1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/time.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/backing-dev.h> 26 #include <linux/mpage.h> 27 #include <linux/aio.h> 28 #include <linux/falloc.h> 29 #include <linux/swap.h> 30 #include <linux/writeback.h> 31 #include <linux/statfs.h> 32 #include <linux/compat.h> 33 #include <linux/slab.h> 34 #include <linux/btrfs.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "print-tree.h" 40 #include "tree-log.h" 41 #include "locking.h" 42 #include "volumes.h" 43 44 static struct kmem_cache *btrfs_inode_defrag_cachep; 45 /* 46 * when auto defrag is enabled we 47 * queue up these defrag structs to remember which 48 * inodes need defragging passes 49 */ 50 struct inode_defrag { 51 struct rb_node rb_node; 52 /* objectid */ 53 u64 ino; 54 /* 55 * transid where the defrag was added, we search for 56 * extents newer than this 57 */ 58 u64 transid; 59 60 /* root objectid */ 61 u64 root; 62 63 /* last offset we were able to defrag */ 64 u64 last_offset; 65 66 /* if we've wrapped around back to zero once already */ 67 int cycled; 68 }; 69 70 static int __compare_inode_defrag(struct inode_defrag *defrag1, 71 struct inode_defrag *defrag2) 72 { 73 if (defrag1->root > defrag2->root) 74 return 1; 75 else if (defrag1->root < defrag2->root) 76 return -1; 77 else if (defrag1->ino > defrag2->ino) 78 return 1; 79 else if (defrag1->ino < defrag2->ino) 80 return -1; 81 else 82 return 0; 83 } 84 85 /* pop a record for an inode into the defrag tree. The lock 86 * must be held already 87 * 88 * If you're inserting a record for an older transid than an 89 * existing record, the transid already in the tree is lowered 90 * 91 * If an existing record is found the defrag item you 92 * pass in is freed 93 */ 94 static int __btrfs_add_inode_defrag(struct inode *inode, 95 struct inode_defrag *defrag) 96 { 97 struct btrfs_root *root = BTRFS_I(inode)->root; 98 struct inode_defrag *entry; 99 struct rb_node **p; 100 struct rb_node *parent = NULL; 101 int ret; 102 103 p = &root->fs_info->defrag_inodes.rb_node; 104 while (*p) { 105 parent = *p; 106 entry = rb_entry(parent, struct inode_defrag, rb_node); 107 108 ret = __compare_inode_defrag(defrag, entry); 109 if (ret < 0) 110 p = &parent->rb_left; 111 else if (ret > 0) 112 p = &parent->rb_right; 113 else { 114 /* if we're reinserting an entry for 115 * an old defrag run, make sure to 116 * lower the transid of our existing record 117 */ 118 if (defrag->transid < entry->transid) 119 entry->transid = defrag->transid; 120 if (defrag->last_offset > entry->last_offset) 121 entry->last_offset = defrag->last_offset; 122 return -EEXIST; 123 } 124 } 125 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 126 rb_link_node(&defrag->rb_node, parent, p); 127 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes); 128 return 0; 129 } 130 131 static inline int __need_auto_defrag(struct btrfs_root *root) 132 { 133 if (!btrfs_test_opt(root, AUTO_DEFRAG)) 134 return 0; 135 136 if (btrfs_fs_closing(root->fs_info)) 137 return 0; 138 139 return 1; 140 } 141 142 /* 143 * insert a defrag record for this inode if auto defrag is 144 * enabled 145 */ 146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 147 struct inode *inode) 148 { 149 struct btrfs_root *root = BTRFS_I(inode)->root; 150 struct inode_defrag *defrag; 151 u64 transid; 152 int ret; 153 154 if (!__need_auto_defrag(root)) 155 return 0; 156 157 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) 158 return 0; 159 160 if (trans) 161 transid = trans->transid; 162 else 163 transid = BTRFS_I(inode)->root->last_trans; 164 165 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 166 if (!defrag) 167 return -ENOMEM; 168 169 defrag->ino = btrfs_ino(inode); 170 defrag->transid = transid; 171 defrag->root = root->root_key.objectid; 172 173 spin_lock(&root->fs_info->defrag_inodes_lock); 174 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) { 175 /* 176 * If we set IN_DEFRAG flag and evict the inode from memory, 177 * and then re-read this inode, this new inode doesn't have 178 * IN_DEFRAG flag. At the case, we may find the existed defrag. 179 */ 180 ret = __btrfs_add_inode_defrag(inode, defrag); 181 if (ret) 182 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 183 } else { 184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 185 } 186 spin_unlock(&root->fs_info->defrag_inodes_lock); 187 return 0; 188 } 189 190 /* 191 * Requeue the defrag object. If there is a defrag object that points to 192 * the same inode in the tree, we will merge them together (by 193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 194 */ 195 static void btrfs_requeue_inode_defrag(struct inode *inode, 196 struct inode_defrag *defrag) 197 { 198 struct btrfs_root *root = BTRFS_I(inode)->root; 199 int ret; 200 201 if (!__need_auto_defrag(root)) 202 goto out; 203 204 /* 205 * Here we don't check the IN_DEFRAG flag, because we need merge 206 * them together. 207 */ 208 spin_lock(&root->fs_info->defrag_inodes_lock); 209 ret = __btrfs_add_inode_defrag(inode, defrag); 210 spin_unlock(&root->fs_info->defrag_inodes_lock); 211 if (ret) 212 goto out; 213 return; 214 out: 215 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 216 } 217 218 /* 219 * pick the defragable inode that we want, if it doesn't exist, we will get 220 * the next one. 221 */ 222 static struct inode_defrag * 223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 224 { 225 struct inode_defrag *entry = NULL; 226 struct inode_defrag tmp; 227 struct rb_node *p; 228 struct rb_node *parent = NULL; 229 int ret; 230 231 tmp.ino = ino; 232 tmp.root = root; 233 234 spin_lock(&fs_info->defrag_inodes_lock); 235 p = fs_info->defrag_inodes.rb_node; 236 while (p) { 237 parent = p; 238 entry = rb_entry(parent, struct inode_defrag, rb_node); 239 240 ret = __compare_inode_defrag(&tmp, entry); 241 if (ret < 0) 242 p = parent->rb_left; 243 else if (ret > 0) 244 p = parent->rb_right; 245 else 246 goto out; 247 } 248 249 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 250 parent = rb_next(parent); 251 if (parent) 252 entry = rb_entry(parent, struct inode_defrag, rb_node); 253 else 254 entry = NULL; 255 } 256 out: 257 if (entry) 258 rb_erase(parent, &fs_info->defrag_inodes); 259 spin_unlock(&fs_info->defrag_inodes_lock); 260 return entry; 261 } 262 263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 264 { 265 struct inode_defrag *defrag; 266 struct rb_node *node; 267 268 spin_lock(&fs_info->defrag_inodes_lock); 269 node = rb_first(&fs_info->defrag_inodes); 270 while (node) { 271 rb_erase(node, &fs_info->defrag_inodes); 272 defrag = rb_entry(node, struct inode_defrag, rb_node); 273 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 274 275 if (need_resched()) { 276 spin_unlock(&fs_info->defrag_inodes_lock); 277 cond_resched(); 278 spin_lock(&fs_info->defrag_inodes_lock); 279 } 280 281 node = rb_first(&fs_info->defrag_inodes); 282 } 283 spin_unlock(&fs_info->defrag_inodes_lock); 284 } 285 286 #define BTRFS_DEFRAG_BATCH 1024 287 288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 289 struct inode_defrag *defrag) 290 { 291 struct btrfs_root *inode_root; 292 struct inode *inode; 293 struct btrfs_key key; 294 struct btrfs_ioctl_defrag_range_args range; 295 int num_defrag; 296 int index; 297 int ret; 298 299 /* get the inode */ 300 key.objectid = defrag->root; 301 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 302 key.offset = (u64)-1; 303 304 index = srcu_read_lock(&fs_info->subvol_srcu); 305 306 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 307 if (IS_ERR(inode_root)) { 308 ret = PTR_ERR(inode_root); 309 goto cleanup; 310 } 311 312 key.objectid = defrag->ino; 313 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 314 key.offset = 0; 315 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 316 if (IS_ERR(inode)) { 317 ret = PTR_ERR(inode); 318 goto cleanup; 319 } 320 srcu_read_unlock(&fs_info->subvol_srcu, index); 321 322 /* do a chunk of defrag */ 323 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 324 memset(&range, 0, sizeof(range)); 325 range.len = (u64)-1; 326 range.start = defrag->last_offset; 327 328 sb_start_write(fs_info->sb); 329 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 330 BTRFS_DEFRAG_BATCH); 331 sb_end_write(fs_info->sb); 332 /* 333 * if we filled the whole defrag batch, there 334 * must be more work to do. Queue this defrag 335 * again 336 */ 337 if (num_defrag == BTRFS_DEFRAG_BATCH) { 338 defrag->last_offset = range.start; 339 btrfs_requeue_inode_defrag(inode, defrag); 340 } else if (defrag->last_offset && !defrag->cycled) { 341 /* 342 * we didn't fill our defrag batch, but 343 * we didn't start at zero. Make sure we loop 344 * around to the start of the file. 345 */ 346 defrag->last_offset = 0; 347 defrag->cycled = 1; 348 btrfs_requeue_inode_defrag(inode, defrag); 349 } else { 350 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 351 } 352 353 iput(inode); 354 return 0; 355 cleanup: 356 srcu_read_unlock(&fs_info->subvol_srcu, index); 357 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 358 return ret; 359 } 360 361 /* 362 * run through the list of inodes in the FS that need 363 * defragging 364 */ 365 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 366 { 367 struct inode_defrag *defrag; 368 u64 first_ino = 0; 369 u64 root_objectid = 0; 370 371 atomic_inc(&fs_info->defrag_running); 372 while (1) { 373 /* Pause the auto defragger. */ 374 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 375 &fs_info->fs_state)) 376 break; 377 378 if (!