1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include "ctree.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "btrfs_inode.h" 23 #include "print-tree.h" 24 #include "tree-log.h" 25 #include "locking.h" 26 #include "volumes.h" 27 #include "qgroup.h" 28 #include "compression.h" 29 30 static struct kmem_cache *btrfs_inode_defrag_cachep; 31 /* 32 * when auto defrag is enabled we 33 * queue up these defrag structs to remember which 34 * inodes need defragging passes 35 */ 36 struct inode_defrag { 37 struct rb_node rb_node; 38 /* objectid */ 39 u64 ino; 40 /* 41 * transid where the defrag was added, we search for 42 * extents newer than this 43 */ 44 u64 transid; 45 46 /* root objectid */ 47 u64 root; 48 49 /* last offset we were able to defrag */ 50 u64 last_offset; 51 52 /* if we've wrapped around back to zero once already */ 53 int cycled; 54 }; 55 56 static int __compare_inode_defrag(struct inode_defrag *defrag1, 57 struct inode_defrag *defrag2) 58 { 59 if (defrag1->root > defrag2->root) 60 return 1; 61 else if (defrag1->root < defrag2->root) 62 return -1; 63 else if (defrag1->ino > defrag2->ino) 64 return 1; 65 else if (defrag1->ino < defrag2->ino) 66 return -1; 67 else 68 return 0; 69 } 70 71 /* pop a record for an inode into the defrag tree. The lock 72 * must be held already 73 * 74 * If you're inserting a record for an older transid than an 75 * existing record, the transid already in the tree is lowered 76 * 77 * If an existing record is found the defrag item you 78 * pass in is freed 79 */ 80 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 81 struct inode_defrag *defrag) 82 { 83 struct btrfs_fs_info *fs_info = inode->root->fs_info; 84 struct inode_defrag *entry; 85 struct rb_node **p; 86 struct rb_node *parent = NULL; 87 int ret; 88 89 p = &fs_info->defrag_inodes.rb_node; 90 while (*p) { 91 parent = *p; 92 entry = rb_entry(parent, struct inode_defrag, rb_node); 93 94 ret = __compare_inode_defrag(defrag, entry); 95 if (ret < 0) 96 p = &parent->rb_left; 97 else if (ret > 0) 98 p = &parent->rb_right; 99 else { 100 /* if we're reinserting an entry for 101 * an old defrag run, make sure to 102 * lower the transid of our existing record 103 */ 104 if (defrag->transid < entry->transid) 105 entry->transid = defrag->transid; 106 if (defrag->last_offset > entry->last_offset) 107 entry->last_offset = defrag->last_offset; 108 return -EEXIST; 109 } 110 } 111 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 112 rb_link_node(&defrag->rb_node, parent, p); 113 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 114 return 0; 115 } 116 117 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 118 { 119 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 120 return 0; 121 122 if (btrfs_fs_closing(fs_info)) 123 return 0; 124 125 return 1; 126 } 127 128 /* 129 * insert a defrag record for this inode if auto defrag is 130 * enabled 131 */ 132 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 133 struct btrfs_inode *inode) 134 { 135 struct btrfs_root *root = inode->root; 136 struct btrfs_fs_info *fs_info = root->fs_info; 137 struct inode_defrag *defrag; 138 u64 transid; 139 int ret; 140 141 if (!__need_auto_defrag(fs_info)) 142 return 0; 143 144 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 145 return 0; 146 147 if (trans) 148 transid = trans->transid; 149 else 150 transid = inode->root->last_trans; 151 152 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 153 if (!defrag) 154 return -ENOMEM; 155 156 defrag->ino = btrfs_ino(inode); 157 defrag->transid = transid; 158 defrag->root = root->root_key.objectid; 159 160 spin_lock(&fs_info->defrag_inodes_lock); 161 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 162 /* 163 * If we set IN_DEFRAG flag and evict the inode from memory, 164 * and then re-read this inode, this new inode doesn't have 165 * IN_DEFRAG flag. At the case, we may find the existed defrag. 166 */ 167 ret = __btrfs_add_inode_defrag(inode, defrag); 168 if (ret) 169 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 170 } else { 171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 172 } 173 spin_unlock(&fs_info->defrag_inodes_lock); 174 return 0; 175 } 176 177 /* 178 * Requeue the defrag object. If there is a defrag object that points to 179 * the same inode in the tree, we will merge them together (by 180 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 181 */ 182 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode, 183 struct inode_defrag *defrag) 184 { 185 struct btrfs_fs_info *fs_info = inode->root->fs_info; 186 int ret; 187 188 if (!__need_auto_defrag(fs_info)) 189 goto out; 190 191 /* 192 * Here we don't check the IN_DEFRAG flag, because we need merge 193 * them together. 194 */ 195 spin_lock(&fs_info->defrag_inodes_lock); 196 ret = __btrfs_add_inode_defrag(inode, defrag); 197 spin_unlock(&fs_info->defrag_inodes_lock); 198 if (ret) 199 goto out; 200 return; 201 out: 202 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 203 } 204 205 /* 206 * pick the defragable inode that we want, if it doesn't exist, we will get 207 * the next one. 208 */ 209 static struct inode_defrag * 210 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 211 { 212 struct inode_defrag *entry = NULL; 213 struct inode_defrag tmp; 214 struct rb_node *p; 215 struct rb_node *parent = NULL; 216 int ret; 217 218 tmp.ino = ino; 219 tmp.root = root; 220 221 spin_lock(&fs_info->defrag_inodes_lock); 222 p = fs_info->defrag_inodes.rb_node; 223 while (p) { 224 parent = p; 225 entry = rb_entry(parent, struct inode_defrag, rb_node); 226 227 ret = __compare_inode_defrag(&tmp, entry); 228 if (ret < 0) 229 p = parent->rb_left; 230 else if (ret > 0) 231 p = parent->rb_right; 232 else 233 goto out; 