1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "btrfs_inode.h" 24 #include "print-tree.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "volumes.h" 28 #include "qgroup.h" 29 #include "compression.h" 30 #include "delalloc-space.h" 31 #include "reflink.h" 32 #include "subpage.h" 33 #include "fs.h" 34 #include "accessors.h" 35 #include "extent-tree.h" 36 #include "file-item.h" 37 #include "ioctl.h" 38 #include "file.h" 39 #include "super.h" 40 41 /* simple helper to fault in pages and copy. This should go away 42 * and be replaced with calls into generic code. 43 */ 44 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 45 struct page **prepared_pages, 46 struct iov_iter *i) 47 { 48 size_t copied = 0; 49 size_t total_copied = 0; 50 int pg = 0; 51 int offset = offset_in_page(pos); 52 53 while (write_bytes > 0) { 54 size_t count = min_t(size_t, 55 PAGE_SIZE - offset, write_bytes); 56 struct page *page = prepared_pages[pg]; 57 /* 58 * Copy data from userspace to the current page 59 */ 60 copied = copy_page_from_iter_atomic(page, offset, count, i); 61 62 /* Flush processor's dcache for this page */ 63 flush_dcache_page(page); 64 65 /* 66 * if we get a partial write, we can end up with 67 * partially up to date pages. These add 68 * a lot of complexity, so make sure they don't 69 * happen by forcing this copy to be retried. 70 * 71 * The rest of the btrfs_file_write code will fall 72 * back to page at a time copies after we return 0. 73 */ 74 if (unlikely(copied < count)) { 75 if (!PageUptodate(page)) { 76 iov_iter_revert(i, copied); 77 copied = 0; 78 } 79 if (!copied) 80 break; 81 } 82 83 write_bytes -= copied; 84 total_copied += copied; 85 offset += copied; 86 if (offset == PAGE_SIZE) { 87 pg++; 88 offset = 0; 89 } 90 } 91 return total_copied; 92 } 93 94 /* 95 * unlocks pages after btrfs_file_write is done with them 96 */ 97 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, 98 struct page **pages, size_t num_pages, 99 u64 pos, u64 copied) 100 { 101 size_t i; 102 u64 block_start = round_down(pos, fs_info->sectorsize); 103 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 104 105 ASSERT(block_len <= U32_MAX); 106 for (i = 0; i < num_pages; i++) { 107 /* page checked is some magic around finding pages that 108 * have been modified without going through btrfs_set_page_dirty 109 * clear it here. There should be no need to mark the pages 110 * accessed as prepare_pages should have marked them accessed 111 * in prepare_pages via find_or_create_page() 112 */ 113 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start, 114 block_len); 115 unlock_page(pages[i]); 116 put_page(pages[i]); 117 } 118 } 119 120 /* 121 * After btrfs_copy_from_user(), update the following things for delalloc: 122 * - Mark newly dirtied pages as DELALLOC in the io tree. 123 * Used to advise which range is to be written back. 124 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 125 * - Update inode size for past EOF write 126 */ 127 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 128 size_t num_pages, loff_t pos, size_t write_bytes, 129 struct extent_state **cached, bool noreserve) 130 { 131 struct btrfs_fs_info *fs_info = inode->root->fs_info; 132 int err = 0; 133 int i; 134 u64 num_bytes; 135 u64 start_pos; 136 u64 end_of_last_block; 137 u64 end_pos = pos + write_bytes; 138 loff_t isize = i_size_read(&inode->vfs_inode); 139 unsigned int extra_bits = 0; 140 141 if (write_bytes == 0) 142 return 0; 143 144 if (noreserve) 145 extra_bits |= EXTENT_NORESERVE; 146 147 start_pos = round_down(pos, fs_info->sectorsize); 148 num_bytes = round_up(write_bytes + pos - start_pos, 149 fs_info->sectorsize); 150 ASSERT(num_bytes <= U32_MAX); 151 152 end_of_last_block = start_pos + num_bytes - 1; 153 154 /* 155 * The pages may have already been dirty, clear out old accounting so 156 * we can set things up properly 157 */ 158 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 159 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 160 cached); 161 162 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 163 extra_bits, cached); 164 if (err) 165 return err; 166 167 for (i = 0; i < num_pages; i++) { 168 struct page *p = pages[i]; 169 170 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes); 171 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes); 172 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes); 173 } 174 175 /* 176 * we've only changed i_size in ram, and we haven't updated 177 * the disk i_size. There is no need to log the inode 178 * at this time. 179 */ 180 if (end_pos > isize) 181 i_size_write(&inode->vfs_inode, end_pos); 182 return 0; 183 } 184 185 /* 186 * this is very complex, but the basic idea is to drop all extents 187 * in the range start - end. hint_block is filled in with a block number 188 * that would be a good hint to the block allocator for this file. 189 * 190 * If an extent intersects the range but is not entirely inside the range 191 * it is either truncated or split. Anything entirely inside the range 192 * is deleted from the tree. 193 * 194 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 195 * to deal with that. We set the field 'bytes_found' of the arguments structure 196 * with the number of allocated bytes found in the target range, so that the 197 * caller can update the inode's number of bytes in an atomic way when 198 * replacing extents in a range to avoid races with stat(2). 199 */ 200 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 201 struct btrfs_root *root, struct btrfs_inode *inode, 202 struct btrfs_drop_extents_args *args) 203 { 204 struct btrfs_fs_info *fs_info = root->fs_info; 205 struct extent_buffer *leaf; 206 struct btrfs_file_extent_item *fi; 207 struct btrfs_ref ref = { 0 }; 208 struct btrfs_key key; 209 struct btrfs_key new_key; 210 u64 ino = btrfs_ino(inode); 211 u64 search_start = args->start; 212 u64 disk_bytenr = 0; 213 u64 num_bytes = 0; 214 u64 extent_offset = 0; 215 u64 extent_end = 0; 216 u64 last_end = args->start; 217 int del_nr = 0; 218 int del_slot = 0; 219 int extent_type; 220 int recow; 221 int ret; 222 int modify_tree = -1; 223 int update_refs; 224 int found = 0; 225 struct btrfs_path *path = args->path; 226 227 args->bytes_found = 0; 228 args->extent_inserted = false; 229 230 /* Must always have a path if ->replace_extent is true */ 231 ASSERT(!(args->replace_extent && !args->path)); 232 233 if (!path) { 234 path = btrfs_alloc_path(); 235 if (!path) { 236 ret = -ENOMEM; 237 goto out; 238 } 239 } 240 241 if (args->drop_cache) 242 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false); 243 244 if (args->start >= inode->disk_i_size && !args->replace_extent) 245 modify_tree = 0; 246 247 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); 248 while (1) { 249 recow = 0; 250 ret = btrfs_lookup_file_extent(trans, root, path, ino, 251 search_start, modify_tree); 252 if (ret < 0) 253 break; 254 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 255 leaf = path->nodes[0]; 256 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 257 if (key.objectid == ino && 258 key.type == BTRFS_EXTENT_DATA_KEY) 259 path->slots[0]--; 260 } 261 ret = 0; 262 next_slot: 263 leaf = path->nodes[0]; 264 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 265 BUG_ON(del_nr > 0); 266 ret = btrfs_next_leaf(root, path); 267 if (ret < 0) 268 break; 269 if (ret > 0) { 270 ret = 0; 271 break; 272 } 273 leaf = path->nodes[0]; 274 recow = 1; 275 } 276 277 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 278 279 if (key.objectid > ino) 280 break; 281 if (WARN_ON_ONCE(key.objectid < ino) || 282 key.type < BTRFS_EXTENT_DATA_KEY) { 283 ASSERT(del_nr == 0); 284 path->slots[0]++; 285 goto next_slot; 286 } 287 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 288 break; 289 290 fi = btrfs_item_ptr(leaf, path->slots[0], 291 struct btrfs_file_extent_item); 292 extent_type = btrfs_file_extent_type(leaf, fi); 293 294 if (extent_type == BTRFS_FILE_EXTENT_REG || 295 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 296 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 297 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 298 extent_offset = btrfs_file_extent_offset(leaf, fi); 299 extent_end = key.offset + 300 btrfs_file_extent_num_bytes(leaf, fi); 301 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 302 extent_end = key.offset + 303 btrfs_file_extent_ram_bytes(leaf, fi); 304 } else { 305 /* can't happen */ 306 BUG(); 307 } 308 309 /* 310 * Don't skip extent items representing 0 byte lengths. They 311 * used to be created (bug) if while punching holes we hit 312 * -ENOSPC condition. So if we find one here, just ensure we 313 * delete it, otherwise we would insert a new file extent item 314 * with the same key (offset) as that 0 bytes length file 315 * extent item in the call to setup_items_for_insert() later 316 * in this function. 317 */ 318 if (extent_end == key.offset && extent_end >= search_start) { 319 last_end = extent_end; 320 goto delete_extent_item; 321 } 322 323 if (extent_end <= search_start) { 324 path->slots[0]++; 325 goto next_slot; 326 } 327 328 found = 1; 329 search_start = max(key.offset, args->start); 330 if (recow || !modify_tree) { 331 modify_tree = -1; 332 btrfs_release_path(path); 333 continue; 334 } 335 336 /* 337 * | - range to drop - | 338 * | -------- extent -------- | 339 */ 340 if (args->start > key.offset && args->end < extent_end) { 341 BUG_ON(del_nr > 0); 342 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 343 ret = -EOPNOTSUPP; 344 break; 345 } 346 347 memcpy(&new_key, &key, sizeof(new_key)); 348 new_key.offset = args->start; 349 ret = btrfs_duplicate_item(trans, root, path, 350 &new_key); 351 if (ret == -EAGAIN) { 352 btrfs_release_path(path); 353 continue; 354 } 355 if (ret < 0) 356 break; 357 358 leaf = path->nodes[0]; 359 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 360 struct btrfs_file_extent_item); 361 btrfs_set_file_extent_num_bytes(leaf, fi, 362 args->start - key.offset); 363 364 fi = btrfs_item_ptr(leaf, path->slots[0], 365 struct btrfs_file_extent_item); 366 367 extent_offset += args->start - key.offset; 368 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 369 btrfs_set_file_extent_num_bytes(leaf, fi, 370 extent_end - args->start); 371 btrfs_mark_buffer_dirty(trans, leaf); 372 373 if (update_refs && disk_bytenr > 0) { 374 btrfs_init_generic_ref(&ref, 375 BTRFS_ADD_DELAYED_REF, 376 disk_bytenr, num_bytes, 0); 377 btrfs_init_data_ref(&ref, 378 root->root_key.objectid, 379 new_key.objectid, 380 args->start - extent_offset, 381 0, false); 382 ret = btrfs_inc_extent_ref(trans, &ref); 383 if (ret) { 384 btrfs_abort_transaction(trans, ret); 385 break; 386 } 387 } 388 key.offset = args->start; 389 } 390 /* 391 * From here on out we will have actually dropped something, so 392 * last_end can be updated. 393 */ 394 last_end = extent_end; 395 396 /* 397 * | ---- range to drop ----- | 398 * | -------- extent -------- | 399 */ 400 if (args->start <= key.offset && args->end < extent_end) { 401 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 402 ret = -EOPNOTSUPP; 403 break; 404 } 405 406 memcpy(&new_key, &key, sizeof(new_key)); 407 new_key.offset = args->end; 408 btrfs_set_item_key_safe(trans, path, &new_key); 409 410 extent_offset += args->end - key.offset; 411 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 412 btrfs_set_file_extent_num_bytes(leaf, fi, 413 extent_end - args->end); 414 btrfs_mark_buffer_dirty(trans, leaf); 415 if (update_refs && disk_bytenr > 0) 416 args->bytes_found += args->end - key.offset; 417 break; 418 } 419 420 search_start = extent_end; 421 /* 422 * | ---- range to drop ----- | 423 * | -------- extent -------- | 424 */ 425 if (args->start > key.offset && args->end >= extent_end) { 426 BUG_ON(del_nr > 0); 427 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 428 ret = -EOPNOTSUPP; 429 break; 430 } 431 432 btrfs_set_file_extent_num_bytes(leaf, fi, 433 args->start - key.offset); 434 btrfs_mark_buffer_dirty(trans, leaf); 435 if (update_refs && disk_bytenr > 0) 436 args->bytes_found += extent_end - args->start; 437 if (args->end == extent_end) 438 break; 439 440 path->slots[0]++; 441 goto next_slot; 442 } 443 444 /* 445 * | ---- range to drop ----- | 446 * | ------ extent ------ | 447 */ 448 if (args->start <= key.offset && args->end >= extent_end) { 449 delete_extent_item: 450 if (del_nr == 0) { 451 del_slot = path->slots[0]; 452 del_nr = 1; 453 } else { 454 BUG_ON(del_slot + del_nr != path->slots[0]); 455 del_nr++; 456 } 457 458 if (update_refs && 459 extent_type == BTRFS_FILE_EXTENT_INLINE) { 460 args->bytes_found += extent_end - key.offset; 461 extent_end = ALIGN(extent_end, 462 fs_info->sectorsize); 463 } else if (update_refs && disk_bytenr > 0) { 464 btrfs_init_generic_ref(&ref, 465 BTRFS_DROP_DELAYED_REF, 466 disk_bytenr, num_bytes, 0); 467 btrfs_init_data_ref(&ref, 468 root->root_key.objectid, 469 key.objectid, 470 key.offset - extent_offset, 0, 471 false); 472 ret = btrfs_free_extent(trans, &ref); 473 if (ret) { 474 btrfs_abort_transaction(trans, ret); 475 break; 476 } 477 args->bytes_found += extent_end - key.offset; 478 } 479 480 if (args->end == extent_end) 481 break; 482 483 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 484 path->slots[0]++; 485 goto next_slot; 486 } 487 488 ret = btrfs_del_items(trans, root, path, del_slot, 489 del_nr); 490 if (ret) { 491 btrfs_abort_transaction(trans, ret); 492 break; 493 } 494 495 del_nr = 0; 496 del_slot = 0; 497 498 btrfs_release_path(path); 499 continue; 500 } 501 502 BUG(); 503 } 504 505 if (!ret && del_nr > 0) { 506 /* 507 * Set path->slots[0] to first slot, so that after the delete 508 * if items are move off from our leaf to its immediate left or 509 * right neighbor leafs, we end up with a correct and adjusted 510 * path->slots[0] for our insertion (if args->replace_extent). 