1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/time.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/backing-dev.h> 26 #include <linux/mpage.h> 27 #include <linux/aio.h> 28 #include <linux/falloc.h> 29 #include <linux/swap.h> 30 #include <linux/writeback.h> 31 #include <linux/statfs.h> 32 #include <linux/compat.h> 33 #include <linux/slab.h> 34 #include <linux/btrfs.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "print-tree.h" 40 #include "tree-log.h" 41 #include "locking.h" 42 #include "compat.h" 43 #include "volumes.h" 44 45 static struct kmem_cache *btrfs_inode_defrag_cachep; 46 /* 47 * when auto defrag is enabled we 48 * queue up these defrag structs to remember which 49 * inodes need defragging passes 50 */ 51 struct inode_defrag { 52 struct rb_node rb_node; 53 /* objectid */ 54 u64 ino; 55 /* 56 * transid where the defrag was added, we search for 57 * extents newer than this 58 */ 59 u64 transid; 60 61 /* root objectid */ 62 u64 root; 63 64 /* last offset we were able to defrag */ 65 u64 last_offset; 66 67 /* if we've wrapped around back to zero once already */ 68 int cycled; 69 }; 70 71 static int __compare_inode_defrag(struct inode_defrag *defrag1, 72 struct inode_defrag *defrag2) 73 { 74 if (defrag1->root > defrag2->root) 75 return 1; 76 else if (defrag1->root < defrag2->root) 77 return -1; 78 else if (defrag1->ino > defrag2->ino) 79 return 1; 80 else if (defrag1->ino < defrag2->ino) 81 return -1; 82 else 83 return 0; 84 } 85 86 /* pop a record for an inode into the defrag tree. The lock 87 * must be held already 88 * 89 * If you're inserting a record for an older transid than an 90 * existing record, the transid already in the tree is lowered 91 * 92 * If an existing record is found the defrag item you 93 * pass in is freed 94 */ 95 static int __btrfs_add_inode_defrag(struct inode *inode, 96 struct inode_defrag *defrag) 97 { 98 struct btrfs_root *root = BTRFS_I(inode)->root; 99 struct inode_defrag *entry; 100 struct rb_node **p; 101 struct rb_node *parent = NULL; 102 int ret; 103 104 p = &root->fs_info->defrag_inodes.rb_node; 105 while (*p) { 106 parent = *p; 107 entry = rb_entry(parent, struct inode_defrag, rb_node); 108 109 ret = __compare_inode_defrag(defrag, entry); 110 if (ret < 0) 111 p = &parent->rb_left; 112 else if (ret > 0) 113 p = &parent->rb_right; 114 else { 115 /* if we're reinserting an entry for 116 * an old defrag run, make sure to 117 * lower the transid of our existing record 118 */ 119 if (defrag->transid < entry->transid) 120 entry->transid = defrag->transid; 121 if (defrag->last_offset > entry->last_offset) 122 entry->last_offset = defrag->last_offset; 123 return -EEXIST; 124 } 125 } 126 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 127 rb_link_node(&defrag->rb_node, parent, p); 128 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes); 129 return 0; 130 } 131 132 static inline int __need_auto_defrag(struct btrfs_root *root) 133 { 134 if (!btrfs_test_opt(root, AUTO_DEFRAG)) 135 return 0; 136 137 if (btrfs_fs_closing(root->fs_info)) 138 return 0; 139 140 return 1; 141 } 142 143 /* 144 * insert a defrag record for this inode if auto defrag is 145 * enabled 146 */ 147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 148 struct inode *inode) 149 { 150 struct btrfs_root *root = BTRFS_I(inode)->root; 151 struct inode_defrag *defrag; 152 u64 transid; 153 int ret; 154 155 if (!__need_auto_defrag(root)) 156 return 0; 157 158 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) 159 return 0; 160 161 if (trans) 162 transid = trans->transid; 163 else 164 transid = BTRFS_I(inode)->root->last_trans; 165 166 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 167 if (!defrag) 168 return -ENOMEM; 169 170 defrag->ino = btrfs_ino(inode); 171 defrag->transid = transid; 172 defrag->root = root->root_key.objectid; 173 174 spin_lock(&root->fs_info->defrag_inodes_lock); 175 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) { 176 /* 177 * If we set IN_DEFRAG flag and evict the inode from memory, 178 * and then re-read this inode, this new inode doesn't have 179 * IN_DEFRAG flag. At the case, we may find the existed defrag. 180 */ 181 ret = __btrfs_add_inode_defrag(inode, defrag); 182 if (ret) 183 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 184 } else { 185 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 186 } 187 spin_unlock(&root->fs_info->defrag_inodes_lock); 188 return 0; 189 } 190 191 /* 192 * Requeue the defrag object. If there is a defrag object that points to 193 * the same inode in the tree, we will merge them together (by 194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 195 */ 196 static void btrfs_requeue_inode_defrag(struct inode *inode, 197 struct inode_defrag *defrag) 198 { 199 struct btrfs_root *root = BTRFS_I(inode)->root; 200 int ret; 201 202 if (!__need_auto_defrag(root)) 203 goto out; 204 205 /* 206 * Here we don't check the IN_DEFRAG flag, because we need merge 207 * them together. 208 */ 209 spin_lock(&root->fs_info->defrag_inodes_lock); 210 ret = __btrfs_add_inode_defrag(inode, defrag); 211 spin_unlock(&root->fs_info->defrag_inodes_lock); 212 if (ret) 213 goto out; 214 return; 215 out: 216 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 217 } 218 219 /* 220 * pick the defragable inode that we want, if it doesn't exist, we will get 221 * the next one. 222 */ 223 static struct inode_defrag * 224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 225 { 226 struct inode_defrag *entry = NULL; 227 struct inode_defrag tmp; 228 struct rb_node *p; 229 struct rb_node *parent = NULL; 230 int ret; 231 232 tmp.ino = ino; 233 tmp.root = root; 234 235 spin_lock(&fs_info->defrag_inodes_lock); 236 p = fs_info->defrag_inodes.rb_node; 237 while (p) { 238 parent = p; 239 entry = rb_entry(parent, struct inode_defrag, rb_node); 240 241 ret = __compare_inode_defrag(&tmp, entry); 242 if (ret < 0) 243 p = parent->rb_left; 244 else if (ret > 0) 245 p = parent->rb_right; 246 else 247 goto out; 248 } 249 250 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 251 parent = rb_next(parent); 252 if (parent) 253 entry = rb_entry(parent, struct inode_defrag, rb_node); 254 else 255 entry = NULL; 256 } 257 out: 258 if (entry) 259 rb_erase(parent, &fs_info->defrag_inodes); 260 spin_unlock(&fs_info->defrag_inodes_lock); 261 return entry; 262 } 263 264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 265 { 266 struct inode_defrag *defrag; 267 struct rb_node *node; 268 269 spin_lock(&fs_info->defrag_inodes_lock); 270 node = rb_first(&fs_info->defrag_inodes); 271 while (node) { 272 rb_erase(node, &fs_info->defrag_inodes); 273 defrag = rb_entry(node, struct inode_defrag, rb_node); 274 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 275 276 if (need_resched()) { 277 spin_unlock(&fs_info->defrag_inodes_lock); 278 cond_resched(); 279 spin_lock(&fs_info->defrag_inodes_lock); 280 } 281 282 node = rb_first(&fs_info->defrag_inodes); 283 } 284 spin_unlock(&fs_info->defrag_inodes_lock); 285 } 286 287 #define BTRFS_DEFRAG_BATCH 1024 288 289 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 290 struct inode_defrag *defrag) 291 { 292 struct btrfs_root *inode_root; 293 struct inode *inode; 294 struct btrfs_key key; 295 struct btrfs_ioctl_defrag_range_args range; 296 int num_defrag; 297 int index; 298 int ret; 299 300 /* get the inode */ 301 key.objectid = defrag->root; 302 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 303 key.offset = (u64)-1; 304 305 index = srcu_read_lock(&fs_info->subvol_srcu); 306 307 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 308 if (IS_ERR(inode_root)) { 309 ret = PTR_ERR(inode_root); 310 goto cleanup; 311 } 312 313 key.objectid = defrag->ino; 314 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 315 key.offset = 0; 316 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 317 if (IS_ERR(inode)) { 318 ret = PTR_ERR(inode); 319 goto cleanup; 320 } 321 srcu_read_unlock(&fs_info->subvol_srcu, index); 322 323 /* do a chunk of defrag */ 324 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 325 memset(&range, 0, sizeof(range)); 326 range.len = (u64)-1; 327 range.start = defrag->last_offset; 328 329 sb_start_write(fs_info->sb); 330 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 331 BTRFS_DEFRAG_BATCH); 332 sb_end_write(fs_info->sb); 333 /* 334 * if we filled the whole defrag batch, there 335 * must be more work to do. Queue this defrag 336 * again 337 */ 338 if (num_defrag == BTRFS_DEFRAG_BATCH) { 339 defrag->last_offset = range.start; 340 btrfs_requeue_inode_defrag(inode, defrag); 341 } else if (defrag->last_offset && !defrag->cycled) { 342 /* 343 * we didn't fill our defrag batch, but 344 * we didn't start at zero. Make sure we loop 345 * around to the start of the file. 346 */ 347 defrag->last_offset = 0; 348 defrag->cycled = 1; 349 btrfs_requeue_inode_defrag(inode, defrag); 350 } else { 351 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 352 } 353 354 iput(inode); 355 return 0; 356 cleanup: 357 srcu_read_unlock(&fs_info->subvol_srcu, index); 358 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 359 return ret; 360 } 361 362 /* 363 * run through the list of inodes in the FS that need 364 * defragging 365 */ 366 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 367 { 368 struct inode_defrag *defrag; 369 u64 first_ino = 0; 370 u64 root_objectid = 0; 371 372 atomic_inc(&fs_info->defrag_running); 373 while(1) { 374 /* Pause the auto defragger. */ 375 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 376 &fs_info->fs_state)) 377 break; 378 379 if (!