xref: /openbmc/linux/fs/btrfs/file.c (revision 80ecbd24)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "compat.h"
43 #include "volumes.h"
44 
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 /*
47  * when auto defrag is enabled we
48  * queue up these defrag structs to remember which
49  * inodes need defragging passes
50  */
51 struct inode_defrag {
52 	struct rb_node rb_node;
53 	/* objectid */
54 	u64 ino;
55 	/*
56 	 * transid where the defrag was added, we search for
57 	 * extents newer than this
58 	 */
59 	u64 transid;
60 
61 	/* root objectid */
62 	u64 root;
63 
64 	/* last offset we were able to defrag */
65 	u64 last_offset;
66 
67 	/* if we've wrapped around back to zero once already */
68 	int cycled;
69 };
70 
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 				  struct inode_defrag *defrag2)
73 {
74 	if (defrag1->root > defrag2->root)
75 		return 1;
76 	else if (defrag1->root < defrag2->root)
77 		return -1;
78 	else if (defrag1->ino > defrag2->ino)
79 		return 1;
80 	else if (defrag1->ino < defrag2->ino)
81 		return -1;
82 	else
83 		return 0;
84 }
85 
86 /* pop a record for an inode into the defrag tree.  The lock
87  * must be held already
88  *
89  * If you're inserting a record for an older transid than an
90  * existing record, the transid already in the tree is lowered
91  *
92  * If an existing record is found the defrag item you
93  * pass in is freed
94  */
95 static int __btrfs_add_inode_defrag(struct inode *inode,
96 				    struct inode_defrag *defrag)
97 {
98 	struct btrfs_root *root = BTRFS_I(inode)->root;
99 	struct inode_defrag *entry;
100 	struct rb_node **p;
101 	struct rb_node *parent = NULL;
102 	int ret;
103 
104 	p = &root->fs_info->defrag_inodes.rb_node;
105 	while (*p) {
106 		parent = *p;
107 		entry = rb_entry(parent, struct inode_defrag, rb_node);
108 
109 		ret = __compare_inode_defrag(defrag, entry);
110 		if (ret < 0)
111 			p = &parent->rb_left;
112 		else if (ret > 0)
113 			p = &parent->rb_right;
114 		else {
115 			/* if we're reinserting an entry for
116 			 * an old defrag run, make sure to
117 			 * lower the transid of our existing record
118 			 */
119 			if (defrag->transid < entry->transid)
120 				entry->transid = defrag->transid;
121 			if (defrag->last_offset > entry->last_offset)
122 				entry->last_offset = defrag->last_offset;
123 			return -EEXIST;
124 		}
125 	}
126 	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
127 	rb_link_node(&defrag->rb_node, parent, p);
128 	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
129 	return 0;
130 }
131 
132 static inline int __need_auto_defrag(struct btrfs_root *root)
133 {
134 	if (!btrfs_test_opt(root, AUTO_DEFRAG))
135 		return 0;
136 
137 	if (btrfs_fs_closing(root->fs_info))
138 		return 0;
139 
140 	return 1;
141 }
142 
143 /*
144  * insert a defrag record for this inode if auto defrag is
145  * enabled
146  */
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 			   struct inode *inode)
149 {
150 	struct btrfs_root *root = BTRFS_I(inode)->root;
151 	struct inode_defrag *defrag;
152 	u64 transid;
153 	int ret;
154 
155 	if (!__need_auto_defrag(root))
156 		return 0;
157 
158 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
159 		return 0;
160 
161 	if (trans)
162 		transid = trans->transid;
163 	else
164 		transid = BTRFS_I(inode)->root->last_trans;
165 
166 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
167 	if (!defrag)
168 		return -ENOMEM;
169 
170 	defrag->ino = btrfs_ino(inode);
171 	defrag->transid = transid;
172 	defrag->root = root->root_key.objectid;
173 
174 	spin_lock(&root->fs_info->defrag_inodes_lock);
175 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
176 		/*
177 		 * If we set IN_DEFRAG flag and evict the inode from memory,
178 		 * and then re-read this inode, this new inode doesn't have
179 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
180 		 */
181 		ret = __btrfs_add_inode_defrag(inode, defrag);
182 		if (ret)
183 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 	} else {
185 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
186 	}
187 	spin_unlock(&root->fs_info->defrag_inodes_lock);
188 	return 0;
189 }
190 
191 /*
192  * Requeue the defrag object. If there is a defrag object that points to
193  * the same inode in the tree, we will merge them together (by
194  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
195  */
196 static void btrfs_requeue_inode_defrag(struct inode *inode,
197 				       struct inode_defrag *defrag)
198 {
199 	struct btrfs_root *root = BTRFS_I(inode)->root;
200 	int ret;
201 
202 	if (!__need_auto_defrag(root))
203 		goto out;
204 
205 	/*
206 	 * Here we don't check the IN_DEFRAG flag, because we need merge
207 	 * them together.
208 	 */
209 	spin_lock(&root->fs_info->defrag_inodes_lock);
210 	ret = __btrfs_add_inode_defrag(inode, defrag);
211 	spin_unlock(&root->fs_info->defrag_inodes_lock);
212 	if (ret)
213 		goto out;
214 	return;
215 out:
216 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
217 }
218 
219 /*
220  * pick the defragable inode that we want, if it doesn't exist, we will get
221  * the next one.
222  */
223 static struct inode_defrag *
224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
225 {
226 	struct inode_defrag *entry = NULL;
227 	struct inode_defrag tmp;
228 	struct rb_node *p;
229 	struct rb_node *parent = NULL;
230 	int ret;
231 
232 	tmp.ino = ino;
233 	tmp.root = root;
234 
235 	spin_lock(&fs_info->defrag_inodes_lock);
236 	p = fs_info->defrag_inodes.rb_node;
237 	while (p) {
238 		parent = p;
239 		entry = rb_entry(parent, struct inode_defrag, rb_node);
240 
241 		ret = __compare_inode_defrag(&tmp, entry);
242 		if (ret < 0)
243 			p = parent->rb_left;
244 		else if (ret > 0)
245 			p = parent->rb_right;
246 		else
247 			goto out;
248 	}
249 
250 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
251 		parent = rb_next(parent);
252 		if (parent)
253 			entry = rb_entry(parent, struct inode_defrag, rb_node);
254 		else
255 			entry = NULL;
256 	}
257 out:
258 	if (entry)
259 		rb_erase(parent, &fs_info->defrag_inodes);
260 	spin_unlock(&fs_info->defrag_inodes_lock);
261 	return entry;
262 }
263 
264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
265 {
266 	struct inode_defrag *defrag;
267 	struct rb_node *node;
268 
269 	spin_lock(&fs_info->defrag_inodes_lock);
270 	node = rb_first(&fs_info->defrag_inodes);
271 	while (node) {
272 		rb_erase(node, &fs_info->defrag_inodes);
273 		defrag = rb_entry(node, struct inode_defrag, rb_node);
274 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
275 
276 		if (need_resched()) {
277 			spin_unlock(&fs_info->defrag_inodes_lock);
278 			cond_resched();
279 			spin_lock(&fs_info->defrag_inodes_lock);
280 		}
281 
282 		node = rb_first(&fs_info->defrag_inodes);
283 	}
284 	spin_unlock(&fs_info->defrag_inodes_lock);
285 }
286 
287 #define BTRFS_DEFRAG_BATCH	1024
288 
289 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
290 				    struct inode_defrag *defrag)
291 {
292 	struct btrfs_root *inode_root;
293 	struct inode *inode;
294 	struct btrfs_key key;
295 	struct btrfs_ioctl_defrag_range_args range;
296 	int num_defrag;
297 	int index;
298 	int ret;
299 
300 	/* get the inode */
301 	key.objectid = defrag->root;
302 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
303 	key.offset = (u64)-1;
304 
305 	index = srcu_read_lock(&fs_info->subvol_srcu);
306 
307 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
308 	if (IS_ERR(inode_root)) {
309 		ret = PTR_ERR(inode_root);
310 		goto cleanup;
311 	}
312 
313 	key.objectid = defrag->ino;
314 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
315 	key.offset = 0;
316 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
317 	if (IS_ERR(inode)) {
318 		ret = PTR_ERR(inode);
319 		goto cleanup;
320 	}
321 	srcu_read_unlock(&fs_info->subvol_srcu, index);
322 
323 	/* do a chunk of defrag */
324 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
325 	memset(&range, 0, sizeof(range));
326 	range.len = (u64)-1;
327 	range.start = defrag->last_offset;
328 
329 	sb_start_write(fs_info->sb);
330 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
331 				       BTRFS_DEFRAG_BATCH);
332 	sb_end_write(fs_info->sb);
333 	/*
334 	 * if we filled the whole defrag batch, there
335 	 * must be more work to do.  Queue this defrag
336 	 * again
337 	 */
338 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
339 		defrag->last_offset = range.start;
340 		btrfs_requeue_inode_defrag(inode, defrag);
341 	} else if (defrag->last_offset && !defrag->cycled) {
342 		/*
343 		 * we didn't fill our defrag batch, but
344 		 * we didn't start at zero.  Make sure we loop
345 		 * around to the start of the file.
346 		 */
347 		defrag->last_offset = 0;
348 		defrag->cycled = 1;
349 		btrfs_requeue_inode_defrag(inode, defrag);
350 	} else {
351 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
352 	}
353 
354 	iput(inode);
355 	return 0;
356 cleanup:
357 	srcu_read_unlock(&fs_info->subvol_srcu, index);
358 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
359 	return ret;
360 }
361 
362 /*
363  * run through the list of inodes in the FS that need
364  * defragging
365  */
366 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
367 {
368 	struct inode_defrag *defrag;
369 	u64 first_ino = 0;
370 	u64 root_objectid = 0;
371 
372 	atomic_inc(&fs_info->defrag_running);
373 	while(1) {
374 		/* Pause the auto defragger. */
375 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
376 			     &fs_info->fs_state))
377 			break;
378 
379 		if (!__need_auto_defrag(fs_info->tree_root))
380 			break;
381 
382 		/* find an inode to defrag */
383 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
384 						 first_ino);
385 		if (!defrag) {
386 			if (root_objectid || first_ino) {
387 				root_objectid = 0;
388 				first_ino = 0;
389 				continue;
390 			} else {
391 				break;
392 			}
393 		}
394 
395 		first_ino = defrag->ino + 1;
396 		root_objectid = defrag->root;
397 
398 		__btrfs_run_defrag_inode(fs_info, defrag);
399 	}
400 	atomic_dec(&fs_info->defrag_running);
401 
402 	/*
403 	 * during unmount, we use the transaction_wait queue to
404 	 * wait for the defragger to stop
405 	 */
406 	wake_up(&fs_info->transaction_wait);
407 	return 0;
408 }
409 
410 /* simple helper to fault in pages and copy.  This should go away
411  * and be replaced with calls into generic code.
