1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include "ctree.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "btrfs_inode.h" 23 #include "print-tree.h" 24 #include "tree-log.h" 25 #include "locking.h" 26 #include "volumes.h" 27 #include "qgroup.h" 28 #include "compression.h" 29 #include "delalloc-space.h" 30 #include "reflink.h" 31 32 static struct kmem_cache *btrfs_inode_defrag_cachep; 33 /* 34 * when auto defrag is enabled we 35 * queue up these defrag structs to remember which 36 * inodes need defragging passes 37 */ 38 struct inode_defrag { 39 struct rb_node rb_node; 40 /* objectid */ 41 u64 ino; 42 /* 43 * transid where the defrag was added, we search for 44 * extents newer than this 45 */ 46 u64 transid; 47 48 /* root objectid */ 49 u64 root; 50 51 /* last offset we were able to defrag */ 52 u64 last_offset; 53 54 /* if we've wrapped around back to zero once already */ 55 int cycled; 56 }; 57 58 static int __compare_inode_defrag(struct inode_defrag *defrag1, 59 struct inode_defrag *defrag2) 60 { 61 if (defrag1->root > defrag2->root) 62 return 1; 63 else if (defrag1->root < defrag2->root) 64 return -1; 65 else if (defrag1->ino > defrag2->ino) 66 return 1; 67 else if (defrag1->ino < defrag2->ino) 68 return -1; 69 else 70 return 0; 71 } 72 73 /* pop a record for an inode into the defrag tree. The lock 74 * must be held already 75 * 76 * If you're inserting a record for an older transid than an 77 * existing record, the transid already in the tree is lowered 78 * 79 * If an existing record is found the defrag item you 80 * pass in is freed 81 */ 82 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 83 struct inode_defrag *defrag) 84 { 85 struct btrfs_fs_info *fs_info = inode->root->fs_info; 86 struct inode_defrag *entry; 87 struct rb_node **p; 88 struct rb_node *parent = NULL; 89 int ret; 90 91 p = &fs_info->defrag_inodes.rb_node; 92 while (*p) { 93 parent = *p; 94 entry = rb_entry(parent, struct inode_defrag, rb_node); 95 96 ret = __compare_inode_defrag(defrag, entry); 97 if (ret < 0) 98 p = &parent->rb_left; 99 else if (ret > 0) 100 p = &parent->rb_right; 101 else { 102 /* if we're reinserting an entry for 103 * an old defrag run, make sure to 104 * lower the transid of our existing record 105 */ 106 if (defrag->transid < entry->transid) 107 entry->transid = defrag->transid; 108 if (defrag->last_offset > entry->last_offset) 109 entry->last_offset = defrag->last_offset; 110 return -EEXIST; 111 } 112 } 113 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 114 rb_link_node(&defrag->rb_node, parent, p); 115 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 116 return 0; 117 } 118 119 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 120 { 121 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 122 return 0; 123 124 if (btrfs_fs_closing(fs_info)) 125 return 0; 126 127 return 1; 128 } 129 130 /* 131 * insert a defrag record for this inode if auto defrag is 132 * enabled 133 */ 134 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 135 struct btrfs_inode *inode) 136 { 137 struct btrfs_root *root = inode->root; 138 struct btrfs_fs_info *fs_info = root->fs_info; 139 struct inode_defrag *defrag; 140 u64 transid; 141 int ret; 142 143 if (!__need_auto_defrag(fs_info)) 144 return 0; 145 146 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 147 return 0; 148 149 if (trans) 150 transid = trans->transid; 151 else 152 transid = inode->root->last_trans; 153 154 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 155 if (!defrag) 156 return -ENOMEM; 157 158 defrag->ino = btrfs_ino(inode); 159 defrag->transid = transid; 160 defrag->root = root->root_key.objectid; 161 162 spin_lock(&fs_info->defrag_inodes_lock); 163 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 164 /* 165 * If we set IN_DEFRAG flag and evict the inode from memory, 166 * and then re-read this inode, this new inode doesn't have 167 * IN_DEFRAG flag. At the case, we may find the existed defrag. 168 */ 169 ret = __btrfs_add_inode_defrag(inode, defrag); 170 if (ret) 171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 172 } else { 173 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 174 } 175 spin_unlock(&fs_info->defrag_inodes_lock); 176 return 0; 177 } 178 179 /* 180 * Requeue the defrag object. If there is a defrag object that points to 181 * the same inode in the tree, we will merge them together (by 182 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 183 */ 184 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode, 185 struct inode_defrag *defrag) 186 { 187 struct btrfs_fs_info *fs_info = inode->root->fs_info; 188 int ret; 189 190 if (!__need_auto_defrag(fs_info)) 191 goto out; 192 193 /* 194 * Here we don't check the IN_DEFRAG flag, because we need merge 195 * them together. 196 */ 197 spin_lock(&fs_info->defrag_inodes_lock); 198 ret = __btrfs_add_inode_defrag(inode, defrag); 199 spin_unlock(&fs_info->defrag_inodes_lock); 200 if (ret) 201 goto out; 202 return; 203 out: 204 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 205 } 206 207 /* 208 * pick the defragable inode that we want, if it doesn't exist, we will get 209 * the next one. 210 */ 211 static struct inode_defrag * 212 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 213 { 214 struct inode_defrag *entry = NULL; 215 struct inode_defrag tmp; 216 struct rb_node *p; 217 struct rb_node *parent = NULL; 218 int ret; 219 220 tmp.ino = ino; 221 tmp.root = root; 222 223 spin_lock(&fs_info->defrag_inodes_lock); 224 p = fs_info->defrag_inodes.rb_node; 225 while (p) { 226 parent = p; 227 entry = rb_entry(parent, struct inode_defrag, rb_node); 228 229 ret = __compare_inode_defrag(&tmp, entry); 230 if (ret < 0) 231 p = parent->rb_left; 232 else if (ret > 0) 233 p = parent->rb_right; 234 else 235 goto out; 236 } 237 238 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 239 parent = rb_next(parent); 240 if (parent) 241 entry = rb_entry(parent, struct inode_defrag, rb_node); 242 else 243 entry = NULL; 244 } 245 out: 246 if (entry) 247 rb_erase(parent, &fs_info->defrag_inodes); 248 spin_unlock(&fs_info->defrag_inodes_lock); 249 return entry; 250 } 251 252 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 253 { 254 struct inode_defrag *defrag; 255 struct rb_node *node; 256 257 spin_lock(&fs_info->defrag_inodes_lock); 258 node = rb_first(&fs_info->defrag_inodes); 259 while (node) { 260 rb_erase(node, &fs_info->defrag_inodes); 261 defrag = rb_entry(node, struct inode_defrag, rb_node); 262 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 263 264 cond_resched_lock(&fs_info->defrag_inodes_lock); 265 266 node = rb_first(&fs_info->defrag_inodes); 267 } 268 spin_unlock(&fs_info->defrag_inodes_lock); 269 } 270 271 #define BTRFS_DEFRAG_BATCH 1024 272 273 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 274 struct inode_defrag *defrag) 275 { 276 struct btrfs_root *inode_root; 277 struct inode *inode; 278 struct btrfs_ioctl_defrag_range_args range; 279 int num_defrag; 280 int ret; 281 282 /* get the inode */ 283 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); 284 if (IS_ERR(inode_root)) { 285 ret = PTR_ERR(inode_root); 286 goto cleanup; 287 } 288 289 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root); 290 btrfs_put_root(inode_root); 291 if (IS_ERR(inode)) { 292 ret = PTR_ERR(inode); 293 goto cleanup; 294 } 295 296 /* do a chunk of defrag */ 297 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 298 memset(&range, 0, sizeof(range)); 299 range.len = (u64)-1; 300 range.start = defrag->last_offset; 301 302 sb_start_write(fs_info->sb); 303 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 304 BTRFS_DEFRAG_BATCH); 305 sb_end_write(fs_info->sb); 306 /* 307 * if we filled the whole defrag batch, there 308 * must be more work to do. Queue this defrag 309 * again 310 */ 311 if (num_defrag == BTRFS_DEFRAG_BATCH) { 312 defrag->last_offset = range.start; 313 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 314 } else if (defrag->last_offset && !defrag->cycled) { 315 /* 316 * we didn't fill our defrag batch, but 317 * we didn't start at zero. Make sure we loop 318 * around to the start of the file. 319 */ 320 defrag->last_offset = 0; 321 defrag->cycled = 1; 322 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 323 } else { 324 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 325 } 326 327 iput(inode); 328 return 0; 329 cleanup: 330 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 331 return ret; 332 } 333 334 /* 335 * run through the list of inodes in the FS that need 336 * defragging 337 */ 338 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 339 { 340 struct inode_defrag *defrag; 341 u64 first_ino = 0; 342 u64 root_objectid = 0; 343 344 atomic_inc(&fs_info->defrag_running); 345 while (1) { 346 /* Pause the auto defragger. */ 347 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 348 &fs_info->fs_state)) 349 break; 350 351 if (!__need_auto_defrag(fs_info)) 352 break; 353 354 /* find an inode to defrag */ 355 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 356 first_ino); 357 if (!defrag) { 358 if (root_objectid || first_ino) { 359 root_objectid = 0; 360 first_ino = 0; 361 continue; 362 } else { 363 break; 364 } 365 } 366 367 first_ino = defrag->ino + 1; 368 root_objectid = defrag->root; 369 370 __btrfs_run_defrag_inode(fs_info, defrag); 371 } 372 atomic_dec(&fs_info->defrag_running); 373 374 /* 375 * during unmount, we use the transaction_wait queue to 376 * wait for the defragger to stop 377 */ 378 wake_up(&fs_info->transaction_wait); 379 return 0; 380 } 381 382 /* simple helper to fault in pages and copy. This should go away 383 * and be replaced with calls into generic code. 384 */ 385 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 386 struct page **prepared_pages, 387 struct iov_iter *i) 388 { 389 size_t copied = 0; 390 size_t total_copied = 0; 391 int pg = 0; 392 int offset = offset_in_page(pos); 393 394 while (write_bytes > 0) { 395 size_t count = min_t(size_t, 396 PAGE_SIZE - offset, write_bytes); 397 struct page *page = prepared_pages[pg]; 398 /* 399 * Copy data from userspace to the current page 400 */ 401 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 402 403 /* Flush processor's dcache for this page */ 404 flush_dcache_page(page); 405 406 /* 407 * if we get a partial write, we can end up with 408 * partially up to date pages. These add 409 * a lot of complexity, so make sure they don't 410 * happen by forcing this copy to be retried. 411 * 412 * The rest of the btrfs_file_write code will fall 413 * back to page at a time copies after we return 0. 414 */ 415 if (!PageUptodate(page) && copied < count) 416 copied = 0; 417 418 iov_iter_advance(i, copied); 419 write_bytes -= copied; 420 total_copied += copied; 421 422 /* Return to btrfs_file_write_iter to fault page */ 423 if (unlikely(copied == 0)) 424 break; 425 426 if (copied < PAGE_SIZE - offset) { 427 offset += copied; 428 } else { 429 pg++; 430 offset = 0; 431 } 432 } 433 return total_copied; 434 } 435 436 /* 437 * unlocks pages after btrfs_file_write is done with them 438 */ 439 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 440 { 441 size_t i; 442 for (i = 0; i < num_pages; i++) { 443 /* page checked is some magic around finding pages that 444 * have been modified without going through btrfs_set_page_dirty 445 * clear it here. There should be no need to mark the pages 446 * accessed as prepare_pages should have marked them accessed 447 * in prepare_pages via find_or_create_page() 448 */ 449 ClearPageChecked(pages[i]); 450 unlock_page(pages[i]); 451 put_page(pages[i]); 452 } 453 } 454 455 /* 456 * after copy_from_user, pages need to be dirtied and we need to make 457 * sure holes are created between the current EOF and the start of 458 * any next extents (if required). 459 * 460 * this also makes the decision about creating an inline extent vs 461 * doing real data extents, marking pages dirty and delalloc as required. 462 */ 463 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 464 size_t num_pages, loff_t pos, size_t write_bytes, 465 struct extent_state **cached, bool noreserve) 466 { 467 struct btrfs_fs_info *fs_info = inode->root->fs_info; 468 int err = 0; 469 int i; 470 u64 num_bytes; 471 u64 start_pos; 472 u64 end_of_last_block; 473 u64 end_pos = pos + write_bytes; 474 loff_t isize = i_size_read(&inode->vfs_inode); 475 unsigned int extra_bits = 0; 476 477 if (write_bytes == 0) 478 return 0; 479 480 if (noreserve) 481 extra_bits |= EXTENT_NORESERVE; 482 483 start_pos = round_down(pos, fs_info->sectorsize); 484 num_bytes = round_up(write_bytes + pos - start_pos, 485 fs_info->sectorsize); 486 487 end_of_last_block = start_pos + num_bytes - 1; 488 489 /* 490 * The pages may have already been dirty, clear out old accounting so 491 * we can set things up properly 492 */ 493 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 494 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 495 0, 0, cached); 496 497 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 498 extra_bits, cached); 499 if (err) 500 return err; 501 502 for (i = 0; i < num_pages; i++) { 503 struct page *p = pages[i]; 504 SetPageUptodate(p); 505 ClearPageChecked(p); 506 set_page_dirty(p); 507 } 508 509 /* 510 * we've only changed i_size in ram, and we haven't updated 511 * the disk i_size. There is no need to log the inode 512 * at this time. 513 */ 514 if (end_pos > isize) 515 i_size_write(&inode->vfs_inode, end_pos); 516 return 0; 517 } 518 519 /* 520 * this drops all the extents in the cache that intersect the range 521 * [start, end]. Existing extents are split as required. 