1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include "ctree.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "btrfs_inode.h" 23 #include "print-tree.h" 24 #include "tree-log.h" 25 #include "locking.h" 26 #include "volumes.h" 27 #include "qgroup.h" 28 #include "compression.h" 29 #include "delalloc-space.h" 30 31 static struct kmem_cache *btrfs_inode_defrag_cachep; 32 /* 33 * when auto defrag is enabled we 34 * queue up these defrag structs to remember which 35 * inodes need defragging passes 36 */ 37 struct inode_defrag { 38 struct rb_node rb_node; 39 /* objectid */ 40 u64 ino; 41 /* 42 * transid where the defrag was added, we search for 43 * extents newer than this 44 */ 45 u64 transid; 46 47 /* root objectid */ 48 u64 root; 49 50 /* last offset we were able to defrag */ 51 u64 last_offset; 52 53 /* if we've wrapped around back to zero once already */ 54 int cycled; 55 }; 56 57 static int __compare_inode_defrag(struct inode_defrag *defrag1, 58 struct inode_defrag *defrag2) 59 { 60 if (defrag1->root > defrag2->root) 61 return 1; 62 else if (defrag1->root < defrag2->root) 63 return -1; 64 else if (defrag1->ino > defrag2->ino) 65 return 1; 66 else if (defrag1->ino < defrag2->ino) 67 return -1; 68 else 69 return 0; 70 } 71 72 /* pop a record for an inode into the defrag tree. The lock 73 * must be held already 74 * 75 * If you're inserting a record for an older transid than an 76 * existing record, the transid already in the tree is lowered 77 * 78 * If an existing record is found the defrag item you 79 * pass in is freed 80 */ 81 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 82 struct inode_defrag *defrag) 83 { 84 struct btrfs_fs_info *fs_info = inode->root->fs_info; 85 struct inode_defrag *entry; 86 struct rb_node **p; 87 struct rb_node *parent = NULL; 88 int ret; 89 90 p = &fs_info->defrag_inodes.rb_node; 91 while (*p) { 92 parent = *p; 93 entry = rb_entry(parent, struct inode_defrag, rb_node); 94 95 ret = __compare_inode_defrag(defrag, entry); 96 if (ret < 0) 97 p = &parent->rb_left; 98 else if (ret > 0) 99 p = &parent->rb_right; 100 else { 101 /* if we're reinserting an entry for 102 * an old defrag run, make sure to 103 * lower the transid of our existing record 104 */ 105 if (defrag->transid < entry->transid) 106 entry->transid = defrag->transid; 107 if (defrag->last_offset > entry->last_offset) 108 entry->last_offset = defrag->last_offset; 109 return -EEXIST; 110 } 111 } 112 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 113 rb_link_node(&defrag->rb_node, parent, p); 114 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 115 return 0; 116 } 117 118 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 119 { 120 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 121 return 0; 122 123 if (btrfs_fs_closing(fs_info)) 124 return 0; 125 126 return 1; 127 } 128 129 /* 130 * insert a defrag record for this inode if auto defrag is 131 * enabled 132 */ 133 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 134 struct btrfs_inode *inode) 135 { 136 struct btrfs_root *root = inode->root; 137 struct btrfs_fs_info *fs_info = root->fs_info; 138 struct inode_defrag *defrag; 139 u64 transid; 140 int ret; 141 142 if (!__need_auto_defrag(fs_info)) 143 return 0; 144 145 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 146 return 0; 147 148 if (trans) 149 transid = trans->transid; 150 else 151 transid = inode->root->last_trans; 152 153 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 154 if (!defrag) 155 return -ENOMEM; 156 157 defrag->ino = btrfs_ino(inode); 158 defrag->transid = transid; 159 defrag->root = root->root_key.objectid; 160 161 spin_lock(&fs_info->defrag_inodes_lock); 162 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 163 /* 164 * If we set IN_DEFRAG flag and evict the inode from memory, 165 * and then re-read this inode, this new inode doesn't have 166 * IN_DEFRAG flag. At the case, we may find the existed defrag. 167 */ 168 ret = __btrfs_add_inode_defrag(inode, defrag); 169 if (ret) 170 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 171 } else { 172 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 173 } 174 spin_unlock(&fs_info->defrag_inodes_lock); 175 return 0; 176 } 177 178 /* 179 * Requeue the defrag object. If there is a defrag object that points to 180 * the same inode in the tree, we will merge them together (by 181 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 182 */ 183 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode, 184 struct inode_defrag *defrag) 185 { 186 struct btrfs_fs_info *fs_info = inode->root->fs_info; 187 int ret; 188 189 if (!__need_auto_defrag(fs_info)) 190 goto out; 191 192 /* 193 * Here we don't check the IN_DEFRAG flag, because we need merge 194 * them together. 195 */ 196 spin_lock(&fs_info->defrag_inodes_lock); 197 ret = __btrfs_add_inode_defrag(inode, defrag); 198 spin_unlock(&fs_info->defrag_inodes_lock); 199 if (ret) 200 goto out; 201 return; 202 out: 203 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 204 } 205 206 /* 207 * pick the defragable inode that we want, if it doesn't exist, we will get 208 * the next one. 209 */ 210 static struct inode_defrag * 211 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 212 { 213 struct inode_defrag *entry = NULL; 214 struct inode_defrag tmp; 215 struct rb_node *p; 216 struct rb_node *parent = NULL; 217 int ret; 218 219 tmp.ino = ino; 220 tmp.root = root; 221 222 spin_lock(&fs_info->defrag_inodes_lock); 223 p = fs_info->defrag_inodes.rb_node; 224 while (p) { 225 parent = p; 226 entry = rb_entry(parent, struct inode_defrag, rb_node); 227 228 ret = __compare_inode_defrag(&tmp, entry); 229 if (ret < 0) 230 p = parent->rb_left; 231 else if (ret > 0) 232 p = parent->rb_right; 233 else 234 goto out; 235 } 236 237 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 238 parent = rb_next(parent); 239 if (parent) 240 entry = rb_entry(parent, struct inode_defrag, rb_node); 241 else 242 entry = NULL; 243 } 244 out: 245 if (entry) 246 rb_erase(parent, &fs_info->defrag_inodes); 247 spin_unlock(&fs_info->defrag_inodes_lock); 248 return entry; 249 } 250 251 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 252 { 253 struct inode_defrag *defrag; 254 struct rb_node *node; 255 256 spin_lock(&fs_info->defrag_inodes_lock); 257 node = rb_first(&fs_info->defrag_inodes); 258 while (node) { 259 rb_erase(node, &fs_info->defrag_inodes); 260 defrag = rb_entry(node, struct inode_defrag, rb_node); 261 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 262 263 cond_resched_lock(&fs_info->defrag_inodes_lock); 264 265 node = rb_first(&fs_info->defrag_inodes); 266 } 267 spin_unlock(&fs_info->defrag_inodes_lock); 268 } 269 270 #define BTRFS_DEFRAG_BATCH 1024 271 272 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 273 struct inode_defrag *defrag) 274 { 275 struct btrfs_root *inode_root; 276 struct inode *inode; 277 struct btrfs_key key; 278 struct btrfs_ioctl_defrag_range_args range; 279 int num_defrag; 280 int index; 281 int ret; 282 283 /* get the inode */ 284 key.objectid = defrag->root; 285 key.type = BTRFS_ROOT_ITEM_KEY; 286 key.offset = (u64)-1; 287 288 index = srcu_read_lock(&fs_info->subvol_srcu); 289 290 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 291 if (IS_ERR(inode_root)) { 292 ret = PTR_ERR(inode_root); 293 goto cleanup; 294 } 295 296 key.objectid = defrag->ino; 297 key.type = BTRFS_INODE_ITEM_KEY; 298 key.offset = 0; 299 inode = btrfs_iget(fs_info->sb, &key, inode_root); 300 if (IS_ERR(inode)) { 301 ret = PTR_ERR(inode); 302 goto cleanup; 303 } 304 srcu_read_unlock(&fs_info->subvol_srcu, index); 305 306 /* do a chunk of defrag */ 307 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 308 memset(&range, 0, sizeof(range)); 309 range.len = (u64)-1; 310 range.start = defrag->last_offset; 311 312 sb_start_write(fs_info->sb); 313 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 314 BTRFS_DEFRAG_BATCH); 315 sb_end_write(fs_info->sb); 316 /* 317 * if we filled the whole defrag batch, there 318 * must be more work to do. Queue this defrag 319 * again 320 */ 321 if (num_defrag == BTRFS_DEFRAG_BATCH) { 322 defrag->last_offset = range.start; 323 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 324 } else if (defrag->last_offset && !defrag->cycled) { 325 /* 326 * we didn't fill our defrag batch, but 327 * we didn't start at zero. Make sure we loop 328 * around to the start of the file. 329 */ 330 defrag->last_offset = 0; 331 defrag->cycled = 1; 332 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 333 } else { 334 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 335 } 336 337 iput(inode); 338 return 0; 339 cleanup: 340 srcu_read_unlock(&fs_info->subvol_srcu, index); 341 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 342 return ret; 343 } 344 345 /* 346 * run through the list of inodes in the FS that need 347 * defragging 348 */ 349 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 350 { 351 struct inode_defrag *defrag; 352 u64 first_ino = 0; 353 u64 root_objectid = 0; 354 355 atomic_inc(&fs_info->defrag_running); 356 while (1) { 357 /* Pause the auto defragger. */ 358 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 359 &fs_info->fs_state)) 360 break; 361 362 if (!__need_auto_defrag(fs_info)) 363 break; 364 365 /* find an inode to defrag */ 366 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 367 first_ino); 368 if (!defrag) { 369 if (root_objectid || first_ino) { 370 root_objectid = 0; 371 first_ino = 0; 372 continue; 373 } else { 374 break; 375 } 376 } 377 378 first_ino = defrag->ino + 1; 379 root_objectid = defrag->root; 380 381 __btrfs_run_defrag_inode(fs_info, defrag); 382 } 383 atomic_dec(&fs_info->defrag_running); 384 385 /* 386 * during unmount, we use the transaction_wait queue to 387 * wait for the defragger to stop 388 */ 389 wake_up(&fs_info->transaction_wait); 390 return 0; 391 } 392 393 /* simple helper to fault in pages and copy. This should go away 394 * and be replaced with calls into generic code. 395 */ 396 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 397 struct page **prepared_pages, 398 struct iov_iter *i) 399 { 400 size_t copied = 0; 401 size_t total_copied = 0; 402 int pg = 0; 403 int offset = offset_in_page(pos); 404 405 while (write_bytes > 0) { 406 size_t count = min_t(size_t, 407 PAGE_SIZE - offset, write_bytes); 408 struct page *page = prepared_pages[pg]; 409 /* 410 * Copy data from userspace to the current page 411 */ 412 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 413 414 /* Flush processor's dcache for this page */ 415 flush_dcache_page(page); 416 417 /* 418 * if we get a partial write, we can end up with 419 * partially up to date pages. These add 420 * a lot of complexity, so make sure they don't 421 * happen by forcing this copy to be retried. 422 * 423 * The rest of the btrfs_file_write code will fall 424 * back to page at a time copies after we return 0. 425 */ 426 if (!PageUptodate(page) && copied < count) 427 copied = 0; 428 429 iov_iter_advance(i, copied); 430 write_bytes -= copied; 431 total_copied += copied; 432 433 /* Return to btrfs_file_write_iter to fault page */ 434 if (unlikely(copied == 0)) 435 break; 436 437 if (copied < PAGE_SIZE - offset) { 438 offset += copied; 439 } else { 440 pg++; 441 offset = 0; 442 } 443 } 444 return total_copied; 445 } 446 447 /* 448 * unlocks pages after btrfs_file_write is done with them 449 */ 450 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 451 { 452 size_t i; 453 for (i = 0; i < num_pages; i++) { 454 /* page checked is some magic around finding pages that 455 * have been modified without going through btrfs_set_page_dirty 456 * clear it here. There should be no need to mark the pages 457 * accessed as prepare_pages should have marked them accessed 458 * in prepare_pages via find_or_create_page() 459 */ 460 ClearPageChecked(pages[i]); 461 unlock_page(pages[i]); 462 put_page(pages[i]); 463 } 464 } 465 466 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 467 const u64 start, 468 const u64 len, 469 struct extent_state **cached_state) 470 { 471 u64 search_start = start; 472 const u64 end = start + len - 1; 473 474 while (search_start < end) { 475 const u64 search_len = end - search_start + 1; 476 struct extent_map *em; 477 u64 em_len; 478 int ret = 0; 479 480 em = btrfs_get_extent(inode, NULL, 0, search_start, 481 search_len, 0); 482 if (IS_ERR(em)) 483 return PTR_ERR(em); 484 485 if (em->block_start != EXTENT_MAP_HOLE) 486 goto next; 487 488 em_len = em->len; 489 if (em->start < search_start) 490 em_len -= search_start - em->start; 491 if (em_len > search_len) 492 em_len = search_len; 493 494 ret = set_extent_bit(&inode->io_tree, search_start, 495 search_start + em_len - 1, 496 EXTENT_DELALLOC_NEW, 497 NULL, cached_state, GFP_NOFS); 498 next: 499 search_start = extent_map_end(em); 500 free_extent_map(em); 501 if (ret) 502 return ret; 503 } 504 return 0; 505 } 506 507 /* 508 * after copy_from_user, pages need to be dirtied and we need to make 509 * sure holes are created between the current EOF and the start of 510 * any next extents (if required). 