1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/time.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/backing-dev.h> 26 #include <linux/mpage.h> 27 #include <linux/falloc.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/statfs.h> 31 #include <linux/compat.h> 32 #include <linux/slab.h> 33 #include <linux/btrfs.h> 34 #include <linux/uio.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "print-tree.h" 40 #include "tree-log.h" 41 #include "locking.h" 42 #include "volumes.h" 43 #include "qgroup.h" 44 #include "compression.h" 45 46 static struct kmem_cache *btrfs_inode_defrag_cachep; 47 /* 48 * when auto defrag is enabled we 49 * queue up these defrag structs to remember which 50 * inodes need defragging passes 51 */ 52 struct inode_defrag { 53 struct rb_node rb_node; 54 /* objectid */ 55 u64 ino; 56 /* 57 * transid where the defrag was added, we search for 58 * extents newer than this 59 */ 60 u64 transid; 61 62 /* root objectid */ 63 u64 root; 64 65 /* last offset we were able to defrag */ 66 u64 last_offset; 67 68 /* if we've wrapped around back to zero once already */ 69 int cycled; 70 }; 71 72 static int __compare_inode_defrag(struct inode_defrag *defrag1, 73 struct inode_defrag *defrag2) 74 { 75 if (defrag1->root > defrag2->root) 76 return 1; 77 else if (defrag1->root < defrag2->root) 78 return -1; 79 else if (defrag1->ino > defrag2->ino) 80 return 1; 81 else if (defrag1->ino < defrag2->ino) 82 return -1; 83 else 84 return 0; 85 } 86 87 /* pop a record for an inode into the defrag tree. The lock 88 * must be held already 89 * 90 * If you're inserting a record for an older transid than an 91 * existing record, the transid already in the tree is lowered 92 * 93 * If an existing record is found the defrag item you 94 * pass in is freed 95 */ 96 static int __btrfs_add_inode_defrag(struct inode *inode, 97 struct inode_defrag *defrag) 98 { 99 struct btrfs_root *root = BTRFS_I(inode)->root; 100 struct inode_defrag *entry; 101 struct rb_node **p; 102 struct rb_node *parent = NULL; 103 int ret; 104 105 p = &root->fs_info->defrag_inodes.rb_node; 106 while (*p) { 107 parent = *p; 108 entry = rb_entry(parent, struct inode_defrag, rb_node); 109 110 ret = __compare_inode_defrag(defrag, entry); 111 if (ret < 0) 112 p = &parent->rb_left; 113 else if (ret > 0) 114 p = &parent->rb_right; 115 else { 116 /* if we're reinserting an entry for 117 * an old defrag run, make sure to 118 * lower the transid of our existing record 119 */ 120 if (defrag->transid < entry->transid) 121 entry->transid = defrag->transid; 122 if (defrag->last_offset > entry->last_offset) 123 entry->last_offset = defrag->last_offset; 124 return -EEXIST; 125 } 126 } 127 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 128 rb_link_node(&defrag->rb_node, parent, p); 129 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes); 130 return 0; 131 } 132 133 static inline int __need_auto_defrag(struct btrfs_root *root) 134 { 135 if (!btrfs_test_opt(root->fs_info, AUTO_DEFRAG)) 136 return 0; 137 138 if (btrfs_fs_closing(root->fs_info)) 139 return 0; 140 141 return 1; 142 } 143 144 /* 145 * insert a defrag record for this inode if auto defrag is 146 * enabled 147 */ 148 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 149 struct inode *inode) 150 { 151 struct btrfs_root *root = BTRFS_I(inode)->root; 152 struct inode_defrag *defrag; 153 u64 transid; 154 int ret; 155 156 if (!__need_auto_defrag(root)) 157 return 0; 158 159 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) 160 return 0; 161 162 if (trans) 163 transid = trans->transid; 164 else 165 transid = BTRFS_I(inode)->root->last_trans; 166 167 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 168 if (!defrag) 169 return -ENOMEM; 170 171 defrag->ino = btrfs_ino(inode); 172 defrag->transid = transid; 173 defrag->root = root->root_key.objectid; 174 175 spin_lock(&root->fs_info->defrag_inodes_lock); 176 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) { 177 /* 178 * If we set IN_DEFRAG flag and evict the inode from memory, 179 * and then re-read this inode, this new inode doesn't have 180 * IN_DEFRAG flag. At the case, we may find the existed defrag. 181 */ 182 ret = __btrfs_add_inode_defrag(inode, defrag); 183 if (ret) 184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 185 } else { 186 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 187 } 188 spin_unlock(&root->fs_info->defrag_inodes_lock); 189 return 0; 190 } 191 192 /* 193 * Requeue the defrag object. If there is a defrag object that points to 194 * the same inode in the tree, we will merge them together (by 195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 196 */ 197 static void btrfs_requeue_inode_defrag(struct inode *inode, 198 struct inode_defrag *defrag) 199 { 200 struct btrfs_root *root = BTRFS_I(inode)->root; 201 int ret; 202 203 if (!__need_auto_defrag(root)) 204 goto out; 205 206 /* 207 * Here we don't check the IN_DEFRAG flag, because we need merge 208 * them together. 209 */ 210 spin_lock(&root->fs_info->defrag_inodes_lock); 211 ret = __btrfs_add_inode_defrag(inode, defrag); 212 spin_unlock(&root->fs_info->defrag_inodes_lock); 213 if (ret) 214 goto out; 215 return; 216 out: 217 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 218 } 219 220 /* 221 * pick the defragable inode that we want, if it doesn't exist, we will get 222 * the next one. 223 */ 224 static struct inode_defrag * 225 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 226 { 227 struct inode_defrag *entry = NULL; 228 struct inode_defrag tmp; 229 struct rb_node *p; 230 struct rb_node *parent = NULL; 231 int ret; 232 233 tmp.ino = ino; 234 tmp.root = root; 235 236 spin_lock(&fs_info->defrag_inodes_lock); 237 p = fs_info->defrag_inodes.rb_node; 238 while (p) { 239 parent = p; 240 entry = rb_entry(parent, struct inode_defrag, rb_node); 241 242 ret = __compare_inode_defrag(&tmp, entry); 243 if (ret < 0) 244 p = parent->rb_left; 245 else if (ret > 0) 246 p = parent->rb_right; 247 else 248 goto out; 249 } 250 251 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 252 parent = rb_next(parent); 253 if (parent) 254 entry = rb_entry(parent, struct inode_defrag, rb_node); 255 else 256 entry = NULL; 257 } 258 out: 259 if (entry) 260 rb_erase(parent, &fs_info->defrag_inodes); 261 spin_unlock(&fs_info->defrag_inodes_lock); 262 return entry; 263 } 264 265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 266 { 267 struct inode_defrag *defrag; 268 struct rb_node *node; 269 270 spin_lock(&fs_info->defrag_inodes_lock); 271 node = rb_first(&fs_info->defrag_inodes); 272 while (node) { 273 rb_erase(node, &fs_info->defrag_inodes); 274 defrag = rb_entry(node, struct inode_defrag, rb_node); 275 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 276 277 cond_resched_lock(&fs_info->defrag_inodes_lock); 278 279 node = rb_first(&fs_info->defrag_inodes); 280 } 281 spin_unlock(&fs_info->defrag_inodes_lock); 282 } 283 284 #define BTRFS_DEFRAG_BATCH 1024 285 286 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 287 struct inode_defrag *defrag) 288 { 289 struct btrfs_root *inode_root; 290 struct inode *inode; 291 struct btrfs_key key; 292 struct btrfs_ioctl_defrag_range_args range; 293 int num_defrag; 294 int index; 295 int ret; 296 297 /* get the inode */ 298 key.objectid = defrag->root; 299 key.type = BTRFS_ROOT_ITEM_KEY; 300 key.offset = (u64)-1; 301 302 index = srcu_read_lock(&fs_info->subvol_srcu); 303 304 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 305 if (IS_ERR(inode_root)) { 306 ret = PTR_ERR(inode_root); 307 goto cleanup; 308 } 309 310 key.objectid = defrag->ino; 311 key.type = BTRFS_INODE_ITEM_KEY; 312 key.offset = 0; 313 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 314 if (IS_ERR(inode)) { 315 ret = PTR_ERR(inode); 316 goto cleanup; 317 } 318 srcu_read_unlock(&fs_info->subvol_srcu, index); 319 320 /* do a chunk of defrag */ 321 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 322 memset(&range, 0, sizeof(range)); 323 range.len = (u64)-1; 324 range.start = defrag->last_offset; 325 326 sb_start_write(fs_info->sb); 327 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 328 BTRFS_DEFRAG_BATCH); 329 sb_end_write(fs_info->sb); 330 /* 331 * if we filled the whole defrag batch, there 332 * must be more work to do. Queue this defrag 333 * again 334 */ 335 if (num_defrag == BTRFS_DEFRAG_BATCH) { 336 defrag->last_offset = range.start; 337 btrfs_requeue_inode_defrag(inode, defrag); 338 } else if (defrag->last_offset && !defrag->cycled) { 339 /* 340 * we didn't fill our defrag batch, but 341 * we didn't start at zero. Make sure we loop 342 * around to the start of the file. 343 */ 344 defrag->last_offset = 0; 345 defrag->cycled = 1; 346 btrfs_requeue_inode_defrag(inode, defrag); 347 } else { 348 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 349 } 350 351 iput(inode); 352 return 0; 353 cleanup: 354 srcu_read_unlock(&fs_info->subvol_srcu, index); 355 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 356 return ret; 357 } 358 359 /* 360 * run through the list of inodes in the FS that need 361 * defragging 362 */ 363 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 364 { 365 struct inode_defrag *defrag; 366 u64 first_ino = 0; 367 u64 root_objectid = 0; 368 369 atomic_inc(&fs_info->defrag_running); 370 while (1) { 371 /* Pause the auto defragger. */ 372 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 373 &fs_info->fs_state)) 374 break; 375 376 if (!__need_auto_defrag(fs_info->tree_root)) 377 break; 378 379 /* find an inode to defrag */ 380 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 381 first_ino); 382 if (!defrag) { 383 if (root_objectid || first_ino) { 384 root_objectid = 0; 385 first_ino = 0; 386 continue; 387 } else { 388 break; 389 } 390 } 391 392 first_ino = defrag->ino + 1; 393 root_objectid = defrag->root; 394 395 __btrfs_run_defrag_inode(fs_info, defrag); 396 } 397 atomic_dec(&fs_info->defrag_running); 398 399 /* 400 * during unmount, we use the transaction_wait queue to 401 * wait for the defragger to stop 402 */ 403 wake_up(&fs_info->transaction_wait); 404 return 0; 405 } 406 407 /* simple helper to fault in pages and copy. This should go away 408 * and be replaced with calls into generic code. 409 */ 410 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 411 struct page **prepared_pages, 412 struct iov_iter *i) 413 { 414 size_t copied = 0; 415 size_t total_copied = 0; 416 int pg = 0; 417 int offset = pos & (PAGE_SIZE - 1); 418 419 while (write_bytes > 0) { 420 size_t count = min_t(size_t, 421 PAGE_SIZE - offset, write_bytes); 422 struct page *page = prepared_pages[pg]; 423 /* 424 * Copy data from userspace to the current page 425 */ 426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 427 428 /* Flush processor's dcache for this page */ 429 flush_dcache_page(page); 430 431 /* 432 * if we get a partial write, we can end up with 433 * partially up to date pages. These add 434 * a lot of complexity, so make sure they don't 435 * happen by forcing this copy to be retried. 