522 */ 523 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 524 int skip_pinned) 525 { 526 struct extent_map *em; 527 struct extent_map *split = NULL; 528 struct extent_map *split2 = NULL; 529 struct extent_map_tree *em_tree = &inode->extent_tree; 530 u64 len = end - start + 1; 531 u64 gen; 532 int ret; 533 int testend = 1; 534 unsigned long flags; 535 int compressed = 0; 536 bool modified; 537 538 WARN_ON(end < start); 539 if (end == (u64)-1) { 540 len = (u64)-1; 541 testend = 0; 542 } 543 while (1) { 544 int no_splits = 0; 545 546 modified = false; 547 if (!split) 548 split = alloc_extent_map(); 549 if (!split2) 550 split2 = alloc_extent_map(); 551 if (!split || !split2) 552 no_splits = 1; 553 554 write_lock(&em_tree->lock); 555 em = lookup_extent_mapping(em_tree, start, len); 556 if (!em) { 557 write_unlock(&em_tree->lock); 558 break; 559 } 560 flags = em->flags; 561 gen = em->generation; 562 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 563 if (testend && em->start + em->len >= start + len) { 564 free_extent_map(em); 565 write_unlock(&em_tree->lock); 566 break; 567 } 568 start = em->start + em->len; 569 if (testend) 570 len = start + len - (em->start + em->len); 571 free_extent_map(em); 572 write_unlock(&em_tree->lock); 573 continue; 574 } 575 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 576 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 577 clear_bit(EXTENT_FLAG_LOGGING, &flags); 578 modified = !list_empty(&em->list); 579 if (no_splits) 580 goto next; 581 582 if (em->start < start) { 583 split->start = em->start; 584 split->len = start - em->start; 585 586 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 587 split->orig_start = em->orig_start; 588 split->block_start = em->block_start; 589 590 if (compressed) 591 split->block_len = em->block_len; 592 else 593 split->block_len = split->len; 594 split->orig_block_len = max(split->block_len, 595 em->orig_block_len); 596 split->ram_bytes = em->ram_bytes; 597 } else { 598 split->orig_start = split->start; 599 split->block_len = 0; 600 split->block_start = em->block_start; 601 split->orig_block_len = 0; 602 split->ram_bytes = split->len; 603 } 604 605 split->generation = gen; 606 split->flags = flags; 607 split->compress_type = em->compress_type; 608 replace_extent_mapping(em_tree, em, split, modified); 609 free_extent_map(split); 610 split = split2; 611 split2 = NULL; 612 } 613 if (testend && em->start + em->len > start + len) { 614 u64 diff = start + len - em->start; 615 616 split->start = start + len; 617 split->len = em->start + em->len - (start + len); 618 split->flags = flags; 619 split->compress_type = em->compress_type; 620 split->generation = gen; 621 622 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 623 split->orig_block_len = max(em->block_len, 624 em->orig_block_len); 625 626 split->ram_bytes = em->ram_bytes; 627 if (compressed) { 628 split->block_len = em->block_len; 629 split->block_start = em->block_start; 630 split->orig_start = em->orig_start; 631 } else { 632 split->block_len = split->len; 633 split->block_start = em->block_start 634 + diff; 635 split->orig_start = em->orig_start; 636 } 637 } else { 638 split->ram_bytes = split->len; 639 split->orig_start = split->start; 640 split->block_len = 0; 641 split->block_start = em->block_start; 642 split->orig_block_len = 0; 643 } 644 645 if (extent_map_in_tree(em)) { 646 replace_extent_mapping(em_tree, em, split, 647 modified); 648 } else { 649 ret = add_extent_mapping(em_tree, split, 650 modified); 651 ASSERT(ret == 0); /* Logic error */ 652 } 653 free_extent_map(split); 654 split = NULL; 655 } 656 next: 657 if (extent_map_in_tree(em)) 658 remove_extent_mapping(em_tree, em); 659 write_unlock(&em_tree->lock); 660 661 /* once for us */ 662 free_extent_map(em); 663 /* once for the tree*/ 664 free_extent_map(em); 665 } 666 if (split) 667 free_extent_map(split); 668 if (split2) 669 free_extent_map(split2); 670 } 671 672 /* 673 * this is very complex, but the basic idea is to drop all extents 674 * in the range start - end. hint_block is filled in with a block number 675 * that would be a good hint to the block allocator for this file. 676 * 677 * If an extent intersects the range but is not entirely inside the range 678 * it is either truncated or split. Anything entirely inside the range 679 * is deleted from the tree. 680 * 681 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 682 * to deal with that. We set the field 'bytes_found' of the arguments structure 683 * with the number of allocated bytes found in the target range, so that the 684 * caller can update the inode's number of bytes in an atomic way when 685 * replacing extents in a range to avoid races with stat(2). 686 */ 687 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 688 struct btrfs_root *root, struct btrfs_inode *inode, 689 struct btrfs_drop_extents_args *args) 690 { 691 struct btrfs_fs_info *fs_info = root->fs_info; 692 struct extent_buffer *leaf; 693 struct btrfs_file_extent_item *fi; 694 struct btrfs_ref ref = { 0 }; 695 struct btrfs_key key; 696 struct btrfs_key new_key; 697 u64 ino = btrfs_ino(inode); 698 u64 search_start = args->start; 699 u64 disk_bytenr = 0; 700 u64 num_bytes = 0; 701 u64 extent_offset = 0; 702 u64 extent_end = 0; 703 u64 last_end = args->start; 704 int del_nr = 0; 705 int del_slot = 0; 706 int extent_type; 707 int recow; 708 int ret; 709 int modify_tree = -1; 710 int update_refs; 711 int found = 0; 712 int leafs_visited = 0; 713 struct btrfs_path *path = args->path; 714 715 args->bytes_found = 0; 716 args->extent_inserted = false; 717 718 /* Must always have a path if ->replace_extent is true */ 719 ASSERT(!(args->replace_extent && !args->path)); 720 721 if (!path) { 722 path = btrfs_alloc_path(); 723 if (!path) { 724 ret = -ENOMEM; 725 goto out; 726 } 727 } 728 729 if (args->drop_cache) 730 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0); 731 732 if (args->start >= inode->disk_i_size && !args->replace_extent) 733 modify_tree = 0; 734 735 update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 736 root == fs_info->tree_root); 737 while (1) { 738 recow = 0; 739 ret = btrfs_lookup_file_extent(trans, root, path, ino, 740 search_start, modify_tree); 741 if (ret < 0) 742 break; 743 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 744 leaf = path->nodes[0]; 745 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 746 if (key.objectid == ino && 747 key.type == BTRFS_EXTENT_DATA_KEY) 748 path->slots[0]--; 749 } 750 ret = 0; 751 leafs_visited++; 752 next_slot: 753 leaf = path->nodes[0]; 754 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 755 BUG_ON(del_nr > 0); 756 ret = btrfs_next_leaf(root, path); 757 if (ret < 0) 758 break; 759 if (ret > 0) { 760 ret = 0; 761 break; 762 } 763 leafs_visited++; 764 leaf = path->nodes[0]; 765 recow = 1; 766 } 767 768 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 769 770 if (key.objectid > ino) 771 break; 772 if (WARN_ON_ONCE(key.objectid < ino) || 773 key.type < BTRFS_EXTENT_DATA_KEY) { 774 ASSERT(del_nr == 0); 775 path->slots[0]++; 776 goto next_slot; 777 } 778 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 779 break; 780 781 fi = btrfs_item_ptr(leaf, path->slots[0], 782 struct btrfs_file_extent_item); 783 extent_type = btrfs_file_extent_type(leaf, fi); 784 785 if (extent_type == BTRFS_FILE_EXTENT_REG || 786 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 787 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 788 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 789 extent_offset = btrfs_file_extent_offset(leaf, fi); 790 extent_end = key.offset + 791 btrfs_file_extent_num_bytes(leaf, fi); 792 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 793 extent_end = key.offset + 794 btrfs_file_extent_ram_bytes(leaf, fi); 795 } else { 796 /* can't happen */ 797 BUG(); 798 } 799 800 /* 801 * Don't skip extent items representing 0 byte lengths. They 802 * used to be created (bug) if while punching holes we hit 803 * -ENOSPC condition. So if we find one here, just ensure we 804 * delete it, otherwise we would insert a new file extent item 805 * with the same key (offset) as that 0 bytes length file 806 * extent item in the call to setup_items_for_insert() later 807 * in this function. 808 */ 809 if (extent_end == key.offset && extent_end >= search_start) { 810 last_end = extent_end; 811 goto delete_extent_item; 812 } 813 814 if (extent_end <= search_start) { 815 path->slots[0]++; 816 goto next_slot; 817 } 818 819 found = 1; 820 search_start = max(key.offset, args->start); 821 if (recow || !modify_tree) { 822 modify_tree = -1; 823 btrfs_release_path(path); 824 continue; 825 } 826 827 /* 828 * | - range to drop - | 829 * | -------- extent -------- | 830 */ 831 if (args->start > key.offset && args->end < extent_end) { 832 BUG_ON(del_nr > 0); 833 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 834 ret = -EOPNOTSUPP; 835 break; 836 } 837 838 memcpy(&new_key, &key, sizeof(new_key)); 839 new_key.offset = args->start; 840 ret = btrfs_duplicate_item(trans, root, path, 841 &new_key); 842 if (ret == -EAGAIN) { 843 btrfs_release_path(path); 844 continue; 845 } 846 if (ret < 0) 847 break; 848 849 leaf = path->nodes[0]; 850 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 851 struct btrfs_file_extent_item); 852 btrfs_set_file_extent_num_bytes(leaf, fi, 853 args->start - key.offset); 854 855 fi = btrfs_item_ptr(leaf, path->slots[0], 856 struct btrfs_file_extent_item); 857 858 extent_offset += args->start - key.offset; 859 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 860 btrfs_set_file_extent_num_bytes(leaf, fi, 861 extent_end - args->start); 862 btrfs_mark_buffer_dirty(leaf); 863 864 if (update_refs && disk_bytenr > 0) { 865 btrfs_init_generic_ref(&ref, 866 BTRFS_ADD_DELAYED_REF, 867 disk_bytenr, num_bytes, 0); 868 btrfs_init_data_ref(&ref, 869 root->root_key.objectid, 870 new_key.objectid, 871 args->start - extent_offset); 872 ret = btrfs_inc_extent_ref(trans, &ref); 873 BUG_ON(ret); /* -ENOMEM */ 874 } 875 key.offset = args->start; 876 } 877 /* 878 * From here on out we will have actually dropped something, so 879 * last_end can be updated. 880 */ 881 last_end = extent_end; 882 883 /* 884 * | ---- range to drop ----- | 885 * | -------- extent -------- | 886 */ 887 if (args->start <= key.offset && args->end < extent_end) { 888 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 889 ret = -EOPNOTSUPP; 890 break; 891 } 892 893 memcpy(&new_key, &key, sizeof(new_key)); 894 new_key.offset = args->end; 895 btrfs_set_item_key_safe(fs_info, path, &new_key); 896 897 extent_offset += args->end - key.offset; 898 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 899 btrfs_set_file_extent_num_bytes(leaf, fi, 900 extent_end - args->end); 901 btrfs_mark_buffer_dirty(leaf); 902 if (update_refs && disk_bytenr > 0) 903 args->bytes_found += args->end - key.offset; 904 break; 905 } 906 907 search_start = extent_end; 908 /* 909 * | ---- range to drop ----- | 910 * | -------- extent -------- | 911 */ 912 if (args->start > key.offset && args->end >= extent_end) { 913 BUG_ON(del_nr > 0); 914 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 915 ret = -EOPNOTSUPP; 916 break; 917 } 918 919 btrfs_set_file_extent_num_bytes(leaf, fi, 920 args->start - key.offset); 921 btrfs_mark_buffer_dirty(leaf); 922 if (update_refs && disk_bytenr > 0) 923 args->bytes_found += extent_end - args->start; 924 if (args->end == extent_end) 925 break; 926 927 path->slots[0]++; 928 goto next_slot; 929 } 930 931 /* 932 * | ---- range to drop ----- | 933 * | ------ extent ------ | 934 */ 935 if (args->start <= key.offset && args->end >= extent_end) { 936 delete_extent_item: 937 if (del_nr == 0) { 938 del_slot = path->slots[0]; 939 del_nr = 1; 940 } else { 941 BUG_ON(del_slot + del_nr != path->slots[0]); 942 del_nr++; 943 } 944 945 if (update_refs && 946 extent_type == BTRFS_FILE_EXTENT_INLINE) { 947 args->bytes_found += extent_end - key.offset; 948 extent_end = ALIGN(extent_end, 949 fs_info->sectorsize); 950 } else if (update_refs && disk_bytenr > 0) { 951 btrfs_init_generic_ref(&ref, 952 BTRFS_DROP_DELAYED_REF, 953 disk_bytenr, num_bytes, 0); 954 btrfs_init_data_ref(&ref, 955 root->root_key.objectid, 956 key.objectid, 957 key.offset - extent_offset); 958 ret = btrfs_free_extent(trans, &ref); 959 BUG_ON(ret); /* -ENOMEM */ 960 args->bytes_found += extent_end - key.offset; 961 } 962 963 if (args->end == extent_end) 964 break; 965 966 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 967 path->slots[0]++; 968 goto next_slot; 969 } 970 971 ret = btrfs_del_items(trans, root, path, del_slot, 972 del_nr); 973 if (ret) { 974 btrfs_abort_transaction(trans, ret); 975 break; 976 } 977 978 del_nr = 0; 979 del_slot = 0; 980 981 btrfs_release_path(path); 982 continue; 983 } 984 985 BUG(); 986 } 987 988 if (!ret && del_nr > 0) { 989 /* 990 * Set path->slots[0] to first slot, so that after the delete 991 * if items are move off from our leaf to its immediate left or 992 * right neighbor leafs, we end up with a correct and adjusted 993 * path->slots[0] for our insertion (if args->replace_extent). 