234 } 235 236 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 237 parent = rb_next(parent); 238 if (parent) 239 entry = rb_entry(parent, struct inode_defrag, rb_node); 240 else 241 entry = NULL; 242 } 243 out: 244 if (entry) 245 rb_erase(parent, &fs_info->defrag_inodes); 246 spin_unlock(&fs_info->defrag_inodes_lock); 247 return entry; 248 } 249 250 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 251 { 252 struct inode_defrag *defrag; 253 struct rb_node *node; 254 255 spin_lock(&fs_info->defrag_inodes_lock); 256 node = rb_first(&fs_info->defrag_inodes); 257 while (node) { 258 rb_erase(node, &fs_info->defrag_inodes); 259 defrag = rb_entry(node, struct inode_defrag, rb_node); 260 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 261 262 cond_resched_lock(&fs_info->defrag_inodes_lock); 263 264 node = rb_first(&fs_info->defrag_inodes); 265 } 266 spin_unlock(&fs_info->defrag_inodes_lock); 267 } 268 269 #define BTRFS_DEFRAG_BATCH 1024 270 271 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 272 struct inode_defrag *defrag) 273 { 274 struct btrfs_root *inode_root; 275 struct inode *inode; 276 struct btrfs_key key; 277 struct btrfs_ioctl_defrag_range_args range; 278 int num_defrag; 279 int index; 280 int ret; 281 282 /* get the inode */ 283 key.objectid = defrag->root; 284 key.type = BTRFS_ROOT_ITEM_KEY; 285 key.offset = (u64)-1; 286 287 index = srcu_read_lock(&fs_info->subvol_srcu); 288 289 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 290 if (IS_ERR(inode_root)) { 291 ret = PTR_ERR(inode_root); 292 goto cleanup; 293 } 294 295 key.objectid = defrag->ino; 296 key.type = BTRFS_INODE_ITEM_KEY; 297 key.offset = 0; 298 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 299 if (IS_ERR(inode)) { 300 ret = PTR_ERR(inode); 301 goto cleanup; 302 } 303 srcu_read_unlock(&fs_info->subvol_srcu, index); 304 305 /* do a chunk of defrag */ 306 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 307 memset(&range, 0, sizeof(range)); 308 range.len = (u64)-1; 309 range.start = defrag->last_offset; 310 311 sb_start_write(fs_info->sb); 312 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 313 BTRFS_DEFRAG_BATCH); 314 sb_end_write(fs_info->sb); 315 /* 316 * if we filled the whole defrag batch, there 317 * must be more work to do. Queue this defrag 318 * again 319 */ 320 if (num_defrag == BTRFS_DEFRAG_BATCH) { 321 defrag->last_offset = range.start; 322 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 323 } else if (defrag->last_offset && !defrag->cycled) { 324 /* 325 * we didn't fill our defrag batch, but 326 * we didn't start at zero. Make sure we loop 327 * around to the start of the file. 328 */ 329 defrag->last_offset = 0; 330 defrag->cycled = 1; 331 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 332 } else { 333 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 334 } 335 336 iput(inode); 337 return 0; 338 cleanup: 339 srcu_read_unlock(&fs_info->subvol_srcu, index); 340 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 341 return ret; 342 } 343 344 /* 345 * run through the list of inodes in the FS that need 346 * defragging 347 */ 348 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 349 { 350 struct inode_defrag *defrag; 351 u64 first_ino = 0; 352 u64 root_objectid = 0; 353 354 atomic_inc(&fs_info->defrag_running); 355 while (1) { 356 /* Pause the auto defragger. */ 357 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 358 &fs_info->fs_state)) 359 break; 360 361 if (!__need_auto_defrag(fs_info)) 362 break; 363 364 /* find an inode to defrag */ 365 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 366 first_ino); 367 if (!defrag) { 368 if (root_objectid || first_ino) { 369 root_objectid = 0; 370 first_ino = 0; 371 continue; 372 } else { 373 break; 374 } 375 } 376 377 first_ino = defrag->ino + 1; 378 root_objectid = defrag->root; 379 380 __btrfs_run_defrag_inode(fs_info, defrag); 381 } 382 atomic_dec(&fs_info->defrag_running); 383 384 /* 385 * during unmount, we use the transaction_wait queue to 386 * wait for the defragger to stop 387 */ 388 wake_up(&fs_info->transaction_wait); 389 return 0; 390 } 391 392 /* simple helper to fault in pages and copy. This should go away 393 * and be replaced with calls into generic code. 394 */ 395 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 396 struct page **prepared_pages, 397 struct iov_iter *i) 398 { 399 size_t copied = 0; 400 size_t total_copied = 0; 401 int pg = 0; 402 int offset = offset_in_page(pos); 403 404 while (write_bytes > 0) { 405 size_t count = min_t(size_t, 406 PAGE_SIZE - offset, write_bytes); 407 struct page *page = prepared_pages[pg]; 408 /* 409 * Copy data from userspace to the current page 410 */ 411 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 412 413 /* Flush processor's dcache for this page */ 414 flush_dcache_page(page); 415 416 /* 417 * if we get a partial write, we can end up with 418 * partially up to date pages. These add 419 * a lot of complexity, so make sure they don't 420 * happen by forcing this copy to be retried. 421 * 422 * The rest of the btrfs_file_write code will fall 423 * back to page at a time copies after we return 0. 