436 * 437 * The rest of the btrfs_file_write code will fall 438 * back to page at a time copies after we return 0. 439 */ 440 if (!PageUptodate(page) && copied < count) 441 copied = 0; 442 443 iov_iter_advance(i, copied); 444 write_bytes -= copied; 445 total_copied += copied; 446 447 /* Return to btrfs_file_write_iter to fault page */ 448 if (unlikely(copied == 0)) 449 break; 450 451 if (copied < PAGE_SIZE - offset) { 452 offset += copied; 453 } else { 454 pg++; 455 offset = 0; 456 } 457 } 458 return total_copied; 459 } 460 461 /* 462 * unlocks pages after btrfs_file_write is done with them 463 */ 464 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 465 { 466 size_t i; 467 for (i = 0; i < num_pages; i++) { 468 /* page checked is some magic around finding pages that 469 * have been modified without going through btrfs_set_page_dirty 470 * clear it here. There should be no need to mark the pages 471 * accessed as prepare_pages should have marked them accessed 472 * in prepare_pages via find_or_create_page() 473 */ 474 ClearPageChecked(pages[i]); 475 unlock_page(pages[i]); 476 put_page(pages[i]); 477 } 478 } 479 480 /* 481 * after copy_from_user, pages need to be dirtied and we need to make 482 * sure holes are created between the current EOF and the start of 483 * any next extents (if required). 484 * 485 * this also makes the decision about creating an inline extent vs 486 * doing real data extents, marking pages dirty and delalloc as required. 487 */ 488 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, 489 struct page **pages, size_t num_pages, 490 loff_t pos, size_t write_bytes, 491 struct extent_state **cached) 492 { 493 int err = 0; 494 int i; 495 u64 num_bytes; 496 u64 start_pos; 497 u64 end_of_last_block; 498 u64 end_pos = pos + write_bytes; 499 loff_t isize = i_size_read(inode); 500 501 start_pos = pos & ~((u64)root->sectorsize - 1); 502 num_bytes = round_up(write_bytes + pos - start_pos, root->sectorsize); 503 504 end_of_last_block = start_pos + num_bytes - 1; 505 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 506 cached); 507 if (err) 508 return err; 509 510 for (i = 0; i < num_pages; i++) { 511 struct page *p = pages[i]; 512 SetPageUptodate(p); 513 ClearPageChecked(p); 514 set_page_dirty(p); 515 } 516 517 /* 518 * we've only changed i_size in ram, and we haven't updated 519 * the disk i_size. There is no need to log the inode 520 * at this time. 521 */ 522 if (end_pos > isize) 523 i_size_write(inode, end_pos); 524 return 0; 525 } 526 527 /* 528 * this drops all the extents in the cache that intersect the range 529 * [start, end]. Existing extents are split as required. 530 */ 531 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, 532 int skip_pinned) 533 { 534 struct extent_map *em; 535 struct extent_map *split = NULL; 536 struct extent_map *split2 = NULL; 537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 538 u64 len = end - start + 1; 539 u64 gen; 540 int ret; 541 int testend = 1; 542 unsigned long flags; 543 int compressed = 0; 544 bool modified; 545 546 WARN_ON(end < start); 547 if (end == (u64)-1) { 548 len = (u64)-1; 549 testend = 0; 550 } 551 while (1) { 552 int no_splits = 0; 553 554 modified = false; 555 if (!split) 556 split = alloc_extent_map(); 557 if (!split2) 558 split2 = alloc_extent_map(); 559 if (!split || !split2) 560 no_splits = 1; 561 562 write_lock(&em_tree->lock); 563 em = lookup_extent_mapping(em_tree, start, len); 564 if (!em) { 565 write_unlock(&em_tree->lock); 566 break; 567 } 568 flags = em->flags; 569 gen = em->generation; 570 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 571 if (testend && em->start + em->len >= start + len) { 572 free_extent_map(em); 573 write_unlock(&em_tree->lock); 574 break; 575 } 576 start = em->start + em->len; 577 if (testend) 578 len = start + len - (em->start + em->len); 579 free_extent_map(em); 580 write_unlock(&em_tree->lock); 581 continue; 582 } 583 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 584 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 585 clear_bit(EXTENT_FLAG_LOGGING, &flags); 586 modified = !list_empty(&em->list); 587 if (no_splits) 588 goto next; 589 590 if (em->start < start) { 591 split->start = em->start; 592 split->len = start - em->start; 593 594 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 595 split->orig_start = em->orig_start; 596 split->block_start = em->block_start; 597 598 if (compressed) 599 split->block_len = em->block_len; 600 else 601 split->block_len = split->len; 602 split->orig_block_len = max(split->block_len, 603 em->orig_block_len); 604 split->ram_bytes = em->ram_bytes; 605 } else { 606 split->orig_start = split->start; 607 split->block_len = 0; 608 split->block_start = em->block_start; 609 split->orig_block_len = 0; 610 split->ram_bytes = split->len; 611 } 612 613 split->generation = gen; 614 split->bdev = em->bdev; 615 split->flags = flags; 616 split->compress_type = em->compress_type; 617 replace_extent_mapping(em_tree, em, split, modified); 618 free_extent_map(split); 619 split = split2; 620 split2 = NULL; 621 } 622 if (testend && em->start + em->len > start + len) { 623 u64 diff = start + len - em->start; 624 625 split->start = start + len; 626 split->len = em->start + em->len - (start + len); 627 split->bdev = em->bdev; 628 split->flags = flags; 629 split->compress_type = em->compress_type; 630 split->generation = gen; 631 632 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 633 split->orig_block_len = max(em->block_len, 634 em->orig_block_len); 635 636 split->ram_bytes = em->ram_bytes; 637 if (compressed) { 638 split->block_len = em->block_len; 639 split->block_start = em->block_start; 640 split->orig_start = em->orig_start; 641 } else { 642 split->block_len = split->len; 643 split->block_start = em->block_start 644 + diff; 645 split->orig_start = em->orig_start; 646 } 647 } else { 648 split->ram_bytes = split->len; 649 split->orig_start = split->start; 650 split->block_len = 0; 651 split->block_start = em->block_start; 652 split->orig_block_len = 0; 653 } 654 655 if (extent_map_in_tree(em)) { 656 replace_extent_mapping(em_tree, em, split, 657 modified); 658 } else { 659 ret = add_extent_mapping(em_tree, split, 660 modified); 661 ASSERT(ret == 0); /* Logic error */ 662 } 663 free_extent_map(split); 664 split = NULL; 665 } 666 next: 667 if (extent_map_in_tree(em)) 668 remove_extent_mapping(em_tree, em); 669 write_unlock(&em_tree->lock); 670 671 /* once for us */ 672 free_extent_map(em); 673 /* once for the tree*/ 674 free_extent_map(em); 675 } 676 if (split) 677 free_extent_map(split); 678 if (split2) 679 free_extent_map(split2); 680 } 681 682 /* 683 * this is very complex, but the basic idea is to drop all extents 684 * in the range start - end. hint_block is filled in with a block number 685 * that would be a good hint to the block allocator for this file. 686 * 687 * If an extent intersects the range but is not entirely inside the range 688 * it is either truncated or split. Anything entirely inside the range 689 * is deleted from the tree. 690 */ 691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 692 struct btrfs_root *root, struct inode *inode, 693 struct btrfs_path *path, u64 start, u64 end, 694 u64 *drop_end, int drop_cache, 695 int replace_extent, 696 u32 extent_item_size, 697 int *key_inserted) 698 { 699 struct extent_buffer *leaf; 700 struct btrfs_file_extent_item *fi; 701 struct btrfs_key key; 702 struct btrfs_key new_key; 703 u64 ino = btrfs_ino(inode); 704 u64 search_start = start; 705 u64 disk_bytenr = 0; 706 u64 num_bytes = 0; 707 u64 extent_offset = 0; 708 u64 extent_end = 0; 709 int del_nr = 0; 710 int del_slot = 0; 711 int extent_type; 712 int recow; 713 int ret; 714 int modify_tree = -1; 715 int update_refs; 716 int found = 0; 717 int leafs_visited = 0; 718 719 if (drop_cache) 720 btrfs_drop_extent_cache(inode, start, end - 1, 0); 721 722 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 723 modify_tree = 0; 724 725 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 726 root == root->fs_info->tree_root); 727 while (1) { 728 recow = 0; 729 ret = btrfs_lookup_file_extent(trans, root, path, ino, 730 search_start, modify_tree); 731 if (ret < 0) 732 break; 733 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 734 leaf = path->nodes[0]; 735 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 736 if (key.objectid == ino && 737 key.type == BTRFS_EXTENT_DATA_KEY) 738 path->slots[0]--; 739 } 740 ret = 0; 741 leafs_visited++; 742 next_slot: 743 leaf = path->nodes[0]; 744 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 745 BUG_ON(del_nr > 0); 746 ret = btrfs_next_leaf(root, path); 747 if (ret < 0) 748 break; 749 if (ret > 0) { 750 ret = 0; 751 break; 752 } 753 leafs_visited++; 754 leaf = path->nodes[0]; 755 recow = 1; 756 } 757 758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 759 760 if (key.objectid > ino) 761 break; 762 if (WARN_ON_ONCE(key.objectid < ino) || 763 key.type < BTRFS_EXTENT_DATA_KEY) { 764 ASSERT(del_nr == 0); 765 path->slots[0]++; 766 goto next_slot; 767 } 768 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 769 break; 770 771 fi = btrfs_item_ptr(leaf, path->slots[0], 772 struct btrfs_file_extent_item); 773 extent_type = btrfs_file_extent_type(leaf, fi); 774 775 if (extent_type == BTRFS_FILE_EXTENT_REG || 776 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 777 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 778 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 779 extent_offset = btrfs_file_extent_offset(leaf, fi); 780 extent_end = key.offset + 781 btrfs_file_extent_num_bytes(leaf, fi); 782 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 783 extent_end = key.offset + 784 btrfs_file_extent_inline_len(leaf, 785 path->slots[0], fi); 786 } else { 787 /* can't happen */ 788 BUG(); 789 } 790 791 /* 792 * Don't skip extent items representing 0 byte lengths. They 793 * used to be created (bug) if while punching holes we hit 794 * -ENOSPC condition. So if we find one here, just ensure we 795 * delete it, otherwise we would insert a new file extent item 796 * with the same key (offset) as that 0 bytes length file 797 * extent item in the call to setup_items_for_insert() later 798 * in this function. 