994 */ 995 path->slots[0] = del_slot; 996 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 997 if (ret) 998 btrfs_abort_transaction(trans, ret); 999 } 1000 1001 leaf = path->nodes[0]; 1002 /* 1003 * If btrfs_del_items() was called, it might have deleted a leaf, in 1004 * which case it unlocked our path, so check path->locks[0] matches a 1005 * write lock. 1006 */ 1007 if (!ret && args->replace_extent && leafs_visited == 1 && 1008 path->locks[0] == BTRFS_WRITE_LOCK && 1009 btrfs_leaf_free_space(leaf) >= 1010 sizeof(struct btrfs_item) + args->extent_item_size) { 1011 1012 key.objectid = ino; 1013 key.type = BTRFS_EXTENT_DATA_KEY; 1014 key.offset = args->start; 1015 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 1016 struct btrfs_key slot_key; 1017 1018 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 1019 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1020 path->slots[0]++; 1021 } 1022 setup_items_for_insert(root, path, &key, 1023 &args->extent_item_size, 1); 1024 args->extent_inserted = true; 1025 } 1026 1027 if (!args->path) 1028 btrfs_free_path(path); 1029 else if (!args->extent_inserted) 1030 btrfs_release_path(path); 1031 out: 1032 args->drop_end = found ? min(args->end, last_end) : args->end; 1033 1034 return ret; 1035 } 1036 1037 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1038 u64 objectid, u64 bytenr, u64 orig_offset, 1039 u64 *start, u64 *end) 1040 { 1041 struct btrfs_file_extent_item *fi; 1042 struct btrfs_key key; 1043 u64 extent_end; 1044 1045 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1046 return 0; 1047 1048 btrfs_item_key_to_cpu(leaf, &key, slot); 1049 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1050 return 0; 1051 1052 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1053 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1054 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1055 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1056 btrfs_file_extent_compression(leaf, fi) || 1057 btrfs_file_extent_encryption(leaf, fi) || 1058 btrfs_file_extent_other_encoding(leaf, fi)) 1059 return 0; 1060 1061 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1062 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1063 return 0; 1064 1065 *start = key.offset; 1066 *end = extent_end; 1067 return 1; 1068 } 1069 1070 /* 1071 * Mark extent in the range start - end as written. 1072 * 1073 * This changes extent type from 'pre-allocated' to 'regular'. If only 1074 * part of extent is marked as written, the extent will be split into 1075 * two or three. 1076 */ 1077 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1078 struct btrfs_inode *inode, u64 start, u64 end) 1079 { 1080 struct btrfs_fs_info *fs_info = trans->fs_info; 1081 struct btrfs_root *root = inode->root; 1082 struct extent_buffer *leaf; 1083 struct btrfs_path *path; 1084 struct btrfs_file_extent_item *fi; 1085 struct btrfs_ref ref = { 0 }; 1086 struct btrfs_key key; 1087 struct btrfs_key new_key; 1088 u64 bytenr; 1089 u64 num_bytes; 1090 u64 extent_end; 1091 u64 orig_offset; 1092 u64 other_start; 1093 u64 other_end; 1094 u64 split; 1095 int del_nr = 0; 1096 int del_slot = 0; 1097 int recow; 1098 int ret; 1099 u64 ino = btrfs_ino(inode); 1100 1101 path = btrfs_alloc_path(); 1102 if (!path) 1103 return -ENOMEM; 1104 again: 1105 recow = 0; 1106 split = start; 1107 key.objectid = ino; 1108 key.type = BTRFS_EXTENT_DATA_KEY; 1109 key.offset = split; 1110 1111 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1112 if (ret < 0) 1113 goto out; 1114 if (ret > 0 && path->slots[0] > 0) 1115 path->slots[0]--; 1116 1117 leaf = path->nodes[0]; 1118 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1119 if (key.objectid != ino || 1120 key.type != BTRFS_EXTENT_DATA_KEY) { 1121 ret = -EINVAL; 1122 btrfs_abort_transaction(trans, ret); 1123 goto out; 1124 } 1125 fi = btrfs_item_ptr(leaf, path->slots[0], 1126 struct btrfs_file_extent_item); 1127 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1128 ret = -EINVAL; 1129 btrfs_abort_transaction(trans, ret); 1130 goto out; 1131 } 1132 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1133 if (key.offset > start || extent_end < end) { 1134 ret = -EINVAL; 1135 btrfs_abort_transaction(trans, ret); 1136 goto out; 1137 } 1138 1139 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1140 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1141 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1142 memcpy(&new_key, &key, sizeof(new_key)); 1143 1144 if (start == key.offset && end < extent_end) { 1145 other_start = 0; 1146 other_end = start; 1147 if (extent_mergeable(leaf, path->slots[0] - 1, 1148 ino, bytenr, orig_offset, 1149 &other_start, &other_end)) { 1150 new_key.offset = end; 1151 btrfs_set_item_key_safe(fs_info, path, &new_key); 1152 fi = btrfs_item_ptr(leaf, path->slots[0], 1153 struct btrfs_file_extent_item); 1154 btrfs_set_file_extent_generation(leaf, fi, 1155 trans->transid); 1156 btrfs_set_file_extent_num_bytes(leaf, fi, 1157 extent_end - end); 1158 btrfs_set_file_extent_offset(leaf, fi, 1159 end - orig_offset); 1160 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1161 struct btrfs_file_extent_item); 1162 btrfs_set_file_extent_generation(leaf, fi, 1163 trans->transid); 1164 btrfs_set_file_extent_num_bytes(leaf, fi, 1165 end - other_start); 1166 btrfs_mark_buffer_dirty(leaf); 1167 goto out; 1168 } 1169 } 1170 1171 if (start > key.offset && end == extent_end) { 1172 other_start = end; 1173 other_end = 0; 1174 if (extent_mergeable(leaf, path->slots[0] + 1, 1175 ino, bytenr, orig_offset, 1176 &other_start, &other_end)) { 1177 fi = btrfs_item_ptr(leaf, path->slots[0], 1178 struct btrfs_file_extent_item); 1179 btrfs_set_file_extent_num_bytes(leaf, fi, 1180 start - key.offset); 1181 btrfs_set_file_extent_generation(leaf, fi, 1182 trans->transid); 1183 path->slots[0]++; 1184 new_key.offset = start; 1185 btrfs_set_item_key_safe(fs_info, path, &new_key); 1186 1187 fi = btrfs_item_ptr(leaf, path->slots[0], 1188 struct btrfs_file_extent_item); 1189 btrfs_set_file_extent_generation(leaf, fi, 1190 trans->transid); 1191 btrfs_set_file_extent_num_bytes(leaf, fi, 1192 other_end - start); 1193 btrfs_set_file_extent_offset(leaf, fi, 1194 start - orig_offset); 1195 btrfs_mark_buffer_dirty(leaf); 1196 goto out; 1197 } 1198 } 1199 1200 while (start > key.offset || end < extent_end) { 1201 if (key.offset == start) 1202 split = end; 1203 1204 new_key.offset = split; 1205 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1206 if (ret == -EAGAIN) { 1207 btrfs_release_path(path); 1208 goto again; 1209 } 1210 if (ret < 0) { 1211 btrfs_abort_transaction(trans, ret); 1212 goto out; 1213 } 1214 1215 leaf = path->nodes[0]; 1216 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1217 struct btrfs_file_extent_item); 1218 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1219 btrfs_set_file_extent_num_bytes(leaf, fi, 1220 split - key.offset); 1221 1222 fi = btrfs_item_ptr(leaf, path->slots[0], 1223 struct btrfs_file_extent_item); 1224 1225 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1226 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1227 btrfs_set_file_extent_num_bytes(leaf, fi, 1228 extent_end - split); 1229 btrfs_mark_buffer_dirty(leaf); 1230 1231 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 1232 num_bytes, 0); 1233 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 1234 orig_offset); 1235 ret = btrfs_inc_extent_ref(trans, &ref); 1236 if (ret) { 1237 btrfs_abort_transaction(trans, ret); 1238 goto out; 1239 } 1240 1241 if (split == start) { 1242 key.offset = start; 1243 } else { 1244 if (start != key.offset) { 1245 ret = -EINVAL; 1246 btrfs_abort_transaction(trans, ret); 1247 goto out; 1248 } 1249 path->slots[0]--; 1250 extent_end = end; 1251 } 1252 recow = 1; 1253 } 1254 1255 other_start = end; 1256 other_end = 0; 1257 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1258 num_bytes, 0); 1259 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset); 1260 if (extent_mergeable(leaf, path->slots[0] + 1, 1261 ino, bytenr, orig_offset, 1262 &other_start, &other_end)) { 1263 if (recow) { 1264 btrfs_release_path(path); 1265 goto again; 1266 } 1267 extent_end = other_end; 1268 del_slot = path->slots[0] + 1; 1269 del_nr++; 1270 ret = btrfs_free_extent(trans, &ref); 1271 if (ret) { 1272 btrfs_abort_transaction(trans, ret); 1273 goto out; 1274 } 1275 } 1276 other_start = 0; 1277 other_end = start; 1278 if (extent_mergeable(leaf, path->slots[0] - 1, 1279 ino, bytenr, orig_offset, 1280 &other_start, &other_end)) { 1281 if (recow) { 1282 btrfs_release_path(path); 1283 goto again; 1284 } 1285 key.offset = other_start; 1286 del_slot = path->slots[0]; 1287 del_nr++; 1288 ret = btrfs_free_extent(trans, &ref); 1289 if (ret) { 1290 btrfs_abort_transaction(trans, ret); 1291 goto out; 1292 } 1293 } 1294 if (del_nr == 0) { 1295 fi = btrfs_item_ptr(leaf, path->slots[0], 1296 struct btrfs_file_extent_item); 1297 btrfs_set_file_extent_type(leaf, fi, 1298 BTRFS_FILE_EXTENT_REG); 1299 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1300 btrfs_mark_buffer_dirty(leaf); 1301 } else { 1302 fi = btrfs_item_ptr(leaf, del_slot - 1, 1303 struct btrfs_file_extent_item); 1304 btrfs_set_file_extent_type(leaf, fi, 1305 BTRFS_FILE_EXTENT_REG); 1306 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1307 btrfs_set_file_extent_num_bytes(leaf, fi, 1308 extent_end - key.offset); 1309 btrfs_mark_buffer_dirty(leaf); 1310 1311 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1312 if (ret < 0) { 1313 btrfs_abort_transaction(trans, ret); 1314 goto out; 1315 } 1316 } 1317 out: 1318 btrfs_free_path(path); 1319 return 0; 1320 } 1321 1322 /* 1323 * on error we return an unlocked page and the error value 1324 * on success we return a locked page and 0 1325 */ 1326 static int prepare_uptodate_page(struct inode *inode, 1327 struct page *page, u64 pos, 1328 bool force_uptodate) 1329 { 1330 int ret = 0; 1331 1332 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1333 !PageUptodate(page)) { 1334 ret = btrfs_readpage(NULL, page); 1335 if (ret) 1336 return ret; 1337 lock_page(page); 1338 if (!PageUptodate(page)) { 1339 unlock_page(page); 1340 return -EIO; 1341 } 1342 if (page->mapping != inode->i_mapping) { 1343 unlock_page(page); 1344 return -EAGAIN; 1345 } 1346 } 1347 return 0; 1348 } 1349 1350 /* 1351 * this just gets pages into the page cache and locks them down. 1352 */ 1353 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1354 size_t num_pages, loff_t pos, 1355 size_t write_bytes, bool force_uptodate) 1356 { 1357 int i; 1358 unsigned long index = pos >> PAGE_SHIFT; 1359 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1360 int err = 0; 1361 int faili; 1362 1363 for (i = 0; i < num_pages; i++) { 1364 again: 1365 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1366 mask | __GFP_WRITE); 1367 if (!pages[i]) { 1368 faili = i - 1; 1369 err = -ENOMEM; 1370 goto fail; 1371 } 1372 1373 if (i == 0) 1374 err = prepare_uptodate_page(inode, pages[i], pos, 1375 force_uptodate); 1376 if (!err && i == num_pages - 1) 1377 err = prepare_uptodate_page(inode, pages[i], 1378 pos + write_bytes, false); 1379 if (err) { 1380 put_page(pages[i]); 1381 if (err == -EAGAIN) { 1382 err = 0; 1383 goto again; 1384 } 1385 faili = i - 1; 1386 goto fail; 1387 } 1388 wait_on_page_writeback(pages[i]); 1389 } 1390 1391 return 0; 1392 fail: 1393 while (faili >= 0) { 1394 unlock_page(pages[faili]); 1395 put_page(pages[faili]); 1396 faili--; 1397 } 1398 return err; 1399 1400 } 1401 1402 /* 1403 * This function locks the extent and properly waits for data=ordered extents 1404 * to finish before allowing the pages to be modified if need. 1405 * 1406 * The return value: 1407 * 1 - the extent is locked 1408 * 0 - the extent is not locked, and everything is OK 1409 * -EAGAIN - need re-prepare the pages 1410 * the other < 0 number - Something wrong happens 1411 */ 1412 static noinline int 1413 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1414 size_t num_pages, loff_t pos, 1415 size_t write_bytes, 1416 u64 *lockstart, u64 *lockend, 1417 struct extent_state **cached_state) 1418 { 1419 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1420 u64 start_pos; 1421 u64 last_pos; 1422 int i; 1423 int ret = 0; 1424 1425 start_pos = round_down(pos, fs_info->sectorsize); 1426 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 1427 1428 if (start_pos < inode->vfs_inode.i_size) { 1429 struct btrfs_ordered_extent *ordered; 1430 1431 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1432 cached_state); 1433 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1434 last_pos - start_pos + 1); 1435 if (ordered && 1436 ordered->file_offset + ordered->num_bytes > start_pos && 1437 ordered->file_offset <= last_pos) { 1438 unlock_extent_cached(&inode->io_tree, start_pos, 1439 last_pos, cached_state); 1440 for (i = 0; i < num_pages; i++) { 1441 unlock_page(pages[i]); 1442 put_page(pages[i]); 1443 } 1444 btrfs_start_ordered_extent(ordered, 1); 1445 btrfs_put_ordered_extent(ordered); 1446 return -EAGAIN; 1447 } 1448 if (ordered) 1449 btrfs_put_ordered_extent(ordered); 1450 1451 *lockstart = start_pos; 1452 *lockend = last_pos; 1453 ret = 1; 1454 } 1455 1456 /* 1457 * It's possible the pages are dirty right now, but we don't want 1458 * to clean them yet because copy_from_user may catch a page fault 1459 * and we might have to fall back to one page at a time. If that 1460 * happens, we'll unlock these pages and we'd have a window where 1461 * reclaim could sneak in and drop the once-dirty page on the floor 1462 * without writing it. 1463 * 1464 * We have the pages locked and the extent range locked, so there's 1465 * no way someone can start IO on any dirty pages in this range. 1466 * 1467 * We'll call btrfs_dirty_pages() later on, and that will flip around 1468 * delalloc bits and dirty the pages as required. 