__need_auto_defrag(fs_info->tree_root)) 380 break; 381 382 /* find an inode to defrag */ 383 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 384 first_ino); 385 if (!defrag) { 386 if (root_objectid || first_ino) { 387 root_objectid = 0; 388 first_ino = 0; 389 continue; 390 } else { 391 break; 392 } 393 } 394 395 first_ino = defrag->ino + 1; 396 root_objectid = defrag->root; 397 398 __btrfs_run_defrag_inode(fs_info, defrag); 399 } 400 atomic_dec(&fs_info->defrag_running); 401 402 /* 403 * during unmount, we use the transaction_wait queue to 404 * wait for the defragger to stop 405 */ 406 wake_up(&fs_info->transaction_wait); 407 return 0; 408 } 409 410 /* simple helper to fault in pages and copy. This should go away 411 * and be replaced with calls into generic code. 412 */ 413 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages, 414 size_t write_bytes, 415 struct page **prepared_pages, 416 struct iov_iter *i) 417 { 418 size_t copied = 0; 419 size_t total_copied = 0; 420 int pg = 0; 421 int offset = pos & (PAGE_CACHE_SIZE - 1); 422 423 while (write_bytes > 0) { 424 size_t count = min_t(size_t, 425 PAGE_CACHE_SIZE - offset, write_bytes); 426 struct page *page = prepared_pages[pg]; 427 /* 428 * Copy data from userspace to the current page 429 * 430 * Disable pagefault to avoid recursive lock since 431 * the pages are already locked 432 */ 433 pagefault_disable(); 434 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 435 pagefault_enable(); 436 437 /* Flush processor's dcache for this page */ 438 flush_dcache_page(page); 439 440 /* 441 * if we get a partial write, we can end up with 442 * partially up to date pages. These add 443 * a lot of complexity, so make sure they don't 444 * happen by forcing this copy to be retried. 445 * 446 * The rest of the btrfs_file_write code will fall 447 * back to page at a time copies after we return 0. 448 */ 449 if (!PageUptodate(page) && copied < count) 450 copied = 0; 451 452 iov_iter_advance(i, copied); 453 write_bytes -= copied; 454 total_copied += copied; 455 456 /* Return to btrfs_file_aio_write to fault page */ 457 if (unlikely(copied == 0)) 458 break; 459 460 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) { 461 offset += copied; 462 } else { 463 pg++; 464 offset = 0; 465 } 466 } 467 return total_copied; 468 } 469 470 /* 471 * unlocks pages after btrfs_file_write is done with them 472 */ 473 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 474 { 475 size_t i; 476 for (i = 0; i < num_pages; i++) { 477 /* page checked is some magic around finding pages that 478 * have been modified without going through btrfs_set_page_dirty 479 * clear it here 480 */ 481 ClearPageChecked(pages[i]); 482 unlock_page(pages[i]); 483 mark_page_accessed(pages[i]); 484 page_cache_release(pages[i]); 485 } 486 } 487 488 /* 489 * after copy_from_user, pages need to be dirtied and we need to make 490 * sure holes are created between the current EOF and the start of 491 * any next extents (if required). 492 * 493 * this also makes the decision about creating an inline extent vs 494 * doing real data extents, marking pages dirty and delalloc as required. 495 */ 496 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, 497 struct page **pages, size_t num_pages, 498 loff_t pos, size_t write_bytes, 499 struct extent_state **cached) 500 { 501 int err = 0; 502 int i; 503 u64 num_bytes; 504 u64 start_pos; 505 u64 end_of_last_block; 506 u64 end_pos = pos + write_bytes; 507 loff_t isize = i_size_read(inode); 508 509 start_pos = pos & ~((u64)root->sectorsize - 1); 510 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize); 511 512 end_of_last_block = start_pos + num_bytes - 1; 513 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 514 cached); 515 if (err) 516 return err; 517 518 for (i = 0; i < num_pages; i++) { 519 struct page *p = pages[i]; 520 SetPageUptodate(p); 521 ClearPageChecked(p); 522 set_page_dirty(p); 523 } 524 525 /* 526 * we've only changed i_size in ram, and we haven't updated 527 * the disk i_size. There is no need to log the inode 528 * at this time. 529 */ 530 if (end_pos > isize) 531 i_size_write(inode, end_pos); 532 return 0; 533 } 534 535 /* 536 * this drops all the extents in the cache that intersect the range 537 * [start, end]. Existing extents are split as required. 538 */ 539 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, 540 int skip_pinned) 541 { 542 struct extent_map *em; 543 struct extent_map *split = NULL; 544 struct extent_map *split2 = NULL; 545 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 546 u64 len = end - start + 1; 547 u64 gen; 548 int ret; 549 int testend = 1; 550 unsigned long flags; 551 int compressed = 0; 552 bool modified; 553 554 WARN_ON(end < start); 555 if (end == (u64)-1) { 556 len = (u64)-1; 557 testend = 0; 558 } 559 while (1) { 560 int no_splits = 0; 561 562 modified = false; 563 if (!split) 564 split = alloc_extent_map(); 565 if (!split2) 566 split2 = alloc_extent_map(); 567 if (!split || !split2) 568 no_splits = 1; 569 570 write_lock(&em_tree->lock); 571 em = lookup_extent_mapping(em_tree, start, len); 572 if (!em) { 573 write_unlock(&em_tree->lock); 574 break; 575 } 576 flags = em->flags; 577 gen = em->generation; 578 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 579 if (testend && em->start + em->len >= start + len) { 580 free_extent_map(em); 581 write_unlock(&em_tree->lock); 582 break; 583 } 584 start = em->start + em->len; 585 if (testend) 586 len = start + len - (em->start + em->len); 587 free_extent_map(em); 588 write_unlock(&em_tree->lock); 589 continue; 590 } 591 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 592 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 593 clear_bit(EXTENT_FLAG_LOGGING, &flags); 594 modified = !list_empty(&em->list); 595 remove_extent_mapping(em_tree, em); 596 if (no_splits) 597 goto next; 598 599 if (em->start < start) { 600 split->start = em->start; 601 split->len = start - em->start; 602 603 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 604 split->orig_start = em->orig_start; 605 split->block_start = em->block_start; 606 607 if (compressed) 608 split->block_len = em->block_len; 609 else 610 split->block_len = split->len; 611 split->orig_block_len = max(split->block_len, 612 em->orig_block_len); 613 split->ram_bytes = em->ram_bytes; 614 } else { 615 split->orig_start = split->start; 616 split->block_len = 0; 617 split->block_start = em->block_start; 618 split->orig_block_len = 0; 619 split->ram_bytes = split->len; 620 } 621 622 split->generation = gen; 623 split->bdev = em->bdev; 624 split->flags = flags; 625 split->compress_type = em->compress_type; 626 ret = add_extent_mapping(em_tree, split, modified); 627 BUG_ON(ret); /* Logic error */ 628 free_extent_map(split); 629 split = split2; 630 split2 = NULL; 631 } 632 if (testend && em->start + em->len > start + len) { 633 u64 diff = start + len - em->start; 634 635 split->start = start + len; 636 split->len = em->start + em->len - (start + len); 637 split->bdev = em->bdev; 638 split->flags = flags; 639 split->compress_type = em->compress_type; 640 split->generation = gen; 641 642 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 643 split->orig_block_len = max(em->block_len, 644 em->orig_block_len); 645 646 split->ram_bytes = em->ram_bytes; 647 if (compressed) { 648 split->block_len = em->block_len; 649 split->block_start = em->block_start; 650 split->orig_start = em->orig_start; 651 } else { 652 split->block_len = split->len; 653 split->block_start = em->block_start 654 + diff; 655 split->orig_start = em->orig_start; 656 } 657 } else { 658 split->ram_bytes = split->len; 659 split->orig_start = split->start; 660 split->block_len = 0; 661 split->block_start = em->block_start; 662 split->orig_block_len = 0; 663 } 664 665 ret = add_extent_mapping(em_tree, split, modified); 666 BUG_ON(ret); /* Logic error */ 667 free_extent_map(split); 668 split = NULL; 669 } 670 next: 671 write_unlock(&em_tree->lock); 672 673 /* once for us */ 674 free_extent_map(em); 675 /* once for the tree*/ 676 free_extent_map(em); 677 } 678 if (split) 679 free_extent_map(split); 680 if (split2) 681 free_extent_map(split2); 682 } 683 684 /* 685 * this is very complex, but the basic idea is to drop all extents 686 * in the range start - end. hint_block is filled in with a block number 687 * that would be a good hint to the block allocator for this file. 688 * 689 * If an extent intersects the range but is not entirely inside the range 690 * it is either truncated or split. Anything entirely inside the range 691 * is deleted from the tree. 692 */ 693 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 