &other_end)) {
1213 		if (recow) {
1214 			btrfs_release_path(path);
1215 			goto again;
1216 		}
1217 		extent_end = other_end;
1218 		del_slot = path->slots[0] + 1;
1219 		del_nr++;
1220 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1221 					0, root->root_key.objectid,
1222 					ino, orig_offset, 0);
1223 		BUG_ON(ret); /* -ENOMEM */
1224 	}
1225 	other_start = 0;
1226 	other_end = start;
1227 	if (extent_mergeable(leaf, path->slots[0] - 1,
1228 			     ino, bytenr, orig_offset,
1229 			     &other_start, &other_end)) {
1230 		if (recow) {
1231 			btrfs_release_path(path);
1232 			goto again;
1233 		}
1234 		key.offset = other_start;
1235 		del_slot = path->slots[0];
1236 		del_nr++;
1237 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1238 					0, root->root_key.objectid,
1239 					ino, orig_offset, 0);
1240 		BUG_ON(ret); /* -ENOMEM */
1241 	}
1242 	if (del_nr == 0) {
1243 		fi = btrfs_item_ptr(leaf, path->slots[0],
1244 			   struct btrfs_file_extent_item);
1245 		btrfs_set_file_extent_type(leaf, fi,
1246 					   BTRFS_FILE_EXTENT_REG);
1247 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1248 		btrfs_mark_buffer_dirty(leaf);
1249 	} else {
1250 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1251 			   struct btrfs_file_extent_item);
1252 		btrfs_set_file_extent_type(leaf, fi,
1253 					   BTRFS_FILE_EXTENT_REG);
1254 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1255 		btrfs_set_file_extent_num_bytes(leaf, fi,
1256 						extent_end - key.offset);
1257 		btrfs_mark_buffer_dirty(leaf);
1258 
1259 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1260 		if (ret < 0) {
1261 			btrfs_abort_transaction(trans, root, ret);
1262 			goto out;
1263 		}
1264 	}
1265 out:
1266 	btrfs_free_path(path);
1267 	return 0;
1268 }
1269 
1270 /*
1271  * on error we return an unlocked page and the error value
1272  * on success we return a locked page and 0
1273  */
1274 static int prepare_uptodate_page(struct page *page, u64 pos,
1275 				 bool force_uptodate)
1276 {
1277 	int ret = 0;
1278 
1279 	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1280 	    !PageUptodate(page)) {
1281 		ret = btrfs_readpage(NULL, page);
1282 		if (ret)
1283 			return ret;
1284 		lock_page(page);
1285 		if (!PageUptodate(page)) {
1286 			unlock_page(page);
1287 			return -EIO;
1288 		}
1289 	}
1290 	return 0;
1291 }
1292 
1293 /*
1294  * this just gets pages into the page cache and locks them down.
1295  */
1296 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1297 				  size_t num_pages, loff_t pos,
1298 				  size_t write_bytes, bool force_uptodate)
1299 {
1300 	int i;
1301 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
1302 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1303 	int err = 0;
1304 	int faili;
1305 
1306 	for (i = 0; i < num_pages; i++) {
1307 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1308 					       mask | __GFP_WRITE);
1309 		if (!pages[i]) {
1310 			faili = i - 1;
1311 			err = -ENOMEM;
1312 			goto fail;
1313 		}
1314 
1315 		if (i == 0)
1316 			err = prepare_uptodate_page(pages[i], pos,
1317 						    force_uptodate);
1318 		if (i == num_pages - 1)
1319 			err = prepare_uptodate_page(pages[i],
1320 						    pos + write_bytes, false);
1321 		if (err) {
1322 			page_cache_release(pages[i]);
1323 			faili = i - 1;
1324 			goto fail;
1325 		}
1326 		wait_on_page_writeback(pages[i]);
1327 	}
1328 
1329 	return 0;
1330 fail:
1331 	while (faili >= 0) {
1332 		unlock_page(pages[faili]);
1333 		page_cache_release(pages[faili]);
1334 		faili--;
1335 	}
1336 	return err;
1337 
1338 }
1339 
1340 /*
1341  * This function locks the extent and properly waits for data=ordered extents
1342  * to finish before allowing the pages to be modified if need.
1343  *
1344  * The return value:
1345  * 1 - the extent is locked
1346  * 0 - the extent is not locked, and everything is OK
1347  * -EAGAIN - need re-prepare the pages
1348  * the other < 0 number - Something wrong happens
1349  */
1350 static noinline int
1351 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1352 				size_t num_pages, loff_t pos,
1353 				u64 *lockstart, u64 *lockend,
1354 				struct extent_state **cached_state)
1355 {
1356 	u64 start_pos;
1357 	u64 last_pos;
1358 	int i;
1359 	int ret = 0;
1360 
1361 	start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1362 	last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1363 
1364 	if (start_pos < inode->i_size) {
1365 		struct btrfs_ordered_extent *ordered;
1366 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1367 				 start_pos, last_pos, 0, cached_state);
1368 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1369 						     last_pos - start_pos + 1);
1370 		if (ordered &&
1371 		    ordered->file_offset + ordered->len > start_pos &&
1372 		    ordered->file_offset <= last_pos) {
1373 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1374 					     start_pos, last_pos,
1375 					     cached_state, GFP_NOFS);
1376 			for (i = 0; i < num_pages; i++) {
1377 				unlock_page(pages[i]);
1378 				page_cache_release(pages[i]);
1379 			}
1380 			btrfs_start_ordered_extent(inode, ordered, 1);
1381 			btrfs_put_ordered_extent(ordered);
1382 			return -EAGAIN;
1383 		}
1384 		if (ordered)
1385 			btrfs_put_ordered_extent(ordered);
1386 
1387 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1388 				  last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1389 				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1390 				  0, 0, cached_state, GFP_NOFS);
1391 		*lockstart = start_pos;
1392 		*lockend = last_pos;
1393 		ret = 1;
1394 	}
1395 
1396 	for (i = 0; i < num_pages; i++) {
1397 		if (clear_page_dirty_for_io(pages[i]))
1398 			account_page_redirty(pages[i]);