412  */
413 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
414 					 size_t write_bytes,
415 					 struct page **prepared_pages,
416 					 struct iov_iter *i)
417 {
418 	size_t copied = 0;
419 	size_t total_copied = 0;
420 	int pg = 0;
421 	int offset = pos & (PAGE_CACHE_SIZE - 1);
422 
423 	while (write_bytes > 0) {
424 		size_t count = min_t(size_t,
425 				     PAGE_CACHE_SIZE - offset, write_bytes);
426 		struct page *page = prepared_pages[pg];
427 		/*
428 		 * Copy data from userspace to the current page
429 		 *
430 		 * Disable pagefault to avoid recursive lock since
431 		 * the pages are already locked
432 		 */
433 		pagefault_disable();
434 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
435 		pagefault_enable();
436 
437 		/* Flush processor's dcache for this page */
438 		flush_dcache_page(page);
439 
440 		/*
441 		 * if we get a partial write, we can end up with
442 		 * partially up to date pages.  These add
443 		 * a lot of complexity, so make sure they don't
444 		 * happen by forcing this copy to be retried.
445 		 *
446 		 * The rest of the btrfs_file_write code will fall
447 		 * back to page at a time copies after we return 0.
448 		 */
449 		if (!PageUptodate(page) && copied < count)
450 			copied = 0;
451 
452 		iov_iter_advance(i, copied);
453 		write_bytes -= copied;
454 		total_copied += copied;
455 
456 		/* Return to btrfs_file_aio_write to fault page */
457 		if (unlikely(copied == 0))
458 			break;
459 
460 		if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
461 			offset += copied;
462 		} else {
463 			pg++;
464 			offset = 0;
465 		}
466 	}
467 	return total_copied;
468 }
469 
470 /*
471  * unlocks pages after btrfs_file_write is done with them
472  */
473 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
474 {
475 	size_t i;
476 	for (i = 0; i < num_pages; i++) {
477 		/* page checked is some magic around finding pages that
478 		 * have been modified without going through btrfs_set_page_dirty
479 		 * clear it here
480 		 */
481 		ClearPageChecked(pages[i]);
482 		unlock_page(pages[i]);
483 		mark_page_accessed(pages[i]);
484 		page_cache_release(pages[i]);
485 	}
486 }
487 
488 /*
489  * after copy_from_user, pages need to be dirtied and we need to make
490  * sure holes are created between the current EOF and the start of
491  * any next extents (if required).
492  *
493  * this also makes the decision about creating an inline extent vs
494  * doing real data extents, marking pages dirty and delalloc as required.
495  */
496 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
497 			     struct page **pages, size_t num_pages,
498 			     loff_t pos, size_t write_bytes,
499 			     struct extent_state **cached)
500 {
501 	int err = 0;
502 	int i;
503 	u64 num_bytes;
504 	u64 start_pos;
505 	u64 end_of_last_block;
506 	u64 end_pos = pos + write_bytes;
507 	loff_t isize = i_size_read(inode);
508 
509 	start_pos = pos & ~((u64)root->sectorsize - 1);
510 	num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
511 
512 	end_of_last_block = start_pos + num_bytes - 1;
513 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
514 					cached);
515 	if (err)
516 		return err;
517 
518 	for (i = 0; i < num_pages; i++) {
519 		struct page *p = pages[i];
520 		SetPageUptodate(p);
521 		ClearPageChecked(p);
522 		set_page_dirty(p);
523 	}
524 
525 	/*
526 	 * we've only changed i_size in ram, and we haven't updated
527 	 * the disk i_size.  There is no need to log the inode
528 	 * at this time.
529 	 */
530 	if (end_pos > isize)
531 		i_size_write(inode, end_pos);
532 	return 0;
533 }
534 
535 /*
536  * this drops all the extents in the cache that intersect the range
537  * [start, end].  Existing extents are split as required.
538  */
539 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
540 			     int skip_pinned)
541 {
542 	struct extent_map *em;
543 	struct extent_map *split = NULL;
544 	struct extent_map *split2 = NULL;
545 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
546 	u64 len = end - start + 1;
547 	u64 gen;
548 	int ret;
549 	int testend = 1;
550 	unsigned long flags;
551 	int compressed = 0;
552 	bool modified;
553 
554 	WARN_ON(end < start);
555 	if (end == (u64)-1) {
556 		len = (u64)-1;
557 		testend = 0;
558 	}
559 	while (1) {
560 		int no_splits = 0;
561 
562 		modified = false;
563 		if (!split)
564 			split = alloc_extent_map();
565 		if (!split2)
566 			split2 = alloc_extent_map();
567 		if (!split || !split2)
568 			no_splits = 1;
569 
570 		write_lock(&em_tree->lock);
571 		em = lookup_extent_mapping(em_tree, start, len);
572 		if (!em) {
573 			write_unlock(&em_tree->lock);
574 			break;
575 		}
576 		flags = em->flags;
577 		gen = em->generation;
578 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
579 			if (testend && em->start + em->len >= start + len) {
580 				free_extent_map(em);
581 				write_unlock(&em_tree->lock);
582 				break;
583 			}
584 			start = em->start + em->len;
585 			if (testend)
586 				len = start + len - (em->start + em->len);
587 			free_extent_map(em);
588 			write_unlock(&em_tree->lock);
589 			continue;
590 		}
591 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
592 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
593 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
594 		modified = !list_empty(&em->list);
595 		remove_extent_mapping(em_tree, em);
596 		if (no_splits)
597 			goto next;
598 
599 		if (em->start < start) {
600 			split->start = em->start;
601 			split->len = start - em->start;
602 
603 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
604 				split->orig_start = em->orig_start;
605 				split->block_start = em->block_start;
606 
607 				if (compressed)
608 					split->block_len = em->block_len;
609 				else
610 					split->block_len = split->len;
611 				split->orig_block_len = max(split->block_len,
612 						em->orig_block_len);
613 				split->ram_bytes = em->ram_bytes;
614 			} else {
615 				split->orig_start = split->start;
616 				split->block_len = 0;
617 				split->block_start = em->block_start;
618 				split->orig_block_len = 0;
619 				split->ram_bytes = split->len;
620 			}
621 
622 			split->generation = gen;
623 			split->bdev = em->bdev;
624 			split->flags = flags;
625 			split->compress_type = em->compress_type;
626 			ret = add_extent_mapping(em_tree, split, modified);
627 			BUG_ON(ret); /* Logic error */
628 			free_extent_map(split);
629 			split = split2;
630 			split2 = NULL;
631 		}
632 		if (testend && em->start + em->len > start + len) {
633 			u64 diff = start + len - em->start;
634 
635 			split->start = start + len;
636 			split->len = em->start + em->len - (start + len);
637 			split->bdev = em->bdev;
638 			split->flags = flags;
639 			split->compress_type = em->compress_type;
640 			split->generation = gen;
641 
642 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
643 				split->orig_block_len = max(em->block_len,
644 						    em->orig_block_len);
645 
646 				split->ram_bytes = em->ram_bytes;
647 				if (compressed) {
648 					split->block_len = em->block_len;
649 					split->block_start = em->block_start;
650 					split->orig_start = em->orig_start;
651 				} else {
652 					split->block_len = split->len;
653 					split->block_start = em->block_start
654 						+ diff;
655 					split->orig_start = em->orig_start;
656 				}
657 			} else {
658 				split->ram_bytes = split->len;
659 				split->orig_start = split->start;
660 				split->block_len = 0;
661 				split->block_start = em->block_start;
662 				split->orig_block_len = 0;
663 			}
664 
665 			ret = add_extent_mapping(em_tree, split, modified);
666 			BUG_ON(ret); /* Logic error */
667 			free_extent_map(split);
668 			split = NULL;
669 		}
670 next:
671 		write_unlock(&em_tree->lock);
672 
673 		/* once for us */
674 		free_extent_map(em);
675 		/* once for the tree*/
676 		free_extent_map(em);
677 	}
678 	if (split)
679 		free_extent_map(split);
680 	if (split2)
681 		free_extent_map(split2);
682 }
683 
684 /*
685  * this is very complex, but the basic idea is to drop all extents
686  * in the range start - end.  hint_block is filled in with a block number
687  * that would be a good hint to the block allocator for this file.
688  *
689  * If an extent intersects the range but is not entirely inside the range
690  * it is either truncated or split.  Anything entirely inside the range
691  * is deleted from the tree.