694 struct btrfs_root *root, struct inode *inode, 695 struct btrfs_path *path, u64 start, u64 end, 696 u64 *drop_end, int drop_cache) 697 { 698 struct extent_buffer *leaf; 699 struct btrfs_file_extent_item *fi; 700 struct btrfs_key key; 701 struct btrfs_key new_key; 702 u64 ino = btrfs_ino(inode); 703 u64 search_start = start; 704 u64 disk_bytenr = 0; 705 u64 num_bytes = 0; 706 u64 extent_offset = 0; 707 u64 extent_end = 0; 708 int del_nr = 0; 709 int del_slot = 0; 710 int extent_type; 711 int recow; 712 int ret; 713 int modify_tree = -1; 714 int update_refs = (root->ref_cows || root == root->fs_info->tree_root); 715 int found = 0; 716 717 if (drop_cache) 718 btrfs_drop_extent_cache(inode, start, end - 1, 0); 719 720 if (start >= BTRFS_I(inode)->disk_i_size) 721 modify_tree = 0; 722 723 while (1) { 724 recow = 0; 725 ret = btrfs_lookup_file_extent(trans, root, path, ino, 726 search_start, modify_tree); 727 if (ret < 0) 728 break; 729 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 730 leaf = path->nodes[0]; 731 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 732 if (key.objectid == ino && 733 key.type == BTRFS_EXTENT_DATA_KEY) 734 path->slots[0]--; 735 } 736 ret = 0; 737 next_slot: 738 leaf = path->nodes[0]; 739 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 740 BUG_ON(del_nr > 0); 741 ret = btrfs_next_leaf(root, path); 742 if (ret < 0) 743 break; 744 if (ret > 0) { 745 ret = 0; 746 break; 747 } 748 leaf = path->nodes[0]; 749 recow = 1; 750 } 751 752 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 753 if (key.objectid > ino || 754 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 755 break; 756 757 fi = btrfs_item_ptr(leaf, path->slots[0], 758 struct btrfs_file_extent_item); 759 extent_type = btrfs_file_extent_type(leaf, fi); 760 761 if (extent_type == BTRFS_FILE_EXTENT_REG || 762 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 763 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 764 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 765 extent_offset = btrfs_file_extent_offset(leaf, fi); 766 extent_end = key.offset + 767 btrfs_file_extent_num_bytes(leaf, fi); 768 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 769 extent_end = key.offset + 770 btrfs_file_extent_inline_len(leaf, fi); 771 } else { 772 WARN_ON(1); 773 extent_end = search_start; 774 } 775 776 if (extent_end <= search_start) { 777 path->slots[0]++; 778 goto next_slot; 779 } 780 781 found = 1; 782 search_start = max(key.offset, start); 783 if (recow || !modify_tree) { 784 modify_tree = -1; 785 btrfs_release_path(path); 786 continue; 787 } 788 789 /* 790 * | - range to drop - | 791 * | -------- extent -------- | 792 */ 793 if (start > key.offset && end < extent_end) { 794 BUG_ON(del_nr > 0); 795 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); 796 797 memcpy(&new_key, &key, sizeof(new_key)); 798 new_key.offset = start; 799 ret = btrfs_duplicate_item(trans, root, path, 800 &new_key); 801 if (ret == -EAGAIN) { 802 btrfs_release_path(path); 803 continue; 804 } 805 if (ret < 0) 806 break; 807 808 leaf = path->nodes[0]; 809 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 810 struct btrfs_file_extent_item); 811 btrfs_set_file_extent_num_bytes(leaf, fi, 812 start - key.offset); 813 814 fi = btrfs_item_ptr(leaf, path->slots[0], 815 struct btrfs_file_extent_item); 816 817 extent_offset += start - key.offset; 818 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 819 btrfs_set_file_extent_num_bytes(leaf, fi, 820 extent_end - start); 821 btrfs_mark_buffer_dirty(leaf); 822 823 if (update_refs && disk_bytenr > 0) { 824 ret = btrfs_inc_extent_ref(trans, root, 825 disk_bytenr, num_bytes, 0, 826 root->root_key.objectid, 827 new_key.objectid, 828 start - extent_offset, 0); 829 BUG_ON(ret); /* -ENOMEM */ 830 } 831 key.offset = start; 832 } 833 /* 834 * | ---- range to drop ----- | 835 * | -------- extent -------- | 836 */ 837 if (start <= key.offset && end < extent_end) { 838 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); 839 840 memcpy(&new_key, &key, sizeof(new_key)); 841 new_key.offset = end; 842 btrfs_set_item_key_safe(root, path, &new_key); 843 844 extent_offset += end - key.offset; 845 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 846 btrfs_set_file_extent_num_bytes(leaf, fi, 847 extent_end - end); 848 btrfs_mark_buffer_dirty(leaf); 849 if (update_refs && disk_bytenr > 0) 850 inode_sub_bytes(inode, end - key.offset); 851 break; 852 } 853 854 search_start = extent_end; 855 /* 856 * | ---- range to drop ----- | 857 * | -------- extent -------- | 858 */ 859 if (start > key.offset && end >= extent_end) { 860 BUG_ON(del_nr > 0); 861 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); 862 863 btrfs_set_file_extent_num_bytes(leaf, fi, 864 start - key.offset); 865 btrfs_mark_buffer_dirty(leaf); 866 if (update_refs && disk_bytenr > 0) 867 inode_sub_bytes(inode, extent_end - start); 868 if (end == extent_end) 869 break; 870 871 path->slots[0]++; 872 goto next_slot; 873 } 874 875 /* 876 * | ---- range to drop ----- | 877 * | ------ extent ------ | 878 */ 879 if (start <= key.offset && end >= extent_end) { 880 if (del_nr == 0) { 881 del_slot = path->slots[0]; 882 del_nr = 1; 883 } else { 884 BUG_ON(del_slot + del_nr != path->slots[0]); 885 del_nr++; 886 } 887 888 if (update_refs && 889 extent_type == BTRFS_FILE_EXTENT_INLINE) { 890 inode_sub_bytes(inode, 891 extent_end - key.offset); 892 extent_end = ALIGN(extent_end, 893 root->sectorsize); 894 } else if (update_refs && disk_bytenr > 0) { 895 ret = btrfs_free_extent(trans, root, 896 disk_bytenr, num_bytes, 0, 897 root->root_key.objectid, 898 key.objectid, key.offset - 899 extent_offset, 0); 900 BUG_ON(ret); /* -ENOMEM */ 901 inode_sub_bytes(inode, 902 extent_end - key.offset); 903 } 904 905 if (end == extent_end) 906 break; 907 908 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 909 path->slots[0]++; 910 goto next_slot; 911 } 912 913 ret = btrfs_del_items(trans, root, path, del_slot, 914 del_nr); 915 if (ret) { 916 btrfs_abort_transaction(trans, root, ret); 917 break; 918 } 919 920 del_nr = 0; 921 del_slot = 0; 922 923 btrfs_release_path(path); 924 continue; 925 } 926 927 BUG_ON(1); 928 } 929 930 if (!ret && del_nr > 0) { 931 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 932 if (ret) 933 btrfs_abort_transaction(trans, root, ret); 934 } 935 936 if (drop_end) 937 *drop_end = found ? min(end, extent_end) : end; 938 btrfs_release_path(path); 939 return ret; 940 } 941 942 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 943 struct btrfs_root *root, struct inode *inode, u64 start, 944 u64 end, int drop_cache) 945 { 946 struct btrfs_path *path; 947 int ret; 948 949 path = btrfs_alloc_path(); 950 if (!path) 951 return -ENOMEM; 952 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 953 drop_cache); 954 btrfs_free_path(path); 955 return ret; 956 } 957 958 static int extent_mergeable(struct extent_buffer *leaf, int slot, 959 u64 objectid, u64 bytenr, u64 orig_offset, 960 u64 *start, u64 *end) 961 { 962 struct btrfs_file_extent_item *fi; 963 struct btrfs_key key; 964 u64 extent_end; 965 966 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 967 return 0; 968 969 btrfs_item_key_to_cpu(leaf, &key, slot); 970 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 971 return 0; 972 973 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 974 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 975 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 976 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 977 btrfs_file_extent_compression(leaf, fi) || 978 btrfs_file_extent_encryption(leaf, fi) || 979 btrfs_file_extent_other_encoding(leaf, fi)) 980 return 0; 981 982 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 983 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 984 return 0; 985 986 *start = key.offset; 987 *end = extent_end; 988 return 1; 989 } 990 991 /* 992 * Mark extent in the range start - end as written. 993 * 994 * This changes extent type from 'pre-allocated' to 'regular'. If only 995 * part of extent is marked as written, the extent will be split into 996 * two or three. 