424 */ 425 if (!PageUptodate(page) && copied < count) 426 copied = 0; 427 428 iov_iter_advance(i, copied); 429 write_bytes -= copied; 430 total_copied += copied; 431 432 /* Return to btrfs_file_write_iter to fault page */ 433 if (unlikely(copied == 0)) 434 break; 435 436 if (copied < PAGE_SIZE - offset) { 437 offset += copied; 438 } else { 439 pg++; 440 offset = 0; 441 } 442 } 443 return total_copied; 444 } 445 446 /* 447 * unlocks pages after btrfs_file_write is done with them 448 */ 449 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 450 { 451 size_t i; 452 for (i = 0; i < num_pages; i++) { 453 /* page checked is some magic around finding pages that 454 * have been modified without going through btrfs_set_page_dirty 455 * clear it here. There should be no need to mark the pages 456 * accessed as prepare_pages should have marked them accessed 457 * in prepare_pages via find_or_create_page() 458 */ 459 ClearPageChecked(pages[i]); 460 unlock_page(pages[i]); 461 put_page(pages[i]); 462 } 463 } 464 465 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 466 const u64 start, 467 const u64 len, 468 struct extent_state **cached_state) 469 { 470 u64 search_start = start; 471 const u64 end = start + len - 1; 472 473 while (search_start < end) { 474 const u64 search_len = end - search_start + 1; 475 struct extent_map *em; 476 u64 em_len; 477 int ret = 0; 478 479 em = btrfs_get_extent(inode, NULL, 0, search_start, 480 search_len, 0); 481 if (IS_ERR(em)) 482 return PTR_ERR(em); 483 484 if (em->block_start != EXTENT_MAP_HOLE) 485 goto next; 486 487 em_len = em->len; 488 if (em->start < search_start) 489 em_len -= search_start - em->start; 490 if (em_len > search_len) 491 em_len = search_len; 492 493 ret = set_extent_bit(&inode->io_tree, search_start, 494 search_start + em_len - 1, 495 EXTENT_DELALLOC_NEW, 496 NULL, cached_state, GFP_NOFS); 497 next: 498 search_start = extent_map_end(em); 499 free_extent_map(em); 500 if (ret) 501 return ret; 502 } 503 return 0; 504 } 505 506 /* 507 * after copy_from_user, pages need to be dirtied and we need to make 508 * sure holes are created between the current EOF and the start of 509 * any next extents (if required). 510 * 511 * this also makes the decision about creating an inline extent vs 512 * doing real data extents, marking pages dirty and delalloc as required. 513 */ 514 int btrfs_dirty_pages(struct inode *inode, struct page **pages, 515 size_t num_pages, loff_t pos, size_t write_bytes, 516 struct extent_state **cached) 517 { 518 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 519 int err = 0; 520 int i; 521 u64 num_bytes; 522 u64 start_pos; 523 u64 end_of_last_block; 524 u64 end_pos = pos + write_bytes; 525 loff_t isize = i_size_read(inode); 526 unsigned int extra_bits = 0; 527 528 start_pos = pos & ~((u64) fs_info->sectorsize - 1); 529 num_bytes = round_up(write_bytes + pos - start_pos, 530 fs_info->sectorsize); 531 532 end_of_last_block = start_pos + num_bytes - 1; 533 534 /* 535 * The pages may have already been dirty, clear out old accounting so 536 * we can set things up properly 537 */ 538 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block, 539 EXTENT_DIRTY | EXTENT_DELALLOC | 540 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, cached); 541 542 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) { 543 if (start_pos >= isize && 544 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) { 545 /* 546 * There can't be any extents following eof in this case 547 * so just set the delalloc new bit for the range 548 * directly. 549 */ 550 extra_bits |= EXTENT_DELALLOC_NEW; 551 } else { 552 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode), 553 start_pos, 554 num_bytes, cached); 555 if (err) 556 return err; 557 } 558 } 559 560 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 561 extra_bits, cached, 0); 562 if (err) 563 return err; 564 565 for (i = 0; i < num_pages; i++) { 566 struct page *p = pages[i]; 567 SetPageUptodate(p); 568 ClearPageChecked(p); 569 set_page_dirty(p); 570 } 571 572 /* 573 * we've only changed i_size in ram, and we haven't updated 574 * the disk i_size. There is no need to log the inode 575 * at this time. 576 */ 577 if (end_pos > isize) 578 i_size_write(inode, end_pos); 579 return 0; 580 } 581 582 /* 583 * this drops all the extents in the cache that intersect the range 584 * [start, end]. Existing extents are split as required. 585 */ 586 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 587 int skip_pinned) 588 { 589 struct extent_map *em; 590 struct extent_map *split = NULL; 591 struct extent_map *split2 = NULL; 592 struct extent_map_tree *em_tree = &inode->extent_tree; 593 u64 len = end - start + 1; 594 u64 gen; 595 int ret; 596 int testend = 1; 597 unsigned long flags; 598 int compressed = 0; 599 bool modified; 600 601 WARN_ON(end < start); 602 if (end == (u64)-1) { 603 len = (u64)-1; 604 testend = 0; 605 } 606 while (1) { 607 int no_splits = 0; 608 609 modified = false; 610 if (!split) 611 split = alloc_extent_map(); 612 if (!split2) 613 split2 = alloc_extent_map(); 614 if (!split || !split2) 615 no_splits = 1; 616 617 write_lock(&em_tree->lock); 618 em = lookup_extent_mapping(em_tree, start, len); 619 if (!em) { 620 write_unlock(&em_tree->lock); 621 break; 622 } 623 flags = em->flags; 624 gen = em->generation; 625 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 626 if (testend && em->start + em->len >= start + len) { 627 free_extent_map(em); 628 write_unlock(&em_tree->lock); 629 break; 630 } 631 start = em->start + em->len; 632 if (testend) 633 len = start + len - (em->start + em->len); 634 free_extent_map(em); 635 write_unlock(&em_tree->lock); 636 continue; 637 } 638 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 639 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 640 clear_bit(EXTENT_FLAG_LOGGING, &flags); 641 modified = !list_empty(&em->list); 642 if (no_splits) 643 goto next; 644 645 if (em->start < start) { 646 split->start = em->start; 647 split->len = start - em->start; 648 649 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 650 split->orig_start = em->orig_start; 651 split->block_start = em->block_start; 652 653 if (compressed) 654 split->block_len = em->block_len; 655 else 656 split->block_len = split->len; 657 split->orig_block_len = max(split->block_len, 658 em->orig_block_len); 659 split->ram_bytes = em->ram_bytes; 660 } else { 661 split->orig_start = split->start; 662 split->block_len = 0; 663 split->block_start = em->block_start; 664 split->orig_block_len = 0; 665 split->ram_bytes = split->len; 666 } 667 668 split->generation = gen; 669 split->bdev = em->bdev; 670 split->flags = flags; 671 split->compress_type = em->compress_type; 672 replace_extent_mapping(em_tree, em, split, modified); 673 free_extent_map(split); 674 split = split2; 675 split2 = NULL; 676 } 677 if (testend && em->start + em->len > start + len) { 678 u64 diff = start + len - em->start; 679 680 split->start = start + len; 681 split->len = em->start + em->len - (start + len); 682 split->bdev = em->bdev; 683 split->flags = flags; 684 split->compress_type = em->compress_type; 685 split->generation = gen; 686 687 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 688 split->orig_block_len = max(em->block_len, 689 em->orig_block_len); 690 691 split->ram_bytes = em->ram_bytes; 692 if (compressed) { 693 split->block_len = em->block_len; 694 split->block_start = em->block_start; 695 split->orig_start = em->orig_start; 696 } else { 697 split->block_len = split->len; 698 split->block_start = em->block_start 699 + diff; 700 split->orig_start = em->orig_start; 701 } 702 } else { 703 split->ram_bytes = split->len; 704 split->orig_start = split->start; 705 split->block_len = 0; 706 split->block_start = em->block_start; 707 split->orig_block_len = 0; 708 } 709 710 if (extent_map_in_tree(em)) { 711 replace_extent_mapping(em_tree, em, split, 712 modified); 713 } else { 714 ret = add_extent_mapping(em_tree, split, 715 modified); 716 ASSERT(ret == 0); /* Logic error */ 717 } 718 free_extent_map(split); 719 split = NULL; 720 } 721 next: 722 if (extent_map_in_tree(em)) 723 remove_extent_mapping(em_tree, em); 724 write_unlock(&em_tree->lock); 725 726 /* once for us */ 727 free_extent_map(em); 728 /* once for the tree*/ 729 free_extent_map(em); 730 } 731 if (split) 732 free_extent_map(split); 733 if (split2) 734 free_extent_map(split2); 735 } 736 737 /* 738 * this is very complex, but the basic idea is to drop all extents 739 * in the range start - end. hint_block is filled in with a block number 740 * that would be a good hint to the block allocator for this file. 741 * 742 * If an extent intersects the range but is not entirely inside the range 743 * it is either truncated or split. Anything entirely inside the range 744 * is deleted from the tree. 745 */ 746 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 747 struct btrfs_root *root, struct inode *inode, 748 struct btrfs_path *path, u64 start, u64 end, 749 u64 *drop_end, int drop_cache, 750 int replace_extent, 751 u32 extent_item_size, 752 int *key_inserted) 753 { 754 struct btrfs_fs_info *fs_info = root->fs_info; 755 struct extent_buffer *leaf; 756 struct btrfs_file_extent_item *fi; 757 struct btrfs_ref ref = { 0 }; 758 struct btrfs_key key; 759 struct btrfs_key new_key; 760 u64 ino = btrfs_ino(BTRFS_I(inode)); 761 u64 search_start = start; 762 u64 disk_bytenr = 0; 763 u64 num_bytes = 0; 764 u64 extent_offset = 0; 765 u64 extent_end = 0; 766 u64 last_end = start; 767 int del_nr = 0; 768 int del_slot = 0; 769 int extent_type; 770 int recow; 771 int ret; 772 int modify_tree = -1; 773 int update_refs; 774 int found = 0; 775 int leafs_visited = 0; 776 777 if (drop_cache) 778 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0); 779 780 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 781 modify_tree = 0; 782 783 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 784 root == fs_info->tree_root); 785 while (1) { 786 recow = 0; 787 ret = btrfs_lookup_file_extent(trans, root, path, ino, 788 search_start, modify_tree); 789 if (ret < 0) 790 break; 791 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 792 leaf = path->nodes[0]; 793 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 794 if (key.objectid == ino && 795 key.type == BTRFS_EXTENT_DATA_KEY) 796 path->slots[0]--; 797 } 798 ret = 0; 799 leafs_visited++; 800 next_slot: 801 leaf = path->nodes[0]; 802 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 803 BUG_ON(del_nr > 0); 804 ret = btrfs_next_leaf(root, path); 805 if (ret < 0) 806 break; 807 if (ret > 0) { 808 ret = 0; 809 break; 810 } 811 leafs_visited++; 812 leaf = path->nodes[0]; 813 recow = 1; 814 } 815 816 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 817 818 if (key.objectid > ino) 819 break; 820 if (WARN_ON_ONCE(key.objectid < ino) || 821 key.type < BTRFS_EXTENT_DATA_KEY) { 822 ASSERT(del_nr == 0); 823 path->slots[0]++; 824 goto next_slot; 825 } 826 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 827 break; 828 829 fi = btrfs_item_ptr(leaf, path->slots[0], 830 struct btrfs_file_extent_item); 831 extent_type = btrfs_file_extent_type(leaf, fi); 832 833 if (extent_type == BTRFS_FILE_EXTENT_REG || 834 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 835 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 836 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 837 extent_offset = btrfs_file_extent_offset(leaf, fi); 838 extent_end = key.offset + 839 btrfs_file_extent_num_bytes(leaf, fi); 840 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 841 extent_end = key.offset + 842 btrfs_file_extent_ram_bytes(leaf, fi); 843 } else { 844 /* can't happen */ 845 BUG(); 846 } 847 848 /* 849 * Don't skip extent items representing 0 byte lengths. They 850 * used to be created (bug) if while punching holes we hit 851 * -ENOSPC condition. So if we find one here, just ensure we 852 * delete it, otherwise we would insert a new file extent item 853 * with the same key (offset) as that 0 bytes length file 854 * extent item in the call to setup_items_for_insert() later 855 * in this function. 