__need_auto_defrag(fs_info->tree_root)) 379 break; 380 381 /* find an inode to defrag */ 382 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 383 first_ino); 384 if (!defrag) { 385 if (root_objectid || first_ino) { 386 root_objectid = 0; 387 first_ino = 0; 388 continue; 389 } else { 390 break; 391 } 392 } 393 394 first_ino = defrag->ino + 1; 395 root_objectid = defrag->root; 396 397 __btrfs_run_defrag_inode(fs_info, defrag); 398 } 399 atomic_dec(&fs_info->defrag_running); 400 401 /* 402 * during unmount, we use the transaction_wait queue to 403 * wait for the defragger to stop 404 */ 405 wake_up(&fs_info->transaction_wait); 406 return 0; 407 } 408 409 /* simple helper to fault in pages and copy. This should go away 410 * and be replaced with calls into generic code. 411 */ 412 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages, 413 size_t write_bytes, 414 struct page **prepared_pages, 415 struct iov_iter *i) 416 { 417 size_t copied = 0; 418 size_t total_copied = 0; 419 int pg = 0; 420 int offset = pos & (PAGE_CACHE_SIZE - 1); 421 422 while (write_bytes > 0) { 423 size_t count = min_t(size_t, 424 PAGE_CACHE_SIZE - offset, write_bytes); 425 struct page *page = prepared_pages[pg]; 426 /* 427 * Copy data from userspace to the current page 428 */ 429 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 430 431 /* Flush processor's dcache for this page */ 432 flush_dcache_page(page); 433 434 /* 435 * if we get a partial write, we can end up with 436 * partially up to date pages. These add 437 * a lot of complexity, so make sure they don't 438 * happen by forcing this copy to be retried. 439 * 440 * The rest of the btrfs_file_write code will fall 441 * back to page at a time copies after we return 0. 442 */ 443 if (!PageUptodate(page) && copied < count) 444 copied = 0; 445 446 iov_iter_advance(i, copied); 447 write_bytes -= copied; 448 total_copied += copied; 449 450 /* Return to btrfs_file_aio_write to fault page */ 451 if (unlikely(copied == 0)) 452 break; 453 454 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) { 455 offset += copied; 456 } else { 457 pg++; 458 offset = 0; 459 } 460 } 461 return total_copied; 462 } 463 464 /* 465 * unlocks pages after btrfs_file_write is done with them 466 */ 467 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 468 { 469 size_t i; 470 for (i = 0; i < num_pages; i++) { 471 /* page checked is some magic around finding pages that 472 * have been modified without going through btrfs_set_page_dirty 473 * clear it here. There should be no need to mark the pages 474 * accessed as prepare_pages should have marked them accessed 475 * in prepare_pages via find_or_create_page() 476 */ 477 ClearPageChecked(pages[i]); 478 unlock_page(pages[i]); 479 page_cache_release(pages[i]); 480 } 481 } 482 483 /* 484 * after copy_from_user, pages need to be dirtied and we need to make 485 * sure holes are created between the current EOF and the start of 486 * any next extents (if required). 487 * 488 * this also makes the decision about creating an inline extent vs 489 * doing real data extents, marking pages dirty and delalloc as required. 490 */ 491 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, 492 struct page **pages, size_t num_pages, 493 loff_t pos, size_t write_bytes, 494 struct extent_state **cached) 495 { 496 int err = 0; 497 int i; 498 u64 num_bytes; 499 u64 start_pos; 500 u64 end_of_last_block; 501 u64 end_pos = pos + write_bytes; 502 loff_t isize = i_size_read(inode); 503 504 start_pos = pos & ~((u64)root->sectorsize - 1); 505 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize); 506 507 end_of_last_block = start_pos + num_bytes - 1; 508 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 509 cached); 510 if (err) 511 return err; 512 513 for (i = 0; i < num_pages; i++) { 514 struct page *p = pages[i]; 515 SetPageUptodate(p); 516 ClearPageChecked(p); 517 set_page_dirty(p); 518 } 519 520 /* 521 * we've only changed i_size in ram, and we haven't updated 522 * the disk i_size. There is no need to log the inode 523 * at this time. 524 */ 525 if (end_pos > isize) 526 i_size_write(inode, end_pos); 527 return 0; 528 } 529 530 /* 531 * this drops all the extents in the cache that intersect the range 532 * [start, end]. Existing extents are split as required. 533 */ 534 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, 535 int skip_pinned) 536 { 537 struct extent_map *em; 538 struct extent_map *split = NULL; 539 struct extent_map *split2 = NULL; 540 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 541 u64 len = end - start + 1; 542 u64 gen; 543 int ret; 544 int testend = 1; 545 unsigned long flags; 546 int compressed = 0; 547 bool modified; 548 549 WARN_ON(end < start); 550 if (end == (u64)-1) { 551 len = (u64)-1; 552 testend = 0; 553 } 554 while (1) { 555 int no_splits = 0; 556 557 modified = false; 558 if (!split) 559 split = alloc_extent_map(); 560 if (!split2) 561 split2 = alloc_extent_map(); 562 if (!split || !split2) 563 no_splits = 1; 564 565 write_lock(&em_tree->lock); 566 em = lookup_extent_mapping(em_tree, start, len); 567 if (!em) { 568 write_unlock(&em_tree->lock); 569 break; 570 } 571 flags = em->flags; 572 gen = em->generation; 573 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 574 if (testend && em->start + em->len >= start + len) { 575 free_extent_map(em); 576 write_unlock(&em_tree->lock); 577 break; 578 } 579 start = em->start + em->len; 580 if (testend) 581 len = start + len - (em->start + em->len); 582 free_extent_map(em); 583 write_unlock(&em_tree->lock); 584 continue; 585 } 586 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 587 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 588 clear_bit(EXTENT_FLAG_LOGGING, &flags); 589 modified = !list_empty(&em->list); 590 if (no_splits) 591 goto next; 592 593 if (em->start < start) { 594 split->start = em->start; 595 split->len = start - em->start; 596 597 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 598 split->orig_start = em->orig_start; 599 split->block_start = em->block_start; 600 601 if (compressed) 602 split->block_len = em->block_len; 603 else 604 split->block_len = split->len; 605 split->orig_block_len = max(split->block_len, 606 em->orig_block_len); 607 split->ram_bytes = em->ram_bytes; 608 } else { 609 split->orig_start = split->start; 610 split->block_len = 0; 611 split->block_start = em->block_start; 612 split->orig_block_len = 0; 613 split->ram_bytes = split->len; 614 } 615 616 split->generation = gen; 617 split->bdev = em->bdev; 618 split->flags = flags; 619 split->compress_type = em->compress_type; 620 replace_extent_mapping(em_tree, em, split, modified); 621 free_extent_map(split); 622 split = split2; 623 split2 = NULL; 624 } 625 if (testend && em->start + em->len > start + len) { 626 u64 diff = start + len - em->start; 627 628 split->start = start + len; 629 split->len = em->start + em->len - (start + len); 630 split->bdev = em->bdev; 631 split->flags = flags; 632 split->compress_type = em->compress_type; 633 split->generation = gen; 634 635 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 636 split->orig_block_len = max(em->block_len, 637 em->orig_block_len); 638 639 split->ram_bytes = em->ram_bytes; 640 if (compressed) { 641 split->block_len = em->block_len; 642 split->block_start = em->block_start; 643 split->orig_start = em->orig_start; 644 } else { 645 split->block_len = split->len; 646 split->block_start = em->block_start 647 + diff; 648 split->orig_start = em->orig_start; 649 } 650 } else { 651 split->ram_bytes = split->len; 652 split->orig_start = split->start; 653 split->block_len = 0; 654 split->block_start = em->block_start; 655 split->orig_block_len = 0; 656 } 657 658 if (extent_map_in_tree(em)) { 659 replace_extent_mapping(em_tree, em, split, 660 modified); 661 } else { 662 ret = add_extent_mapping(em_tree, split, 663 modified); 664 ASSERT(ret == 0); /* Logic error */ 665 } 666 free_extent_map(split); 667 split = NULL; 668 } 669 next: 670 if (extent_map_in_tree(em)) 671 remove_extent_mapping(em_tree, em); 672 write_unlock(&em_tree->lock); 673 674 /* once for us */ 675 free_extent_map(em); 676 /* once for the tree*/ 677 free_extent_map(em); 678 } 679 if (split) 680 free_extent_map(split); 681 if (split2) 682 free_extent_map(split2); 683 } 684 685 /* 686 * this is very complex, but the basic idea is to drop all extents 687 * in the range start - end. hint_block is filled in with a block number 688 * that would be a good hint to the block allocator for this file. 689 * 690 * If an extent intersects the range but is not entirely inside the range 691 * it is either truncated or split. Anything entirely inside the range 692 * is deleted from the tree. 693 */ 694 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 695 struct btrfs_root *root, struct inode *inode, 696 struct btrfs_path *path, u64 start, u64 end, 697 u64 *drop_end, int drop_cache, 698 int replace_extent, 699 u32 extent_item_size, 700 int *key_inserted) 701 { 702 struct extent_buffer *leaf; 703 struct btrfs_file_extent_item *fi; 704 struct btrfs_key key; 705 struct btrfs_key new_key; 706 u64 ino = btrfs_ino(inode); 707 u64 search_start = start; 708 u64 disk_bytenr = 0; 709 u64 num_bytes = 0; 710 u64 extent_offset = 0; 711 u64 extent_end = 0; 712 int del_nr = 0; 713 int del_slot = 0; 714 int extent_type; 715 int recow; 716 int ret; 717 int modify_tree = -1; 718 int update_refs = (root->ref_cows || root == root->fs_info->tree_root); 719 int found = 0; 720 int leafs_visited = 0; 721 722 if (drop_cache) 723 btrfs_drop_extent_cache(inode, start, end - 1, 0); 724 725 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 726 modify_tree = 0; 727 728 while (1) { 729 recow = 0; 730 ret = btrfs_lookup_file_extent(trans, root, path, ino, 731 search_start, modify_tree); 732 if (ret < 0) 733 break; 734 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 735 leaf = path->nodes[0]; 736 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 737 if (key.objectid == ino && 738 key.type == BTRFS_EXTENT_DATA_KEY) 739 path->slots[0]--; 740 } 741 ret = 0; 742 leafs_visited++; 743 next_slot: 744 leaf = path->nodes[0]; 745 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 746 BUG_ON(del_nr > 0); 747 ret = btrfs_next_leaf(root, path); 748 if (ret < 0) 749 break; 750 if (ret > 0) { 751 ret = 0; 752 break; 753 } 754 leafs_visited++; 755 leaf = path->nodes[0]; 756 recow = 1; 757 } 758 759 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 760 if (key.objectid > ino || 761 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 762 break; 763 764 fi = btrfs_item_ptr(leaf, path->slots[0], 765 struct btrfs_file_extent_item); 766 extent_type = btrfs_file_extent_type(leaf, fi); 767 768 if (extent_type == BTRFS_FILE_EXTENT_REG || 769 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 770 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 771 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 772 extent_offset = btrfs_file_extent_offset(leaf, fi); 773 extent_end = key.offset + 774 btrfs_file_extent_num_bytes(leaf, fi); 775 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 776 extent_end = key.offset + 777 btrfs_file_extent_inline_len(leaf, 778 path->slots[0], fi); 779 } else { 780 WARN_ON(1); 781 extent_end = search_start; 782 } 783 784 if (extent_end <= search_start) { 785 path->slots[0]++; 786 goto next_slot; 787 } 788 789 found = 1; 790 search_start = max(key.offset, start); 791 if (recow || !modify_tree) { 792 modify_tree = -1; 793 btrfs_release_path(path); 794 continue; 795 } 796 797 /* 798 * | - range to drop - | 799 * | -------- extent -------- | 800 */ 801 if (start > key.offset && end < extent_end) { 802 BUG_ON(del_nr > 0); 803 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 804 ret = -EOPNOTSUPP; 805 break; 806 } 807 808 memcpy(&new_key, &key, sizeof(new_key)); 809 new_key.offset = start; 810 ret = btrfs_duplicate_item(trans, root, path, 811 &new_key); 812 if (ret == -EAGAIN) { 813 btrfs_release_path(path); 814 continue; 815 } 816 if (ret < 0) 817 break; 818 819 leaf = path->nodes[0]; 820 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 821 struct btrfs_file_extent_item); 822 btrfs_set_file_extent_num_bytes(leaf, fi, 823 start - key.offset); 824 825 fi = btrfs_item_ptr(leaf, path->slots[0], 826 struct btrfs_file_extent_item); 827 828 extent_offset += start - key.offset; 829 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 830 btrfs_set_file_extent_num_bytes(leaf, fi, 831 extent_end - start); 832 btrfs_mark_buffer_dirty(leaf); 833 834 if (update_refs && disk_bytenr > 0) { 835 ret = btrfs_inc_extent_ref(trans, root, 836 disk_bytenr, num_bytes, 0, 837 root->root_key.objectid, 838 new_key.objectid, 839 start - extent_offset, 0); 840 BUG_ON(ret); /* -ENOMEM */ 841 } 842 key.offset = start; 843 } 844 /* 845 * | ---- range to drop ----- | 846 * | -------- extent -------- | 847 */ 848 if (start <= key.offset && end < extent_end) { 849 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 850 ret = -EOPNOTSUPP; 851 break; 852 } 853 854 memcpy(&new_key, &key, sizeof(new_key)); 855 new_key.offset = end; 856 btrfs_set_item_key_safe(root, path, &new_key); 857 858 extent_offset += end - key.offset; 859 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 860 btrfs_set_file_extent_num_bytes(leaf, fi, 861 extent_end - end); 862 btrfs_mark_buffer_dirty(leaf); 863 if (update_refs && disk_bytenr > 0) 864 inode_sub_bytes(inode, end - key.offset); 865 break; 866 } 867 868 search_start = extent_end; 869 /* 870 * | ---- range to drop ----- | 871 * | -------- extent -------- | 872 */ 873 if (start > key.offset && end >= extent_end) { 874 BUG_ON(del_nr > 0); 875 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 876 ret = -EOPNOTSUPP; 877 break; 878 } 879 880 btrfs_set_file_extent_num_bytes(leaf, fi, 881 start - key.offset); 882 btrfs_mark_buffer_dirty(leaf); 883 if (update_refs && disk_bytenr > 0) 884 inode_sub_bytes(inode, extent_end - start); 885 if (end == extent_end) 886 break; 887 888 path->slots[0]++; 889 goto next_slot; 890 } 891 892 /* 893 * | ---- range to drop ----- | 894 * | ------ extent ------ | 895 */ 896 if (start <= key.offset && end >= extent_end) { 897 if (del_nr == 0) { 898 del_slot = path->slots[0]; 899 del_nr = 1; 900 } else { 901 BUG_ON(del_slot + del_nr != path->slots[0]); 902 del_nr++; 903 } 904 905 if (update_refs && 906 extent_type == BTRFS_FILE_EXTENT_INLINE) { 907 inode_sub_bytes(inode, 908 extent_end - key.offset); 909 extent_end = ALIGN(extent_end, 910 root->sectorsize); 911 } else if (update_refs && disk_bytenr > 0) { 912 ret = btrfs_free_extent(trans, root, 913 disk_bytenr, num_bytes, 0, 914 root->root_key.objectid, 915 key.objectid, key.offset - 916 extent_offset, 0); 917 BUG_ON(ret); /* -ENOMEM */ 918 inode_sub_bytes(inode, 919 extent_end - key.offset); 920 } 921 922 if (end == extent_end) 923 break; 924 925 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 926 path->slots[0]++; 927 goto next_slot; 928 } 929 930 ret = btrfs_del_items(trans, root, path, del_slot, 931 del_nr); 932 if (ret) { 933 btrfs_abort_transaction(trans, root, ret); 934 break; 935 } 936 937 del_nr = 0; 938 del_slot = 0; 939 940 btrfs_release_path(path); 941 continue; 942 } 943 944 BUG_ON(1); 945 } 946 947 if (!ret && del_nr > 0) { 948 /* 949 * Set path->slots[0] to first slot, so that after the delete 950 * if items are move off from our leaf to its immediate left or 951 * right neighbor leafs, we end up with a correct and adjusted 952 * path->slots[0] for our insertion (if replace_extent != 0). 953 */ 954 path->slots[0] = del_slot; 955 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 956 if (ret) 957 btrfs_abort_transaction(trans, root, ret); 958 } 959 960 leaf = path->nodes[0]; 961 /* 962 * If btrfs_del_items() was called, it might have deleted a leaf, in 963 * which case it unlocked our path, so check path->locks[0] matches a 964 * write lock. 965 */ 966 if (!ret && replace_extent && leafs_visited == 1 && 967 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 968 path->locks[0] == BTRFS_WRITE_LOCK) && 969 btrfs_leaf_free_space(root, leaf) >= 970 sizeof(struct btrfs_item) + extent_item_size) { 971 972 key.objectid = ino; 973 key.type = BTRFS_EXTENT_DATA_KEY; 974 key.offset = start; 975 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 976 struct btrfs_key slot_key; 977 978 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 979 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 980 path->slots[0]++; 981 } 982 setup_items_for_insert(root, path, &key, 983 &extent_item_size, 984 extent_item_size, 985 sizeof(struct btrfs_item) + 986 extent_item_size, 1); 987 *key_inserted = 1; 988 } 989 990 if (!replace_extent || !(*key_inserted)) 991 btrfs_release_path(path); 992 if (drop_end) 993 *drop_end = found ? min(end, extent_end) : end; 994 return ret; 995 } 996 997 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 998 struct btrfs_root *root, struct inode *inode, u64 start, 999 u64 end, int drop_cache) 1000 { 1001 struct btrfs_path *path; 1002 int ret; 1003 1004 path = btrfs_alloc_path(); 1005 if (!path) 1006 return -ENOMEM; 1007 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1008 drop_cache, 0, 0, NULL); 1009 btrfs_free_path(path); 1010 return ret; 1011 } 1012 1013 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1014 u64 objectid, u64 bytenr, u64 orig_offset, 1015 u64 *start, u64 *end) 1016 { 1017 struct btrfs_file_extent_item *fi; 1018 struct btrfs_key key; 1019 u64 extent_end; 1020 1021 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1022 return 0; 1023 1024 btrfs_item_key_to_cpu(leaf, &key, slot); 1025 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1026 return 0; 1027 1028 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1029 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1030 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1031 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1032 btrfs_file_extent_compression(leaf, fi) || 1033 btrfs_file_extent_encryption(leaf, fi) || 1034 btrfs_file_extent_other_encoding(leaf, fi)) 1035 return 0; 1036 1037 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1038 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1039 return 0; 1040 1041 *start = key.offset; 1042 *end = extent_end; 1043 return 1; 1044 } 1045 1046 /* 1047 * Mark extent in the range start - end as written. 1048 * 1049 * This changes extent type from 'pre-allocated' to 'regular'. If only 1050 * part of extent is marked as written, the extent will be split into 1051 * two or three. 