997 */ 998 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 999 struct inode *inode, u64 start, u64 end) 1000 { 1001 struct btrfs_root *root = BTRFS_I(inode)->root; 1002 struct extent_buffer *leaf; 1003 struct btrfs_path *path; 1004 struct btrfs_file_extent_item *fi; 1005 struct btrfs_key key; 1006 struct btrfs_key new_key; 1007 u64 bytenr; 1008 u64 num_bytes; 1009 u64 extent_end; 1010 u64 orig_offset; 1011 u64 other_start; 1012 u64 other_end; 1013 u64 split; 1014 int del_nr = 0; 1015 int del_slot = 0; 1016 int recow; 1017 int ret; 1018 u64 ino = btrfs_ino(inode); 1019 1020 path = btrfs_alloc_path(); 1021 if (!path) 1022 return -ENOMEM; 1023 again: 1024 recow = 0; 1025 split = start; 1026 key.objectid = ino; 1027 key.type = BTRFS_EXTENT_DATA_KEY; 1028 key.offset = split; 1029 1030 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1031 if (ret < 0) 1032 goto out; 1033 if (ret > 0 && path->slots[0] > 0) 1034 path->slots[0]--; 1035 1036 leaf = path->nodes[0]; 1037 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1038 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY); 1039 fi = btrfs_item_ptr(leaf, path->slots[0], 1040 struct btrfs_file_extent_item); 1041 BUG_ON(btrfs_file_extent_type(leaf, fi) != 1042 BTRFS_FILE_EXTENT_PREALLOC); 1043 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1044 BUG_ON(key.offset > start || extent_end < end); 1045 1046 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1047 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1048 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1049 memcpy(&new_key, &key, sizeof(new_key)); 1050 1051 if (start == key.offset && end < extent_end) { 1052 other_start = 0; 1053 other_end = start; 1054 if (extent_mergeable(leaf, path->slots[0] - 1, 1055 ino, bytenr, orig_offset, 1056 &other_start, &other_end)) { 1057 new_key.offset = end; 1058 btrfs_set_item_key_safe(root, path, &new_key); 1059 fi = btrfs_item_ptr(leaf, path->slots[0], 1060 struct btrfs_file_extent_item); 1061 btrfs_set_file_extent_generation(leaf, fi, 1062 trans->transid); 1063 btrfs_set_file_extent_num_bytes(leaf, fi, 1064 extent_end - end); 1065 btrfs_set_file_extent_offset(leaf, fi, 1066 end - orig_offset); 1067 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1068 struct btrfs_file_extent_item); 1069 btrfs_set_file_extent_generation(leaf, fi, 1070 trans->transid); 1071 btrfs_set_file_extent_num_bytes(leaf, fi, 1072 end - other_start); 1073 btrfs_mark_buffer_dirty(leaf); 1074 goto out; 1075 } 1076 } 1077 1078 if (start > key.offset && end == extent_end) { 1079 other_start = end; 1080 other_end = 0; 1081 if (extent_mergeable(leaf, path->slots[0] + 1, 1082 ino, bytenr, orig_offset, 1083 &other_start, &other_end)) { 1084 fi = btrfs_item_ptr(leaf, path->slots[0], 1085 struct btrfs_file_extent_item); 1086 btrfs_set_file_extent_num_bytes(leaf, fi, 1087 start - key.offset); 1088 btrfs_set_file_extent_generation(leaf, fi, 1089 trans->transid); 1090 path->slots[0]++; 1091 new_key.offset = start; 1092 btrfs_set_item_key_safe(root, path, &new_key); 1093 1094 fi = btrfs_item_ptr(leaf, path->slots[0], 1095 struct btrfs_file_extent_item); 1096 btrfs_set_file_extent_generation(leaf, fi, 1097 trans->transid); 1098 btrfs_set_file_extent_num_bytes(leaf, fi, 1099 other_end - start); 1100 btrfs_set_file_extent_offset(leaf, fi, 1101 start - orig_offset); 1102 btrfs_mark_buffer_dirty(leaf); 1103 goto out; 1104 } 1105 } 1106 1107 while (start > key.offset || end < extent_end) { 1108 if (key.offset == start) 1109 split = end; 1110 1111 new_key.offset = split; 1112 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1113 if (ret == -EAGAIN) { 1114 btrfs_release_path(path); 1115 goto again; 1116 } 1117 if (ret < 0) { 1118 btrfs_abort_transaction(trans, root, ret); 1119 goto out; 1120 } 1121 1122 leaf = path->nodes[0]; 1123 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1124 struct btrfs_file_extent_item); 1125 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1126 btrfs_set_file_extent_num_bytes(leaf, fi, 1127 split - key.offset); 1128 1129 fi = btrfs_item_ptr(leaf, path->slots[0], 1130 struct btrfs_file_extent_item); 1131 1132 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1133 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1134 btrfs_set_file_extent_num_bytes(leaf, fi, 1135 extent_end - split); 1136 btrfs_mark_buffer_dirty(leaf); 1137 1138 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, 1139 root->root_key.objectid, 1140 ino, orig_offset, 0); 1141 BUG_ON(ret); /* -ENOMEM */ 1142 1143 if (split == start) { 1144 key.offset = start; 1145 } else { 1146 BUG_ON(start != key.offset); 1147 path->slots[0]--; 1148 extent_end = end; 1149 } 1150 recow = 1; 1151 } 1152 1153 other_start = end; 1154 other_end = 0; 1155 if (extent_mergeable(leaf, path->slots[0] + 1, 1156 ino, bytenr, orig_offset, 1157 &other_start, &other_end)) { 1158 if (recow) { 1159 btrfs_release_path(path); 1160 goto again; 1161 } 1162 extent_end = other_end; 1163 del_slot = path->slots[0] + 1; 1164 del_nr++; 1165 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1166 0, root->root_key.objectid, 1167 ino, orig_offset, 0); 1168 BUG_ON(ret); /* -ENOMEM */ 1169 } 1170 other_start = 0; 1171 other_end = start; 1172 if (extent_mergeable(leaf, path->slots[0] - 1, 1173 ino, bytenr, orig_offset, 1174 &other_start, &other_end)) { 1175 if (recow) { 1176 btrfs_release_path(path); 1177 goto again; 1178 } 1179 key.offset = other_start; 1180 del_slot = path->slots[0]; 1181 del_nr++; 1182 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1183 0, root->root_key.objectid, 1184 ino, orig_offset, 0); 1185 BUG_ON(ret); /* -ENOMEM */ 1186 } 1187 if (del_nr == 0) { 1188 fi = btrfs_item_ptr(leaf, path->slots[0], 1189 struct btrfs_file_extent_item); 1190 btrfs_set_file_extent_type(leaf, fi, 1191 BTRFS_FILE_EXTENT_REG); 1192 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1193 btrfs_mark_buffer_dirty(leaf); 1194 } else { 1195 fi = btrfs_item_ptr(leaf, del_slot - 1, 1196 struct btrfs_file_extent_item); 1197 btrfs_set_file_extent_type(leaf, fi, 1198 BTRFS_FILE_EXTENT_REG); 1199 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1200 btrfs_set_file_extent_num_bytes(leaf, fi, 1201 extent_end - key.offset); 1202 btrfs_mark_buffer_dirty(leaf); 1203 1204 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1205 if (ret < 0) { 1206 btrfs_abort_transaction(trans, root, ret); 1207 goto out; 1208 } 1209 } 1210 out: 1211 btrfs_free_path(path); 1212 return 0; 1213 } 1214 1215 /* 1216 * on error we return an unlocked page and the error value 1217 * on success we return a locked page and 0 1218 */ 1219 static int prepare_uptodate_page(struct page *page, u64 pos, 1220 bool force_uptodate) 1221 { 1222 int ret = 0; 1223 1224 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) && 1225 !PageUptodate(page)) { 1226 ret = btrfs_readpage(NULL, page); 1227 if (ret) 1228 return ret; 1229 lock_page(page); 1230 if (!PageUptodate(page)) { 1231 unlock_page(page); 1232 return -EIO; 1233 } 1234 } 1235 return 0; 1236 } 1237 1238 /* 1239 * this gets pages into the page cache and locks them down, it also properly 1240 * waits for data=ordered extents to finish before allowing the pages to be 1241 * modified. 1242 */ 1243 static noinline int prepare_pages(struct btrfs_root *root, struct file *file, 1244 struct page **pages, size_t num_pages, 1245 loff_t pos, unsigned long first_index, 1246 size_t write_bytes, bool force_uptodate) 1247 { 1248 struct extent_state *cached_state = NULL; 1249 int i; 1250 unsigned long index = pos >> PAGE_CACHE_SHIFT; 1251 struct inode *inode = file_inode(file); 1252 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1253 int err = 0; 1254 int faili = 0; 1255 u64 start_pos; 1256 u64 last_pos; 1257 1258 start_pos = pos & ~((u64)root->sectorsize - 1); 1259 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT; 1260 1261 again: 1262 for (i = 0; i < num_pages; i++) { 1263 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1264 mask | __GFP_WRITE); 1265 if (!pages[i]) { 1266 faili = i - 1; 1267 err = -ENOMEM; 1268 goto fail; 1269 } 1270 1271 if (i == 0) 1272 err = prepare_uptodate_page(pages[i], pos, 1273 force_uptodate); 1274 if (i == num_pages - 1) 1275 err = prepare_uptodate_page(pages[i], 1276 pos + write_bytes, false); 1277 if (err) { 1278 page_cache_release(pages[i]); 1279 faili = i - 1; 1280 goto fail; 1281 } 1282 wait_on_page_writeback(pages[i]); 1283 } 1284 err = 0; 1285 if (start_pos < inode->i_size) { 1286 struct btrfs_ordered_extent *ordered; 1287 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1288 start_pos, last_pos - 1, 0, &cached_state); 1289 ordered = btrfs_lookup_first_ordered_extent(inode, 1290 last_pos - 1); 1291 if (ordered && 1292 ordered->file_offset + ordered->len > start_pos && 1293 ordered->file_offset < last_pos) { 1294 btrfs_put_ordered_extent(ordered); 1295 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1296 start_pos, last_pos - 1, 1297 &cached_state, GFP_NOFS); 1298 for (i = 0; i < num_pages; i++) { 1299 unlock_page(pages[i]); 1300 page_cache_release(pages[i]); 1301 } 1302 btrfs_wait_ordered_range(inode, start_pos, 1303 last_pos - start_pos); 1304 goto again; 1305 } 1306 if (ordered) 1307 btrfs_put_ordered_extent(ordered); 1308 1309 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, 1310 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1311 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1312 0, 0, &cached_state, GFP_NOFS); 1313 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1314 start_pos, last_pos - 1, &cached_state, 1315 GFP_NOFS); 1316 } 1317 for (i = 0; i < num_pages; i++) { 1318 if (clear_page_dirty_for_io(pages[i])) 1319 account_page_redirty(pages[i]); 1320 set_page_extent_mapped(pages[i]); 1321 WARN_ON(!PageLocked(pages[i])); 1322 } 1323 return 0; 1324 fail: 1325 while (faili >= 0) { 1326 unlock_page(pages[faili]); 1327 page_cache_release(pages[faili]); 1328 faili--; 1329 } 1330 return err; 1331 1332 } 1333 1334 static noinline int check_can_nocow(struct inode *inode, loff_t pos, 1335 size_t *write_bytes) 1336 { 1337 