1469 */ 1470 for (i = 0; i < num_pages; i++) { 1471 set_page_extent_mapped(pages[i]); 1472 WARN_ON(!PageLocked(pages[i])); 1473 } 1474 1475 return ret; 1476 } 1477 1478 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1479 size_t *write_bytes, bool nowait) 1480 { 1481 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1482 struct btrfs_root *root = inode->root; 1483 u64 lockstart, lockend; 1484 u64 num_bytes; 1485 int ret; 1486 1487 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1488 return 0; 1489 1490 if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock)) 1491 return -EAGAIN; 1492 1493 lockstart = round_down(pos, fs_info->sectorsize); 1494 lockend = round_up(pos + *write_bytes, 1495 fs_info->sectorsize) - 1; 1496 num_bytes = lockend - lockstart + 1; 1497 1498 if (nowait) { 1499 struct btrfs_ordered_extent *ordered; 1500 1501 if (!try_lock_extent(&inode->io_tree, lockstart, lockend)) 1502 return -EAGAIN; 1503 1504 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1505 num_bytes); 1506 if (ordered) { 1507 btrfs_put_ordered_extent(ordered); 1508 ret = -EAGAIN; 1509 goto out_unlock; 1510 } 1511 } else { 1512 btrfs_lock_and_flush_ordered_range(inode, lockstart, 1513 lockend, NULL); 1514 } 1515 1516 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1517 NULL, NULL, NULL, false); 1518 if (ret <= 0) { 1519 ret = 0; 1520 if (!nowait) 1521 btrfs_drew_write_unlock(&root->snapshot_lock); 1522 } else { 1523 *write_bytes = min_t(size_t, *write_bytes , 1524 num_bytes - pos + lockstart); 1525 } 1526 out_unlock: 1527 unlock_extent(&inode->io_tree, lockstart, lockend); 1528 1529 return ret; 1530 } 1531 1532 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos, 1533 size_t *write_bytes) 1534 { 1535 return check_can_nocow(inode, pos, write_bytes, true); 1536 } 1537 1538 /* 1539 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1540 * 1541 * @pos: File offset 1542 * @write_bytes: The length to write, will be updated to the nocow writeable 1543 * range 1544 * 1545 * This function will flush ordered extents in the range to ensure proper 1546 * nocow checks. 1547 * 1548 * Return: 1549 * >0 and update @write_bytes if we can do nocow write 1550 * 0 if we can't do nocow write 1551 * -EAGAIN if we can't get the needed lock or there are ordered extents 1552 * for * (nowait == true) case 1553 * <0 if other error happened 1554 * 1555 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock(). 1556 */ 1557 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1558 size_t *write_bytes) 1559 { 1560 return check_can_nocow(inode, pos, write_bytes, false); 1561 } 1562 1563 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1564 { 1565 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1566 } 1567 1568 static void update_time_for_write(struct inode *inode) 1569 { 1570 struct timespec64 now; 1571 1572 if (IS_NOCMTIME(inode)) 1573 return; 1574 1575 now = current_time(inode); 1576 if (!timespec64_equal(&inode->i_mtime, &now)) 1577 inode->i_mtime = now; 1578 1579 if (!timespec64_equal(&inode->i_ctime, &now)) 1580 inode->i_ctime = now; 1581 1582 if (IS_I_VERSION(inode)) 1583 inode_inc_iversion(inode); 1584 } 1585 1586 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1587 size_t count) 1588 { 1589 struct file *file = iocb->ki_filp; 1590 struct inode *inode = file_inode(file); 1591 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1592 loff_t pos = iocb->ki_pos; 1593 int ret; 1594 loff_t oldsize; 1595 loff_t start_pos; 1596 1597 if (iocb->ki_flags & IOCB_NOWAIT) { 1598 size_t nocow_bytes = count; 1599 1600 /* We will allocate space in case nodatacow is not set, so bail */ 1601 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0) 1602 return -EAGAIN; 1603 /* 1604 * There are holes in the range or parts of the range that must 1605 * be COWed (shared extents, RO block groups, etc), so just bail 1606 * out. 1607 */ 1608 if (nocow_bytes < count) 1609 return -EAGAIN; 1610 } 1611 1612 current->backing_dev_info = inode_to_bdi(inode); 1613 ret = file_remove_privs(file); 1614 if (ret) 1615 return ret; 1616 1617 /* 1618 * We reserve space for updating the inode when we reserve space for the 1619 * extent we are going to write, so we will enospc out there. We don't 1620 * need to start yet another transaction to update the inode as we will 1621 * update the inode when we finish writing whatever data we write. 1622 */ 1623 update_time_for_write(inode); 1624 1625 start_pos = round_down(pos, fs_info->sectorsize); 1626 oldsize = i_size_read(inode); 1627 if (start_pos > oldsize) { 1628 /* Expand hole size to cover write data, preventing empty gap */ 1629 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1630 1631 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1632 if (ret) { 1633 current->backing_dev_info = NULL; 1634 return ret; 1635 } 1636 } 1637 1638 return 0; 1639 } 1640 1641 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1642 struct iov_iter *i) 1643 { 1644 struct file *file = iocb->ki_filp; 1645 loff_t pos; 1646 struct inode *inode = file_inode(file); 1647 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1648 struct page **pages = NULL; 1649 struct extent_changeset *data_reserved = NULL; 1650 u64 release_bytes = 0; 1651 u64 lockstart; 1652 u64 lockend; 1653 size_t num_written = 0; 1654 int nrptrs; 1655 ssize_t ret; 1656 bool only_release_metadata = false; 1657 bool force_page_uptodate = false; 1658 loff_t old_isize = i_size_read(inode); 1659 unsigned int ilock_flags = 0; 1660 1661 if (iocb->ki_flags & IOCB_NOWAIT) 1662 ilock_flags |= BTRFS_ILOCK_TRY; 1663 1664 ret = btrfs_inode_lock(inode, ilock_flags); 1665 if (ret < 0) 1666 return ret; 1667 1668 ret = generic_write_checks(iocb, i); 1669 if (ret <= 0) 1670 goto out; 1671 1672 ret = btrfs_write_check(iocb, i, ret); 1673 if (ret < 0) 1674 goto out; 1675 1676 pos = iocb->ki_pos; 1677 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1678 PAGE_SIZE / (sizeof(struct page *))); 1679 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1680 nrptrs = max(nrptrs, 8); 1681 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1682 if (!pages) { 1683 ret = -ENOMEM; 1684 goto out; 1685 } 1686 1687 while (iov_iter_count(i) > 0) { 1688 struct extent_state *cached_state = NULL; 1689 size_t offset = offset_in_page(pos); 1690 size_t sector_offset; 1691 size_t write_bytes = min(iov_iter_count(i), 1692 nrptrs * (size_t)PAGE_SIZE - 1693 offset); 1694 size_t num_pages; 1695 size_t reserve_bytes; 1696 size_t dirty_pages; 1697 size_t copied; 1698 size_t dirty_sectors; 1699 size_t num_sectors; 1700 int extents_locked; 1701 1702 /* 1703 * Fault pages before locking them in prepare_pages 1704 * to avoid recursive lock 1705 */ 1706 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1707 ret = -EFAULT; 1708 break; 1709 } 1710 1711 only_release_metadata = false; 1712 sector_offset = pos & (fs_info->sectorsize - 1); 1713 1714 extent_changeset_release(data_reserved); 1715 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1716 &data_reserved, pos, 1717 write_bytes); 1718 if (ret < 0) { 1719 /* 1720 * If we don't have to COW at the offset, reserve 1721 * metadata only. write_bytes may get smaller than 1722 * requested here. 1723 */ 1724 if (btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1725 &write_bytes) > 0) 1726 only_release_metadata = true; 1727 else 1728 break; 1729 } 1730 1731 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1732 WARN_ON(num_pages > nrptrs); 1733 reserve_bytes = round_up(write_bytes + sector_offset, 1734 fs_info->sectorsize); 1735 WARN_ON(reserve_bytes == 0); 1736 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1737 reserve_bytes); 1738 if (ret) { 1739 if (!only_release_metadata) 1740 btrfs_free_reserved_data_space(BTRFS_I(inode), 1741 data_reserved, pos, 1742 write_bytes); 1743 else 1744 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1745 break; 1746 } 1747 1748 release_bytes = reserve_bytes; 1749 again: 1750 /* 1751 * This is going to setup the pages array with the number of 1752 * pages we want, so we don't really need to worry about the 1753 * contents of pages from loop to loop 1754 */ 1755 ret = prepare_pages(inode, pages, num_pages, 1756 pos, write_bytes, 1757 force_page_uptodate); 1758 if (ret) { 1759 btrfs_delalloc_release_extents(BTRFS_I(inode), 1760 reserve_bytes); 1761 break; 1762 } 1763 1764 extents_locked = lock_and_cleanup_extent_if_need( 1765 BTRFS_I(inode), pages, 1766 num_pages, pos, write_bytes, &lockstart, 1767 &lockend, &cached_state); 1768 if (extents_locked < 0) { 1769 if (extents_locked == -EAGAIN) 1770 goto again; 1771 btrfs_delalloc_release_extents(BTRFS_I(inode), 1772 reserve_bytes); 1773 ret = extents_locked; 1774 break; 1775 } 1776 1777 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1778 1779 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1780 dirty_sectors = round_up(copied + sector_offset, 1781 fs_info->sectorsize); 1782 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1783 1784 /* 1785 * if we have trouble faulting in the pages, fall 1786 * back to one page at a time 1787 */ 1788 if (copied < write_bytes) 1789 nrptrs = 1; 1790 1791 if (copied == 0) { 1792 force_page_uptodate = true; 1793 dirty_sectors = 0; 1794 dirty_pages = 0; 1795 } else { 1796 force_page_uptodate = false; 1797 dirty_pages = DIV_ROUND_UP(copied + offset, 1798 PAGE_SIZE); 1799 } 1800 1801 if (num_sectors > dirty_sectors) { 1802 /* release everything except the sectors we dirtied */ 1803 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1804 if (only_release_metadata) { 1805 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1806 release_bytes, true); 1807 } else { 1808 u64 __pos; 1809 1810 __pos = round_down(pos, 1811 fs_info->sectorsize) + 1812 (dirty_pages << PAGE_SHIFT); 1813 btrfs_delalloc_release_space(BTRFS_I(inode), 1814 data_reserved, __pos, 1815 release_bytes, true); 1816 } 1817 } 1818 1819 release_bytes = round_up(copied + sector_offset, 1820 fs_info->sectorsize); 1821 1822 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1823 dirty_pages, pos, copied, 1824 &cached_state, only_release_metadata); 1825 1826 /* 1827 * If we have not locked the extent range, because the range's 1828 * start offset is >= i_size, we might still have a non-NULL 1829 * cached extent state, acquired while marking the extent range 1830 * as delalloc through btrfs_dirty_pages(). Therefore free any 1831 * possible cached extent state to avoid a memory leak. 1832 */ 1833 if (extents_locked) 1834 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1835 lockstart, lockend, &cached_state); 1836 else 1837 free_extent_state(cached_state); 1838 1839 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1840 if (ret) { 1841 btrfs_drop_pages(pages, num_pages); 1842 break; 1843 } 1844 1845 release_bytes = 0; 1846 if (only_release_metadata) 1847 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1848 1849 btrfs_drop_pages(pages, num_pages); 1850 1851 cond_resched(); 1852 1853 balance_dirty_pages_ratelimited(inode->i_mapping); 1854 1855 pos += copied; 1856 num_written += copied; 1857 } 1858 1859 kfree(pages); 1860 1861 if (release_bytes) { 1862 if (only_release_metadata) { 1863 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1864 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1865 release_bytes, true); 1866 } else { 1867 btrfs_delalloc_release_space(BTRFS_I(inode), 1868 data_reserved, 1869 round_down(pos, fs_info->sectorsize), 1870 release_bytes, true); 1871 } 1872 } 1873 1874 extent_changeset_free(data_reserved); 1875 if (num_written > 0) { 1876 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1877 iocb->ki_pos += num_written; 1878 } 1879 out: 1880 btrfs_inode_unlock(inode, ilock_flags); 1881 return num_written ? num_written : ret; 1882 } 1883 1884 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1885 const struct iov_iter *iter, loff_t offset) 1886 { 1887 const u32 blocksize_mask = fs_info->sectorsize - 1; 1888 1889 if (offset & blocksize_mask) 1890 return -EINVAL; 1891 1892 if (iov_iter_alignment(iter) & blocksize_mask) 1893 return -EINVAL; 1894 1895 return 0; 1896 } 1897 1898 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1899 { 1900 struct file *file = iocb->ki_filp; 1901 struct inode *inode = file_inode(file); 1902 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1903 loff_t pos; 1904 ssize_t written = 0; 1905 ssize_t written_buffered; 1906 loff_t endbyte; 1907 ssize_t err; 1908 unsigned int ilock_flags = 0; 1909 struct iomap_dio *dio = NULL; 1910 1911 if (iocb->ki_flags & IOCB_NOWAIT) 1912 ilock_flags |= BTRFS_ILOCK_TRY; 1913 1914 /* If the write DIO is within EOF, use a shared lock */ 1915 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode)) 1916 ilock_flags |= BTRFS_ILOCK_SHARED; 1917 1918 relock: 1919 err = btrfs_inode_lock(inode, ilock_flags); 1920 if (err < 0) 1921 return err; 1922 1923 err = generic_write_checks(iocb, from); 1924 if (err <= 0) { 1925 btrfs_inode_unlock(inode, ilock_flags); 1926 return err; 1927 } 1928 1929 err = btrfs_write_check(iocb, from, err); 1930 if (err < 0) { 1931 btrfs_inode_unlock(inode, ilock_flags); 1932 goto out; 1933 } 1934 1935 pos = iocb->ki_pos; 1936 /* 1937 * Re-check since file size may have changed just before taking the 1938 * lock or pos may have changed because of O_APPEND in generic_write_check() 1939 */ 1940 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1941 pos + iov_iter_count(from) > i_size_read(inode)) { 1942 btrfs_inode_unlock(inode, ilock_flags); 1943 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1944 goto relock; 1945 } 1946 1947 if (check_direct_IO(fs_info, from, pos)) { 1948 btrfs_inode_unlock(inode, ilock_flags); 1949 goto buffered; 1950 } 1951 1952 dio = __iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, 1953 &btrfs_dio_ops, is_sync_kiocb(iocb)); 1954 1955 btrfs_inode_unlock(inode, ilock_flags); 1956 1957 if (IS_ERR_OR_NULL(dio)) { 1958 err = PTR_ERR_OR_ZERO(dio); 1959 if (err < 0 && err != -ENOTBLK) 1960 goto out; 1961 } else { 1962 written = iomap_dio_complete(dio); 1963 } 1964 1965 if (written < 0 || !iov_iter_count(from)) { 1966 err = written; 1967 goto out; 1968 } 1969 1970 buffered: 1971 pos = iocb->ki_pos; 1972 written_buffered = btrfs_buffered_write(iocb, from); 1973 if (written_buffered < 0) { 1974 err = written_buffered; 1975 goto out; 1976 } 1977 /* 1978 * Ensure all data is persisted. We want the next direct IO read to be 1979 * able to read what was just written. 