856 */ 857 if (extent_end == key.offset && extent_end >= search_start) { 858 last_end = extent_end; 859 goto delete_extent_item; 860 } 861 862 if (extent_end <= search_start) { 863 path->slots[0]++; 864 goto next_slot; 865 } 866 867 found = 1; 868 search_start = max(key.offset, start); 869 if (recow || !modify_tree) { 870 modify_tree = -1; 871 btrfs_release_path(path); 872 continue; 873 } 874 875 /* 876 * | - range to drop - | 877 * | -------- extent -------- | 878 */ 879 if (start > key.offset && end < extent_end) { 880 BUG_ON(del_nr > 0); 881 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 882 ret = -EOPNOTSUPP; 883 break; 884 } 885 886 memcpy(&new_key, &key, sizeof(new_key)); 887 new_key.offset = start; 888 ret = btrfs_duplicate_item(trans, root, path, 889 &new_key); 890 if (ret == -EAGAIN) { 891 btrfs_release_path(path); 892 continue; 893 } 894 if (ret < 0) 895 break; 896 897 leaf = path->nodes[0]; 898 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 899 struct btrfs_file_extent_item); 900 btrfs_set_file_extent_num_bytes(leaf, fi, 901 start - key.offset); 902 903 fi = btrfs_item_ptr(leaf, path->slots[0], 904 struct btrfs_file_extent_item); 905 906 extent_offset += start - key.offset; 907 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 908 btrfs_set_file_extent_num_bytes(leaf, fi, 909 extent_end - start); 910 btrfs_mark_buffer_dirty(leaf); 911 912 if (update_refs && disk_bytenr > 0) { 913 btrfs_init_generic_ref(&ref, 914 BTRFS_ADD_DELAYED_REF, 915 disk_bytenr, num_bytes, 0); 916 btrfs_init_data_ref(&ref, 917 root->root_key.objectid, 918 new_key.objectid, 919 start - extent_offset); 920 ret = btrfs_inc_extent_ref(trans, &ref); 921 BUG_ON(ret); /* -ENOMEM */ 922 } 923 key.offset = start; 924 } 925 /* 926 * From here on out we will have actually dropped something, so 927 * last_end can be updated. 928 */ 929 last_end = extent_end; 930 931 /* 932 * | ---- range to drop ----- | 933 * | -------- extent -------- | 934 */ 935 if (start <= key.offset && end < extent_end) { 936 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 937 ret = -EOPNOTSUPP; 938 break; 939 } 940 941 memcpy(&new_key, &key, sizeof(new_key)); 942 new_key.offset = end; 943 btrfs_set_item_key_safe(fs_info, path, &new_key); 944 945 extent_offset += end - key.offset; 946 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 947 btrfs_set_file_extent_num_bytes(leaf, fi, 948 extent_end - end); 949 btrfs_mark_buffer_dirty(leaf); 950 if (update_refs && disk_bytenr > 0) 951 inode_sub_bytes(inode, end - key.offset); 952 break; 953 } 954 955 search_start = extent_end; 956 /* 957 * | ---- range to drop ----- | 958 * | -------- extent -------- | 959 */ 960 if (start > key.offset && end >= extent_end) { 961 BUG_ON(del_nr > 0); 962 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 963 ret = -EOPNOTSUPP; 964 break; 965 } 966 967 btrfs_set_file_extent_num_bytes(leaf, fi, 968 start - key.offset); 969 btrfs_mark_buffer_dirty(leaf); 970 if (update_refs && disk_bytenr > 0) 971 inode_sub_bytes(inode, extent_end - start); 972 if (end == extent_end) 973 break; 974 975 path->slots[0]++; 976 goto next_slot; 977 } 978 979 /* 980 * | ---- range to drop ----- | 981 * | ------ extent ------ | 982 */ 983 if (start <= key.offset && end >= extent_end) { 984 delete_extent_item: 985 if (del_nr == 0) { 986 del_slot = path->slots[0]; 987 del_nr = 1; 988 } else { 989 BUG_ON(del_slot + del_nr != path->slots[0]); 990 del_nr++; 991 } 992 993 if (update_refs && 994 extent_type == BTRFS_FILE_EXTENT_INLINE) { 995 inode_sub_bytes(inode, 996 extent_end - key.offset); 997 extent_end = ALIGN(extent_end, 998 fs_info->sectorsize); 999 } else if (update_refs && disk_bytenr > 0) { 1000 btrfs_init_generic_ref(&ref, 1001 BTRFS_DROP_DELAYED_REF, 1002 disk_bytenr, num_bytes, 0); 1003 btrfs_init_data_ref(&ref, 1004 root->root_key.objectid, 1005 key.objectid, 1006 key.offset - extent_offset); 1007 ret = btrfs_free_extent(trans, &ref); 1008 BUG_ON(ret); /* -ENOMEM */ 1009 inode_sub_bytes(inode, 1010 extent_end - key.offset); 1011 } 1012 1013 if (end == extent_end) 1014 break; 1015 1016 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 1017 path->slots[0]++; 1018 goto next_slot; 1019 } 1020 1021 ret = btrfs_del_items(trans, root, path, del_slot, 1022 del_nr); 1023 if (ret) { 1024 btrfs_abort_transaction(trans, ret); 1025 break; 1026 } 1027 1028 del_nr = 0; 1029 del_slot = 0; 1030 1031 btrfs_release_path(path); 1032 continue; 1033 } 1034 1035 BUG(); 1036 } 1037 1038 if (!ret && del_nr > 0) { 1039 /* 1040 * Set path->slots[0] to first slot, so that after the delete 1041 * if items are move off from our leaf to its immediate left or 1042 * right neighbor leafs, we end up with a correct and adjusted 1043 * path->slots[0] for our insertion (if replace_extent != 0). 1044 */ 1045 path->slots[0] = del_slot; 1046 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1047 if (ret) 1048 btrfs_abort_transaction(trans, ret); 1049 } 1050 1051 leaf = path->nodes[0]; 1052 /* 1053 * If btrfs_del_items() was called, it might have deleted a leaf, in 1054 * which case it unlocked our path, so check path->locks[0] matches a 1055 * write lock. 1056 */ 1057 if (!ret && replace_extent && leafs_visited == 1 && 1058 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 1059 path->locks[0] == BTRFS_WRITE_LOCK) && 1060 btrfs_leaf_free_space(leaf) >= 1061 sizeof(struct btrfs_item) + extent_item_size) { 1062 1063 key.objectid = ino; 1064 key.type = BTRFS_EXTENT_DATA_KEY; 1065 key.offset = start; 1066 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 1067 struct btrfs_key slot_key; 1068 1069 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 1070 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1071 path->slots[0]++; 1072 } 1073 setup_items_for_insert(root, path, &key, 1074 &extent_item_size, 1075 extent_item_size, 1076 sizeof(struct btrfs_item) + 1077 extent_item_size, 1); 1078 *key_inserted = 1; 1079 } 1080 1081 if (!replace_extent || !