511 * 512 * this also makes the decision about creating an inline extent vs 513 * doing real data extents, marking pages dirty and delalloc as required. 514 */ 515 int btrfs_dirty_pages(struct inode *inode, struct page **pages, 516 size_t num_pages, loff_t pos, size_t write_bytes, 517 struct extent_state **cached) 518 { 519 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 520 int err = 0; 521 int i; 522 u64 num_bytes; 523 u64 start_pos; 524 u64 end_of_last_block; 525 u64 end_pos = pos + write_bytes; 526 loff_t isize = i_size_read(inode); 527 unsigned int extra_bits = 0; 528 529 start_pos = pos & ~((u64) fs_info->sectorsize - 1); 530 num_bytes = round_up(write_bytes + pos - start_pos, 531 fs_info->sectorsize); 532 533 end_of_last_block = start_pos + num_bytes - 1; 534 535 /* 536 * The pages may have already been dirty, clear out old accounting so 537 * we can set things up properly 538 */ 539 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block, 540 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 541 0, 0, cached); 542 543 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) { 544 if (start_pos >= isize && 545 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) { 546 /* 547 * There can't be any extents following eof in this case 548 * so just set the delalloc new bit for the range 549 * directly. 550 */ 551 extra_bits |= EXTENT_DELALLOC_NEW; 552 } else { 553 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode), 554 start_pos, 555 num_bytes, cached); 556 if (err) 557 return err; 558 } 559 } 560 561 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 562 extra_bits, cached); 563 if (err) 564 return err; 565 566 for (i = 0; i < num_pages; i++) { 567 struct page *p = pages[i]; 568 SetPageUptodate(p); 569 ClearPageChecked(p); 570 set_page_dirty(p); 571 } 572 573 /* 574 * we've only changed i_size in ram, and we haven't updated 575 * the disk i_size. There is no need to log the inode 576 * at this time. 577 */ 578 if (end_pos > isize) 579 i_size_write(inode, end_pos); 580 return 0; 581 } 582 583 /* 584 * this drops all the extents in the cache that intersect the range 585 * [start, end]. Existing extents are split as required. 586 */ 587 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 588 int skip_pinned) 589 { 590 struct extent_map *em; 591 struct extent_map *split = NULL; 592 struct extent_map *split2 = NULL; 593 struct extent_map_tree *em_tree = &inode->extent_tree; 594 u64 len = end - start + 1; 595 u64 gen; 596 int ret; 597 int testend = 1; 598 unsigned long flags; 599 int compressed = 0; 600 bool modified; 601 602 WARN_ON(end < start); 603 if (end == (u64)-1) { 604 len = (u64)-1; 605 testend = 0; 606 } 607 while (1) { 608 int no_splits = 0; 609 610 modified = false; 611 if (!split) 612 split = alloc_extent_map(); 613 if (!split2) 614 split2 = alloc_extent_map(); 615 if (!split || !split2) 616 no_splits = 1; 617 618 write_lock(&em_tree->lock); 619 em = lookup_extent_mapping(em_tree, start, len); 620 if (!em) { 621 write_unlock(&em_tree->lock); 622 break; 623 } 624 flags = em->flags; 625 gen = em->generation; 626 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 627 if (testend && em->start + em->len >= start + len) { 628 free_extent_map(em); 629 write_unlock(&em_tree->lock); 630 break; 631 } 632 start = em->start + em->len; 633 if (testend) 634 len = start + len - (em->start + em->len); 635 free_extent_map(em); 636 write_unlock(&em_tree->lock); 637 continue; 638 } 639 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 640 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 641 clear_bit(EXTENT_FLAG_LOGGING, &flags); 642 modified = !list_empty(&em->list); 643 if (no_splits) 644 goto next; 645 646 if (em->start < start) { 647 split->start = em->start; 648 split->len = start - em->start; 649 650 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 651 split->orig_start = em->orig_start; 652 split->block_start = em->block_start; 653 654 if (compressed) 655 split->block_len = em->block_len; 656 else 657 split->block_len = split->len; 658 split->orig_block_len = max(split->block_len, 659 em->orig_block_len); 660 split->ram_bytes = em->ram_bytes; 661 } else { 662 split->orig_start = split->start; 663 split->block_len = 0; 664 split->block_start = em->block_start; 665 split->orig_block_len = 0; 666 split->ram_bytes = split->len; 667 } 668 669 split->generation = gen; 670 split->flags = flags; 671 split->compress_type = em->compress_type; 672 replace_extent_mapping(em_tree, em, split, modified); 673 free_extent_map(split); 674 split = split2; 675 split2 = NULL; 676 } 677 if (testend && em->start + em->len > start + len) { 678 u64 diff = start + len - em->start; 679 680 split->start = start + len; 681 split->len = em->start + em->len - (start + len); 682 split->flags = flags; 683 split->compress_type = em->compress_type; 684 split->generation = gen; 685 686 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 687 split->orig_block_len = max(em->block_len, 688 em->orig_block_len); 689 690 split->ram_bytes = em->ram_bytes; 691 if (compressed) { 692 split->block_len = em->block_len; 693 split->block_start = em->block_start; 694 split->orig_start = em->orig_start; 695 } else { 696 split->block_len = split->len; 697 split->block_start = em->block_start 698 + diff; 699 split->orig_start = em->orig_start; 700 } 701 } else { 702 split->ram_bytes = split->len; 703 split->orig_start = split->start; 704 split->block_len = 0; 705 split->block_start = em->block_start; 706 split->orig_block_len = 0; 707 } 708 709 if (extent_map_in_tree(em)) { 710 replace_extent_mapping(em_tree, em, split, 711 modified); 712 } else { 713 ret = add_extent_mapping(em_tree, split, 714 modified); 715 ASSERT(ret == 0); /* Logic error */ 716 } 717 free_extent_map(split); 718 split = NULL; 719 } 720 next: 721 if (extent_map_in_tree(em)) 722 remove_extent_mapping(em_tree, em); 723 write_unlock(&em_tree->lock); 724 725 /* once for us */ 726 free_extent_map(em); 727 /* once for the tree*/ 728 free_extent_map(em); 729 } 730 if (split) 731 free_extent_map(split); 732 if (split2) 733 free_extent_map(split2); 734 } 735 736 /* 737 * this is very complex, but the basic idea is to drop all extents 738 * in the range start - end. hint_block is filled in with a block number 739 * that would be a good hint to the block allocator for this file. 740 * 741 * If an extent intersects the range but is not entirely inside the range 742 * it is either truncated or split. Anything entirely inside the range 743 * is deleted from the tree. 744 */ 745 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 746 struct btrfs_root *root, struct inode *inode, 747 struct btrfs_path *path, u64 start, u64 end, 748 u64 *drop_end, int drop_cache, 749 int replace_extent, 750 u32 extent_item_size, 751 int *key_inserted) 752 { 753 struct btrfs_fs_info *fs_info = root->fs_info; 754 struct extent_buffer *leaf; 755 struct btrfs_file_extent_item *fi; 756 struct btrfs_ref ref = { 0 }; 757 struct btrfs_key key; 758 struct btrfs_key new_key; 759 u64 ino = btrfs_ino(BTRFS_I(inode)); 760 u64 search_start = start; 761 u64 disk_bytenr = 0; 762 u64 num_bytes = 0; 763 u64 extent_offset = 0; 764 u64 extent_end = 0; 765 u64 last_end = start; 766 int del_nr = 0; 767 int del_slot = 0; 768 int extent_type; 769 int recow; 770 int ret; 771 int modify_tree = -1; 772 int update_refs; 773 int found = 0; 774 int leafs_visited = 0; 775 776 if (drop_cache) 777 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0); 778 779 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 780 modify_tree = 0; 781 782 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 783 root == fs_info->tree_root); 784 while (1) { 785 recow = 0; 786 ret = btrfs_lookup_file_extent(trans, root, path, ino, 787 search_start, modify_tree); 788 if (ret < 0) 789 break; 790 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 791 leaf = path->nodes[0]; 792 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 793 if (key.objectid == ino && 794 key.type == BTRFS_EXTENT_DATA_KEY) 795 path->slots[0]--; 796 } 797 ret = 0; 798 leafs_visited++; 799 next_slot: 800 leaf = path->nodes[0]; 801 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 802 BUG_ON(del_nr > 0); 803 ret = btrfs_next_leaf(root, path); 804 if (ret < 0) 805 break; 806 if (ret > 0) { 807 ret = 0; 808 break; 809 } 810 leafs_visited++; 811 leaf = path->nodes[0]; 812 recow = 1; 813 } 814 815 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 816 817 if (key.objectid > ino) 818 break; 819 if (WARN_ON_ONCE(key.objectid < ino) || 820 key.type < BTRFS_EXTENT_DATA_KEY) { 821 ASSERT(del_nr == 0); 822 path->slots[0]++; 823 goto next_slot; 824 } 825 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 826 break; 827 828 fi = btrfs_item_ptr(leaf, path->slots[0], 829 struct btrfs_file_extent_item); 830 extent_type = btrfs_file_extent_type(leaf, fi); 831 832 if (extent_type == BTRFS_FILE_EXTENT_REG || 833 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 834 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 835 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 836 extent_offset = btrfs_file_extent_offset(leaf, fi); 837 extent_end = key.offset + 838 btrfs_file_extent_num_bytes(leaf, fi); 839 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 840 extent_end = key.offset + 841 btrfs_file_extent_ram_bytes(leaf, fi); 842 } else { 843 /* can't happen */ 844 BUG(); 845 } 846 847 /* 848 * Don't skip extent items representing 0 byte lengths. They 849 * used to be created (bug) if while punching holes we hit 850 * -ENOSPC condition. So if we find one here, just ensure we 851 * delete it, otherwise we would insert a new file extent item 852 * with the same key (offset) as that 0 bytes length file 853 * extent item in the call to setup_items_for_insert() later 854 * in this function. 855 */ 856 if (extent_end == key.offset && extent_end >= search_start) { 857 last_end = extent_end; 858 goto delete_extent_item; 859 } 860 861 if (extent_end <= search_start) { 862 path->slots[0]++; 863 goto next_slot; 864 } 865 866 found = 1; 867 search_start = max(key.offset, start); 868 if (recow || !modify_tree) { 869 modify_tree = -1; 870 btrfs_release_path(path); 871 continue; 872 } 873 874 /* 875 * | - range to drop - | 876 * | -------- extent -------- | 877 */ 878 if (start > key.offset && end < extent_end) { 879 BUG_ON(del_nr > 0); 880 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 881 ret = -EOPNOTSUPP; 882 break; 883 } 884 885 memcpy(&new_key, &key, sizeof(new_key)); 886 new_key.offset = start; 887 ret = btrfs_duplicate_item(trans, root, path, 888 &new_key); 889 if (ret == -EAGAIN) { 890 btrfs_release_path(path); 891 continue; 892 } 893 if (ret < 0) 894 break; 895 896 leaf = path->nodes[0]; 897 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 898 struct btrfs_file_extent_item); 899 btrfs_set_file_extent_num_bytes(leaf, fi, 900 start - key.offset); 901 902 fi = btrfs_item_ptr(leaf, path->slots[0], 903 struct btrfs_file_extent_item); 904 905 extent_offset += start - key.offset; 906 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 907 btrfs_set_file_extent_num_bytes(leaf, fi, 908 extent_end - start); 909 btrfs_mark_buffer_dirty(leaf); 910 911 if (update_refs && disk_bytenr > 0) { 912 btrfs_init_generic_ref(&ref, 913 BTRFS_ADD_DELAYED_REF, 914 disk_bytenr, num_bytes, 0); 915 btrfs_init_data_ref(&ref, 916 root->root_key.objectid, 917 new_key.objectid, 918 start - extent_offset); 919 ret = btrfs_inc_extent_ref(trans, &ref); 920 BUG_ON(ret); /* -ENOMEM */ 921 } 922 key.offset = start; 923 } 924 /* 925 * From here on out we will have actually dropped something, so 926 * last_end can be updated. 