692  */
693 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
694 			 struct btrfs_root *root, struct inode *inode,
695 			 struct btrfs_path *path, u64 start, u64 end,
696 			 u64 *drop_end, int drop_cache)
697 {
698 	struct extent_buffer *leaf;
699 	struct btrfs_file_extent_item *fi;
700 	struct btrfs_key key;
701 	struct btrfs_key new_key;
702 	u64 ino = btrfs_ino(inode);
703 	u64 search_start = start;
704 	u64 disk_bytenr = 0;
705 	u64 num_bytes = 0;
706 	u64 extent_offset = 0;
707 	u64 extent_end = 0;
708 	int del_nr = 0;
709 	int del_slot = 0;
710 	int extent_type;
711 	int recow;
712 	int ret;
713 	int modify_tree = -1;
714 	int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
715 	int found = 0;
716 
717 	if (drop_cache)
718 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
719 
720 	if (start >= BTRFS_I(inode)->disk_i_size)
721 		modify_tree = 0;
722 
723 	while (1) {
724 		recow = 0;
725 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
726 					       search_start, modify_tree);
727 		if (ret < 0)
728 			break;
729 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
730 			leaf = path->nodes[0];
731 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
732 			if (key.objectid == ino &&
733 			    key.type == BTRFS_EXTENT_DATA_KEY)
734 				path->slots[0]--;
735 		}
736 		ret = 0;
737 next_slot:
738 		leaf = path->nodes[0];
739 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
740 			BUG_ON(del_nr > 0);
741 			ret = btrfs_next_leaf(root, path);
742 			if (ret < 0)
743 				break;
744 			if (ret > 0) {
745 				ret = 0;
746 				break;
747 			}
748 			leaf = path->nodes[0];
749 			recow = 1;
750 		}
751 
752 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
753 		if (key.objectid > ino ||
754 		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
755 			break;
756 
757 		fi = btrfs_item_ptr(leaf, path->slots[0],
758 				    struct btrfs_file_extent_item);
759 		extent_type = btrfs_file_extent_type(leaf, fi);
760 
761 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
762 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
763 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
764 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
765 			extent_offset = btrfs_file_extent_offset(leaf, fi);
766 			extent_end = key.offset +
767 				btrfs_file_extent_num_bytes(leaf, fi);
768 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
769 			extent_end = key.offset +
770 				btrfs_file_extent_inline_len(leaf, fi);
771 		} else {
772 			WARN_ON(1);
773 			extent_end = search_start;
774 		}
775 
776 		if (extent_end <= search_start) {
777 			path->slots[0]++;
778 			goto next_slot;
779 		}
780 
781 		found = 1;
782 		search_start = max(key.offset, start);
783 		if (recow || !modify_tree) {
784 			modify_tree = -1;
785 			btrfs_release_path(path);
786 			continue;
787 		}
788 
789 		/*
790 		 *     | - range to drop - |
791 		 *  | -------- extent -------- |
792 		 */
793 		if (start > key.offset && end < extent_end) {
794 			BUG_ON(del_nr > 0);
795 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
796 
797 			memcpy(&new_key, &key, sizeof(new_key));
798 			new_key.offset = start;
799 			ret = btrfs_duplicate_item(trans, root, path,
800 						   &new_key);
801 			if (ret == -EAGAIN) {
802 				btrfs_release_path(path);
803 				continue;
804 			}
805 			if (ret < 0)
806 				break;
807 
808 			leaf = path->nodes[0];
809 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
810 					    struct btrfs_file_extent_item);
811 			btrfs_set_file_extent_num_bytes(leaf, fi,
812 							start - key.offset);
813 
814 			fi = btrfs_item_ptr(leaf, path->slots[0],
815 					    struct btrfs_file_extent_item);
816 
817 			extent_offset += start - key.offset;
818 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
819 			btrfs_set_file_extent_num_bytes(leaf, fi,
820 							extent_end - start);
821 			btrfs_mark_buffer_dirty(leaf);
822 
823 			if (update_refs && disk_bytenr > 0) {
824 				ret = btrfs_inc_extent_ref(trans, root,
825 						disk_bytenr, num_bytes, 0,
826 						root->root_key.objectid,
827 						new_key.objectid,
828 						start - extent_offset, 0);
829 				BUG_ON(ret); /* -ENOMEM */
830 			}
831 			key.offset = start;
832 		}
833 		/*
834 		 *  | ---- range to drop ----- |
835 		 *      | -------- extent -------- |
836 		 */
837 		if (start <= key.offset && end < extent_end) {
838 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
839 
840 			memcpy(&new_key, &key, sizeof(new_key));
841 			new_key.offset = end;
842 			btrfs_set_item_key_safe(root, path, &new_key);
843 
844 			extent_offset += end - key.offset;
845 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
846 			btrfs_set_file_extent_num_bytes(leaf, fi,
847 							extent_end - end);
848 			btrfs_mark_buffer_dirty(leaf);
849 			if (update_refs && disk_bytenr > 0)
850 				inode_sub_bytes(inode, end - key.offset);
851 			break;
852 		}
853 
854 		search_start = extent_end;
855 		/*
856 		 *       | ---- range to drop ----- |
857 		 *  | -------- extent -------- |
858 		 */
859 		if (start > key.offset && end >= extent_end) {
860 			BUG_ON(del_nr > 0);
861 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
862 
863 			btrfs_set_file_extent_num_bytes(leaf, fi,
864 							start - key.offset);
865 			btrfs_mark_buffer_dirty(leaf);
866 			if (update_refs && disk_bytenr > 0)
867 				inode_sub_bytes(inode, extent_end - start);
868 			if (end == extent_end)
869 				break;
870 
871 			path->slots[0]++;
872 			goto next_slot;
873 		}
874 
875 		/*
876 		 *  | ---- range to drop ----- |
877 		 *    | ------ extent ------ |
878 		 */
879 		if (start <= key.offset && end >= extent_end) {
880 			if (del_nr == 0) {
881 				del_slot = path->slots[0];
882 				del_nr = 1;
883 			} else {
884 				BUG_ON(del_slot + del_nr != path->slots[0]);
885 				del_nr++;
886 			}
887 
888 			if (update_refs &&
889 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
890 				inode_sub_bytes(inode,
891 						extent_end - key.offset);
892 				extent_end = ALIGN(extent_end,
893 						   root->sectorsize);
894 			} else if (update_refs && disk_bytenr > 0) {
895 				ret = btrfs_free_extent(trans, root,
896 						disk_bytenr, num_bytes, 0,
897 						root->root_key.objectid,
898 						key.objectid, key.offset -
899 						extent_offset, 0);
900 				BUG_ON(ret); /* -ENOMEM */
901 				inode_sub_bytes(inode,
902 						extent_end - key.offset);
903 			}
904 
905 			if (end == extent_end)
906 				break;
907 
908 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
909 				path->slots[0]++;
910 				goto next_slot;
911 			}
912 
913 			ret = btrfs_del_items(trans, root, path, del_slot,
914 					      del_nr);
915 			if (ret) {
916 				btrfs_abort_transaction(trans, root, ret);
917 				break;
918 			}
919 
920 			del_nr = 0;
921 			del_slot = 0;
922 
923 			btrfs_release_path(path);
924 			continue;
925 		}
926 
927 		BUG_ON(1);
928 	}
929 
930 	if (!ret && del_nr > 0) {
931 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
932 		if (ret)
933 			btrfs_abort_transaction(trans, root, ret);
934 	}
935 
936 	if (drop_end)
937 		*drop_end = found ? min(end, extent_end) : end;
938 	btrfs_release_path(path);
939 	return ret;
940 }
941 
942 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
943 		       struct btrfs_root *root, struct inode *inode, u64 start,
944 		       u64 end, int drop_cache)
945 {
946 	struct btrfs_path *path;
947 	int ret;
948 
949 	path = btrfs_alloc_path();
950 	if (!path)
951 		return -ENOMEM;
952 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
953 				   drop_cache);
954 	btrfs_free_path(path);
955 	return ret;
956 }
957 
958 static int extent_mergeable(struct extent_buffer *leaf, int slot,
959 			    u64 objectid, u64 bytenr, u64 orig_offset,
960 			    u64 *start, u64 *end)
961 {
962 	struct btrfs_file_extent_item *fi;
963 	struct btrfs_key key;
964 	u64 extent_end;
965 
966 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
967 		return 0;
968 
969 	btrfs_item_key_to_cpu(leaf, &key, slot);
970 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
971 		return 0;
972 
973 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
974 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
975 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
976 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
977 	    btrfs_file_extent_compression(leaf, fi) ||
978 	    btrfs_file_extent_encryption(leaf, fi) ||
979 	    btrfs_file_extent_other_encoding(leaf, fi))
980 		return 0;
981 
982 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
983 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
984 		return 0;
985 
986 	*start = key.offset;
987 	*end = extent_end;
988 	return 1;
989 }
990 
991 /*
992  * Mark extent in the range start - end as written.
993  *
994  * This changes extent type from 'pre-allocated' to 'regular'. If only
995  * part of extent is marked as written, the extent will be split into
996  * two or three.