511 */ 512 path->slots[0] = del_slot; 513 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 514 if (ret) 515 btrfs_abort_transaction(trans, ret); 516 } 517 518 leaf = path->nodes[0]; 519 /* 520 * If btrfs_del_items() was called, it might have deleted a leaf, in 521 * which case it unlocked our path, so check path->locks[0] matches a 522 * write lock. 523 */ 524 if (!ret && args->replace_extent && 525 path->locks[0] == BTRFS_WRITE_LOCK && 526 btrfs_leaf_free_space(leaf) >= 527 sizeof(struct btrfs_item) + args->extent_item_size) { 528 529 key.objectid = ino; 530 key.type = BTRFS_EXTENT_DATA_KEY; 531 key.offset = args->start; 532 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 533 struct btrfs_key slot_key; 534 535 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 536 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 537 path->slots[0]++; 538 } 539 btrfs_setup_item_for_insert(trans, root, path, &key, 540 args->extent_item_size); 541 args->extent_inserted = true; 542 } 543 544 if (!args->path) 545 btrfs_free_path(path); 546 else if (!args->extent_inserted) 547 btrfs_release_path(path); 548 out: 549 args->drop_end = found ? min(args->end, last_end) : args->end; 550 551 return ret; 552 } 553 554 static int extent_mergeable(struct extent_buffer *leaf, int slot, 555 u64 objectid, u64 bytenr, u64 orig_offset, 556 u64 *start, u64 *end) 557 { 558 struct btrfs_file_extent_item *fi; 559 struct btrfs_key key; 560 u64 extent_end; 561 562 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 563 return 0; 564 565 btrfs_item_key_to_cpu(leaf, &key, slot); 566 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 567 return 0; 568 569 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 570 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 571 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 572 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 573 btrfs_file_extent_compression(leaf, fi) || 574 btrfs_file_extent_encryption(leaf, fi) || 575 btrfs_file_extent_other_encoding(leaf, fi)) 576 return 0; 577 578 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 579 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 580 return 0; 581 582 *start = key.offset; 583 *end = extent_end; 584 return 1; 585 } 586 587 /* 588 * Mark extent in the range start - end as written. 589 * 590 * This changes extent type from 'pre-allocated' to 'regular'. If only 591 * part of extent is marked as written, the extent will be split into 592 * two or three. 593 */ 594 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 595 struct btrfs_inode *inode, u64 start, u64 end) 596 { 597 struct btrfs_root *root = inode->root; 598 struct extent_buffer *leaf; 599 struct btrfs_path *path; 600 struct btrfs_file_extent_item *fi; 601 struct btrfs_ref ref = { 0 }; 602 struct btrfs_key key; 603 struct btrfs_key new_key; 604 u64 bytenr; 605 u64 num_bytes; 606 u64 extent_end; 607 u64 orig_offset; 608 u64 other_start; 609 u64 other_end; 610 u64 split; 611 int del_nr = 0; 612 int del_slot = 0; 613 int recow; 614 int ret = 0; 615 u64 ino = btrfs_ino(inode); 616 617 path = btrfs_alloc_path(); 618 if (!path) 619 return -ENOMEM; 620 again: 621 recow = 0; 622 split = start; 623 key.objectid = ino; 624 key.type = BTRFS_EXTENT_DATA_KEY; 625 key.offset = split; 626 627 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 628 if (ret < 0) 629 goto out; 630 if (ret > 0 && path->slots[0] > 0) 631 path->slots[0]--; 632 633 leaf = path->nodes[0]; 634 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 635 if (key.objectid != ino || 636 key.type != BTRFS_EXTENT_DATA_KEY) { 637 ret = -EINVAL; 638 btrfs_abort_transaction(trans, ret); 639 goto out; 640 } 641 fi = btrfs_item_ptr(leaf, path->slots[0], 642 struct btrfs_file_extent_item); 643 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 644 ret = -EINVAL; 645 btrfs_abort_transaction(trans, ret); 646 goto out; 647 } 648 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 649 if (key.offset > start || extent_end < end) { 650 ret = -EINVAL; 651 btrfs_abort_transaction(trans, ret); 652 goto out; 653 } 654 655 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 656 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 657 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 658 memcpy(&new_key, &key, sizeof(new_key)); 659 660 if (start == key.offset && end < extent_end) { 661 other_start = 0; 662 other_end = start; 663 if (extent_mergeable(leaf, path->slots[0] - 1, 664 ino, bytenr, orig_offset, 665 &other_start, &other_end)) { 666 new_key.offset = end; 667 btrfs_set_item_key_safe(trans, path, &new_key); 668 fi = btrfs_item_ptr(leaf, path->slots[0], 669 struct btrfs_file_extent_item); 670 btrfs_set_file_extent_generation(leaf, fi, 671 trans->transid); 672 btrfs_set_file_extent_num_bytes(leaf, fi, 673 extent_end - end); 674 btrfs_set_file_extent_offset(leaf, fi, 675 end - orig_offset); 676 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 677 struct btrfs_file_extent_item); 678 btrfs_set_file_extent_generation(leaf, fi, 679 trans->transid); 680 btrfs_set_file_extent_num_bytes(leaf, fi, 681 end - other_start); 682 btrfs_mark_buffer_dirty(trans, leaf); 683 goto out; 684 } 685 } 686 687 if (start > key.offset && end == extent_end) { 688 other_start = end; 689 other_end = 0; 690 if (extent_mergeable(leaf, path->slots[0] + 1, 691 ino, bytenr, orig_offset, 692 &other_start, &other_end)) { 693 fi = btrfs_item_ptr(leaf, path->slots[0], 694 struct btrfs_file_extent_item); 695 btrfs_set_file_extent_num_bytes(leaf, fi, 696 start - key.offset); 697 btrfs_set_file_extent_generation(leaf, fi, 698 trans->transid); 699 path->slots[0]++; 700 new_key.offset = start; 701 btrfs_set_item_key_safe(trans, path, &new_key); 702 703 fi = btrfs_item_ptr(leaf, path->slots[0], 704 struct btrfs_file_extent_item); 705 btrfs_set_file_extent_generation(leaf, fi, 706 trans->transid); 707 btrfs_set_file_extent_num_bytes(leaf, fi, 708 other_end - start); 709 btrfs_set_file_extent_offset(leaf, fi, 710 start - orig_offset); 711 btrfs_mark_buffer_dirty(trans, leaf); 712 goto out; 713 } 714 } 715 716 while (start > key.offset || end < extent_end) { 717 if (key.offset == start) 718 split = end; 719 720 new_key.offset = split; 721 ret = btrfs_duplicate_item(trans, root, path, &new_key); 722 if (ret == -EAGAIN) { 723 btrfs_release_path(path); 724 goto again; 725 } 726 if (ret < 0) { 727 btrfs_abort_transaction(trans, ret); 728 goto out; 729 } 730 731 leaf = path->nodes[0]; 732 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 733 struct btrfs_file_extent_item); 734 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 735 btrfs_set_file_extent_num_bytes(leaf, fi, 736 split - key.offset); 737 738 fi = btrfs_item_ptr(leaf, path->slots[0], 739 struct btrfs_file_extent_item); 740 741 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 742 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 743 btrfs_set_file_extent_num_bytes(leaf, fi, 744 extent_end - split); 745 btrfs_mark_buffer_dirty(trans, leaf); 746 747 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 748 num_bytes, 0); 749 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 750 orig_offset, 0, false); 751 ret = btrfs_inc_extent_ref(trans, &ref); 752 if (ret) { 753 btrfs_abort_transaction(trans, ret); 754 goto out; 755 } 756 757 if (split == start) { 758 key.offset = start; 759 } else { 760 if (start != key.offset) { 761 ret = -EINVAL; 762 btrfs_abort_transaction(trans, ret); 763 goto out; 764 } 765 path->slots[0]--; 766 extent_end = end; 767 } 768 recow = 1; 769 } 770 771 other_start = end; 772 other_end = 0; 773 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 774 num_bytes, 0); 775 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset, 776 0, false); 777 if (extent_mergeable(leaf, path->slots[0] + 1, 778 ino, bytenr, orig_offset, 779 &other_start, &other_end)) { 780 if (recow) { 781 btrfs_release_path(path); 782 goto again; 783 } 784 extent_end = other_end; 785 del_slot = path->slots[0] + 1; 786 del_nr++; 787 ret = btrfs_free_extent(trans, &ref); 788 if (ret) { 789 btrfs_abort_transaction(trans, ret); 790 goto out; 791 } 792 } 793 other_start = 0; 794 other_end = start; 795 if (extent_mergeable(leaf, path->slots[0] - 1, 796 ino, bytenr, orig_offset, 797 &other_start, &other_end)) { 798 if (recow) { 799 btrfs_release_path(path); 800 goto again; 801 } 802 key.offset = other_start; 803 del_slot = path->slots[0]; 804 del_nr++; 805 ret = btrfs_free_extent(trans, &ref); 806 if (ret) { 807 btrfs_abort_transaction(trans, ret); 808 goto out; 809 } 810 } 811 if (del_nr == 0) { 812 fi = btrfs_item_ptr(leaf, path->slots[0], 813 struct btrfs_file_extent_item); 814 btrfs_set_file_extent_type(leaf, fi, 815 BTRFS_FILE_EXTENT_REG); 816 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 817 btrfs_mark_buffer_dirty(trans, leaf); 818 } else { 819 fi = btrfs_item_ptr(leaf, del_slot - 1, 820 struct btrfs_file_extent_item); 821 btrfs_set_file_extent_type(leaf, fi, 822 BTRFS_FILE_EXTENT_REG); 823 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 824 btrfs_set_file_extent_num_bytes(leaf, fi, 825 extent_end - key.offset); 826 btrfs_mark_buffer_dirty(trans, leaf); 827 828 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 829 if (ret < 0) { 830 btrfs_abort_transaction(trans, ret); 831 goto out; 832 } 833 } 834 out: 835 btrfs_free_path(path); 836 return ret; 837 } 838 839 /* 840 * on error we return an unlocked page and the error value 841 * on success we return a locked page and 0 842 */ 843 static int prepare_uptodate_page(struct inode *inode, 844 struct page *page, u64 pos, 845 bool force_uptodate) 846 { 847 struct folio *folio = page_folio(page); 848 int ret = 0; 849 850 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 851 !PageUptodate(page)) { 852 ret = btrfs_read_folio(NULL, folio); 853 if (ret) 854 return ret; 855 lock_page(page); 856 if (!PageUptodate(page)) { 857 unlock_page(page); 858 return -EIO; 859 } 860 861 /* 862 * Since btrfs_read_folio() will unlock the folio before it 863 * returns, there is a window where btrfs_release_folio() can be 864 * called to release the page. Here we check both inode 865 * mapping and PagePrivate() to make sure the page was not 866 * released. 867 * 868 * The private flag check is essential for subpage as we need 869 * to store extra bitmap using page->private. 870 */ 871 if (page->mapping != inode->i_mapping || !PagePrivate(page)) { 872 unlock_page(page); 873 return -EAGAIN; 874 } 875 } 876 return 0; 877 } 878 879 static fgf_t get_prepare_fgp_flags(bool nowait) 880 { 881 fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT; 882 883 if (nowait) 884 fgp_flags |= FGP_NOWAIT; 885 886 return fgp_flags; 887 } 888 889 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait) 890 { 891 gfp_t gfp; 892 893 gfp = btrfs_alloc_write_mask(inode->i_mapping); 894 if (nowait) { 895 gfp &= ~__GFP_DIRECT_RECLAIM; 896 gfp |= GFP_NOWAIT; 897 } 898 899 return gfp; 900 } 901 902 /* 903 * this just gets pages into the page cache and locks them down. 904 */ 905 static noinline int prepare_pages(struct inode *inode, struct page **pages, 906 size_t num_pages, loff_t pos, 907 size_t write_bytes, bool force_uptodate, 908 bool nowait) 909 { 910 int i; 911 unsigned long index = pos >> PAGE_SHIFT; 912 gfp_t mask = get_prepare_gfp_flags(inode, nowait); 913 fgf_t fgp_flags = get_prepare_fgp_flags(nowait); 914 int err = 0; 915 int faili; 916 917 for (i = 0; i < num_pages; i++) { 918 again: 919 pages[i] = pagecache_get_page(inode->i_mapping, index + i, 920 fgp_flags, mask | __GFP_WRITE); 921 if (!pages[i]) { 922 faili = i - 1; 923 if (nowait) 924 err = -EAGAIN; 925 else 926 err = -ENOMEM; 927 goto fail; 928 } 929 930 err = set_page_extent_mapped(pages[i]); 931 if (err < 0) { 932 faili = i; 933 goto fail; 934 } 935 936 if (i == 0) 937 err = prepare_uptodate_page(inode, pages[i], pos, 938 force_uptodate); 939 if (!err && i == num_pages - 1) 940 err = prepare_uptodate_page(inode, pages[i], 941 pos + write_bytes, false); 942 if (err) { 943 put_page(pages[i]); 944 if (!nowait && err == -EAGAIN) { 945 err = 0; 946 goto again; 947 } 948 faili = i - 1; 949 goto fail; 950 } 951 wait_on_page_writeback(pages[i]); 952 } 953 954 return 0; 955 fail: 956 while (faili >= 0) { 957 unlock_page(pages[faili]); 958 put_page(pages[faili]); 959 faili--; 960 } 961 return err; 962 963 } 964 965 /* 966 * This function locks the extent and properly waits for data=ordered extents 967 * to finish before allowing the pages to be modified if need. 968 * 969 * The return value: 970 * 1 - the extent is locked 971 * 0 - the extent is not locked, and everything is OK 972 * -EAGAIN - need re-prepare the pages 973 * the other < 0 number - Something wrong happens 974 */ 975 static noinline int 976 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 977 size_t num_pages, loff_t pos, 978 size_t write_bytes, 979 u64 *lockstart, u64 *lockend, bool nowait, 980 struct extent_state **cached_state) 981 { 982 struct btrfs_fs_info *fs_info = inode->root->fs_info; 983 u64 start_pos; 984 u64 last_pos; 985 int i; 986 int ret = 0; 987 988 start_pos = round_down(pos, fs_info->sectorsize); 989 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 990 991 if (start_pos < inode->vfs_inode.i_size) { 992 struct btrfs_ordered_extent *ordered; 993 994 if (nowait) { 995 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos, 996 cached_state)) { 997 for (i = 0; i < num_pages; i++) { 998 unlock_page(pages[i]); 999 put_page(pages[i]); 1000 pages[i] = NULL; 1001 } 1002 1003 return -EAGAIN; 1004 } 1005 } else { 1006 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state); 1007 } 1008 1009 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1010 last_pos - start_pos + 1); 1011 if (ordered && 1012 ordered->file_offset + ordered->num_bytes > start_pos && 1013 ordered->file_offset <= last_pos) { 1014 unlock_extent(&inode->io_tree, start_pos, last_pos, 1015 cached_state); 1016 for (i = 0; i < num_pages; i++) { 1017 unlock_page(pages[i]); 1018 put_page(pages[i]); 1019 } 1020 btrfs_start_ordered_extent(ordered); 1021 btrfs_put_ordered_extent(ordered); 1022 return -EAGAIN; 1023 } 1024 if (ordered) 1025 btrfs_put_ordered_extent(ordered); 1026 1027 *lockstart = start_pos; 1028 *lockend = last_pos; 1029 ret = 1; 1030 } 1031 1032 /* 1033 * We should be called after prepare_pages() which should have locked 1034 * all pages in the range. 1035 */ 1036 for (i = 0; i < num_pages; i++) 1037 WARN_ON(!PageLocked(pages[i])); 1038 1039 return ret; 1040 } 1041 1042 /* 1043 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1044 * 1045 * @pos: File offset. 1046 * @write_bytes: The length to write, will be updated to the nocow writeable 1047 * range. 1048 * 1049 * This function will flush ordered extents in the range to ensure proper 1050 * nocow checks. 1051 * 1052 * Return: 1053 * > 0 If we can nocow, and updates @write_bytes. 1054 * 0 If we can't do a nocow write. 1055 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's 1056 * root is in progress. 1057 * < 0 If an error happened. 