1399 		set_page_extent_mapped(pages[i]);
1400 		WARN_ON(!PageLocked(pages[i]));
1401 	}
1402 
1403 	return ret;
1404 }
1405 
1406 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1407 				    size_t *write_bytes)
1408 {
1409 	struct btrfs_root *root = BTRFS_I(inode)->root;
1410 	struct btrfs_ordered_extent *ordered;
1411 	u64 lockstart, lockend;
1412 	u64 num_bytes;
1413 	int ret;
1414 
1415 	ret = btrfs_start_nocow_write(root);
1416 	if (!ret)
1417 		return -ENOSPC;
1418 
1419 	lockstart = round_down(pos, root->sectorsize);
1420 	lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1421 
1422 	while (1) {
1423 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1424 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1425 						     lockend - lockstart + 1);
1426 		if (!ordered) {
1427 			break;
1428 		}
1429 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1430 		btrfs_start_ordered_extent(inode, ordered, 1);
1431 		btrfs_put_ordered_extent(ordered);
1432 	}
1433 
1434 	num_bytes = lockend - lockstart + 1;
1435 	ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1436 	if (ret <= 0) {
1437 		ret = 0;
1438 		btrfs_end_nocow_write(root);
1439 	} else {
1440 		*write_bytes = min_t(size_t, *write_bytes ,
1441 				     num_bytes - pos + lockstart);
1442 	}
1443 
1444 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1445 
1446 	return ret;
1447 }
1448 
1449 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1450 					       struct iov_iter *i,
1451 					       loff_t pos)
1452 {
1453 	struct inode *inode = file_inode(file);
1454 	struct btrfs_root *root = BTRFS_I(inode)->root;
1455 	struct page **pages = NULL;
1456 	struct extent_state *cached_state = NULL;
1457 	u64 release_bytes = 0;
1458 	u64 lockstart;
1459 	u64 lockend;
1460 	unsigned long first_index;
1461 	size_t num_written = 0;
1462 	int nrptrs;
1463 	int ret = 0;
1464 	bool only_release_metadata = false;
1465 	bool force_page_uptodate = false;
1466 	bool need_unlock;
1467 
1468 	nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1469 		     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1470 		     (sizeof(struct page *)));
1471 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1472 	nrptrs = max(nrptrs, 8);
1473 	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1474 	if (!pages)
1475 		return -ENOMEM;
1476 
1477 	first_index = pos >> PAGE_CACHE_SHIFT;
1478 
1479 	while (iov_iter_count(i) > 0) {
1480 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1481 		size_t write_bytes = min(iov_iter_count(i),
1482 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
1483 					 offset);
1484 		size_t num_pages = (write_bytes + offset +
1485 				    PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1486 		size_t reserve_bytes;
1487 		size_t dirty_pages;
1488 		size_t copied;
1489 
1490 		WARN_ON(num_pages > nrptrs);
1491 
1492 		/*
1493 		 * Fault pages before locking them in prepare_pages
1494 		 * to avoid recursive lock
1495 		 */
1496 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1497 			ret = -EFAULT;
1498 			break;
1499 		}
1500 
1501 		reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1502 		ret = btrfs_check_data_free_space(inode, reserve_bytes);
1503 		if (ret == -ENOSPC &&
1504 		    (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1505 					      BTRFS_INODE_PREALLOC))) {
1506 			ret = check_can_nocow(inode, pos, &write_bytes);
1507 			if (ret > 0) {
1508 				only_release_metadata = true;
1509 				/*
1510 				 * our prealloc extent may be smaller than
1511 				 * write_bytes, so scale down.
1512 				 */
1513 				num_pages = (write_bytes + offset +
1514 					     PAGE_CACHE_SIZE - 1) >>
1515 					PAGE_CACHE_SHIFT;
1516 				reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1517 				ret = 0;
1518 			} else {
1519 				ret = -ENOSPC;
1520 			}
1521 		}
1522 
1523 		if (ret)
1524 			break;
1525 
1526 		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1527 		if (ret) {
1528 			if (!only_release_metadata)
1529 				btrfs_free_reserved_data_space(inode,
1530 							       reserve_bytes);
1531 			else
1532 				btrfs_end_nocow_write(root);
1533 			break;
1534 		}
1535 
1536 		release_bytes = reserve_bytes;
1537 		need_unlock = false;
1538 again:
1539 		/*
1540 		 * This is going to setup the pages array with the number of
1541 		 * pages we want, so we don't really need to worry about the
1542 		 * contents of pages from loop to loop
1543 		 */
1544 		ret = prepare_pages(inode, pages, num_pages,
1545 				    pos, write_bytes,
1546 				    force_page_uptodate);
1547 		if (ret)
1548 			break;
1549 
1550 		ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1551 						      pos, &lockstart, &lockend,
1552 						      &cached_state);
1553 		if (ret < 0) {
1554 			if (ret == -EAGAIN)
1555 				goto again;
1556 			break;
1557 		} else if (ret > 0) {
1558 			need_unlock = true;
1559 			ret = 0;
1560 		}
1561 
1562 		copied = btrfs_copy_from_user(pos, num_pages,
1563 					   write_bytes, pages, i);
1564 
1565 		/*
1566 		 * if we have trouble faulting in the pages, fall
1567 		 * back to one page at a time
1568 		 */
1569 		if (copied < write_bytes)
1570 			nrptrs = 1;
1571 
1572 		if (copied == 0) {
1573 			force_page_uptodate = true;
1574 			dirty_pages = 0;
1575 		} else {
1576 			force_page_uptodate = false;
1577 			dirty_pages = (copied + offset +
1578 				       PAGE_CACHE_SIZE - 1) >>
1579 				       PAGE_CACHE_SHIFT;
1580 		}
1581 
1582 		/*
1583 		 * If we had a short copy we need to release the excess delaloc
1584 		 * bytes we reserved.  We need to increment outstanding_extents
1585 		 * because btrfs_delalloc_release_space will decrement it, but
1586 		 * we still have an outstanding extent for the chunk we actually
1587 		 * managed to copy.