1052 */ 1053 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1054 struct inode *inode, u64 start, u64 end) 1055 { 1056 struct btrfs_root *root = BTRFS_I(inode)->root; 1057 struct extent_buffer *leaf; 1058 struct btrfs_path *path; 1059 struct btrfs_file_extent_item *fi; 1060 struct btrfs_key key; 1061 struct btrfs_key new_key; 1062 u64 bytenr; 1063 u64 num_bytes; 1064 u64 extent_end; 1065 u64 orig_offset; 1066 u64 other_start; 1067 u64 other_end; 1068 u64 split; 1069 int del_nr = 0; 1070 int del_slot = 0; 1071 int recow; 1072 int ret; 1073 u64 ino = btrfs_ino(inode); 1074 1075 path = btrfs_alloc_path(); 1076 if (!path) 1077 return -ENOMEM; 1078 again: 1079 recow = 0; 1080 split = start; 1081 key.objectid = ino; 1082 key.type = BTRFS_EXTENT_DATA_KEY; 1083 key.offset = split; 1084 1085 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1086 if (ret < 0) 1087 goto out; 1088 if (ret > 0 && path->slots[0] > 0) 1089 path->slots[0]--; 1090 1091 leaf = path->nodes[0]; 1092 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1093 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY); 1094 fi = btrfs_item_ptr(leaf, path->slots[0], 1095 struct btrfs_file_extent_item); 1096 BUG_ON(btrfs_file_extent_type(leaf, fi) != 1097 BTRFS_FILE_EXTENT_PREALLOC); 1098 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1099 BUG_ON(key.offset > start || extent_end < end); 1100 1101 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1102 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1103 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1104 memcpy(&new_key, &key, sizeof(new_key)); 1105 1106 if (start == key.offset && end < extent_end) { 1107 other_start = 0; 1108 other_end = start; 1109 if (extent_mergeable(leaf, path->slots[0] - 1, 1110 ino, bytenr, orig_offset, 1111 &other_start, &other_end)) { 1112 new_key.offset = end; 1113 btrfs_set_item_key_safe(root, path, &new_key); 1114 fi = btrfs_item_ptr(leaf, path->slots[0], 1115 struct btrfs_file_extent_item); 1116 btrfs_set_file_extent_generation(leaf, fi, 1117 trans->transid); 1118 btrfs_set_file_extent_num_bytes(leaf, fi, 1119 extent_end - end); 1120 btrfs_set_file_extent_offset(leaf, fi, 1121 end - orig_offset); 1122 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1123 struct btrfs_file_extent_item); 1124 btrfs_set_file_extent_generation(leaf, fi, 1125 trans->transid); 1126 btrfs_set_file_extent_num_bytes(leaf, fi, 1127 end - other_start); 1128 btrfs_mark_buffer_dirty(leaf); 1129 goto out; 1130 } 1131 } 1132 1133 if (start > key.offset && end == extent_end) { 1134 other_start = end; 1135 other_end = 0; 1136 if (extent_mergeable(leaf, path->slots[0] + 1, 1137 ino, bytenr, orig_offset, 1138 &other_start, &other_end)) { 1139 fi = btrfs_item_ptr(leaf, path->slots[0], 1140 struct btrfs_file_extent_item); 1141 btrfs_set_file_extent_num_bytes(leaf, fi, 1142 start - key.offset); 1143 btrfs_set_file_extent_generation(leaf, fi, 1144 trans->transid); 1145 path->slots[0]++; 1146 new_key.offset = start; 1147 btrfs_set_item_key_safe(root, path, &new_key); 1148 1149 fi = btrfs_item_ptr(leaf, path->slots[0], 1150 struct btrfs_file_extent_item); 1151 btrfs_set_file_extent_generation(leaf, fi, 1152 trans->transid); 1153 btrfs_set_file_extent_num_bytes(leaf, fi, 1154 other_end - start); 1155 btrfs_set_file_extent_offset(leaf, fi, 1156 start - orig_offset); 1157 btrfs_mark_buffer_dirty(leaf); 1158 goto out; 1159 } 1160 } 1161 1162 while (start > key.offset || end < extent_end) { 1163 if (key.offset == start) 1164 split = end; 1165 1166 new_key.offset = split; 1167 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1168 if (ret == -EAGAIN) { 1169 btrfs_release_path(path); 1170 goto again; 1171 } 1172 if (ret < 0) { 1173 btrfs_abort_transaction(trans, root, ret); 1174 goto out; 1175 } 1176 1177 leaf = path->nodes[0]; 1178 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1179 struct btrfs_file_extent_item); 1180 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1181 btrfs_set_file_extent_num_bytes(leaf, fi, 1182 split - key.offset); 1183 1184 fi = btrfs_item_ptr(leaf, path->slots[0], 1185 struct btrfs_file_extent_item); 1186 1187 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1188 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1189 btrfs_set_file_extent_num_bytes(leaf, fi, 1190 extent_end - split); 1191 btrfs_mark_buffer_dirty(leaf); 1192 1193 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, 1194 root->root_key.objectid, 1195 ino, orig_offset, 0); 1196 BUG_ON(ret); /* -ENOMEM */ 1197 1198 if (split == start) { 1199 key.offset = start; 1200 } else { 1201 BUG_ON(start != key.offset); 1202 path->slots[0]--; 1203 extent_end = end; 1204 } 1205 recow = 1; 1206 } 1207 1208 other_start = end; 1209 other_end = 0; 1210 if (extent_mergeable(leaf, path->slots[0] + 1, 1211 ino, bytenr, orig_offset, 1212 &other_start, &other_end)) { 1213 if (recow) { 1214 btrfs_release_path(path); 1215 goto again; 1216 } 1217 extent_end = other_end; 1218 del_slot = path->slots[0] + 1; 1219 del_nr++; 1220 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1221 0, root->root_key.objectid, 1222 ino, orig_offset, 0); 1223 BUG_ON(ret); /* -ENOMEM */ 1224 } 1225 other_start = 0; 1226 other_end = start; 1227 if (extent_mergeable(leaf, path->slots[0] - 1, 1228 ino, bytenr, orig_offset, 1229 &other_start, &other_end)) { 1230 if (recow) { 1231 btrfs_release_path(path); 1232 goto again; 1233 } 1234 key.offset = other_start; 1235 del_slot = path->slots[0]; 1236 del_nr++; 1237 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1238 0, root->root_key.objectid, 1239 ino, orig_offset, 0); 1240 BUG_ON(ret); /* -ENOMEM */ 1241 } 1242 if (del_nr == 0) { 1243 fi = btrfs_item_ptr(leaf, path->slots[0], 1244 struct btrfs_file_extent_item); 1245 btrfs_set_file_extent_type(leaf, fi, 1246 BTRFS_FILE_EXTENT_REG); 1247 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1248 btrfs_mark_buffer_dirty(leaf); 1249 } else { 1250 fi = btrfs_item_ptr(leaf, del_slot - 1, 1251 struct btrfs_file_extent_item); 1252 btrfs_set_file_extent_type(leaf, fi, 1253 BTRFS_FILE_EXTENT_REG); 1254 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1255 btrfs_set_file_extent_num_bytes(leaf, fi, 1256 extent_end - key.offset); 1257 btrfs_mark_buffer_dirty(leaf); 1258 1259 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1260 if (ret < 0) { 1261 btrfs_abort_transaction(trans, root, ret); 1262 goto out; 1263 } 1264 } 1265 out: 1266 btrfs_free_path(path); 1267 return 0; 1268 } 1269 1270 /* 1271 * on error we return an unlocked page and the error value 1272 * on success we return a locked page and 0 1273 */ 1274 static int prepare_uptodate_page(struct page *page, u64 pos, 1275 bool force_uptodate) 1276 { 1277 int ret = 0; 1278 1279 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) && 1280 !PageUptodate(page)) { 1281 ret = btrfs_readpage(NULL, page); 1282 if (ret) 1283 return ret; 1284 lock_page(page); 1285 if (!PageUptodate(page)) { 1286 unlock_page(page); 1287 return -EIO; 1288 } 1289 } 1290 return 0; 1291 } 1292 1293 /* 1294 * this just gets pages into the page cache and locks them down. 1295 */ 1296 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1297 size_t num_pages, loff_t pos, 1298 size_t write_bytes, bool force_uptodate) 1299 { 1300 int i; 1301 unsigned long index = pos >> PAGE_CACHE_SHIFT; 1302 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1303 int err = 0; 1304 int faili; 1305 1306 for (i = 0; i < num_pages; i++) { 1307 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1308 mask | __GFP_WRITE); 1309 if (!pages[i]) { 1310 faili = i - 1; 1311 err = -ENOMEM; 1312 goto fail; 1313 } 1314 1315 if (i == 0) 1316 err = prepare_uptodate_page(pages[i], pos, 1317 force_uptodate); 1318 if (i == num_pages - 1) 1319 err = prepare_uptodate_page(pages[i], 1320 pos + write_bytes, false); 1321 if (err) { 1322 page_cache_release(pages[i]); 1323 faili = i - 1; 1324 goto fail; 1325 } 1326 wait_on_page_writeback(pages[i]); 1327 } 1328 1329 return 0; 1330 fail: 1331 while (faili >= 0) { 1332 unlock_page(pages[faili]); 1333 page_cache_release(pages[faili]); 1334 faili--; 1335 } 1336 return err; 1337 1338 } 1339 1340 /* 1341 * This function locks the extent and properly waits for data=ordered extents 1342 * to finish before allowing the pages to be modified if need. 1343 * 1344 * The return value: 1345 * 1 - the extent is locked 1346 * 0 - the extent is not locked, and everything is OK 1347 * -EAGAIN - need re-prepare the pages 1348 * the other < 0 number - Something wrong happens 1349 */ 1350 static noinline int 1351 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages, 1352 size_t num_pages, loff_t pos, 1353 u64 *lockstart, u64 *lockend, 1354 struct extent_state **cached_state) 1355 { 1356 u64 start_pos; 1357 u64 last_pos; 1358 int i; 1359 int ret = 0; 1360 1361 start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1); 1362 last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1; 1363 1364 if (start_pos < inode->i_size) { 1365 struct btrfs_ordered_extent *ordered; 1366 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1367 start_pos, last_pos, 0, cached_state); 1368 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1369 last_pos - start_pos + 1); 1370 if (ordered && 1371 ordered->file_offset + ordered->len > start_pos && 1372 ordered->file_offset <= last_pos) { 1373 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1374 start_pos, last_pos, 1375 cached_state, GFP_NOFS); 