1058 * 1059 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 1060 */ 1061 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1062 size_t *write_bytes, bool nowait) 1063 { 1064 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1065 struct btrfs_root *root = inode->root; 1066 struct extent_state *cached_state = NULL; 1067 u64 lockstart, lockend; 1068 u64 num_bytes; 1069 int ret; 1070 1071 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1072 return 0; 1073 1074 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1075 return -EAGAIN; 1076 1077 lockstart = round_down(pos, fs_info->sectorsize); 1078 lockend = round_up(pos + *write_bytes, 1079 fs_info->sectorsize) - 1; 1080 num_bytes = lockend - lockstart + 1; 1081 1082 if (nowait) { 1083 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend, 1084 &cached_state)) { 1085 btrfs_drew_write_unlock(&root->snapshot_lock); 1086 return -EAGAIN; 1087 } 1088 } else { 1089 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, 1090 &cached_state); 1091 } 1092 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1093 NULL, NULL, NULL, nowait, false); 1094 if (ret <= 0) 1095 btrfs_drew_write_unlock(&root->snapshot_lock); 1096 else 1097 *write_bytes = min_t(size_t, *write_bytes , 1098 num_bytes - pos + lockstart); 1099 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 1100 1101 return ret; 1102 } 1103 1104 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1105 { 1106 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1107 } 1108 1109 static void update_time_for_write(struct inode *inode) 1110 { 1111 struct timespec64 now, ctime; 1112 1113 if (IS_NOCMTIME(inode)) 1114 return; 1115 1116 now = current_time(inode); 1117 if (!timespec64_equal(&inode->i_mtime, &now)) 1118 inode->i_mtime = now; 1119 1120 ctime = inode_get_ctime(inode); 1121 if (!timespec64_equal(&ctime, &now)) 1122 inode_set_ctime_to_ts(inode, now); 1123 1124 if (IS_I_VERSION(inode)) 1125 inode_inc_iversion(inode); 1126 } 1127 1128 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1129 size_t count) 1130 { 1131 struct file *file = iocb->ki_filp; 1132 struct inode *inode = file_inode(file); 1133 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1134 loff_t pos = iocb->ki_pos; 1135 int ret; 1136 loff_t oldsize; 1137 loff_t start_pos; 1138 1139 /* 1140 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1141 * prealloc flags, as without those flags we always have to COW. We will 1142 * later check if we can really COW into the target range (using 1143 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1144 */ 1145 if ((iocb->ki_flags & IOCB_NOWAIT) && 1146 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1147 return -EAGAIN; 1148 1149 ret = file_remove_privs(file); 1150 if (ret) 1151 return ret; 1152 1153 /* 1154 * We reserve space for updating the inode when we reserve space for the 1155 * extent we are going to write, so we will enospc out there. We don't 1156 * need to start yet another transaction to update the inode as we will 1157 * update the inode when we finish writing whatever data we write. 1158 */ 1159 update_time_for_write(inode); 1160 1161 start_pos = round_down(pos, fs_info->sectorsize); 1162 oldsize = i_size_read(inode); 1163 if (start_pos > oldsize) { 1164 /* Expand hole size to cover write data, preventing empty gap */ 1165 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1166 1167 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1168 if (ret) 1169 return ret; 1170 } 1171 1172 return 0; 1173 } 1174 1175 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1176 struct iov_iter *i) 1177 { 1178 struct file *file = iocb->ki_filp; 1179 loff_t pos; 1180 struct inode *inode = file_inode(file); 1181 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1182 struct page **pages = NULL; 1183 struct extent_changeset *data_reserved = NULL; 1184 u64 release_bytes = 0; 1185 u64 lockstart; 1186 u64 lockend; 1187 size_t num_written = 0; 1188 int nrptrs; 1189 ssize_t ret; 1190 bool only_release_metadata = false; 1191 bool force_page_uptodate = false; 1192 loff_t old_isize = i_size_read(inode); 1193 unsigned int ilock_flags = 0; 1194 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 1195 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0); 1196 1197 if (nowait) 1198 ilock_flags |= BTRFS_ILOCK_TRY; 1199 1200 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1201 if (ret < 0) 1202 return ret; 1203 1204 ret = generic_write_checks(iocb, i); 1205 if (ret <= 0) 1206 goto out; 1207 1208 ret = btrfs_write_check(iocb, i, ret); 1209 if (ret < 0) 1210 goto out; 1211 1212 pos = iocb->ki_pos; 1213 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1214 PAGE_SIZE / (sizeof(struct page *))); 1215 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1216 nrptrs = max(nrptrs, 8); 1217 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1218 if (!pages) { 1219 ret = -ENOMEM; 1220 goto out; 1221 } 1222 1223 while (iov_iter_count(i) > 0) { 1224 struct extent_state *cached_state = NULL; 1225 size_t offset = offset_in_page(pos); 1226 size_t sector_offset; 1227 size_t write_bytes = min(iov_iter_count(i), 1228 nrptrs * (size_t)PAGE_SIZE - 1229 offset); 1230 size_t num_pages; 1231 size_t reserve_bytes; 1232 size_t dirty_pages; 1233 size_t copied; 1234 size_t dirty_sectors; 1235 size_t num_sectors; 1236 int extents_locked; 1237 1238 /* 1239 * Fault pages before locking them in prepare_pages 1240 * to avoid recursive lock 1241 */ 1242 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1243 ret = -EFAULT; 1244 break; 1245 } 1246 1247 only_release_metadata = false; 1248 sector_offset = pos & (fs_info->sectorsize - 1); 1249 1250 extent_changeset_release(data_reserved); 1251 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1252 &data_reserved, pos, 1253 write_bytes, nowait); 1254 if (ret < 0) { 1255 int can_nocow; 1256 1257 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) { 1258 ret = -EAGAIN; 1259 break; 1260 } 1261 1262 /* 1263 * If we don't have to COW at the offset, reserve 1264 * metadata only. write_bytes may get smaller than 1265 * requested here. 1266 */ 1267 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1268 &write_bytes, nowait); 1269 if (can_nocow < 0) 1270 ret = can_nocow; 1271 if (can_nocow > 0) 1272 ret = 0; 1273 if (ret) 1274 break; 1275 only_release_metadata = true; 1276 } 1277 1278 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1279 WARN_ON(num_pages > nrptrs); 1280 reserve_bytes = round_up(write_bytes + sector_offset, 1281 fs_info->sectorsize); 1282 WARN_ON(reserve_bytes == 0); 1283 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1284 reserve_bytes, 1285 reserve_bytes, nowait); 1286 if (ret) { 1287 if (!only_release_metadata) 1288 btrfs_free_reserved_data_space(BTRFS_I(inode), 1289 data_reserved, pos, 1290 write_bytes); 1291 else 1292 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1293 1294 if (nowait && ret == -ENOSPC) 1295 ret = -EAGAIN; 1296 break; 1297 } 1298 1299 release_bytes = reserve_bytes; 1300 again: 1301 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags); 1302 if (ret) { 1303 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1304 break; 1305 } 1306 1307 /* 1308 * This is going to setup the pages array with the number of 1309 * pages we want, so we don't really need to worry about the 1310 * contents of pages from loop to loop 1311 */ 1312 ret = prepare_pages(inode, pages, num_pages, 1313 pos, write_bytes, force_page_uptodate, false); 1314 if (ret) { 1315 btrfs_delalloc_release_extents(BTRFS_I(inode), 1316 reserve_bytes); 1317 break; 1318 } 1319 1320 extents_locked = lock_and_cleanup_extent_if_need( 1321 BTRFS_I(inode), pages, 1322 num_pages, pos, write_bytes, &lockstart, 1323 &lockend, nowait, &cached_state); 1324 if (extents_locked < 0) { 1325 if (!nowait && extents_locked == -EAGAIN) 1326 goto again; 1327 1328 btrfs_delalloc_release_extents(BTRFS_I(inode), 1329 reserve_bytes); 1330 ret = extents_locked; 1331 break; 1332 } 1333 1334 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1335 1336 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1337 dirty_sectors = round_up(copied + sector_offset, 1338 fs_info->sectorsize); 1339 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1340 1341 /* 1342 * if we have trouble faulting in the pages, fall 1343 * back to one page at a time 1344 */ 1345 if (copied < write_bytes) 1346 nrptrs = 1; 1347 1348 if (copied == 0) { 1349 force_page_uptodate = true; 1350 dirty_sectors = 0; 1351 dirty_pages = 0; 1352 } else { 1353 force_page_uptodate = false; 1354 dirty_pages = DIV_ROUND_UP(copied + offset, 1355 PAGE_SIZE); 1356 } 1357 1358 if (num_sectors > dirty_sectors) { 1359 /* release everything except the sectors we dirtied */ 1360 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1361 if (only_release_metadata) { 1362 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1363 release_bytes, true); 1364 } else { 1365 u64 __pos; 1366 1367 __pos = round_down(pos, 1368 fs_info->sectorsize) + 1369 (dirty_pages << PAGE_SHIFT); 1370 btrfs_delalloc_release_space(BTRFS_I(inode), 1371 data_reserved, __pos, 1372 release_bytes, true); 1373 } 1374 } 1375 1376 release_bytes = round_up(copied + sector_offset, 1377 fs_info->sectorsize); 1378 1379 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1380 dirty_pages, pos, copied, 1381 &cached_state, only_release_metadata); 1382 1383 /* 1384 * If we have not locked the extent range, because the range's 1385 * start offset is >= i_size, we might still have a non-NULL 1386 * cached extent state, acquired while marking the extent range 1387 * as delalloc through btrfs_dirty_pages(). Therefore free any 1388 * possible cached extent state to avoid a memory leak. 1389 */ 1390 if (extents_locked) 1391 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 1392 lockend, &cached_state); 1393 else 1394 free_extent_state(cached_state); 1395 1396 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1397 if (ret) { 1398 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1399 break; 1400 } 1401 1402 release_bytes = 0; 1403 if (only_release_metadata) 1404 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1405 1406 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1407 1408 cond_resched(); 1409 1410 pos += copied; 1411 num_written += copied; 1412 } 1413 1414 kfree(pages); 1415 1416 if (release_bytes) { 1417 if (only_release_metadata) { 1418 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1419 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1420 release_bytes, true); 1421 } else { 1422 btrfs_delalloc_release_space(BTRFS_I(inode), 1423 data_reserved, 1424 round_down(pos, fs_info->sectorsize), 1425 release_bytes, true); 1426 } 1427 } 1428 1429 extent_changeset_free(data_reserved); 1430 if (num_written > 0) { 1431 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1432 iocb->ki_pos += num_written; 1433 } 1434 out: 1435 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1436 return num_written ? num_written : ret; 1437 } 1438 1439 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1440 const struct iov_iter *iter, loff_t offset) 1441 { 1442 const u32 blocksize_mask = fs_info->sectorsize - 1; 1443 1444 if (offset & blocksize_mask) 1445 return -EINVAL; 1446 1447 if (iov_iter_alignment(iter) & blocksize_mask) 1448 return -EINVAL; 1449 1450 return 0; 1451 } 1452 1453 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1454 { 1455 struct file *file = iocb->ki_filp; 1456 struct inode *inode = file_inode(file); 1457 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1458 loff_t pos; 1459 ssize_t written = 0; 1460 ssize_t written_buffered; 1461 size_t prev_left = 0; 1462 loff_t endbyte; 1463 ssize_t err; 1464 unsigned int ilock_flags = 0; 1465 struct iomap_dio *dio; 1466 1467 if (iocb->ki_flags & IOCB_NOWAIT) 1468 ilock_flags |= BTRFS_ILOCK_TRY; 1469 1470 /* 1471 * If the write DIO is within EOF, use a shared lock and also only if 1472 * security bits will likely not be dropped by file_remove_privs() called 1473 * from btrfs_write_check(). Either will need to be rechecked after the 1474 * lock was acquired. 1475 */ 1476 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode)) 1477 ilock_flags |= BTRFS_ILOCK_SHARED; 1478 1479 relock: 1480 err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1481 if (err < 0) 1482 return err; 1483 1484 /* Shared lock cannot be used with security bits set. */ 1485 if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) { 1486 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1487 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1488 goto relock; 1489 } 1490 1491 err = generic_write_checks(iocb, from); 1492 if (err <= 0) { 1493 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1494 return err; 1495 } 1496 1497 err = btrfs_write_check(iocb, from, err); 1498 if (err < 0) { 1499 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1500 goto out; 1501 } 1502 1503 pos = iocb->ki_pos; 1504 /* 1505 * Re-check since file size may have changed just before taking the 1506 * lock or pos may have changed because of O_APPEND in generic_write_check() 1507 */ 1508 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1509 pos + iov_iter_count(from) > i_size_read(inode)) { 1510 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1511 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1512 goto relock; 1513 } 1514 1515 if (check_direct_IO(fs_info, from, pos)) { 1516 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1517 goto buffered; 1518 } 1519 1520 /* 1521 * The iov_iter can be mapped to the same file range we are writing to. 1522 * If that's the case, then we will deadlock in the iomap code, because 1523 * it first calls our callback btrfs_dio_iomap_begin(), which will create 1524 * an ordered extent, and after that it will fault in the pages that the 1525 * iov_iter refers to. During the fault in we end up in the readahead 1526 * pages code (starting at btrfs_readahead()), which will lock the range, 1527 * find that ordered extent and then wait for it to complete (at 1528 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since 1529 * obviously the ordered extent can never complete as we didn't submit 1530 * yet the respective bio(s). This always happens when the buffer is 1531 * memory mapped to the same file range, since the iomap DIO code always 1532 * invalidates pages in the target file range (after starting and waiting 1533 * for any writeback). 1534 * 1535 * So here we disable page faults in the iov_iter and then retry if we 1536 * got -EFAULT, faulting in the pages before the retry. 1537 */ 1538 from->nofault = true; 1539 dio = btrfs_dio_write(iocb, from, written); 1540 from->nofault = false; 1541 1542 /* 1543 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync 1544 * iocb, and that needs to lock the inode. So unlock it before calling 1545 * iomap_dio_complete() to avoid a deadlock. 1546 */ 1547 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1548 1549 if (IS_ERR_OR_NULL(dio)) 1550 err = PTR_ERR_OR_ZERO(dio); 1551 else 1552 err = iomap_dio_complete(dio); 1553 1554 /* No increment (+=) because iomap returns a cumulative value. */ 1555 if (err > 0) 1556 written = err; 1557 1558 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) { 1559 const size_t left = iov_iter_count(from); 1560 /* 1561 * We have more data left to write. Try to fault in as many as 1562 * possible of the remainder pages and retry. We do this without 1563 * releasing and locking again the inode, to prevent races with 1564 * truncate. 