799 */ 800 if (extent_end == key.offset && extent_end >= search_start) 801 goto delete_extent_item; 802 803 if (extent_end <= search_start) { 804 path->slots[0]++; 805 goto next_slot; 806 } 807 808 found = 1; 809 search_start = max(key.offset, start); 810 if (recow || !modify_tree) { 811 modify_tree = -1; 812 btrfs_release_path(path); 813 continue; 814 } 815 816 /* 817 * | - range to drop - | 818 * | -------- extent -------- | 819 */ 820 if (start > key.offset && end < extent_end) { 821 BUG_ON(del_nr > 0); 822 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 823 ret = -EOPNOTSUPP; 824 break; 825 } 826 827 memcpy(&new_key, &key, sizeof(new_key)); 828 new_key.offset = start; 829 ret = btrfs_duplicate_item(trans, root, path, 830 &new_key); 831 if (ret == -EAGAIN) { 832 btrfs_release_path(path); 833 continue; 834 } 835 if (ret < 0) 836 break; 837 838 leaf = path->nodes[0]; 839 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 840 struct btrfs_file_extent_item); 841 btrfs_set_file_extent_num_bytes(leaf, fi, 842 start - key.offset); 843 844 fi = btrfs_item_ptr(leaf, path->slots[0], 845 struct btrfs_file_extent_item); 846 847 extent_offset += start - key.offset; 848 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 849 btrfs_set_file_extent_num_bytes(leaf, fi, 850 extent_end - start); 851 btrfs_mark_buffer_dirty(leaf); 852 853 if (update_refs && disk_bytenr > 0) { 854 ret = btrfs_inc_extent_ref(trans, root, 855 disk_bytenr, num_bytes, 0, 856 root->root_key.objectid, 857 new_key.objectid, 858 start - extent_offset); 859 BUG_ON(ret); /* -ENOMEM */ 860 } 861 key.offset = start; 862 } 863 /* 864 * | ---- range to drop ----- | 865 * | -------- extent -------- | 866 */ 867 if (start <= key.offset && end < extent_end) { 868 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 869 ret = -EOPNOTSUPP; 870 break; 871 } 872 873 memcpy(&new_key, &key, sizeof(new_key)); 874 new_key.offset = end; 875 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 876 877 extent_offset += end - key.offset; 878 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 879 btrfs_set_file_extent_num_bytes(leaf, fi, 880 extent_end - end); 881 btrfs_mark_buffer_dirty(leaf); 882 if (update_refs && disk_bytenr > 0) 883 inode_sub_bytes(inode, end - key.offset); 884 break; 885 } 886 887 search_start = extent_end; 888 /* 889 * | ---- range to drop ----- | 890 * | -------- extent -------- | 891 */ 892 if (start > key.offset && end >= extent_end) { 893 BUG_ON(del_nr > 0); 894 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 895 ret = -EOPNOTSUPP; 896 break; 897 } 898 899 btrfs_set_file_extent_num_bytes(leaf, fi, 900 start - key.offset); 901 btrfs_mark_buffer_dirty(leaf); 902 if (update_refs && disk_bytenr > 0) 903 inode_sub_bytes(inode, extent_end - start); 904 if (end == extent_end) 905 break; 906 907 path->slots[0]++; 908 goto next_slot; 909 } 910 911 /* 912 * | ---- range to drop ----- | 913 * | ------ extent ------ | 914 */ 915 if (start <= key.offset && end >= extent_end) { 916 delete_extent_item: 917 if (del_nr == 0) { 918 del_slot = path->slots[0]; 919 del_nr = 1; 920 } else { 921 BUG_ON(del_slot + del_nr != path->slots[0]); 922 del_nr++; 923 } 924 925 if (update_refs && 926 extent_type == BTRFS_FILE_EXTENT_INLINE) { 927 inode_sub_bytes(inode, 928 extent_end - key.offset); 929 extent_end = ALIGN(extent_end, 930 root->sectorsize); 931 } else if (update_refs && disk_bytenr > 0) { 932 ret = btrfs_free_extent(trans, root, 933 disk_bytenr, num_bytes, 0, 934 root->root_key.objectid, 935 key.objectid, key.offset - 936 extent_offset); 937 BUG_ON(ret); /* -ENOMEM */ 938 inode_sub_bytes(inode, 939 extent_end - key.offset); 940 } 941 942 if (end == extent_end) 943 break; 944 945 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 946 path->slots[0]++; 947 goto next_slot; 948 } 949 950 ret = btrfs_del_items(trans, root, path, del_slot, 951 del_nr); 952 if (ret) { 953 btrfs_abort_transaction(trans, ret); 954 break; 955 } 956 957 del_nr = 0; 958 del_slot = 0; 959 960 btrfs_release_path(path); 961 continue; 962 } 963 964 BUG_ON(1); 965 } 966 967 if (!ret && del_nr > 0) { 968 /* 969 * Set path->slots[0] to first slot, so that after the delete 970 * if items are move off from our leaf to its immediate left or 971 * right neighbor leafs, we end up with a correct and adjusted 972 * path->slots[0] for our insertion (if replace_extent != 0). 973 */ 974 path->slots[0] = del_slot; 975 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 976 if (ret) 977 btrfs_abort_transaction(trans, ret); 978 } 979 980 leaf = path->nodes[0]; 981 /* 982 * If btrfs_del_items() was called, it might have deleted a leaf, in 983 * which case it unlocked our path, so check path->locks[0] matches a 984 * write lock. 985 */ 986 if (!ret && replace_extent && leafs_visited == 1 && 987 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 988 path->locks[0] == BTRFS_WRITE_LOCK) && 989 btrfs_leaf_free_space(root, leaf) >= 990 sizeof(struct btrfs_item) + extent_item_size) { 991 992 key.objectid = ino; 993 key.type = BTRFS_EXTENT_DATA_KEY; 994 key.offset = start; 995 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 996 struct btrfs_key slot_key; 997 998 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 999 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1000 path->slots[0]++; 1001 } 1002 setup_items_for_insert(root, path, &key, 1003 &extent_item_size, 1004 extent_item_size, 1005 sizeof(struct btrfs_item) + 1006 extent_item_size, 1); 1007 *key_inserted = 1; 1008 } 1009 1010 if (!replace_extent || !(*key_inserted)) 1011 btrfs_release_path(path); 1012 if (drop_end) 1013 *drop_end = found ? min(end, extent_end) : end; 1014 return ret; 1015 } 1016 1017 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1018 struct btrfs_root *root, struct inode *inode, u64 start, 1019 u64 end, int drop_cache) 1020 { 1021 struct btrfs_path *path; 1022 int ret; 1023 1024 path = btrfs_alloc_path(); 1025 if (!path) 1026 return -ENOMEM; 1027 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1028 drop_cache, 0, 0, NULL); 1029 btrfs_free_path(path); 1030 return ret; 1031 } 1032 1033 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1034 u64 objectid, u64 bytenr, u64 orig_offset, 1035 u64 *start, u64 *end) 1036 { 1037 struct btrfs_file_extent_item *fi; 1038 struct btrfs_key key; 1039 u64 extent_end; 1040 1041 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1042 return 0; 1043 1044 btrfs_item_key_to_cpu(leaf, &key, slot); 1045 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1046 return 0; 1047 1048 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1049 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1050 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1051 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1052 btrfs_file_extent_compression(leaf, fi) || 1053 btrfs_file_extent_encryption(leaf, fi) || 1054 btrfs_file_extent_other_encoding(leaf, fi)) 1055 return 0; 1056 1057 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1058 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1059 return 0; 1060 1061 *start = key.offset; 1062 *end = extent_end; 1063 return 1; 1064 } 1065 1066 /* 1067 * Mark extent in the range start - end as written. 1068 * 1069 * This changes extent type from 'pre-allocated' to 'regular'. If only 1070 * part of extent is marked as written, the extent will be split into 1071 * two or three. 1072 */ 1073 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1074 struct inode *inode, u64 start, u64 end) 1075 { 1076 struct btrfs_root *root = BTRFS_I(inode)->root; 1077 struct extent_buffer *leaf; 1078 struct btrfs_path *path; 1079 struct btrfs_file_extent_item *fi; 1080 struct btrfs_key key; 1081 struct btrfs_key new_key; 1082 u64 bytenr; 1083 u64 num_bytes; 1084 u64 extent_end; 1085 u64 orig_offset; 1086 u64 other_start; 1087 u64 other_end; 1088 u64 split; 1089 int del_nr = 0; 1090 int del_slot = 0; 1091 int recow; 1092 int ret; 1093 u64 ino = btrfs_ino(inode); 1094 1095 path = btrfs_alloc_path(); 1096 if (!path) 1097 return -ENOMEM; 1098 again: 1099 recow = 0; 1100 split = start; 1101 key.objectid = ino; 1102 key.type = BTRFS_EXTENT_DATA_KEY; 1103 key.offset = split; 1104 1105 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1106 if (ret < 0) 1107 goto out; 1108 if (ret > 0 && path->slots[0] > 0) 1109 path->slots[0]--; 1110 1111 leaf = path->nodes[0]; 1112 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1113 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY); 1114 fi = btrfs_item_ptr(leaf, path->slots[0], 1115 struct btrfs_file_extent_item); 1116 BUG_ON(btrfs_file_extent_type(leaf, fi) != 1117 BTRFS_FILE_EXTENT_PREALLOC); 1118 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1119 BUG_ON(key.offset > start || extent_end < end); 1120 1121 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1122 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1123 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1124 memcpy(&new_key, &key, sizeof(new_key)); 1125 1126 if (start == key.offset && end < extent_end) { 1127 other_start = 0; 1128 other_end = start; 1129 if (extent_mergeable(leaf, path->slots[0] - 1, 1130 ino, bytenr, orig_offset, 1131 &other_start, &other_end)) { 1132 new_key.offset = end; 1133 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 1134 fi = btrfs_item_ptr(leaf, path->slots[0], 1135 struct btrfs_file_extent_item); 1136 btrfs_set_file_extent_generation(leaf, fi, 1137 trans->transid); 1138 btrfs_set_file_extent_num_bytes(leaf, fi, 1139 extent_end - end); 1140 btrfs_set_file_extent_offset(leaf, fi, 1141 end - orig_offset); 1142 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1143 struct btrfs_file_extent_item); 1144 btrfs_set_file_extent_generation(leaf, fi, 1145 trans->transid); 1146 btrfs_set_file_extent_num_bytes(leaf, fi, 1147 end - other_start); 1148 btrfs_mark_buffer_dirty(leaf); 1149 goto out; 1150 } 1151 } 1152 1153 if (start > key.offset && end == extent_end) { 1154 other_start = end; 1155 other_end = 0; 1156 if (extent_mergeable(leaf, path->slots[0] + 1, 1157 ino, bytenr, orig_offset, 1158 &other_start, &other_end)) { 1159 fi = btrfs_item_ptr(leaf, path->slots[0], 1160 struct btrfs_file_extent_item); 1161 btrfs_set_file_extent_num_bytes(leaf, fi, 1162 start - key.offset); 1163 btrfs_set_file_extent_generation(leaf, fi, 1164 trans->transid); 1165 path->slots[0]++; 1166 new_key.offset = start; 1167 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 1168 1169 fi = btrfs_item_ptr(leaf, path->slots[0], 1170 struct btrfs_file_extent_item); 1171 btrfs_set_file_extent_generation(leaf, fi, 1172 trans->transid); 1173 btrfs_set_file_extent_num_bytes(leaf, fi, 1174 other_end - start); 1175 btrfs_set_file_extent_offset(leaf, fi, 1176 start - orig_offset); 1177 btrfs_mark_buffer_dirty(leaf); 1178 goto out; 1179 } 1180 } 1181 1182 while (start > key.offset || end < extent_end) { 1183 if (key.offset == start) 1184 split = end; 1185 1186 new_key.offset = split; 1187 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1188 if (ret == -EAGAIN) { 1189 btrfs_release_path(path); 1190 goto again; 1191 } 1192 if (ret < 0) { 1193 btrfs_abort_transaction(trans, ret); 1194 goto out; 1195 } 1196 1197 leaf = path->nodes[0]; 1198 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1199 struct btrfs_file_extent_item); 1200 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1201 btrfs_set_file_extent_num_bytes(leaf, fi, 1202 split - key.offset); 1203 1204 fi = btrfs_item_ptr(leaf, path->slots[0], 1205 struct btrfs_file_extent_item); 1206 1207 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1208 