997  */
998 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
999 			      struct inode *inode, u64 start, u64 end)
1000 {
1001 	struct btrfs_root *root = BTRFS_I(inode)->root;
1002 	struct extent_buffer *leaf;
1003 	struct btrfs_path *path;
1004 	struct btrfs_file_extent_item *fi;
1005 	struct btrfs_key key;
1006 	struct btrfs_key new_key;
1007 	u64 bytenr;
1008 	u64 num_bytes;
1009 	u64 extent_end;
1010 	u64 orig_offset;
1011 	u64 other_start;
1012 	u64 other_end;
1013 	u64 split;
1014 	int del_nr = 0;
1015 	int del_slot = 0;
1016 	int recow;
1017 	int ret;
1018 	u64 ino = btrfs_ino(inode);
1019 
1020 	path = btrfs_alloc_path();
1021 	if (!path)
1022 		return -ENOMEM;
1023 again:
1024 	recow = 0;
1025 	split = start;
1026 	key.objectid = ino;
1027 	key.type = BTRFS_EXTENT_DATA_KEY;
1028 	key.offset = split;
1029 
1030 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1031 	if (ret < 0)
1032 		goto out;
1033 	if (ret > 0 && path->slots[0] > 0)
1034 		path->slots[0]--;
1035 
1036 	leaf = path->nodes[0];
1037 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1038 	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1039 	fi = btrfs_item_ptr(leaf, path->slots[0],
1040 			    struct btrfs_file_extent_item);
1041 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1042 	       BTRFS_FILE_EXTENT_PREALLOC);
1043 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1044 	BUG_ON(key.offset > start || extent_end < end);
1045 
1046 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1047 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1048 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1049 	memcpy(&new_key, &key, sizeof(new_key));
1050 
1051 	if (start == key.offset && end < extent_end) {
1052 		other_start = 0;
1053 		other_end = start;
1054 		if (extent_mergeable(leaf, path->slots[0] - 1,
1055 				     ino, bytenr, orig_offset,
1056 				     &other_start, &other_end)) {
1057 			new_key.offset = end;
1058 			btrfs_set_item_key_safe(root, path, &new_key);
1059 			fi = btrfs_item_ptr(leaf, path->slots[0],
1060 					    struct btrfs_file_extent_item);
1061 			btrfs_set_file_extent_generation(leaf, fi,
1062 							 trans->transid);
1063 			btrfs_set_file_extent_num_bytes(leaf, fi,
1064 							extent_end - end);
1065 			btrfs_set_file_extent_offset(leaf, fi,
1066 						     end - orig_offset);
1067 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1068 					    struct btrfs_file_extent_item);
1069 			btrfs_set_file_extent_generation(leaf, fi,
1070 							 trans->transid);
1071 			btrfs_set_file_extent_num_bytes(leaf, fi,
1072 							end - other_start);
1073 			btrfs_mark_buffer_dirty(leaf);
1074 			goto out;
1075 		}
1076 	}
1077 
1078 	if (start > key.offset && end == extent_end) {
1079 		other_start = end;
1080 		other_end = 0;
1081 		if (extent_mergeable(leaf, path->slots[0] + 1,
1082 				     ino, bytenr, orig_offset,
1083 				     &other_start, &other_end)) {
1084 			fi = btrfs_item_ptr(leaf, path->slots[0],
1085 					    struct btrfs_file_extent_item);
1086 			btrfs_set_file_extent_num_bytes(leaf, fi,
1087 							start - key.offset);
1088 			btrfs_set_file_extent_generation(leaf, fi,
1089 							 trans->transid);
1090 			path->slots[0]++;
1091 			new_key.offset = start;
1092 			btrfs_set_item_key_safe(root, path, &new_key);
1093 
1094 			fi = btrfs_item_ptr(leaf, path->slots[0],
1095 					    struct btrfs_file_extent_item);
1096 			btrfs_set_file_extent_generation(leaf, fi,
1097 							 trans->transid);
1098 			btrfs_set_file_extent_num_bytes(leaf, fi,
1099 							other_end - start);
1100 			btrfs_set_file_extent_offset(leaf, fi,
1101 						     start - orig_offset);
1102 			btrfs_mark_buffer_dirty(leaf);
1103 			goto out;
1104 		}
1105 	}
1106 
1107 	while (start > key.offset || end < extent_end) {
1108 		if (key.offset == start)
1109 			split = end;
1110 
1111 		new_key.offset = split;
1112 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1113 		if (ret == -EAGAIN) {
1114 			btrfs_release_path(path);
1115 			goto again;
1116 		}
1117 		if (ret < 0) {
1118 			btrfs_abort_transaction(trans, root, ret);
1119 			goto out;
1120 		}
1121 
1122 		leaf = path->nodes[0];
1123 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1124 				    struct btrfs_file_extent_item);
1125 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1126 		btrfs_set_file_extent_num_bytes(leaf, fi,
1127 						split - key.offset);
1128 
1129 		fi = btrfs_item_ptr(leaf, path->slots[0],
1130 				    struct btrfs_file_extent_item);
1131 
1132 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1133 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1134 		btrfs_set_file_extent_num_bytes(leaf, fi,
1135 						extent_end - split);
1136 		btrfs_mark_buffer_dirty(leaf);
1137 
1138 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1139 					   root->root_key.objectid,
1140 					   ino, orig_offset, 0);
1141 		BUG_ON(ret); /* -ENOMEM */
1142 
1143 		if (split == start) {
1144 			key.offset = start;
1145 		} else {
1146 			BUG_ON(start != key.offset);
1147 			path->slots[0]--;
1148 			extent_end = end;
1149 		}
1150 		recow = 1;
1151 	}
1152 
1153 	other_start = end;
1154 	other_end = 0;
1155 	if (extent_mergeable(leaf, path->slots[0] + 1,
1156 			     ino, bytenr, orig_offset,
1157 			     &other_start, &other_end)) {
1158 		if (recow) {
1159 			btrfs_release_path(path);
1160 			goto again;
1161 		}
1162 		extent_end = other_end;
1163 		del_slot = path->slots[0] + 1;
1164 		del_nr++;
1165 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1166 					0, root->root_key.objectid,
1167 					ino, orig_offset, 0);
1168 		BUG_ON(ret); /* -ENOMEM */
1169 	}
1170 	other_start = 0;
1171 	other_end = start;
1172 	if (extent_mergeable(leaf, path->slots[0] - 1,
1173 			     ino, bytenr, orig_offset,
1174 			     &other_start, &other_end)) {
1175 		if (recow) {
1176 			btrfs_release_path(path);
1177 			goto again;
1178 		}
1179 		key.offset = other_start;
1180 		del_slot = path->slots[0];
1181 		del_nr++;
1182 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1183 					0, root->root_key.objectid,
1184 					ino, orig_offset, 0);
1185 		BUG_ON(ret); /* -ENOMEM */
1186 	}
1187 	if (del_nr == 0) {
1188 		fi = btrfs_item_ptr(leaf, path->slots[0],
1189 			   struct btrfs_file_extent_item);
1190 		btrfs_set_file_extent_type(leaf, fi,
1191 					   BTRFS_FILE_EXTENT_REG);
1192 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1193 		btrfs_mark_buffer_dirty(leaf);
1194 	} else {
1195 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1196 			   struct btrfs_file_extent_item);
1197 		btrfs_set_file_extent_type(leaf, fi,
1198 					   BTRFS_FILE_EXTENT_REG);
1199 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1200 		btrfs_set_file_extent_num_bytes(leaf, fi,
1201 						extent_end - key.offset);
1202 		btrfs_mark_buffer_dirty(leaf);
1203 
1204 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1205 		if (ret < 0) {
1206 			btrfs_abort_transaction(trans, root, ret);
1207 			goto out;
1208 		}
1209 	}
1210 out:
1211 	btrfs_free_path(path);
1212 	return 0;
1213 }
1214 
1215 /*
1216  * on error we return an unlocked page and the error value
1217  * on success we return a locked page and 0
1218  */
1219 static int prepare_uptodate_page(struct page *page, u64 pos,
1220 				 bool force_uptodate)
1221 {
1222 	int ret = 0;
1223 
1224 	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1225 	    !PageUptodate(page)) {
1226 		ret = btrfs_readpage(NULL, page);
1227 		if (ret)
1228 			return ret;
1229 		lock_page(page);
1230 		if (!PageUptodate(page)) {
1231 			unlock_page(page);
1232 			return -EIO;
1233 		}
1234 	}
1235 	return 0;
1236 }
1237 
1238 /*
1239  * this gets pages into the page cache and locks them down, it also properly
1240  * waits for data=ordered extents to finish before allowing the pages to be
1241  * modified.
1242  */
1243 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1244 			 struct page **pages, size_t num_pages,
1245 			 loff_t pos, unsigned long first_index,
1246 			 size_t write_bytes, bool force_uptodate)
1247 {
1248 	struct extent_state *cached_state = NULL;
1249 	int i;
1250 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
1251 	struct inode *inode = file_inode(file);
1252 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1253 	int err = 0;
1254 	int faili = 0;
1255 	u64 start_pos;
1256 	u64 last_pos;
1257 
1258 	start_pos = pos & ~((u64)root->sectorsize - 1);
1259 	last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1260 
1261 again:
1262 	for (i = 0; i < num_pages; i++) {
1263 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1264 					       mask | __GFP_WRITE);
1265 		if (!pages[i]) {
1266 			faili = i - 1;
1267 			err = -ENOMEM;
1268 			goto fail;
1269 		}
1270 
1271 		if (i == 0)
1272 			err = prepare_uptodate_page(pages[i], pos,
1273 						    force_uptodate);
1274 		if (i == num_pages - 1)
1275 			err = prepare_uptodate_page(pages[i],
1276 						    pos + write_bytes, false);
1277 		if (err) {
1278 			page_cache_release(pages[i]);
1279 			faili = i - 1;
1280 			goto fail;
1281 		}
1282 		wait_on_page_writeback(pages[i]);
1283 	}
1284 	err = 0;
1285 	if (start_pos < inode->i_size) {
1286 		struct btrfs_ordered_extent *ordered;
1287 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1288 				 start_pos, last_pos - 1, 0, &cached_state);
1289 		ordered = btrfs_lookup_first_ordered_extent(inode,
1290 							    last_pos - 1);
1291 		if (ordered &&
1292 		    ordered->file_offset + ordered->len > start_pos &&
1293 		    ordered->file_offset < last_pos) {
1294 			btrfs_put_ordered_extent(ordered);
1295 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1296 					     start_pos, last_pos - 1,
1297 					     &cached_state, GFP_NOFS);
1298 			for (i = 0; i < num_pages; i++) {
1299 				unlock_page(pages[i]);
1300 				page_cache_release(pages[i]);
1301 			}
1302 			btrfs_wait_ordered_range(inode, start_pos,
1303 						 last_pos - start_pos);
1304 			goto again;
1305 		}
1306 		if (ordered)
1307 			btrfs_put_ordered_extent(ordered);
1308 
1309 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1310 				  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1311 				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1312 				  0, 0, &cached_state, GFP_NOFS);
1313 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1314 				     start_pos, last_pos - 1, &cached_state,
1315 				     GFP_NOFS);
1316 	}
1317 	for (i = 0; i < num_pages; i++) {
1318 		if (clear_page_dirty_for_io(pages[i]))
1319 			account_page_redirty(pages[i]);
1320 		set_page_extent_mapped(pages[i]);
1321 		WARN_ON(!PageLocked(pages[i]));
1322 	}
1323 	return 0;
1324 fail:
1325 	while (faili >= 0) {
1326 		unlock_page(pages[faili]);
1327 		page_cache_release(pages[faili]);
1328 		faili--;
1329 	}
1330 	return err;
1331 
1332 }
1333 
1334 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1335 				    size_t *write_bytes)
1336 {
1337 	struct btrfs_trans_handle *trans;
1338 	struct btrfs_root *root = BTRFS_I(inode)->root;
1339 	struct btrfs_ordered_extent *ordered;
1340 	u64 lockstart, lockend;
1341 	u64 num_bytes;
1342 	int ret;
1343 
1344 	lockstart = round_down(pos, root->sectorsize);
1345 	lockend = lockstart + round_up(*write_bytes, root->sectorsize) - 1;
1346 
1347 	while (1) {
1348 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1349 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1350 						     lockend - lockstart + 1);
1351 		if (!ordered) {
1352 			break;
1353 		}
1354 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1355 		btrfs_start_ordered_extent(inode, ordered, 1);
1356 		btrfs_put_ordered_extent(ordered);
1357 	}
1358 
1359 	trans = btrfs_join_transaction(root);
1360 	if (IS_ERR(trans)) {
1361 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1362 		return PTR_ERR(trans);
1363 	}
1364 
1365 	num_bytes = lockend - lockstart + 1;
1366 	ret = can_nocow_extent(trans, inode, lockstart, &num_bytes, NULL, NULL,
1367 			       NULL);
1368 	btrfs_end_transaction(trans, root);
1369 	if (ret <= 0) {
1370 		ret = 0;
1371 	} else {
1372 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1373 				 EXTENT_DIRTY | EXTENT_DELALLOC |
1374 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1375 				 NULL, GFP_NOFS);
1376 		*write_bytes = min_t(size_t, *write_bytes, num_bytes);
1377 	}
1378 
1379 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1380 
1381 	return ret;
1382 }
1383 
1384 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1385 					       struct iov_iter *i,
1386 					       loff_t pos)
1387 {
1388 	struct inode *inode = file_inode(file);
1389 	struct btrfs_root *root = BTRFS_I(inode)->root;
1390 	struct page **pages = NULL;
1391 	u64 release_bytes = 0;
1392 	unsigned long first_index;
1393 	size_t num_written = 0;
1394 	int nrptrs;
1395 	int ret = 0;
1396 	bool only_release_metadata = false;
1397 	bool force_page_uptodate = false;
1398 
1399 	nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1400 		     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1401 		     (sizeof(struct page *)));
1402 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1403 	nrptrs = max(nrptrs, 8);
1404 	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1405 	if (!pages)
1406 		return -ENOMEM;
1407 
1408 	first_index = pos >> PAGE_CACHE_SHIFT;
1409 
1410 	while (iov_iter_count(i) > 0) {
1411 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1412 		size_t write_bytes = min(iov_iter_count(i),
1413 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
1414 					 offset);
1415 		size_t num_pages = (write_bytes + offset +
1416 				    PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1417 		size_t reserve_bytes;
1418 		size_t dirty_pages;
1419 		size_t copied;
1420 
1421 		WARN_ON(num_pages > nrptrs);
1422 
1423 		/*
1424 		 * Fault pages before locking them in prepare_pages
1425 		 * to avoid recursive lock
1426 		 */
1427 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1428 			ret = -EFAULT;
1429 			break;
1430 		}
1431 
1432 		reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1433 		ret = btrfs_check_data_free_space(inode, reserve_bytes);
1434 		if (ret == -ENOSPC &&
1435 		    (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1436 					      BTRFS_INODE_PREALLOC))) {
1437 			ret = check_can_nocow(inode, pos, &write_bytes);
1438 			if (ret > 0) {
1439 				only_release_metadata = true;
1440 				/*
1441 				 * our prealloc extent may be smaller than
1442 				 * write_bytes, so scale down.