1980 */ 1981 endbyte = pos + written_buffered - 1; 1982 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1983 if (err) 1984 goto out; 1985 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1986 if (err) 1987 goto out; 1988 written += written_buffered; 1989 iocb->ki_pos = pos + written_buffered; 1990 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1991 endbyte >> PAGE_SHIFT); 1992 out: 1993 return written ? written : err; 1994 } 1995 1996 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1997 struct iov_iter *from) 1998 { 1999 struct file *file = iocb->ki_filp; 2000 struct inode *inode = file_inode(file); 2001 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2002 struct btrfs_root *root = BTRFS_I(inode)->root; 2003 ssize_t num_written = 0; 2004 const bool sync = iocb->ki_flags & IOCB_DSYNC; 2005 2006 /* 2007 * If the fs flips readonly due to some impossible error, although we 2008 * have opened a file as writable, we have to stop this write operation 2009 * to ensure consistency. 2010 */ 2011 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 2012 return -EROFS; 2013 2014 if (!(iocb->ki_flags & IOCB_DIRECT) && 2015 (iocb->ki_flags & IOCB_NOWAIT)) 2016 return -EOPNOTSUPP; 2017 2018 if (sync) 2019 atomic_inc(&BTRFS_I(inode)->sync_writers); 2020 2021 if (iocb->ki_flags & IOCB_DIRECT) 2022 num_written = btrfs_direct_write(iocb, from); 2023 else 2024 num_written = btrfs_buffered_write(iocb, from); 2025 2026 /* 2027 * We also have to set last_sub_trans to the current log transid, 2028 * otherwise subsequent syncs to a file that's been synced in this 2029 * transaction will appear to have already occurred. 2030 */ 2031 spin_lock(&BTRFS_I(inode)->lock); 2032 BTRFS_I(inode)->last_sub_trans = root->log_transid; 2033 spin_unlock(&BTRFS_I(inode)->lock); 2034 if (num_written > 0) 2035 num_written = generic_write_sync(iocb, num_written); 2036 2037 if (sync) 2038 atomic_dec(&BTRFS_I(inode)->sync_writers); 2039 2040 current->backing_dev_info = NULL; 2041 return num_written; 2042 } 2043 2044 int btrfs_release_file(struct inode *inode, struct file *filp) 2045 { 2046 struct btrfs_file_private *private = filp->private_data; 2047 2048 if (private && private->filldir_buf) 2049 kfree(private->filldir_buf); 2050 kfree(private); 2051 filp->private_data = NULL; 2052 2053 /* 2054 * Set by setattr when we are about to truncate a file from a non-zero 2055 * size to a zero size. This tries to flush down new bytes that may 2056 * have been written if the application were using truncate to replace 2057 * a file in place. 2058 */ 2059 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 2060 &BTRFS_I(inode)->runtime_flags)) 2061 filemap_flush(inode->i_mapping); 2062 return 0; 2063 } 2064 2065 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2066 { 2067 int ret; 2068 struct blk_plug plug; 2069 2070 /* 2071 * This is only called in fsync, which would do synchronous writes, so 2072 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2073 * multiple disks using raid profile, a large IO can be split to 2074 * several segments of stripe length (currently 64K). 2075 */ 2076 blk_start_plug(&plug); 2077 atomic_inc(&BTRFS_I(inode)->sync_writers); 2078 ret = btrfs_fdatawrite_range(inode, start, end); 2079 atomic_dec(&BTRFS_I(inode)->sync_writers); 2080 blk_finish_plug(&plug); 2081 2082 return ret; 2083 } 2084 2085 /* 2086 * fsync call for both files and directories. This logs the inode into 2087 * the tree log instead of forcing full commits whenever possible. 2088 * 2089 * It needs to call filemap_fdatawait so that all ordered extent updates are 2090 * in the metadata btree are up to date for copying to the log. 2091 * 2092 * It drops the inode mutex before doing the tree log commit. This is an 2093 * important optimization for directories because holding the mutex prevents 2094 * new operations on the dir while we write to disk. 2095 */ 2096 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2097 { 2098 struct dentry *dentry = file_dentry(file); 2099 struct inode *inode = d_inode(dentry); 2100 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2101 struct btrfs_root *root = BTRFS_I(inode)->root; 2102 struct btrfs_trans_handle *trans; 2103 struct btrfs_log_ctx ctx; 2104 int ret = 0, err; 2105 u64 len; 2106 bool full_sync; 2107 2108 trace_btrfs_sync_file(file, datasync); 2109 2110 btrfs_init_log_ctx(&ctx, inode); 2111 2112 /* 2113 * Always set the range to a full range, otherwise we can get into 2114 * several problems, from missing file extent items to represent holes 2115 * when not using the NO_HOLES feature, to log tree corruption due to 2116 * races between hole detection during logging and completion of ordered 2117 * extents outside the range, to missing checksums due to ordered extents 2118 * for which we flushed only a subset of their pages. 2119 */ 2120 start = 0; 2121 end = LLONG_MAX; 2122 len = (u64)LLONG_MAX + 1; 2123 2124 /* 2125 * We write the dirty pages in the range and wait until they complete 2126 * out of the ->i_mutex. If so, we can flush the dirty pages by 2127 * multi-task, and make the performance up. See 2128 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2129 */ 2130 ret = start_ordered_ops(inode, start, end); 2131 if (ret) 2132 goto out; 2133 2134 inode_lock(inode); 2135 2136 atomic_inc(&root->log_batch); 2137 2138 /* 2139 * Always check for the full sync flag while holding the inode's lock, 2140 * to avoid races with other tasks. The flag must be either set all the 2141 * time during logging or always off all the time while logging. 2142 */ 2143 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2144 &BTRFS_I(inode)->runtime_flags); 2145 2146 /* 2147 * Before we acquired the inode's lock, someone may have dirtied more 2148 * pages in the target range. We need to make sure that writeback for 2149 * any such pages does not start while we are logging the inode, because 2150 * if it does, any of the following might happen when we are not doing a 2151 * full inode sync: 2152 * 2153 * 1) We log an extent after its writeback finishes but before its 2154 * checksums are added to the csum tree, leading to -EIO errors 2155 * when attempting to read the extent after a log replay. 2156 * 2157 * 2) We can end up logging an extent before its writeback finishes. 2158 * Therefore after the log replay we will have a file extent item 2159 * pointing to an unwritten extent (and no data checksums as well). 2160 * 2161 * So trigger writeback for any eventual new dirty pages and then we 2162 * wait for all ordered extents to complete below. 2163 */ 2164 ret = start_ordered_ops(inode, start, end); 2165 if (ret) { 2166 inode_unlock(inode); 2167 goto out; 2168 } 2169 2170 /* 2171 * We have to do this here to avoid the priority inversion of waiting on 2172 * IO of a lower priority task while holding a transaction open. 2173 * 2174 * For a full fsync we wait for the ordered extents to complete while 2175 * for a fast fsync we wait just for writeback to complete, and then 2176 * attach the ordered extents to the transaction so that a transaction 2177 * commit waits for their completion, to avoid data loss if we fsync, 2178 * the current transaction commits before the ordered extents complete 2179 * and a power failure happens right after that. 2180 */ 2181 if (full_sync) { 2182 ret = btrfs_wait_ordered_range(inode, start, len); 2183 } else { 2184 /* 2185 * Get our ordered extents as soon as possible to avoid doing 2186 * checksum lookups in the csum tree, and use instead the 2187 * checksums attached to the ordered extents. 2188 */ 2189 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 2190 &ctx.ordered_extents); 2191 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 2192 } 2193 2194 if (ret) 2195 goto out_release_extents; 2196 2197 atomic_inc(&root->log_batch); 2198 2199 /* 2200 * If we are doing a fast fsync we can not bail out if the inode's 2201 * last_trans is <= then the last committed transaction, because we only 2202 * update the last_trans of the inode during ordered extent completion, 2203 * and for a fast fsync we don't wait for that, we only wait for the 2204 * writeback to complete. 2205 */ 2206 smp_mb(); 2207 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) || 2208 (BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed && 2209 (full_sync || list_empty(&ctx.ordered_extents)))) { 2210 /* 2211 * We've had everything committed since the last time we were 2212 * modified so clear this flag in case it was set for whatever 2213 * reason, it's no longer relevant. 2214 */ 2215 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2216 &BTRFS_I(inode)->runtime_flags); 2217 /* 2218 * An ordered extent might have started before and completed 2219 * already with io errors, in which case the inode was not 2220 * updated and we end up here. So check the inode's mapping 2221 * for any errors that might have happened since we last 2222 * checked called fsync. 2223 */ 2224 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2225 goto out_release_extents; 2226 } 2227 2228 /* 2229 * We use start here because we will need to wait on the IO to complete 2230 * in btrfs_sync_log, which could require joining a transaction (for 2231 * example checking cross references in the nocow path). If we use join 2232 * here we could get into a situation where we're waiting on IO to 2233 * happen that is blocked on a transaction trying to commit. With start 2234 * we inc the extwriter counter, so we wait for all extwriters to exit 2235 * before we start blocking joiners. This comment is to keep somebody 2236 * from thinking they are super smart and changing this to 2237 * btrfs_join_transaction *cough*Josef*cough*. 2238 */ 2239 trans = btrfs_start_transaction(root, 0); 2240 if (IS_ERR(trans)) { 2241 ret = PTR_ERR(trans); 2242 goto out_release_extents; 2243 } 2244 2245 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 2246 btrfs_release_log_ctx_extents(&ctx); 2247 if (ret < 0) { 2248 /* Fallthrough and commit/free transaction. */ 2249 ret = 1; 2250 } 2251 2252 /* we've logged all the items and now have a consistent 2253 * version of the file in the log. It is possible that 2254 * someone will come in and modify the file, but that's 2255 * fine because the log is consistent on disk, and we 2256 * have references to all of the file's extents 2257 * 2258 * It is possible that someone will come in and log the 2259 * file again, but that will end up using the synchronization 2260 * inside btrfs_sync_log to keep things safe. 2261 */ 2262 inode_unlock(inode); 2263 2264 if (ret != BTRFS_NO_LOG_SYNC) { 2265 if (!ret) { 2266 ret = btrfs_sync_log(trans, root, &ctx); 2267 if (!ret) { 2268 ret = btrfs_end_transaction(trans); 2269 goto out; 2270 } 2271 } 2272 if (!full_sync) { 2273 ret = btrfs_wait_ordered_range(inode, start, len); 2274 if (ret) { 2275 btrfs_end_transaction(trans); 2276 goto out; 2277 } 2278 } 2279 ret = btrfs_commit_transaction(trans); 2280 } else { 2281 ret = btrfs_end_transaction(trans); 2282 } 2283 out: 2284 ASSERT(list_empty(&ctx.list)); 2285 err = file_check_and_advance_wb_err(file); 2286 if (!ret) 2287 ret = err; 2288 return ret > 0 ? -EIO : ret; 2289 2290 out_release_extents: 2291 btrfs_release_log_ctx_extents(&ctx); 2292 inode_unlock(inode); 2293 goto out; 2294 } 2295 2296 static const struct vm_operations_struct btrfs_file_vm_ops = { 2297 .fault = filemap_fault, 2298 .map_pages = filemap_map_pages, 2299 .page_mkwrite = btrfs_page_mkwrite, 2300 }; 2301 2302 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2303 { 2304 struct address_space *mapping = filp->f_mapping; 2305 2306 if (!mapping->a_ops->readpage) 2307 return -ENOEXEC; 2308 2309 file_accessed(filp); 2310 vma->vm_ops = &btrfs_file_vm_ops; 2311 2312 return 0; 2313 } 2314 2315 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2316 int slot, u64 start, u64 end) 2317 { 2318 struct btrfs_file_extent_item *fi; 2319 struct btrfs_key key; 2320 2321 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2322 return 0; 2323 2324 btrfs_item_key_to_cpu(leaf, &key, slot); 2325 if (key.objectid != btrfs_ino(inode) || 2326 key.type != BTRFS_EXTENT_DATA_KEY) 2327 return 0; 2328 2329 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2330 2331 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2332 return 0; 2333 2334 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2335 return 0; 2336 2337 if (key.offset == end) 2338 return 1; 2339 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2340 return 1; 2341 return 0; 2342 } 2343 2344 static int fill_holes(struct btrfs_trans_handle *trans, 2345 struct btrfs_inode *inode, 2346 struct btrfs_path *path, u64 offset, u64 end) 2347 { 2348 struct btrfs_fs_info *fs_info = trans->fs_info; 2349 struct btrfs_root *root = inode->root; 2350 struct extent_buffer *leaf; 2351 struct btrfs_file_extent_item *fi; 2352 struct extent_map *hole_em; 2353 struct extent_map_tree *em_tree = &inode->extent_tree; 2354 struct btrfs_key key; 2355 int ret; 2356 2357 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2358 goto out; 2359 2360 key.objectid = btrfs_ino(inode); 2361 key.type = BTRFS_EXTENT_DATA_KEY; 2362 key.offset = offset; 2363 2364 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2365 if (ret <= 0) { 2366 /* 2367 * We should have dropped this offset, so if we find it then 2368 * something has gone horribly wrong. 