1376 for (i = 0; i < num_pages; i++) { 1377 unlock_page(pages[i]); 1378 page_cache_release(pages[i]); 1379 } 1380 btrfs_start_ordered_extent(inode, ordered, 1); 1381 btrfs_put_ordered_extent(ordered); 1382 return -EAGAIN; 1383 } 1384 if (ordered) 1385 btrfs_put_ordered_extent(ordered); 1386 1387 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, 1388 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC | 1389 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1390 0, 0, cached_state, GFP_NOFS); 1391 *lockstart = start_pos; 1392 *lockend = last_pos; 1393 ret = 1; 1394 } 1395 1396 for (i = 0; i < num_pages; i++) { 1397 if (clear_page_dirty_for_io(pages[i])) 1398 account_page_redirty(pages[i]); 1399 set_page_extent_mapped(pages[i]); 1400 WARN_ON(!PageLocked(pages[i])); 1401 } 1402 1403 return ret; 1404 } 1405 1406 static noinline int check_can_nocow(struct inode *inode, loff_t pos, 1407 size_t *write_bytes) 1408 { 1409 struct btrfs_root *root = BTRFS_I(inode)->root; 1410 struct btrfs_ordered_extent *ordered; 1411 u64 lockstart, lockend; 1412 u64 num_bytes; 1413 int ret; 1414 1415 ret = btrfs_start_nocow_write(root); 1416 if (!ret) 1417 return -ENOSPC; 1418 1419 lockstart = round_down(pos, root->sectorsize); 1420 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1; 1421 1422 while (1) { 1423 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1424 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1425 lockend - lockstart + 1); 1426 if (!ordered) { 1427 break; 1428 } 1429 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1430 btrfs_start_ordered_extent(inode, ordered, 1); 1431 btrfs_put_ordered_extent(ordered); 1432 } 1433 1434 num_bytes = lockend - lockstart + 1; 1435 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL); 1436 if (ret <= 0) { 1437 ret = 0; 1438 btrfs_end_nocow_write(root); 1439 } else { 1440 *write_bytes = min_t(size_t, *write_bytes , 1441 num_bytes - pos + lockstart); 1442 } 1443 1444 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1445 1446 return ret; 1447 } 1448 1449 static noinline ssize_t __btrfs_buffered_write(struct file *file, 1450 struct iov_iter *i, 1451 loff_t pos) 1452 { 1453 struct inode *inode = file_inode(file); 1454 struct btrfs_root *root = BTRFS_I(inode)->root; 1455 struct page **pages = NULL; 1456 struct extent_state *cached_state = NULL; 1457 u64 release_bytes = 0; 1458 u64 lockstart; 1459 u64 lockend; 1460 unsigned long first_index; 1461 size_t num_written = 0; 1462 int nrptrs; 1463 int ret = 0; 1464 bool only_release_metadata = false; 1465 bool force_page_uptodate = false; 1466 bool need_unlock; 1467 1468 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) / 1469 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE / 1470 (sizeof(struct page *))); 1471 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1472 nrptrs = max(nrptrs, 8); 1473 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL); 1474 if (!pages) 1475 return -ENOMEM; 1476 1477 first_index = pos >> PAGE_CACHE_SHIFT; 1478 1479 while (iov_iter_count(i) > 0) { 1480 size_t offset = pos & (PAGE_CACHE_SIZE - 1); 1481 size_t write_bytes = min(iov_iter_count(i), 1482 nrptrs * (size_t)PAGE_CACHE_SIZE - 1483 offset); 1484 size_t num_pages = (write_bytes + offset + 1485 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1486 size_t reserve_bytes; 1487 size_t dirty_pages; 1488 size_t copied; 1489 1490 WARN_ON(num_pages > nrptrs); 1491 1492 /* 1493 * Fault pages before locking them in prepare_pages 1494 * to avoid recursive lock 1495 */ 1496 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1497 ret = -EFAULT; 1498 break; 1499 } 1500 1501 reserve_bytes = num_pages << PAGE_CACHE_SHIFT; 1502 ret = btrfs_check_data_free_space(inode, reserve_bytes); 1503 if (ret == -ENOSPC && 1504 (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1505 BTRFS_INODE_PREALLOC))) { 1506 ret = check_can_nocow(inode, pos, &write_bytes); 1507 if (ret > 0) { 1508 only_release_metadata = true; 1509 /* 1510 * our prealloc extent may be smaller than 1511 * write_bytes, so scale down. 1512 */ 1513 num_pages = (write_bytes + offset + 1514 PAGE_CACHE_SIZE - 1) >> 1515 PAGE_CACHE_SHIFT; 1516 reserve_bytes = num_pages << PAGE_CACHE_SHIFT; 1517 ret = 0; 1518 } else { 1519 ret = -ENOSPC; 1520 } 1521 } 1522 1523 if (ret) 1524 break; 1525 1526 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes); 1527 if (ret) { 1528 if (!only_release_metadata) 1529 btrfs_free_reserved_data_space(inode, 1530 reserve_bytes); 1531 else 1532 btrfs_end_nocow_write(root); 1533 break; 1534 } 1535 1536 release_bytes = reserve_bytes; 1537 need_unlock = false; 1538 again: 1539 /* 1540 * This is going to setup the pages array with the number of 1541 * pages we want, so we don't really need to worry about the 1542 * contents of pages from loop to loop 1543 */ 1544 ret = prepare_pages(inode, pages, num_pages, 1545 pos, write_bytes, 1546 force_page_uptodate); 1547 if (ret) 1548 break; 1549 1550 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages, 1551 pos, &lockstart, &lockend, 1552 &cached_state); 1553 if (ret < 0) { 1554 if (ret == -EAGAIN) 1555 goto again; 1556 break; 1557 } else if (ret > 0) { 1558 need_unlock = true; 1559 ret = 0; 1560 } 1561 1562 copied = btrfs_copy_from_user(pos, num_pages, 1563 write_bytes, pages, i); 1564 1565 /* 1566 * if we have trouble faulting in the pages, fall 1567 * back to one page at a time 1568 */ 1569 if (copied < write_bytes) 1570 nrptrs = 1; 1571 1572 if (copied == 0) { 1573 force_page_uptodate = true; 1574 dirty_pages = 0; 1575 } else { 1576 force_page_uptodate = false; 1577 dirty_pages = (copied + offset + 1578 PAGE_CACHE_SIZE - 1) >> 1579 PAGE_CACHE_SHIFT; 1580 } 1581 1582 /* 1583 * If we had a short copy we need to release the excess delaloc 1584 * bytes we reserved. We need to increment outstanding_extents 1585 * because btrfs_delalloc_release_space will decrement it, but 1586 * we still have an outstanding extent for the chunk we actually 1587 * managed to copy. 1588 */ 1589 if (num_pages > dirty_pages) { 1590 release_bytes = (num_pages - dirty_pages) << 1591 PAGE_CACHE_SHIFT; 1592 if (copied > 0) { 1593 spin_lock(&BTRFS_I(inode)->lock); 1594 BTRFS_I(inode)->outstanding_extents++; 1595 spin_unlock(&BTRFS_I(inode)->lock); 1596 } 1597 if (only_release_metadata) 1598 btrfs_delalloc_release_metadata(inode, 1599 release_bytes); 1600 else 1601 btrfs_delalloc_release_space(inode, 1602 release_bytes); 1603 } 1604 1605 release_bytes = dirty_pages << PAGE_CACHE_SHIFT; 1606 1607 if (copied > 0) 1608 ret = btrfs_dirty_pages(root, inode, pages, 1609 dirty_pages, pos, copied, 1610 NULL); 1611 if (need_unlock) 1612 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1613 lockstart, lockend, &cached_state, 1614 GFP_NOFS); 1615 if (ret) { 1616 btrfs_drop_pages(pages, num_pages); 1617 break; 1618 } 1619 1620 release_bytes = 0; 1621 if (only_release_metadata) 1622 btrfs_end_nocow_write(root); 1623 1624 if (only_release_metadata && copied > 0) { 1625 u64 lockstart = round_down(pos, root->sectorsize); 1626 u64 lockend = lockstart + 1627 (dirty_pages << PAGE_CACHE_SHIFT) - 1; 1628 1629 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1630 lockend, EXTENT_NORESERVE, NULL, 1631 NULL, GFP_NOFS); 1632 only_release_metadata = false; 1633 } 1634 1635 btrfs_drop_pages(pages, num_pages); 1636 1637 cond_resched(); 1638 1639 balance_dirty_pages_ratelimited(inode->i_mapping); 1640 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1) 1641 btrfs_btree_balance_dirty(root); 1642 1643 pos += copied; 1644 num_written += copied; 1645 } 1646 1647 kfree(pages); 1648 1649 if (release_bytes) { 1650 if (only_release_metadata) { 1651 btrfs_end_nocow_write(root); 1652 btrfs_delalloc_release_metadata(inode, release_bytes); 1653 } else { 1654 btrfs_delalloc_release_space(inode, release_bytes); 1655 } 1656 } 1657 1658 return num_written ? num_written : ret; 1659 } 1660 1661 static ssize_t __btrfs_direct_write(struct kiocb *iocb, 1662 const struct iovec *iov, 1663 unsigned long nr_segs, loff_t pos, 1664 size_t count, size_t ocount) 1665 { 1666 struct file *file = iocb->ki_filp; 1667 struct iov_iter i; 1668 ssize_t written; 1669 ssize_t written_buffered; 1670 loff_t endbyte; 1671 int err; 1672 1673 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 1674 count, ocount); 1675 1676 if (written < 0 || written == count) 1677 return written; 1678 1679 pos += written; 1680 count -= written; 1681 iov_iter_init(&i, iov, nr_segs, count, written); 1682 written_buffered = __btrfs_buffered_write(file, &i, pos); 1683 if (written_buffered < 0) { 1684 err = written_buffered; 1685 goto out; 1686 } 1687 endbyte = pos + written_buffered - 1; 1688 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 1689 if (err) 1690 goto out; 1691 written += written_buffered; 1692 iocb->ki_pos = pos + written_buffered; 1693 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT, 1694 endbyte >> PAGE_CACHE_SHIFT); 1695 out: 1696 return written ? written : err; 1697 } 1698 1699 static void update_time_for_write(struct inode *inode) 1700 { 1701 struct timespec now; 1702 1703 if (IS_NOCMTIME(inode)) 1704 return; 1705 1706 now = current_fs_time(inode->i_sb); 1707 if (!timespec_equal(&inode->i_mtime, &now)) 1708 inode->i_mtime = now; 1709 1710 if (!timespec_equal(&inode->i_ctime, &now)) 1711 inode->i_ctime = now; 1712 1713 if (IS_I_VERSION(inode)) 1714 inode_inc_iversion(inode); 1715 } 1716 1717 static ssize_t btrfs_file_aio_write(struct kiocb *iocb, 1718 const struct iovec *iov, 1719 unsigned long nr_segs, loff_t pos) 1720 { 1721 struct file *file = iocb->ki_filp; 1722 struct inode *inode = file_inode(file); 1723 struct btrfs_root *root = BTRFS_I(inode)->root; 1724 u64 start_pos; 1725 u64 end_pos; 1726 ssize_t num_written = 0; 1727 ssize_t err = 0; 1728 size_t count, ocount; 1729 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1730 1731 mutex_lock(&inode->i_mutex); 1732 1733 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 1734 if (err) { 1735 mutex_unlock(&inode->i_mutex); 1736 goto out; 1737 } 1738 count = ocount; 1739 1740 current->backing_dev_info = inode->i_mapping->backing_dev_info; 1741 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 1742 if (err) { 1743 mutex_unlock(&inode->i_mutex); 1744 goto out; 1745 } 1746 1747 if (count == 0) { 1748 mutex_unlock(&inode->i_mutex); 1749 goto out; 1750 } 1751 1752 err = file_remove_suid(file); 1753 if (err) { 1754 mutex_unlock(&inode->i_mutex); 1755 goto out; 1756 } 1757 1758 /* 1759 * If BTRFS flips readonly due to some impossible error 1760 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1761 * although we have opened a file as writable, we have 1762 * to stop this write operation to ensure FS consistency. 