1588 		 */
1589 		if (num_pages > dirty_pages) {
1590 			release_bytes = (num_pages - dirty_pages) <<
1591 				PAGE_CACHE_SHIFT;
1592 			if (copied > 0) {
1593 				spin_lock(&BTRFS_I(inode)->lock);
1594 				BTRFS_I(inode)->outstanding_extents++;
1595 				spin_unlock(&BTRFS_I(inode)->lock);
1596 			}
1597 			if (only_release_metadata)
1598 				btrfs_delalloc_release_metadata(inode,
1599 								release_bytes);
1600 			else
1601 				btrfs_delalloc_release_space(inode,
1602 							     release_bytes);
1603 		}
1604 
1605 		release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1606 
1607 		if (copied > 0)
1608 			ret = btrfs_dirty_pages(root, inode, pages,
1609 						dirty_pages, pos, copied,
1610 						NULL);
1611 		if (need_unlock)
1612 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1613 					     lockstart, lockend, &cached_state,
1614 					     GFP_NOFS);
1615 		if (ret) {
1616 			btrfs_drop_pages(pages, num_pages);
1617 			break;
1618 		}
1619 
1620 		release_bytes = 0;
1621 		if (only_release_metadata)
1622 			btrfs_end_nocow_write(root);
1623 
1624 		if (only_release_metadata && copied > 0) {
1625 			u64 lockstart = round_down(pos, root->sectorsize);
1626 			u64 lockend = lockstart +
1627 				(dirty_pages << PAGE_CACHE_SHIFT) - 1;
1628 
1629 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1630 				       lockend, EXTENT_NORESERVE, NULL,
1631 				       NULL, GFP_NOFS);
1632 			only_release_metadata = false;
1633 		}
1634 
1635 		btrfs_drop_pages(pages, num_pages);
1636 
1637 		cond_resched();
1638 
1639 		balance_dirty_pages_ratelimited(inode->i_mapping);
1640 		if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1641 			btrfs_btree_balance_dirty(root);
1642 
1643 		pos += copied;
1644 		num_written += copied;
1645 	}
1646 
1647 	kfree(pages);
1648 
1649 	if (release_bytes) {
1650 		if (only_release_metadata) {
1651 			btrfs_end_nocow_write(root);
1652 			btrfs_delalloc_release_metadata(inode, release_bytes);
1653 		} else {
1654 			btrfs_delalloc_release_space(inode, release_bytes);
1655 		}
1656 	}
1657 
1658 	return num_written ? num_written : ret;
1659 }
1660 
1661 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1662 				    const struct iovec *iov,
1663 				    unsigned long nr_segs, loff_t pos,
1664 				    size_t count, size_t ocount)
1665 {
1666 	struct file *file = iocb->ki_filp;
1667 	struct iov_iter i;
1668 	ssize_t written;
1669 	ssize_t written_buffered;
1670 	loff_t endbyte;
1671 	int err;
1672 
1673 	written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
1674 					    count, ocount);
1675 
1676 	if (written < 0 || written == count)
1677 		return written;
1678 
1679 	pos += written;
1680 	count -= written;
1681 	iov_iter_init(&i, iov, nr_segs, count, written);
1682 	written_buffered = __btrfs_buffered_write(file, &i, pos);
1683 	if (written_buffered < 0) {
1684 		err = written_buffered;
1685 		goto out;
1686 	}
1687 	endbyte = pos + written_buffered - 1;
1688 	err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1689 	if (err)
1690 		goto out;
1691 	written += written_buffered;
1692 	iocb->ki_pos = pos + written_buffered;
1693 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1694 				 endbyte >> PAGE_CACHE_SHIFT);
1695 out:
1696 	return written ? written : err;
1697 }
1698 
1699 static void update_time_for_write(struct inode *inode)
1700 {
1701 	struct timespec now;
1702 
1703 	if (IS_NOCMTIME(inode))
1704 		return;
1705 
1706 	now = current_fs_time(inode->i_sb);
1707 	if (!timespec_equal(&inode->i_mtime, &now))
1708 		inode->i_mtime = now;
1709 
1710 	if (!timespec_equal(&inode->i_ctime, &now))
1711 		inode->i_ctime = now;
1712 
1713 	if (IS_I_VERSION(inode))
1714 		inode_inc_iversion(inode);
1715 }
1716 
1717 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1718 				    const struct iovec *iov,
1719 				    unsigned long nr_segs, loff_t pos)
1720 {
1721 	struct file *file = iocb->ki_filp;
1722 	struct inode *inode = file_inode(file);
1723 	struct btrfs_root *root = BTRFS_I(inode)->root;
1724 	u64 start_pos;
1725 	u64 end_pos;
1726 	ssize_t num_written = 0;
1727 	ssize_t err = 0;
1728 	size_t count, ocount;
1729 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1730 
1731 	mutex_lock(&inode->i_mutex);
1732 
1733 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1734 	if (err) {
1735 		mutex_unlock(&inode->i_mutex);
1736 		goto out;
1737 	}
1738 	count = ocount;
1739 
1740 	current->backing_dev_info = inode->i_mapping->backing_dev_info;
1741 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1742 	if (err) {
1743 		mutex_unlock(&inode->i_mutex);
1744 		goto out;
1745 	}
1746 
1747 	if (count == 0) {
1748 		mutex_unlock(&inode->i_mutex);
1749 		goto out;
1750 	}
1751 
1752 	err = file_remove_suid(file);
1753 	if (err) {
1754 		mutex_unlock(&inode->i_mutex);
1755 		goto out;
1756 	}
1757 
1758 	/*
1759 	 * If BTRFS flips readonly due to some impossible error
1760 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1761 	 * although we have opened a file as writable, we have
1762 	 * to stop this write operation to ensure FS consistency.
1763 	 */
1764 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1765 		mutex_unlock(&inode->i_mutex);
1766 		err = -EROFS;
1767 		goto out;
1768 	}
1769 
1770 	/*
1771 	 * We reserve space for updating the inode when we reserve space for the
1772 	 * extent we are going to write, so we will enospc out there.  We don't
1773 	 * need to start yet another transaction to update the inode as we will
1774 	 * update the inode when we finish writing whatever data we write.