1565 * 1566 * Also, in case the iov refers to pages in the file range of the 1567 * file we want to write to (due to a mmap), we could enter an 1568 * infinite loop if we retry after faulting the pages in, since 1569 * iomap will invalidate any pages in the range early on, before 1570 * it tries to fault in the pages of the iov. So we keep track of 1571 * how much was left of iov in the previous EFAULT and fallback 1572 * to buffered IO in case we haven't made any progress. 1573 */ 1574 if (left == prev_left) { 1575 err = -ENOTBLK; 1576 } else { 1577 fault_in_iov_iter_readable(from, left); 1578 prev_left = left; 1579 goto relock; 1580 } 1581 } 1582 1583 /* 1584 * If 'err' is -ENOTBLK or we have not written all data, then it means 1585 * we must fallback to buffered IO. 1586 */ 1587 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from)) 1588 goto out; 1589 1590 buffered: 1591 /* 1592 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller 1593 * it must retry the operation in a context where blocking is acceptable, 1594 * because even if we end up not blocking during the buffered IO attempt 1595 * below, we will block when flushing and waiting for the IO. 1596 */ 1597 if (iocb->ki_flags & IOCB_NOWAIT) { 1598 err = -EAGAIN; 1599 goto out; 1600 } 1601 1602 pos = iocb->ki_pos; 1603 written_buffered = btrfs_buffered_write(iocb, from); 1604 if (written_buffered < 0) { 1605 err = written_buffered; 1606 goto out; 1607 } 1608 /* 1609 * Ensure all data is persisted. We want the next direct IO read to be 1610 * able to read what was just written. 1611 */ 1612 endbyte = pos + written_buffered - 1; 1613 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1614 if (err) 1615 goto out; 1616 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1617 if (err) 1618 goto out; 1619 written += written_buffered; 1620 iocb->ki_pos = pos + written_buffered; 1621 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1622 endbyte >> PAGE_SHIFT); 1623 out: 1624 return err < 0 ? err : written; 1625 } 1626 1627 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 1628 const struct btrfs_ioctl_encoded_io_args *encoded) 1629 { 1630 struct file *file = iocb->ki_filp; 1631 struct inode *inode = file_inode(file); 1632 loff_t count; 1633 ssize_t ret; 1634 1635 btrfs_inode_lock(BTRFS_I(inode), 0); 1636 count = encoded->len; 1637 ret = generic_write_checks_count(iocb, &count); 1638 if (ret == 0 && count != encoded->len) { 1639 /* 1640 * The write got truncated by generic_write_checks_count(). We 1641 * can't do a partial encoded write. 1642 */ 1643 ret = -EFBIG; 1644 } 1645 if (ret || encoded->len == 0) 1646 goto out; 1647 1648 ret = btrfs_write_check(iocb, from, encoded->len); 1649 if (ret < 0) 1650 goto out; 1651 1652 ret = btrfs_do_encoded_write(iocb, from, encoded); 1653 out: 1654 btrfs_inode_unlock(BTRFS_I(inode), 0); 1655 return ret; 1656 } 1657 1658 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 1659 const struct btrfs_ioctl_encoded_io_args *encoded) 1660 { 1661 struct file *file = iocb->ki_filp; 1662 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 1663 ssize_t num_written, num_sync; 1664 1665 /* 1666 * If the fs flips readonly due to some impossible error, although we 1667 * have opened a file as writable, we have to stop this write operation 1668 * to ensure consistency. 1669 */ 1670 if (BTRFS_FS_ERROR(inode->root->fs_info)) 1671 return -EROFS; 1672 1673 if (encoded && (iocb->ki_flags & IOCB_NOWAIT)) 1674 return -EOPNOTSUPP; 1675 1676 if (encoded) { 1677 num_written = btrfs_encoded_write(iocb, from, encoded); 1678 num_sync = encoded->len; 1679 } else if (iocb->ki_flags & IOCB_DIRECT) { 1680 num_written = btrfs_direct_write(iocb, from); 1681 num_sync = num_written; 1682 } else { 1683 num_written = btrfs_buffered_write(iocb, from); 1684 num_sync = num_written; 1685 } 1686 1687 btrfs_set_inode_last_sub_trans(inode); 1688 1689 if (num_sync > 0) { 1690 num_sync = generic_write_sync(iocb, num_sync); 1691 if (num_sync < 0) 1692 num_written = num_sync; 1693 } 1694 1695 return num_written; 1696 } 1697 1698 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1699 { 1700 return btrfs_do_write_iter(iocb, from, NULL); 1701 } 1702 1703 int btrfs_release_file(struct inode *inode, struct file *filp) 1704 { 1705 struct btrfs_file_private *private = filp->private_data; 1706 1707 if (private) { 1708 kfree(private->filldir_buf); 1709 free_extent_state(private->llseek_cached_state); 1710 kfree(private); 1711 filp->private_data = NULL; 1712 } 1713 1714 /* 1715 * Set by setattr when we are about to truncate a file from a non-zero 1716 * size to a zero size. This tries to flush down new bytes that may 1717 * have been written if the application were using truncate to replace 1718 * a file in place. 1719 */ 1720 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 1721 &BTRFS_I(inode)->runtime_flags)) 1722 filemap_flush(inode->i_mapping); 1723 return 0; 1724 } 1725 1726 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 1727 { 1728 int ret; 1729 struct blk_plug plug; 1730 1731 /* 1732 * This is only called in fsync, which would do synchronous writes, so 1733 * a plug can merge adjacent IOs as much as possible. Esp. in case of 1734 * multiple disks using raid profile, a large IO can be split to 1735 * several segments of stripe length (currently 64K). 1736 */ 1737 blk_start_plug(&plug); 1738 ret = btrfs_fdatawrite_range(inode, start, end); 1739 blk_finish_plug(&plug); 1740 1741 return ret; 1742 } 1743 1744 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 1745 { 1746 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 1747 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1748 1749 if (btrfs_inode_in_log(inode, fs_info->generation) && 1750 list_empty(&ctx->ordered_extents)) 1751 return true; 1752 1753 /* 1754 * If we are doing a fast fsync we can not bail out if the inode's 1755 * last_trans is <= then the last committed transaction, because we only 1756 * update the last_trans of the inode during ordered extent completion, 1757 * and for a fast fsync we don't wait for that, we only wait for the 1758 * writeback to complete. 1759 */ 1760 if (inode->last_trans <= fs_info->last_trans_committed && 1761 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 1762 list_empty(&ctx->ordered_extents))) 1763 return true; 1764 1765 return false; 1766 } 1767 1768 /* 1769 * fsync call for both files and directories. This logs the inode into 1770 * the tree log instead of forcing full commits whenever possible. 1771 * 1772 * It needs to call filemap_fdatawait so that all ordered extent updates are 1773 * in the metadata btree are up to date for copying to the log. 1774 * 1775 * It drops the inode mutex before doing the tree log commit. This is an 1776 * important optimization for directories because holding the mutex prevents 1777 * new operations on the dir while we write to disk. 1778 */ 1779 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1780 { 1781 struct dentry *dentry = file_dentry(file); 1782 struct inode *inode = d_inode(dentry); 1783 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1784 struct btrfs_root *root = BTRFS_I(inode)->root; 1785 struct btrfs_trans_handle *trans; 1786 struct btrfs_log_ctx ctx; 1787 int ret = 0, err; 1788 u64 len; 1789 bool full_sync; 1790 1791 trace_btrfs_sync_file(file, datasync); 1792 1793 btrfs_init_log_ctx(&ctx, inode); 1794 1795 /* 1796 * Always set the range to a full range, otherwise we can get into 1797 * several problems, from missing file extent items to represent holes 1798 * when not using the NO_HOLES feature, to log tree corruption due to 1799 * races between hole detection during logging and completion of ordered 1800 * extents outside the range, to missing checksums due to ordered extents 1801 * for which we flushed only a subset of their pages. 1802 */ 1803 start = 0; 1804 end = LLONG_MAX; 1805 len = (u64)LLONG_MAX + 1; 1806 1807 /* 1808 * We write the dirty pages in the range and wait until they complete 1809 * out of the ->i_mutex. If so, we can flush the dirty pages by 1810 * multi-task, and make the performance up. See 1811 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1812 */ 1813 ret = start_ordered_ops(inode, start, end); 1814 if (ret) 1815 goto out; 1816 1817 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1818 1819 atomic_inc(&root->log_batch); 1820 1821 /* 1822 * Before we acquired the inode's lock and the mmap lock, someone may 1823 * have dirtied more pages in the target range. We need to make sure 1824 * that writeback for any such pages does not start while we are logging 1825 * the inode, because if it does, any of the following might happen when 1826 * we are not doing a full inode sync: 1827 * 1828 * 1) We log an extent after its writeback finishes but before its 1829 * checksums are added to the csum tree, leading to -EIO errors 1830 * when attempting to read the extent after a log replay. 1831 * 1832 * 2) We can end up logging an extent before its writeback finishes. 1833 * Therefore after the log replay we will have a file extent item 1834 * pointing to an unwritten extent (and no data checksums as well). 1835 * 1836 * So trigger writeback for any eventual new dirty pages and then we 1837 * wait for all ordered extents to complete below. 1838 */ 1839 ret = start_ordered_ops(inode, start, end); 1840 if (ret) { 1841 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1842 goto out; 1843 } 1844 1845 /* 1846 * Always check for the full sync flag while holding the inode's lock, 1847 * to avoid races with other tasks. The flag must be either set all the 1848 * time during logging or always off all the time while logging. 1849 * We check the flag here after starting delalloc above, because when 1850 * running delalloc the full sync flag may be set if we need to drop 1851 * extra extent map ranges due to temporary memory allocation failures. 1852 */ 1853 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1854 &BTRFS_I(inode)->runtime_flags); 1855 1856 /* 1857 * We have to do this here to avoid the priority inversion of waiting on 1858 * IO of a lower priority task while holding a transaction open. 1859 * 1860 * For a full fsync we wait for the ordered extents to complete while 1861 * for a fast fsync we wait just for writeback to complete, and then 1862 * attach the ordered extents to the transaction so that a transaction 1863 * commit waits for their completion, to avoid data loss if we fsync, 1864 * the current transaction commits before the ordered extents complete 1865 * and a power failure happens right after that. 1866 * 1867 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 1868 * logical address recorded in the ordered extent may change. We need 1869 * to wait for the IO to stabilize the logical address. 1870 */ 1871 if (full_sync || btrfs_is_zoned(fs_info)) { 1872 ret = btrfs_wait_ordered_range(inode, start, len); 1873 } else { 1874 /* 1875 * Get our ordered extents as soon as possible to avoid doing 1876 * checksum lookups in the csum tree, and use instead the 1877 * checksums attached to the ordered extents. 1878 */ 1879 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 1880 &ctx.ordered_extents); 1881 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 1882 } 1883 1884 if (ret) 1885 goto out_release_extents; 1886 1887 atomic_inc(&root->log_batch); 1888 1889 smp_mb(); 1890 if (skip_inode_logging(&ctx)) { 1891 /* 1892 * We've had everything committed since the last time we were 1893 * modified so clear this flag in case it was set for whatever 1894 * reason, it's no longer relevant. 1895 */ 1896 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1897 &BTRFS_I(inode)->runtime_flags); 1898 /* 1899 * An ordered extent might have started before and completed 1900 * already with io errors, in which case the inode was not 1901 * updated and we end up here. So check the inode's mapping 1902 * for any errors that might have happened since we last 1903 * checked called fsync. 1904 */ 1905 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 1906 goto out_release_extents; 1907 } 1908 1909 /* 1910 * We use start here because we will need to wait on the IO to complete 1911 * in btrfs_sync_log, which could require joining a transaction (for 1912 * example checking cross references in the nocow path). If we use join 1913 * here we could get into a situation where we're waiting on IO to 1914 * happen that is blocked on a transaction trying to commit. With start 1915 * we inc the extwriter counter, so we wait for all extwriters to exit 1916 * before we start blocking joiners. This comment is to keep somebody 1917 * from thinking they are super smart and changing this to 1918 * btrfs_join_transaction *cough*Josef*cough*. 1919 */ 1920 trans = btrfs_start_transaction(root, 0); 1921 if (IS_ERR(trans)) { 1922 ret = PTR_ERR(trans); 1923 goto out_release_extents; 1924 } 1925 trans->in_fsync = true; 1926 1927 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 1928 btrfs_release_log_ctx_extents(&ctx); 1929 if (ret < 0) { 1930 /* Fallthrough and commit/free transaction. */ 1931 ret = BTRFS_LOG_FORCE_COMMIT; 1932 } 1933 1934 /* we've logged all the items and now have a consistent 1935 * version of the file in the log. It is possible that 1936 * someone will come in and modify the file, but that's 1937 * fine because the log is consistent on disk, and we 1938 * have references to all of the file's extents 1939 * 1940 * It is possible that someone will come in and log the 1941 * file again, but that will end up using the synchronization 1942 * inside btrfs_sync_log to keep things safe. 1943 */ 1944 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1945 1946 if (ret == BTRFS_NO_LOG_SYNC) { 1947 ret = btrfs_end_transaction(trans); 1948 goto out; 1949 } 1950 1951 /* We successfully logged the inode, attempt to sync the log. */ 1952 if (!ret) { 1953 ret = btrfs_sync_log(trans, root, &ctx); 1954 if (!ret) { 1955 ret = btrfs_end_transaction(trans); 1956 goto out; 1957 } 1958 } 1959 1960 /* 1961 * At this point we need to commit the transaction because we had 1962 * btrfs_need_log_full_commit() or some other error. 