(*key_inserted)) 1082 btrfs_release_path(path); 1083 if (drop_end) 1084 *drop_end = found ? min(end, last_end) : end; 1085 return ret; 1086 } 1087 1088 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1089 struct btrfs_root *root, struct inode *inode, u64 start, 1090 u64 end, int drop_cache) 1091 { 1092 struct btrfs_path *path; 1093 int ret; 1094 1095 path = btrfs_alloc_path(); 1096 if (!path) 1097 return -ENOMEM; 1098 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1099 drop_cache, 0, 0, NULL); 1100 btrfs_free_path(path); 1101 return ret; 1102 } 1103 1104 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1105 u64 objectid, u64 bytenr, u64 orig_offset, 1106 u64 *start, u64 *end) 1107 { 1108 struct btrfs_file_extent_item *fi; 1109 struct btrfs_key key; 1110 u64 extent_end; 1111 1112 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1113 return 0; 1114 1115 btrfs_item_key_to_cpu(leaf, &key, slot); 1116 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1117 return 0; 1118 1119 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1120 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1121 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1122 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1123 btrfs_file_extent_compression(leaf, fi) || 1124 btrfs_file_extent_encryption(leaf, fi) || 1125 btrfs_file_extent_other_encoding(leaf, fi)) 1126 return 0; 1127 1128 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1129 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1130 return 0; 1131 1132 *start = key.offset; 1133 *end = extent_end; 1134 return 1; 1135 } 1136 1137 /* 1138 * Mark extent in the range start - end as written. 1139 * 1140 * This changes extent type from 'pre-allocated' to 'regular'. If only 1141 * part of extent is marked as written, the extent will be split into 1142 * two or three. 1143 */ 1144 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1145 struct btrfs_inode *inode, u64 start, u64 end) 1146 { 1147 struct btrfs_fs_info *fs_info = trans->fs_info; 1148 struct btrfs_root *root = inode->root; 1149 struct extent_buffer *leaf; 1150 struct btrfs_path *path; 1151 struct btrfs_file_extent_item *fi; 1152 struct btrfs_ref ref = { 0 }; 1153 struct btrfs_key key; 1154 struct btrfs_key new_key; 1155 u64 bytenr; 1156 u64 num_bytes; 1157 u64 extent_end; 1158 u64 orig_offset; 1159 u64 other_start; 1160 u64 other_end; 1161 u64 split; 1162 int del_nr = 0; 1163 int del_slot = 0; 1164 int recow; 1165 int ret; 1166 u64 ino = btrfs_ino(inode); 1167 1168 path = btrfs_alloc_path(); 1169 if (!path) 1170 return -ENOMEM; 1171 again: 1172 recow = 0; 1173 split = start; 1174 key.objectid = ino; 1175 key.type = BTRFS_EXTENT_DATA_KEY; 1176 key.offset = split; 1177 1178 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1179 if (ret < 0) 1180 goto out; 1181 if (ret > 0 && path->slots[0] > 0) 1182 path->slots[0]--; 1183 1184 leaf = path->nodes[0]; 1185 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1186 if (key.objectid != ino || 1187 key.type != BTRFS_EXTENT_DATA_KEY) { 1188 ret = -EINVAL; 1189 btrfs_abort_transaction(trans, ret); 1190 goto out; 1191 } 1192 fi = btrfs_item_ptr(leaf, path->slots[0], 1193 struct btrfs_file_extent_item); 1194 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1195 ret = -EINVAL; 1196 btrfs_abort_transaction(trans, ret); 1197 goto out; 1198 } 1199 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1200 if (key.offset > start || extent_end < end) { 1201 ret = -EINVAL; 1202 btrfs_abort_transaction(trans, ret); 1203 goto out; 1204 } 1205 1206 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1207 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1208 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1209 memcpy(&new_key, &key, sizeof(new_key)); 1210 1211 if (start == key.offset && end < extent_end) { 1212 other_start = 0; 1213 other_end = start; 1214 if (extent_mergeable(leaf, path->slots[0] - 1, 1215 ino, bytenr, orig_offset, 1216 &other_start, &other_end)) { 1217 new_key.offset = end; 1218 btrfs_set_item_key_safe(fs_info, path, &new_key); 1219 fi = btrfs_item_ptr(leaf, path->slots[0], 1220 struct btrfs_file_extent_item); 1221 btrfs_set_file_extent_generation(leaf, fi, 1222 trans->transid); 1223 btrfs_set_file_extent_num_bytes(leaf, fi, 1224 extent_end - end); 1225 btrfs_set_file_extent_offset(leaf, fi, 1226 end - orig_offset); 1227 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1228 struct btrfs_file_extent_item); 1229 btrfs_set_file_extent_generation(leaf, fi, 1230 trans->transid); 1231 btrfs_set_file_extent_num_bytes(leaf, fi, 1232 end - other_start); 1233 btrfs_mark_buffer_dirty(leaf); 1234 goto out; 1235 } 1236 } 1237 1238 if (start > key.offset && end == extent_end) { 1239 other_start = end; 1240 other_end = 0; 1241 if (extent_mergeable(leaf, path->slots[0] + 1, 1242 ino, bytenr, orig_offset, 1243 &other_start, &other_end)) { 1244 fi = btrfs_item_ptr(leaf, path->slots[0], 1245 struct btrfs_file_extent_item); 1246 btrfs_set_file_extent_num_bytes(leaf, fi, 1247 start - key.offset); 1248 btrfs_set_file_extent_generation(leaf, fi, 1249 trans->transid); 1250 path->slots[0]++; 1251 new_key.offset = start; 1252 btrfs_set_item_key_safe(fs_info, path, &new_key); 1253 1254 fi = btrfs_item_ptr(leaf, path->slots[0], 1255 struct btrfs_file_extent_item); 1256 btrfs_set_file_extent_generation(leaf, fi, 1257 trans->transid); 1258 