1443 				 */
1444 				num_pages = (write_bytes + offset +
1445 					     PAGE_CACHE_SIZE - 1) >>
1446 					PAGE_CACHE_SHIFT;
1447 				reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1448 				ret = 0;
1449 			} else {
1450 				ret = -ENOSPC;
1451 			}
1452 		}
1453 
1454 		if (ret)
1455 			break;
1456 
1457 		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1458 		if (ret) {
1459 			if (!only_release_metadata)
1460 				btrfs_free_reserved_data_space(inode,
1461 							       reserve_bytes);
1462 			break;
1463 		}
1464 
1465 		release_bytes = reserve_bytes;
1466 
1467 		/*
1468 		 * This is going to setup the pages array with the number of
1469 		 * pages we want, so we don't really need to worry about the
1470 		 * contents of pages from loop to loop
1471 		 */
1472 		ret = prepare_pages(root, file, pages, num_pages,
1473 				    pos, first_index, write_bytes,
1474 				    force_page_uptodate);
1475 		if (ret)
1476 			break;
1477 
1478 		copied = btrfs_copy_from_user(pos, num_pages,
1479 					   write_bytes, pages, i);
1480 
1481 		/*
1482 		 * if we have trouble faulting in the pages, fall
1483 		 * back to one page at a time
1484 		 */
1485 		if (copied < write_bytes)
1486 			nrptrs = 1;
1487 
1488 		if (copied == 0) {
1489 			force_page_uptodate = true;
1490 			dirty_pages = 0;
1491 		} else {
1492 			force_page_uptodate = false;
1493 			dirty_pages = (copied + offset +
1494 				       PAGE_CACHE_SIZE - 1) >>
1495 				       PAGE_CACHE_SHIFT;
1496 		}
1497 
1498 		/*
1499 		 * If we had a short copy we need to release the excess delaloc
1500 		 * bytes we reserved.  We need to increment outstanding_extents
1501 		 * because btrfs_delalloc_release_space will decrement it, but
1502 		 * we still have an outstanding extent for the chunk we actually
1503 		 * managed to copy.
1504 		 */
1505 		if (num_pages > dirty_pages) {
1506 			release_bytes = (num_pages - dirty_pages) <<
1507 				PAGE_CACHE_SHIFT;
1508 			if (copied > 0) {
1509 				spin_lock(&BTRFS_I(inode)->lock);
1510 				BTRFS_I(inode)->outstanding_extents++;
1511 				spin_unlock(&BTRFS_I(inode)->lock);
1512 			}
1513 			if (only_release_metadata)
1514 				btrfs_delalloc_release_metadata(inode,
1515 								release_bytes);
1516 			else
1517 				btrfs_delalloc_release_space(inode,
1518 							     release_bytes);
1519 		}
1520 
1521 		release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1522 		if (copied > 0) {
1523 			ret = btrfs_dirty_pages(root, inode, pages,
1524 						dirty_pages, pos, copied,
1525 						NULL);
1526 			if (ret) {
1527 				btrfs_drop_pages(pages, num_pages);
1528 				break;
1529 			}
1530 		}
1531 
1532 		release_bytes = 0;
1533 		btrfs_drop_pages(pages, num_pages);
1534 
1535 		if (only_release_metadata && copied > 0) {
1536 			u64 lockstart = round_down(pos, root->sectorsize);
1537 			u64 lockend = lockstart +
1538 				(dirty_pages << PAGE_CACHE_SHIFT) - 1;
1539 
1540 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1541 				       lockend, EXTENT_NORESERVE, NULL,
1542 				       NULL, GFP_NOFS);
1543 			only_release_metadata = false;
1544 		}
1545 
1546 		cond_resched();
1547 
1548 		balance_dirty_pages_ratelimited(inode->i_mapping);
1549 		if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1550 			btrfs_btree_balance_dirty(root);
1551 
1552 		pos += copied;
1553 		num_written += copied;
1554 	}
1555 
1556 	kfree(pages);
1557 
1558 	if (release_bytes) {
1559 		if (only_release_metadata)
1560 			btrfs_delalloc_release_metadata(inode, release_bytes);
1561 		else
1562 			btrfs_delalloc_release_space(inode, release_bytes);
1563 	}
1564 
1565 	return num_written ? num_written : ret;
1566 }
1567 
1568 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1569 				    const struct iovec *iov,
1570 				    unsigned long nr_segs, loff_t pos,
1571 				    loff_t *ppos, size_t count, size_t ocount)
1572 {
1573 	struct file *file = iocb->ki_filp;
1574 	struct iov_iter i;
1575 	ssize_t written;
1576 	ssize_t written_buffered;
1577 	loff_t endbyte;
1578 	int err;
1579 
1580 	written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1581 					    count, ocount);
1582 
1583 	if (written < 0 || written == count)
1584 		return written;
1585 
1586 	pos += written;
1587 	count -= written;
1588 	iov_iter_init(&i, iov, nr_segs, count, written);
1589 	written_buffered = __btrfs_buffered_write(file, &i, pos);
1590 	if (written_buffered < 0) {
1591 		err = written_buffered;
1592 		goto out;
1593 	}
1594 	endbyte = pos + written_buffered - 1;
1595 	err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1596 	if (err)
1597 		goto out;
1598 	written += written_buffered;
1599 	*ppos = pos + written_buffered;
1600 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1601 				 endbyte >> PAGE_CACHE_SHIFT);
1602 out:
1603 	return written ? written : err;
1604 }
1605 
1606 static void update_time_for_write(struct inode *inode)
1607 {
1608 	struct timespec now;
1609 
1610 	if (IS_NOCMTIME(inode))
1611 		return;
1612 
1613 	now = current_fs_time(inode->i_sb);
1614 	if (!timespec_equal(&inode->i_mtime, &now))
1615 		inode->i_mtime = now;
1616 
1617 	if (!timespec_equal(&inode->i_ctime, &now))
1618 		inode->i_ctime = now;
1619 
1620 	if (IS_I_VERSION(inode))
1621 		inode_inc_iversion(inode);
1622 }
1623 
1624 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1625 				    const struct iovec *iov,
1626 				    unsigned long nr_segs, loff_t pos)
1627 {
1628 	struct file *file = iocb->ki_filp;
1629 	struct inode *inode = file_inode(file);
1630 	struct btrfs_root *root = BTRFS_I(inode)->root;
1631 	loff_t *ppos = &iocb->ki_pos;
1632 	u64 start_pos;
1633 	ssize_t num_written = 0;
1634 	ssize_t err = 0;
1635 	size_t count, ocount;
1636 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1637 
1638 	mutex_lock(&inode->i_mutex);
1639 
1640 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1641 	if (err) {
1642 		mutex_unlock(&inode->i_mutex);
1643 		goto out;
1644 	}
1645 	count = ocount;
1646 
1647 	current->backing_dev_info = inode->i_mapping->backing_dev_info;
1648 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1649 	if (err) {
1650 		mutex_unlock(&inode->i_mutex);
1651 		goto out;
1652 	}
1653 
1654 	if (count == 0) {
1655 		mutex_unlock(&inode->i_mutex);
1656 		goto out;
1657 	}
1658 
1659 	err = file_remove_suid(file);
1660 	if (err) {
1661 		mutex_unlock(&inode->i_mutex);
1662 		goto out;
1663 	}
1664 
1665 	/*
1666 	 * If BTRFS flips readonly due to some impossible error
1667 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1668 	 * although we have opened a file as writable, we have
1669 	 * to stop this write operation to ensure FS consistency.