1763 */ 1764 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1765 mutex_unlock(&inode->i_mutex); 1766 err = -EROFS; 1767 goto out; 1768 } 1769 1770 /* 1771 * We reserve space for updating the inode when we reserve space for the 1772 * extent we are going to write, so we will enospc out there. We don't 1773 * need to start yet another transaction to update the inode as we will 1774 * update the inode when we finish writing whatever data we write. 1775 */ 1776 update_time_for_write(inode); 1777 1778 start_pos = round_down(pos, root->sectorsize); 1779 if (start_pos > i_size_read(inode)) { 1780 /* Expand hole size to cover write data, preventing empty gap */ 1781 end_pos = round_up(pos + count, root->sectorsize); 1782 err = btrfs_cont_expand(inode, i_size_read(inode), end_pos); 1783 if (err) { 1784 mutex_unlock(&inode->i_mutex); 1785 goto out; 1786 } 1787 } 1788 1789 if (sync) 1790 atomic_inc(&BTRFS_I(inode)->sync_writers); 1791 1792 if (unlikely(file->f_flags & O_DIRECT)) { 1793 num_written = __btrfs_direct_write(iocb, iov, nr_segs, 1794 pos, count, ocount); 1795 } else { 1796 struct iov_iter i; 1797 1798 iov_iter_init(&i, iov, nr_segs, count, num_written); 1799 1800 num_written = __btrfs_buffered_write(file, &i, pos); 1801 if (num_written > 0) 1802 iocb->ki_pos = pos + num_written; 1803 } 1804 1805 mutex_unlock(&inode->i_mutex); 1806 1807 /* 1808 * we want to make sure fsync finds this change 1809 * but we haven't joined a transaction running right now. 1810 * 1811 * Later on, someone is sure to update the inode and get the 1812 * real transid recorded. 1813 * 1814 * We set last_trans now to the fs_info generation + 1, 1815 * this will either be one more than the running transaction 1816 * or the generation used for the next transaction if there isn't 1817 * one running right now. 1818 * 1819 * We also have to set last_sub_trans to the current log transid, 1820 * otherwise subsequent syncs to a file that's been synced in this 1821 * transaction will appear to have already occured. 1822 */ 1823 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1; 1824 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1825 if (num_written > 0) { 1826 err = generic_write_sync(file, pos, num_written); 1827 if (err < 0) 1828 num_written = err; 1829 } 1830 1831 if (sync) 1832 atomic_dec(&BTRFS_I(inode)->sync_writers); 1833 out: 1834 current->backing_dev_info = NULL; 1835 return num_written ? num_written : err; 1836 } 1837 1838 int btrfs_release_file(struct inode *inode, struct file *filp) 1839 { 1840 /* 1841 * ordered_data_close is set by settattr when we are about to truncate 1842 * a file from a non-zero size to a zero size. This tries to 1843 * flush down new bytes that may have been written if the 1844 * application were using truncate to replace a file in place. 1845 */ 1846 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 1847 &BTRFS_I(inode)->runtime_flags)) { 1848 struct btrfs_trans_handle *trans; 1849 struct btrfs_root *root = BTRFS_I(inode)->root; 1850 1851 /* 1852 * We need to block on a committing transaction to keep us from 1853 * throwing a ordered operation on to the list and causing 1854 * something like sync to deadlock trying to flush out this 1855 * inode. 1856 */ 1857 trans = btrfs_start_transaction(root, 0); 1858 if (IS_ERR(trans)) 1859 return PTR_ERR(trans); 1860 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode); 1861 btrfs_end_transaction(trans, root); 1862 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 1863 filemap_flush(inode->i_mapping); 1864 } 1865 if (filp->private_data) 1866 btrfs_ioctl_trans_end(filp); 1867 return 0; 1868 } 1869 1870 /* 1871 * fsync call for both files and directories. This logs the inode into 1872 * the tree log instead of forcing full commits whenever possible. 1873 * 1874 * It needs to call filemap_fdatawait so that all ordered extent updates are 1875 * in the metadata btree are up to date for copying to the log. 1876 * 1877 * It drops the inode mutex before doing the tree log commit. This is an 1878 * important optimization for directories because holding the mutex prevents 1879 * new operations on the dir while we write to disk. 1880 */ 1881 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1882 { 1883 struct dentry *dentry = file->f_path.dentry; 1884 struct inode *inode = dentry->d_inode; 1885 struct btrfs_root *root = BTRFS_I(inode)->root; 1886 struct btrfs_trans_handle *trans; 1887 struct btrfs_log_ctx ctx; 1888 int ret = 0; 1889 bool full_sync = 0; 1890 1891 trace_btrfs_sync_file(file, datasync); 1892 1893 /* 1894 * We write the dirty pages in the range and wait until they complete 1895 * out of the ->i_mutex. If so, we can flush the dirty pages by 1896 * multi-task, and make the performance up. See 1897 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1898 */ 1899 atomic_inc(&BTRFS_I(inode)->sync_writers); 1900 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 1901 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1902 &BTRFS_I(inode)->runtime_flags)) 1903 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 1904 atomic_dec(&BTRFS_I(inode)->sync_writers); 1905 if (ret) 1906 return ret; 1907 1908 mutex_lock(&inode->i_mutex); 1909 1910 /* 1911 * We flush the dirty pages again to avoid some dirty pages in the 1912 * range being left. 1913 */ 1914 atomic_inc(&root->log_batch); 1915 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1916 &BTRFS_I(inode)->runtime_flags); 1917 if (full_sync) { 1918 ret = btrfs_wait_ordered_range(inode, start, end - start + 1); 1919 if (ret) { 1920 mutex_unlock(&inode->i_mutex); 1921 goto out; 1922 } 1923 } 1924 atomic_inc(&root->log_batch); 1925 1926 /* 1927 * check the transaction that last modified this inode 1928 * and see if its already been committed 1929 */ 1930 if (!BTRFS_I(inode)->last_trans) { 1931 mutex_unlock(&inode->i_mutex); 1932 goto out; 1933 } 1934 1935 /* 1936 * if the last transaction that changed this file was before 1937 * the current transaction, we can bail out now without any 1938 * syncing 1939 */ 1940 smp_mb(); 1941 if (btrfs_inode_in_log(inode, root->fs_info->generation) || 1942 BTRFS_I(inode)->last_trans <= 1943 root->fs_info->last_trans_committed) { 1944 BTRFS_I(inode)->last_trans = 0; 1945 1946 /* 1947 * We'v had everything committed since the last time we were 1948 * modified so clear this flag in case it was set for whatever 1949 * reason, it's no longer relevant. 1950 */ 1951 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1952 &BTRFS_I(inode)->runtime_flags); 1953 mutex_unlock(&inode->i_mutex); 1954 goto out; 1955 } 1956 1957 /* 1958 * ok we haven't committed the transaction yet, lets do a commit 1959 */ 1960 if (file->private_data) 1961 btrfs_ioctl_trans_end(file); 1962 1963 /* 1964 * We use start here because we will need to wait on the IO to complete 1965 * in btrfs_sync_log, which could require joining a transaction (for 1966 * example checking cross references in the nocow path). If we use join 1967 * here we could get into a situation where we're waiting on IO to 1968 * happen that is blocked on a transaction trying to commit. With start 1969 * we inc the extwriter counter, so we wait for all extwriters to exit 1970 * before we start blocking join'ers. This comment is to keep somebody 1971 * from thinking they are super smart and changing this to 1972 * btrfs_join_transaction *cough*Josef*cough*. 