1963 * 1964 * If we didn't do a full sync we have to stop the trans handle, wait on 1965 * the ordered extents, start it again and commit the transaction. If 1966 * we attempt to wait on the ordered extents here we could deadlock with 1967 * something like fallocate() that is holding the extent lock trying to 1968 * start a transaction while some other thread is trying to commit the 1969 * transaction while we (fsync) are currently holding the transaction 1970 * open. 1971 */ 1972 if (!full_sync) { 1973 ret = btrfs_end_transaction(trans); 1974 if (ret) 1975 goto out; 1976 ret = btrfs_wait_ordered_range(inode, start, len); 1977 if (ret) 1978 goto out; 1979 1980 /* 1981 * This is safe to use here because we're only interested in 1982 * making sure the transaction that had the ordered extents is 1983 * committed. We aren't waiting on anything past this point, 1984 * we're purely getting the transaction and committing it. 1985 */ 1986 trans = btrfs_attach_transaction_barrier(root); 1987 if (IS_ERR(trans)) { 1988 ret = PTR_ERR(trans); 1989 1990 /* 1991 * We committed the transaction and there's no currently 1992 * running transaction, this means everything we care 1993 * about made it to disk and we are done. 1994 */ 1995 if (ret == -ENOENT) 1996 ret = 0; 1997 goto out; 1998 } 1999 } 2000 2001 ret = btrfs_commit_transaction(trans); 2002 out: 2003 ASSERT(list_empty(&ctx.list)); 2004 ASSERT(list_empty(&ctx.conflict_inodes)); 2005 err = file_check_and_advance_wb_err(file); 2006 if (!ret) 2007 ret = err; 2008 return ret > 0 ? -EIO : ret; 2009 2010 out_release_extents: 2011 btrfs_release_log_ctx_extents(&ctx); 2012 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2013 goto out; 2014 } 2015 2016 static const struct vm_operations_struct btrfs_file_vm_ops = { 2017 .fault = filemap_fault, 2018 .map_pages = filemap_map_pages, 2019 .page_mkwrite = btrfs_page_mkwrite, 2020 }; 2021 2022 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2023 { 2024 struct address_space *mapping = filp->f_mapping; 2025 2026 if (!mapping->a_ops->read_folio) 2027 return -ENOEXEC; 2028 2029 file_accessed(filp); 2030 vma->vm_ops = &btrfs_file_vm_ops; 2031 2032 return 0; 2033 } 2034 2035 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2036 int slot, u64 start, u64 end) 2037 { 2038 struct btrfs_file_extent_item *fi; 2039 struct btrfs_key key; 2040 2041 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2042 return 0; 2043 2044 btrfs_item_key_to_cpu(leaf, &key, slot); 2045 if (key.objectid != btrfs_ino(inode) || 2046 key.type != BTRFS_EXTENT_DATA_KEY) 2047 return 0; 2048 2049 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2050 2051 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2052 return 0; 2053 2054 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2055 return 0; 2056 2057 if (key.offset == end) 2058 return 1; 2059 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2060 return 1; 2061 return 0; 2062 } 2063 2064 static int fill_holes(struct btrfs_trans_handle *trans, 2065 struct btrfs_inode *inode, 2066 struct btrfs_path *path, u64 offset, u64 end) 2067 { 2068 struct btrfs_fs_info *fs_info = trans->fs_info; 2069 struct btrfs_root *root = inode->root; 2070 struct extent_buffer *leaf; 2071 struct btrfs_file_extent_item *fi; 2072 struct extent_map *hole_em; 2073 struct btrfs_key key; 2074 int ret; 2075 2076 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2077 goto out; 2078 2079 key.objectid = btrfs_ino(inode); 2080 key.type = BTRFS_EXTENT_DATA_KEY; 2081 key.offset = offset; 2082 2083 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2084 if (ret <= 0) { 2085 /* 2086 * We should have dropped this offset, so if we find it then 2087 * something has gone horribly wrong. 2088 */ 2089 if (ret == 0) 2090 ret = -EINVAL; 2091 return ret; 2092 } 2093 2094 leaf = path->nodes[0]; 2095 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2096 u64 num_bytes; 2097 2098 path->slots[0]--; 2099 fi = btrfs_item_ptr(leaf, path->slots[0], 2100 struct btrfs_file_extent_item); 2101 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2102 end - offset; 2103 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2104 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2105 btrfs_set_file_extent_offset(leaf, fi, 0); 2106 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2107 btrfs_mark_buffer_dirty(trans, leaf); 2108 goto out; 2109 } 2110 2111 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2112 u64 num_bytes; 2113 2114 key.offset = offset; 2115 btrfs_set_item_key_safe(trans, path, &key); 2116 fi = btrfs_item_ptr(leaf, path->slots[0], 2117 struct btrfs_file_extent_item); 2118 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2119 offset; 2120 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2121 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2122 btrfs_set_file_extent_offset(leaf, fi, 0); 2123 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2124 btrfs_mark_buffer_dirty(trans, leaf); 2125 goto out; 2126 } 2127 btrfs_release_path(path); 2128 2129 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, 2130 end - offset); 2131 if (ret) 2132 return ret; 2133 2134 out: 2135 btrfs_release_path(path); 2136 2137 hole_em = alloc_extent_map(); 2138 if (!hole_em) { 2139 btrfs_drop_extent_map_range(inode, offset, end - 1, false); 2140 btrfs_set_inode_full_sync(inode); 2141 } else { 2142 hole_em->start = offset; 2143 hole_em->len = end - offset; 2144 hole_em->ram_bytes = hole_em->len; 2145 hole_em->orig_start = offset; 2146 2147 hole_em->block_start = EXTENT_MAP_HOLE; 2148 hole_em->block_len = 0; 2149 hole_em->orig_block_len = 0; 2150 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2151 hole_em->generation = trans->transid; 2152 2153 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 2154 free_extent_map(hole_em); 2155 if (ret) 2156 btrfs_set_inode_full_sync(inode); 2157 } 2158 2159 return 0; 2160 } 2161 2162 /* 2163 * Find a hole extent on given inode and change start/len to the end of hole 2164 * extent.(hole/vacuum extent whose em->start <= start && 2165 * em->start + em->len > start) 2166 * When a hole extent is found, return 1 and modify start/len. 2167 */ 2168 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2169 { 2170 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2171 struct extent_map *em; 2172 int ret = 0; 2173 2174 em = btrfs_get_extent(inode, NULL, 0, 2175 round_down(*start, fs_info->sectorsize), 2176 round_up(*len, fs_info->sectorsize)); 2177 if (IS_ERR(em)) 2178 return PTR_ERR(em); 2179 2180 /* Hole or vacuum extent(only exists in no-hole mode) */ 2181 if (em->block_start == EXTENT_MAP_HOLE) { 2182 ret = 1; 2183 *len = em->start + em->len > *start + *len ? 2184 0 : *start + *len - em->start - em->len; 2185 *start = em->start + em->len; 2186 } 2187 free_extent_map(em); 2188 return ret; 2189 } 2190 2191 static void btrfs_punch_hole_lock_range(struct inode *inode, 2192 const u64 lockstart, 2193 const u64 lockend, 2194 struct extent_state **cached_state) 2195 { 2196 /* 2197 * For subpage case, if the range is not at page boundary, we could 2198 * have pages at the leading/tailing part of the range. 2199 * This could lead to dead loop since filemap_range_has_page() 2200 * will always return true. 2201 * So here we need to do extra page alignment for 2202 * filemap_range_has_page(). 2203 */ 2204 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2205 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2206 2207 while (1) { 2208 truncate_pagecache_range(inode, lockstart, lockend); 2209 2210 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2211 cached_state); 2212 /* 2213 * We can't have ordered extents in the range, nor dirty/writeback 2214 * pages, because we have locked the inode's VFS lock in exclusive 2215 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2216 * we have flushed all delalloc in the range and we have waited 2217 * for any ordered extents in the range to complete. 2218 * We can race with anyone reading pages from this range, so after 2219 * locking the range check if we have pages in the range, and if 2220 * we do, unlock the range and retry. 2221 */ 2222 if (!filemap_range_has_page(inode->i_mapping, page_lockstart, 2223 page_lockend)) 2224 break; 2225 2226 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2227 cached_state); 2228 } 2229 2230 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2231 } 2232 2233 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2234 struct btrfs_inode *inode, 2235 struct btrfs_path *path, 2236 struct btrfs_replace_extent_info *extent_info, 2237 const u64 replace_len, 2238 const u64 bytes_to_drop) 2239 { 2240 struct btrfs_fs_info *fs_info = trans->fs_info; 2241 struct btrfs_root *root = inode->root; 2242 struct btrfs_file_extent_item *extent; 2243 struct extent_buffer *leaf; 2244 struct btrfs_key key; 2245 int slot; 2246 struct btrfs_ref ref = { 0 }; 2247 int ret; 2248 2249 if (replace_len == 0) 2250 return 0; 2251 2252 if (extent_info->disk_offset == 0 && 2253 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2254 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2255 return 0; 2256 } 2257 2258 key.objectid = btrfs_ino(inode); 2259 key.type = BTRFS_EXTENT_DATA_KEY; 2260 key.offset = extent_info->file_offset; 2261 ret = btrfs_insert_empty_item(trans, root, path, &key, 2262 sizeof(struct btrfs_file_extent_item)); 2263 if (ret) 2264 return ret; 2265 leaf = path->nodes[0]; 2266 slot = path->slots[0]; 2267 write_extent_buffer(leaf, extent_info->extent_buf, 2268 btrfs_item_ptr_offset(leaf, slot), 2269 sizeof(struct btrfs_file_extent_item)); 2270 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2271 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2272 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2273 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2274 if (extent_info->is_new_extent) 2275 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2276 btrfs_mark_buffer_dirty(trans, leaf); 2277 btrfs_release_path(path); 2278 2279 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2280 replace_len); 2281 if (ret) 2282 return ret; 2283 2284 /* If it's a hole, nothing more needs to be done. */ 2285 if (extent_info->disk_offset == 0) { 2286 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2287 return 0; 2288 } 2289 2290 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2291 2292 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2293 key.objectid = extent_info->disk_offset; 2294 key.type = BTRFS_EXTENT_ITEM_KEY; 2295 key.offset = extent_info->disk_len; 2296 ret = btrfs_alloc_reserved_file_extent(trans, root, 2297 btrfs_ino(inode), 2298 extent_info->file_offset, 2299 extent_info->qgroup_reserved, 2300 &key); 2301 } else { 2302 u64 ref_offset; 2303 2304 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2305 extent_info->disk_offset, 2306 extent_info->disk_len, 0); 2307 ref_offset = extent_info->file_offset - extent_info->data_offset; 2308 btrfs_init_data_ref(&ref, root->root_key.objectid, 2309 btrfs_ino(inode), ref_offset, 0, false); 2310 ret = btrfs_inc_extent_ref(trans, &ref); 2311 } 2312 2313 extent_info->insertions++; 2314 2315 return ret; 2316 } 2317 2318 /* 2319 * The respective range must have been previously locked, as well as the inode. 2320 * The end offset is inclusive (last byte of the range). 2321 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2322 * the file range with an extent. 2323 * When not punching a hole, we don't want to end up in a state where we dropped 2324 * extents without inserting a new one, so we must abort the transaction to avoid 2325 * a corruption. 2326 */ 2327 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2328 struct btrfs_path *path, const u64 start, 2329 const u64 end, 2330 struct btrfs_replace_extent_info *extent_info, 2331 struct btrfs_trans_handle **trans_out) 2332 { 2333 struct btrfs_drop_extents_args drop_args = { 0 }; 2334 struct btrfs_root *root = inode->root; 2335 struct btrfs_fs_info *fs_info = root->fs_info; 2336 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2337 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2338 struct btrfs_trans_handle *trans = NULL; 2339 struct btrfs_block_rsv *rsv; 2340 unsigned int rsv_count; 2341 u64 cur_offset; 2342 u64 len = end - start; 2343 int ret = 0; 2344 2345 if (end <= start) 2346 return -EINVAL; 2347 2348 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2349 if (!rsv) { 2350 ret = -ENOMEM; 2351 goto out; 2352 } 2353 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2354 rsv->failfast = true; 2355 2356 /* 2357 * 1 - update the inode 2358 * 1 - removing the extents in the range 2359 * 1 - adding the hole extent if no_holes isn't set or if we are 2360 * replacing the range with a new extent 2361 */ 2362 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2363 rsv_count = 3; 2364 else 2365 rsv_count = 2; 2366 2367 trans = btrfs_start_transaction(root, rsv_count); 2368 if (IS_ERR(trans)) { 2369 ret = PTR_ERR(trans); 2370 trans = NULL; 2371 goto out_free; 2372 } 2373 2374 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2375 min_size, false); 2376 if (WARN_ON(ret)) 2377 goto out_trans; 2378 trans->block_rsv = rsv; 2379 2380 cur_offset = start; 2381 drop_args.path = path; 2382 drop_args.end = end + 1; 2383 drop_args.drop_cache = true; 2384 while (cur_offset < end) { 2385 drop_args.start = cur_offset; 2386 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2387 /* If we are punching a hole decrement the inode's byte count */ 2388 if (!extent_info) 2389 btrfs_update_inode_bytes(inode, 0, 2390 drop_args.bytes_found); 2391 if (ret != -ENOSPC) { 2392 /* 2393 * The only time we don't want to abort is if we are 2394 * attempting to clone a partial inline extent, in which 2395 * case we'll get EOPNOTSUPP. However if we aren't 2396 * clone we need to abort no matter what, because if we 2397 * got EOPNOTSUPP via prealloc then we messed up and 2398 * need to abort. 2399 */ 2400 if (ret && 2401 (ret != -EOPNOTSUPP || 2402 (extent_info && extent_info->is_new_extent))) 2403 btrfs_abort_transaction(trans, ret); 2404 break; 2405 } 2406 2407 trans->block_rsv = &fs_info->trans_block_rsv; 2408 2409 if (!extent_info && cur_offset < drop_args.drop_end && 2410 cur_offset < ino_size) { 2411 ret = fill_holes(trans, inode, path, cur_offset, 2412 drop_args.drop_end); 2413 if (ret) { 2414 /* 2415 * If we failed then we didn't insert our hole 2416 * entries for the area we dropped, so now the 2417 * fs is corrupted, so we must abort the 2418 * transaction. 2419 */ 2420 btrfs_abort_transaction(trans, ret); 2421 break; 2422 } 2423 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2424 /* 2425 * We are past the i_size here, but since we didn't 2426 * insert holes we need to clear the mapped area so we 2427 * know to not set disk_i_size in this area until a new 2428 * file extent is inserted here. 2429 */ 2430 ret = btrfs_inode_clear_file_extent_range(inode, 2431 cur_offset, 2432 drop_args.drop_end - cur_offset); 2433 if (ret) { 2434 /* 2435 * We couldn't clear our area, so we could 2436 * presumably adjust up and corrupt the fs, so 2437 * we need to abort. 