1670 	 */
1671 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1672 		mutex_unlock(&inode->i_mutex);
1673 		err = -EROFS;
1674 		goto out;
1675 	}
1676 
1677 	/*
1678 	 * We reserve space for updating the inode when we reserve space for the
1679 	 * extent we are going to write, so we will enospc out there.  We don't
1680 	 * need to start yet another transaction to update the inode as we will
1681 	 * update the inode when we finish writing whatever data we write.
1682 	 */
1683 	update_time_for_write(inode);
1684 
1685 	start_pos = round_down(pos, root->sectorsize);
1686 	if (start_pos > i_size_read(inode)) {
1687 		err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1688 		if (err) {
1689 			mutex_unlock(&inode->i_mutex);
1690 			goto out;
1691 		}
1692 	}
1693 
1694 	if (sync)
1695 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1696 
1697 	if (unlikely(file->f_flags & O_DIRECT)) {
1698 		num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1699 						   pos, ppos, count, ocount);
1700 	} else {
1701 		struct iov_iter i;
1702 
1703 		iov_iter_init(&i, iov, nr_segs, count, num_written);
1704 
1705 		num_written = __btrfs_buffered_write(file, &i, pos);
1706 		if (num_written > 0)
1707 			*ppos = pos + num_written;
1708 	}
1709 
1710 	mutex_unlock(&inode->i_mutex);
1711 
1712 	/*
1713 	 * we want to make sure fsync finds this change
1714 	 * but we haven't joined a transaction running right now.
1715 	 *
1716 	 * Later on, someone is sure to update the inode and get the
1717 	 * real transid recorded.
1718 	 *
1719 	 * We set last_trans now to the fs_info generation + 1,
1720 	 * this will either be one more than the running transaction
1721 	 * or the generation used for the next transaction if there isn't
1722 	 * one running right now.
1723 	 *
1724 	 * We also have to set last_sub_trans to the current log transid,
1725 	 * otherwise subsequent syncs to a file that's been synced in this
1726 	 * transaction will appear to have already occured.
1727 	 */
1728 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1729 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1730 	if (num_written > 0 || num_written == -EIOCBQUEUED) {
1731 		err = generic_write_sync(file, pos, num_written);
1732 		if (err < 0 && num_written > 0)
1733 			num_written = err;
1734 	}
1735 
1736 	if (sync)
1737 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1738 out:
1739 	current->backing_dev_info = NULL;
1740 	return num_written ? num_written : err;
1741 }
1742 
1743 int btrfs_release_file(struct inode *inode, struct file *filp)
1744 {
1745 	/*
1746 	 * ordered_data_close is set by settattr when we are about to truncate
1747 	 * a file from a non-zero size to a zero size.  This tries to
1748 	 * flush down new bytes that may have been written if the
1749 	 * application were using truncate to replace a file in place.
1750 	 */
1751 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1752 			       &BTRFS_I(inode)->runtime_flags)) {
1753 		struct btrfs_trans_handle *trans;
1754 		struct btrfs_root *root = BTRFS_I(inode)->root;
1755 
1756 		/*
1757 		 * We need to block on a committing transaction to keep us from
1758 		 * throwing a ordered operation on to the list and causing
1759 		 * something like sync to deadlock trying to flush out this
1760 		 * inode.
1761 		 */
1762 		trans = btrfs_start_transaction(root, 0);
1763 		if (IS_ERR(trans))
1764 			return PTR_ERR(trans);
1765 		btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1766 		btrfs_end_transaction(trans, root);
1767 		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1768 			filemap_flush(inode->i_mapping);
1769 	}
1770 	if (filp->private_data)
1771 		btrfs_ioctl_trans_end(filp);
1772 	return 0;
1773 }
1774 
1775 /*
1776  * fsync call for both files and directories.  This logs the inode into
1777  * the tree log instead of forcing full commits whenever possible.
1778  *
1779  * It needs to call filemap_fdatawait so that all ordered extent updates are
1780  * in the metadata btree are up to date for copying to the log.
1781  *
1782  * It drops the inode mutex before doing the tree log commit.  This is an
1783  * important optimization for directories because holding the mutex prevents
1784  * new operations on the dir while we write to disk.
1785  */
1786 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1787 {
1788 	struct dentry *dentry = file->f_path.dentry;
1789 	struct inode *inode = dentry->d_inode;
1790 	struct btrfs_root *root = BTRFS_I(inode)->root;
1791 	int ret = 0;
1792 	struct btrfs_trans_handle *trans;
1793 	bool full_sync = 0;
1794 
1795 	trace_btrfs_sync_file(file, datasync);
1796 
1797 	/*
1798 	 * We write the dirty pages in the range and wait until they complete
1799 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1800 	 * multi-task, and make the performance up.  See
1801 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1802 	 */
1803 	atomic_inc(&BTRFS_I(inode)->sync_writers);
1804 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1805 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1806 			     &BTRFS_I(inode)->runtime_flags))
1807 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1808 	atomic_dec(&BTRFS_I(inode)->sync_writers);
1809 	if (ret)
1810 		return ret;
1811 
1812 	mutex_lock(&inode->i_mutex);
1813 
1814 	/*
1815 	 * We flush the dirty pages again to avoid some dirty pages in the
1816 	 * range being left.
1817 	 */
1818 	atomic_inc(&root->log_batch);
1819 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1820 			     &BTRFS_I(inode)->runtime_flags);
1821 	if (full_sync)
1822 		btrfs_wait_ordered_range(inode, start, end - start + 1);
1823 	atomic_inc(&root->log_batch);
1824 
1825 	/*
1826 	 * check the transaction that last modified this inode
1827 	 * and see if its already been committed
1828 	 */
1829 	if (!BTRFS_I(inode)->last_trans) {
1830 		mutex_unlock(&inode->i_mutex);
1831 		goto out;
1832 	}
1833 
1834 	/*
1835 	 * if the last transaction that changed this file was before
1836 	 * the current transaction, we can bail out now without any
1837 	 * syncing
1838 	 */
1839 	smp_mb();
1840 	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1841 	    BTRFS_I(inode)->last_trans <=
1842 	    root->fs_info->last_trans_committed) {
1843 		BTRFS_I(inode)->last_trans = 0;
1844 
1845 		/*
1846 		 * We'v had everything committed since the last time we were
1847 		 * modified so clear this flag in case it was set for whatever
1848 		 * reason, it's no longer relevant.
1849 		 */
1850 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1851 			  &BTRFS_I(inode)->runtime_flags);
1852 		mutex_unlock(&inode->i_mutex);
1853 		goto out;
1854 	}
1855 
1856 	/*
1857 	 * ok we haven't committed the transaction yet, lets do a commit
1858 	 */
1859 	if (file->private_data)
1860 		btrfs_ioctl_trans_end(file);
1861 
1862 	trans = btrfs_start_transaction(root, 0);
1863 	if (IS_ERR(trans)) {
1864 		ret = PTR_ERR(trans);
1865 		mutex_unlock(&inode->i_mutex);
1866 		goto out;
1867 	}
1868 
1869 	ret = btrfs_log_dentry_safe(trans, root, dentry);
1870 	if (ret < 0) {
1871 		mutex_unlock(&inode->i_mutex);
1872 		goto out;
1873 	}
1874 
1875 	/* we've logged all the items and now have a consistent
1876 	 * version of the file in the log.  It is possible that
1877 	 * someone will come in and modify the file, but that's
1878 	 * fine because the log is consistent on disk, and we
1879 	 * have references to all of the file's extents
1880 	 *
1881 	 * It is possible that someone will come in and log the
1882 	 * file again, but that will end up using the synchronization
1883 	 * inside btrfs_sync_log to keep things safe.
1884 	 */
1885 	mutex_unlock(&inode->i_mutex);
1886 
1887 	if (ret != BTRFS_NO_LOG_SYNC) {
1888 		if (ret > 0) {
1889 			/*
1890 			 * If we didn't already wait for ordered extents we need
1891 			 * to do that now.