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1209 btrfs_set_file_extent_num_bytes(leaf, fi, 1210 extent_end - split); 1211 btrfs_mark_buffer_dirty(leaf); 1212 1213 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, 1214 root->root_key.objectid, 1215 ino, orig_offset); 1216 BUG_ON(ret); /* -ENOMEM */ 1217 1218 if (split == start) { 1219 key.offset = start; 1220 } else { 1221 BUG_ON(start != key.offset); 1222 path->slots[0]--; 1223 extent_end = end; 1224 } 1225 recow = 1; 1226 } 1227 1228 other_start = end; 1229 other_end = 0; 1230 if (extent_mergeable(leaf, path->slots[0] + 1, 1231 ino, bytenr, orig_offset, 1232 &other_start, &other_end)) { 1233 if (recow) { 1234 btrfs_release_path(path); 1235 goto again; 1236 } 1237 extent_end = other_end; 1238 del_slot = path->slots[0] + 1; 1239 del_nr++; 1240 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1241 0, root->root_key.objectid, 1242 ino, orig_offset); 1243 BUG_ON(ret); /* -ENOMEM */ 1244 } 1245 other_start = 0; 1246 other_end = start; 1247 if (extent_mergeable(leaf, path->slots[0] - 1, 1248 ino, bytenr, orig_offset, 1249 &other_start, &other_end)) { 1250 if (recow) { 1251 btrfs_release_path(path); 1252 goto again; 1253 } 1254 key.offset = other_start; 1255 del_slot = path->slots[0]; 1256 del_nr++; 1257 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1258 0, root->root_key.objectid, 1259 ino, orig_offset); 1260 BUG_ON(ret); /* -ENOMEM */ 1261 } 1262 if (del_nr == 0) { 1263 fi = btrfs_item_ptr(leaf, path->slots[0], 1264 struct btrfs_file_extent_item); 1265 btrfs_set_file_extent_type(leaf, fi, 1266 BTRFS_FILE_EXTENT_REG); 1267 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1268 btrfs_mark_buffer_dirty(leaf); 1269 } else { 1270 fi = btrfs_item_ptr(leaf, del_slot - 1, 1271 struct btrfs_file_extent_item); 1272 btrfs_set_file_extent_type(leaf, fi, 1273 BTRFS_FILE_EXTENT_REG); 1274 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1275 btrfs_set_file_extent_num_bytes(leaf, fi, 1276 extent_end - key.offset); 1277 btrfs_mark_buffer_dirty(leaf); 1278 1279 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1280 if (ret < 0) { 1281 btrfs_abort_transaction(trans, ret); 1282 goto out; 1283 } 1284 } 1285 out: 1286 btrfs_free_path(path); 1287 return 0; 1288 } 1289 1290 /* 1291 * on error we return an unlocked page and the error value 1292 * on success we return a locked page and 0 1293 */ 1294 static int prepare_uptodate_page(struct inode *inode, 1295 struct page *page, u64 pos, 1296 bool force_uptodate) 1297 { 1298 int ret = 0; 1299 1300 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1301 !PageUptodate(page)) { 1302 ret = btrfs_readpage(NULL, page); 1303 if (ret) 1304 return ret; 1305 lock_page(page); 1306 if (!PageUptodate(page)) { 1307 unlock_page(page); 1308 return -EIO; 1309 } 1310 if (page->mapping != inode->i_mapping) { 1311 unlock_page(page); 1312 return -EAGAIN; 1313 } 1314 } 1315 return 0; 1316 } 1317 1318 /* 1319 * this just gets pages into the page cache and locks them down. 1320 */ 1321 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1322 size_t num_pages, loff_t pos, 1323 size_t write_bytes, bool force_uptodate) 1324 { 1325 int i; 1326 unsigned long index = pos >> PAGE_SHIFT; 1327 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1328 int err = 0; 1329 int faili; 1330 1331 for (i = 0; i < num_pages; i++) { 1332 again: 1333 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1334 mask | __GFP_WRITE); 1335 if (!pages[i]) { 1336 faili = i - 1; 1337 err = -ENOMEM; 1338 goto fail; 1339 } 1340 1341 if (i == 0) 1342 err = prepare_uptodate_page(inode, pages[i], pos, 1343 force_uptodate); 1344 if (!err && i == num_pages - 1) 1345 err = prepare_uptodate_page(inode, pages[i], 1346 pos + write_bytes, false); 1347 if (err) { 1348 put_page(pages[i]); 1349 if (err == -EAGAIN) { 1350 err = 0; 1351 goto again; 1352 } 1353 faili = i - 1; 1354 goto fail; 1355 } 1356 wait_on_page_writeback(pages[i]); 1357 } 1358 1359 return 0; 1360 fail: 1361 while (faili >= 0) { 1362 unlock_page(pages[faili]); 1363 put_page(pages[faili]); 1364 faili--; 1365 } 1366 return err; 1367 1368 } 1369 1370 /* 1371 * This function locks the extent and properly waits for data=ordered extents 1372 * to finish before allowing the pages to be modified if need. 1373 * 1374 * The return value: 1375 * 1 - the extent is locked 1376 * 0 - the extent is not locked, and everything is OK 1377 * -EAGAIN - need re-prepare the pages 1378 * the other < 0 number - Something wrong happens 1379 */ 1380 static noinline int 1381 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages, 1382 size_t num_pages, loff_t pos, 1383 size_t write_bytes, 1384 u64 *lockstart, u64 *lockend, 1385 struct extent_state **cached_state) 1386 { 1387 struct btrfs_root *root = BTRFS_I(inode)->root; 1388 u64 start_pos; 1389 u64 last_pos; 1390 int i; 1391 int ret = 0; 1392 1393 start_pos = round_down(pos, root->sectorsize); 1394 last_pos = start_pos 1395 + round_up(pos + write_bytes - start_pos, root->sectorsize) - 1; 1396 1397 if (start_pos < inode->i_size) { 1398 struct btrfs_ordered_extent *ordered; 1399 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1400 start_pos, last_pos, cached_state); 1401 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1402 last_pos - start_pos + 1); 1403 if (ordered && 1404 ordered->file_offset + ordered->len > start_pos && 1405 ordered->file_offset <= last_pos) { 1406 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1407 start_pos, last_pos, 1408 cached_state, GFP_NOFS); 1409 for (i = 0; i < num_pages; i++) { 1410 unlock_page(pages[i]); 1411 put_page(pages[i]); 1412 } 1413 btrfs_start_ordered_extent(inode, ordered, 1); 1414 btrfs_put_ordered_extent(ordered); 1415 return -EAGAIN; 1416 } 1417 if (ordered) 1418 btrfs_put_ordered_extent(ordered); 1419 1420 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, 1421 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC | 1422 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1423 0, 0, cached_state, GFP_NOFS); 1424 *lockstart = start_pos; 1425 *lockend = last_pos; 1426 ret = 1; 1427 } 1428 1429 for (i = 0; i < num_pages; i++) { 1430 if (clear_page_dirty_for_io(pages[i])) 1431 account_page_redirty(pages[i]); 1432 set_page_extent_mapped(pages[i]); 1433 WARN_ON(!PageLocked(pages[i])); 1434 } 1435 1436 return ret; 1437 } 1438 1439 static noinline int check_can_nocow(struct inode *inode, loff_t pos, 1440 size_t *write_bytes) 1441 { 1442 struct btrfs_root *root = BTRFS_I(inode)->root; 1443 struct btrfs_ordered_extent *ordered; 1444 u64 lockstart, lockend; 1445 u64 num_bytes; 1446 int ret; 1447 1448 ret = btrfs_start_write_no_snapshoting(root); 1449 if (!ret) 1450 return -ENOSPC; 1451 1452 lockstart = round_down(pos, root->sectorsize); 1453 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1; 1454 1455 while (1) { 1456 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1457 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1458 lockend - lockstart + 1); 1459 if (!ordered) { 1460 break; 1461 } 1462 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1463 btrfs_start_ordered_extent(inode, ordered, 1); 1464 btrfs_put_ordered_extent(ordered); 1465 } 1466 1467 num_bytes = lockend - lockstart + 1; 1468 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL); 1469 if (ret <= 0) { 1470 ret = 0; 1471 btrfs_end_write_no_snapshoting(root); 1472 } else { 1473 *write_bytes = min_t(size_t, *write_bytes , 1474 num_bytes - pos + lockstart); 1475 } 1476 1477 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1478 1479 return ret; 1480 } 1481 1482 static noinline ssize_t __btrfs_buffered_write(struct file *file, 1483 struct iov_iter *i, 1484 loff_t pos) 1485 { 1486 struct inode *inode = file_inode(file); 1487 struct btrfs_root *root = BTRFS_I(inode)->root; 1488 struct page **pages = NULL; 1489 struct extent_state *cached_state = NULL; 1490 u64 release_bytes = 0; 1491 u64 lockstart; 1492 u64 lockend; 1493 size_t num_written = 0; 1494 int nrptrs; 1495 int ret = 0; 1496 bool only_release_metadata = false; 1497 bool force_page_uptodate = false; 1498 bool need_unlock; 1499 1500 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1501 PAGE_SIZE / (sizeof(struct page *))); 1502 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1503 nrptrs = max(nrptrs, 8); 1504 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1505 if (!pages) 1506 return -ENOMEM; 1507 1508 while (iov_iter_count(i) > 0) { 1509 size_t offset = pos & (PAGE_SIZE - 1); 1510 size_t sector_offset; 1511 size_t write_bytes = min(iov_iter_count(i), 1512 nrptrs * (size_t)PAGE_SIZE - 1513 offset); 1514 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1515 PAGE_SIZE); 1516 size_t reserve_bytes; 1517 size_t dirty_pages; 1518 size_t copied; 1519 size_t dirty_sectors; 1520 size_t num_sectors; 1521 1522 WARN_ON(num_pages > nrptrs); 1523 1524 /* 1525 * Fault pages before locking them in prepare_pages 1526 * to avoid recursive lock 1527 */ 1528 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1529 ret = -EFAULT; 1530 break; 1531 } 1532 1533 sector_offset = pos & (root->sectorsize - 1); 1534 reserve_bytes = round_up(write_bytes + sector_offset, 1535 root->sectorsize); 1536 1537 ret = btrfs_check_data_free_space(inode, pos, write_bytes); 1538 if (ret < 0) { 1539 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1540 BTRFS_INODE_PREALLOC)) && 1541 check_can_nocow(inode, pos, &write_bytes) > 0) { 1542 /* 1543 * For nodata cow case, no need to reserve 1544 * data space. 