1775 	 */
1776 	update_time_for_write(inode);
1777 
1778 	start_pos = round_down(pos, root->sectorsize);
1779 	if (start_pos > i_size_read(inode)) {
1780 		/* Expand hole size to cover write data, preventing empty gap */
1781 		end_pos = round_up(pos + count, root->sectorsize);
1782 		err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
1783 		if (err) {
1784 			mutex_unlock(&inode->i_mutex);
1785 			goto out;
1786 		}
1787 	}
1788 
1789 	if (sync)
1790 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1791 
1792 	if (unlikely(file->f_flags & O_DIRECT)) {
1793 		num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1794 						   pos, count, ocount);
1795 	} else {
1796 		struct iov_iter i;
1797 
1798 		iov_iter_init(&i, iov, nr_segs, count, num_written);
1799 
1800 		num_written = __btrfs_buffered_write(file, &i, pos);
1801 		if (num_written > 0)
1802 			iocb->ki_pos = pos + num_written;
1803 	}
1804 
1805 	mutex_unlock(&inode->i_mutex);
1806 
1807 	/*
1808 	 * we want to make sure fsync finds this change
1809 	 * but we haven't joined a transaction running right now.
1810 	 *
1811 	 * Later on, someone is sure to update the inode and get the
1812 	 * real transid recorded.
1813 	 *
1814 	 * We set last_trans now to the fs_info generation + 1,
1815 	 * this will either be one more than the running transaction
1816 	 * or the generation used for the next transaction if there isn't
1817 	 * one running right now.
1818 	 *
1819 	 * We also have to set last_sub_trans to the current log transid,
1820 	 * otherwise subsequent syncs to a file that's been synced in this
1821 	 * transaction will appear to have already occured.
1822 	 */
1823 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1824 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1825 	if (num_written > 0) {
1826 		err = generic_write_sync(file, pos, num_written);
1827 		if (err < 0)
1828 			num_written = err;
1829 	}
1830 
1831 	if (sync)
1832 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1833 out:
1834 	current->backing_dev_info = NULL;
1835 	return num_written ? num_written : err;
1836 }
1837 
1838 int btrfs_release_file(struct inode *inode, struct file *filp)
1839 {
1840 	/*
1841 	 * ordered_data_close is set by settattr when we are about to truncate
1842 	 * a file from a non-zero size to a zero size.  This tries to
1843 	 * flush down new bytes that may have been written if the
1844 	 * application were using truncate to replace a file in place.
1845 	 */
1846 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1847 			       &BTRFS_I(inode)->runtime_flags)) {
1848 		struct btrfs_trans_handle *trans;
1849 		struct btrfs_root *root = BTRFS_I(inode)->root;
1850 
1851 		/*
1852 		 * We need to block on a committing transaction to keep us from
1853 		 * throwing a ordered operation on to the list and causing
1854 		 * something like sync to deadlock trying to flush out this
1855 		 * inode.
1856 		 */
1857 		trans = btrfs_start_transaction(root, 0);
1858 		if (IS_ERR(trans))
1859 			return PTR_ERR(trans);
1860 		btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1861 		btrfs_end_transaction(trans, root);
1862 		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1863 			filemap_flush(inode->i_mapping);
1864 	}
1865 	if (filp->private_data)
1866 		btrfs_ioctl_trans_end(filp);
1867 	return 0;
1868 }
1869 
1870 /*
1871  * fsync call for both files and directories.  This logs the inode into
1872  * the tree log instead of forcing full commits whenever possible.
1873  *
1874  * It needs to call filemap_fdatawait so that all ordered extent updates are
1875  * in the metadata btree are up to date for copying to the log.
1876  *
1877  * It drops the inode mutex before doing the tree log commit.  This is an
1878  * important optimization for directories because holding the mutex prevents
1879  * new operations on the dir while we write to disk.
1880  */
1881 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1882 {
1883 	struct dentry *dentry = file->f_path.dentry;
1884 	struct inode *inode = dentry->d_inode;
1885 	struct btrfs_root *root = BTRFS_I(inode)->root;
1886 	struct btrfs_trans_handle *trans;
1887 	struct btrfs_log_ctx ctx;
1888 	int ret = 0;
1889 	bool full_sync = 0;
1890 
1891 	trace_btrfs_sync_file(file, datasync);
1892 
1893 	/*
1894 	 * We write the dirty pages in the range and wait until they complete
1895 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1896 	 * multi-task, and make the performance up.  See
1897 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1898 	 */
1899 	atomic_inc(&BTRFS_I(inode)->sync_writers);
1900 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1901 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1902 			     &BTRFS_I(inode)->runtime_flags))
1903 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1904 	atomic_dec(&BTRFS_I(inode)->sync_writers);
1905 	if (ret)
1906 		return ret;
1907 
1908 	mutex_lock(&inode->i_mutex);
1909 
1910 	/*
1911 	 * We flush the dirty pages again to avoid some dirty pages in the
1912 	 * range being left.
1913 	 */
1914 	atomic_inc(&root->log_batch);
1915 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1916 			     &BTRFS_I(inode)->runtime_flags);
1917 	if (full_sync) {
1918 		ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1919 		if (ret) {
1920 			mutex_unlock(&inode->i_mutex);
1921 			goto out;
1922 		}
1923 	}
1924 	atomic_inc(&root->log_batch);
1925 
1926 	/*
1927 	 * check the transaction that last modified this inode
1928 	 * and see if its already been committed
1929 	 */
1930 	if (!BTRFS_I(inode)->last_trans) {
1931 		mutex_unlock(&inode->i_mutex);
1932 		goto out;
1933 	}
1934 
1935 	/*
1936 	 * if the last transaction that changed this file was before
1937 	 * the current transaction, we can bail out now without any
1938 	 * syncing
1939 	 */
1940 	smp_mb();
1941 	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1942 	    BTRFS_I(inode)->last_trans <=
1943 	    root->fs_info->last_trans_committed) {
1944 		BTRFS_I(inode)->last_trans = 0;
1945 
1946 		/*
1947 		 * We'v had everything committed since the last time we were
1948 		 * modified so clear this flag in case it was set for whatever
1949 		 * reason, it's no longer relevant.