1892 			 */
1893 			if (!full_sync)
1894 				btrfs_wait_ordered_range(inode, start,
1895 							 end - start + 1);
1896 			ret = btrfs_commit_transaction(trans, root);
1897 		} else {
1898 			ret = btrfs_sync_log(trans, root);
1899 			if (ret == 0) {
1900 				ret = btrfs_end_transaction(trans, root);
1901 			} else {
1902 				if (!full_sync)
1903 					btrfs_wait_ordered_range(inode, start,
1904 								 end -
1905 								 start + 1);
1906 				ret = btrfs_commit_transaction(trans, root);
1907 			}
1908 		}
1909 	} else {
1910 		ret = btrfs_end_transaction(trans, root);
1911 	}
1912 out:
1913 	return ret > 0 ? -EIO : ret;
1914 }
1915 
1916 static const struct vm_operations_struct btrfs_file_vm_ops = {
1917 	.fault		= filemap_fault,
1918 	.page_mkwrite	= btrfs_page_mkwrite,
1919 	.remap_pages	= generic_file_remap_pages,
1920 };
1921 
1922 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1923 {
1924 	struct address_space *mapping = filp->f_mapping;
1925 
1926 	if (!mapping->a_ops->readpage)
1927 		return -ENOEXEC;
1928 
1929 	file_accessed(filp);
1930 	vma->vm_ops = &btrfs_file_vm_ops;
1931 
1932 	return 0;
1933 }
1934 
1935 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
1936 			  int slot, u64 start, u64 end)
1937 {
1938 	struct btrfs_file_extent_item *fi;
1939 	struct btrfs_key key;
1940 
1941 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1942 		return 0;
1943 
1944 	btrfs_item_key_to_cpu(leaf, &key, slot);
1945 	if (key.objectid != btrfs_ino(inode) ||
1946 	    key.type != BTRFS_EXTENT_DATA_KEY)
1947 		return 0;
1948 
1949 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1950 
1951 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1952 		return 0;
1953 
1954 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
1955 		return 0;
1956 
1957 	if (key.offset == end)
1958 		return 1;
1959 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1960 		return 1;
1961 	return 0;
1962 }
1963 
1964 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
1965 		      struct btrfs_path *path, u64 offset, u64 end)
1966 {
1967 	struct btrfs_root *root = BTRFS_I(inode)->root;
1968 	struct extent_buffer *leaf;
1969 	struct btrfs_file_extent_item *fi;
1970 	struct extent_map *hole_em;
1971 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1972 	struct btrfs_key key;
1973 	int ret;
1974 
1975 	key.objectid = btrfs_ino(inode);
1976 	key.type = BTRFS_EXTENT_DATA_KEY;
1977 	key.offset = offset;
1978 
1979 
1980 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1981 	if (ret < 0)
1982 		return ret;
1983 	BUG_ON(!ret);
1984 
1985 	leaf = path->nodes[0];
1986 	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
1987 		u64 num_bytes;
1988 
1989 		path->slots[0]--;
1990 		fi = btrfs_item_ptr(leaf, path->slots[0],
1991 				    struct btrfs_file_extent_item);
1992 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
1993 			end - offset;
1994 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1995 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1996 		btrfs_set_file_extent_offset(leaf, fi, 0);
1997 		btrfs_mark_buffer_dirty(leaf);
1998 		goto out;
1999 	}
2000 
2001 	if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
2002 		u64 num_bytes;
2003 
2004 		path->slots[0]++;
2005 		key.offset = offset;
2006 		btrfs_set_item_key_safe(root, path, &key);
2007 		fi = btrfs_item_ptr(leaf, path->slots[0],
2008 				    struct btrfs_file_extent_item);
2009 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2010 			offset;
2011 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2012 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2013 		btrfs_set_file_extent_offset(leaf, fi, 0);
2014 		btrfs_mark_buffer_dirty(leaf);
2015 		goto out;
2016 	}
2017 	btrfs_release_path(path);
2018 
2019 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2020 				       0, 0, end - offset, 0, end - offset,
2021 				       0, 0, 0);
2022 	if (ret)
2023 		return ret;
2024 
2025 out:
2026 	btrfs_release_path(path);
2027 
2028 	hole_em = alloc_extent_map();
2029 	if (!hole_em) {
2030 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2031 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2032 			&BTRFS_I(inode)->runtime_flags);
2033 	} else {
2034 		hole_em->start = offset;
2035 		hole_em->len = end - offset;
2036 		hole_em->ram_bytes = hole_em->len;
2037 		hole_em->orig_start = offset;
2038 
2039 		hole_em->block_start = EXTENT_MAP_HOLE;
2040 		hole_em->block_len = 0;
2041 		hole_em->orig_block_len = 0;
2042 		hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2043 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2044 		hole_em->generation = trans->transid;
2045 
2046 		do {
2047 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2048 			write_lock(&em_tree->lock);
2049 			ret = add_extent_mapping(em_tree, hole_em, 1);
2050 			write_unlock(&em_tree->lock);
2051 		} while (ret == -EEXIST);
2052 		free_extent_map(hole_em);
2053 		if (ret)
2054 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2055 				&BTRFS_I(inode)->runtime_flags);
2056 	}
2057 
2058 	return 0;
2059 }
2060 
2061 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2062 {
2063 	struct btrfs_root *root = BTRFS_I(inode)->root;
2064 	struct extent_state *cached_state = NULL;
2065 	struct btrfs_path *path;
2066 	struct btrfs_block_rsv *rsv;
2067 	struct btrfs_trans_handle *trans;
2068 	u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2069 	u64 lockend = round_down(offset + len,
2070 				 BTRFS_I(inode)->root->sectorsize) - 1;
2071 	u64 cur_offset = lockstart;
2072 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2073 	u64 drop_end;
2074 	int ret = 0;
2075 	int err = 0;
2076 	bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2077 			  ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2078 
2079 	btrfs_wait_ordered_range(inode, offset, len);
2080 
2081 	mutex_lock(&inode->i_mutex);
2082 	/*
2083 	 * We needn't truncate any page which is beyond the end of the file
2084 	 * because we are sure there is no data there.
2085 	 */
2086 	/*
2087 	 * Only do this if we are in the same page and we aren't doing the
2088 	 * entire page.
2089 	 */
2090 	if (same_page && len < PAGE_CACHE_SIZE) {
2091 		if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
2092 			ret = btrfs_truncate_page(inode, offset, len, 0);
2093 		mutex_unlock(&inode->i_mutex);
2094 		return ret;
2095 	}
2096 
2097 	/* zero back part of the first page */
2098 	if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2099 		ret = btrfs_truncate_page(inode, offset, 0, 0);
2100 		if (ret) {
2101 			mutex_unlock(&inode->i_mutex);
2102 			return ret;
2103 		}
2104 	}
2105 
2106 	/* zero the front end of the last page */
2107 	if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2108 		ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2109 		if (ret) {
2110 			mutex_unlock(&inode->i_mutex);
2111 			return ret;
2112 		}
2113 	}
2114 
2115 	if (lockend < lockstart) {
2116 		mutex_unlock(&inode->i_mutex);
2117 		return 0;
2118 	}
2119 
2120 	while (1) {
2121 		struct btrfs_ordered_extent *ordered;
2122 
2123 		truncate_pagecache_range(inode, lockstart, lockend);
2124 
2125 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2126 				 0, &cached_state);
2127 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2128 
2129 		/*
2130 		 * We need to make sure we have no ordered extents in this range
2131 		 * and nobody raced in and read a page in this range, if we did
2132 		 * we need to try again.
2133 		 */
2134 		if ((!ordered ||
2135 		    (ordered->file_offset + ordered->len < lockstart ||
2136 		     ordered->file_offset > lockend)) &&
2137 		     !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2138 				     lockend, EXTENT_UPTODATE, 0,
2139 				     cached_state)) {
2140 			if (ordered)
2141 				btrfs_put_ordered_extent(ordered);
2142 			break;
2143 		}
2144 		if (ordered)
2145 			btrfs_put_ordered_extent(ordered);
2146 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2147 				     lockend, &cached_state, GFP_NOFS);
2148 		btrfs_wait_ordered_range(inode, lockstart,
2149 					 lockend - lockstart + 1);
2150 	}
2151 
2152 	path = btrfs_alloc_path();
2153 	if (!path) {
2154 		ret = -ENOMEM;
2155 		goto out;
2156 	}
2157 
2158 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2159 	if (!rsv) {
2160 		ret = -ENOMEM;
2161 		goto out_free;
2162 	}
2163 	rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2164 	rsv->failfast = 1;
2165 
2166 	/*
2167 	 * 1 - update the inode
2168 	 * 1 - removing the extents in the range
2169 	 * 1 - adding the hole extent
2170 	 */
2171 	trans = btrfs_start_transaction(root, 3);
2172 	if (IS_ERR(trans)) {
2173 		err = PTR_ERR(trans);
2174 		goto out_free;
2175 	}
2176 
2177 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2178 				      min_size);
2179 	BUG_ON(ret);
2180 	trans->block_rsv = rsv;
2181 
2182 	while (cur_offset < lockend) {
2183 		ret = __btrfs_drop_extents(trans, root, inode, path,
2184 					   cur_offset, lockend + 1,
2185 					   &drop_end, 1);
2186 		if (ret != -ENOSPC)
2187 			break;
2188 
2189 		trans->block_rsv = &root->fs_info->trans_block_rsv;
2190 
2191 		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2192 		if (ret) {
2193 			err = ret;
2194 			break;
2195 		}
2196 
2197 		cur_offset = drop_end;
2198 
2199 		ret = btrfs_update_inode(trans, root, inode);
2200 		if (ret) {
2201 			err = ret;
2202 			break;
2203 		}
2204 
2205 		btrfs_end_transaction(trans, root);
2206 		btrfs_btree_balance_dirty(root);
2207 
2208 		trans = btrfs_start_transaction(root, 3);
2209 		if (IS_ERR(trans)) {
2210 			ret = PTR_ERR(trans);
2211 			trans = NULL;
2212 			break;
2213 		}
2214 
2215 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2216 					      rsv, min_size);
2217 		BUG_ON(ret);	/* shouldn't happen */
2218 		trans->block_rsv = rsv;
2219 	}
2220 
2221 	if (ret) {
2222 		err = ret;
2223 		goto out_trans;
2224 	}
2225 
2226 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2227 	ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2228 	if (ret) {
2229 		err = ret;
2230 		goto out_trans;
2231 	}
2232 
2233 out_trans:
2234 	if (!trans)
2235 		goto out_free;
2236 
2237 	inode_inc_iversion(inode);
2238 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2239 
2240 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2241 	ret = btrfs_update_inode(trans, root, inode);
2242 	btrfs_end_transaction(trans, root);
2243 	btrfs_btree_balance_dirty(root);
2244 out_free:
2245 	btrfs_free_path(path);
2246 	btrfs_free_block_rsv(root, rsv);
2247 out:
2248 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2249 			     &cached_state, GFP_NOFS);
2250 	mutex_unlock(&inode->i_mutex);
2251 	if (ret && !err)
2252 		err = ret;
2253 	return err;
2254 }
2255 
2256 static long btrfs_fallocate(struct file *file, int mode,
2257 			    loff_t offset, loff_t len)
2258 {
2259 	struct inode *inode = file_inode(file);
2260 	struct extent_state *cached_state = NULL;
2261 	struct btrfs_root *root = BTRFS_I(inode)->root;
2262 	u64 cur_offset;
2263 	u64 last_byte;
2264 	u64 alloc_start;
2265 	u64 alloc_end;
2266 	u64 alloc_hint = 0;
2267 	u64 locked_end;
2268 	struct extent_map *em;
2269 	int blocksize = BTRFS_I(inode)->root->sectorsize;
2270 	int ret;
2271 
2272 	alloc_start = round_down(offset, blocksize);
2273 	alloc_end = round_up(offset + len, blocksize);
2274 
2275 	/* Make sure we aren't being give some crap mode */
2276 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2277 		return -EOPNOTSUPP;
2278 
2279 	if (mode & FALLOC_FL_PUNCH_HOLE)
2280 		return btrfs_punch_hole(inode, offset, len);
2281 
2282 	/*
2283 	 * Make sure we have enough space before we do the
2284 	 * allocation.