927 */ 928 last_end = extent_end; 929 930 /* 931 * | ---- range to drop ----- | 932 * | -------- extent -------- | 933 */ 934 if (start <= key.offset && end < extent_end) { 935 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 936 ret = -EOPNOTSUPP; 937 break; 938 } 939 940 memcpy(&new_key, &key, sizeof(new_key)); 941 new_key.offset = end; 942 btrfs_set_item_key_safe(fs_info, path, &new_key); 943 944 extent_offset += end - key.offset; 945 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 946 btrfs_set_file_extent_num_bytes(leaf, fi, 947 extent_end - end); 948 btrfs_mark_buffer_dirty(leaf); 949 if (update_refs && disk_bytenr > 0) 950 inode_sub_bytes(inode, end - key.offset); 951 break; 952 } 953 954 search_start = extent_end; 955 /* 956 * | ---- range to drop ----- | 957 * | -------- extent -------- | 958 */ 959 if (start > key.offset && end >= extent_end) { 960 BUG_ON(del_nr > 0); 961 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 962 ret = -EOPNOTSUPP; 963 break; 964 } 965 966 btrfs_set_file_extent_num_bytes(leaf, fi, 967 start - key.offset); 968 btrfs_mark_buffer_dirty(leaf); 969 if (update_refs && disk_bytenr > 0) 970 inode_sub_bytes(inode, extent_end - start); 971 if (end == extent_end) 972 break; 973 974 path->slots[0]++; 975 goto next_slot; 976 } 977 978 /* 979 * | ---- range to drop ----- | 980 * | ------ extent ------ | 981 */ 982 if (start <= key.offset && end >= extent_end) { 983 delete_extent_item: 984 if (del_nr == 0) { 985 del_slot = path->slots[0]; 986 del_nr = 1; 987 } else { 988 BUG_ON(del_slot + del_nr != path->slots[0]); 989 del_nr++; 990 } 991 992 if (update_refs && 993 extent_type == BTRFS_FILE_EXTENT_INLINE) { 994 inode_sub_bytes(inode, 995 extent_end - key.offset); 996 extent_end = ALIGN(extent_end, 997 fs_info->sectorsize); 998 } else if (update_refs && disk_bytenr > 0) { 999 btrfs_init_generic_ref(&ref, 1000 BTRFS_DROP_DELAYED_REF, 1001 disk_bytenr, num_bytes, 0); 1002 btrfs_init_data_ref(&ref, 1003 root->root_key.objectid, 1004 key.objectid, 1005 key.offset - extent_offset); 1006 ret = btrfs_free_extent(trans, &ref); 1007 BUG_ON(ret); /* -ENOMEM */ 1008 inode_sub_bytes(inode, 1009 extent_end - key.offset); 1010 } 1011 1012 if (end == extent_end) 1013 break; 1014 1015 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 1016 path->slots[0]++; 1017 goto next_slot; 1018 } 1019 1020 ret = btrfs_del_items(trans, root, path, del_slot, 1021 del_nr); 1022 if (ret) { 1023 btrfs_abort_transaction(trans, ret); 1024 break; 1025 } 1026 1027 del_nr = 0; 1028 del_slot = 0; 1029 1030 btrfs_release_path(path); 1031 continue; 1032 } 1033 1034 BUG(); 1035 } 1036 1037 if (!ret && del_nr > 0) { 1038 /* 1039 * Set path->slots[0] to first slot, so that after the delete 1040 * if items are move off from our leaf to its immediate left or 1041 * right neighbor leafs, we end up with a correct and adjusted 1042 * path->slots[0] for our insertion (if replace_extent != 0). 1043 */ 1044 path->slots[0] = del_slot; 1045 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1046 if (ret) 1047 btrfs_abort_transaction(trans, ret); 1048 } 1049 1050 leaf = path->nodes[0]; 1051 /* 1052 * If btrfs_del_items() was called, it might have deleted a leaf, in 1053 * which case it unlocked our path, so check path->locks[0] matches a 1054 * write lock. 1055 */ 1056 if (!ret && replace_extent && leafs_visited == 1 && 1057 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 1058 path->locks[0] == BTRFS_WRITE_LOCK) && 1059 btrfs_leaf_free_space(leaf) >= 1060 sizeof(struct btrfs_item) + extent_item_size) { 1061 1062 key.objectid = ino; 1063 key.type = BTRFS_EXTENT_DATA_KEY; 1064 key.offset = start; 1065 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 1066 struct btrfs_key slot_key; 1067 1068 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 1069 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1070 path->slots[0]++; 1071 } 1072 setup_items_for_insert(root, path, &key, 1073 &extent_item_size, 1074 extent_item_size, 1075 sizeof(struct btrfs_item) + 1076 extent_item_size, 1); 1077 *key_inserted = 1; 1078 } 1079 1080 if (!replace_extent || !(*key_inserted)) 1081 btrfs_release_path(path); 1082 if (drop_end) 1083 *drop_end = found ? min(end, last_end) : end; 1084 return ret; 1085 } 1086 1087 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1088 struct btrfs_root *root, struct inode *inode, u64 start, 1089 u64 end, int drop_cache) 1090 { 1091 struct btrfs_path *path; 1092 int ret; 1093 1094 path = btrfs_alloc_path(); 1095 if (!path) 1096 return -ENOMEM; 1097 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1098 drop_cache, 0, 0, NULL); 1099 btrfs_free_path(path); 1100 return ret; 1101 } 1102 1103 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1104 u64 objectid, u64 bytenr, u64 orig_offset, 1105 u64 *start, u64 *end) 1106 { 1107 struct btrfs_file_extent_item *fi; 1108 struct btrfs_key key; 1109 u64 extent_end; 1110 1111 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1112 return 0; 1113 1114 btrfs_item_key_to_cpu(leaf, &key, slot); 1115 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1116 return 0; 1117 1118 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1119 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1120 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1121 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1122 btrfs_file_extent_compression(leaf, fi) || 1123 btrfs_file_extent_encryption(leaf, fi) || 1124 btrfs_file_extent_other_encoding(leaf, fi)) 1125 return 0; 1126 1127 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1128 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1129 return 0; 1130 1131 *start = key.offset; 1132 *end = extent_end; 1133 return 1; 1134 } 1135 1136 /* 1137 * Mark extent in the range start - end as written. 1138 * 1139 * This changes extent type from 'pre-allocated' to 'regular'. If only 1140 * part of extent is marked as written, the extent will be split into 1141 * two or three. 1142 */ 1143 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1144 struct btrfs_inode *inode, u64 start, u64 end) 1145 { 1146 struct btrfs_fs_info *fs_info = trans->fs_info; 1147 struct btrfs_root *root = inode->root; 1148 struct extent_buffer *leaf; 1149 struct btrfs_path *path; 1150 struct btrfs_file_extent_item *fi; 1151 struct btrfs_ref ref = { 0 }; 1152 struct btrfs_key key; 1153 struct btrfs_key new_key; 1154 u64 bytenr; 1155 u64 num_bytes; 1156 u64 extent_end; 1157 u64 orig_offset; 1158 u64 other_start; 1159 u64 other_end; 1160 u64 split; 1161 int del_nr = 0; 1162 int del_slot = 0; 1163 int recow; 1164 int ret; 1165 u64 ino = btrfs_ino(inode); 1166 1167 path = btrfs_alloc_path(); 1168 if (!path) 1169 return -ENOMEM; 1170 again: 1171 recow = 0; 1172 split = start; 1173 key.objectid = ino; 1174 key.type = BTRFS_EXTENT_DATA_KEY; 1175 key.offset = split; 1176 1177 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1178 if (ret < 0) 1179 goto out; 1180 if (ret > 0 && path->slots[0] > 0) 1181 path->slots[0]--; 1182 1183 leaf = path->nodes[0]; 1184 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1185 if (key.objectid != ino || 1186 key.type != BTRFS_EXTENT_DATA_KEY) { 1187 ret = -EINVAL; 1188 btrfs_abort_transaction(trans, ret); 1189 goto out; 1190 } 1191 fi = btrfs_item_ptr(leaf, path->slots[0], 1192 struct btrfs_file_extent_item); 1193 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1194 ret = -EINVAL; 1195 btrfs_abort_transaction(trans, ret); 1196 goto out; 1197 } 1198 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1199 if (key.offset > start || extent_end < end) { 1200 ret = -EINVAL; 1201 btrfs_abort_transaction(trans, ret); 1202 goto out; 1203 } 1204 1205 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1206 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1207 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1208 memcpy(&new_key, &key, sizeof(new_key)); 1209 1210 if (start == key.offset && end < extent_end) { 1211 other_start = 0; 1212 other_end = start; 1213 if (extent_mergeable(leaf, path->slots[0] - 1, 1214 ino, bytenr, orig_offset, 1215 &other_start, &other_end)) { 1216 new_key.offset = end; 1217 btrfs_set_item_key_safe(fs_info, path, &new_key); 1218 fi = btrfs_item_ptr(leaf, path->slots[0], 1219 struct btrfs_file_extent_item); 1220 btrfs_set_file_extent_generation(leaf, fi, 1221 trans->transid); 1222 btrfs_set_file_extent_num_bytes(leaf, fi, 1223 extent_end - end); 1224 btrfs_set_file_extent_offset(leaf, fi, 1225 end - orig_offset); 1226 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1227 struct btrfs_file_extent_item); 1228 btrfs_set_file_extent_generation(leaf, fi, 1229 trans->transid); 1230 btrfs_set_file_extent_num_bytes(leaf, fi, 1231 end - other_start); 1232 btrfs_mark_buffer_dirty(leaf); 1233 goto out; 1234 } 1235 } 1236 1237 if (start > key.offset && end == extent_end) { 1238 other_start = end; 1239 other_end = 0; 1240 if (extent_mergeable(leaf, path->slots[0] + 1, 1241 ino, bytenr, orig_offset, 1242 &other_start, &other_end)) { 1243 fi = btrfs_item_ptr(leaf, path->slots[0], 1244 struct btrfs_file_extent_item); 1245 btrfs_set_file_extent_num_bytes(leaf, fi, 1246 start - key.offset); 1247 btrfs_set_file_extent_generation(leaf, fi, 1248 trans->transid); 1249 path->slots[0]++; 1250 new_key.offset = start; 1251 btrfs_set_item_key_safe(fs_info, path, &new_key); 1252 1253 fi = btrfs_item_ptr(leaf, path->slots[0], 1254 struct btrfs_file_extent_item); 1255 btrfs_set_file_extent_generation(leaf, fi, 1256 trans->transid); 1257 btrfs_set_file_extent_num_bytes(leaf, fi, 1258 other_end - start); 1259 btrfs_set_file_extent_offset(leaf, fi, 1260 start - orig_offset); 1261 btrfs_mark_buffer_dirty(leaf); 1262 goto out; 1263 } 1264 } 1265 1266 while (start > key.offset || end < extent_end) { 1267 if (key.offset == start) 1268 split = end; 1269 1270 new_key.offset = split; 1271 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1272 if (ret == -EAGAIN) { 1273 btrfs_release_path(path); 1274 goto again; 1275 } 1276 if (ret < 0) { 1277 btrfs_abort_transaction(trans, ret); 1278 goto out; 1279 } 1280 1281 leaf = path->nodes[0]; 1282 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1283 struct btrfs_file_extent_item); 1284 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1285 btrfs_set_file_extent_num_bytes(leaf, fi, 1286 split - key.offset); 1287 1288 fi = btrfs_item_ptr(leaf, path->slots[0], 1289 struct btrfs_file_extent_item); 1290 1291 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1292 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1293 btrfs_set_file_extent_num_bytes(leaf, fi, 1294 extent_end - split); 1295 btrfs_mark_buffer_dirty(leaf); 1296 1297 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 1298 num_bytes, 0); 1299 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 1300 orig_offset); 1301 ret = btrfs_inc_extent_ref(trans, &ref); 1302 if (ret) { 1303 btrfs_abort_transaction(trans, ret); 1304 goto out; 1305 } 1306 1307 if (split == start) { 1308 key.offset = start; 1309 } else { 1310 if (start != key.offset) { 1311 ret = -EINVAL; 1312 btrfs_abort_transaction(trans, ret); 1313 goto out; 1314 } 1315 path->slots[0]--; 1316 extent_end = end; 1317 } 1318 recow = 1; 1319 } 1320 1321 other_start = end; 1322 other_end = 0; 1323 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1324 num_bytes, 0); 1325 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset); 1326 if (extent_mergeable(leaf, path->slots[0] + 1, 1327 ino, bytenr, orig_offset, 1328 &other_start, &other_end)) { 1329 if (recow) { 1330 btrfs_release_path(path); 1331 goto again; 1332 } 1333 extent_end = other_end; 1334 del_slot = path->slots[0] + 1; 1335 del_nr++; 1336 ret = btrfs_free_extent(trans, &ref); 1337 if (ret) { 1338 btrfs_abort_transaction(trans, ret); 1339 goto out; 1340 } 1341 } 1342 other_start = 0; 1343 other_end = start; 1344 if (extent_mergeable(leaf, path->slots[0] - 1, 1345 ino, bytenr, orig_offset, 1346 &other_start, &other_end)) { 1347 if (recow) { 1348 btrfs_release_path(path); 1349 goto again; 1350 } 1351 key.offset = other_start; 1352 del_slot = path->slots[0]; 1353 del_nr++; 1354 ret = btrfs_free_extent(trans, &ref); 1355 if (ret) { 1356 btrfs_abort_transaction(trans, ret); 1357 goto out; 1358 } 1359 } 1360 if (del_nr == 0) { 1361 fi = btrfs_item_ptr(leaf, path->slots[0], 1362 struct btrfs_file_extent_item); 1363 btrfs_set_file_extent_type(leaf, fi, 1364 BTRFS_FILE_EXTENT_REG); 1365 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1366 btrfs_mark_buffer_dirty(leaf); 1367 } else { 1368 fi = btrfs_item_ptr(leaf, del_slot - 1, 1369 struct btrfs_file_extent_item); 1370 btrfs_set_file_extent_type(leaf, fi, 1371 BTRFS_FILE_EXTENT_REG); 1372 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1373 btrfs_set_file_extent_num_bytes(leaf, fi, 1374 extent_end - key.offset); 1375 btrfs_mark_buffer_dirty(leaf); 1376 1377 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1378 if (ret < 0) { 1379 btrfs_abort_transaction(trans, ret); 1380 goto out; 1381 } 1382 } 1383 out: 1384 btrfs_free_path(path); 1385 return 0; 1386 } 1387 1388 /* 1389 * on error we return an unlocked page and the error value 1390 * on success we return a locked page and 0 1391 */ 1392 static int prepare_uptodate_page(struct inode *inode, 1393 struct page *page, u64 pos, 1394 bool force_uptodate) 1395 { 1396 int ret = 0; 1397 1398 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1399 !PageUptodate(page)) { 1400 ret = btrfs_readpage(NULL, page); 1401 if (ret) 1402 return ret; 1403 lock_page(page); 1404 if (!PageUptodate(page)) { 1405 unlock_page(page); 1406 return -EIO; 1407 } 1408 if (page->mapping != inode->i_mapping) { 1409 unlock_page(page); 1410 return -EAGAIN; 1411 } 1412 } 1413 return 0; 1414 } 1415 1416 /* 1417 * this just gets pages into the page cache and locks them down. 1418 */ 1419 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1420 size_t num_pages, loff_t pos, 1421 size_t write_bytes, bool force_uptodate) 1422 { 1423 int i; 1424 unsigned long index = pos >> PAGE_SHIFT; 1425 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1426 int err = 0; 1427 int faili; 1428 1429 for (i = 0; i < num_pages; i++) { 1430 again: 1431 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1432 mask | __GFP_WRITE); 1433 if (!pages[i]) { 1434 faili = i - 1; 1435 err = -ENOMEM; 1436 goto fail; 1437 } 1438 1439 if (i == 0) 1440 err = prepare_uptodate_page(inode, pages[i], pos, 1441 force_uptodate); 1442 if (!err && i == num_pages - 1) 1443 err = prepare_uptodate_page(inode, pages[i], 1444 pos + write_bytes, false); 1445 if (err) { 1446 put_page(pages[i]); 1447 if (err == -EAGAIN) { 1448 err = 0; 1449 goto again; 1450 } 1451 faili = i - 1; 1452 goto fail; 1453 } 1454 wait_on_page_writeback(pages[i]); 1455 } 1456 1457 return 0; 1458 fail: 1459 while (faili >= 0) { 1460 unlock_page(pages[faili]); 1461 put_page(pages[faili]); 1462 faili--; 1463 } 1464 return err; 1465 1466 } 1467 1468 /* 1469 * This function locks the extent and properly waits for data=ordered extents 1470 * to finish before allowing the pages to be modified if need. 1471 * 1472 * The return value: 1473 * 1 - the extent is locked 1474 * 0 - the extent is not locked, and everything is OK 1475 * -EAGAIN - need re-prepare the pages 1476 * the other < 0 number - Something wrong happens 1477 */ 1478 static noinline int 1479 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1480 size_t num_pages, loff_t pos, 1481 size_t write_bytes, 1482 u64 *lockstart, u64 *lockend, 1483 struct extent_state **cached_state) 1484 { 1485 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1486 u64 start_pos; 1487 u64 last_pos; 1488 int i; 1489 int ret = 0; 1490 1491 start_pos = round_down(pos, fs_info->sectorsize); 1492 last_pos = start_pos 1493 + round_up(pos + write_bytes - start_pos, 1494 fs_info->sectorsize) - 1; 1495 1496 if (start_pos < inode->vfs_inode.i_size) { 1497 struct btrfs_ordered_extent *ordered; 1498 1499 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1500 cached_state); 1501 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1502 last_pos - start_pos + 1); 1503 if (ordered && 1504 ordered->file_offset + ordered->len > start_pos && 1505 ordered->file_offset <= last_pos) { 1506 unlock_extent_cached(&inode->io_tree, start_pos, 1507 last_pos, cached_state); 1508 for (i = 0; i < num_pages; i++) { 1509 unlock_page(pages[i]); 1510 put_page(pages[i]); 1511 } 1512 btrfs_start_ordered_extent(&inode->vfs_inode, 1513 ordered, 1); 1514 btrfs_put_ordered_extent(ordered); 1515 return -EAGAIN; 1516 } 1517 if (ordered) 1518 btrfs_put_ordered_extent(ordered); 1519 1520 *lockstart = start_pos; 1521 *lockend = last_pos; 1522 ret = 1; 1523 } 1524 1525 /* 1526 * It's possible the pages are dirty right now, but we don't want 1527 * to clean them yet because copy_from_user may catch a page fault 1528 * and we might have to fall back to one page at a time. If that 1529 * happens, we'll unlock these pages and we'd have a window where 1530 * reclaim could sneak in and drop the once-dirty page on the floor 1531 * without writing it. 1532 * 1533 * We have the pages locked and the extent range locked, so there's 1534 * no way someone can start IO on any dirty pages in this range. 1535 * 1536 * We'll call btrfs_dirty_pages() later on, and that will flip around 1537 * delalloc bits and dirty the pages as required. 1538 */ 1539 for (i = 0; i < num_pages; i++) { 1540 set_page_extent_mapped(pages[i]); 1541 WARN_ON(!PageLocked(pages[i])); 1542 } 1543 1544 return ret; 1545 } 1546 1547 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1548 size_t *write_bytes) 1549 { 1550 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1551 struct btrfs_root *root = inode->root; 1552 u64 lockstart, lockend; 1553 u64 num_bytes; 1554 int ret; 1555 1556 ret = btrfs_start_write_no_snapshotting(root); 1557 if (!ret) 1558 return -EAGAIN; 1559 1560 lockstart = round_down(pos, fs_info->sectorsize); 1561 lockend = round_up(pos + *write_bytes, 1562 fs_info->sectorsize) - 1; 1563 1564 btrfs_lock_and_flush_ordered_range(&inode->io_tree, inode, lockstart, 1565 lockend, NULL); 1566 1567 num_bytes = lockend - lockstart + 1; 1568 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1569 NULL, NULL, NULL); 1570 if (ret <= 0) { 1571 ret = 0; 1572 btrfs_end_write_no_snapshotting(root); 1573 } else { 1574 *write_bytes = min_t(size_t, *write_bytes , 1575 num_bytes - pos + lockstart); 1576 } 1577 1578 unlock_extent(&inode->io_tree, lockstart, lockend); 1579 1580 return ret; 1581 } 1582 1583 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1584 struct iov_iter *i) 1585 { 1586 struct file *file = iocb->ki_filp; 1587 loff_t pos = iocb->ki_pos; 1588 struct inode *inode = file_inode(file); 1589 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1590 struct btrfs_root *root = BTRFS_I(inode)->root; 1591 struct page **pages = NULL; 1592 struct extent_changeset *data_reserved = NULL; 1593 u64 release_bytes = 0; 1594 u64 lockstart; 1595 u64 lockend; 1596 size_t num_written = 0; 1597 int nrptrs; 1598 int ret = 0; 1599 bool only_release_metadata = false; 1600 bool force_page_uptodate = false; 1601 1602 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1603 PAGE_SIZE / (sizeof(struct page *))); 1604 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1605 nrptrs = max(nrptrs, 8); 1606 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1607 if (!pages) 1608 return -ENOMEM; 1609 1610 while (iov_iter_count(i) > 0) { 1611 struct extent_state *cached_state = NULL; 1612 size_t offset = offset_in_page(pos); 1613 size_t sector_offset; 1614 size_t write_bytes = min(iov_iter_count(i), 1615 nrptrs * (size_t)PAGE_SIZE - 1616 offset); 1617 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1618 PAGE_SIZE); 1619 size_t reserve_bytes; 1620 size_t dirty_pages; 1621 size_t copied; 1622 size_t dirty_sectors; 1623 size_t num_sectors; 1624 int extents_locked; 1625 1626 WARN_ON(num_pages > nrptrs); 1627 1628 /* 1629 * Fault pages before locking them in prepare_pages 1630 * to avoid recursive lock 1631 */ 1632 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1633 ret = -EFAULT; 1634 break; 1635 } 1636 1637 only_release_metadata = false; 1638 sector_offset = pos & (fs_info->sectorsize - 1); 1639 reserve_bytes = round_up(write_bytes + sector_offset, 1640 fs_info->sectorsize); 1641 1642 extent_changeset_release(data_reserved); 1643 ret = btrfs_check_data_free_space(inode, &data_reserved, pos, 1644 write_bytes); 1645 if (ret < 0) { 1646 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1647 BTRFS_INODE_PREALLOC)) && 1648 check_can_nocow(BTRFS_I(inode), pos, 1649 &write_bytes) > 0) { 1650 /* 1651 * For nodata cow case, no need to reserve 1652 * data space. 1653 */ 1654 only_release_metadata = true; 1655 /* 1656 * our prealloc extent may be smaller than 1657 * write_bytes, so scale down. 1658 */ 1659 num_pages = DIV_ROUND_UP(write_bytes + offset, 1660 PAGE_SIZE); 1661 reserve_bytes = round_up(write_bytes + 1662 sector_offset, 1663 fs_info->sectorsize); 1664 } else { 1665 break; 1666 } 1667 } 1668 1669 WARN_ON(reserve_bytes == 0); 1670 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1671 reserve_bytes); 1672 if (ret) { 1673 if (!only_release_metadata) 1674 btrfs_free_reserved_data_space(inode, 1675 data_reserved, pos, 1676 write_bytes); 1677 else 1678 btrfs_end_write_no_snapshotting(root); 1679 break; 1680 } 1681 1682 release_bytes = reserve_bytes; 1683 again: 1684 /* 1685 * This is going to setup the pages array with the number of 1686 * pages we want, so we don't really need to worry about the 1687 * contents of pages from loop to loop 1688 */ 1689 ret = prepare_pages(inode, pages, num_pages, 1690 pos, write_bytes, 1691 force_page_uptodate); 1692 if (ret) { 1693 btrfs_delalloc_release_extents(BTRFS_I(inode), 1694 reserve_bytes); 1695 break; 1696 } 1697 1698 extents_locked = lock_and_cleanup_extent_if_need( 1699 BTRFS_I(inode), pages, 1700 num_pages, pos, write_bytes, &lockstart, 1701 &lockend, &cached_state); 1702 if (extents_locked < 0) { 1703 if (extents_locked == -EAGAIN) 1704 goto again; 1705 btrfs_delalloc_release_extents(BTRFS_I(inode), 1706 reserve_bytes); 1707 ret = extents_locked; 1708 break; 1709 } 1710 1711 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1712 1713 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1714 dirty_sectors = round_up(copied + sector_offset, 1715 fs_info->sectorsize); 1716 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1717 1718 /* 1719 * if we have trouble faulting in the pages, fall 1720 * back to one page at a time 1721 */ 1722 if (copied < write_bytes) 1723 nrptrs = 1; 1724 1725 if (copied == 0) { 1726 force_page_uptodate = true; 1727 dirty_sectors = 0; 1728 dirty_pages = 0; 1729 } else { 1730 force_page_uptodate = false; 1731 dirty_pages = DIV_ROUND_UP(copied + offset, 1732 PAGE_SIZE); 1733 } 1734 1735 if (num_sectors > dirty_sectors) { 1736 /* release everything except the sectors we dirtied */ 1737 release_bytes -= dirty_sectors << 1738 fs_info->sb->s_blocksize_bits; 1739 if (only_release_metadata) { 1740 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1741 release_bytes, true); 1742 } else { 1743 u64 __pos; 1744 1745 __pos = round_down(pos, 1746 fs_info->sectorsize) + 1747 (dirty_pages << PAGE_SHIFT); 1748 btrfs_delalloc_release_space(inode, 1749 data_reserved, __pos, 1750 release_bytes, true); 1751 } 1752 } 1753 1754 release_bytes = round_up(copied + sector_offset, 1755 fs_info->sectorsize); 1756 1757 if (copied > 0) 1758 ret = btrfs_dirty_pages(inode, pages, dirty_pages, 1759 pos, copied, &cached_state); 1760 1761 /* 1762 * If we have not locked the extent range, because the range's 1763 * start offset is >= i_size, we might still have a non-NULL 1764 * cached extent state, acquired while marking the extent range 1765 * as delalloc through btrfs_dirty_pages(). Therefore free any 1766 * possible cached extent state to avoid a memory leak. 1767 */ 1768 if (extents_locked) 1769 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1770 lockstart, lockend, &cached_state); 1771 else 1772 free_extent_state(cached_state); 1773 1774 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1775 if (ret) { 1776 btrfs_drop_pages(pages, num_pages); 1777 break; 1778 } 1779 1780 release_bytes = 0; 1781 if (only_release_metadata) 1782 btrfs_end_write_no_snapshotting(root); 1783 1784 if (only_release_metadata && copied > 0) { 1785 lockstart = round_down(pos, 1786 fs_info->sectorsize); 1787 lockend = round_up(pos + copied, 1788 fs_info->sectorsize) - 1; 1789 1790 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1791 lockend, EXTENT_NORESERVE, NULL, 1792 NULL, GFP_NOFS); 1793 } 1794 1795 btrfs_drop_pages(pages, num_pages); 1796 1797 cond_resched(); 1798 1799 balance_dirty_pages_ratelimited(inode->i_mapping); 1800 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1) 1801 btrfs_btree_balance_dirty(fs_info); 1802 1803 pos += copied; 1804 num_written += copied; 1805 } 1806 1807 kfree(pages); 1808 1809 if (release_bytes) { 1810 if (only_release_metadata) { 1811 btrfs_end_write_no_snapshotting(root); 1812 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1813 release_bytes, true); 1814 } else { 1815 btrfs_delalloc_release_space(inode, data_reserved, 1816 round_down(pos, fs_info->sectorsize), 1817 release_bytes, true); 1818 } 1819 } 1820 1821 extent_changeset_free(data_reserved); 1822 return num_written ? num_written : ret; 1823 } 1824 1825 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1826 { 1827 struct file *file = iocb->ki_filp; 1828 struct inode *inode = file_inode(file); 1829 loff_t pos; 1830 ssize_t written; 1831 ssize_t written_buffered; 1832 loff_t endbyte; 1833 int err; 1834 1835 written = generic_file_direct_write(iocb, from); 1836 1837 if (written < 0 || !iov_iter_count(from)) 1838 return written; 1839 1840 pos = iocb->ki_pos; 1841 written_buffered = btrfs_buffered_write(iocb, from); 1842 if (written_buffered < 0) { 1843 err = written_buffered; 1844 goto out; 1845 } 1846 /* 1847 * Ensure all data is persisted. We want the next direct IO read to be 1848 * able to read what was just written. 