1545 */ 1546 only_release_metadata = true; 1547 /* 1548 * our prealloc extent may be smaller than 1549 * write_bytes, so scale down. 1550 */ 1551 num_pages = DIV_ROUND_UP(write_bytes + offset, 1552 PAGE_SIZE); 1553 reserve_bytes = round_up(write_bytes + 1554 sector_offset, 1555 root->sectorsize); 1556 } else { 1557 break; 1558 } 1559 } 1560 1561 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes); 1562 if (ret) { 1563 if (!only_release_metadata) 1564 btrfs_free_reserved_data_space(inode, pos, 1565 write_bytes); 1566 else 1567 btrfs_end_write_no_snapshoting(root); 1568 break; 1569 } 1570 1571 release_bytes = reserve_bytes; 1572 need_unlock = false; 1573 again: 1574 /* 1575 * This is going to setup the pages array with the number of 1576 * pages we want, so we don't really need to worry about the 1577 * contents of pages from loop to loop 1578 */ 1579 ret = prepare_pages(inode, pages, num_pages, 1580 pos, write_bytes, 1581 force_page_uptodate); 1582 if (ret) 1583 break; 1584 1585 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages, 1586 pos, write_bytes, &lockstart, 1587 &lockend, &cached_state); 1588 if (ret < 0) { 1589 if (ret == -EAGAIN) 1590 goto again; 1591 break; 1592 } else if (ret > 0) { 1593 need_unlock = true; 1594 ret = 0; 1595 } 1596 1597 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1598 1599 num_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, 1600 reserve_bytes); 1601 dirty_sectors = round_up(copied + sector_offset, 1602 root->sectorsize); 1603 dirty_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, 1604 dirty_sectors); 1605 1606 /* 1607 * if we have trouble faulting in the pages, fall 1608 * back to one page at a time 1609 */ 1610 if (copied < write_bytes) 1611 nrptrs = 1; 1612 1613 if (copied == 0) { 1614 force_page_uptodate = true; 1615 dirty_sectors = 0; 1616 dirty_pages = 0; 1617 } else { 1618 force_page_uptodate = false; 1619 dirty_pages = DIV_ROUND_UP(copied + offset, 1620 PAGE_SIZE); 1621 } 1622 1623 /* 1624 * If we had a short copy we need to release the excess delaloc 1625 * bytes we reserved. We need to increment outstanding_extents 1626 * because btrfs_delalloc_release_space and 1627 * btrfs_delalloc_release_metadata will decrement it, but 1628 * we still have an outstanding extent for the chunk we actually 1629 * managed to copy. 1630 */ 1631 if (num_sectors > dirty_sectors) { 1632 1633 /* release everything except the sectors we dirtied */ 1634 release_bytes -= dirty_sectors << 1635 root->fs_info->sb->s_blocksize_bits; 1636 1637 if (copied > 0) { 1638 spin_lock(&BTRFS_I(inode)->lock); 1639 BTRFS_I(inode)->outstanding_extents++; 1640 spin_unlock(&BTRFS_I(inode)->lock); 1641 } 1642 if (only_release_metadata) { 1643 btrfs_delalloc_release_metadata(inode, 1644 release_bytes); 1645 } else { 1646 u64 __pos; 1647 1648 __pos = round_down(pos, root->sectorsize) + 1649 (dirty_pages << PAGE_SHIFT); 1650 btrfs_delalloc_release_space(inode, __pos, 1651 release_bytes); 1652 } 1653 } 1654 1655 release_bytes = round_up(copied + sector_offset, 1656 root->sectorsize); 1657 1658 if (copied > 0) 1659 ret = btrfs_dirty_pages(root, inode, pages, 1660 dirty_pages, pos, copied, 1661 NULL); 1662 if (need_unlock) 1663 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1664 lockstart, lockend, &cached_state, 1665 GFP_NOFS); 1666 if (ret) { 1667 btrfs_drop_pages(pages, num_pages); 1668 break; 1669 } 1670 1671 release_bytes = 0; 1672 if (only_release_metadata) 1673 btrfs_end_write_no_snapshoting(root); 1674 1675 if (only_release_metadata && copied > 0) { 1676 lockstart = round_down(pos, root->sectorsize); 1677 lockend = round_up(pos + copied, root->sectorsize) - 1; 1678 1679 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1680 lockend, EXTENT_NORESERVE, NULL, 1681 NULL, GFP_NOFS); 1682 only_release_metadata = false; 1683 } 1684 1685 btrfs_drop_pages(pages, num_pages); 1686 1687 cond_resched(); 1688 1689 balance_dirty_pages_ratelimited(inode->i_mapping); 1690 if (dirty_pages < (root->nodesize >> PAGE_SHIFT) + 1) 1691 btrfs_btree_balance_dirty(root); 1692 1693 pos += copied; 1694 num_written += copied; 1695 } 1696 1697 kfree(pages); 1698 1699 if (release_bytes) { 1700 if (only_release_metadata) { 1701 btrfs_end_write_no_snapshoting(root); 1702 btrfs_delalloc_release_metadata(inode, release_bytes); 1703 } else { 1704 btrfs_delalloc_release_space(inode, 1705 round_down(pos, root->sectorsize), 1706 release_bytes); 1707 } 1708 } 1709 1710 return num_written ? num_written : ret; 1711 } 1712 1713 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1714 { 1715 struct file *file = iocb->ki_filp; 1716 struct inode *inode = file_inode(file); 1717 loff_t pos = iocb->ki_pos; 1718 ssize_t written; 1719 ssize_t written_buffered; 1720 loff_t endbyte; 1721 int err; 1722 1723 written = generic_file_direct_write(iocb, from); 1724 1725 if (written < 0 || !iov_iter_count(from)) 1726 return written; 1727 1728 pos += written; 1729 written_buffered = __btrfs_buffered_write(file, from, pos); 1730 if (written_buffered < 0) { 1731 err = written_buffered; 1732 goto out; 1733 } 1734 /* 1735 * Ensure all data is persisted. We want the next direct IO read to be 1736 * able to read what was just written. 1737 */ 1738 endbyte = pos + written_buffered - 1; 1739 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1740 if (err) 1741 goto out; 1742 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1743 if (err) 1744 goto out; 1745 written += written_buffered; 1746 iocb->ki_pos = pos + written_buffered; 1747 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1748 endbyte >> PAGE_SHIFT); 1749 out: 1750 return written ? written : err; 1751 } 1752 1753 static void update_time_for_write(struct inode *inode) 1754 { 1755 struct timespec now; 1756 1757 if (IS_NOCMTIME(inode)) 1758 return; 1759 1760 now = current_fs_time(inode->i_sb); 1761 if (!timespec_equal(&inode->i_mtime, &now)) 1762 inode->i_mtime = now; 1763 1764 if (!timespec_equal(&inode->i_ctime, &now)) 1765 inode->i_ctime = now; 1766 1767 if (IS_I_VERSION(inode)) 1768 inode_inc_iversion(inode); 1769 } 1770 1771 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1772 struct iov_iter *from) 1773 { 1774 struct file *file = iocb->ki_filp; 1775 struct inode *inode = file_inode(file); 1776 struct btrfs_root *root = BTRFS_I(inode)->root; 1777 u64 start_pos; 1778 u64 end_pos; 1779 ssize_t num_written = 0; 1780 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1781 ssize_t err; 1782 loff_t pos; 1783 size_t count; 1784 loff_t oldsize; 1785 int clean_page = 0; 1786 1787 inode_lock(inode); 1788 err = generic_write_checks(iocb, from); 1789 if (err <= 0) { 1790 inode_unlock(inode); 1791 return err; 1792 } 1793 1794 current->backing_dev_info = inode_to_bdi(inode); 1795 err = file_remove_privs(file); 1796 if (err) { 1797 inode_unlock(inode); 1798 goto out; 1799 } 1800 1801 /* 1802 * If BTRFS flips readonly due to some impossible error 1803 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1804 * although we have opened a file as writable, we have 1805 * to stop this write operation to ensure FS consistency. 1806 */ 1807 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1808 inode_unlock(inode); 1809 err = -EROFS; 1810 goto out; 1811 } 1812 1813 /* 1814 * We reserve space for updating the inode when we reserve space for the 1815 * extent we are going to write, so we will enospc out there. We don't 1816 * need to start yet another transaction to update the inode as we will 1817 * update the inode when we finish writing whatever data we write. 1818 */ 1819 update_time_for_write(inode); 1820 1821 pos = iocb->ki_pos; 1822 count = iov_iter_count(from); 1823 start_pos = round_down(pos, root->sectorsize); 1824 oldsize = i_size_read(inode); 1825 if (start_pos > oldsize) { 1826 /* Expand hole size to cover write data, preventing empty gap */ 1827 end_pos = round_up(pos + count, root->sectorsize); 1828 err = btrfs_cont_expand(inode, oldsize, end_pos); 1829 if (err) { 1830 inode_unlock(inode); 1831 goto out; 1832 } 1833 if (start_pos > round_up(oldsize, root->sectorsize)) 1834 clean_page = 1; 1835 } 1836 1837 if (sync) 1838 atomic_inc(&BTRFS_I(inode)->sync_writers); 1839 1840 if (iocb->ki_flags & IOCB_DIRECT) { 1841 num_written = __btrfs_direct_write(iocb, from); 1842 } else { 1843 num_written = __btrfs_buffered_write(file, from, pos); 1844 if (num_written > 0) 1845 iocb->ki_pos = pos + num_written; 1846 if (clean_page) 1847 pagecache_isize_extended(inode, oldsize, 1848 i_size_read(inode)); 1849 } 1850 1851 inode_unlock(inode); 1852 1853 /* 1854 * We also have to set last_sub_trans to the current log transid, 1855 * otherwise subsequent syncs to a file that's been synced in this 1856 * transaction will appear to have already occurred. 1857 */ 1858 spin_lock(&BTRFS_I(inode)->lock); 1859 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1860 spin_unlock(&BTRFS_I(inode)->lock); 1861 if (num_written > 0) 1862 num_written = generic_write_sync(iocb, num_written); 1863 1864 if (sync) 1865 atomic_dec(&BTRFS_I(inode)->sync_writers); 1866 out: 1867 current->backing_dev_info = NULL; 1868 return num_written ? num_written : err; 1869 } 1870 1871 int btrfs_release_file(struct inode *inode, struct file *filp) 1872 { 1873 if (filp->private_data) 1874 btrfs_ioctl_trans_end(filp); 1875 /* 1876 * ordered_data_close is set by settattr when we are about to truncate 1877 * a file from a non-zero size to a zero size. This tries to 1878 * flush down new bytes that may have been written if the 1879 * application were using truncate to replace a file in place. 1880 */ 1881 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 1882 &BTRFS_I(inode)->runtime_flags)) 1883 filemap_flush(inode->i_mapping); 1884 return 0; 1885 } 1886 1887 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 1888 { 1889 int ret; 1890 1891 atomic_inc(&BTRFS_I(inode)->sync_writers); 1892 ret = btrfs_fdatawrite_range(inode, start, end); 1893 atomic_dec(&BTRFS_I(inode)->sync_writers); 1894 1895 return ret; 1896 } 1897 1898 /* 1899 * fsync call for both files and directories. This logs the inode into 1900 * the tree log instead of forcing full commits whenever possible. 1901 * 1902 * It needs to call filemap_fdatawait so that all ordered extent updates are 1903 * in the metadata btree are up to date for copying to the log. 1904 * 1905 * It drops the inode mutex before doing the tree log commit. This is an 1906 * important optimization for directories because holding the mutex prevents 1907 * new operations on the dir while we write to disk. 1908 */ 1909 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1910 { 1911 struct dentry *dentry = file_dentry(file); 1912 struct inode *inode = d_inode(dentry); 1913 struct btrfs_root *root = BTRFS_I(inode)->root; 1914 struct btrfs_trans_handle *trans; 1915 struct btrfs_log_ctx ctx; 1916 int ret = 0; 1917 bool full_sync = 0; 1918 u64 len; 1919 1920 /* 1921 * The range length can be represented by u64, we have to do the typecasts 1922 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync() 1923 */ 1924 len = (u64)end - (u64)start + 1; 1925 trace_btrfs_sync_file(file, datasync); 1926 1927 /* 1928 * We write the dirty pages in the range and wait until they complete 1929 * out of the ->i_mutex. If so, we can flush the dirty pages by 1930 * multi-task, and make the performance up. See 1931 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1932 */ 1933 ret = start_ordered_ops(inode, start, end); 1934 if (ret) 1935 return ret; 1936 1937 inode_lock(inode); 1938 atomic_inc(&root->log_batch); 1939 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1940 &BTRFS_I(inode)->runtime_flags); 1941 /* 1942 * We might have have had more pages made dirty after calling 1943 * start_ordered_ops and before acquiring the inode's i_mutex. 1944 */ 1945 if (full_sync) { 1946 /* 1947 * For a full sync, we need to make sure any ordered operations 1948 * start and finish before we start logging the inode, so that 1949 * all extents are persisted and the respective file extent 1950 * items are in the fs/subvol btree. 1951 */ 1952 ret = btrfs_wait_ordered_range(inode, start, len); 1953 } else { 1954 /* 1955 * Start any new ordered operations before starting to log the 1956 * inode. We will wait for them to finish in btrfs_sync_log(). 