struct btrfs_trans_handle *trans; 1338 struct btrfs_root *root = BTRFS_I(inode)->root; 1339 struct btrfs_ordered_extent *ordered; 1340 u64 lockstart, lockend; 1341 u64 num_bytes; 1342 int ret; 1343 1344 lockstart = round_down(pos, root->sectorsize); 1345 lockend = lockstart + round_up(*write_bytes, root->sectorsize) - 1; 1346 1347 while (1) { 1348 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1349 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1350 lockend - lockstart + 1); 1351 if (!ordered) { 1352 break; 1353 } 1354 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1355 btrfs_start_ordered_extent(inode, ordered, 1); 1356 btrfs_put_ordered_extent(ordered); 1357 } 1358 1359 trans = btrfs_join_transaction(root); 1360 if (IS_ERR(trans)) { 1361 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1362 return PTR_ERR(trans); 1363 } 1364 1365 num_bytes = lockend - lockstart + 1; 1366 ret = can_nocow_extent(trans, inode, lockstart, &num_bytes, NULL, NULL, 1367 NULL); 1368 btrfs_end_transaction(trans, root); 1369 if (ret <= 0) { 1370 ret = 0; 1371 } else { 1372 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 1373 EXTENT_DIRTY | EXTENT_DELALLOC | 1374 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1375 NULL, GFP_NOFS); 1376 *write_bytes = min_t(size_t, *write_bytes, num_bytes); 1377 } 1378 1379 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1380 1381 return ret; 1382 } 1383 1384 static noinline ssize_t __btrfs_buffered_write(struct file *file, 1385 struct iov_iter *i, 1386 loff_t pos) 1387 { 1388 struct inode *inode = file_inode(file); 1389 struct btrfs_root *root = BTRFS_I(inode)->root; 1390 struct page **pages = NULL; 1391 u64 release_bytes = 0; 1392 unsigned long first_index; 1393 size_t num_written = 0; 1394 int nrptrs; 1395 int ret = 0; 1396 bool only_release_metadata = false; 1397 bool force_page_uptodate = false; 1398 1399 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) / 1400 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE / 1401 (sizeof(struct page *))); 1402 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1403 nrptrs = max(nrptrs, 8); 1404 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL); 1405 if (!pages) 1406 return -ENOMEM; 1407 1408 first_index = pos >> PAGE_CACHE_SHIFT; 1409 1410 while (iov_iter_count(i) > 0) { 1411 size_t offset = pos & (PAGE_CACHE_SIZE - 1); 1412 size_t write_bytes = min(iov_iter_count(i), 1413 nrptrs * (size_t)PAGE_CACHE_SIZE - 1414 offset); 1415 size_t num_pages = (write_bytes + offset + 1416 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1417 size_t reserve_bytes; 1418 size_t dirty_pages; 1419 size_t copied; 1420 1421 WARN_ON(num_pages > nrptrs); 1422 1423 /* 1424 * Fault pages before locking them in prepare_pages 1425 * to avoid recursive lock 1426 */ 1427 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1428 ret = -EFAULT; 1429 break; 1430 } 1431 1432 reserve_bytes = num_pages << PAGE_CACHE_SHIFT; 1433 ret = btrfs_check_data_free_space(inode, reserve_bytes); 1434 if (ret == -ENOSPC && 1435 (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1436 BTRFS_INODE_PREALLOC))) { 1437 ret = check_can_nocow(inode, pos, &write_bytes); 1438 if (ret > 0) { 1439 only_release_metadata = true; 1440 /* 1441 * our prealloc extent may be smaller than 1442 * write_bytes, so scale down. 1443 */ 1444 num_pages = (write_bytes + offset + 1445 PAGE_CACHE_SIZE - 1) >> 1446 PAGE_CACHE_SHIFT; 1447 reserve_bytes = num_pages << PAGE_CACHE_SHIFT; 1448 ret = 0; 1449 } else { 1450 ret = -ENOSPC; 1451 } 1452 } 1453 1454 if (ret) 1455 break; 1456 1457 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes); 1458 if (ret) { 1459 if (!only_release_metadata) 1460 btrfs_free_reserved_data_space(inode, 1461 reserve_bytes); 1462 break; 1463 } 1464 1465 release_bytes = reserve_bytes; 1466 1467 /* 1468 * This is going to setup the pages array with the number of 1469 * pages we want, so we don't really need to worry about the 1470 * contents of pages from loop to loop 1471 */ 1472 ret = prepare_pages(root, file, pages, num_pages, 1473 pos, first_index, write_bytes, 1474 force_page_uptodate); 1475 if (ret) 1476 break; 1477 1478 copied = btrfs_copy_from_user(pos, num_pages, 1479 write_bytes, pages, i); 1480 1481 /* 1482 * if we have trouble faulting in the pages, fall 1483 * back to one page at a time 1484 */ 1485 if (copied < write_bytes) 1486 nrptrs = 1; 1487 1488 if (copied == 0) { 1489 force_page_uptodate = true; 1490 dirty_pages = 0; 1491 } else { 1492 force_page_uptodate = false; 1493 dirty_pages = (copied + offset + 1494 PAGE_CACHE_SIZE - 1) >> 1495 PAGE_CACHE_SHIFT; 1496 } 1497 1498 /* 1499 * If we had a short copy we need to release the excess delaloc 1500 * bytes we reserved. We need to increment outstanding_extents 1501 * because btrfs_delalloc_release_space will decrement it, but 1502 * we still have an outstanding extent for the chunk we actually 1503 * managed to copy. 1504 */ 1505 if (num_pages > dirty_pages) { 1506 release_bytes = (num_pages - dirty_pages) << 1507 PAGE_CACHE_SHIFT; 1508 if (copied > 0) { 1509 spin_lock(&BTRFS_I(inode)->lock); 1510 BTRFS_I(inode)->outstanding_extents++; 1511 spin_unlock(&BTRFS_I(inode)->lock); 1512 } 1513 if (only_release_metadata) 1514 btrfs_delalloc_release_metadata(inode, 1515 release_bytes); 1516 else 1517 btrfs_delalloc_release_space(inode, 1518 release_bytes); 1519 } 1520 1521 release_bytes = dirty_pages << PAGE_CACHE_SHIFT; 1522 if (copied > 0) { 1523 ret = btrfs_dirty_pages(root, inode, pages, 1524 dirty_pages, pos, copied, 1525 NULL); 1526 if (ret) { 1527 btrfs_drop_pages(pages, num_pages); 1528 break; 1529 } 1530 } 1531 1532 release_bytes = 0; 1533 btrfs_drop_pages(pages, num_pages); 1534 1535 if (only_release_metadata && copied > 0) { 1536 u64 lockstart = round_down(pos, root->sectorsize); 1537 u64 lockend = lockstart + 1538 (dirty_pages << PAGE_CACHE_SHIFT) - 1; 1539 1540 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1541 lockend, EXTENT_NORESERVE, NULL, 1542 NULL, GFP_NOFS); 1543 only_release_metadata = false; 1544 } 1545 1546 cond_resched(); 1547 1548 balance_dirty_pages_ratelimited(inode->i_mapping); 1549 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1) 1550 btrfs_btree_balance_dirty(root); 1551 1552 pos += copied; 1553 num_written += copied; 1554 } 1555 1556 kfree(pages); 1557 1558 if (release_bytes) { 1559 if (only_release_metadata) 1560 btrfs_delalloc_release_metadata(inode, release_bytes); 1561 else 1562 btrfs_delalloc_release_space(inode, release_bytes); 1563 } 1564 1565 return num_written ? num_written : ret; 1566 } 1567 1568 static ssize_t __btrfs_direct_write(struct kiocb *iocb, 1569 const struct iovec *iov, 1570 unsigned long nr_segs, loff_t pos, 1571 loff_t *ppos, size_t count, size_t ocount) 1572 { 1573 struct file *file = iocb->ki_filp; 1574 struct iov_iter i; 1575 ssize_t written; 1576 ssize_t written_buffered; 1577 loff_t endbyte; 1578 int err; 1579 1580 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos, 1581 count, ocount); 1582 1583 if (written < 0 || written == count) 1584 return written; 1585 1586 pos += written; 1587 count -= written; 1588 iov_iter_init(&i, iov, nr_segs, count, written); 1589 written_buffered = __btrfs_buffered_write(file, &i, pos); 1590 if (written_buffered < 0) { 1591 err = written_buffered; 1592 goto out; 1593 } 1594 endbyte = pos + written_buffered - 1; 1595 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 1596 if (err) 1597 goto out; 1598 written += written_buffered; 1599 *ppos = pos + written_buffered; 1600 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT, 1601 endbyte >> PAGE_CACHE_SHIFT); 1602 out: 1603 return written ? written : err; 1604 } 1605 1606 static void update_time_for_write(struct inode *inode) 1607 { 1608 struct timespec now; 1609 1610 if (IS_NOCMTIME(inode)) 1611 return; 1612 1613 now = current_fs_time(inode->i_sb); 1614 if (!timespec_equal(&inode->i_mtime, &now)) 1615 inode->i_mtime = now; 1616 1617 if (!timespec_equal(&inode->i_ctime, &now)) 1618 inode->i_ctime = now; 1619 1620 if (IS_I_VERSION(inode)) 1621 inode_inc_iversion(inode); 1622 } 1623 1624 static ssize_t btrfs_file_aio_write(struct kiocb *iocb, 1625 const struct iovec *iov, 1626 unsigned long nr_segs, loff_t pos) 1627 { 1628 struct file *file = iocb->ki_filp; 1629 struct inode *inode = file_inode(file); 1630 struct btrfs_root *root = BTRFS_I(inode)->root; 1631 loff_t *ppos = &iocb->ki_pos; 1632 u64 start_pos; 1633 ssize_t num_written = 0; 1634 ssize_t err = 0; 1635 size_t count, ocount; 1636 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1637 1638 mutex_lock(&inode->i_mutex); 1639 1640 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 1641 if (err) { 1642 mutex_unlock(&inode->i_mutex); 1643 goto out; 1644 } 1645 count = ocount; 1646 1647 current->backing_dev_info = inode->i_mapping->backing_dev_info; 1648 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 1649 if (err) { 1650 mutex_unlock(&inode->i_mutex); 1651 goto out; 1652 } 1653 1654 if (count == 0) { 1655 mutex_unlock(&inode->i_mutex); 1656 goto out; 1657 } 1658 1659 err = file_remove_suid(file); 1660 if (err) { 1661 mutex_unlock(&inode->i_mutex); 1662 goto out; 1663 } 1664 1665 /* 1666 * If BTRFS flips readonly due to some impossible error 1667 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1668 * although we have opened a file as writable, we have 1669 * to stop this write operation to ensure FS consistency. 