1849 */ 1850 endbyte = pos + written_buffered - 1; 1851 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1852 if (err) 1853 goto out; 1854 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1855 if (err) 1856 goto out; 1857 written += written_buffered; 1858 iocb->ki_pos = pos + written_buffered; 1859 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1860 endbyte >> PAGE_SHIFT); 1861 out: 1862 return written ? written : err; 1863 } 1864 1865 static void update_time_for_write(struct inode *inode) 1866 { 1867 struct timespec64 now; 1868 1869 if (IS_NOCMTIME(inode)) 1870 return; 1871 1872 now = current_time(inode); 1873 if (!timespec64_equal(&inode->i_mtime, &now)) 1874 inode->i_mtime = now; 1875 1876 if (!timespec64_equal(&inode->i_ctime, &now)) 1877 inode->i_ctime = now; 1878 1879 if (IS_I_VERSION(inode)) 1880 inode_inc_iversion(inode); 1881 } 1882 1883 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1884 struct iov_iter *from) 1885 { 1886 struct file *file = iocb->ki_filp; 1887 struct inode *inode = file_inode(file); 1888 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1889 struct btrfs_root *root = BTRFS_I(inode)->root; 1890 u64 start_pos; 1891 u64 end_pos; 1892 ssize_t num_written = 0; 1893 const bool sync = iocb->ki_flags & IOCB_DSYNC; 1894 ssize_t err; 1895 loff_t pos; 1896 size_t count; 1897 loff_t oldsize; 1898 int clean_page = 0; 1899 1900 if (!(iocb->ki_flags & IOCB_DIRECT) && 1901 (iocb->ki_flags & IOCB_NOWAIT)) 1902 return -EOPNOTSUPP; 1903 1904 if (iocb->ki_flags & IOCB_NOWAIT) { 1905 if (!inode_trylock(inode)) 1906 return -EAGAIN; 1907 } else { 1908 inode_lock(inode); 1909 } 1910 1911 err = generic_write_checks(iocb, from); 1912 if (err <= 0) { 1913 inode_unlock(inode); 1914 return err; 1915 } 1916 1917 pos = iocb->ki_pos; 1918 count = iov_iter_count(from); 1919 if (iocb->ki_flags & IOCB_NOWAIT) { 1920 /* 1921 * We will allocate space in case nodatacow is not set, 1922 * so bail 1923 */ 1924 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1925 BTRFS_INODE_PREALLOC)) || 1926 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) { 1927 inode_unlock(inode); 1928 return -EAGAIN; 1929 } 1930 } 1931 1932 current->backing_dev_info = inode_to_bdi(inode); 1933 err = file_remove_privs(file); 1934 if (err) { 1935 inode_unlock(inode); 1936 goto out; 1937 } 1938 1939 /* 1940 * If BTRFS flips readonly due to some impossible error 1941 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1942 * although we have opened a file as writable, we have 1943 * to stop this write operation to ensure FS consistency. 1944 */ 1945 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1946 inode_unlock(inode); 1947 err = -EROFS; 1948 goto out; 1949 } 1950 1951 /* 1952 * We reserve space for updating the inode when we reserve space for the 1953 * extent we are going to write, so we will enospc out there. We don't 1954 * need to start yet another transaction to update the inode as we will 1955 * update the inode when we finish writing whatever data we write. 1956 */ 1957 update_time_for_write(inode); 1958 1959 start_pos = round_down(pos, fs_info->sectorsize); 1960 oldsize = i_size_read(inode); 1961 if (start_pos > oldsize) { 1962 /* Expand hole size to cover write data, preventing empty gap */ 1963 end_pos = round_up(pos + count, 1964 fs_info->sectorsize); 1965 err = btrfs_cont_expand(inode, oldsize, end_pos); 1966 if (err) { 1967 inode_unlock(inode); 1968 goto out; 1969 } 1970 if (start_pos > round_up(oldsize, fs_info->sectorsize)) 1971 clean_page = 1; 1972 } 1973 1974 if (sync) 1975 atomic_inc(&BTRFS_I(inode)->sync_writers); 1976 1977 if (iocb->ki_flags & IOCB_DIRECT) { 1978 num_written = __btrfs_direct_write(iocb, from); 1979 } else { 1980 num_written = btrfs_buffered_write(iocb, from); 1981 if (num_written > 0) 1982 iocb->ki_pos = pos + num_written; 1983 if (clean_page) 1984 pagecache_isize_extended(inode, oldsize, 1985 i_size_read(inode)); 1986 } 1987 1988 inode_unlock(inode); 1989 1990 /* 1991 * We also have to set last_sub_trans to the current log transid, 1992 * otherwise subsequent syncs to a file that's been synced in this 1993 * transaction will appear to have already occurred. 1994 */ 1995 spin_lock(&BTRFS_I(inode)->lock); 1996 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1997 spin_unlock(&BTRFS_I(inode)->lock); 1998 if (num_written > 0) 1999 num_written = generic_write_sync(iocb, num_written); 2000 2001 if (sync) 2002 atomic_dec(&BTRFS_I(inode)->sync_writers); 2003 out: 2004 current->backing_dev_info = NULL; 2005 return num_written ? num_written : err; 2006 } 2007 2008 int btrfs_release_file(struct inode *inode, struct file *filp) 2009 { 2010 struct btrfs_file_private *private = filp->private_data; 2011 2012 if (private && private->filldir_buf) 2013 kfree(private->filldir_buf); 2014 kfree(private); 2015 filp->private_data = NULL; 2016 2017 /* 2018 * ordered_data_close is set by setattr when we are about to truncate 2019 * a file from a non-zero size to a zero size. This tries to 2020 * flush down new bytes that may have been written if the 2021 * application were using truncate to replace a file in place. 2022 */ 2023 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 2024 &BTRFS_I(inode)->runtime_flags)) 2025 filemap_flush(inode->i_mapping); 2026 return 0; 2027 } 2028 2029 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2030 { 2031 int ret; 2032 struct blk_plug plug; 2033 2034 /* 2035 * This is only called in fsync, which would do synchronous writes, so 2036 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2037 * multiple disks using raid profile, a large IO can be split to 2038 * several segments of stripe length (currently 64K). 2039 */ 2040 blk_start_plug(&plug); 2041 atomic_inc(&BTRFS_I(inode)->sync_writers); 2042 ret = btrfs_fdatawrite_range(inode, start, end); 2043 atomic_dec(&BTRFS_I(inode)->sync_writers); 2044 blk_finish_plug(&plug); 2045 2046 return ret; 2047 } 2048 2049 /* 2050 * fsync call for both files and directories. This logs the inode into 2051 * the tree log instead of forcing full commits whenever possible. 2052 * 2053 * It needs to call filemap_fdatawait so that all ordered extent updates are 2054 * in the metadata btree are up to date for copying to the log. 2055 * 2056 * It drops the inode mutex before doing the tree log commit. This is an 2057 * important optimization for directories because holding the mutex prevents 2058 * new operations on the dir while we write to disk. 2059 */ 2060 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2061 { 2062 struct dentry *dentry = file_dentry(file); 2063 struct inode *inode = d_inode(dentry); 2064 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2065 struct btrfs_root *root = BTRFS_I(inode)->root; 2066 struct btrfs_trans_handle *trans; 2067 struct btrfs_log_ctx ctx; 2068 int ret = 0, err; 2069 2070 trace_btrfs_sync_file(file, datasync); 2071 2072 btrfs_init_log_ctx(&ctx, inode); 2073 2074 /* 2075 * We write the dirty pages in the range and wait until they complete 2076 * out of the ->i_mutex. If so, we can flush the dirty pages by 2077 * multi-task, and make the performance up. See 2078 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2079 */ 2080 ret = start_ordered_ops(inode, start, end); 2081 if (ret) 2082 goto out; 2083 2084 inode_lock(inode); 2085 2086 /* 2087 * We take the dio_sem here because the tree log stuff can race with 2088 * lockless dio writes and get an extent map logged for an extent we 2089 * never waited on. We need it this high up for lockdep reasons. 2090 */ 2091 down_write(&BTRFS_I(inode)->dio_sem); 2092 2093 atomic_inc(&root->log_batch); 2094 2095 /* 2096 * If the inode needs a full sync, make sure we use a full range to 2097 * avoid log tree corruption, due to hole detection racing with ordered 2098 * extent completion for adjacent ranges, and assertion failures during 2099 * hole detection. Do this while holding the inode lock, to avoid races 2100 * with other tasks. 2101 */ 2102 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2103 &BTRFS_I(inode)->runtime_flags)) { 2104 start = 0; 2105 end = LLONG_MAX; 2106 } 2107 2108 /* 2109 * Before we acquired the inode's lock, someone may have dirtied more 2110 * pages in the target range. We need to make sure that writeback for 2111 * any such pages does not start while we are logging the inode, because 2112 * if it does, any of the following might happen when we are not doing a 2113 * full inode sync: 2114 * 2115 * 1) We log an extent after its writeback finishes but before its 2116 * checksums are added to the csum tree, leading to -EIO errors 2117 * when attempting to read the extent after a log replay. 2118 * 2119 * 2) We can end up logging an extent before its writeback finishes. 2120 * Therefore after the log replay we will have a file extent item 2121 * pointing to an unwritten extent (and no data checksums as well). 2122 * 2123 * So trigger writeback for any eventual new dirty pages and then we 2124 * wait for all ordered extents to complete below. 2125 */ 2126 ret = start_ordered_ops(inode, start, end); 2127 if (ret) { 2128 inode_unlock(inode); 2129 goto out; 2130 } 2131 2132 /* 2133 * We have to do this here to avoid the priority inversion of waiting on 2134 * IO of a lower priority task while holding a transaction open. 2135 * 2136 * Also, the range length can be represented by u64, we have to do the 2137 * typecasts to avoid signed overflow if it's [0, LLONG_MAX]. 2138 */ 2139 ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1); 2140 if (ret) { 2141 up_write(&BTRFS_I(inode)->dio_sem); 2142 inode_unlock(inode); 2143 goto out; 2144 } 2145 atomic_inc(&root->log_batch); 2146 2147 smp_mb(); 2148 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) || 2149 BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) { 2150 /* 2151 * We've had everything committed since the last time we were 2152 * modified so clear this flag in case it was set for whatever 2153 * reason, it's no longer relevant. 2154 */ 2155 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2156 &BTRFS_I(inode)->runtime_flags); 2157 /* 2158 * An ordered extent might have started before and completed 2159 * already with io errors, in which case the inode was not 2160 * updated and we end up here. So check the inode's mapping 2161 * for any errors that might have happened since we last 2162 * checked called fsync. 2163 */ 2164 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2165 up_write(&BTRFS_I(inode)->dio_sem); 2166 inode_unlock(inode); 2167 goto out; 2168 } 2169 2170 /* 2171 * We use start here because we will need to wait on the IO to complete 2172 * in btrfs_sync_log, which could require joining a transaction (for 2173 * example checking cross references in the nocow path). If we use join 2174 * here we could get into a situation where we're waiting on IO to 2175 * happen that is blocked on a transaction trying to commit. With start 2176 * we inc the extwriter counter, so we wait for all extwriters to exit 2177 * before we start blocking joiners. This comment is to keep somebody 2178 * from thinking they are super smart and changing this to 2179 * btrfs_join_transaction *cough*Josef*cough*. 