2369 */ 2370 if (ret == 0) 2371 ret = -EINVAL; 2372 return ret; 2373 } 2374 2375 leaf = path->nodes[0]; 2376 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2377 u64 num_bytes; 2378 2379 path->slots[0]--; 2380 fi = btrfs_item_ptr(leaf, path->slots[0], 2381 struct btrfs_file_extent_item); 2382 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2383 end - offset; 2384 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2385 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2386 btrfs_set_file_extent_offset(leaf, fi, 0); 2387 btrfs_mark_buffer_dirty(leaf); 2388 goto out; 2389 } 2390 2391 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2392 u64 num_bytes; 2393 2394 key.offset = offset; 2395 btrfs_set_item_key_safe(fs_info, path, &key); 2396 fi = btrfs_item_ptr(leaf, path->slots[0], 2397 struct btrfs_file_extent_item); 2398 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2399 offset; 2400 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2401 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2402 btrfs_set_file_extent_offset(leaf, fi, 0); 2403 btrfs_mark_buffer_dirty(leaf); 2404 goto out; 2405 } 2406 btrfs_release_path(path); 2407 2408 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2409 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2410 if (ret) 2411 return ret; 2412 2413 out: 2414 btrfs_release_path(path); 2415 2416 hole_em = alloc_extent_map(); 2417 if (!hole_em) { 2418 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2419 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2420 } else { 2421 hole_em->start = offset; 2422 hole_em->len = end - offset; 2423 hole_em->ram_bytes = hole_em->len; 2424 hole_em->orig_start = offset; 2425 2426 hole_em->block_start = EXTENT_MAP_HOLE; 2427 hole_em->block_len = 0; 2428 hole_em->orig_block_len = 0; 2429 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2430 hole_em->generation = trans->transid; 2431 2432 do { 2433 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2434 write_lock(&em_tree->lock); 2435 ret = add_extent_mapping(em_tree, hole_em, 1); 2436 write_unlock(&em_tree->lock); 2437 } while (ret == -EEXIST); 2438 free_extent_map(hole_em); 2439 if (ret) 2440 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2441 &inode->runtime_flags); 2442 } 2443 2444 return 0; 2445 } 2446 2447 /* 2448 * Find a hole extent on given inode and change start/len to the end of hole 2449 * extent.(hole/vacuum extent whose em->start <= start && 2450 * em->start + em->len > start) 2451 * When a hole extent is found, return 1 and modify start/len. 2452 */ 2453 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2454 { 2455 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2456 struct extent_map *em; 2457 int ret = 0; 2458 2459 em = btrfs_get_extent(inode, NULL, 0, 2460 round_down(*start, fs_info->sectorsize), 2461 round_up(*len, fs_info->sectorsize)); 2462 if (IS_ERR(em)) 2463 return PTR_ERR(em); 2464 2465 /* Hole or vacuum extent(only exists in no-hole mode) */ 2466 if (em->block_start == EXTENT_MAP_HOLE) { 2467 ret = 1; 2468 *len = em->start + em->len > *start + *len ? 2469 0 : *start + *len - em->start - em->len; 2470 *start = em->start + em->len; 2471 } 2472 free_extent_map(em); 2473 return ret; 2474 } 2475 2476 static int btrfs_punch_hole_lock_range(struct inode *inode, 2477 const u64 lockstart, 2478 const u64 lockend, 2479 struct extent_state **cached_state) 2480 { 2481 while (1) { 2482 struct btrfs_ordered_extent *ordered; 2483 int ret; 2484 2485 truncate_pagecache_range(inode, lockstart, lockend); 2486 2487 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2488 cached_state); 2489 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), 2490 lockend); 2491 2492 /* 2493 * We need to make sure we have no ordered extents in this range 2494 * and nobody raced in and read a page in this range, if we did 2495 * we need to try again. 2496 */ 2497 if ((!ordered || 2498 (ordered->file_offset + ordered->num_bytes <= lockstart || 2499 ordered->file_offset > lockend)) && 2500 !filemap_range_has_page(inode->i_mapping, 2501 lockstart, lockend)) { 2502 if (ordered) 2503 btrfs_put_ordered_extent(ordered); 2504 break; 2505 } 2506 if (ordered) 2507 btrfs_put_ordered_extent(ordered); 2508 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2509 lockend, cached_state); 2510 ret = btrfs_wait_ordered_range(inode, lockstart, 2511 lockend - lockstart + 1); 2512 if (ret) 2513 return ret; 2514 } 2515 return 0; 2516 } 2517 2518 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2519 struct btrfs_inode *inode, 2520 struct btrfs_path *path, 2521 struct btrfs_replace_extent_info *extent_info, 2522 const u64 replace_len, 2523 const u64 bytes_to_drop) 2524 { 2525 struct btrfs_fs_info *fs_info = trans->fs_info; 2526 struct btrfs_root *root = inode->root; 2527 struct btrfs_file_extent_item *extent; 2528 struct extent_buffer *leaf; 2529 struct btrfs_key key; 2530 int slot; 2531 struct btrfs_ref ref = { 0 }; 2532 int ret; 2533 2534 if (replace_len == 0) 2535 return 0; 2536 2537 if (extent_info->disk_offset == 0 && 2538 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2539 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2540 return 0; 2541 } 2542 2543 key.objectid = btrfs_ino(inode); 2544 key.type = BTRFS_EXTENT_DATA_KEY; 2545 key.offset = extent_info->file_offset; 2546 ret = btrfs_insert_empty_item(trans, root, path, &key, 2547 sizeof(struct btrfs_file_extent_item)); 2548 if (ret) 2549 return ret; 2550 leaf = path->nodes[0]; 2551 slot = path->slots[0]; 2552 write_extent_buffer(leaf, extent_info->extent_buf, 2553 btrfs_item_ptr_offset(leaf, slot), 2554 sizeof(struct btrfs_file_extent_item)); 2555 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2556 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2557 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2558 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2559 if (extent_info->is_new_extent) 2560 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2561 btrfs_mark_buffer_dirty(leaf); 2562 btrfs_release_path(path); 2563 2564 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2565 replace_len); 2566 if (ret) 2567 return ret; 2568 2569 /* If it's a hole, nothing more needs to be done. */ 2570 if (extent_info->disk_offset == 0) { 2571 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2572 return 0; 2573 } 2574 2575 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2576 2577 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2578 key.objectid = extent_info->disk_offset; 2579 key.type = BTRFS_EXTENT_ITEM_KEY; 2580 key.offset = extent_info->disk_len; 2581 ret = btrfs_alloc_reserved_file_extent(trans, root, 2582 btrfs_ino(inode), 2583 extent_info->file_offset, 2584 extent_info->qgroup_reserved, 2585 &key); 2586 } else { 2587 u64 ref_offset; 2588 2589 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2590 extent_info->disk_offset, 2591 extent_info->disk_len, 0); 2592 ref_offset = extent_info->file_offset - extent_info->data_offset; 2593 btrfs_init_data_ref(&ref, root->root_key.objectid, 2594 btrfs_ino(inode), ref_offset); 2595 ret = btrfs_inc_extent_ref(trans, &ref); 2596 } 2597 2598 extent_info->insertions++; 2599 2600 return ret; 2601 } 2602 2603 /* 2604 * The respective range must have been previously locked, as well as the inode. 2605 * The end offset is inclusive (last byte of the range). 2606 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2607 * the file range with an extent. 2608 * When not punching a hole, we don't want to end up in a state where we dropped 2609 * extents without inserting a new one, so we must abort the transaction to avoid 2610 * a corruption. 2611 */ 2612 int btrfs_replace_file_extents(struct inode *inode, struct btrfs_path *path, 2613 const u64 start, const u64 end, 2614 struct btrfs_replace_extent_info *extent_info, 2615 struct btrfs_trans_handle **trans_out) 2616 { 2617 struct btrfs_drop_extents_args drop_args = { 0 }; 2618 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2619 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2620 u64 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2621 struct btrfs_root *root = BTRFS_I(inode)->root; 2622 struct btrfs_trans_handle *trans = NULL; 2623 struct btrfs_block_rsv *rsv; 2624 unsigned int rsv_count; 2625 u64 cur_offset; 2626 u64 len = end - start; 2627 int ret = 0; 2628 2629 if (end <= start) 2630 return -EINVAL; 2631 2632 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2633 if (!rsv) { 2634 ret = -ENOMEM; 2635 goto out; 2636 } 2637 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2638 rsv->failfast = 1; 2639 2640 /* 2641 * 1 - update the inode 2642 * 1 - removing the extents in the range 2643 * 1 - adding the hole extent if no_holes isn't set or if we are 2644 * replacing the range with a new extent 2645 */ 2646 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2647 rsv_count = 3; 2648 else 2649 rsv_count = 2; 2650 2651 trans = btrfs_start_transaction(root, rsv_count); 2652 if (IS_ERR(trans)) { 2653 ret = PTR_ERR(trans); 2654 trans = NULL; 2655 goto out_free; 2656 } 2657 2658 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2659 min_size, false); 2660 BUG_ON(ret); 2661 trans->block_rsv = rsv; 2662 2663 cur_offset = start; 2664 drop_args.path = path; 2665 drop_args.end = end + 1; 2666 drop_args.drop_cache = true; 2667 while (cur_offset < end) { 2668 drop_args.start = cur_offset; 2669 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args); 2670 /* If we are punching a hole decrement the inode's byte count */ 2671 if (!extent_info) 2672 btrfs_update_inode_bytes(BTRFS_I(inode), 0, 2673 drop_args.bytes_found); 2674 if (ret != -ENOSPC) { 2675 /* 2676 * When cloning we want to avoid transaction aborts when 2677 * nothing was done and we are attempting to clone parts 2678 * of inline extents, in such cases -EOPNOTSUPP is 2679 * returned by __btrfs_drop_extents() without having 2680 * changed anything in the file. 2681 */ 2682 if (extent_info && !extent_info->is_new_extent && 2683 ret && ret != -EOPNOTSUPP) 2684 btrfs_abort_transaction(trans, ret); 2685 break; 2686 } 2687 2688 trans->block_rsv = &fs_info->trans_block_rsv; 2689 2690 if (!extent_info && cur_offset < drop_args.drop_end && 2691 cur_offset < ino_size) { 2692 ret = fill_holes(trans, BTRFS_I(inode), path, 2693 cur_offset, drop_args.drop_end); 2694 if (ret) { 2695 /* 2696 * If we failed then we didn't insert our hole 2697 * entries for the area we dropped, so now the 2698 * fs is corrupted, so we must abort the 2699 * transaction. 2700 */ 2701 btrfs_abort_transaction(trans, ret); 2702 break; 2703 } 2704 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2705 /* 2706 * We are past the i_size here, but since we didn't 2707 * insert holes we need to clear the mapped area so we 2708 * know to not set disk_i_size in this area until a new 2709 * file extent is inserted here. 2710 */ 2711 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 2712 cur_offset, 2713 drop_args.drop_end - cur_offset); 2714 if (ret) { 2715 /* 2716 * We couldn't clear our area, so we could 2717 * presumably adjust up and corrupt the fs, so 2718 * we need to abort. 2719 */ 2720 btrfs_abort_transaction(trans, ret); 2721 break; 2722 } 2723 } 2724 2725 if (extent_info && 2726 drop_args.drop_end > extent_info->file_offset) { 2727 u64 replace_len = drop_args.drop_end - 2728 extent_info->file_offset; 2729 2730 ret = btrfs_insert_replace_extent(trans, BTRFS_I(inode), 2731 path, extent_info, replace_len, 2732 drop_args.bytes_found); 2733 if (ret) { 2734 btrfs_abort_transaction(trans, ret); 2735 break; 2736 } 2737 extent_info->data_len -= replace_len; 2738 extent_info->data_offset += replace_len; 2739 extent_info->file_offset += replace_len; 2740 } 2741 2742 cur_offset = drop_args.drop_end; 2743 2744 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2745 if (ret) 2746 break; 2747 2748 btrfs_end_transaction(trans); 2749 btrfs_btree_balance_dirty(fs_info); 2750 2751 trans = btrfs_start_transaction(root, rsv_count); 2752 if (IS_ERR(trans)) { 2753 ret = PTR_ERR(trans); 2754 trans = NULL; 2755 break; 2756 } 2757 2758 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2759 rsv, min_size, false); 2760 BUG_ON(ret); /* shouldn't happen */ 2761 trans->block_rsv = rsv; 2762 2763 if (!extent_info) { 2764 ret = find_first_non_hole(BTRFS_I(inode), &cur_offset, 2765 &len); 2766 if (unlikely(ret < 0)) 2767 break; 2768 if (ret && !len) { 2769 ret = 0; 2770 break; 2771 } 2772 } 2773 } 2774 2775 /* 2776 * If we were cloning, force the next fsync to be a full one since we 2777 * we replaced (or just dropped in the case of cloning holes when 2778 * NO_HOLES is enabled) extents and extent maps. 2779 * This is for the sake of simplicity, and cloning into files larger 2780 * than 16Mb would force the full fsync any way (when 2781 * try_release_extent_mapping() is invoked during page cache truncation. 