1950 		 */
1951 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1952 			  &BTRFS_I(inode)->runtime_flags);
1953 		mutex_unlock(&inode->i_mutex);
1954 		goto out;
1955 	}
1956 
1957 	/*
1958 	 * ok we haven't committed the transaction yet, lets do a commit
1959 	 */
1960 	if (file->private_data)
1961 		btrfs_ioctl_trans_end(file);
1962 
1963 	/*
1964 	 * We use start here because we will need to wait on the IO to complete
1965 	 * in btrfs_sync_log, which could require joining a transaction (for
1966 	 * example checking cross references in the nocow path).  If we use join
1967 	 * here we could get into a situation where we're waiting on IO to
1968 	 * happen that is blocked on a transaction trying to commit.  With start
1969 	 * we inc the extwriter counter, so we wait for all extwriters to exit
1970 	 * before we start blocking join'ers.  This comment is to keep somebody
1971 	 * from thinking they are super smart and changing this to
1972 	 * btrfs_join_transaction *cough*Josef*cough*.
1973 	 */
1974 	trans = btrfs_start_transaction(root, 0);
1975 	if (IS_ERR(trans)) {
1976 		ret = PTR_ERR(trans);
1977 		mutex_unlock(&inode->i_mutex);
1978 		goto out;
1979 	}
1980 	trans->sync = true;
1981 
1982 	btrfs_init_log_ctx(&ctx);
1983 
1984 	ret = btrfs_log_dentry_safe(trans, root, dentry, &ctx);
1985 	if (ret < 0) {
1986 		/* Fallthrough and commit/free transaction. */
1987 		ret = 1;
1988 	}
1989 
1990 	/* we've logged all the items and now have a consistent
1991 	 * version of the file in the log.  It is possible that
1992 	 * someone will come in and modify the file, but that's
1993 	 * fine because the log is consistent on disk, and we
1994 	 * have references to all of the file's extents
1995 	 *
1996 	 * It is possible that someone will come in and log the
1997 	 * file again, but that will end up using the synchronization
1998 	 * inside btrfs_sync_log to keep things safe.
1999 	 */
2000 	mutex_unlock(&inode->i_mutex);
2001 
2002 	if (ret != BTRFS_NO_LOG_SYNC) {
2003 		if (!ret) {
2004 			ret = btrfs_sync_log(trans, root, &ctx);
2005 			if (!ret) {
2006 				ret = btrfs_end_transaction(trans, root);
2007 				goto out;
2008 			}
2009 		}
2010 		if (!full_sync) {
2011 			ret = btrfs_wait_ordered_range(inode, start,
2012 						       end - start + 1);
2013 			if (ret)
2014 				goto out;
2015 		}
2016 		ret = btrfs_commit_transaction(trans, root);
2017 	} else {
2018 		ret = btrfs_end_transaction(trans, root);
2019 	}
2020 out:
2021 	return ret > 0 ? -EIO : ret;
2022 }
2023 
2024 static const struct vm_operations_struct btrfs_file_vm_ops = {
2025 	.fault		= filemap_fault,
2026 	.map_pages	= filemap_map_pages,
2027 	.page_mkwrite	= btrfs_page_mkwrite,
2028 	.remap_pages	= generic_file_remap_pages,
2029 };
2030 
2031 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2032 {
2033 	struct address_space *mapping = filp->f_mapping;
2034 
2035 	if (!mapping->a_ops->readpage)
2036 		return -ENOEXEC;
2037 
2038 	file_accessed(filp);
2039 	vma->vm_ops = &btrfs_file_vm_ops;
2040 
2041 	return 0;
2042 }
2043 
2044 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2045 			  int slot, u64 start, u64 end)
2046 {
2047 	struct btrfs_file_extent_item *fi;
2048 	struct btrfs_key key;
2049 
2050 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2051 		return 0;
2052 
2053 	btrfs_item_key_to_cpu(leaf, &key, slot);
2054 	if (key.objectid != btrfs_ino(inode) ||
2055 	    key.type != BTRFS_EXTENT_DATA_KEY)
2056 		return 0;
2057 
2058 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2059 
2060 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2061 		return 0;
2062 
2063 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2064 		return 0;
2065 
2066 	if (key.offset == end)
2067 		return 1;
2068 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2069 		return 1;
2070 	return 0;
2071 }
2072 
2073 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2074 		      struct btrfs_path *path, u64 offset, u64 end)
2075 {
2076 	struct btrfs_root *root = BTRFS_I(inode)->root;
2077 	struct extent_buffer *leaf;
2078 	struct btrfs_file_extent_item *fi;
2079 	struct extent_map *hole_em;
2080 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2081 	struct btrfs_key key;
2082 	int ret;
2083 
2084 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2085 		goto out;
2086 
2087 	key.objectid = btrfs_ino(inode);
2088 	key.type = BTRFS_EXTENT_DATA_KEY;
2089 	key.offset = offset;
2090 
2091 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2092 	if (ret < 0)
2093 		return ret;
2094 	BUG_ON(!ret);
2095 
2096 	leaf = path->nodes[0];
2097 	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2098 		u64 num_bytes;
2099 
2100 		path->slots[0]--;
2101 		fi = btrfs_item_ptr(leaf, path->slots[0],
2102 				    struct btrfs_file_extent_item);
2103 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2104 			end - offset;
2105 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2106 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2107 		btrfs_set_file_extent_offset(leaf, fi, 0);
2108 		btrfs_mark_buffer_dirty(leaf);
2109 		goto out;
2110 	}
2111 
2112 	if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
2113 		u64 num_bytes;
2114 
2115 		path->slots[0]++;
2116 		key.offset = offset;
2117 		btrfs_set_item_key_safe(root, path, &key);
2118 		fi = btrfs_item_ptr(leaf, path->slots[0],
2119 				    struct btrfs_file_extent_item);
2120 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2121 			offset;
2122 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2123 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2124 		btrfs_set_file_extent_offset(leaf, fi, 0);
2125 		btrfs_mark_buffer_dirty(leaf);
2126 		goto out;
2127 	}
2128 	btrfs_release_path(path);
2129 
2130 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2131 				       0, 0, end - offset, 0, end - offset,