1957 * 1958 * Right before acquiring the inode's mutex, we might have new 1959 * writes dirtying pages, which won't immediately start the 1960 * respective ordered operations - that is done through the 1961 * fill_delalloc callbacks invoked from the writepage and 1962 * writepages address space operations. So make sure we start 1963 * all ordered operations before starting to log our inode. Not 1964 * doing this means that while logging the inode, writeback 1965 * could start and invoke writepage/writepages, which would call 1966 * the fill_delalloc callbacks (cow_file_range, 1967 * submit_compressed_extents). These callbacks add first an 1968 * extent map to the modified list of extents and then create 1969 * the respective ordered operation, which means in 1970 * tree-log.c:btrfs_log_inode() we might capture all existing 1971 * ordered operations (with btrfs_get_logged_extents()) before 1972 * the fill_delalloc callback adds its ordered operation, and by 1973 * the time we visit the modified list of extent maps (with 1974 * btrfs_log_changed_extents()), we see and process the extent 1975 * map they created. We then use the extent map to construct a 1976 * file extent item for logging without waiting for the 1977 * respective ordered operation to finish - this file extent 1978 * item points to a disk location that might not have yet been 1979 * written to, containing random data - so after a crash a log 1980 * replay will make our inode have file extent items that point 1981 * to disk locations containing invalid data, as we returned 1982 * success to userspace without waiting for the respective 1983 * ordered operation to finish, because it wasn't captured by 1984 * btrfs_get_logged_extents(). 1985 */ 1986 ret = start_ordered_ops(inode, start, end); 1987 } 1988 if (ret) { 1989 inode_unlock(inode); 1990 goto out; 1991 } 1992 atomic_inc(&root->log_batch); 1993 1994 /* 1995 * If the last transaction that changed this file was before the current 1996 * transaction and we have the full sync flag set in our inode, we can 1997 * bail out now without any syncing. 1998 * 1999 * Note that we can't bail out if the full sync flag isn't set. This is 2000 * because when the full sync flag is set we start all ordered extents 2001 * and wait for them to fully complete - when they complete they update 2002 * the inode's last_trans field through: 2003 * 2004 * btrfs_finish_ordered_io() -> 2005 * btrfs_update_inode_fallback() -> 2006 * btrfs_update_inode() -> 2007 * btrfs_set_inode_last_trans() 2008 * 2009 * So we are sure that last_trans is up to date and can do this check to 2010 * bail out safely. For the fast path, when the full sync flag is not 2011 * set in our inode, we can not do it because we start only our ordered 2012 * extents and don't wait for them to complete (that is when 2013 * btrfs_finish_ordered_io runs), so here at this point their last_trans 2014 * value might be less than or equals to fs_info->last_trans_committed, 2015 * and setting a speculative last_trans for an inode when a buffered 2016 * write is made (such as fs_info->generation + 1 for example) would not 2017 * be reliable since after setting the value and before fsync is called 2018 * any number of transactions can start and commit (transaction kthread 2019 * commits the current transaction periodically), and a transaction 2020 * commit does not start nor waits for ordered extents to complete. 2021 */ 2022 smp_mb(); 2023 if (btrfs_inode_in_log(inode, root->fs_info->generation) || 2024 (full_sync && BTRFS_I(inode)->last_trans <= 2025 root->fs_info->last_trans_committed) || 2026 (!btrfs_have_ordered_extents_in_range(inode, start, len) && 2027 BTRFS_I(inode)->last_trans 2028 <= root->fs_info->last_trans_committed)) { 2029 /* 2030 * We've had everything committed since the last time we were 2031 * modified so clear this flag in case it was set for whatever 2032 * reason, it's no longer relevant. 2033 */ 2034 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2035 &BTRFS_I(inode)->runtime_flags); 2036 inode_unlock(inode); 2037 goto out; 2038 } 2039 2040 /* 2041 * ok we haven't committed the transaction yet, lets do a commit 2042 */ 2043 if (file->private_data) 2044 btrfs_ioctl_trans_end(file); 2045 2046 /* 2047 * We use start here because we will need to wait on the IO to complete 2048 * in btrfs_sync_log, which could require joining a transaction (for 2049 * example checking cross references in the nocow path). If we use join 2050 * here we could get into a situation where we're waiting on IO to 2051 * happen that is blocked on a transaction trying to commit. With start 2052 * we inc the extwriter counter, so we wait for all extwriters to exit 2053 * before we start blocking join'ers. This comment is to keep somebody 2054 * from thinking they are super smart and changing this to 2055 * btrfs_join_transaction *cough*Josef*cough*. 2056 */ 2057 trans = btrfs_start_transaction(root, 0); 2058 if (IS_ERR(trans)) { 2059 ret = PTR_ERR(trans); 2060 inode_unlock(inode); 2061 goto out; 2062 } 2063 trans->sync = true; 2064 2065 btrfs_init_log_ctx(&ctx); 2066 2067 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx); 2068 if (ret < 0) { 2069 /* Fallthrough and commit/free transaction. */ 2070 ret = 1; 2071 } 2072 2073 /* we've logged all the items and now have a consistent 2074 * version of the file in the log. It is possible that 2075 * someone will come in and modify the file, but that's 2076 * fine because the log is consistent on disk, and we 2077 * have references to all of the file's extents 2078 * 2079 * It is possible that someone will come in and log the 2080 * file again, but that will end up using the synchronization 2081 * inside btrfs_sync_log to keep things safe. 2082 */ 2083 inode_unlock(inode); 2084 2085 /* 2086 * If any of the ordered extents had an error, just return it to user 2087 * space, so that the application knows some writes didn't succeed and 2088 * can take proper action (retry for e.g.). Blindly committing the 2089 * transaction in this case, would fool userspace that everything was 2090 * successful. And we also want to make sure our log doesn't contain 2091 * file extent items pointing to extents that weren't fully written to - 2092 * just like in the non fast fsync path, where we check for the ordered 2093 * operation's error flag before writing to the log tree and return -EIO 2094 * if any of them had this flag set (btrfs_wait_ordered_range) - 2095 * therefore we need to check for errors in the ordered operations, 2096 * which are indicated by ctx.io_err. 2097 */ 2098 if (ctx.io_err) { 2099 btrfs_end_transaction(trans, root); 2100 ret = ctx.io_err; 2101 goto out; 2102 } 2103 2104 if (ret != BTRFS_NO_LOG_SYNC) { 2105 if (!ret) { 2106 ret = btrfs_sync_log(trans, root, &ctx); 2107 if (!ret) { 2108 ret = btrfs_end_transaction(trans, root); 2109 goto out; 2110 } 2111 } 2112 if (!full_sync) { 2113 ret = btrfs_wait_ordered_range(inode, start, len); 2114 if (ret) { 2115 btrfs_end_transaction(trans, root); 2116 goto out; 2117 } 2118 } 2119 ret = btrfs_commit_transaction(trans, root); 2120 } else { 2121 ret = btrfs_end_transaction(trans, root); 2122 } 2123 out: 2124 return ret > 0 ? -EIO : ret; 2125 } 2126 2127 static const struct vm_operations_struct btrfs_file_vm_ops = { 2128 .fault = filemap_fault, 2129 .map_pages = filemap_map_pages, 2130 .page_mkwrite = btrfs_page_mkwrite, 2131 }; 2132 2133 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2134 { 2135 struct address_space *mapping = filp->f_mapping; 2136 2137 if (!mapping->a_ops->readpage) 2138 return -ENOEXEC; 2139 2140 file_accessed(filp); 2141 vma->vm_ops = &btrfs_file_vm_ops; 2142 2143 return 0; 2144 } 2145 2146 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf, 2147 int slot, u64 start, u64 end) 2148 { 2149 struct btrfs_file_extent_item *fi; 2150 struct btrfs_key key; 2151 2152 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2153 return 0; 2154 2155 btrfs_item_key_to_cpu(leaf, &key, slot); 2156 if (key.objectid != btrfs_ino(inode) || 2157 key.type != BTRFS_EXTENT_DATA_KEY) 2158 return 0; 2159 2160 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2161 2162 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2163 return 0; 2164 2165 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2166 return 0; 2167 2168 if (key.offset == end) 2169 return 1; 2170 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2171 return 1; 2172 return 0; 2173 } 2174 2175 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode, 2176 struct btrfs_path *path, u64 offset, u64 end) 2177 { 2178 struct btrfs_root *root = BTRFS_I(inode)->root; 2179 struct extent_buffer *leaf; 2180 struct btrfs_file_extent_item *fi; 2181 struct extent_map *hole_em; 2182 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2183 struct btrfs_key key; 2184 int ret; 2185 2186 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) 2187 goto out; 2188 2189 key.objectid = btrfs_ino(inode); 2190 key.type = BTRFS_EXTENT_DATA_KEY; 2191 key.offset = offset; 2192 2193 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2194 if (ret < 0) 2195 return ret; 2196 BUG_ON(!ret); 2197 2198 leaf = path->nodes[0]; 2199 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) { 2200 u64 num_bytes; 2201 2202 path->slots[0]--; 2203 fi = btrfs_item_ptr(leaf, path->slots[0], 2204 struct btrfs_file_extent_item); 2205 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2206 end - offset; 2207 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2208 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2209 btrfs_set_file_extent_offset(leaf, fi, 0); 2210 btrfs_mark_buffer_dirty(leaf); 2211 goto out; 2212 } 2213 2214 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2215 u64 num_bytes; 2216 2217 key.offset = offset; 2218 btrfs_set_item_key_safe(root->fs_info, path, &key); 2219 fi = btrfs_item_ptr(leaf, path->slots[0], 2220 struct btrfs_file_extent_item); 2221 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2222 offset; 2223 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2224 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2225 btrfs_set_file_extent_offset(leaf, fi, 0); 2226 btrfs_mark_buffer_dirty(leaf); 2227 goto out; 2228 } 2229 btrfs_release_path(path); 2230 2231 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 2232 0, 0, end - offset, 0, end - offset, 2233 0, 0, 0); 2234 if (ret) 2235 return ret; 2236 2237 out: 2238 btrfs_release_path(path); 2239 2240 hole_em = alloc_extent_map(); 2241 if (!hole_em) { 2242 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2243 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2244 &BTRFS_I(inode)->runtime_flags); 2245 } else { 2246 hole_em->start = offset; 2247 hole_em->len = end - offset; 2248 hole_em->ram_bytes = hole_em->len; 2249 hole_em->orig_start = offset; 2250 2251 hole_em->block_start = EXTENT_MAP_HOLE; 2252 hole_em->block_len = 0; 2253 hole_em->orig_block_len = 0; 2254 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 2255 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2256 hole_em->generation = trans->transid; 2257 2258 do { 2259 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2260 write_lock(&em_tree->lock); 2261 ret = add_extent_mapping(em_tree, hole_em, 1); 2262 write_unlock(&em_tree->lock); 2263 } while (ret == -EEXIST); 2264 free_extent_map(hole_em); 2265 if (ret) 2266 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2267 &BTRFS_I(inode)->runtime_flags); 2268 } 2269 2270 return 0; 2271 } 2272 2273 /* 2274 * Find a hole extent on given inode and change start/len to the end of hole 2275 * extent.