2438 */ 2439 btrfs_abort_transaction(trans, ret); 2440 break; 2441 } 2442 } 2443 2444 if (extent_info && 2445 drop_args.drop_end > extent_info->file_offset) { 2446 u64 replace_len = drop_args.drop_end - 2447 extent_info->file_offset; 2448 2449 ret = btrfs_insert_replace_extent(trans, inode, path, 2450 extent_info, replace_len, 2451 drop_args.bytes_found); 2452 if (ret) { 2453 btrfs_abort_transaction(trans, ret); 2454 break; 2455 } 2456 extent_info->data_len -= replace_len; 2457 extent_info->data_offset += replace_len; 2458 extent_info->file_offset += replace_len; 2459 } 2460 2461 /* 2462 * We are releasing our handle on the transaction, balance the 2463 * dirty pages of the btree inode and flush delayed items, and 2464 * then get a new transaction handle, which may now point to a 2465 * new transaction in case someone else may have committed the 2466 * transaction we used to replace/drop file extent items. So 2467 * bump the inode's iversion and update mtime and ctime except 2468 * if we are called from a dedupe context. This is because a 2469 * power failure/crash may happen after the transaction is 2470 * committed and before we finish replacing/dropping all the 2471 * file extent items we need. 2472 */ 2473 inode_inc_iversion(&inode->vfs_inode); 2474 2475 if (!extent_info || extent_info->update_times) 2476 inode->vfs_inode.i_mtime = inode_set_ctime_current(&inode->vfs_inode); 2477 2478 ret = btrfs_update_inode(trans, root, inode); 2479 if (ret) 2480 break; 2481 2482 btrfs_end_transaction(trans); 2483 btrfs_btree_balance_dirty(fs_info); 2484 2485 trans = btrfs_start_transaction(root, rsv_count); 2486 if (IS_ERR(trans)) { 2487 ret = PTR_ERR(trans); 2488 trans = NULL; 2489 break; 2490 } 2491 2492 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2493 rsv, min_size, false); 2494 if (WARN_ON(ret)) 2495 break; 2496 trans->block_rsv = rsv; 2497 2498 cur_offset = drop_args.drop_end; 2499 len = end - cur_offset; 2500 if (!extent_info && len) { 2501 ret = find_first_non_hole(inode, &cur_offset, &len); 2502 if (unlikely(ret < 0)) 2503 break; 2504 if (ret && !len) { 2505 ret = 0; 2506 break; 2507 } 2508 } 2509 } 2510 2511 /* 2512 * If we were cloning, force the next fsync to be a full one since we 2513 * we replaced (or just dropped in the case of cloning holes when 2514 * NO_HOLES is enabled) file extent items and did not setup new extent 2515 * maps for the replacement extents (or holes). 2516 */ 2517 if (extent_info && !extent_info->is_new_extent) 2518 btrfs_set_inode_full_sync(inode); 2519 2520 if (ret) 2521 goto out_trans; 2522 2523 trans->block_rsv = &fs_info->trans_block_rsv; 2524 /* 2525 * If we are using the NO_HOLES feature we might have had already an 2526 * hole that overlaps a part of the region [lockstart, lockend] and 2527 * ends at (or beyond) lockend. Since we have no file extent items to 2528 * represent holes, drop_end can be less than lockend and so we must 2529 * make sure we have an extent map representing the existing hole (the 2530 * call to __btrfs_drop_extents() might have dropped the existing extent 2531 * map representing the existing hole), otherwise the fast fsync path 2532 * will not record the existence of the hole region 2533 * [existing_hole_start, lockend]. 2534 */ 2535 if (drop_args.drop_end <= end) 2536 drop_args.drop_end = end + 1; 2537 /* 2538 * Don't insert file hole extent item if it's for a range beyond eof 2539 * (because it's useless) or if it represents a 0 bytes range (when 2540 * cur_offset == drop_end). 2541 */ 2542 if (!extent_info && cur_offset < ino_size && 2543 cur_offset < drop_args.drop_end) { 2544 ret = fill_holes(trans, inode, path, cur_offset, 2545 drop_args.drop_end); 2546 if (ret) { 2547 /* Same comment as above. */ 2548 btrfs_abort_transaction(trans, ret); 2549 goto out_trans; 2550 } 2551 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2552 /* See the comment in the loop above for the reasoning here. */ 2553 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2554 drop_args.drop_end - cur_offset); 2555 if (ret) { 2556 btrfs_abort_transaction(trans, ret); 2557 goto out_trans; 2558 } 2559 2560 } 2561 if (extent_info) { 2562 ret = btrfs_insert_replace_extent(trans, inode, path, 2563 extent_info, extent_info->data_len, 2564 drop_args.bytes_found); 2565 if (ret) { 2566 btrfs_abort_transaction(trans, ret); 2567 goto out_trans; 2568 } 2569 } 2570 2571 out_trans: 2572 if (!trans) 2573 goto out_free; 2574 2575 trans->block_rsv = &fs_info->trans_block_rsv; 2576 if (ret) 2577 btrfs_end_transaction(trans); 2578 else 2579 *trans_out = trans; 2580 out_free: 2581 btrfs_free_block_rsv(fs_info, rsv); 2582 out: 2583 return ret; 2584 } 2585 2586 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2587 { 2588 struct inode *inode = file_inode(file); 2589 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2590 struct btrfs_root *root = BTRFS_I(inode)->root; 2591 struct extent_state *cached_state = NULL; 2592 struct btrfs_path *path; 2593 struct btrfs_trans_handle *trans = NULL; 2594 u64 lockstart; 2595 u64 lockend; 2596 u64 tail_start; 2597 u64 tail_len; 2598 u64 orig_start = offset; 2599 int ret = 0; 2600 bool same_block; 2601 u64 ino_size; 2602 bool truncated_block = false; 2603 bool updated_inode = false; 2604 2605 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2606 2607 ret = btrfs_wait_ordered_range(inode, offset, len); 2608 if (ret) 2609 goto out_only_mutex; 2610 2611 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2612 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2613 if (ret < 0) 2614 goto out_only_mutex; 2615 if (ret && !len) { 2616 /* Already in a large hole */ 2617 ret = 0; 2618 goto out_only_mutex; 2619 } 2620 2621 ret = file_modified(file); 2622 if (ret) 2623 goto out_only_mutex; 2624 2625 lockstart = round_up(offset, fs_info->sectorsize); 2626 lockend = round_down(offset + len, fs_info->sectorsize) - 1; 2627 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2628 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2629 /* 2630 * We needn't truncate any block which is beyond the end of the file 2631 * because we are sure there is no data there. 2632 */ 2633 /* 2634 * Only do this if we are in the same block and we aren't doing the 2635 * entire block. 2636 */ 2637 if (same_block && len < fs_info->sectorsize) { 2638 if (offset < ino_size) { 2639 truncated_block = true; 2640 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2641 0); 2642 } else { 2643 ret = 0; 2644 } 2645 goto out_only_mutex; 2646 } 2647 2648 /* zero back part of the first block */ 2649 if (offset < ino_size) { 2650 truncated_block = true; 2651 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2652 if (ret) { 2653 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2654 return ret; 2655 } 2656 } 2657 2658 /* Check the aligned pages after the first unaligned page, 2659 * if offset != orig_start, which means the first unaligned page 2660 * including several following pages are already in holes, 2661 * the extra check can be skipped */ 2662 if (offset == orig_start) { 2663 /* after truncate page, check hole again */ 2664 len = offset + len - lockstart; 2665 offset = lockstart; 2666 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2667 if (ret < 0) 2668 goto out_only_mutex; 2669 if (ret && !len) { 2670 ret = 0; 2671 goto out_only_mutex; 2672 } 2673 lockstart = offset; 2674 } 2675 2676 /* Check the tail unaligned part is in a hole */ 2677 tail_start = lockend + 1; 2678 tail_len = offset + len - tail_start; 2679 if (tail_len) { 2680 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2681 if (unlikely(ret < 0)) 2682 goto out_only_mutex; 2683 if (!ret) { 2684 /* zero the front end of the last page */ 2685 if (tail_start + tail_len < ino_size) { 2686 truncated_block = true; 2687 ret = btrfs_truncate_block(BTRFS_I(inode), 2688 tail_start + tail_len, 2689 0, 1); 2690 if (ret) 2691 goto out_only_mutex; 2692 } 2693 } 2694 } 2695 2696 if (lockend < lockstart) { 2697 ret = 0; 2698 goto out_only_mutex; 2699 } 2700 2701 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 2702 2703 path = btrfs_alloc_path(); 2704 if (!path) { 2705 ret = -ENOMEM; 2706 goto out; 2707 } 2708 2709 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 2710 lockend, NULL, &trans); 2711 btrfs_free_path(path); 2712 if (ret) 2713 goto out; 2714 2715 ASSERT(trans != NULL); 2716 inode_inc_iversion(inode); 2717 inode->i_mtime = inode_set_ctime_current(inode); 2718 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2719 updated_inode = true; 2720 btrfs_end_transaction(trans); 2721 btrfs_btree_balance_dirty(fs_info); 2722 out: 2723 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2724 &cached_state); 2725 out_only_mutex: 2726 if (!updated_inode && truncated_block && !ret) { 2727 /* 2728 * If we only end up zeroing part of a page, we still need to 2729 * update the inode item, so that all the time fields are 2730 * updated as well as the necessary btrfs inode in memory fields 2731 * for detecting, at fsync time, if the inode isn't yet in the 2732 * log tree or it's there but not up to date. 2733 */ 2734 struct timespec64 now = inode_set_ctime_current(inode); 2735 2736 inode_inc_iversion(inode); 2737 inode->i_mtime = now; 2738 trans = btrfs_start_transaction(root, 1); 2739 if (IS_ERR(trans)) { 2740 ret = PTR_ERR(trans); 2741 } else { 2742 int ret2; 2743 2744 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2745 ret2 = btrfs_end_transaction(trans); 2746 if (!ret) 2747 ret = ret2; 2748 } 2749 } 2750 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2751 return ret; 2752 } 2753 2754 /* Helper structure to record which range is already reserved */ 2755 struct falloc_range { 2756 struct list_head list; 2757 u64 start; 2758 u64 len; 2759 }; 2760 2761 /* 2762 * Helper function to add falloc range 2763 * 2764 * Caller should have locked the larger range of extent containing 2765 * [start, len) 2766 */ 2767 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2768 { 2769 struct falloc_range *range = NULL; 2770 2771 if (!list_empty(head)) { 2772 /* 2773 * As fallocate iterates by bytenr order, we only need to check 2774 * the last range. 2775 */ 2776 range = list_last_entry(head, struct falloc_range, list); 2777 if (range->start + range->len == start) { 2778 range->len += len; 2779 return 0; 2780 } 2781 } 2782 2783 range = kmalloc(sizeof(*range), GFP_KERNEL); 2784 if (!range) 2785 return -ENOMEM; 2786 range->start = start; 2787 range->len = len; 2788 list_add_tail(&range->list, head); 2789 return 0; 2790 } 2791 2792 static int btrfs_fallocate_update_isize(struct inode *inode, 2793 const u64 end, 2794 const int mode) 2795 { 2796 struct btrfs_trans_handle *trans; 2797 struct btrfs_root *root = BTRFS_I(inode)->root; 2798 int ret; 2799 int ret2; 2800 2801 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2802 return 0; 2803 2804 trans = btrfs_start_transaction(root, 1); 2805 if (IS_ERR(trans)) 2806 return PTR_ERR(trans); 2807 2808 inode_set_ctime_current(inode); 2809 i_size_write(inode, end); 2810 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 2811 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2812 ret2 = btrfs_end_transaction(trans); 2813 2814 return ret ? ret : ret2; 2815 } 2816 2817 enum { 2818 RANGE_BOUNDARY_WRITTEN_EXTENT, 2819 RANGE_BOUNDARY_PREALLOC_EXTENT, 2820 RANGE_BOUNDARY_HOLE, 2821 }; 2822 2823 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 2824 u64 offset) 2825 { 2826 const u64 sectorsize = inode->root->fs_info->sectorsize; 2827 struct extent_map *em; 2828 int ret; 2829 2830 offset = round_down(offset, sectorsize); 2831 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize); 2832 if (IS_ERR(em)) 2833 return PTR_ERR(em); 2834 2835 if (em->block_start == EXTENT_MAP_HOLE) 2836 ret = RANGE_BOUNDARY_HOLE; 2837 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2838 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2839 else 2840 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2841 2842 free_extent_map(em); 2843 return ret; 2844 } 2845 2846 static int btrfs_zero_range(struct inode *inode, 2847 loff_t offset, 2848 loff_t len, 2849 const int mode) 2850 { 2851 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2852 struct extent_map *em; 2853 struct extent_changeset *data_reserved = NULL; 2854 int ret; 2855 u64 alloc_hint = 0; 2856 const u64 sectorsize = fs_info->sectorsize; 2857 u64 alloc_start = round_down(offset, sectorsize); 2858 u64 alloc_end = round_up(offset + len, sectorsize); 2859 u64 bytes_to_reserve = 0; 2860 bool space_reserved = false; 2861 2862 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 2863 alloc_end - alloc_start); 2864 if (IS_ERR(em)) { 2865 ret = PTR_ERR(em); 2866 goto out; 2867 } 2868 2869 /* 2870 * Avoid hole punching and extent allocation for some cases. More cases 2871 * could be considered, but these are unlikely common and we keep things 2872 * as simple as possible for now. Also, intentionally, if the target 2873 * range contains one or more prealloc extents together with regular 2874 * extents and holes, we drop all the existing extents and allocate a 2875 * new prealloc extent, so that we get a larger contiguous disk extent. 2876 */ 2877 if (em->start <= alloc_start && 2878 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2879 const u64 em_end = em->start + em->len; 2880 2881 if (em_end >= offset + len) { 2882 /* 2883 * The whole range is already a prealloc extent, 2884 * do nothing except updating the inode's i_size if 2885 * needed. 2886 */ 2887 free_extent_map(em); 2888 ret = btrfs_fallocate_update_isize(inode, offset + len, 2889 mode); 2890 goto out; 2891 } 2892 /* 2893 * Part of the range is already a prealloc extent, so operate 2894 * only on the remaining part of the range. 