2782 */ 2783 if (extent_info && !extent_info->is_new_extent) 2784 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2785 &BTRFS_I(inode)->runtime_flags); 2786 2787 if (ret) 2788 goto out_trans; 2789 2790 trans->block_rsv = &fs_info->trans_block_rsv; 2791 /* 2792 * If we are using the NO_HOLES feature we might have had already an 2793 * hole that overlaps a part of the region [lockstart, lockend] and 2794 * ends at (or beyond) lockend. Since we have no file extent items to 2795 * represent holes, drop_end can be less than lockend and so we must 2796 * make sure we have an extent map representing the existing hole (the 2797 * call to __btrfs_drop_extents() might have dropped the existing extent 2798 * map representing the existing hole), otherwise the fast fsync path 2799 * will not record the existence of the hole region 2800 * [existing_hole_start, lockend]. 2801 */ 2802 if (drop_args.drop_end <= end) 2803 drop_args.drop_end = end + 1; 2804 /* 2805 * Don't insert file hole extent item if it's for a range beyond eof 2806 * (because it's useless) or if it represents a 0 bytes range (when 2807 * cur_offset == drop_end). 2808 */ 2809 if (!extent_info && cur_offset < ino_size && 2810 cur_offset < drop_args.drop_end) { 2811 ret = fill_holes(trans, BTRFS_I(inode), path, 2812 cur_offset, drop_args.drop_end); 2813 if (ret) { 2814 /* Same comment as above. */ 2815 btrfs_abort_transaction(trans, ret); 2816 goto out_trans; 2817 } 2818 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2819 /* See the comment in the loop above for the reasoning here. */ 2820 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 2821 cur_offset, drop_args.drop_end - cur_offset); 2822 if (ret) { 2823 btrfs_abort_transaction(trans, ret); 2824 goto out_trans; 2825 } 2826 2827 } 2828 if (extent_info) { 2829 ret = btrfs_insert_replace_extent(trans, BTRFS_I(inode), path, 2830 extent_info, extent_info->data_len, 2831 drop_args.bytes_found); 2832 if (ret) { 2833 btrfs_abort_transaction(trans, ret); 2834 goto out_trans; 2835 } 2836 } 2837 2838 out_trans: 2839 if (!trans) 2840 goto out_free; 2841 2842 trans->block_rsv = &fs_info->trans_block_rsv; 2843 if (ret) 2844 btrfs_end_transaction(trans); 2845 else 2846 *trans_out = trans; 2847 out_free: 2848 btrfs_free_block_rsv(fs_info, rsv); 2849 out: 2850 return ret; 2851 } 2852 2853 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2854 { 2855 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2856 struct btrfs_root *root = BTRFS_I(inode)->root; 2857 struct extent_state *cached_state = NULL; 2858 struct btrfs_path *path; 2859 struct btrfs_trans_handle *trans = NULL; 2860 u64 lockstart; 2861 u64 lockend; 2862 u64 tail_start; 2863 u64 tail_len; 2864 u64 orig_start = offset; 2865 int ret = 0; 2866 bool same_block; 2867 u64 ino_size; 2868 bool truncated_block = false; 2869 bool updated_inode = false; 2870 2871 ret = btrfs_wait_ordered_range(inode, offset, len); 2872 if (ret) 2873 return ret; 2874 2875 inode_lock(inode); 2876 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2877 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2878 if (ret < 0) 2879 goto out_only_mutex; 2880 if (ret && !len) { 2881 /* Already in a large hole */ 2882 ret = 0; 2883 goto out_only_mutex; 2884 } 2885 2886 lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode))); 2887 lockend = round_down(offset + len, 2888 btrfs_inode_sectorsize(BTRFS_I(inode))) - 1; 2889 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2890 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2891 /* 2892 * We needn't truncate any block which is beyond the end of the file 2893 * because we are sure there is no data there. 2894 */ 2895 /* 2896 * Only do this if we are in the same block and we aren't doing the 2897 * entire block. 2898 */ 2899 if (same_block && len < fs_info->sectorsize) { 2900 if (offset < ino_size) { 2901 truncated_block = true; 2902 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2903 0); 2904 } else { 2905 ret = 0; 2906 } 2907 goto out_only_mutex; 2908 } 2909 2910 /* zero back part of the first block */ 2911 if (offset < ino_size) { 2912 truncated_block = true; 2913 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2914 if (ret) { 2915 inode_unlock(inode); 2916 return ret; 2917 } 2918 } 2919 2920 /* Check the aligned pages after the first unaligned page, 2921 * if offset != orig_start, which means the first unaligned page 2922 * including several following pages are already in holes, 2923 * the extra check can be skipped */ 2924 if (offset == orig_start) { 2925 /* after truncate page, check hole again */ 2926 len = offset + len - lockstart; 2927 offset = lockstart; 2928 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2929 if (ret < 0) 2930 goto out_only_mutex; 2931 if (ret && !len) { 2932 ret = 0; 2933 goto out_only_mutex; 2934 } 2935 lockstart = offset; 2936 } 2937 2938 /* Check the tail unaligned part is in a hole */ 2939 tail_start = lockend + 1; 2940 tail_len = offset + len - tail_start; 2941 if (tail_len) { 2942 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2943 if (unlikely(ret < 0)) 2944 goto out_only_mutex; 2945 if (!ret) { 2946 /* zero the front end of the last page */ 2947 if (tail_start + tail_len < ino_size) { 2948 truncated_block = true; 2949 ret = btrfs_truncate_block(BTRFS_I(inode), 2950 tail_start + tail_len, 2951 0, 1); 2952 if (ret) 2953 goto out_only_mutex; 2954 } 2955 } 2956 } 2957 2958 if (lockend < lockstart) { 2959 ret = 0; 2960 goto out_only_mutex; 2961 } 2962 2963 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2964 &cached_state); 2965 if (ret) 2966 goto out_only_mutex; 2967 2968 path = btrfs_alloc_path(); 2969 if (!path) { 2970 ret = -ENOMEM; 2971 goto out; 2972 } 2973 2974 ret = btrfs_replace_file_extents(inode, path, lockstart, lockend, NULL, 2975 &trans); 2976 btrfs_free_path(path); 2977 if (ret) 2978 goto out; 2979 2980 ASSERT(trans != NULL); 2981 inode_inc_iversion(inode); 2982 inode->i_mtime = inode->i_ctime = current_time(inode); 2983 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2984 updated_inode = true; 2985 btrfs_end_transaction(trans); 2986 btrfs_btree_balance_dirty(fs_info); 2987 out: 2988 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2989 &cached_state); 2990 out_only_mutex: 2991 if (!updated_inode && truncated_block && !ret) { 2992 /* 2993 * If we only end up zeroing part of a page, we still need to 2994 * update the inode item, so that all the time fields are 2995 * updated as well as the necessary btrfs inode in memory fields 2996 * for detecting, at fsync time, if the inode isn't yet in the 2997 * log tree or it's there but not up to date. 2998 */ 2999 struct timespec64 now = current_time(inode); 3000 3001 inode_inc_iversion(inode); 3002 inode->i_mtime = now; 3003 inode->i_ctime = now; 3004 trans = btrfs_start_transaction(root, 1); 3005 if (IS_ERR(trans)) { 3006 ret = PTR_ERR(trans); 3007 } else { 3008 int ret2; 3009 3010 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3011 ret2 = btrfs_end_transaction(trans); 3012 if (!ret) 3013 ret = ret2; 3014 } 3015 } 3016 inode_unlock(inode); 3017 return ret; 3018 } 3019 3020 /* Helper structure to record which range is already reserved */ 3021 struct falloc_range { 3022 struct list_head list; 3023 u64 start; 3024 u64 len; 3025 }; 3026 3027 /* 3028 * Helper function to add falloc range 3029 * 3030 * Caller should have locked the larger range of extent containing 3031 * [start, len) 3032 */ 3033 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 3034 { 3035 struct falloc_range *prev = NULL; 3036 struct falloc_range *range = NULL; 3037 3038 if (list_empty(head)) 3039 goto insert; 3040 3041 /* 3042 * As fallocate iterate by bytenr order, we only need to check 3043 * the last range. 3044 */ 3045 prev = list_entry(head->prev, struct falloc_range, list); 3046 if (prev->start + prev->len == start) { 3047 prev->len += len; 3048 return 0; 3049 } 3050 insert: 3051 range = kmalloc(sizeof(*range), GFP_KERNEL); 3052 if (!range) 3053 return -ENOMEM; 3054 range->start = start; 3055 range->len = len; 3056 list_add_tail(&range->list, head); 3057 return 0; 3058 } 3059 3060 static int btrfs_fallocate_update_isize(struct inode *inode, 3061 const u64 end, 3062 const int mode) 3063 { 3064 struct btrfs_trans_handle *trans; 3065 struct btrfs_root *root = BTRFS_I(inode)->root; 3066 int ret; 3067 int ret2; 3068 3069 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 3070 return 0; 3071 3072 trans = btrfs_start_transaction(root, 1); 3073 if (IS_ERR(trans)) 3074 return PTR_ERR(trans); 3075 3076 inode->i_ctime = current_time(inode); 3077 i_size_write(inode, end); 3078 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 3079 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3080 ret2 = btrfs_end_transaction(trans); 3081 3082 return ret ? ret : ret2; 3083 } 3084 3085 enum { 3086 RANGE_BOUNDARY_WRITTEN_EXTENT, 3087 RANGE_BOUNDARY_PREALLOC_EXTENT, 3088 RANGE_BOUNDARY_HOLE, 3089 }; 3090 3091 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 3092 u64 offset) 3093 { 3094 const u64 sectorsize = btrfs_inode_sectorsize(inode); 3095 struct extent_map *em; 3096 int ret; 3097 3098 offset = round_down(offset, sectorsize); 3099 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize); 3100 if (IS_ERR(em)) 3101 return PTR_ERR(em); 3102 3103 if (em->block_start == EXTENT_MAP_HOLE) 3104 ret = RANGE_BOUNDARY_HOLE; 3105 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3106 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 3107 else 3108 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 3109 3110 free_extent_map(em); 3111 return ret; 3112 } 3113 3114 static int btrfs_zero_range(struct inode *inode, 3115 loff_t offset, 3116 loff_t len, 3117 const int mode) 3118 { 3119 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3120 struct extent_map *em; 3121 struct extent_changeset *data_reserved = NULL; 3122 int ret; 3123 u64 alloc_hint = 0; 3124 const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode)); 3125 u64 alloc_start = round_down(offset, sectorsize); 3126 u64 alloc_end = round_up(offset + len, sectorsize); 3127 u64 bytes_to_reserve = 0; 3128 bool space_reserved = false; 3129 3130 inode_dio_wait(inode); 3131 3132 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3133 alloc_end - alloc_start); 3134 if (IS_ERR(em)) { 3135 ret = PTR_ERR(em); 3136 goto out; 3137 } 3138 3139 /* 3140 * Avoid hole punching and extent allocation for some cases. More cases 3141 * could be considered, but these are unlikely common and we keep things 3142 * as simple as possible for now. Also, intentionally, if the target 3143 * range contains one or more prealloc extents together with regular 3144 * extents and holes, we drop all the existing extents and allocate a 3145 * new prealloc extent, so that we get a larger contiguous disk extent. 3146 */ 3147 if (em->start <= alloc_start && 3148 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3149 const u64 em_end = em->start + em->len; 3150 3151 if (em_end >= offset + len) { 3152 /* 3153 * The whole range is already a prealloc extent, 3154 * do nothing except updating the inode's i_size if 3155 * needed. 3156 */ 3157 free_extent_map(em); 3158 ret = btrfs_fallocate_update_isize(inode, offset + len, 3159 mode); 3160 goto out; 3161 } 3162 /* 3163 * Part of the range is already a prealloc extent, so operate 3164 * only on the remaining part of the range. 3165 */ 3166 alloc_start = em_end; 3167 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 3168 len = offset + len - alloc_start; 3169 offset = alloc_start; 3170 alloc_hint = em->block_start + em->len; 3171 } 3172 free_extent_map(em); 3173 3174 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 3175 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 3176 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3177 sectorsize); 3178 if (IS_ERR(em)) { 3179 ret = PTR_ERR(em); 3180 goto out; 3181 } 3182 3183 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3184 free_extent_map(em); 3185 ret = btrfs_fallocate_update_isize(inode, offset + len, 3186 mode); 3187 goto out; 3188 } 3189 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 3190 free_extent_map(em); 3191 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 3192 0); 3193 if (!ret) 3194 ret = btrfs_fallocate_update_isize(inode, 3195 offset + len, 3196 mode); 3197 return ret; 3198 } 3199 free_extent_map(em); 3200 alloc_start = round_down(offset, sectorsize); 3201 alloc_end = alloc_start + sectorsize; 3202 goto reserve_space; 3203 } 3204 3205 alloc_start = round_up(offset, sectorsize); 3206 alloc_end = round_down(offset + len, sectorsize); 3207 3208 /* 3209 * For unaligned ranges, check the pages at the boundaries, they might 3210 * map to an extent, in which case we need to partially zero them, or 3211 * they might map to a hole, in which case we need our allocation range 3212 * to cover them. 3213 */ 3214 if (!IS_ALIGNED(offset, sectorsize)) { 3215 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3216 offset); 3217 if (ret < 0) 3218 goto out; 3219 if (ret == RANGE_BOUNDARY_HOLE) { 3220 alloc_start = round_down(offset, sectorsize); 3221 ret = 0; 3222 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3223 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 3224 if (ret) 3225 goto out; 3226 } else { 3227 ret = 0; 3228 } 3229 } 3230 3231 if (!IS_ALIGNED(offset + len, sectorsize)) { 3232 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3233 offset + len); 3234 if (ret < 0) 3235 goto out; 3236 if (ret == RANGE_BOUNDARY_HOLE) { 3237 alloc_end = round_up(offset + len, sectorsize); 3238 ret = 0; 3239 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3240 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 3241 0, 1); 3242 if (ret) 3243 goto out; 3244 } else { 3245 ret = 0; 3246 } 3247 } 3248 3249 