(hole/vacuum extent whose em->start <= start && 2276 * em->start + em->len > start) 2277 * When a hole extent is found, return 1 and modify start/len. 2278 */ 2279 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2280 { 2281 struct extent_map *em; 2282 int ret = 0; 2283 2284 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0); 2285 if (IS_ERR_OR_NULL(em)) { 2286 if (!em) 2287 ret = -ENOMEM; 2288 else 2289 ret = PTR_ERR(em); 2290 return ret; 2291 } 2292 2293 /* Hole or vacuum extent(only exists in no-hole mode) */ 2294 if (em->block_start == EXTENT_MAP_HOLE) { 2295 ret = 1; 2296 *len = em->start + em->len > *start + *len ? 2297 0 : *start + *len - em->start - em->len; 2298 *start = em->start + em->len; 2299 } 2300 free_extent_map(em); 2301 return ret; 2302 } 2303 2304 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2305 { 2306 struct btrfs_root *root = BTRFS_I(inode)->root; 2307 struct extent_state *cached_state = NULL; 2308 struct btrfs_path *path; 2309 struct btrfs_block_rsv *rsv; 2310 struct btrfs_trans_handle *trans; 2311 u64 lockstart; 2312 u64 lockend; 2313 u64 tail_start; 2314 u64 tail_len; 2315 u64 orig_start = offset; 2316 u64 cur_offset; 2317 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 2318 u64 drop_end; 2319 int ret = 0; 2320 int err = 0; 2321 unsigned int rsv_count; 2322 bool same_block; 2323 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES); 2324 u64 ino_size; 2325 bool truncated_block = false; 2326 bool updated_inode = false; 2327 2328 ret = btrfs_wait_ordered_range(inode, offset, len); 2329 if (ret) 2330 return ret; 2331 2332 inode_lock(inode); 2333 ino_size = round_up(inode->i_size, root->sectorsize); 2334 ret = find_first_non_hole(inode, &offset, &len); 2335 if (ret < 0) 2336 goto out_only_mutex; 2337 if (ret && !len) { 2338 /* Already in a large hole */ 2339 ret = 0; 2340 goto out_only_mutex; 2341 } 2342 2343 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize); 2344 lockend = round_down(offset + len, 2345 BTRFS_I(inode)->root->sectorsize) - 1; 2346 same_block = (BTRFS_BYTES_TO_BLKS(root->fs_info, offset)) 2347 == (BTRFS_BYTES_TO_BLKS(root->fs_info, offset + len - 1)); 2348 /* 2349 * We needn't truncate any block which is beyond the end of the file 2350 * because we are sure there is no data there. 2351 */ 2352 /* 2353 * Only do this if we are in the same block and we aren't doing the 2354 * entire block. 2355 */ 2356 if (same_block && len < root->sectorsize) { 2357 if (offset < ino_size) { 2358 truncated_block = true; 2359 ret = btrfs_truncate_block(inode, offset, len, 0); 2360 } else { 2361 ret = 0; 2362 } 2363 goto out_only_mutex; 2364 } 2365 2366 /* zero back part of the first block */ 2367 if (offset < ino_size) { 2368 truncated_block = true; 2369 ret = btrfs_truncate_block(inode, offset, 0, 0); 2370 if (ret) { 2371 inode_unlock(inode); 2372 return ret; 2373 } 2374 } 2375 2376 /* Check the aligned pages after the first unaligned page, 2377 * if offset != orig_start, which means the first unaligned page 2378 * including several following pages are already in holes, 2379 * the extra check can be skipped */ 2380 if (offset == orig_start) { 2381 /* after truncate page, check hole again */ 2382 len = offset + len - lockstart; 2383 offset = lockstart; 2384 ret = find_first_non_hole(inode, &offset, &len); 2385 if (ret < 0) 2386 goto out_only_mutex; 2387 if (ret && !len) { 2388 ret = 0; 2389 goto out_only_mutex; 2390 } 2391 lockstart = offset; 2392 } 2393 2394 /* Check the tail unaligned part is in a hole */ 2395 tail_start = lockend + 1; 2396 tail_len = offset + len - tail_start; 2397 if (tail_len) { 2398 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2399 if (unlikely(ret < 0)) 2400 goto out_only_mutex; 2401 if (!ret) { 2402 /* zero the front end of the last page */ 2403 if (tail_start + tail_len < ino_size) { 2404 truncated_block = true; 2405 ret = btrfs_truncate_block(inode, 2406 tail_start + tail_len, 2407 0, 1); 2408 if (ret) 2409 goto out_only_mutex; 2410 } 2411 } 2412 } 2413 2414 if (lockend < lockstart) { 2415 ret = 0; 2416 goto out_only_mutex; 2417 } 2418 2419 while (1) { 2420 struct btrfs_ordered_extent *ordered; 2421 2422 truncate_pagecache_range(inode, lockstart, lockend); 2423 2424 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2425 &cached_state); 2426 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2427 2428 /* 2429 * We need to make sure we have no ordered extents in this range 2430 * and nobody raced in and read a page in this range, if we did 2431 * we need to try again. 2432 */ 2433 if ((!ordered || 2434 (ordered->file_offset + ordered->len <= lockstart || 2435 ordered->file_offset > lockend)) && 2436 !btrfs_page_exists_in_range(inode, lockstart, lockend)) { 2437 if (ordered) 2438 btrfs_put_ordered_extent(ordered); 2439 break; 2440 } 2441 if (ordered) 2442 btrfs_put_ordered_extent(ordered); 2443 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2444 lockend, &cached_state, GFP_NOFS); 2445 ret = btrfs_wait_ordered_range(inode, lockstart, 2446 lockend - lockstart + 1); 2447 if (ret) { 2448 inode_unlock(inode); 2449 return ret; 2450 } 2451 } 2452 2453 path = btrfs_alloc_path(); 2454 if (!path) { 2455 ret = -ENOMEM; 2456 goto out; 2457 } 2458 2459 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2460 if (!rsv) { 2461 ret = -ENOMEM; 2462 goto out_free; 2463 } 2464 rsv->size = btrfs_calc_trunc_metadata_size(root, 1); 2465 rsv->failfast = 1; 2466 2467 /* 2468 * 1 - update the inode 2469 * 1 - removing the extents in the range 2470 * 1 - adding the hole extent if no_holes isn't set 2471 */ 2472 rsv_count = no_holes ? 2 : 3; 2473 trans = btrfs_start_transaction(root, rsv_count); 2474 if (IS_ERR(trans)) { 2475 err = PTR_ERR(trans); 2476 goto out_free; 2477 } 2478 2479 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 2480 min_size, 0); 2481 BUG_ON(ret); 2482 trans->block_rsv = rsv; 2483 2484 cur_offset = lockstart; 2485 len = lockend - cur_offset; 2486 while (cur_offset < lockend) { 2487 ret = __btrfs_drop_extents(trans, root, inode, path, 2488 cur_offset, lockend + 1, 2489 &drop_end, 1, 0, 0, NULL); 2490 if (ret != -ENOSPC) 2491 break; 2492 2493 trans->block_rsv = &root->fs_info->trans_block_rsv; 2494 2495 if (cur_offset < ino_size) { 2496 ret = fill_holes(trans, inode, path, cur_offset, 2497 drop_end); 2498 if (ret) { 2499 err = ret; 2500 break; 2501 } 2502 } 2503 2504 cur_offset = drop_end; 2505 2506 ret = btrfs_update_inode(trans, root, inode); 2507 if (ret) { 2508 err = ret; 2509 break; 2510 } 2511 2512 btrfs_end_transaction(trans, root); 2513 btrfs_btree_balance_dirty(root); 2514 2515 trans = btrfs_start_transaction(root, rsv_count); 2516 if (IS_ERR(trans)) { 2517 ret = PTR_ERR(trans); 2518 trans = NULL; 2519 break; 2520 } 2521 2522 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 2523 rsv, min_size, 0); 2524 BUG_ON(ret); /* shouldn't happen */ 2525 trans->block_rsv = rsv; 2526 2527 ret = find_first_non_hole(inode, &cur_offset, &len); 2528 if (unlikely(ret < 0)) 2529 break; 2530 if (ret && !len) { 2531 ret = 0; 2532 break; 2533 } 2534 } 2535 2536 if (ret) { 2537 err = ret; 2538 goto out_trans; 2539 } 2540 2541 trans->block_rsv = &root->fs_info->trans_block_rsv; 2542 /* 2543 * If we are using the NO_HOLES feature we might have had already an 2544 * hole that overlaps a part of the region [lockstart, lockend] and 2545 * ends at (or beyond) lockend. Since we have no file extent items to 2546 * represent holes, drop_end can be less than lockend and so we must 2547 * make sure we have an extent map representing the existing hole (the 2548 * call to __btrfs_drop_extents() might have dropped the existing extent 2549 * map representing the existing hole), otherwise the fast fsync path 2550 * will not record the existence of the hole region 2551 * [existing_hole_start, lockend]. 2552 */ 2553 if (drop_end <= lockend) 2554 drop_end = lockend + 1; 2555 /* 2556 * Don't insert file hole extent item if it's for a range beyond eof 2557 * (because it's useless) or if it represents a 0 bytes range (when 2558 * cur_offset == drop_end). 2559 */ 2560 if (cur_offset < ino_size && cur_offset < drop_end) { 2561 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2562 if (ret) { 2563 err = ret; 2564 goto out_trans; 2565 } 2566 } 2567 2568 out_trans: 2569 if (!trans) 2570 goto out_free; 2571 2572 inode_inc_iversion(inode); 2573 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 2574 2575 trans->block_rsv = &root->fs_info->trans_block_rsv; 2576 ret = btrfs_update_inode(trans, root, inode); 2577 updated_inode = true; 2578 btrfs_end_transaction(trans, root); 2579 btrfs_btree_balance_dirty(root); 2580 out_free: 2581 btrfs_free_path(path); 2582 btrfs_free_block_rsv(root, rsv); 2583 out: 2584 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2585 &cached_state, GFP_NOFS); 2586 out_only_mutex: 2587 if (!updated_inode && truncated_block && !ret && !err) { 2588 /* 2589 * If we only end up zeroing part of a page, we still need to 2590 * update the inode item, so that all the time fields are 2591 * updated as well as the necessary btrfs inode in memory fields 2592 * for detecting, at fsync time, if the inode isn't yet in the 2593 * log tree or it's there but not up to date. 2594 */ 2595 trans = btrfs_start_transaction(root, 1); 2596 if (IS_ERR(trans)) { 2597 err = PTR_ERR(trans); 2598 } else { 2599 err = btrfs_update_inode(trans, root, inode); 2600 ret = btrfs_end_transaction(trans, root); 2601 } 2602 } 2603 inode_unlock(inode); 2604 if (ret && !err) 2605 err = ret; 2606 return err; 2607 } 2608 2609 /* Helper structure to record which range is already reserved */ 2610 struct falloc_range { 2611 struct list_head list; 2612 u64 start; 2613 u64 len; 2614 }; 2615 2616 /* 2617 * Helper function to add falloc range 2618 * 2619 * Caller should have locked the larger range of extent containing 2620 * [start, len) 2621 */ 2622 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2623 { 2624 struct falloc_range *prev = NULL; 2625 struct falloc_range *range = NULL; 2626 2627 if (list_empty(head)) 2628 goto insert; 2629 2630 /* 2631 * As fallocate iterate by bytenr order, we only need to check 2632 * the last range. 