2895 */ 2896 alloc_start = em_end; 2897 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2898 len = offset + len - alloc_start; 2899 offset = alloc_start; 2900 alloc_hint = em->block_start + em->len; 2901 } 2902 free_extent_map(em); 2903 2904 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2905 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2906 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 2907 sectorsize); 2908 if (IS_ERR(em)) { 2909 ret = PTR_ERR(em); 2910 goto out; 2911 } 2912 2913 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2914 free_extent_map(em); 2915 ret = btrfs_fallocate_update_isize(inode, offset + len, 2916 mode); 2917 goto out; 2918 } 2919 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 2920 free_extent_map(em); 2921 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2922 0); 2923 if (!ret) 2924 ret = btrfs_fallocate_update_isize(inode, 2925 offset + len, 2926 mode); 2927 return ret; 2928 } 2929 free_extent_map(em); 2930 alloc_start = round_down(offset, sectorsize); 2931 alloc_end = alloc_start + sectorsize; 2932 goto reserve_space; 2933 } 2934 2935 alloc_start = round_up(offset, sectorsize); 2936 alloc_end = round_down(offset + len, sectorsize); 2937 2938 /* 2939 * For unaligned ranges, check the pages at the boundaries, they might 2940 * map to an extent, in which case we need to partially zero them, or 2941 * they might map to a hole, in which case we need our allocation range 2942 * to cover them. 2943 */ 2944 if (!IS_ALIGNED(offset, sectorsize)) { 2945 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2946 offset); 2947 if (ret < 0) 2948 goto out; 2949 if (ret == RANGE_BOUNDARY_HOLE) { 2950 alloc_start = round_down(offset, sectorsize); 2951 ret = 0; 2952 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2953 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2954 if (ret) 2955 goto out; 2956 } else { 2957 ret = 0; 2958 } 2959 } 2960 2961 if (!IS_ALIGNED(offset + len, sectorsize)) { 2962 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2963 offset + len); 2964 if (ret < 0) 2965 goto out; 2966 if (ret == RANGE_BOUNDARY_HOLE) { 2967 alloc_end = round_up(offset + len, sectorsize); 2968 ret = 0; 2969 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2970 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 2971 0, 1); 2972 if (ret) 2973 goto out; 2974 } else { 2975 ret = 0; 2976 } 2977 } 2978 2979 reserve_space: 2980 if (alloc_start < alloc_end) { 2981 struct extent_state *cached_state = NULL; 2982 const u64 lockstart = alloc_start; 2983 const u64 lockend = alloc_end - 1; 2984 2985 bytes_to_reserve = alloc_end - alloc_start; 2986 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 2987 bytes_to_reserve); 2988 if (ret < 0) 2989 goto out; 2990 space_reserved = true; 2991 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2992 &cached_state); 2993 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 2994 alloc_start, bytes_to_reserve); 2995 if (ret) { 2996 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 2997 lockend, &cached_state); 2998 goto out; 2999 } 3000 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3001 alloc_end - alloc_start, 3002 i_blocksize(inode), 3003 offset + len, &alloc_hint); 3004 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3005 &cached_state); 3006 /* btrfs_prealloc_file_range releases reserved space on error */ 3007 if (ret) { 3008 space_reserved = false; 3009 goto out; 3010 } 3011 } 3012 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3013 out: 3014 if (ret && space_reserved) 3015 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3016 alloc_start, bytes_to_reserve); 3017 extent_changeset_free(data_reserved); 3018 3019 return ret; 3020 } 3021 3022 static long btrfs_fallocate(struct file *file, int mode, 3023 loff_t offset, loff_t len) 3024 { 3025 struct inode *inode = file_inode(file); 3026 struct extent_state *cached_state = NULL; 3027 struct extent_changeset *data_reserved = NULL; 3028 struct falloc_range *range; 3029 struct falloc_range *tmp; 3030 LIST_HEAD(reserve_list); 3031 u64 cur_offset; 3032 u64 last_byte; 3033 u64 alloc_start; 3034 u64 alloc_end; 3035 u64 alloc_hint = 0; 3036 u64 locked_end; 3037 u64 actual_end = 0; 3038 u64 data_space_needed = 0; 3039 u64 data_space_reserved = 0; 3040 u64 qgroup_reserved = 0; 3041 struct extent_map *em; 3042 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize; 3043 int ret; 3044 3045 /* Do not allow fallocate in ZONED mode */ 3046 if (btrfs_is_zoned(btrfs_sb(inode->i_sb))) 3047 return -EOPNOTSUPP; 3048 3049 alloc_start = round_down(offset, blocksize); 3050 alloc_end = round_up(offset + len, blocksize); 3051 cur_offset = alloc_start; 3052 3053 /* Make sure we aren't being give some crap mode */ 3054 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3055 FALLOC_FL_ZERO_RANGE)) 3056 return -EOPNOTSUPP; 3057 3058 if (mode & FALLOC_FL_PUNCH_HOLE) 3059 return btrfs_punch_hole(file, offset, len); 3060 3061 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3062 3063 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3064 ret = inode_newsize_ok(inode, offset + len); 3065 if (ret) 3066 goto out; 3067 } 3068 3069 ret = file_modified(file); 3070 if (ret) 3071 goto out; 3072 3073 /* 3074 * TODO: Move these two operations after we have checked 3075 * accurate reserved space, or fallocate can still fail but 3076 * with page truncated or size expanded. 3077 * 3078 * But that's a minor problem and won't do much harm BTW. 3079 */ 3080 if (alloc_start > inode->i_size) { 3081 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3082 alloc_start); 3083 if (ret) 3084 goto out; 3085 } else if (offset + len > inode->i_size) { 3086 /* 3087 * If we are fallocating from the end of the file onward we 3088 * need to zero out the end of the block if i_size lands in the 3089 * middle of a block. 3090 */ 3091 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3092 if (ret) 3093 goto out; 3094 } 3095 3096 /* 3097 * We have locked the inode at the VFS level (in exclusive mode) and we 3098 * have locked the i_mmap_lock lock (in exclusive mode). Now before 3099 * locking the file range, flush all dealloc in the range and wait for 3100 * all ordered extents in the range to complete. After this we can lock 3101 * the file range and, due to the previous locking we did, we know there 3102 * can't be more delalloc or ordered extents in the range. 3103 */ 3104 ret = btrfs_wait_ordered_range(inode, alloc_start, 3105 alloc_end - alloc_start); 3106 if (ret) 3107 goto out; 3108 3109 if (mode & FALLOC_FL_ZERO_RANGE) { 3110 ret = btrfs_zero_range(inode, offset, len, mode); 3111 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3112 return ret; 3113 } 3114 3115 locked_end = alloc_end - 1; 3116 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3117 &cached_state); 3118 3119 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3120 3121 /* First, check if we exceed the qgroup limit */ 3122 while (cur_offset < alloc_end) { 3123 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3124 alloc_end - cur_offset); 3125 if (IS_ERR(em)) { 3126 ret = PTR_ERR(em); 3127 break; 3128 } 3129 last_byte = min(extent_map_end(em), alloc_end); 3130 actual_end = min_t(u64, extent_map_end(em), offset + len); 3131 last_byte = ALIGN(last_byte, blocksize); 3132 if (em->block_start == EXTENT_MAP_HOLE || 3133 (cur_offset >= inode->i_size && 3134 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3135 const u64 range_len = last_byte - cur_offset; 3136 3137 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3138 if (ret < 0) { 3139 free_extent_map(em); 3140 break; 3141 } 3142 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3143 &data_reserved, cur_offset, range_len); 3144 if (ret < 0) { 3145 free_extent_map(em); 3146 break; 3147 } 3148 qgroup_reserved += range_len; 3149 data_space_needed += range_len; 3150 } 3151 free_extent_map(em); 3152 cur_offset = last_byte; 3153 } 3154 3155 if (!ret && data_space_needed > 0) { 3156 /* 3157 * We are safe to reserve space here as we can't have delalloc 3158 * in the range, see above. 3159 */ 3160 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3161 data_space_needed); 3162 if (!ret) 3163 data_space_reserved = data_space_needed; 3164 } 3165 3166 /* 3167 * If ret is still 0, means we're OK to fallocate. 3168 * Or just cleanup the list and exit. 3169 */ 3170 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3171 if (!ret) { 3172 ret = btrfs_prealloc_file_range(inode, mode, 3173 range->start, 3174 range->len, i_blocksize(inode), 3175 offset + len, &alloc_hint); 3176 /* 3177 * btrfs_prealloc_file_range() releases space even 3178 * if it returns an error. 3179 */ 3180 data_space_reserved -= range->len; 3181 qgroup_reserved -= range->len; 3182 } else if (data_space_reserved > 0) { 3183 btrfs_free_reserved_data_space(BTRFS_I(inode), 3184 data_reserved, range->start, 3185 range->len); 3186 data_space_reserved -= range->len; 3187 qgroup_reserved -= range->len; 3188 } else if (qgroup_reserved > 0) { 3189 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3190 range->start, range->len, NULL); 3191 qgroup_reserved -= range->len; 3192 } 3193 list_del(&range->list); 3194 kfree(range); 3195 } 3196 if (ret < 0) 3197 goto out_unlock; 3198 3199 /* 3200 * We didn't need to allocate any more space, but we still extended the 3201 * size of the file so we need to update i_size and the inode item. 3202 */ 3203 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3204 out_unlock: 3205 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3206 &cached_state); 3207 out: 3208 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3209 extent_changeset_free(data_reserved); 3210 return ret; 3211 } 3212 3213 /* 3214 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range 3215 * that has unflushed and/or flushing delalloc. There might be other adjacent 3216 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps 3217 * looping while it gets adjacent subranges, and merging them together. 3218 */ 3219 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end, 3220 struct extent_state **cached_state, 3221 bool *search_io_tree, 3222 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3223 { 3224 u64 len = end + 1 - start; 3225 u64 delalloc_len = 0; 3226 struct btrfs_ordered_extent *oe; 3227 u64 oe_start; 3228 u64 oe_end; 3229 3230 /* 3231 * Search the io tree first for EXTENT_DELALLOC. If we find any, it 3232 * means we have delalloc (dirty pages) for which writeback has not 3233 * started yet. 3234 */ 3235 if (*search_io_tree) { 3236 spin_lock(&inode->lock); 3237 if (inode->delalloc_bytes > 0) { 3238 spin_unlock(&inode->lock); 3239 *delalloc_start_ret = start; 3240 delalloc_len = count_range_bits(&inode->io_tree, 3241 delalloc_start_ret, end, 3242 len, EXTENT_DELALLOC, 1, 3243 cached_state); 3244 } else { 3245 spin_unlock(&inode->lock); 3246 } 3247 } 3248 3249 if (delalloc_len > 0) { 3250 /* 3251 * If delalloc was found then *delalloc_start_ret has a sector size 3252 * aligned value (rounded down). 3253 */ 3254 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1; 3255 3256 if (*delalloc_start_ret == start) { 3257 /* Delalloc for the whole range, nothing more to do. */ 3258 if (*delalloc_end_ret == end) 3259 return true; 3260 /* Else trim our search range for ordered extents. */ 3261 start = *delalloc_end_ret + 1; 3262 len = end + 1 - start; 3263 } 3264 } else { 3265 /* No delalloc, future calls don't need to search again. */ 3266 *search_io_tree = false; 3267 } 3268 3269 /* 3270 * Now also check if there's any ordered extent in the range. 3271 * We do this because: 3272 * 3273 * 1) When delalloc is flushed, the file range is locked, we clear the 3274 * EXTENT_DELALLOC bit from the io tree and create an extent map and 3275 * an ordered extent for the write. So we might just have been called 3276 * after delalloc is flushed and before the ordered extent completes 3277 * and inserts the new file extent item in the subvolume's btree; 3278 * 3279 * 2) We may have an ordered extent created by flushing delalloc for a 3280 * subrange that starts before the subrange we found marked with 3281 * EXTENT_DELALLOC in the io tree. 3282 * 3283 * We could also use the extent map tree to find such delalloc that is 3284 * being flushed, but using the ordered extents tree is more efficient 3285 * because it's usually much smaller as ordered extents are removed from 3286 * the tree once they complete. With the extent maps, we mau have them 3287 * in the extent map tree for a very long time, and they were either 3288 * created by previous writes or loaded by read operations. 3289 */ 3290 oe = btrfs_lookup_first_ordered_range(inode, start, len); 3291 if (!oe) 3292 return (delalloc_len > 0); 3293 3294 /* The ordered extent may span beyond our search range. */ 3295 oe_start = max(oe->file_offset, start); 3296 oe_end = min(oe->file_offset + oe->num_bytes - 1, end); 3297 3298 btrfs_put_ordered_extent(oe); 3299 3300 /* Don't have unflushed delalloc, return the ordered extent range. */ 3301 if (delalloc_len == 0) { 3302 *delalloc_start_ret = oe_start; 3303 *delalloc_end_ret = oe_end; 3304 return true; 3305 } 3306 3307 /* 3308 * We have both unflushed delalloc (io_tree) and an ordered extent. 3309 * If the ranges are adjacent returned a combined range, otherwise 3310 * return the leftmost range. 3311 */ 3312 if (oe_start < *delalloc_start_ret) { 3313 if (oe_end < *delalloc_start_ret) 3314 *delalloc_end_ret = oe_end; 3315 *delalloc_start_ret = oe_start; 3316 } else if (*delalloc_end_ret + 1 == oe_start) { 3317 *delalloc_end_ret = oe_end; 3318 } 3319 3320 return true; 3321 } 3322 3323 /* 3324 * Check if there's delalloc in a given range. 3325 * 3326 * @inode: The inode. 3327 * @start: The start offset of the range. It does not need to be 3328 * sector size aligned. 3329 * @end: The end offset (inclusive value) of the search range. 3330 * It does not need to be sector size aligned. 3331 * @cached_state: Extent state record used for speeding up delalloc 3332 * searches in the inode's io_tree. Can be NULL. 3333 * @delalloc_start_ret: Output argument, set to the start offset of the 3334 * subrange found with delalloc (may not be sector size 3335 * aligned). 3336 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value) 3337 * of the subrange found with delalloc. 3338 * 3339 * Returns true if a subrange with delalloc is found within the given range, and 3340 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and 3341 * end offsets of the subrange. 3342 */ 3343 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, 3344 struct extent_state **cached_state, 3345 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3346 { 3347 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize); 3348 u64 prev_delalloc_end = 0; 3349 bool search_io_tree = true; 3350 bool ret = false; 3351 3352 while (cur_offset <= end) { 3353 u64 delalloc_start; 3354 u64 delalloc_end; 3355 bool delalloc; 3356 3357 delalloc = find_delalloc_subrange(inode, cur_offset, end, 3358 cached_state, &search_io_tree, 3359 &delalloc_start, 3360 &delalloc_end); 3361 if (!delalloc) 3362 break; 3363 3364 if (prev_delalloc_end == 0) { 3365 /* First subrange found. */ 3366 *delalloc_start_ret = max(delalloc_start, start); 3367 *delalloc_end_ret = delalloc_end; 3368 ret = true; 3369 } else if (delalloc_start == prev_delalloc_end + 1) { 3370 /* Subrange adjacent to the previous one, merge them. */ 3371 *delalloc_end_ret = delalloc_end; 3372 } else { 3373 /* Subrange not adjacent to the previous one, exit. */ 3374 break; 3375 } 3376 3377 prev_delalloc_end = delalloc_end; 3378 cur_offset = delalloc_end + 1; 3379 cond_resched(); 3380 } 3381 3382 return ret; 3383 } 3384 3385 /* 3386 * Check if there's a hole or delalloc range in a range representing a hole (or 3387 * prealloc extent) found in the inode's subvolume btree. 