2180 */ 2181 trans = btrfs_start_transaction(root, 0); 2182 if (IS_ERR(trans)) { 2183 ret = PTR_ERR(trans); 2184 up_write(&BTRFS_I(inode)->dio_sem); 2185 inode_unlock(inode); 2186 goto out; 2187 } 2188 2189 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx); 2190 if (ret < 0) { 2191 /* Fallthrough and commit/free transaction. */ 2192 ret = 1; 2193 } 2194 2195 /* we've logged all the items and now have a consistent 2196 * version of the file in the log. It is possible that 2197 * someone will come in and modify the file, but that's 2198 * fine because the log is consistent on disk, and we 2199 * have references to all of the file's extents 2200 * 2201 * It is possible that someone will come in and log the 2202 * file again, but that will end up using the synchronization 2203 * inside btrfs_sync_log to keep things safe. 2204 */ 2205 up_write(&BTRFS_I(inode)->dio_sem); 2206 inode_unlock(inode); 2207 2208 if (ret != BTRFS_NO_LOG_SYNC) { 2209 if (!ret) { 2210 ret = btrfs_sync_log(trans, root, &ctx); 2211 if (!ret) { 2212 ret = btrfs_end_transaction(trans); 2213 goto out; 2214 } 2215 } 2216 ret = btrfs_commit_transaction(trans); 2217 } else { 2218 ret = btrfs_end_transaction(trans); 2219 } 2220 out: 2221 ASSERT(list_empty(&ctx.list)); 2222 err = file_check_and_advance_wb_err(file); 2223 if (!ret) 2224 ret = err; 2225 return ret > 0 ? -EIO : ret; 2226 } 2227 2228 static const struct vm_operations_struct btrfs_file_vm_ops = { 2229 .fault = filemap_fault, 2230 .map_pages = filemap_map_pages, 2231 .page_mkwrite = btrfs_page_mkwrite, 2232 }; 2233 2234 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2235 { 2236 struct address_space *mapping = filp->f_mapping; 2237 2238 if (!mapping->a_ops->readpage) 2239 return -ENOEXEC; 2240 2241 file_accessed(filp); 2242 vma->vm_ops = &btrfs_file_vm_ops; 2243 2244 return 0; 2245 } 2246 2247 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2248 int slot, u64 start, u64 end) 2249 { 2250 struct btrfs_file_extent_item *fi; 2251 struct btrfs_key key; 2252 2253 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2254 return 0; 2255 2256 btrfs_item_key_to_cpu(leaf, &key, slot); 2257 if (key.objectid != btrfs_ino(inode) || 2258 key.type != BTRFS_EXTENT_DATA_KEY) 2259 return 0; 2260 2261 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2262 2263 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2264 return 0; 2265 2266 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2267 return 0; 2268 2269 if (key.offset == end) 2270 return 1; 2271 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2272 return 1; 2273 return 0; 2274 } 2275 2276 static int fill_holes(struct btrfs_trans_handle *trans, 2277 struct btrfs_inode *inode, 2278 struct btrfs_path *path, u64 offset, u64 end) 2279 { 2280 struct btrfs_fs_info *fs_info = trans->fs_info; 2281 struct btrfs_root *root = inode->root; 2282 struct extent_buffer *leaf; 2283 struct btrfs_file_extent_item *fi; 2284 struct extent_map *hole_em; 2285 struct extent_map_tree *em_tree = &inode->extent_tree; 2286 struct btrfs_key key; 2287 int ret; 2288 2289 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2290 goto out; 2291 2292 key.objectid = btrfs_ino(inode); 2293 key.type = BTRFS_EXTENT_DATA_KEY; 2294 key.offset = offset; 2295 2296 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2297 if (ret <= 0) { 2298 /* 2299 * We should have dropped this offset, so if we find it then 2300 * something has gone horribly wrong. 2301 */ 2302 if (ret == 0) 2303 ret = -EINVAL; 2304 return ret; 2305 } 2306 2307 leaf = path->nodes[0]; 2308 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2309 u64 num_bytes; 2310 2311 path->slots[0]--; 2312 fi = btrfs_item_ptr(leaf, path->slots[0], 2313 struct btrfs_file_extent_item); 2314 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2315 end - offset; 2316 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2317 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2318 btrfs_set_file_extent_offset(leaf, fi, 0); 2319 btrfs_mark_buffer_dirty(leaf); 2320 goto out; 2321 } 2322 2323 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2324 u64 num_bytes; 2325 2326 key.offset = offset; 2327 btrfs_set_item_key_safe(fs_info, path, &key); 2328 fi = btrfs_item_ptr(leaf, path->slots[0], 2329 struct btrfs_file_extent_item); 2330 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2331 offset; 2332 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2333 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2334 btrfs_set_file_extent_offset(leaf, fi, 0); 2335 btrfs_mark_buffer_dirty(leaf); 2336 goto out; 2337 } 2338 btrfs_release_path(path); 2339 2340 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2341 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2342 if (ret) 2343 return ret; 2344 2345 out: 2346 btrfs_release_path(path); 2347 2348 hole_em = alloc_extent_map(); 2349 if (!hole_em) { 2350 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2351 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2352 } else { 2353 hole_em->start = offset; 2354 hole_em->len = end - offset; 2355 hole_em->ram_bytes = hole_em->len; 2356 hole_em->orig_start = offset; 2357 2358 hole_em->block_start = EXTENT_MAP_HOLE; 2359 hole_em->block_len = 0; 2360 hole_em->orig_block_len = 0; 2361 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2362 hole_em->generation = trans->transid; 2363 2364 do { 2365 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2366 write_lock(&em_tree->lock); 2367 ret = add_extent_mapping(em_tree, hole_em, 1); 2368 write_unlock(&em_tree->lock); 2369 } while (ret == -EEXIST); 2370 free_extent_map(hole_em); 2371 if (ret) 2372 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2373 &inode->runtime_flags); 2374 } 2375 2376 return 0; 2377 } 2378 2379 /* 2380 * Find a hole extent on given inode and change start/len to the end of hole 2381 * extent.(hole/vacuum extent whose em->start <= start && 2382 * em->start + em->len > start) 2383 * When a hole extent is found, return 1 and modify start/len. 2384 */ 2385 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2386 { 2387 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2388 struct extent_map *em; 2389 int ret = 0; 2390 2391 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2392 round_down(*start, fs_info->sectorsize), 2393 round_up(*len, fs_info->sectorsize), 0); 2394 if (IS_ERR(em)) 2395 return PTR_ERR(em); 2396 2397 /* Hole or vacuum extent(only exists in no-hole mode) */ 2398 if (em->block_start == EXTENT_MAP_HOLE) { 2399 ret = 1; 2400 *len = em->start + em->len > *start + *len ? 2401 0 : *start + *len - em->start - em->len; 2402 *start = em->start + em->len; 2403 } 2404 free_extent_map(em); 2405 return ret; 2406 } 2407 2408 static int btrfs_punch_hole_lock_range(struct inode *inode, 2409 const u64 lockstart, 2410 const u64 lockend, 2411 struct extent_state **cached_state) 2412 { 2413 while (1) { 2414 struct btrfs_ordered_extent *ordered; 2415 int ret; 2416 2417 truncate_pagecache_range(inode, lockstart, lockend); 2418 2419 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2420 cached_state); 2421 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2422 2423 /* 2424 * We need to make sure we have no ordered extents in this range 2425 * and nobody raced in and read a page in this range, if we did 2426 * we need to try again. 2427 */ 2428 if ((!ordered || 2429 (ordered->file_offset + ordered->len <= lockstart || 2430 ordered->file_offset > lockend)) && 2431 !filemap_range_has_page(inode->i_mapping, 2432 lockstart, lockend)) { 2433 if (ordered) 2434 btrfs_put_ordered_extent(ordered); 2435 break; 2436 } 2437 if (ordered) 2438 btrfs_put_ordered_extent(ordered); 2439 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2440 lockend, cached_state); 2441 ret = btrfs_wait_ordered_range(inode, lockstart, 2442 lockend - lockstart + 1); 2443 if (ret) 2444 return ret; 2445 } 2446 return 0; 2447 } 2448 2449 static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans, 2450 struct inode *inode, 2451 struct btrfs_path *path, 2452 struct btrfs_clone_extent_info *clone_info, 2453 const u64 clone_len) 2454 { 2455 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2456 struct btrfs_root *root = BTRFS_I(inode)->root; 2457 struct btrfs_file_extent_item *extent; 2458 struct extent_buffer *leaf; 2459 struct btrfs_key key; 2460 int slot; 2461 struct btrfs_ref ref = { 0 }; 2462 u64 ref_offset; 2463 int ret; 2464 2465 if (clone_len == 0) 2466 return 0; 2467 2468 if (clone_info->disk_offset == 0 && 2469 btrfs_fs_incompat(fs_info, NO_HOLES)) 2470 return 0; 2471 2472 key.objectid = btrfs_ino(BTRFS_I(inode)); 2473 key.type = BTRFS_EXTENT_DATA_KEY; 2474 key.offset = clone_info->file_offset; 2475 ret = btrfs_insert_empty_item(trans, root, path, &key, 2476 clone_info->item_size); 2477 if (ret) 2478 return ret; 2479 leaf = path->nodes[0]; 2480 slot = path->slots[0]; 2481 write_extent_buffer(leaf, clone_info->extent_buf, 2482 btrfs_item_ptr_offset(leaf, slot), 2483 clone_info->item_size); 2484 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2485 btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset); 2486 btrfs_set_file_extent_num_bytes(leaf, extent, clone_len); 2487 btrfs_mark_buffer_dirty(leaf); 2488 btrfs_release_path(path); 2489 2490 /* If it's a hole, nothing more needs to be done. */ 2491 if (clone_info->disk_offset == 0) 2492 return 0; 2493 2494 inode_add_bytes(inode, clone_len); 2495 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2496 clone_info->disk_offset, 2497 clone_info->disk_len, 0); 2498 ref_offset = clone_info->file_offset - clone_info->data_offset; 2499 btrfs_init_data_ref(&ref, root->root_key.objectid, 2500 btrfs_ino(BTRFS_I(inode)), ref_offset); 2501 ret = btrfs_inc_extent_ref(trans, &ref); 2502 2503 return ret; 2504 } 2505 2506 /* 2507 * The respective range must have been previously locked, as well as the inode. 2508 * The end offset is inclusive (last byte of the range). 2509 * @clone_info is NULL for fallocate's hole punching and non-NULL for extent 2510 * cloning. 2511 * When cloning, we don't want to end up in a state where we dropped extents 2512 * without inserting a new one, so we must abort the transaction to avoid a 2513 * corruption. 2514 */ 2515 int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path, 2516 const u64 start, const u64 end, 2517 struct btrfs_clone_extent_info *clone_info, 2518 struct btrfs_trans_handle **trans_out) 2519 { 2520 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2521 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2522 u64 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2523 struct btrfs_root *root = BTRFS_I(inode)->root; 2524 struct btrfs_trans_handle *trans = NULL; 2525 struct btrfs_block_rsv *rsv; 2526 unsigned int rsv_count; 2527 u64 cur_offset; 2528 u64 drop_end; 2529 u64 len = end - start; 2530 int ret = 0; 2531 2532 if (end <= start) 2533 return -EINVAL; 2534 2535 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2536 if (!rsv) { 2537 ret = -ENOMEM; 2538 goto out; 2539 } 2540 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2541 rsv->failfast = 1; 2542 2543 /* 2544 * 1 - update the inode 2545 * 1 - removing the extents in the range 2546 * 1 - adding the hole extent if no_holes isn't set or if we are cloning 2547 * an extent 2548 */ 2549 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info) 2550 rsv_count = 3; 2551 else 2552 rsv_count = 2; 2553 2554 trans = btrfs_start_transaction(root, rsv_count); 2555 if (IS_ERR(trans)) { 2556 ret = PTR_ERR(trans); 2557 trans = NULL; 2558 goto out_free; 2559 } 2560 2561 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2562 min_size, false); 2563 BUG_ON(ret); 2564 trans->block_rsv = rsv; 2565 2566 cur_offset = start; 2567 while (cur_offset < end) { 2568 ret = __btrfs_drop_extents(trans, root, inode, path, 2569 cur_offset, end + 1, &drop_end, 2570 1, 0, 0, NULL); 2571 if (ret != -ENOSPC) { 2572 /* 2573 * When cloning we want to avoid transaction aborts when 2574 * nothing was done and we are attempting to clone parts 2575 * of inline extents, in such cases -EOPNOTSUPP is 2576 * returned by __btrfs_drop_extents() without having 2577 * changed anything in the file. 2578 */ 2579 if (clone_info && ret && ret != -EOPNOTSUPP) 2580 btrfs_abort_transaction(trans, ret); 2581 break; 2582 } 2583 2584 trans->block_rsv = &fs_info->trans_block_rsv; 2585 2586 if (!clone_info && cur_offset < drop_end && 2587 cur_offset < ino_size) { 2588 ret = fill_holes(trans, BTRFS_I(inode), path, 2589 cur_offset, drop_end); 2590 if (ret) { 2591 /* 2592 * If we failed then we didn't insert our hole 2593 * entries for the area we dropped, so now the 2594 * fs is corrupted, so we must abort the 2595 * transaction. 2596 */ 2597 btrfs_abort_transaction(trans, ret); 2598 break; 2599 } 2600 } 2601 2602 if (clone_info && drop_end > clone_info->file_offset) { 2603 u64 clone_len = drop_end - clone_info->file_offset; 2604 2605 ret = btrfs_insert_clone_extent(trans, inode, path, 2606 clone_info, clone_len); 2607 if (ret) { 2608 btrfs_abort_transaction(trans, ret); 2609 break; 2610 } 2611 clone_info->data_len -= clone_len; 2612 clone_info->data_offset += clone_len; 2613 clone_info->file_offset += clone_len; 2614 } 2615 2616 cur_offset = drop_end; 2617 2618 ret = btrfs_update_inode(trans, root, inode); 2619 if (ret) 2620 break; 2621 2622 btrfs_end_transaction(trans); 2623 btrfs_btree_balance_dirty(fs_info); 2624 2625 trans = btrfs_start_transaction(root, rsv_count); 2626 if (IS_ERR(trans)) { 2627 ret = PTR_ERR(trans); 2628 trans = NULL; 2629 break; 2630 } 2631 2632 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2633 rsv, min_size, false); 2634 BUG_ON(ret); /* shouldn't happen */ 2635 trans->block_rsv = rsv; 2636 2637 if (!clone_info) { 2638 ret = find_first_non_hole(inode, &cur_offset, &len); 2639 if (unlikely(ret < 0)) 2640 break; 2641 if (ret && !len) { 2642 ret = 0; 2643 break; 2644 } 2645 } 2646 } 2647 2648 /* 2649 * If we were cloning, force the next fsync to be a full one since we 2650 * we replaced (or just dropped in the case of cloning holes when 2651 * NO_HOLES is enabled) extents and extent maps. 2652 * This is for the sake of simplicity, and cloning into files larger 2653 * than 16Mb would force the full fsync any way (when 2654 * try_release_extent_mapping() is invoked during page cache truncation. 