btrfs_set_file_extent_num_bytes(leaf, fi, 1259 other_end - start); 1260 btrfs_set_file_extent_offset(leaf, fi, 1261 start - orig_offset); 1262 btrfs_mark_buffer_dirty(leaf); 1263 goto out; 1264 } 1265 } 1266 1267 while (start > key.offset || end < extent_end) { 1268 if (key.offset == start) 1269 split = end; 1270 1271 new_key.offset = split; 1272 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1273 if (ret == -EAGAIN) { 1274 btrfs_release_path(path); 1275 goto again; 1276 } 1277 if (ret < 0) { 1278 btrfs_abort_transaction(trans, ret); 1279 goto out; 1280 } 1281 1282 leaf = path->nodes[0]; 1283 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1284 struct btrfs_file_extent_item); 1285 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1286 btrfs_set_file_extent_num_bytes(leaf, fi, 1287 split - key.offset); 1288 1289 fi = btrfs_item_ptr(leaf, path->slots[0], 1290 struct btrfs_file_extent_item); 1291 1292 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1293 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1294 btrfs_set_file_extent_num_bytes(leaf, fi, 1295 extent_end - split); 1296 btrfs_mark_buffer_dirty(leaf); 1297 1298 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 1299 num_bytes, 0); 1300 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 1301 orig_offset); 1302 ret = btrfs_inc_extent_ref(trans, &ref); 1303 if (ret) { 1304 btrfs_abort_transaction(trans, ret); 1305 goto out; 1306 } 1307 1308 if (split == start) { 1309 key.offset = start; 1310 } else { 1311 if (start != key.offset) { 1312 ret = -EINVAL; 1313 btrfs_abort_transaction(trans, ret); 1314 goto out; 1315 } 1316 path->slots[0]--; 1317 extent_end = end; 1318 } 1319 recow = 1; 1320 } 1321 1322 other_start = end; 1323 other_end = 0; 1324 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1325 num_bytes, 0); 1326 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset); 1327 if (extent_mergeable(leaf, path->slots[0] + 1, 1328 ino, bytenr, orig_offset, 1329 &other_start, &other_end)) { 1330 if (recow) { 1331 btrfs_release_path(path); 1332 goto again; 1333 } 1334 extent_end = other_end; 1335 del_slot = path->slots[0] + 1; 1336 del_nr++; 1337 ret = btrfs_free_extent(trans, &ref); 1338 if (ret) { 1339 btrfs_abort_transaction(trans, ret); 1340 goto out; 1341 } 1342 } 1343 other_start = 0; 1344 other_end = start; 1345 if (extent_mergeable(leaf, path->slots[0] - 1, 1346 ino, bytenr, orig_offset, 1347 &other_start, &other_end)) { 1348 if (recow) { 1349 btrfs_release_path(path); 1350 goto again; 1351 } 1352 key.offset = other_start; 1353 del_slot = path->slots[0]; 1354 del_nr++; 1355 ret = btrfs_free_extent(trans, &ref); 1356 if (ret) { 1357 btrfs_abort_transaction(trans, ret); 1358 goto out; 1359 } 1360 } 1361 if (del_nr == 0) { 1362 fi = btrfs_item_ptr(leaf, path->slots[0], 1363 struct btrfs_file_extent_item); 1364 btrfs_set_file_extent_type(leaf, fi, 1365 BTRFS_FILE_EXTENT_REG); 1366 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1367 btrfs_mark_buffer_dirty(leaf); 1368 } else { 1369 fi = btrfs_item_ptr(leaf, del_slot - 1, 1370 struct btrfs_file_extent_item); 1371 btrfs_set_file_extent_type(leaf, fi, 1372 BTRFS_FILE_EXTENT_REG); 1373 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1374 btrfs_set_file_extent_num_bytes(leaf, fi, 1375 extent_end - key.offset); 1376 btrfs_mark_buffer_dirty(leaf); 1377 1378 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1379 if (ret < 0) { 1380 btrfs_abort_transaction(trans, ret); 1381 goto out; 1382 } 1383 } 1384 out: 1385 btrfs_free_path(path); 1386 return 0; 1387 } 1388 1389 /* 1390 * on error we return an unlocked page and the error value 1391 * on success we return a locked page and 0 1392 */ 1393 static int prepare_uptodate_page(struct inode *inode, 1394 struct page *page, u64 pos, 1395 bool force_uptodate) 1396 { 1397 int ret = 0; 1398 1399 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1400 !PageUptodate(page)) { 1401 ret = btrfs_readpage(NULL, page); 1402 if (ret) 1403 return ret; 1404 lock_page(page); 1405 if (!PageUptodate(page)) { 1406 unlock_page(page); 1407 return -EIO; 1408 } 1409 if (page->mapping != inode->i_mapping) { 1410 unlock_page(page); 1411 return -EAGAIN; 1412 } 1413 } 1414 return 0; 1415 } 1416 1417 /* 1418 * this just gets pages into the page cache and locks them down. 1419 */ 1420 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1421 size_t num_pages, loff_t pos, 1422 size_t write_bytes, bool force_uptodate) 1423 { 1424 int i; 1425 unsigned long index = pos >> PAGE_SHIFT; 1426 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1427 int err = 0; 1428 int faili; 1429 1430 for (i = 0; i < num_pages; i++) { 1431 again: 1432 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1433 mask | __GFP_WRITE); 1434 if (!pages[i]) { 1435 faili = i - 1; 1436 err = -ENOMEM; 1437 goto fail; 1438 } 1439 1440 if (i == 0) 1441 err = prepare_uptodate_page(inode, pages[i], pos, 1442 force_uptodate); 1443 if (!err && i == num_pages - 1) 1444 err = prepare_uptodate_page(inode, pages[i], 1445 pos + write_bytes, false); 1446 if (err) { 1447 put_page(pages[i]); 1448 if (err == -EAGAIN) { 1449 err = 0; 1450 goto again; 1451 } 1452 faili = i - 1; 1453 goto fail; 1454 } 1455 wait_on_page_writeback(pages[i]); 1456 } 1457 1458 return 0; 1459 fail: 1460 while (faili >= 0) { 1461 unlock_page(pages[faili]); 1462 put_page(pages[faili]); 1463 faili--; 1464 } 1465 return err; 1466 1467 } 1468 1469 /* 1470 * This function locks the extent and properly waits for data=ordered extents 1471 * to finish before allowing the pages to be modified if need. 1472 * 1473 * The return value: 1474 * 1 - the extent is locked 1475 * 0 - the extent is not locked, and everything is OK 1476 * -EAGAIN - need re-prepare the pages 