1670 */ 1671 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1672 mutex_unlock(&inode->i_mutex); 1673 err = -EROFS; 1674 goto out; 1675 } 1676 1677 /* 1678 * We reserve space for updating the inode when we reserve space for the 1679 * extent we are going to write, so we will enospc out there. We don't 1680 * need to start yet another transaction to update the inode as we will 1681 * update the inode when we finish writing whatever data we write. 1682 */ 1683 update_time_for_write(inode); 1684 1685 start_pos = round_down(pos, root->sectorsize); 1686 if (start_pos > i_size_read(inode)) { 1687 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos); 1688 if (err) { 1689 mutex_unlock(&inode->i_mutex); 1690 goto out; 1691 } 1692 } 1693 1694 if (sync) 1695 atomic_inc(&BTRFS_I(inode)->sync_writers); 1696 1697 if (unlikely(file->f_flags & O_DIRECT)) { 1698 num_written = __btrfs_direct_write(iocb, iov, nr_segs, 1699 pos, ppos, count, ocount); 1700 } else { 1701 struct iov_iter i; 1702 1703 iov_iter_init(&i, iov, nr_segs, count, num_written); 1704 1705 num_written = __btrfs_buffered_write(file, &i, pos); 1706 if (num_written > 0) 1707 *ppos = pos + num_written; 1708 } 1709 1710 mutex_unlock(&inode->i_mutex); 1711 1712 /* 1713 * we want to make sure fsync finds this change 1714 * but we haven't joined a transaction running right now. 1715 * 1716 * Later on, someone is sure to update the inode and get the 1717 * real transid recorded. 1718 * 1719 * We set last_trans now to the fs_info generation + 1, 1720 * this will either be one more than the running transaction 1721 * or the generation used for the next transaction if there isn't 1722 * one running right now. 1723 * 1724 * We also have to set last_sub_trans to the current log transid, 1725 * otherwise subsequent syncs to a file that's been synced in this 1726 * transaction will appear to have already occured. 1727 */ 1728 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1; 1729 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1730 if (num_written > 0 || num_written == -EIOCBQUEUED) { 1731 err = generic_write_sync(file, pos, num_written); 1732 if (err < 0 && num_written > 0) 1733 num_written = err; 1734 } 1735 1736 if (sync) 1737 atomic_dec(&BTRFS_I(inode)->sync_writers); 1738 out: 1739 current->backing_dev_info = NULL; 1740 return num_written ? num_written : err; 1741 } 1742 1743 int btrfs_release_file(struct inode *inode, struct file *filp) 1744 { 1745 /* 1746 * ordered_data_close is set by settattr when we are about to truncate 1747 * a file from a non-zero size to a zero size. This tries to 1748 * flush down new bytes that may have been written if the 1749 * application were using truncate to replace a file in place. 1750 */ 1751 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 1752 &BTRFS_I(inode)->runtime_flags)) { 1753 struct btrfs_trans_handle *trans; 1754 struct btrfs_root *root = BTRFS_I(inode)->root; 1755 1756 /* 1757 * We need to block on a committing transaction to keep us from 1758 * throwing a ordered operation on to the list and causing 1759 * something like sync to deadlock trying to flush out this 1760 * inode. 1761 */ 1762 trans = btrfs_start_transaction(root, 0); 1763 if (IS_ERR(trans)) 1764 return PTR_ERR(trans); 1765 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode); 1766 btrfs_end_transaction(trans, root); 1767 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 1768 filemap_flush(inode->i_mapping); 1769 } 1770 if (filp->private_data) 1771 btrfs_ioctl_trans_end(filp); 1772 return 0; 1773 } 1774 1775 /* 1776 * fsync call for both files and directories. This logs the inode into 1777 * the tree log instead of forcing full commits whenever possible. 1778 * 1779 * It needs to call filemap_fdatawait so that all ordered extent updates are 1780 * in the metadata btree are up to date for copying to the log. 1781 * 1782 * It drops the inode mutex before doing the tree log commit. This is an 1783 * important optimization for directories because holding the mutex prevents 1784 * new operations on the dir while we write to disk. 1785 */ 1786 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1787 { 1788 struct dentry *dentry = file->f_path.dentry; 1789 struct inode *inode = dentry->d_inode; 1790 struct btrfs_root *root = BTRFS_I(inode)->root; 1791 int ret = 0; 1792 struct btrfs_trans_handle *trans; 1793 bool full_sync = 0; 1794 1795 trace_btrfs_sync_file(file, datasync); 1796 1797 /* 1798 * We write the dirty pages in the range and wait until they complete 1799 * out of the ->i_mutex. If so, we can flush the dirty pages by 1800 * multi-task, and make the performance up. See 1801 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1802 */ 1803 atomic_inc(&BTRFS_I(inode)->sync_writers); 1804 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 1805 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1806 &BTRFS_I(inode)->runtime_flags)) 1807 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 1808 atomic_dec(&BTRFS_I(inode)->sync_writers); 1809 if (ret) 1810 return ret; 1811 1812 mutex_lock(&inode->i_mutex); 1813 1814 /* 1815 * We flush the dirty pages again to avoid some dirty pages in the 1816 * range being left. 1817 */ 1818 atomic_inc(&root->log_batch); 1819 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1820 &BTRFS_I(inode)->runtime_flags); 1821 if (full_sync) 1822 btrfs_wait_ordered_range(inode, start, end - start + 1); 1823 atomic_inc(&root->log_batch); 1824 1825 /* 1826 * check the transaction that last modified this inode 1827 * and see if its already been committed 1828 */ 1829 if (!BTRFS_I(inode)->last_trans) { 1830 mutex_unlock(&inode->i_mutex); 1831 goto out; 1832 } 1833 1834 /* 1835 * if the last transaction that changed this file was before 1836 * the current transaction, we can bail out now without any 1837 * syncing 1838 */ 1839 smp_mb(); 1840 if (btrfs_inode_in_log(inode, root->fs_info->generation) || 1841 BTRFS_I(inode)->last_trans <= 1842 root->fs_info->last_trans_committed) { 1843 BTRFS_I(inode)->last_trans = 0; 1844 1845 /* 1846 * We'v had everything committed since the last time we were 1847 * modified so clear this flag in case it was set for whatever 1848 * reason, it's no longer relevant. 1849 */ 1850 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1851 &BTRFS_I(inode)->runtime_flags); 1852 mutex_unlock(&inode->i_mutex); 1853 goto out; 1854 } 1855 1856 /* 1857 * ok we haven't committed the transaction yet, lets do a commit 1858 */ 1859 if (file->private_data) 1860 btrfs_ioctl_trans_end(file); 1861 1862 trans = btrfs_start_transaction(root, 0); 1863 if (IS_ERR(trans)) { 1864 ret = PTR_ERR(trans); 1865 mutex_unlock(&inode->i_mutex); 1866 goto out; 1867 } 1868 1869 ret = btrfs_log_dentry_safe(trans, root, dentry); 1870 if (ret < 0) { 1871 mutex_unlock(&inode->i_mutex); 1872 goto out; 1873 } 1874 1875 /* we've logged all the items and now have a consistent 1876 * version of the file in the log. It is possible that 1877 * someone will come in and modify the file, but that's 1878 * fine because the log is consistent on disk, and we 1879 * have references to all of the file's extents 1880 * 1881 * It is possible that someone will come in and log the 1882 * file again, but that will end up using the synchronization 1883 * inside btrfs_sync_log to keep things safe. 1884 */ 1885 mutex_unlock(&inode->i_mutex); 1886 1887 if (ret != BTRFS_NO_LOG_SYNC) { 1888 if (ret > 0) { 1889 /* 1890 * If we didn't already wait for ordered extents we need 1891 * to do that now. 1892 */ 1893 if (!full_sync) 1894 btrfs_wait_ordered_range(inode, start, 1895 end - start + 1); 1896 ret = btrfs_commit_transaction(trans, root); 1897 } else { 1898 ret = btrfs_sync_log(trans, root); 1899 if (ret == 0) { 1900 ret = btrfs_end_transaction(trans, root); 1901 } else { 1902 if (!full_sync) 1903 btrfs_wait_ordered_range(inode, start, 1904 end - 1905 start + 1); 1906 ret = btrfs_commit_transaction(trans, root); 1907 } 1908 } 1909 } else { 1910 ret = btrfs_end_transaction(trans, root); 1911 } 1912 out: 1913 return ret > 0 ? -EIO : ret; 1914 } 1915 1916 static const struct vm_operations_struct btrfs_file_vm_ops = { 1917 .fault = filemap_fault, 1918 .page_mkwrite = btrfs_page_mkwrite, 1919 .remap_pages = generic_file_remap_pages, 1920 }; 1921 1922 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 1923 { 1924 struct address_space *mapping = filp->f_mapping; 1925 1926 if (!mapping->a_ops->readpage) 1927 return -ENOEXEC; 1928 1929 file_accessed(filp); 1930 vma->vm_ops = &btrfs_file_vm_ops; 1931 1932 return 0; 1933 } 1934 1935 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf, 1936 int slot, u64 start, u64 end) 1937 { 1938 struct btrfs_file_extent_item *fi; 1939 struct btrfs_key key; 1940 1941 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1942 