2633 */ 2634 prev = list_entry(head->prev, struct falloc_range, list); 2635 if (prev->start + prev->len == start) { 2636 prev->len += len; 2637 return 0; 2638 } 2639 insert: 2640 range = kmalloc(sizeof(*range), GFP_KERNEL); 2641 if (!range) 2642 return -ENOMEM; 2643 range->start = start; 2644 range->len = len; 2645 list_add_tail(&range->list, head); 2646 return 0; 2647 } 2648 2649 static long btrfs_fallocate(struct file *file, int mode, 2650 loff_t offset, loff_t len) 2651 { 2652 struct inode *inode = file_inode(file); 2653 struct extent_state *cached_state = NULL; 2654 struct falloc_range *range; 2655 struct falloc_range *tmp; 2656 struct list_head reserve_list; 2657 u64 cur_offset; 2658 u64 last_byte; 2659 u64 alloc_start; 2660 u64 alloc_end; 2661 u64 alloc_hint = 0; 2662 u64 locked_end; 2663 u64 actual_end = 0; 2664 struct extent_map *em; 2665 int blocksize = BTRFS_I(inode)->root->sectorsize; 2666 int ret; 2667 2668 alloc_start = round_down(offset, blocksize); 2669 alloc_end = round_up(offset + len, blocksize); 2670 2671 /* Make sure we aren't being give some crap mode */ 2672 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2673 return -EOPNOTSUPP; 2674 2675 if (mode & FALLOC_FL_PUNCH_HOLE) 2676 return btrfs_punch_hole(inode, offset, len); 2677 2678 /* 2679 * Only trigger disk allocation, don't trigger qgroup reserve 2680 * 2681 * For qgroup space, it will be checked later. 2682 */ 2683 ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start); 2684 if (ret < 0) 2685 return ret; 2686 2687 inode_lock(inode); 2688 2689 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 2690 ret = inode_newsize_ok(inode, offset + len); 2691 if (ret) 2692 goto out; 2693 } 2694 2695 /* 2696 * TODO: Move these two operations after we have checked 2697 * accurate reserved space, or fallocate can still fail but 2698 * with page truncated or size expanded. 2699 * 2700 * But that's a minor problem and won't do much harm BTW. 2701 */ 2702 if (alloc_start > inode->i_size) { 2703 ret = btrfs_cont_expand(inode, i_size_read(inode), 2704 alloc_start); 2705 if (ret) 2706 goto out; 2707 } else if (offset + len > inode->i_size) { 2708 /* 2709 * If we are fallocating from the end of the file onward we 2710 * need to zero out the end of the block if i_size lands in the 2711 * middle of a block. 2712 */ 2713 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 2714 if (ret) 2715 goto out; 2716 } 2717 2718 /* 2719 * wait for ordered IO before we have any locks. We'll loop again 2720 * below with the locks held. 2721 */ 2722 ret = btrfs_wait_ordered_range(inode, alloc_start, 2723 alloc_end - alloc_start); 2724 if (ret) 2725 goto out; 2726 2727 locked_end = alloc_end - 1; 2728 while (1) { 2729 struct btrfs_ordered_extent *ordered; 2730 2731 /* the extent lock is ordered inside the running 2732 * transaction 2733 */ 2734 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 2735 locked_end, &cached_state); 2736 ordered = btrfs_lookup_first_ordered_extent(inode, 2737 alloc_end - 1); 2738 if (ordered && 2739 ordered->file_offset + ordered->len > alloc_start && 2740 ordered->file_offset < alloc_end) { 2741 btrfs_put_ordered_extent(ordered); 2742 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 2743 alloc_start, locked_end, 2744 &cached_state, GFP_KERNEL); 2745 /* 2746 * we can't wait on the range with the transaction 2747 * running or with the extent lock held 2748 */ 2749 ret = btrfs_wait_ordered_range(inode, alloc_start, 2750 alloc_end - alloc_start); 2751 if (ret) 2752 goto out; 2753 } else { 2754 if (ordered) 2755 btrfs_put_ordered_extent(ordered); 2756 break; 2757 } 2758 } 2759 2760 /* First, check if we exceed the qgroup limit */ 2761 INIT_LIST_HEAD(&reserve_list); 2762 cur_offset = alloc_start; 2763 while (1) { 2764 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2765 alloc_end - cur_offset, 0); 2766 if (IS_ERR_OR_NULL(em)) { 2767 if (!em) 2768 ret = -ENOMEM; 2769 else 2770 ret = PTR_ERR(em); 2771 break; 2772 } 2773 last_byte = min(extent_map_end(em), alloc_end); 2774 actual_end = min_t(u64, extent_map_end(em), offset + len); 2775 last_byte = ALIGN(last_byte, blocksize); 2776 if (em->block_start == EXTENT_MAP_HOLE || 2777 (cur_offset >= inode->i_size && 2778 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 2779 ret = add_falloc_range(&reserve_list, cur_offset, 2780 last_byte - cur_offset); 2781 if (ret < 0) { 2782 free_extent_map(em); 2783 break; 2784 } 2785 ret = btrfs_qgroup_reserve_data(inode, cur_offset, 2786 last_byte - cur_offset); 2787 if (ret < 0) 2788 break; 2789 } 2790 free_extent_map(em); 2791 cur_offset = last_byte; 2792 if (cur_offset >= alloc_end) 2793 break; 2794 } 2795 2796 /* 2797 * If ret is still 0, means we're OK to fallocate. 2798 * Or just cleanup the list and exit. 2799 */ 2800 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 2801 if (!ret) 2802 ret = btrfs_prealloc_file_range(inode, mode, 2803 range->start, 2804 range->len, 1 << inode->i_blkbits, 2805 offset + len, &alloc_hint); 2806 list_del(&range->list); 2807 kfree(range); 2808 } 2809 if (ret < 0) 2810 goto out_unlock; 2811 2812 if (actual_end > inode->i_size && 2813 !(mode & FALLOC_FL_KEEP_SIZE)) { 2814 struct btrfs_trans_handle *trans; 2815 struct btrfs_root *root = BTRFS_I(inode)->root; 2816 2817 /* 2818 * We didn't need to allocate any more space, but we 2819 * still extended the size of the file so we need to 2820 * update i_size and the inode item. 2821 */ 2822 trans = btrfs_start_transaction(root, 1); 2823 if (IS_ERR(trans)) { 2824 ret = PTR_ERR(trans); 2825 } else { 2826 inode->i_ctime = current_fs_time(inode->i_sb); 2827 i_size_write(inode, actual_end); 2828 btrfs_ordered_update_i_size(inode, actual_end, NULL); 2829 ret = btrfs_update_inode(trans, root, inode); 2830 if (ret) 2831 btrfs_end_transaction(trans, root); 2832 else 2833 ret = btrfs_end_transaction(trans, root); 2834 } 2835 } 2836 out_unlock: 2837 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 2838 &cached_state, GFP_KERNEL); 2839 out: 2840 /* 2841 * As we waited the extent range, the data_rsv_map must be empty 2842 * in the range, as written data range will be released from it. 2843 * And for prealloacted extent, it will also be released when 2844 * its metadata is written. 2845 * So this is completely used as cleanup. 2846 */ 2847 btrfs_qgroup_free_data(inode, alloc_start, alloc_end - alloc_start); 2848 inode_unlock(inode); 2849 /* Let go of our reservation. */ 2850 btrfs_free_reserved_data_space(inode, alloc_start, 2851 alloc_end - alloc_start); 2852 return ret; 2853 } 2854 2855 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 2856 { 2857 struct btrfs_root *root = BTRFS_I(inode)->root; 2858 struct extent_map *em = NULL; 2859 struct extent_state *cached_state = NULL; 2860 u64 lockstart; 2861 u64 lockend; 2862 u64 start; 2863 u64 len; 2864 int ret = 0; 2865 2866 if (inode->i_size == 0) 2867 return -ENXIO; 2868 2869 /* 2870 * *offset can be negative, in this case we start finding DATA/HOLE from 2871 * the very start of the file. 2872 */ 2873 start = max_t(loff_t, 0, *offset); 2874 2875 lockstart = round_down(start, root->sectorsize); 2876 lockend = round_up(i_size_read(inode), root->sectorsize); 2877 if (lockend <= lockstart) 2878 lockend = lockstart + root->sectorsize; 2879 lockend--; 2880 len = lockend - lockstart + 1; 2881 2882 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2883 &cached_state); 2884 2885 while (start < inode->i_size) { 2886 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0); 2887 if (IS_ERR(em)) { 2888 ret = PTR_ERR(em); 2889 em = NULL; 2890 break; 2891 } 2892 2893 if (whence == SEEK_HOLE && 2894 (em->block_start == EXTENT_MAP_HOLE || 2895 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2896 break; 2897 else if (whence == SEEK_DATA && 2898 (em->block_start != EXTENT_MAP_HOLE && 2899 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2900 break; 2901 2902 start = em->start + em->len; 2903 free_extent_map(em); 2904 em = NULL; 2905 cond_resched(); 2906 } 2907 free_extent_map(em); 2908 if (!ret) { 2909 if (whence == SEEK_DATA && start >= inode->i_size) 2910 ret = -ENXIO; 2911 else 2912 *offset = min_t(loff_t, start, inode->i_size); 2913 } 2914 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2915 &cached_state, GFP_NOFS); 2916 return ret; 2917 } 2918 2919 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 2920 { 2921 struct inode *inode = file->f_mapping->host; 2922 int ret; 2923 2924 inode_lock(inode); 2925 switch (whence) { 2926 case SEEK_END: 2927 case SEEK_CUR: 2928 offset = generic_file_llseek(file, offset, whence); 2929 goto out; 2930 case SEEK_DATA: 2931 case SEEK_HOLE: 2932 if (offset >= i_size_read(inode)) { 2933 inode_unlock(inode); 2934 return -ENXIO; 2935 } 2936 2937 ret = find_desired_extent(inode, &offset, whence); 2938 if (ret) { 2939 inode_unlock(inode); 2940 return ret; 2941 } 2942 } 2943 2944 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2945 out: 2946 inode_unlock(inode); 2947 return offset; 2948 } 2949 2950 const struct file_operations btrfs_file_operations = { 2951 .llseek = btrfs_file_llseek, 2952 .read_iter = generic_file_read_iter, 2953 .splice_read = generic_file_splice_read, 2954 .write_iter = btrfs_file_write_iter, 2955 .mmap = btrfs_file_mmap, 2956 .open = generic_file_open, 2957 .release = btrfs_release_file, 2958 .fsync = btrfs_sync_file, 2959 .fallocate = btrfs_fallocate, 2960 .unlocked_ioctl = btrfs_ioctl, 2961 #ifdef CONFIG_COMPAT 2962 .compat_ioctl = btrfs_compat_ioctl, 2963 #endif 2964 .copy_file_range = btrfs_copy_file_range, 2965 .clone_file_range = btrfs_clone_file_range, 2966 .dedupe_file_range = btrfs_dedupe_file_range, 2967 }; 2968 2969 void btrfs_auto_defrag_exit(void) 2970 { 2971 kmem_cache_destroy(btrfs_inode_defrag_cachep); 2972 } 2973 2974 int btrfs_auto_defrag_init(void) 2975 { 2976 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 2977 sizeof(struct inode_defrag), 0, 2978 SLAB_MEM_SPREAD, 2979 NULL); 2980 if (!btrfs_inode_defrag_cachep) 2981 return -ENOMEM; 2982 2983 return 0; 2984 } 2985 2986 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 2987 { 2988 int ret; 2989 2990 /* 2991 * So with compression we will find and lock a dirty page and clear the 2992 * first one as dirty, setup an async extent, and immediately return 2993 * with the entire range locked but with nobody actually marked with 2994 * writeback. So we can't just filemap_write_and_wait_range() and 2995 * expect it to work since it will just kick off a thread to do the 2996 * actual work. So we need to call filemap_fdatawrite_range _again_ 2997 * since it will wait on the page lock, which won't be unlocked until 2998 * after the pages have been marked as writeback and so we're good to go 2999 * from there. We have to do this otherwise we'll miss the ordered 3000 * extents and that results in badness. Please Josef, do not think you 3001 * know better and pull this out at some point in the future, it is 3002 * right and you are wrong. 3003 */ 3004 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3005 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3006 &BTRFS_I(inode)->runtime_flags)) 3007 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3008 3009 return ret; 3010 } 3011