3388 * 3389 * @inode: The inode. 3390 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE). 3391 * @start: Start offset of the hole region. It does not need to be sector 3392 * size aligned. 3393 * @end: End offset (inclusive value) of the hole region. It does not 3394 * need to be sector size aligned. 3395 * @start_ret: Return parameter, used to set the start of the subrange in the 3396 * hole that matches the search criteria (seek mode), if such 3397 * subrange is found (return value of the function is true). 3398 * The value returned here may not be sector size aligned. 3399 * 3400 * Returns true if a subrange matching the given seek mode is found, and if one 3401 * is found, it updates @start_ret with the start of the subrange. 3402 */ 3403 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence, 3404 struct extent_state **cached_state, 3405 u64 start, u64 end, u64 *start_ret) 3406 { 3407 u64 delalloc_start; 3408 u64 delalloc_end; 3409 bool delalloc; 3410 3411 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state, 3412 &delalloc_start, &delalloc_end); 3413 if (delalloc && whence == SEEK_DATA) { 3414 *start_ret = delalloc_start; 3415 return true; 3416 } 3417 3418 if (delalloc && whence == SEEK_HOLE) { 3419 /* 3420 * We found delalloc but it starts after out start offset. So we 3421 * have a hole between our start offset and the delalloc start. 3422 */ 3423 if (start < delalloc_start) { 3424 *start_ret = start; 3425 return true; 3426 } 3427 /* 3428 * Delalloc range starts at our start offset. 3429 * If the delalloc range's length is smaller than our range, 3430 * then it means we have a hole that starts where the delalloc 3431 * subrange ends. 3432 */ 3433 if (delalloc_end < end) { 3434 *start_ret = delalloc_end + 1; 3435 return true; 3436 } 3437 3438 /* There's delalloc for the whole range. */ 3439 return false; 3440 } 3441 3442 if (!delalloc && whence == SEEK_HOLE) { 3443 *start_ret = start; 3444 return true; 3445 } 3446 3447 /* 3448 * No delalloc in the range and we are seeking for data. The caller has 3449 * to iterate to the next extent item in the subvolume btree. 3450 */ 3451 return false; 3452 } 3453 3454 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence) 3455 { 3456 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host); 3457 struct btrfs_file_private *private = file->private_data; 3458 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3459 struct extent_state *cached_state = NULL; 3460 struct extent_state **delalloc_cached_state; 3461 const loff_t i_size = i_size_read(&inode->vfs_inode); 3462 const u64 ino = btrfs_ino(inode); 3463 struct btrfs_root *root = inode->root; 3464 struct btrfs_path *path; 3465 struct btrfs_key key; 3466 u64 last_extent_end; 3467 u64 lockstart; 3468 u64 lockend; 3469 u64 start; 3470 int ret; 3471 bool found = false; 3472 3473 if (i_size == 0 || offset >= i_size) 3474 return -ENXIO; 3475 3476 /* 3477 * Quick path. If the inode has no prealloc extents and its number of 3478 * bytes used matches its i_size, then it can not have holes. 3479 */ 3480 if (whence == SEEK_HOLE && 3481 !(inode->flags & BTRFS_INODE_PREALLOC) && 3482 inode_get_bytes(&inode->vfs_inode) == i_size) 3483 return i_size; 3484 3485 if (!private) { 3486 private = kzalloc(sizeof(*private), GFP_KERNEL); 3487 /* 3488 * No worries if memory allocation failed. 3489 * The private structure is used only for speeding up multiple 3490 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc, 3491 * so everything will still be correct. 3492 */ 3493 file->private_data = private; 3494 } 3495 3496 if (private) 3497 delalloc_cached_state = &private->llseek_cached_state; 3498 else 3499 delalloc_cached_state = NULL; 3500 3501 /* 3502 * offset can be negative, in this case we start finding DATA/HOLE from 3503 * the very start of the file. 3504 */ 3505 start = max_t(loff_t, 0, offset); 3506 3507 lockstart = round_down(start, fs_info->sectorsize); 3508 lockend = round_up(i_size, fs_info->sectorsize); 3509 if (lockend <= lockstart) 3510 lockend = lockstart + fs_info->sectorsize; 3511 lockend--; 3512 3513 path = btrfs_alloc_path(); 3514 if (!path) 3515 return -ENOMEM; 3516 path->reada = READA_FORWARD; 3517 3518 key.objectid = ino; 3519 key.type = BTRFS_EXTENT_DATA_KEY; 3520 key.offset = start; 3521 3522 last_extent_end = lockstart; 3523 3524 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3525 3526 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3527 if (ret < 0) { 3528 goto out; 3529 } else if (ret > 0 && path->slots[0] > 0) { 3530 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3531 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3532 path->slots[0]--; 3533 } 3534 3535 while (start < i_size) { 3536 struct extent_buffer *leaf = path->nodes[0]; 3537 struct btrfs_file_extent_item *extent; 3538 u64 extent_end; 3539 u8 type; 3540 3541 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3542 ret = btrfs_next_leaf(root, path); 3543 if (ret < 0) 3544 goto out; 3545 else if (ret > 0) 3546 break; 3547 3548 leaf = path->nodes[0]; 3549 } 3550 3551 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3552 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3553 break; 3554 3555 extent_end = btrfs_file_extent_end(path); 3556 3557 /* 3558 * In the first iteration we may have a slot that points to an 3559 * extent that ends before our start offset, so skip it. 3560 */ 3561 if (extent_end <= start) { 3562 path->slots[0]++; 3563 continue; 3564 } 3565 3566 /* We have an implicit hole, NO_HOLES feature is likely set. */ 3567 if (last_extent_end < key.offset) { 3568 u64 search_start = last_extent_end; 3569 u64 found_start; 3570 3571 /* 3572 * First iteration, @start matches @offset and it's 3573 * within the hole. 3574 */ 3575 if (start == offset) 3576 search_start = offset; 3577 3578 found = find_desired_extent_in_hole(inode, whence, 3579 delalloc_cached_state, 3580 search_start, 3581 key.offset - 1, 3582 &found_start); 3583 if (found) { 3584 start = found_start; 3585 break; 3586 } 3587 /* 3588 * Didn't find data or a hole (due to delalloc) in the 3589 * implicit hole range, so need to analyze the extent. 3590 */ 3591 } 3592 3593 extent = btrfs_item_ptr(leaf, path->slots[0], 3594 struct btrfs_file_extent_item); 3595 type = btrfs_file_extent_type(leaf, extent); 3596 3597 /* 3598 * Can't access the extent's disk_bytenr field if this is an 3599 * inline extent, since at that offset, it's where the extent 3600 * data starts. 3601 */ 3602 if (type == BTRFS_FILE_EXTENT_PREALLOC || 3603 (type == BTRFS_FILE_EXTENT_REG && 3604 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) { 3605 /* 3606 * Explicit hole or prealloc extent, search for delalloc. 3607 * A prealloc extent is treated like a hole. 3608 */ 3609 u64 search_start = key.offset; 3610 u64 found_start; 3611 3612 /* 3613 * First iteration, @start matches @offset and it's 3614 * within the hole. 3615 */ 3616 if (start == offset) 3617 search_start = offset; 3618 3619 found = find_desired_extent_in_hole(inode, whence, 3620 delalloc_cached_state, 3621 search_start, 3622 extent_end - 1, 3623 &found_start); 3624 if (found) { 3625 start = found_start; 3626 break; 3627 } 3628 /* 3629 * Didn't find data or a hole (due to delalloc) in the 3630 * implicit hole range, so need to analyze the next 3631 * extent item. 3632 */ 3633 } else { 3634 /* 3635 * Found a regular or inline extent. 3636 * If we are seeking for data, adjust the start offset 3637 * and stop, we're done. 3638 */ 3639 if (whence == SEEK_DATA) { 3640 start = max_t(u64, key.offset, offset); 3641 found = true; 3642 break; 3643 } 3644 /* 3645 * Else, we are seeking for a hole, check the next file 3646 * extent item. 3647 */ 3648 } 3649 3650 start = extent_end; 3651 last_extent_end = extent_end; 3652 path->slots[0]++; 3653 if (fatal_signal_pending(current)) { 3654 ret = -EINTR; 3655 goto out; 3656 } 3657 cond_resched(); 3658 } 3659 3660 /* We have an implicit hole from the last extent found up to i_size. */ 3661 if (!found && start < i_size) { 3662 found = find_desired_extent_in_hole(inode, whence, 3663 delalloc_cached_state, start, 3664 i_size - 1, &start); 3665 if (!found) 3666 start = i_size; 3667 } 3668 3669 out: 3670 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3671 btrfs_free_path(path); 3672 3673 if (ret < 0) 3674 return ret; 3675 3676 if (whence == SEEK_DATA && start >= i_size) 3677 return -ENXIO; 3678 3679 return min_t(loff_t, start, i_size); 3680 } 3681 3682 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3683 { 3684 struct inode *inode = file->f_mapping->host; 3685 3686 switch (whence) { 3687 default: 3688 return generic_file_llseek(file, offset, whence); 3689 case SEEK_DATA: 3690 case SEEK_HOLE: 3691 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3692 offset = find_desired_extent(file, offset, whence); 3693 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3694 break; 3695 } 3696 3697 if (offset < 0) 3698 return offset; 3699 3700 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3701 } 3702 3703 static int btrfs_file_open(struct inode *inode, struct file *filp) 3704 { 3705 int ret; 3706 3707 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC | 3708 FMODE_CAN_ODIRECT; 3709 3710 ret = fsverity_file_open(inode, filp); 3711 if (ret) 3712 return ret; 3713 return generic_file_open(inode, filp); 3714 } 3715 3716 static int check_direct_read(struct btrfs_fs_info *fs_info, 3717 const struct iov_iter *iter, loff_t offset) 3718 { 3719 int ret; 3720 int i, seg; 3721 3722 ret = check_direct_IO(fs_info, iter, offset); 3723 if (ret < 0) 3724 return ret; 3725 3726 if (!iter_is_iovec(iter)) 3727 return 0; 3728 3729 for (seg = 0; seg < iter->nr_segs; seg++) { 3730 for (i = seg + 1; i < iter->nr_segs; i++) { 3731 const struct iovec *iov1 = iter_iov(iter) + seg; 3732 const struct iovec *iov2 = iter_iov(iter) + i; 3733 3734 if (iov1->iov_base == iov2->iov_base) 3735 return -EINVAL; 3736 } 3737 } 3738 return 0; 3739 } 3740 3741 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 3742 { 3743 struct inode *inode = file_inode(iocb->ki_filp); 3744 size_t prev_left = 0; 3745 ssize_t read = 0; 3746 ssize_t ret; 3747 3748 if (fsverity_active(inode)) 3749 return 0; 3750 3751 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos)) 3752 return 0; 3753 3754 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3755 again: 3756 /* 3757 * This is similar to what we do for direct IO writes, see the comment 3758 * at btrfs_direct_write(), but we also disable page faults in addition 3759 * to disabling them only at the iov_iter level. This is because when 3760 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(), 3761 * which can still trigger page fault ins despite having set ->nofault 3762 * to true of our 'to' iov_iter. 3763 * 3764 * The difference to direct IO writes is that we deadlock when trying 3765 * to lock the extent range in the inode's tree during he page reads 3766 * triggered by the fault in (while for writes it is due to waiting for 3767 * our own ordered extent). This is because for direct IO reads, 3768 * btrfs_dio_iomap_begin() returns with the extent range locked, which 3769 * is only unlocked in the endio callback (end_bio_extent_readpage()). 3770 */ 3771 pagefault_disable(); 3772 to->nofault = true; 3773 ret = btrfs_dio_read(iocb, to, read); 3774 to->nofault = false; 3775 pagefault_enable(); 3776 3777 /* No increment (+=) because iomap returns a cumulative value. */ 3778 if (ret > 0) 3779 read = ret; 3780 3781 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) { 3782 const size_t left = iov_iter_count(to); 3783 3784 if (left == prev_left) { 3785 /* 3786 * We didn't make any progress since the last attempt, 3787 * fallback to a buffered read for the remainder of the 3788 * range. This is just to avoid any possibility of looping 3789 * for too long. 3790 */ 3791 ret = read; 3792 } else { 3793 /* 3794 * We made some progress since the last retry or this is 3795 * the first time we are retrying. Fault in as many pages 3796 * as possible and retry. 3797 */ 3798 fault_in_iov_iter_writeable(to, left); 3799 prev_left = left; 3800 goto again; 3801 } 3802 } 3803 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3804 return ret < 0 ? ret : read; 3805 } 3806 3807 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3808 { 3809 ssize_t ret = 0; 3810 3811 if (iocb->ki_flags & IOCB_DIRECT) { 3812 ret = btrfs_direct_read(iocb, to); 3813 if (ret < 0 || !iov_iter_count(to) || 3814 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3815 return ret; 3816 } 3817 3818 return filemap_read(iocb, to, ret); 3819 } 3820 3821 const struct file_operations btrfs_file_operations = { 3822 .llseek = btrfs_file_llseek, 3823 .read_iter = btrfs_file_read_iter, 3824 .splice_read = filemap_splice_read, 3825 .write_iter = btrfs_file_write_iter, 3826 .splice_write = iter_file_splice_write, 3827 .mmap = btrfs_file_mmap, 3828 .open = btrfs_file_open, 3829 .release = btrfs_release_file, 3830 .get_unmapped_area = thp_get_unmapped_area, 3831 .fsync = btrfs_sync_file, 3832 .fallocate = btrfs_fallocate, 3833 .unlocked_ioctl = btrfs_ioctl, 3834 #ifdef CONFIG_COMPAT 3835 .compat_ioctl = btrfs_compat_ioctl, 3836 #endif 3837 .remap_file_range = btrfs_remap_file_range, 3838 }; 3839 3840 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3841 { 3842 int ret; 3843 3844 /* 3845 * So with compression we will find and lock a dirty page and clear the 3846 * first one as dirty, setup an async extent, and immediately return 3847 * with the entire range locked but with nobody actually marked with 3848 * writeback. So we can't just filemap_write_and_wait_range() and 3849 * expect it to work since it will just kick off a thread to do the 3850 * actual work. So we need to call filemap_fdatawrite_range _again_ 3851 * since it will wait on the page lock, which won't be unlocked until 3852 * after the pages have been marked as writeback and so we're good to go 3853 * from there. We have to do this otherwise we'll miss the ordered 3854 * extents and that results in badness. Please Josef, do not think you 3855 * know better and pull this out at some point in the future, it is 3856 * right and you are wrong. 3857 */ 3858 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3859 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3860 &BTRFS_I(inode)->runtime_flags)) 3861 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3862 3863 return ret; 3864 } 3865