1973 */ 1974 trans = btrfs_start_transaction(root, 0); 1975 if (IS_ERR(trans)) { 1976 ret = PTR_ERR(trans); 1977 mutex_unlock(&inode->i_mutex); 1978 goto out; 1979 } 1980 trans->sync = true; 1981 1982 btrfs_init_log_ctx(&ctx); 1983 1984 ret = btrfs_log_dentry_safe(trans, root, dentry, &ctx); 1985 if (ret < 0) { 1986 /* Fallthrough and commit/free transaction. */ 1987 ret = 1; 1988 } 1989 1990 /* we've logged all the items and now have a consistent 1991 * version of the file in the log. It is possible that 1992 * someone will come in and modify the file, but that's 1993 * fine because the log is consistent on disk, and we 1994 * have references to all of the file's extents 1995 * 1996 * It is possible that someone will come in and log the 1997 * file again, but that will end up using the synchronization 1998 * inside btrfs_sync_log to keep things safe. 1999 */ 2000 mutex_unlock(&inode->i_mutex); 2001 2002 if (ret != BTRFS_NO_LOG_SYNC) { 2003 if (!ret) { 2004 ret = btrfs_sync_log(trans, root, &ctx); 2005 if (!ret) { 2006 ret = btrfs_end_transaction(trans, root); 2007 goto out; 2008 } 2009 } 2010 if (!full_sync) { 2011 ret = btrfs_wait_ordered_range(inode, start, 2012 end - start + 1); 2013 if (ret) 2014 goto out; 2015 } 2016 ret = btrfs_commit_transaction(trans, root); 2017 } else { 2018 ret = btrfs_end_transaction(trans, root); 2019 } 2020 out: 2021 return ret > 0 ? -EIO : ret; 2022 } 2023 2024 static const struct vm_operations_struct btrfs_file_vm_ops = { 2025 .fault = filemap_fault, 2026 .map_pages = filemap_map_pages, 2027 .page_mkwrite = btrfs_page_mkwrite, 2028 .remap_pages = generic_file_remap_pages, 2029 }; 2030 2031 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2032 { 2033 struct address_space *mapping = filp->f_mapping; 2034 2035 if (!mapping->a_ops->readpage) 2036 return -ENOEXEC; 2037 2038 file_accessed(filp); 2039 vma->vm_ops = &btrfs_file_vm_ops; 2040 2041 return 0; 2042 } 2043 2044 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf, 2045 int slot, u64 start, u64 end) 2046 { 2047 struct btrfs_file_extent_item *fi; 2048 struct btrfs_key key; 2049 2050 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2051 return 0; 2052 2053 btrfs_item_key_to_cpu(leaf, &key, slot); 2054 if (key.objectid != btrfs_ino(inode) || 2055 key.type != BTRFS_EXTENT_DATA_KEY) 2056 return 0; 2057 2058 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2059 2060 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2061 return 0; 2062 2063 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2064 return 0; 2065 2066 if (key.offset == end) 2067 return 1; 2068 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2069 return 1; 2070 return 0; 2071 } 2072 2073 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode, 2074 struct btrfs_path *path, u64 offset, u64 end) 2075 { 2076 struct btrfs_root *root = BTRFS_I(inode)->root; 2077 struct extent_buffer *leaf; 2078 struct btrfs_file_extent_item *fi; 2079 struct extent_map *hole_em; 2080 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2081 struct btrfs_key key; 2082 int ret; 2083 2084 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) 2085 goto out; 2086 2087 key.objectid = btrfs_ino(inode); 2088 key.type = BTRFS_EXTENT_DATA_KEY; 2089 key.offset = offset; 2090 2091 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2092 if (ret < 0) 2093 return ret; 2094 BUG_ON(!ret); 2095 2096 leaf = path->nodes[0]; 2097 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) { 2098 u64 num_bytes; 2099 2100 path->slots[0]--; 2101 fi = btrfs_item_ptr(leaf, path->slots[0], 2102 struct btrfs_file_extent_item); 2103 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2104 end - offset; 2105 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2106 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2107 btrfs_set_file_extent_offset(leaf, fi, 0); 2108 btrfs_mark_buffer_dirty(leaf); 2109 goto out; 2110 } 2111 2112 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) { 2113 u64 num_bytes; 2114 2115 path->slots[0]++; 2116 key.offset = offset; 2117 btrfs_set_item_key_safe(root, path, &key); 2118 fi = btrfs_item_ptr(leaf, path->slots[0], 2119 struct btrfs_file_extent_item); 2120 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2121 offset; 2122 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2123 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2124 btrfs_set_file_extent_offset(leaf, fi, 0); 2125 btrfs_mark_buffer_dirty(leaf); 2126 goto out; 2127 } 2128 btrfs_release_path(path); 2129 2130 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 2131 0, 0, end - offset, 0, end - offset, 2132 0, 0, 0); 2133 if (ret) 2134 return ret; 2135 2136 out: 2137 btrfs_release_path(path); 2138 2139 hole_em = alloc_extent_map(); 2140 if (!hole_em) { 2141 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2142 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2143 &BTRFS_I(inode)->runtime_flags); 2144 } else { 2145 hole_em->start = offset; 2146 hole_em->len = end - offset; 2147 hole_em->ram_bytes = hole_em->len; 2148 hole_em->orig_start = offset; 2149 2150 hole_em->block_start = EXTENT_MAP_HOLE; 2151 hole_em->block_len = 0; 2152 hole_em->orig_block_len = 0; 2153 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 2154 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2155 hole_em->generation = trans->transid; 2156 2157 do { 2158 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2159 write_lock(&em_tree->lock); 2160 ret = add_extent_mapping(em_tree, hole_em, 1); 2161 write_unlock(&em_tree->lock); 2162 } while (ret == -EEXIST); 2163 free_extent_map(hole_em); 2164 if (ret) 2165 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2166 &BTRFS_I(inode)->runtime_flags); 2167 } 2168 2169 return 0; 2170 } 2171 2172 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2173 { 2174 struct btrfs_root *root = BTRFS_I(inode)->root; 2175 struct extent_state *cached_state = NULL; 2176 struct btrfs_path *path; 2177 struct btrfs_block_rsv *rsv; 2178 struct btrfs_trans_handle *trans; 2179 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize); 2180 u64 lockend = round_down(offset + len, 2181 BTRFS_I(inode)->root->sectorsize) - 1; 2182 u64 cur_offset = lockstart; 2183 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 2184 u64 drop_end; 2185 int ret = 0; 2186 int err = 0; 2187 int rsv_count; 2188 bool same_page = ((offset >> PAGE_CACHE_SHIFT) == 2189 ((offset + len - 1) >> PAGE_CACHE_SHIFT)); 2190 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES); 2191 u64 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE); 2192 2193 ret = btrfs_wait_ordered_range(inode, offset, len); 2194 if (ret) 2195 return ret; 2196 2197 mutex_lock(&inode->i_mutex); 2198 /* 2199 * We needn't truncate any page which is beyond the end of the file 2200 * because we are sure there is no data there. 2201 */ 2202 /* 2203 * Only do this if we are in the same page and we aren't doing the 2204 * entire page. 2205 */ 2206 if (same_page && len < PAGE_CACHE_SIZE) { 2207 if (offset < ino_size) 2208 ret = btrfs_truncate_page(inode, offset, len, 0); 2209 mutex_unlock(&inode->i_mutex); 2210 return ret; 2211 } 2212 2213 /* zero back part of the first page */ 2214 if (offset < ino_size) { 2215 ret = btrfs_truncate_page(inode, offset, 0, 0); 2216 if (ret) { 2217 mutex_unlock(&inode->i_mutex); 2218 return ret; 2219 } 2220 } 2221 2222 /* zero the front end of the last page */ 2223 if (offset + len < ino_size) { 2224 ret = btrfs_truncate_page(inode, offset + len, 0, 1); 2225 if (ret) { 2226 mutex_unlock(&inode->i_mutex); 2227 return ret; 2228 } 2229 } 2230 2231 if (lockend < lockstart) { 2232 mutex_unlock(&inode->i_mutex); 2233 return 0; 2234 } 2235 2236 while (1) { 2237 struct btrfs_ordered_extent *ordered; 2238 2239 truncate_pagecache_range(inode, lockstart, lockend); 2240 2241 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2242 0, &cached_state); 2243 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2244 2245 /* 2246 * We need to make sure we have no ordered extents in this range 2247 * and nobody raced in and read a page in this range, if we did 2248 * we need to try again. 2249 */ 2250 if ((!ordered || 2251 (ordered->file_offset + ordered->len <= lockstart || 2252 ordered->file_offset > lockend)) && 2253 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart, 2254 lockend, EXTENT_UPTODATE, 0, 2255 cached_state)) { 2256 if (ordered) 2257 btrfs_put_ordered_extent(ordered); 2258 break; 2259 } 2260 if (ordered) 2261 btrfs_put_ordered_extent(ordered); 2262 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2263 lockend, &cached_state, GFP_NOFS); 2264 ret = btrfs_wait_ordered_range(inode, lockstart, 2265 lockend - lockstart + 1); 2266 if (ret) { 2267 mutex_unlock(&inode->i_mutex); 2268 return ret; 2269 } 2270 } 2271 2272 path = btrfs_alloc_path(); 2273 if (!path) { 2274 ret = -ENOMEM; 2275 goto out; 2276 } 2277 2278 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2279 if (!rsv) { 2280 ret = -ENOMEM; 2281 goto out_free; 2282 } 2283 rsv->size = btrfs_calc_trunc_metadata_size(root, 1); 2284 rsv->failfast = 1; 2285 2286 /* 2287 * 1 - update the inode 2288 * 1 - removing the extents in the range 2289 * 1 - adding the hole extent if no_holes isn't set 2290 */ 2291 rsv_count = no_holes ? 