return 0; 1943 1944 btrfs_item_key_to_cpu(leaf, &key, slot); 1945 if (key.objectid != btrfs_ino(inode) || 1946 key.type != BTRFS_EXTENT_DATA_KEY) 1947 return 0; 1948 1949 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1950 1951 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 1952 return 0; 1953 1954 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 1955 return 0; 1956 1957 if (key.offset == end) 1958 return 1; 1959 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 1960 return 1; 1961 return 0; 1962 } 1963 1964 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode, 1965 struct btrfs_path *path, u64 offset, u64 end) 1966 { 1967 struct btrfs_root *root = BTRFS_I(inode)->root; 1968 struct extent_buffer *leaf; 1969 struct btrfs_file_extent_item *fi; 1970 struct extent_map *hole_em; 1971 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1972 struct btrfs_key key; 1973 int ret; 1974 1975 key.objectid = btrfs_ino(inode); 1976 key.type = BTRFS_EXTENT_DATA_KEY; 1977 key.offset = offset; 1978 1979 1980 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1981 if (ret < 0) 1982 return ret; 1983 BUG_ON(!ret); 1984 1985 leaf = path->nodes[0]; 1986 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) { 1987 u64 num_bytes; 1988 1989 path->slots[0]--; 1990 fi = btrfs_item_ptr(leaf, path->slots[0], 1991 struct btrfs_file_extent_item); 1992 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 1993 end - offset; 1994 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1995 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 1996 btrfs_set_file_extent_offset(leaf, fi, 0); 1997 btrfs_mark_buffer_dirty(leaf); 1998 goto out; 1999 } 2000 2001 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) { 2002 u64 num_bytes; 2003 2004 path->slots[0]++; 2005 key.offset = offset; 2006 btrfs_set_item_key_safe(root, path, &key); 2007 fi = btrfs_item_ptr(leaf, path->slots[0], 2008 struct btrfs_file_extent_item); 2009 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2010 offset; 2011 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2012 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2013 btrfs_set_file_extent_offset(leaf, fi, 0); 2014 btrfs_mark_buffer_dirty(leaf); 2015 goto out; 2016 } 2017 btrfs_release_path(path); 2018 2019 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 2020 0, 0, end - offset, 0, end - offset, 2021 0, 0, 0); 2022 if (ret) 2023 return ret; 2024 2025 out: 2026 btrfs_release_path(path); 2027 2028 hole_em = alloc_extent_map(); 2029 if (!hole_em) { 2030 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2031 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2032 &BTRFS_I(inode)->runtime_flags); 2033 } else { 2034 hole_em->start = offset; 2035 hole_em->len = end - offset; 2036 hole_em->ram_bytes = hole_em->len; 2037 hole_em->orig_start = offset; 2038 2039 hole_em->block_start = EXTENT_MAP_HOLE; 2040 hole_em->block_len = 0; 2041 hole_em->orig_block_len = 0; 2042 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 2043 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2044 hole_em->generation = trans->transid; 2045 2046 do { 2047 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2048 write_lock(&em_tree->lock); 2049 ret = add_extent_mapping(em_tree, hole_em, 1); 2050 write_unlock(&em_tree->lock); 2051 } while (ret == -EEXIST); 2052 free_extent_map(hole_em); 2053 if (ret) 2054 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2055 &BTRFS_I(inode)->runtime_flags); 2056 } 2057 2058 return 0; 2059 } 2060 2061 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2062 { 2063 struct btrfs_root *root = BTRFS_I(inode)->root; 2064 struct extent_state *cached_state = NULL; 2065 struct btrfs_path *path; 2066 struct btrfs_block_rsv *rsv; 2067 struct btrfs_trans_handle *trans; 2068 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize); 2069 u64 lockend = round_down(offset + len, 2070 BTRFS_I(inode)->root->sectorsize) - 1; 2071 u64 cur_offset = lockstart; 2072 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 2073 u64 drop_end; 2074 int ret = 0; 2075 int err = 0; 2076 bool same_page = ((offset >> PAGE_CACHE_SHIFT) == 2077 ((offset + len - 1) >> PAGE_CACHE_SHIFT)); 2078 2079 btrfs_wait_ordered_range(inode, offset, len); 2080 2081 mutex_lock(&inode->i_mutex); 2082 /* 2083 * We needn't truncate any page which is beyond the end of the file 2084 * because we are sure there is no data there. 2085 */ 2086 /* 2087 * Only do this if we are in the same page and we aren't doing the 2088 * entire page. 2089 */ 2090 if (same_page && len < PAGE_CACHE_SIZE) { 2091 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) 2092 ret = btrfs_truncate_page(inode, offset, len, 0); 2093 mutex_unlock(&inode->i_mutex); 2094 return ret; 2095 } 2096 2097 /* zero back part of the first page */ 2098 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) { 2099 ret = btrfs_truncate_page(inode, offset, 0, 0); 2100 if (ret) { 2101 mutex_unlock(&inode->i_mutex); 2102 return ret; 2103 } 2104 } 2105 2106 /* zero the front end of the last page */ 2107 if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) { 2108 ret = btrfs_truncate_page(inode, offset + len, 0, 1); 2109 if (ret) { 2110 mutex_unlock(&inode->i_mutex); 2111 return ret; 2112 } 2113 } 2114 2115 if (lockend < lockstart) { 2116 mutex_unlock(&inode->i_mutex); 2117 return 0; 2118 } 2119 2120 while (1) { 2121 struct btrfs_ordered_extent *ordered; 2122 2123 truncate_pagecache_range(inode, lockstart, lockend); 2124 2125 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2126 0, &cached_state); 2127 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2128 2129 /* 2130 * We need to make sure we have no ordered extents in this range 2131 * and nobody raced in and read a page in this range, if we did 2132 * we need to try again. 2133 */ 2134 if ((!ordered || 2135 (ordered->file_offset + ordered->len < lockstart || 2136 ordered->file_offset > lockend)) && 2137 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart, 2138 lockend, EXTENT_UPTODATE, 0, 2139 cached_state)) { 2140 if (ordered) 2141 btrfs_put_ordered_extent(ordered); 2142 break; 2143 } 2144 if (ordered) 2145 btrfs_put_ordered_extent(ordered); 2146 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2147 lockend, &cached_state, GFP_NOFS); 2148 btrfs_wait_ordered_range(inode, lockstart, 2149 lockend - lockstart + 1); 2150 } 2151 2152 path = btrfs_alloc_path(); 2153 if (!path) { 2154 ret = -ENOMEM; 2155 goto out; 2156 } 2157 2158 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2159 if (!rsv) { 2160 ret = -ENOMEM; 2161 goto out_free; 2162 } 2163 rsv->size = btrfs_calc_trunc_metadata_size(root, 1); 2164 rsv->failfast = 1; 2165 2166 /* 2167 * 1 - update the inode 2168 * 1 - removing the extents in the range 2169 * 1 - adding the hole extent 2170 */ 2171 trans = btrfs_start_transaction(root, 3); 2172 if (IS_ERR(trans)) { 2173 err = PTR_ERR(trans); 2174 goto out_free; 2175 } 2176 2177 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 2178 min_size); 2179 BUG_ON(ret); 2180 trans->block_rsv = rsv; 2181 2182 while (cur_offset < lockend) { 2183 ret = __btrfs_drop_extents(trans, root, inode, path, 2184 cur_offset, lockend + 1, 2185 &drop_end, 1); 2186 if (ret != -ENOSPC) 2187 break; 2188 2189 trans->block_rsv = &root->fs_info->trans_block_rsv; 2190 2191 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2192 if (ret) { 2193 err = ret; 2194 break; 2195 } 2196 2197 cur_offset = drop_end; 2198 2199 ret = btrfs_update_inode(trans, root, inode); 2200 if (ret) { 2201 err = ret; 2202 break; 2203 } 2204 2205 btrfs_end_transaction(trans, root); 2206 btrfs_btree_balance_dirty(root); 2207 2208 trans = btrfs_start_transaction(root, 3); 2209 if (IS_ERR(trans)) { 2210 ret = PTR_ERR(trans); 2211 trans = NULL; 2212 break; 2213 } 2214 2215 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 2216 rsv, min_size); 2217 BUG_ON(ret); /* shouldn't happen */ 2218 trans->block_rsv = rsv; 2219 } 2220 2221 if (ret) { 2222 err = ret; 2223 goto out_trans; 2224 } 2225 2226 trans->block_rsv = &root->fs_info->trans_block_rsv; 2227 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2228 if (ret) { 2229 err = ret; 2230 goto out_trans; 2231 } 2232 2233 out_trans: 2234 if (!trans) 2235 goto out_free; 2236 2237 inode_inc_iversion(inode); 2238 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2239 2240 trans->block_rsv = &root->fs_info->trans_block_rsv; 2241 ret = btrfs_update_inode(trans, root, inode); 2242 btrfs_end_transaction(trans, root); 2243 btrfs_btree_balance_dirty(root); 2244 out_free: 2245 btrfs_free_path(path); 2246 btrfs_free_block_rsv(root, rsv); 2247 out: 2248 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2249 &cached_state, GFP_NOFS); 2250 mutex_unlock(&inode->i_mutex); 2251 if (ret && !err) 2252 err = ret; 2253 return err; 2254 } 2255 2256 static long btrfs_fallocate(struct file *file, int mode, 2257 loff_t offset, loff_t len) 2258 { 2259 struct inode *inode = file_inode(file); 2260 struct extent_state *cached_state = NULL; 2261 struct btrfs_root *root = BTRFS_I(inode)->root; 2262 u64 cur_offset; 2263 u64 last_byte; 2264 u64 alloc_start; 2265 u64 alloc_end; 2266 u64 alloc_hint = 0; 2267 u64 locked_end; 2268 struct extent_map *em; 2269 int blocksize = BTRFS_I(inode)->root->sectorsize; 2270 int ret; 2271 2272 alloc_start = round_down(offset, blocksize); 2273 alloc_end = round_up(offset + len, blocksize); 2274 2275 /* Make sure we aren't being give some crap mode */ 2276 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2277 return -EOPNOTSUPP; 2278 2279 if (mode & FALLOC_FL_PUNCH_HOLE) 2280 return btrfs_punch_hole(inode, offset, len); 2281 2282 /* 2283 * Make sure we have enough space before we do the 2284 * allocation. 