2132 				       0, 0, 0);
2133 	if (ret)
2134 		return ret;
2135 
2136 out:
2137 	btrfs_release_path(path);
2138 
2139 	hole_em = alloc_extent_map();
2140 	if (!hole_em) {
2141 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2142 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2143 			&BTRFS_I(inode)->runtime_flags);
2144 	} else {
2145 		hole_em->start = offset;
2146 		hole_em->len = end - offset;
2147 		hole_em->ram_bytes = hole_em->len;
2148 		hole_em->orig_start = offset;
2149 
2150 		hole_em->block_start = EXTENT_MAP_HOLE;
2151 		hole_em->block_len = 0;
2152 		hole_em->orig_block_len = 0;
2153 		hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2154 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2155 		hole_em->generation = trans->transid;
2156 
2157 		do {
2158 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2159 			write_lock(&em_tree->lock);
2160 			ret = add_extent_mapping(em_tree, hole_em, 1);
2161 			write_unlock(&em_tree->lock);
2162 		} while (ret == -EEXIST);
2163 		free_extent_map(hole_em);
2164 		if (ret)
2165 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2166 				&BTRFS_I(inode)->runtime_flags);
2167 	}
2168 
2169 	return 0;
2170 }
2171 
2172 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2173 {
2174 	struct btrfs_root *root = BTRFS_I(inode)->root;
2175 	struct extent_state *cached_state = NULL;
2176 	struct btrfs_path *path;
2177 	struct btrfs_block_rsv *rsv;
2178 	struct btrfs_trans_handle *trans;
2179 	u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2180 	u64 lockend = round_down(offset + len,
2181 				 BTRFS_I(inode)->root->sectorsize) - 1;
2182 	u64 cur_offset = lockstart;
2183 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2184 	u64 drop_end;
2185 	int ret = 0;
2186 	int err = 0;
2187 	int rsv_count;
2188 	bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2189 			  ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2190 	bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2191 	u64 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2192 
2193 	ret = btrfs_wait_ordered_range(inode, offset, len);
2194 	if (ret)
2195 		return ret;
2196 
2197 	mutex_lock(&inode->i_mutex);
2198 	/*
2199 	 * We needn't truncate any page which is beyond the end of the file
2200 	 * because we are sure there is no data there.
2201 	 */
2202 	/*
2203 	 * Only do this if we are in the same page and we aren't doing the
2204 	 * entire page.
2205 	 */
2206 	if (same_page && len < PAGE_CACHE_SIZE) {
2207 		if (offset < ino_size)
2208 			ret = btrfs_truncate_page(inode, offset, len, 0);
2209 		mutex_unlock(&inode->i_mutex);
2210 		return ret;
2211 	}
2212 
2213 	/* zero back part of the first page */
2214 	if (offset < ino_size) {
2215 		ret = btrfs_truncate_page(inode, offset, 0, 0);
2216 		if (ret) {
2217 			mutex_unlock(&inode->i_mutex);
2218 			return ret;
2219 		}
2220 	}
2221 
2222 	/* zero the front end of the last page */
2223 	if (offset + len < ino_size) {
2224 		ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2225 		if (ret) {
2226 			mutex_unlock(&inode->i_mutex);
2227 			return ret;
2228 		}
2229 	}
2230 
2231 	if (lockend < lockstart) {
2232 		mutex_unlock(&inode->i_mutex);
2233 		return 0;
2234 	}
2235 
2236 	while (1) {
2237 		struct btrfs_ordered_extent *ordered;
2238 
2239 		truncate_pagecache_range(inode, lockstart, lockend);
2240 
2241 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2242 				 0, &cached_state);
2243 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2244 
2245 		/*
2246 		 * We need to make sure we have no ordered extents in this range
2247 		 * and nobody raced in and read a page in this range, if we did
2248 		 * we need to try again.
2249 		 */
2250 		if ((!ordered ||
2251 		    (ordered->file_offset + ordered->len <= lockstart ||
2252 		     ordered->file_offset > lockend)) &&
2253 		     !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2254 				     lockend, EXTENT_UPTODATE, 0,
2255 				     cached_state)) {
2256 			if (ordered)
2257 				btrfs_put_ordered_extent(ordered);
2258 			break;
2259 		}
2260 		if (ordered)
2261 			btrfs_put_ordered_extent(ordered);
2262 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2263 				     lockend, &cached_state, GFP_NOFS);
2264 		ret = btrfs_wait_ordered_range(inode, lockstart,
2265 					       lockend - lockstart + 1);
2266 		if (ret) {
2267 			mutex_unlock(&inode->i_mutex);
2268 			return ret;
2269 		}
2270 	}
2271 
2272 	path = btrfs_alloc_path();
2273 	if (!path) {
2274 		ret = -ENOMEM;
2275 		goto out;
2276 	}
2277 
2278 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2279 	if (!rsv) {
2280 		ret = -ENOMEM;
2281 		goto out_free;
2282 	}
2283 	rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2284 	rsv->failfast = 1;
2285 
2286 	/*
2287 	 * 1 - update the inode
2288 	 * 1 - removing the extents in the range
2289 	 * 1 - adding the hole extent if no_holes isn't set
2290 	 */
2291 	rsv_count = no_holes ? 2 : 3;
2292 	trans = btrfs_start_transaction(root, rsv_count);
2293 	if (IS_ERR(trans)) {
2294 		err = PTR_ERR(trans);
2295 		goto out_free;
2296 	}
2297 
2298 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2299 				      min_size);
2300 	BUG_ON(ret);
2301 	trans->block_rsv = rsv;
2302 
2303 	while (cur_offset < lockend) {
2304 		ret = __btrfs_drop_extents(trans, root, inode, path,
2305 					   cur_offset, lockend + 1,
2306 					   &drop_end, 1, 0, 0, NULL);
2307 		if (ret != -ENOSPC)
2308 			break;
2309 
2310 		trans->block_rsv = &root->fs_info->trans_block_rsv;
2311 
2312 		if (cur_offset < ino_size) {
2313 			ret = fill_holes(trans, inode, path, cur_offset,
2314 					 drop_end);
2315 			if (ret) {
2316 				err = ret;
2317 				break;
2318 			}
2319 		}
2320 
2321 		cur_offset = drop_end;
2322 