reserve_space: 3250 if (alloc_start < alloc_end) { 3251 struct extent_state *cached_state = NULL; 3252 const u64 lockstart = alloc_start; 3253 const u64 lockend = alloc_end - 1; 3254 3255 bytes_to_reserve = alloc_end - alloc_start; 3256 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3257 bytes_to_reserve); 3258 if (ret < 0) 3259 goto out; 3260 space_reserved = true; 3261 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3262 &cached_state); 3263 if (ret) 3264 goto out; 3265 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3266 alloc_start, bytes_to_reserve); 3267 if (ret) 3268 goto out; 3269 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3270 alloc_end - alloc_start, 3271 i_blocksize(inode), 3272 offset + len, &alloc_hint); 3273 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3274 lockend, &cached_state); 3275 /* btrfs_prealloc_file_range releases reserved space on error */ 3276 if (ret) { 3277 space_reserved = false; 3278 goto out; 3279 } 3280 } 3281 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3282 out: 3283 if (ret && space_reserved) 3284 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3285 alloc_start, bytes_to_reserve); 3286 extent_changeset_free(data_reserved); 3287 3288 return ret; 3289 } 3290 3291 static long btrfs_fallocate(struct file *file, int mode, 3292 loff_t offset, loff_t len) 3293 { 3294 struct inode *inode = file_inode(file); 3295 struct extent_state *cached_state = NULL; 3296 struct extent_changeset *data_reserved = NULL; 3297 struct falloc_range *range; 3298 struct falloc_range *tmp; 3299 struct list_head reserve_list; 3300 u64 cur_offset; 3301 u64 last_byte; 3302 u64 alloc_start; 3303 u64 alloc_end; 3304 u64 alloc_hint = 0; 3305 u64 locked_end; 3306 u64 actual_end = 0; 3307 struct extent_map *em; 3308 int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode)); 3309 int ret; 3310 3311 /* Do not allow fallocate in ZONED mode */ 3312 if (btrfs_is_zoned(btrfs_sb(inode->i_sb))) 3313 return -EOPNOTSUPP; 3314 3315 alloc_start = round_down(offset, blocksize); 3316 alloc_end = round_up(offset + len, blocksize); 3317 cur_offset = alloc_start; 3318 3319 /* Make sure we aren't being give some crap mode */ 3320 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3321 FALLOC_FL_ZERO_RANGE)) 3322 return -EOPNOTSUPP; 3323 3324 if (mode & FALLOC_FL_PUNCH_HOLE) 3325 return btrfs_punch_hole(inode, offset, len); 3326 3327 /* 3328 * Only trigger disk allocation, don't trigger qgroup reserve 3329 * 3330 * For qgroup space, it will be checked later. 3331 */ 3332 if (!(mode & FALLOC_FL_ZERO_RANGE)) { 3333 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3334 alloc_end - alloc_start); 3335 if (ret < 0) 3336 return ret; 3337 } 3338 3339 btrfs_inode_lock(inode, 0); 3340 3341 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3342 ret = inode_newsize_ok(inode, offset + len); 3343 if (ret) 3344 goto out; 3345 } 3346 3347 /* 3348 * TODO: Move these two operations after we have checked 3349 * accurate reserved space, or fallocate can still fail but 3350 * with page truncated or size expanded. 3351 * 3352 * But that's a minor problem and won't do much harm BTW. 3353 */ 3354 if (alloc_start > inode->i_size) { 3355 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3356 alloc_start); 3357 if (ret) 3358 goto out; 3359 } else if (offset + len > inode->i_size) { 3360 /* 3361 * If we are fallocating from the end of the file onward we 3362 * need to zero out the end of the block if i_size lands in the 3363 * middle of a block. 3364 */ 3365 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3366 if (ret) 3367 goto out; 3368 } 3369 3370 /* 3371 * wait for ordered IO before we have any locks. We'll loop again 3372 * below with the locks held. 3373 */ 3374 ret = btrfs_wait_ordered_range(inode, alloc_start, 3375 alloc_end - alloc_start); 3376 if (ret) 3377 goto out; 3378 3379 if (mode & FALLOC_FL_ZERO_RANGE) { 3380 ret = btrfs_zero_range(inode, offset, len, mode); 3381 inode_unlock(inode); 3382 return ret; 3383 } 3384 3385 locked_end = alloc_end - 1; 3386 while (1) { 3387 struct btrfs_ordered_extent *ordered; 3388 3389 /* the extent lock is ordered inside the running 3390 * transaction 3391 */ 3392 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 3393 locked_end, &cached_state); 3394 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), 3395 locked_end); 3396 3397 if (ordered && 3398 ordered->file_offset + ordered->num_bytes > alloc_start && 3399 ordered->file_offset < alloc_end) { 3400 btrfs_put_ordered_extent(ordered); 3401 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 3402 alloc_start, locked_end, 3403 &cached_state); 3404 /* 3405 * we can't wait on the range with the transaction 3406 * running or with the extent lock held 3407 */ 3408 ret = btrfs_wait_ordered_range(inode, alloc_start, 3409 alloc_end - alloc_start); 3410 if (ret) 3411 goto out; 3412 } else { 3413 if (ordered) 3414 btrfs_put_ordered_extent(ordered); 3415 break; 3416 } 3417 } 3418 3419 /* First, check if we exceed the qgroup limit */ 3420 INIT_LIST_HEAD(&reserve_list); 3421 while (cur_offset < alloc_end) { 3422 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3423 alloc_end - cur_offset); 3424 if (IS_ERR(em)) { 3425 ret = PTR_ERR(em); 3426 break; 3427 } 3428 last_byte = min(extent_map_end(em), alloc_end); 3429 actual_end = min_t(u64, extent_map_end(em), offset + len); 3430 last_byte = ALIGN(last_byte, blocksize); 3431 if (em->block_start == EXTENT_MAP_HOLE || 3432 (cur_offset >= inode->i_size && 3433 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3434 ret = add_falloc_range(&reserve_list, cur_offset, 3435 last_byte - cur_offset); 3436 if (ret < 0) { 3437 free_extent_map(em); 3438 break; 3439 } 3440 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3441 &data_reserved, cur_offset, 3442 last_byte - cur_offset); 3443 if (ret < 0) { 3444 cur_offset = last_byte; 3445 free_extent_map(em); 3446 break; 3447 } 3448 } else { 3449 /* 3450 * Do not need to reserve unwritten extent for this 3451 * range, free reserved data space first, otherwise 3452 * it'll result in false ENOSPC error. 3453 */ 3454 btrfs_free_reserved_data_space(BTRFS_I(inode), 3455 data_reserved, cur_offset, 3456 last_byte - cur_offset); 3457 } 3458 free_extent_map(em); 3459 cur_offset = last_byte; 3460 } 3461 3462 /* 3463 * If ret is still 0, means we're OK to fallocate. 3464 * Or just cleanup the list and exit. 3465 */ 3466 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3467 if (!ret) 3468 ret = btrfs_prealloc_file_range(inode, mode, 3469 range->start, 3470 range->len, i_blocksize(inode), 3471 offset + len, &alloc_hint); 3472 else 3473 btrfs_free_reserved_data_space(BTRFS_I(inode), 3474 data_reserved, range->start, 3475 range->len); 3476 list_del(&range->list); 3477 kfree(range); 3478 } 3479 if (ret < 0) 3480 goto out_unlock; 3481 3482 /* 3483 * We didn't need to allocate any more space, but we still extended the 3484 * size of the file so we need to update i_size and the inode item. 3485 */ 3486 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3487 out_unlock: 3488 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3489 &cached_state); 3490 out: 3491 inode_unlock(inode); 3492 /* Let go of our reservation. */ 3493 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) 3494 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3495 cur_offset, alloc_end - cur_offset); 3496 extent_changeset_free(data_reserved); 3497 return ret; 3498 } 3499 3500 static loff_t find_desired_extent(struct inode *inode, loff_t offset, 3501 int whence) 3502 { 3503 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3504 struct extent_map *em = NULL; 3505 struct extent_state *cached_state = NULL; 3506 loff_t i_size = inode->i_size; 3507 u64 lockstart; 3508 u64 lockend; 3509 u64 start; 3510 u64 len; 3511 int ret = 0; 3512 3513 if (i_size == 0 || offset >= i_size) 3514 return -ENXIO; 3515 3516 /* 3517 * offset can be negative, in this case we start finding DATA/HOLE from 3518 * the very start of the file. 3519 */ 3520 start = max_t(loff_t, 0, offset); 3521 3522 lockstart = round_down(start, fs_info->sectorsize); 3523 lockend = round_up(i_size, fs_info->sectorsize); 3524 if (lockend <= lockstart) 3525 lockend = lockstart + fs_info->sectorsize; 3526 lockend--; 3527 len = lockend - lockstart + 1; 3528 3529 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3530 &cached_state); 3531 3532 while (start < i_size) { 3533 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len); 3534 if (IS_ERR(em)) { 3535 ret = PTR_ERR(em); 3536 em = NULL; 3537 break; 3538 } 3539 3540 if (whence == SEEK_HOLE && 3541 (em->block_start == EXTENT_MAP_HOLE || 3542 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3543 break; 3544 else if (whence == SEEK_DATA && 3545 (em->block_start != EXTENT_MAP_HOLE && 3546 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3547 break; 3548 3549 start = em->start + em->len; 3550 free_extent_map(em); 3551 em = NULL; 3552 cond_resched(); 3553 } 3554 free_extent_map(em); 3555 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3556 &cached_state); 3557 if (ret) { 3558 offset = ret; 3559 } else { 3560 if (whence == SEEK_DATA && start >= i_size) 3561 offset = -ENXIO; 3562 else 3563 offset = min_t(loff_t, start, i_size); 3564 } 3565 3566 return offset; 3567 } 3568 3569 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3570 { 3571 struct inode *inode = file->f_mapping->host; 3572 3573 switch (whence) { 3574 default: 3575 return generic_file_llseek(file, offset, whence); 3576 case SEEK_DATA: 3577 case SEEK_HOLE: 3578 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3579 offset = find_desired_extent(inode, offset, whence); 3580 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3581 break; 3582 } 3583 3584 if (offset < 0) 3585 return offset; 3586 3587 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3588 } 3589 3590 static int btrfs_file_open(struct inode *inode, struct file *filp) 3591 { 3592 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; 3593 return generic_file_open(inode, filp); 3594 } 3595 3596 static int check_direct_read(struct btrfs_fs_info *fs_info, 3597 const struct iov_iter *iter, loff_t offset) 3598 { 3599 int ret; 3600 int i, seg; 3601 3602 ret = check_direct_IO(fs_info, iter, offset); 3603 if (ret < 0) 3604 return ret; 3605 3606 if (!iter_is_iovec(iter)) 3607 return 0; 3608 3609 for (seg = 0; seg < iter->nr_segs; seg++) 3610 for (i = seg + 1; i < iter->nr_segs; i++) 3611 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 3612 return -EINVAL; 3613 return 0; 3614 } 3615 3616 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 3617 { 3618 struct inode *inode = file_inode(iocb->ki_filp); 3619 ssize_t ret; 3620 3621 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos)) 3622 return 0; 3623 3624 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3625 ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 3626 is_sync_kiocb(iocb)); 3627 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3628 return ret; 3629 } 3630 3631 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3632 { 3633 ssize_t ret = 0; 3634 3635 if (iocb->ki_flags & IOCB_DIRECT) { 3636 ret = btrfs_direct_read(iocb, to); 3637 if (ret < 0 || !iov_iter_count(to) || 3638 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3639 return ret; 3640 } 3641 3642 return generic_file_buffered_read(iocb, to, ret); 3643 } 3644 3645 const struct file_operations btrfs_file_operations = { 3646 .llseek = btrfs_file_llseek, 3647 .read_iter = btrfs_file_read_iter, 3648 .splice_read = generic_file_splice_read, 3649 .write_iter = btrfs_file_write_iter, 3650 .splice_write = iter_file_splice_write, 3651 .mmap = btrfs_file_mmap, 3652 .open = btrfs_file_open, 3653 .release = btrfs_release_file, 3654 .fsync = btrfs_sync_file, 3655 .fallocate = btrfs_fallocate, 3656 .unlocked_ioctl = btrfs_ioctl, 3657 #ifdef CONFIG_COMPAT 3658 .compat_ioctl = btrfs_compat_ioctl, 3659 #endif 3660 .remap_file_range = btrfs_remap_file_range, 3661 }; 3662 3663 void __cold btrfs_auto_defrag_exit(void) 3664 { 3665 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3666 } 3667 3668 int __init btrfs_auto_defrag_init(void) 3669 { 3670 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3671 sizeof(struct inode_defrag), 0, 3672 SLAB_MEM_SPREAD, 3673 NULL); 3674 if (!btrfs_inode_defrag_cachep) 3675 return -ENOMEM; 3676 3677 return 0; 3678 } 3679 3680 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3681 { 3682 int ret; 3683 3684 /* 3685 * So with compression we will find and lock a dirty page and clear the 3686 * first one as dirty, setup an async extent, and immediately return 3687 * with the entire range locked but with nobody actually marked with 3688 * writeback. So we can't just filemap_write_and_wait_range() and 3689 * expect it to work since it will just kick off a thread to do the 3690 * actual work. So we need to call filemap_fdatawrite_range _again_ 3691 * since it will wait on the page lock, which won't be unlocked until 3692 * after the pages have been marked as writeback and so we're good to go 3693 * from there. We have to do this otherwise we'll miss the ordered 3694 * extents and that results in badness. Please Josef, do not think you 3695 * know better and pull this out at some point in the future, it is 3696 * right and you are wrong. 3697 */ 3698 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3699 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3700 &BTRFS_I(inode)->runtime_flags)) 3701 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3702 3703 return ret; 3704 } 3705