2655 */ 2656 if (clone_info) 2657 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2658 &BTRFS_I(inode)->runtime_flags); 2659 2660 if (ret) 2661 goto out_trans; 2662 2663 trans->block_rsv = &fs_info->trans_block_rsv; 2664 /* 2665 * If we are using the NO_HOLES feature we might have had already an 2666 * hole that overlaps a part of the region [lockstart, lockend] and 2667 * ends at (or beyond) lockend. Since we have no file extent items to 2668 * represent holes, drop_end can be less than lockend and so we must 2669 * make sure we have an extent map representing the existing hole (the 2670 * call to __btrfs_drop_extents() might have dropped the existing extent 2671 * map representing the existing hole), otherwise the fast fsync path 2672 * will not record the existence of the hole region 2673 * [existing_hole_start, lockend]. 2674 */ 2675 if (drop_end <= end) 2676 drop_end = end + 1; 2677 /* 2678 * Don't insert file hole extent item if it's for a range beyond eof 2679 * (because it's useless) or if it represents a 0 bytes range (when 2680 * cur_offset == drop_end). 2681 */ 2682 if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) { 2683 ret = fill_holes(trans, BTRFS_I(inode), path, 2684 cur_offset, drop_end); 2685 if (ret) { 2686 /* Same comment as above. */ 2687 btrfs_abort_transaction(trans, ret); 2688 goto out_trans; 2689 } 2690 } 2691 if (clone_info) { 2692 ret = btrfs_insert_clone_extent(trans, inode, path, clone_info, 2693 clone_info->data_len); 2694 if (ret) { 2695 btrfs_abort_transaction(trans, ret); 2696 goto out_trans; 2697 } 2698 } 2699 2700 out_trans: 2701 if (!trans) 2702 goto out_free; 2703 2704 trans->block_rsv = &fs_info->trans_block_rsv; 2705 if (ret) 2706 btrfs_end_transaction(trans); 2707 else 2708 *trans_out = trans; 2709 out_free: 2710 btrfs_free_block_rsv(fs_info, rsv); 2711 out: 2712 return ret; 2713 } 2714 2715 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2716 { 2717 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2718 struct btrfs_root *root = BTRFS_I(inode)->root; 2719 struct extent_state *cached_state = NULL; 2720 struct btrfs_path *path; 2721 struct btrfs_trans_handle *trans = NULL; 2722 u64 lockstart; 2723 u64 lockend; 2724 u64 tail_start; 2725 u64 tail_len; 2726 u64 orig_start = offset; 2727 int ret = 0; 2728 bool same_block; 2729 u64 ino_size; 2730 bool truncated_block = false; 2731 bool updated_inode = false; 2732 2733 ret = btrfs_wait_ordered_range(inode, offset, len); 2734 if (ret) 2735 return ret; 2736 2737 inode_lock(inode); 2738 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2739 ret = find_first_non_hole(inode, &offset, &len); 2740 if (ret < 0) 2741 goto out_only_mutex; 2742 if (ret && !len) { 2743 /* Already in a large hole */ 2744 ret = 0; 2745 goto out_only_mutex; 2746 } 2747 2748 lockstart = round_up(offset, btrfs_inode_sectorsize(inode)); 2749 lockend = round_down(offset + len, 2750 btrfs_inode_sectorsize(inode)) - 1; 2751 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2752 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2753 /* 2754 * We needn't truncate any block which is beyond the end of the file 2755 * because we are sure there is no data there. 2756 */ 2757 /* 2758 * Only do this if we are in the same block and we aren't doing the 2759 * entire block. 2760 */ 2761 if (same_block && len < fs_info->sectorsize) { 2762 if (offset < ino_size) { 2763 truncated_block = true; 2764 ret = btrfs_truncate_block(inode, offset, len, 0); 2765 } else { 2766 ret = 0; 2767 } 2768 goto out_only_mutex; 2769 } 2770 2771 /* zero back part of the first block */ 2772 if (offset < ino_size) { 2773 truncated_block = true; 2774 ret = btrfs_truncate_block(inode, offset, 0, 0); 2775 if (ret) { 2776 inode_unlock(inode); 2777 return ret; 2778 } 2779 } 2780 2781 /* Check the aligned pages after the first unaligned page, 2782 * if offset != orig_start, which means the first unaligned page 2783 * including several following pages are already in holes, 2784 * the extra check can be skipped */ 2785 if (offset == orig_start) { 2786 /* after truncate page, check hole again */ 2787 len = offset + len - lockstart; 2788 offset = lockstart; 2789 ret = find_first_non_hole(inode, &offset, &len); 2790 if (ret < 0) 2791 goto out_only_mutex; 2792 if (ret && !len) { 2793 ret = 0; 2794 goto out_only_mutex; 2795 } 2796 lockstart = offset; 2797 } 2798 2799 /* Check the tail unaligned part is in a hole */ 2800 tail_start = lockend + 1; 2801 tail_len = offset + len - tail_start; 2802 if (tail_len) { 2803 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2804 if (unlikely(ret < 0)) 2805 goto out_only_mutex; 2806 if (!ret) { 2807 /* zero the front end of the last page */ 2808 if (tail_start + tail_len < ino_size) { 2809 truncated_block = true; 2810 ret = btrfs_truncate_block(inode, 2811 tail_start + tail_len, 2812 0, 1); 2813 if (ret) 2814 goto out_only_mutex; 2815 } 2816 } 2817 } 2818 2819 if (lockend < lockstart) { 2820 ret = 0; 2821 goto out_only_mutex; 2822 } 2823 2824 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2825 &cached_state); 2826 if (ret) 2827 goto out_only_mutex; 2828 2829 path = btrfs_alloc_path(); 2830 if (!path) { 2831 ret = -ENOMEM; 2832 goto out; 2833 } 2834 2835 ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL, 2836 &trans); 2837 btrfs_free_path(path); 2838 if (ret) 2839 goto out; 2840 2841 ASSERT(trans != NULL); 2842 inode_inc_iversion(inode); 2843 inode->i_mtime = inode->i_ctime = current_time(inode); 2844 ret = btrfs_update_inode(trans, root, inode); 2845 updated_inode = true; 2846 btrfs_end_transaction(trans); 2847 btrfs_btree_balance_dirty(fs_info); 2848 out: 2849 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2850 &cached_state); 2851 out_only_mutex: 2852 if (!updated_inode && truncated_block && !ret) { 2853 /* 2854 * If we only end up zeroing part of a page, we still need to 2855 * update the inode item, so that all the time fields are 2856 * updated as well as the necessary btrfs inode in memory fields 2857 * for detecting, at fsync time, if the inode isn't yet in the 2858 * log tree or it's there but not up to date. 2859 */ 2860 struct timespec64 now = current_time(inode); 2861 2862 inode_inc_iversion(inode); 2863 inode->i_mtime = now; 2864 inode->i_ctime = now; 2865 trans = btrfs_start_transaction(root, 1); 2866 if (IS_ERR(trans)) { 2867 ret = PTR_ERR(trans); 2868 } else { 2869 int ret2; 2870 2871 ret = btrfs_update_inode(trans, root, inode); 2872 ret2 = btrfs_end_transaction(trans); 2873 if (!ret) 2874 ret = ret2; 2875 } 2876 } 2877 inode_unlock(inode); 2878 return ret; 2879 } 2880 2881 /* Helper structure to record which range is already reserved */ 2882 struct falloc_range { 2883 struct list_head list; 2884 u64 start; 2885 u64 len; 2886 }; 2887 2888 /* 2889 * Helper function to add falloc range 2890 * 2891 * Caller should have locked the larger range of extent containing 2892 * [start, len) 2893 */ 2894 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2895 { 2896 struct falloc_range *prev = NULL; 2897 struct falloc_range *range = NULL; 2898 2899 if (list_empty(head)) 2900 goto insert; 2901 2902 /* 2903 * As fallocate iterate by bytenr order, we only need to check 2904 * the last range. 2905 */ 2906 prev = list_entry(head->prev, struct falloc_range, list); 2907 if (prev->start + prev->len == start) { 2908 prev->len += len; 2909 return 0; 2910 } 2911 insert: 2912 range = kmalloc(sizeof(*range), GFP_KERNEL); 2913 if (!range) 2914 return -ENOMEM; 2915 range->start = start; 2916 range->len = len; 2917 list_add_tail(&range->list, head); 2918 return 0; 2919 } 2920 2921 static int btrfs_fallocate_update_isize(struct inode *inode, 2922 const u64 end, 2923 const int mode) 2924 { 2925 struct btrfs_trans_handle *trans; 2926 struct btrfs_root *root = BTRFS_I(inode)->root; 2927 int ret; 2928 int ret2; 2929 2930 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2931 return 0; 2932 2933 trans = btrfs_start_transaction(root, 1); 2934 if (IS_ERR(trans)) 2935 return PTR_ERR(trans); 2936 2937 inode->i_ctime = current_time(inode); 2938 i_size_write(inode, end); 2939 btrfs_ordered_update_i_size(inode, end, NULL); 2940 ret = btrfs_update_inode(trans, root, inode); 2941 ret2 = btrfs_end_transaction(trans); 2942 2943 return ret ? ret : ret2; 2944 } 2945 2946 enum { 2947 RANGE_BOUNDARY_WRITTEN_EXTENT, 2948 RANGE_BOUNDARY_PREALLOC_EXTENT, 2949 RANGE_BOUNDARY_HOLE, 2950 }; 2951 2952 static int btrfs_zero_range_check_range_boundary(struct inode *inode, 2953 u64 offset) 2954 { 2955 const u64 sectorsize = btrfs_inode_sectorsize(inode); 2956 struct extent_map *em; 2957 int ret; 2958 2959 offset = round_down(offset, sectorsize); 2960 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0); 2961 if (IS_ERR(em)) 2962 return PTR_ERR(em); 2963 2964 if (em->block_start == EXTENT_MAP_HOLE) 2965 ret = RANGE_BOUNDARY_HOLE; 2966 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2967 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2968 else 2969 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2970 2971 free_extent_map(em); 2972 return ret; 2973 } 2974 2975 static int btrfs_zero_range(struct inode *inode, 2976 loff_t offset, 2977 loff_t len, 2978 const int mode) 2979 { 2980 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2981 struct extent_map *em; 2982 struct extent_changeset *data_reserved = NULL; 2983 int ret; 2984 u64 alloc_hint = 0; 2985 const u64 sectorsize = btrfs_inode_sectorsize(inode); 2986 u64 alloc_start = round_down(offset, sectorsize); 2987 u64 alloc_end = round_up(offset + len, sectorsize); 2988 u64 bytes_to_reserve = 0; 2989 bool space_reserved = false; 2990 2991 inode_dio_wait(inode); 2992 2993 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2994 alloc_start, alloc_end - alloc_start, 0); 2995 if (IS_ERR(em)) { 2996 ret = PTR_ERR(em); 2997 goto out; 2998 } 2999 3000 /* 3001 * Avoid hole punching and extent allocation for some cases. More cases 3002 * could be considered, but these are unlikely common and we keep things 3003 * as simple as possible for now. Also, intentionally, if the target 3004 * range contains one or more prealloc extents together with regular 3005 * extents and holes, we drop all the existing extents and allocate a 3006 * new prealloc extent, so that we get a larger contiguous disk extent. 3007 */ 3008 if (em->start <= alloc_start && 3009 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3010 const u64 em_end = em->start + em->len; 3011 3012 if (em_end >= offset + len) { 3013 /* 3014 * The whole range is already a prealloc extent, 3015 * do nothing except updating the inode's i_size if 3016 * needed. 3017 */ 3018 free_extent_map(em); 3019 ret = btrfs_fallocate_update_isize(inode, offset + len, 3020 mode); 3021 goto out; 3022 } 3023 /* 3024 * Part of the range is already a prealloc extent, so operate 3025 * only on the remaining part of the range. 