2323 		ret = btrfs_update_inode(trans, root, inode);
2324 		if (ret) {
2325 			err = ret;
2326 			break;
2327 		}
2328 
2329 		btrfs_end_transaction(trans, root);
2330 		btrfs_btree_balance_dirty(root);
2331 
2332 		trans = btrfs_start_transaction(root, rsv_count);
2333 		if (IS_ERR(trans)) {
2334 			ret = PTR_ERR(trans);
2335 			trans = NULL;
2336 			break;
2337 		}
2338 
2339 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2340 					      rsv, min_size);
2341 		BUG_ON(ret);	/* shouldn't happen */
2342 		trans->block_rsv = rsv;
2343 	}
2344 
2345 	if (ret) {
2346 		err = ret;
2347 		goto out_trans;
2348 	}
2349 
2350 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2351 	if (cur_offset < ino_size) {
2352 		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2353 		if (ret) {
2354 			err = ret;
2355 			goto out_trans;
2356 		}
2357 	}
2358 
2359 out_trans:
2360 	if (!trans)
2361 		goto out_free;
2362 
2363 	inode_inc_iversion(inode);
2364 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2365 
2366 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2367 	ret = btrfs_update_inode(trans, root, inode);
2368 	btrfs_end_transaction(trans, root);
2369 	btrfs_btree_balance_dirty(root);
2370 out_free:
2371 	btrfs_free_path(path);
2372 	btrfs_free_block_rsv(root, rsv);
2373 out:
2374 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2375 			     &cached_state, GFP_NOFS);
2376 	mutex_unlock(&inode->i_mutex);
2377 	if (ret && !err)
2378 		err = ret;
2379 	return err;
2380 }
2381 
2382 static long btrfs_fallocate(struct file *file, int mode,
2383 			    loff_t offset, loff_t len)
2384 {
2385 	struct inode *inode = file_inode(file);
2386 	struct extent_state *cached_state = NULL;
2387 	struct btrfs_root *root = BTRFS_I(inode)->root;
2388 	u64 cur_offset;
2389 	u64 last_byte;
2390 	u64 alloc_start;
2391 	u64 alloc_end;
2392 	u64 alloc_hint = 0;
2393 	u64 locked_end;
2394 	struct extent_map *em;
2395 	int blocksize = BTRFS_I(inode)->root->sectorsize;
2396 	int ret;
2397 
2398 	alloc_start = round_down(offset, blocksize);
2399 	alloc_end = round_up(offset + len, blocksize);
2400 
2401 	/* Make sure we aren't being give some crap mode */
2402 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2403 		return -EOPNOTSUPP;
2404 
2405 	if (mode & FALLOC_FL_PUNCH_HOLE)
2406 		return btrfs_punch_hole(inode, offset, len);
2407 
2408 	/*
2409 	 * Make sure we have enough space before we do the
2410 	 * allocation.
2411 	 */
2412 	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2413 	if (ret)
2414 		return ret;
2415 	if (root->fs_info->quota_enabled) {
2416 		ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2417 		if (ret)
2418 			goto out_reserve_fail;
2419 	}
2420 
2421 	mutex_lock(&inode->i_mutex);
2422 	ret = inode_newsize_ok(inode, alloc_end);
2423 	if (ret)
2424 		goto out;
2425 
2426 	if (alloc_start > inode->i_size) {
2427 		ret = btrfs_cont_expand(inode, i_size_read(inode),
2428 					alloc_start);
2429 		if (ret)
2430 			goto out;
2431 	} else {
2432 		/*
2433 		 * If we are fallocating from the end of the file onward we
2434 		 * need to zero out the end of the page if i_size lands in the
2435 		 * middle of a page.
2436 		 */
2437 		ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2438 		if (ret)
2439 			goto out;
2440 	}
2441 
2442 	/*
2443 	 * wait for ordered IO before we have any locks.  We'll loop again
2444 	 * below with the locks held.
2445 	 */
2446 	ret = btrfs_wait_ordered_range(inode, alloc_start,
2447 				       alloc_end - alloc_start);
2448 	if (ret)
2449 		goto out;
2450 
2451 	locked_end = alloc_end - 1;
2452 	while (1) {
2453 		struct btrfs_ordered_extent *ordered;
2454 
2455 		/* the extent lock is ordered inside the running
2456 		 * transaction
2457 		 */
2458 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2459 				 locked_end, 0, &cached_state);
2460 		ordered = btrfs_lookup_first_ordered_extent(inode,
2461 							    alloc_end - 1);
2462 		if (ordered &&
2463 		    ordered->file_offset + ordered->len > alloc_start &&
2464 		    ordered->file_offset < alloc_end) {
2465 			btrfs_put_ordered_extent(ordered);
2466 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2467 					     alloc_start, locked_end,
2468 					     &cached_state, GFP_NOFS);
2469 			/*
2470 			 * we can't wait on the range with the transaction
2471 			 * running or with the extent lock held
2472 			 */
2473 			ret = btrfs_wait_ordered_range(inode, alloc_start,
2474 						       alloc_end - alloc_start);
2475 			if (ret)
2476 				goto out;
2477 		} else {
2478 			if (ordered)
2479 				btrfs_put_ordered_extent(ordered);
2480 			break;
2481 		}
2482 	}
2483 
2484 	cur_offset = alloc_start;
2485 	while (1) {
2486 		u64 actual_end;
2487 
2488 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2489 				      alloc_end - cur_offset, 0);
2490 		if (IS_ERR_OR_NULL(em)) {
2491 			if (!em)
2492 				ret = -ENOMEM;
2493 			else
2494 				ret = PTR_ERR(em);
2495 			break;
2496 		}
2497 		last_byte = min(extent_map_end(em), alloc_end);
2498 		actual_end = min_t(u64, extent_map_end(em), offset + len);
2499 		last_byte = ALIGN(last_byte, blocksize);
2500 
2501 		if (em->block_start == EXTENT_MAP_HOLE ||
2502 		    (cur_offset >= inode->i_size &&
2503 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2504 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2505 							last_byte - cur_offset,
2506 							1 << inode->i_blkbits,
2507 							offset + len,
2508 							&alloc_hint);
2509 
2510 			if (ret < 0) {
2511 				free_extent_map(em);
2512 				break;
2513 			}
2514 		} else if (actual_end > inode->i_size &&
2515 			   !(mode & FALLOC_FL_KEEP_SIZE)) {
2516 			/*
2517 			 * We didn't need to allocate any more space, but we
2518 			 * still extended the size of the file so we need to
2519 			 * update i_size.