2 : 3; 2292 trans = btrfs_start_transaction(root, rsv_count); 2293 if (IS_ERR(trans)) { 2294 err = PTR_ERR(trans); 2295 goto out_free; 2296 } 2297 2298 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 2299 min_size); 2300 BUG_ON(ret); 2301 trans->block_rsv = rsv; 2302 2303 while (cur_offset < lockend) { 2304 ret = __btrfs_drop_extents(trans, root, inode, path, 2305 cur_offset, lockend + 1, 2306 &drop_end, 1, 0, 0, NULL); 2307 if (ret != -ENOSPC) 2308 break; 2309 2310 trans->block_rsv = &root->fs_info->trans_block_rsv; 2311 2312 if (cur_offset < ino_size) { 2313 ret = fill_holes(trans, inode, path, cur_offset, 2314 drop_end); 2315 if (ret) { 2316 err = ret; 2317 break; 2318 } 2319 } 2320 2321 cur_offset = drop_end; 2322 2323 ret = btrfs_update_inode(trans, root, inode); 2324 if (ret) { 2325 err = ret; 2326 break; 2327 } 2328 2329 btrfs_end_transaction(trans, root); 2330 btrfs_btree_balance_dirty(root); 2331 2332 trans = btrfs_start_transaction(root, rsv_count); 2333 if (IS_ERR(trans)) { 2334 ret = PTR_ERR(trans); 2335 trans = NULL; 2336 break; 2337 } 2338 2339 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 2340 rsv, min_size); 2341 BUG_ON(ret); /* shouldn't happen */ 2342 trans->block_rsv = rsv; 2343 } 2344 2345 if (ret) { 2346 err = ret; 2347 goto out_trans; 2348 } 2349 2350 trans->block_rsv = &root->fs_info->trans_block_rsv; 2351 if (cur_offset < ino_size) { 2352 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2353 if (ret) { 2354 err = ret; 2355 goto out_trans; 2356 } 2357 } 2358 2359 out_trans: 2360 if (!trans) 2361 goto out_free; 2362 2363 inode_inc_iversion(inode); 2364 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2365 2366 trans->block_rsv = &root->fs_info->trans_block_rsv; 2367 ret = btrfs_update_inode(trans, root, inode); 2368 btrfs_end_transaction(trans, root); 2369 btrfs_btree_balance_dirty(root); 2370 out_free: 2371 btrfs_free_path(path); 2372 btrfs_free_block_rsv(root, rsv); 2373 out: 2374 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2375 &cached_state, GFP_NOFS); 2376 mutex_unlock(&inode->i_mutex); 2377 if (ret && !err) 2378 err = ret; 2379 return err; 2380 } 2381 2382 static long btrfs_fallocate(struct file *file, int mode, 2383 loff_t offset, loff_t len) 2384 { 2385 struct inode *inode = file_inode(file); 2386 struct extent_state *cached_state = NULL; 2387 struct btrfs_root *root = BTRFS_I(inode)->root; 2388 u64 cur_offset; 2389 u64 last_byte; 2390 u64 alloc_start; 2391 u64 alloc_end; 2392 u64 alloc_hint = 0; 2393 u64 locked_end; 2394 struct extent_map *em; 2395 int blocksize = BTRFS_I(inode)->root->sectorsize; 2396 int ret; 2397 2398 alloc_start = round_down(offset, blocksize); 2399 alloc_end = round_up(offset + len, blocksize); 2400 2401 /* Make sure we aren't being give some crap mode */ 2402 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2403 return -EOPNOTSUPP; 2404 2405 if (mode & FALLOC_FL_PUNCH_HOLE) 2406 return btrfs_punch_hole(inode, offset, len); 2407 2408 /* 2409 * Make sure we have enough space before we do the 2410 * allocation. 2411 */ 2412 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start); 2413 if (ret) 2414 return ret; 2415 if (root->fs_info->quota_enabled) { 2416 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start); 2417 if (ret) 2418 goto out_reserve_fail; 2419 } 2420 2421 mutex_lock(&inode->i_mutex); 2422 ret = inode_newsize_ok(inode, alloc_end); 2423 if (ret) 2424 goto out; 2425 2426 if (alloc_start > inode->i_size) { 2427 ret = btrfs_cont_expand(inode, i_size_read(inode), 2428 alloc_start); 2429 if (ret) 2430 goto out; 2431 } else { 2432 /* 2433 * If we are fallocating from the end of the file onward we 2434 * need to zero out the end of the page if i_size lands in the 2435 * middle of a page. 2436 */ 2437 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0); 2438 if (ret) 2439 goto out; 2440 } 2441 2442 /* 2443 * wait for ordered IO before we have any locks. We'll loop again 2444 * below with the locks held. 2445 */ 2446 ret = btrfs_wait_ordered_range(inode, alloc_start, 2447 alloc_end - alloc_start); 2448 if (ret) 2449 goto out; 2450 2451 locked_end = alloc_end - 1; 2452 while (1) { 2453 struct btrfs_ordered_extent *ordered; 2454 2455 /* the extent lock is ordered inside the running 2456 * transaction 2457 */ 2458 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 2459 locked_end, 0, &cached_state); 2460 ordered = btrfs_lookup_first_ordered_extent(inode, 2461 alloc_end - 1); 2462 if (ordered && 2463 ordered->file_offset + ordered->len > alloc_start && 2464 ordered->file_offset < alloc_end) { 2465 btrfs_put_ordered_extent(ordered); 2466 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 2467 alloc_start, locked_end, 2468 &cached_state, GFP_NOFS); 2469 /* 2470 * we can't wait on the range with the transaction 2471 * running or with the extent lock held 2472 */ 2473 ret = btrfs_wait_ordered_range(inode, alloc_start, 2474 alloc_end - alloc_start); 2475 if (ret) 2476 goto out; 2477 } else { 2478 if (ordered) 2479 btrfs_put_ordered_extent(ordered); 2480 break; 2481 } 2482 } 2483 2484 cur_offset = alloc_start; 2485 while (1) { 2486 u64 actual_end; 2487 2488 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2489 alloc_end - cur_offset, 0); 2490 if (IS_ERR_OR_NULL(em)) { 2491 if (!em) 2492 ret = -ENOMEM; 2493 else 2494 ret = PTR_ERR(em); 2495 break; 2496 } 2497 last_byte = min(extent_map_end(em), alloc_end); 2498 actual_end = min_t(u64, extent_map_end(em), offset + len); 2499 last_byte = ALIGN(last_byte, blocksize); 2500 2501 if (em->block_start == EXTENT_MAP_HOLE || 2502 (cur_offset >= inode->i_size && 2503 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 2504 ret = btrfs_prealloc_file_range(inode, mode, cur_offset, 2505 last_byte - cur_offset, 2506 1 << inode->i_blkbits, 2507 offset + len, 2508 &alloc_hint); 2509 2510 if (ret < 0) { 2511 free_extent_map(em); 2512 break; 2513 } 2514 } else if (actual_end > inode->i_size && 2515 !(mode & FALLOC_FL_KEEP_SIZE)) { 2516 /* 2517 * We didn't need to allocate any more space, but we 2518 * still extended the size of the file so we need to 2519 * update i_size. 2520 */ 2521 inode->i_ctime = CURRENT_TIME; 2522 i_size_write(inode, actual_end); 2523 btrfs_ordered_update_i_size(inode, actual_end, NULL); 2524 } 2525 free_extent_map(em); 2526 2527 cur_offset = last_byte; 2528 if (cur_offset >= alloc_end) { 2529 ret = 0; 2530 break; 2531 } 2532 } 2533 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 2534 &cached_state, GFP_NOFS); 2535 out: 2536 mutex_unlock(&inode->i_mutex); 2537 if (root->fs_info->quota_enabled) 2538 btrfs_qgroup_free(root, alloc_end - alloc_start); 2539 out_reserve_fail: 2540 /* Let go of our reservation. */ 2541 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start); 2542 return ret; 2543 } 2544 2545 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 2546 { 2547 struct btrfs_root *root = BTRFS_I(inode)->root; 2548 struct extent_map *em = NULL; 2549 struct extent_state *cached_state = NULL; 2550 u64 lockstart = *offset; 2551 u64 lockend = i_size_read(inode); 2552 u64 start = *offset; 2553 u64 len = i_size_read(inode); 2554 int ret = 0; 2555 2556 lockend = max_t(u64, root->sectorsize, lockend); 2557 if (lockend <= lockstart) 2558 lockend = lockstart + root->sectorsize; 2559 2560 lockend--; 2561 len = lockend - lockstart + 1; 2562 2563 len = max_t(u64, len, root->sectorsize); 2564 if (inode->i_size == 0) 2565 return -ENXIO; 2566 2567 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0, 2568 &cached_state); 2569 2570 while (start < inode->i_size) { 2571 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0); 2572 if (IS_ERR(em)) { 2573 ret = PTR_ERR(em); 2574 em = NULL; 2575 break; 2576 } 2577 2578 if (whence == SEEK_HOLE && 2579 (em->block_start == EXTENT_MAP_HOLE || 2580 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2581 break; 2582 else if (whence == SEEK_DATA && 2583 (em->block_start != EXTENT_MAP_HOLE && 2584 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2585 break; 2586 2587 start = em->start + em->len; 2588 free_extent_map(em); 2589 em = NULL; 2590 cond_resched(); 2591 } 2592 free_extent_map(em); 2593 if (!ret) { 2594 if (whence == SEEK_DATA && start >= inode->i_size) 2595 ret = -ENXIO; 2596 else 2597 *offset = min_t(loff_t, start, inode->i_size); 2598 } 2599 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2600 &cached_state, GFP_NOFS); 2601 return ret; 2602 } 2603 2604 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 2605 { 2606 struct inode *inode = file->f_mapping->host; 2607 int ret; 2608 2609 mutex_lock(&inode->i_mutex); 2610 switch (whence) { 2611 case SEEK_END: 2612 case SEEK_CUR: 2613 offset = generic_file_llseek(file, offset, whence); 2614 goto out; 2615 case SEEK_DATA: 2616 case SEEK_HOLE: 2617 if (offset >= i_size_read(inode)) { 2618 mutex_unlock(&inode->i_mutex); 2619 return -ENXIO; 2620 } 2621 2622 ret = find_desired_extent(inode, &offset, whence); 2623 if (ret) { 2624 mutex_unlock(&inode->i_mutex); 2625 return ret; 2626 } 2627 } 2628 2629 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2630 out: 2631 mutex_unlock(&inode->i_mutex); 2632 return offset; 2633 } 2634 2635 const struct file_operations btrfs_file_operations = { 2636 .llseek = btrfs_file_llseek, 2637 .read = do_sync_read, 2638 .write = do_sync_write, 2639 .aio_read = generic_file_aio_read, 2640 .splice_read = generic_file_splice_read, 2641 .aio_write = btrfs_file_aio_write, 2642 .mmap = btrfs_file_mmap, 2643 .open = generic_file_open, 2644 .release = btrfs_release_file, 2645 .fsync = btrfs_sync_file, 2646 .fallocate = btrfs_fallocate, 2647 .unlocked_ioctl = btrfs_ioctl, 2648 #ifdef CONFIG_COMPAT 2649 .compat_ioctl = btrfs_ioctl, 2650 #endif 2651 }; 2652 2653 void btrfs_auto_defrag_exit(void) 2654 { 2655 if (btrfs_inode_defrag_cachep) 2656 kmem_cache_destroy(btrfs_inode_defrag_cachep); 2657 } 2658 2659 int btrfs_auto_defrag_init(void) 2660 { 2661 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 2662 sizeof(struct inode_defrag), 0, 2663 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 2664 NULL); 2665 if (!btrfs_inode_defrag_cachep) 2666 return -ENOMEM; 2667 2668 return 0; 2669 } 2670