2285 */ 2286 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start); 2287 if (ret) 2288 return ret; 2289 if (root->fs_info->quota_enabled) { 2290 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start); 2291 if (ret) 2292 goto out_reserve_fail; 2293 } 2294 2295 mutex_lock(&inode->i_mutex); 2296 ret = inode_newsize_ok(inode, alloc_end); 2297 if (ret) 2298 goto out; 2299 2300 if (alloc_start > inode->i_size) { 2301 ret = btrfs_cont_expand(inode, i_size_read(inode), 2302 alloc_start); 2303 if (ret) 2304 goto out; 2305 } else { 2306 /* 2307 * If we are fallocating from the end of the file onward we 2308 * need to zero out the end of the page if i_size lands in the 2309 * middle of a page. 2310 */ 2311 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0); 2312 if (ret) 2313 goto out; 2314 } 2315 2316 /* 2317 * wait for ordered IO before we have any locks. We'll loop again 2318 * below with the locks held. 2319 */ 2320 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start); 2321 2322 locked_end = alloc_end - 1; 2323 while (1) { 2324 struct btrfs_ordered_extent *ordered; 2325 2326 /* the extent lock is ordered inside the running 2327 * transaction 2328 */ 2329 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 2330 locked_end, 0, &cached_state); 2331 ordered = btrfs_lookup_first_ordered_extent(inode, 2332 alloc_end - 1); 2333 if (ordered && 2334 ordered->file_offset + ordered->len > alloc_start && 2335 ordered->file_offset < alloc_end) { 2336 btrfs_put_ordered_extent(ordered); 2337 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 2338 alloc_start, locked_end, 2339 &cached_state, GFP_NOFS); 2340 /* 2341 * we can't wait on the range with the transaction 2342 * running or with the extent lock held 2343 */ 2344 btrfs_wait_ordered_range(inode, alloc_start, 2345 alloc_end - alloc_start); 2346 } else { 2347 if (ordered) 2348 btrfs_put_ordered_extent(ordered); 2349 break; 2350 } 2351 } 2352 2353 cur_offset = alloc_start; 2354 while (1) { 2355 u64 actual_end; 2356 2357 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2358 alloc_end - cur_offset, 0); 2359 if (IS_ERR_OR_NULL(em)) { 2360 if (!em) 2361 ret = -ENOMEM; 2362 else 2363 ret = PTR_ERR(em); 2364 break; 2365 } 2366 last_byte = min(extent_map_end(em), alloc_end); 2367 actual_end = min_t(u64, extent_map_end(em), offset + len); 2368 last_byte = ALIGN(last_byte, blocksize); 2369 2370 if (em->block_start == EXTENT_MAP_HOLE || 2371 (cur_offset >= inode->i_size && 2372 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 2373 ret = btrfs_prealloc_file_range(inode, mode, cur_offset, 2374 last_byte - cur_offset, 2375 1 << inode->i_blkbits, 2376 offset + len, 2377 &alloc_hint); 2378 2379 if (ret < 0) { 2380 free_extent_map(em); 2381 break; 2382 } 2383 } else if (actual_end > inode->i_size && 2384 !(mode & FALLOC_FL_KEEP_SIZE)) { 2385 /* 2386 * We didn't need to allocate any more space, but we 2387 * still extended the size of the file so we need to 2388 * update i_size. 2389 */ 2390 inode->i_ctime = CURRENT_TIME; 2391 i_size_write(inode, actual_end); 2392 btrfs_ordered_update_i_size(inode, actual_end, NULL); 2393 } 2394 free_extent_map(em); 2395 2396 cur_offset = last_byte; 2397 if (cur_offset >= alloc_end) { 2398 ret = 0; 2399 break; 2400 } 2401 } 2402 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 2403 &cached_state, GFP_NOFS); 2404 out: 2405 mutex_unlock(&inode->i_mutex); 2406 if (root->fs_info->quota_enabled) 2407 btrfs_qgroup_free(root, alloc_end - alloc_start); 2408 out_reserve_fail: 2409 /* Let go of our reservation. */ 2410 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start); 2411 return ret; 2412 } 2413 2414 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 2415 { 2416 struct btrfs_root *root = BTRFS_I(inode)->root; 2417 struct extent_map *em; 2418 struct extent_state *cached_state = NULL; 2419 u64 lockstart = *offset; 2420 u64 lockend = i_size_read(inode); 2421 u64 start = *offset; 2422 u64 orig_start = *offset; 2423 u64 len = i_size_read(inode); 2424 u64 last_end = 0; 2425 int ret = 0; 2426 2427 lockend = max_t(u64, root->sectorsize, lockend); 2428 if (lockend <= lockstart) 2429 lockend = lockstart + root->sectorsize; 2430 2431 lockend--; 2432 len = lockend - lockstart + 1; 2433 2434 len = max_t(u64, len, root->sectorsize); 2435 if (inode->i_size == 0) 2436 return -ENXIO; 2437 2438 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0, 2439 &cached_state); 2440 2441 /* 2442 * Delalloc is such a pain. If we have a hole and we have pending 2443 * delalloc for a portion of the hole we will get back a hole that 2444 * exists for the entire range since it hasn't been actually written 2445 * yet. So to take care of this case we need to look for an extent just 2446 * before the position we want in case there is outstanding delalloc 2447 * going on here. 2448 */ 2449 if (whence == SEEK_HOLE && start != 0) { 2450 if (start <= root->sectorsize) 2451 em = btrfs_get_extent_fiemap(inode, NULL, 0, 0, 2452 root->sectorsize, 0); 2453 else 2454 em = btrfs_get_extent_fiemap(inode, NULL, 0, 2455 start - root->sectorsize, 2456 root->sectorsize, 0); 2457 if (IS_ERR(em)) { 2458 ret = PTR_ERR(em); 2459 goto out; 2460 } 2461 last_end = em->start + em->len; 2462 if (em->block_start == EXTENT_MAP_DELALLOC) 2463 last_end = min_t(u64, last_end, inode->i_size); 2464 free_extent_map(em); 2465 } 2466 2467 while (1) { 2468 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0); 2469 if (IS_ERR(em)) { 2470 ret = PTR_ERR(em); 2471 break; 2472 } 2473 2474 if (em->block_start == EXTENT_MAP_HOLE) { 2475 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { 2476 if (last_end <= orig_start) { 2477 free_extent_map(em); 2478 ret = -ENXIO; 2479 break; 2480 } 2481 } 2482 2483 if (whence == SEEK_HOLE) { 2484 *offset = start; 2485 free_extent_map(em); 2486 break; 2487 } 2488 } else { 2489 if (whence == SEEK_DATA) { 2490 if (em->block_start == EXTENT_MAP_DELALLOC) { 2491 if (start >= inode->i_size) { 2492 free_extent_map(em); 2493 ret = -ENXIO; 2494 break; 2495 } 2496 } 2497 2498 if (!test_bit(EXTENT_FLAG_PREALLOC, 2499 &em->flags)) { 2500 *offset = start; 2501 free_extent_map(em); 2502 break; 2503 } 2504 } 2505 } 2506 2507 start = em->start + em->len; 2508 last_end = em->start + em->len; 2509 2510 if (em->block_start == EXTENT_MAP_DELALLOC) 2511 last_end = min_t(u64, last_end, inode->i_size); 2512 2513 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { 2514 free_extent_map(em); 2515 ret = -ENXIO; 2516 break; 2517 } 2518 free_extent_map(em); 2519 cond_resched(); 2520 } 2521 if (!ret) 2522 *offset = min(*offset, inode->i_size); 2523 out: 2524 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2525 &cached_state, GFP_NOFS); 2526 return ret; 2527 } 2528 2529 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 2530 { 2531 struct inode *inode = file->f_mapping->host; 2532 int ret; 2533 2534 mutex_lock(&inode->i_mutex); 2535 switch (whence) { 2536 case SEEK_END: 2537 case SEEK_CUR: 2538 offset = generic_file_llseek(file, offset, whence); 2539 goto out; 2540 case SEEK_DATA: 2541 case SEEK_HOLE: 2542 if (offset >= i_size_read(inode)) { 2543 mutex_unlock(&inode->i_mutex); 2544 return -ENXIO; 2545 } 2546 2547 ret = find_desired_extent(inode, &offset, whence); 2548 if (ret) { 2549 mutex_unlock(&inode->i_mutex); 2550 return ret; 2551 } 2552 } 2553 2554 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2555 out: 2556 mutex_unlock(&inode->i_mutex); 2557 return offset; 2558 } 2559 2560 const struct file_operations btrfs_file_operations = { 2561 .llseek = btrfs_file_llseek, 2562 .read = do_sync_read, 2563 .write = do_sync_write, 2564 .aio_read = generic_file_aio_read, 2565 .splice_read = generic_file_splice_read, 2566 .aio_write = btrfs_file_aio_write, 2567 .mmap = btrfs_file_mmap, 2568 .open = generic_file_open, 2569 .release = btrfs_release_file, 2570 .fsync = btrfs_sync_file, 2571 .fallocate = btrfs_fallocate, 2572 .unlocked_ioctl = btrfs_ioctl, 2573 #ifdef CONFIG_COMPAT 2574 .compat_ioctl = btrfs_ioctl, 2575 #endif 2576 }; 2577 2578 void btrfs_auto_defrag_exit(void) 2579 { 2580 if (btrfs_inode_defrag_cachep) 2581 kmem_cache_destroy(btrfs_inode_defrag_cachep); 2582 } 2583 2584 int btrfs_auto_defrag_init(void) 2585 { 2586 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 2587 sizeof(struct inode_defrag), 0, 2588 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 2589 NULL); 2590 if (!btrfs_inode_defrag_cachep) 2591 return -ENOMEM; 2592 2593 return 0; 2594 } 2595