2520 			 */
2521 			inode->i_ctime = CURRENT_TIME;
2522 			i_size_write(inode, actual_end);
2523 			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2524 		}
2525 		free_extent_map(em);
2526 
2527 		cur_offset = last_byte;
2528 		if (cur_offset >= alloc_end) {
2529 			ret = 0;
2530 			break;
2531 		}
2532 	}
2533 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2534 			     &cached_state, GFP_NOFS);
2535 out:
2536 	mutex_unlock(&inode->i_mutex);
2537 	if (root->fs_info->quota_enabled)
2538 		btrfs_qgroup_free(root, alloc_end - alloc_start);
2539 out_reserve_fail:
2540 	/* Let go of our reservation. */
2541 	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2542 	return ret;
2543 }
2544 
2545 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2546 {
2547 	struct btrfs_root *root = BTRFS_I(inode)->root;
2548 	struct extent_map *em = NULL;
2549 	struct extent_state *cached_state = NULL;
2550 	u64 lockstart = *offset;
2551 	u64 lockend = i_size_read(inode);
2552 	u64 start = *offset;
2553 	u64 len = i_size_read(inode);
2554 	int ret = 0;
2555 
2556 	lockend = max_t(u64, root->sectorsize, lockend);
2557 	if (lockend <= lockstart)
2558 		lockend = lockstart + root->sectorsize;
2559 
2560 	lockend--;
2561 	len = lockend - lockstart + 1;
2562 
2563 	len = max_t(u64, len, root->sectorsize);
2564 	if (inode->i_size == 0)
2565 		return -ENXIO;
2566 
2567 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2568 			 &cached_state);
2569 
2570 	while (start < inode->i_size) {
2571 		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2572 		if (IS_ERR(em)) {
2573 			ret = PTR_ERR(em);
2574 			em = NULL;
2575 			break;
2576 		}
2577 
2578 		if (whence == SEEK_HOLE &&
2579 		    (em->block_start == EXTENT_MAP_HOLE ||
2580 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2581 			break;
2582 		else if (whence == SEEK_DATA &&
2583 			   (em->block_start != EXTENT_MAP_HOLE &&
2584 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2585 			break;
2586 
2587 		start = em->start + em->len;
2588 		free_extent_map(em);
2589 		em = NULL;
2590 		cond_resched();
2591 	}
2592 	free_extent_map(em);
2593 	if (!ret) {
2594 		if (whence == SEEK_DATA && start >= inode->i_size)
2595 			ret = -ENXIO;
2596 		else
2597 			*offset = min_t(loff_t, start, inode->i_size);
2598 	}
2599 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2600 			     &cached_state, GFP_NOFS);
2601 	return ret;
2602 }
2603 
2604 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2605 {
2606 	struct inode *inode = file->f_mapping->host;
2607 	int ret;
2608 
2609 	mutex_lock(&inode->i_mutex);
2610 	switch (whence) {
2611 	case SEEK_END:
2612 	case SEEK_CUR:
2613 		offset = generic_file_llseek(file, offset, whence);
2614 		goto out;
2615 	case SEEK_DATA:
2616 	case SEEK_HOLE:
2617 		if (offset >= i_size_read(inode)) {
2618 			mutex_unlock(&inode->i_mutex);
2619 			return -ENXIO;
2620 		}
2621 
2622 		ret = find_desired_extent(inode, &offset, whence);
2623 		if (ret) {
2624 			mutex_unlock(&inode->i_mutex);
2625 			return ret;
2626 		}
2627 	}
2628 
2629 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2630 out:
2631 	mutex_unlock(&inode->i_mutex);
2632 	return offset;
2633 }
2634 
2635 const struct file_operations btrfs_file_operations = {
2636 	.llseek		= btrfs_file_llseek,
2637 	.read		= do_sync_read,
2638 	.write		= do_sync_write,
2639 	.aio_read       = generic_file_aio_read,
2640 	.splice_read	= generic_file_splice_read,
2641 	.aio_write	= btrfs_file_aio_write,
2642 	.mmap		= btrfs_file_mmap,
2643 	.open		= generic_file_open,
2644 	.release	= btrfs_release_file,
2645 	.fsync		= btrfs_sync_file,
2646 	.fallocate	= btrfs_fallocate,
2647 	.unlocked_ioctl	= btrfs_ioctl,
2648 #ifdef CONFIG_COMPAT
2649 	.compat_ioctl	= btrfs_ioctl,
2650 #endif
2651 };
2652 
2653 void btrfs_auto_defrag_exit(void)
2654 {
2655 	if (btrfs_inode_defrag_cachep)
2656 		kmem_cache_destroy(btrfs_inode_defrag_cachep);
2657 }
2658 
2659 int btrfs_auto_defrag_init(void)
2660 {
2661 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2662 					sizeof(struct inode_defrag), 0,
2663 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2664 					NULL);
2665 	if (!btrfs_inode_defrag_cachep)
2666 		return -ENOMEM;
2667 
2668 	return 0;
2669 }
2670