2285 	 */
2286 	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2287 	if (ret)
2288 		return ret;
2289 	if (root->fs_info->quota_enabled) {
2290 		ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2291 		if (ret)
2292 			goto out_reserve_fail;
2293 	}
2294 
2295 	mutex_lock(&inode->i_mutex);
2296 	ret = inode_newsize_ok(inode, alloc_end);
2297 	if (ret)
2298 		goto out;
2299 
2300 	if (alloc_start > inode->i_size) {
2301 		ret = btrfs_cont_expand(inode, i_size_read(inode),
2302 					alloc_start);
2303 		if (ret)
2304 			goto out;
2305 	} else {
2306 		/*
2307 		 * If we are fallocating from the end of the file onward we
2308 		 * need to zero out the end of the page if i_size lands in the
2309 		 * middle of a page.
2310 		 */
2311 		ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2312 		if (ret)
2313 			goto out;
2314 	}
2315 
2316 	/*
2317 	 * wait for ordered IO before we have any locks.  We'll loop again
2318 	 * below with the locks held.
2319 	 */
2320 	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
2321 
2322 	locked_end = alloc_end - 1;
2323 	while (1) {
2324 		struct btrfs_ordered_extent *ordered;
2325 
2326 		/* the extent lock is ordered inside the running
2327 		 * transaction
2328 		 */
2329 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2330 				 locked_end, 0, &cached_state);
2331 		ordered = btrfs_lookup_first_ordered_extent(inode,
2332 							    alloc_end - 1);
2333 		if (ordered &&
2334 		    ordered->file_offset + ordered->len > alloc_start &&
2335 		    ordered->file_offset < alloc_end) {
2336 			btrfs_put_ordered_extent(ordered);
2337 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2338 					     alloc_start, locked_end,
2339 					     &cached_state, GFP_NOFS);
2340 			/*
2341 			 * we can't wait on the range with the transaction
2342 			 * running or with the extent lock held
2343 			 */
2344 			btrfs_wait_ordered_range(inode, alloc_start,
2345 						 alloc_end - alloc_start);
2346 		} else {
2347 			if (ordered)
2348 				btrfs_put_ordered_extent(ordered);
2349 			break;
2350 		}
2351 	}
2352 
2353 	cur_offset = alloc_start;
2354 	while (1) {
2355 		u64 actual_end;
2356 
2357 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2358 				      alloc_end - cur_offset, 0);
2359 		if (IS_ERR_OR_NULL(em)) {
2360 			if (!em)
2361 				ret = -ENOMEM;
2362 			else
2363 				ret = PTR_ERR(em);
2364 			break;
2365 		}
2366 		last_byte = min(extent_map_end(em), alloc_end);
2367 		actual_end = min_t(u64, extent_map_end(em), offset + len);
2368 		last_byte = ALIGN(last_byte, blocksize);
2369 
2370 		if (em->block_start == EXTENT_MAP_HOLE ||
2371 		    (cur_offset >= inode->i_size &&
2372 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2373 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2374 							last_byte - cur_offset,
2375 							1 << inode->i_blkbits,
2376 							offset + len,
2377 							&alloc_hint);
2378 
2379 			if (ret < 0) {
2380 				free_extent_map(em);
2381 				break;
2382 			}
2383 		} else if (actual_end > inode->i_size &&
2384 			   !(mode & FALLOC_FL_KEEP_SIZE)) {
2385 			/*
2386 			 * We didn't need to allocate any more space, but we
2387 			 * still extended the size of the file so we need to
2388 			 * update i_size.
2389 			 */
2390 			inode->i_ctime = CURRENT_TIME;
2391 			i_size_write(inode, actual_end);
2392 			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2393 		}
2394 		free_extent_map(em);
2395 
2396 		cur_offset = last_byte;
2397 		if (cur_offset >= alloc_end) {
2398 			ret = 0;
2399 			break;
2400 		}
2401 	}
2402 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2403 			     &cached_state, GFP_NOFS);
2404 out:
2405 	mutex_unlock(&inode->i_mutex);
2406 	if (root->fs_info->quota_enabled)
2407 		btrfs_qgroup_free(root, alloc_end - alloc_start);
2408 out_reserve_fail:
2409 	/* Let go of our reservation. */
2410 	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2411 	return ret;
2412 }
2413 
2414 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2415 {
2416 	struct btrfs_root *root = BTRFS_I(inode)->root;
2417 	struct extent_map *em;
2418 	struct extent_state *cached_state = NULL;
2419 	u64 lockstart = *offset;
2420 	u64 lockend = i_size_read(inode);
2421 	u64 start = *offset;
2422 	u64 orig_start = *offset;
2423 	u64 len = i_size_read(inode);
2424 	u64 last_end = 0;
2425 	int ret = 0;
2426 
2427 	lockend = max_t(u64, root->sectorsize, lockend);
2428 	if (lockend <= lockstart)
2429 		lockend = lockstart + root->sectorsize;
2430 
2431 	lockend--;
2432 	len = lockend - lockstart + 1;
2433 
2434 	len = max_t(u64, len, root->sectorsize);
2435 	if (inode->i_size == 0)
2436 		return -ENXIO;
2437 
2438 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2439 			 &cached_state);
2440 
2441 	/*
2442 	 * Delalloc is such a pain.  If we have a hole and we have pending
2443 	 * delalloc for a portion of the hole we will get back a hole that
2444 	 * exists for the entire range since it hasn't been actually written
2445 	 * yet.  So to take care of this case we need to look for an extent just
2446 	 * before the position we want in case there is outstanding delalloc
2447 	 * going on here.
2448 	 */
2449 	if (whence == SEEK_HOLE && start != 0) {
2450 		if (start <= root->sectorsize)
2451 			em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
2452 						     root->sectorsize, 0);
2453 		else
2454 			em = btrfs_get_extent_fiemap(inode, NULL, 0,
2455 						     start - root->sectorsize,
2456 						     root->sectorsize, 0);
2457 		if (IS_ERR(em)) {
2458 			ret = PTR_ERR(em);
2459 			goto out;
2460 		}
2461 		last_end = em->start + em->len;
2462 		if (em->block_start == EXTENT_MAP_DELALLOC)
2463 			last_end = min_t(u64, last_end, inode->i_size);
2464 		free_extent_map(em);
2465 	}
2466 
2467 	while (1) {
2468 		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2469 		if (IS_ERR(em)) {
2470 			ret = PTR_ERR(em);
2471 			break;
2472 		}
2473 
2474 		if (em->block_start == EXTENT_MAP_HOLE) {
2475 			if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2476 				if (last_end <= orig_start) {
2477 					free_extent_map(em);
2478 					ret = -ENXIO;
2479 					break;
2480 				}
2481 			}
2482 
2483 			if (whence == SEEK_HOLE) {
2484 				*offset = start;
2485 				free_extent_map(em);
2486 				break;
2487 			}
2488 		} else {
2489 			if (whence == SEEK_DATA) {
2490 				if (em->block_start == EXTENT_MAP_DELALLOC) {
2491 					if (start >= inode->i_size) {
2492 						free_extent_map(em);
2493 						ret = -ENXIO;
2494 						break;
2495 					}
2496 				}
2497 
2498 				if (!test_bit(EXTENT_FLAG_PREALLOC,
2499 					      &em->flags)) {
2500 					*offset = start;
2501 					free_extent_map(em);
2502 					break;
2503 				}
2504 			}
2505 		}
2506 
2507 		start = em->start + em->len;
2508 		last_end = em->start + em->len;
2509 
2510 		if (em->block_start == EXTENT_MAP_DELALLOC)
2511 			last_end = min_t(u64, last_end, inode->i_size);
2512 
2513 		if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2514 			free_extent_map(em);
2515 			ret = -ENXIO;
2516 			break;
2517 		}
2518 		free_extent_map(em);
2519 		cond_resched();
2520 	}
2521 	if (!ret)
2522 		*offset = min(*offset, inode->i_size);
2523 out:
2524 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2525 			     &cached_state, GFP_NOFS);
2526 	return ret;
2527 }
2528 
2529 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2530 {
2531 	struct inode *inode = file->f_mapping->host;
2532 	int ret;
2533 
2534 	mutex_lock(&inode->i_mutex);
2535 	switch (whence) {
2536 	case SEEK_END:
2537 	case SEEK_CUR:
2538 		offset = generic_file_llseek(file, offset, whence);
2539 		goto out;
2540 	case SEEK_DATA:
2541 	case SEEK_HOLE:
2542 		if (offset >= i_size_read(inode)) {
2543 			mutex_unlock(&inode->i_mutex);
2544 			return -ENXIO;
2545 		}
2546 
2547 		ret = find_desired_extent(inode, &offset, whence);
2548 		if (ret) {
2549 			mutex_unlock(&inode->i_mutex);
2550 			return ret;
2551 		}
2552 	}
2553 
2554 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2555 out:
2556 	mutex_unlock(&inode->i_mutex);
2557 	return offset;
2558 }
2559 
2560 const struct file_operations btrfs_file_operations = {
2561 	.llseek		= btrfs_file_llseek,
2562 	.read		= do_sync_read,
2563 	.write		= do_sync_write,
2564 	.aio_read       = generic_file_aio_read,
2565 	.splice_read	= generic_file_splice_read,
2566 	.aio_write	= btrfs_file_aio_write,
2567 	.mmap		= btrfs_file_mmap,
2568 	.open		= generic_file_open,
2569 	.release	= btrfs_release_file,
2570 	.fsync		= btrfs_sync_file,
2571 	.fallocate	= btrfs_fallocate,
2572 	.unlocked_ioctl	= btrfs_ioctl,
2573 #ifdef CONFIG_COMPAT
2574 	.compat_ioctl	= btrfs_ioctl,
2575 #endif
2576 };
2577 
2578 void btrfs_auto_defrag_exit(void)
2579 {
2580 	if (btrfs_inode_defrag_cachep)
2581 		kmem_cache_destroy(btrfs_inode_defrag_cachep);
2582 }
2583 
2584 int btrfs_auto_defrag_init(void)
2585 {
2586 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2587 					sizeof(struct inode_defrag), 0,
2588 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2589 					NULL);
2590 	if (!btrfs_inode_defrag_cachep)
2591 		return -ENOMEM;
2592 
2593 	return 0;
2594 }
2595