3026 */ 3027 alloc_start = em_end; 3028 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 3029 len = offset + len - alloc_start; 3030 offset = alloc_start; 3031 alloc_hint = em->block_start + em->len; 3032 } 3033 free_extent_map(em); 3034 3035 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 3036 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 3037 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 3038 alloc_start, sectorsize, 0); 3039 if (IS_ERR(em)) { 3040 ret = PTR_ERR(em); 3041 goto out; 3042 } 3043 3044 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3045 free_extent_map(em); 3046 ret = btrfs_fallocate_update_isize(inode, offset + len, 3047 mode); 3048 goto out; 3049 } 3050 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 3051 free_extent_map(em); 3052 ret = btrfs_truncate_block(inode, offset, len, 0); 3053 if (!ret) 3054 ret = btrfs_fallocate_update_isize(inode, 3055 offset + len, 3056 mode); 3057 return ret; 3058 } 3059 free_extent_map(em); 3060 alloc_start = round_down(offset, sectorsize); 3061 alloc_end = alloc_start + sectorsize; 3062 goto reserve_space; 3063 } 3064 3065 alloc_start = round_up(offset, sectorsize); 3066 alloc_end = round_down(offset + len, sectorsize); 3067 3068 /* 3069 * For unaligned ranges, check the pages at the boundaries, they might 3070 * map to an extent, in which case we need to partially zero them, or 3071 * they might map to a hole, in which case we need our allocation range 3072 * to cover them. 3073 */ 3074 if (!IS_ALIGNED(offset, sectorsize)) { 3075 ret = btrfs_zero_range_check_range_boundary(inode, offset); 3076 if (ret < 0) 3077 goto out; 3078 if (ret == RANGE_BOUNDARY_HOLE) { 3079 alloc_start = round_down(offset, sectorsize); 3080 ret = 0; 3081 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3082 ret = btrfs_truncate_block(inode, offset, 0, 0); 3083 if (ret) 3084 goto out; 3085 } else { 3086 ret = 0; 3087 } 3088 } 3089 3090 if (!IS_ALIGNED(offset + len, sectorsize)) { 3091 ret = btrfs_zero_range_check_range_boundary(inode, 3092 offset + len); 3093 if (ret < 0) 3094 goto out; 3095 if (ret == RANGE_BOUNDARY_HOLE) { 3096 alloc_end = round_up(offset + len, sectorsize); 3097 ret = 0; 3098 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3099 ret = btrfs_truncate_block(inode, offset + len, 0, 1); 3100 if (ret) 3101 goto out; 3102 } else { 3103 ret = 0; 3104 } 3105 } 3106 3107 reserve_space: 3108 if (alloc_start < alloc_end) { 3109 struct extent_state *cached_state = NULL; 3110 const u64 lockstart = alloc_start; 3111 const u64 lockend = alloc_end - 1; 3112 3113 bytes_to_reserve = alloc_end - alloc_start; 3114 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3115 bytes_to_reserve); 3116 if (ret < 0) 3117 goto out; 3118 space_reserved = true; 3119 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 3120 alloc_start, bytes_to_reserve); 3121 if (ret) 3122 goto out; 3123 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3124 &cached_state); 3125 if (ret) 3126 goto out; 3127 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3128 alloc_end - alloc_start, 3129 i_blocksize(inode), 3130 offset + len, &alloc_hint); 3131 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3132 lockend, &cached_state); 3133 /* btrfs_prealloc_file_range releases reserved space on error */ 3134 if (ret) { 3135 space_reserved = false; 3136 goto out; 3137 } 3138 } 3139 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3140 out: 3141 if (ret && space_reserved) 3142 btrfs_free_reserved_data_space(inode, data_reserved, 3143 alloc_start, bytes_to_reserve); 3144 extent_changeset_free(data_reserved); 3145 3146 return ret; 3147 } 3148 3149 static long btrfs_fallocate(struct file *file, int mode, 3150 loff_t offset, loff_t len) 3151 { 3152 struct inode *inode = file_inode(file); 3153 struct extent_state *cached_state = NULL; 3154 struct extent_changeset *data_reserved = NULL; 3155 struct falloc_range *range; 3156 struct falloc_range *tmp; 3157 struct list_head reserve_list; 3158 u64 cur_offset; 3159 u64 last_byte; 3160 u64 alloc_start; 3161 u64 alloc_end; 3162 u64 alloc_hint = 0; 3163 u64 locked_end; 3164 u64 actual_end = 0; 3165 struct extent_map *em; 3166 int blocksize = btrfs_inode_sectorsize(inode); 3167 int ret; 3168 3169 alloc_start = round_down(offset, blocksize); 3170 alloc_end = round_up(offset + len, blocksize); 3171 cur_offset = alloc_start; 3172 3173 /* Make sure we aren't being give some crap mode */ 3174 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3175 FALLOC_FL_ZERO_RANGE)) 3176 return -EOPNOTSUPP; 3177 3178 if (mode & FALLOC_FL_PUNCH_HOLE) 3179 return btrfs_punch_hole(inode, offset, len); 3180 3181 /* 3182 * Only trigger disk allocation, don't trigger qgroup reserve 3183 * 3184 * For qgroup space, it will be checked later. 3185 */ 3186 if (!(mode & FALLOC_FL_ZERO_RANGE)) { 3187 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3188 alloc_end - alloc_start); 3189 if (ret < 0) 3190 return ret; 3191 } 3192 3193 inode_lock(inode); 3194 3195 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3196 ret = inode_newsize_ok(inode, offset + len); 3197 if (ret) 3198 goto out; 3199 } 3200 3201 /* 3202 * TODO: Move these two operations after we have checked 3203 * accurate reserved space, or fallocate can still fail but 3204 * with page truncated or size expanded. 3205 * 3206 * But that's a minor problem and won't do much harm BTW. 3207 */ 3208 if (alloc_start > inode->i_size) { 3209 ret = btrfs_cont_expand(inode, i_size_read(inode), 3210 alloc_start); 3211 if (ret) 3212 goto out; 3213 } else if (offset + len > inode->i_size) { 3214 /* 3215 * If we are fallocating from the end of the file onward we 3216 * need to zero out the end of the block if i_size lands in the 3217 * middle of a block. 3218 */ 3219 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 3220 if (ret) 3221 goto out; 3222 } 3223 3224 /* 3225 * wait for ordered IO before we have any locks. We'll loop again 3226 * below with the locks held. 3227 */ 3228 ret = btrfs_wait_ordered_range(inode, alloc_start, 3229 alloc_end - alloc_start); 3230 if (ret) 3231 goto out; 3232 3233 if (mode & FALLOC_FL_ZERO_RANGE) { 3234 ret = btrfs_zero_range(inode, offset, len, mode); 3235 inode_unlock(inode); 3236 return ret; 3237 } 3238 3239 locked_end = alloc_end - 1; 3240 while (1) { 3241 struct btrfs_ordered_extent *ordered; 3242 3243 /* the extent lock is ordered inside the running 3244 * transaction 3245 */ 3246 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 3247 locked_end, &cached_state); 3248 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end); 3249 3250 if (ordered && 3251 ordered->file_offset + ordered->len > alloc_start && 3252 ordered->file_offset < alloc_end) { 3253 btrfs_put_ordered_extent(ordered); 3254 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 3255 alloc_start, locked_end, 3256 &cached_state); 3257 /* 3258 * we can't wait on the range with the transaction 3259 * running or with the extent lock held 3260 */ 3261 ret = btrfs_wait_ordered_range(inode, alloc_start, 3262 alloc_end - alloc_start); 3263 if (ret) 3264 goto out; 3265 } else { 3266 if (ordered) 3267 btrfs_put_ordered_extent(ordered); 3268 break; 3269 } 3270 } 3271 3272 /* First, check if we exceed the qgroup limit */ 3273 INIT_LIST_HEAD(&reserve_list); 3274 while (cur_offset < alloc_end) { 3275 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3276 alloc_end - cur_offset, 0); 3277 if (IS_ERR(em)) { 3278 ret = PTR_ERR(em); 3279 break; 3280 } 3281 last_byte = min(extent_map_end(em), alloc_end); 3282 actual_end = min_t(u64, extent_map_end(em), offset + len); 3283 last_byte = ALIGN(last_byte, blocksize); 3284 if (em->block_start == EXTENT_MAP_HOLE || 3285 (cur_offset >= inode->i_size && 3286 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3287 ret = add_falloc_range(&reserve_list, cur_offset, 3288 last_byte - cur_offset); 3289 if (ret < 0) { 3290 free_extent_map(em); 3291 break; 3292 } 3293 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 3294 cur_offset, last_byte - cur_offset); 3295 if (ret < 0) { 3296 cur_offset = last_byte; 3297 free_extent_map(em); 3298 break; 3299 } 3300 } else { 3301 /* 3302 * Do not need to reserve unwritten extent for this 3303 * range, free reserved data space first, otherwise 3304 * it'll result in false ENOSPC error. 3305 */ 3306 btrfs_free_reserved_data_space(inode, data_reserved, 3307 cur_offset, last_byte - cur_offset); 3308 } 3309 free_extent_map(em); 3310 cur_offset = last_byte; 3311 } 3312 3313 /* 3314 * If ret is still 0, means we're OK to fallocate. 3315 * Or just cleanup the list and exit. 3316 */ 3317 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3318 if (!ret) 3319 ret = btrfs_prealloc_file_range(inode, mode, 3320 range->start, 3321 range->len, i_blocksize(inode), 3322 offset + len, &alloc_hint); 3323 else 3324 btrfs_free_reserved_data_space(inode, 3325 data_reserved, range->start, 3326 range->len); 3327 list_del(&range->list); 3328 kfree(range); 3329 } 3330 if (ret < 0) 3331 goto out_unlock; 3332 3333 /* 3334 * We didn't need to allocate any more space, but we still extended the 3335 * size of the file so we need to update i_size and the inode item. 3336 */ 3337 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3338 out_unlock: 3339 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3340 &cached_state); 3341 out: 3342 inode_unlock(inode); 3343 /* Let go of our reservation. */ 3344 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) 3345 btrfs_free_reserved_data_space(inode, data_reserved, 3346 cur_offset, alloc_end - cur_offset); 3347 extent_changeset_free(data_reserved); 3348 return ret; 3349 } 3350 3351 static loff_t find_desired_extent(struct inode *inode, loff_t offset, 3352 int whence) 3353 { 3354 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3355 struct extent_map *em = NULL; 3356 struct extent_state *cached_state = NULL; 3357 loff_t i_size = inode->i_size; 3358 u64 lockstart; 3359 u64 lockend; 3360 u64 start; 3361 u64 len; 3362 int ret = 0; 3363 3364 if (i_size == 0 || offset >= i_size) 3365 return -ENXIO; 3366 3367 /* 3368 * offset can be negative, in this case we start finding DATA/HOLE from 3369 * the very start of the file. 3370 */ 3371 start = max_t(loff_t, 0, offset); 3372 3373 lockstart = round_down(start, fs_info->sectorsize); 3374 lockend = round_up(i_size, fs_info->sectorsize); 3375 if (lockend <= lockstart) 3376 lockend = lockstart + fs_info->sectorsize; 3377 lockend--; 3378 len = lockend - lockstart + 1; 3379 3380 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3381 &cached_state); 3382 3383 while (start < i_size) { 3384 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len); 3385 if (IS_ERR(em)) { 3386 ret = PTR_ERR(em); 3387 em = NULL; 3388 break; 3389 } 3390 3391 if (whence == SEEK_HOLE && 3392 (em->block_start == EXTENT_MAP_HOLE || 3393 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3394 break; 3395 else if (whence == SEEK_DATA && 3396 (em->block_start != EXTENT_MAP_HOLE && 3397 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3398 break; 3399 3400 start = em->start + em->len; 3401 free_extent_map(em); 3402 em = NULL; 3403 cond_resched(); 3404 } 3405 free_extent_map(em); 3406 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3407 &cached_state); 3408 if (ret) { 3409 offset = ret; 3410 } else { 3411 if (whence == SEEK_DATA && start >= i_size) 3412 offset = -ENXIO; 3413 else 3414 offset = min_t(loff_t, start, i_size); 3415 } 3416 3417 return offset; 3418 } 3419 3420 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3421 { 3422 struct inode *inode = file->f_mapping->host; 3423 3424 switch (whence) { 3425 default: 3426 return generic_file_llseek(file, offset, whence); 3427 case SEEK_DATA: 3428 case SEEK_HOLE: 3429 inode_lock_shared(inode); 3430 offset = find_desired_extent(inode, offset, whence); 3431 inode_unlock_shared(inode); 3432 break; 3433 } 3434 3435 if (offset < 0) 3436 return offset; 3437 3438 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3439 } 3440 3441 static int btrfs_file_open(struct inode *inode, struct file *filp) 3442 { 3443 filp->f_mode |= FMODE_NOWAIT; 3444 return generic_file_open(inode, filp); 3445 } 3446 3447 const struct file_operations btrfs_file_operations = { 3448 .llseek = btrfs_file_llseek, 3449 .read_iter = generic_file_read_iter, 3450 .splice_read = generic_file_splice_read, 3451 .write_iter = btrfs_file_write_iter, 3452 .mmap = btrfs_file_mmap, 3453 .open = btrfs_file_open, 3454 .release = btrfs_release_file, 3455 .fsync = btrfs_sync_file, 3456 .fallocate = btrfs_fallocate, 3457 .unlocked_ioctl = btrfs_ioctl, 3458 #ifdef CONFIG_COMPAT 3459 .compat_ioctl = btrfs_compat_ioctl, 3460 #endif 3461 .remap_file_range = btrfs_remap_file_range, 3462 }; 3463 3464 void __cold btrfs_auto_defrag_exit(void) 3465 { 3466 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3467 } 3468 3469 int __init btrfs_auto_defrag_init(void) 3470 { 3471 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3472 sizeof(struct inode_defrag), 0, 3473 SLAB_MEM_SPREAD, 3474 NULL); 3475 if (!btrfs_inode_defrag_cachep) 3476 return -ENOMEM; 3477 3478 return 0; 3479 } 3480 3481 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3482 { 3483 int ret; 3484 3485 /* 3486 * So with compression we will find and lock a dirty page and clear the 3487 * first one as dirty, setup an async extent, and immediately return 3488 * with the entire range locked but with nobody actually marked with 3489 * writeback. So we can't just filemap_write_and_wait_range() and 3490 * expect it to work since it will just kick off a thread to do the 3491 * actual work. So we need to call filemap_fdatawrite_range _again_ 3492 * since it will wait on the page lock, which won't be unlocked until 3493 * after the pages have been marked as writeback and so we're good to go 3494 * from there. We have to do this otherwise we'll miss the ordered 3495 * extents and that results in badness. Please Josef, do not think you 3496 * know better and pull this out at some point in the future, it is 3497 * right and you are wrong. 3498 */ 3499 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3500 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3501 &BTRFS_I(inode)->runtime_flags)) 3502 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3503 3504 return ret; 3505 } 3506