1477 * the other < 0 number - Something wrong happens 1478 */ 1479 static noinline int 1480 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1481 size_t num_pages, loff_t pos, 1482 size_t write_bytes, 1483 u64 *lockstart, u64 *lockend, 1484 struct extent_state **cached_state) 1485 { 1486 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1487 u64 start_pos; 1488 u64 last_pos; 1489 int i; 1490 int ret = 0; 1491 1492 start_pos = round_down(pos, fs_info->sectorsize); 1493 last_pos = start_pos 1494 + round_up(pos + write_bytes - start_pos, 1495 fs_info->sectorsize) - 1; 1496 1497 if (start_pos < inode->vfs_inode.i_size) { 1498 struct btrfs_ordered_extent *ordered; 1499 1500 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1501 cached_state); 1502 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1503 last_pos - start_pos + 1); 1504 if (ordered && 1505 ordered->file_offset + ordered->len > start_pos && 1506 ordered->file_offset <= last_pos) { 1507 unlock_extent_cached(&inode->io_tree, start_pos, 1508 last_pos, cached_state); 1509 for (i = 0; i < num_pages; i++) { 1510 unlock_page(pages[i]); 1511 put_page(pages[i]); 1512 } 1513 btrfs_start_ordered_extent(&inode->vfs_inode, 1514 ordered, 1); 1515 btrfs_put_ordered_extent(ordered); 1516 return -EAGAIN; 1517 } 1518 if (ordered) 1519 btrfs_put_ordered_extent(ordered); 1520 1521 *lockstart = start_pos; 1522 *lockend = last_pos; 1523 ret = 1; 1524 } 1525 1526 /* 1527 * It's possible the pages are dirty right now, but we don't want 1528 * to clean them yet because copy_from_user may catch a page fault 1529 * and we might have to fall back to one page at a time. If that 1530 * happens, we'll unlock these pages and we'd have a window where 1531 * reclaim could sneak in and drop the once-dirty page on the floor 1532 * without writing it. 1533 * 1534 * We have the pages locked and the extent range locked, so there's 1535 * no way someone can start IO on any dirty pages in this range. 1536 * 1537 * We'll call btrfs_dirty_pages() later on, and that will flip around 1538 * delalloc bits and dirty the pages as required. 1539 */ 1540 for (i = 0; i < num_pages; i++) { 1541 set_page_extent_mapped(pages[i]); 1542 WARN_ON(!PageLocked(pages[i])); 1543 } 1544 1545 return ret; 1546 } 1547 1548 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1549 size_t *write_bytes) 1550 { 1551 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1552 struct btrfs_root *root = inode->root; 1553 struct btrfs_ordered_extent *ordered; 1554 u64 lockstart, lockend; 1555 u64 num_bytes; 1556 int ret; 1557 1558 ret = btrfs_start_write_no_snapshotting(root); 1559 if (!ret) 1560 return -ENOSPC; 1561 1562 lockstart = round_down(pos, fs_info->sectorsize); 1563 lockend = round_up(pos + *write_bytes, 1564 fs_info->sectorsize) - 1; 1565 1566 while (1) { 1567 lock_extent(&inode->io_tree, lockstart, lockend); 1568 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1569 lockend - lockstart + 1); 1570 if (!ordered) { 1571 break; 1572 } 1573 unlock_extent(&inode->io_tree, lockstart, lockend); 1574 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1); 1575 btrfs_put_ordered_extent(ordered); 1576 } 1577 1578 num_bytes = lockend - lockstart + 1; 1579 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1580 NULL, NULL, NULL); 1581 if (ret <= 0) { 1582 ret = 0; 1583 btrfs_end_write_no_snapshotting(root); 1584 } else { 1585 *write_bytes = min_t(size_t, *write_bytes , 1586 num_bytes - pos + lockstart); 1587 } 1588 1589 unlock_extent(&inode->io_tree, lockstart, lockend); 1590 1591 return ret; 1592 } 1593 1594 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1595 struct iov_iter *i) 1596 { 1597 struct file *file = iocb->ki_filp; 1598 loff_t pos = iocb->ki_pos; 1599 struct inode *inode = file_inode(file); 1600 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1601 struct btrfs_root *root = BTRFS_I(inode)->root; 1602 struct page **pages = NULL; 1603 struct extent_state *cached_state = NULL; 1604 struct extent_changeset *data_reserved = NULL; 1605 u64 release_bytes = 0; 1606 u64 lockstart; 1607 u64 lockend; 1608 size_t num_written = 0; 1609 int nrptrs; 1610 int ret = 0; 1611 bool only_release_metadata = false; 1612 bool force_page_uptodate = false; 1613 1614 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1615 PAGE_SIZE / (sizeof(struct page *))); 1616 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1617 nrptrs = max(nrptrs, 8); 1618 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1619 if (!pages) 1620 return -ENOMEM; 1621 1622 while (iov_iter_count(i) > 0) { 1623 size_t offset = offset_in_page(pos); 1624 size_t sector_offset; 1625 size_t write_bytes = min(iov_iter_count(i), 1626 nrptrs * (size_t)PAGE_SIZE - 1627 offset); 1628 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1629 PAGE_SIZE); 1630 size_t reserve_bytes; 1631 size_t dirty_pages; 1632 size_t copied; 1633 size_t dirty_sectors; 1634 size_t num_sectors; 1635 int extents_locked; 1636 1637 WARN_ON(num_pages > nrptrs); 1638 1639 /* 1640 * Fault pages before locking them in prepare_pages 1641 * to avoid recursive lock 1642 */ 1643 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1644 ret = -EFAULT; 1645 break; 1646 } 1647 1648 sector_offset = pos & (fs_info->sectorsize - 1); 1649 reserve_bytes = round_up(write_bytes + sector_offset, 1650 fs_info->sectorsize); 1651 1652 extent_changeset_release(data_reserved); 1653 ret = btrfs_check_data_free_space(inode, &data_reserved, pos, 1654 write_bytes); 1655 if (ret < 0) { 1656 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1657 BTRFS_INODE_PREALLOC)) && 1658 check_can_nocow(BTRFS_I(inode), pos, 1659 &write_bytes) > 0) { 1660 /* 1661 * For nodata cow case, no need to reserve 1662 * data space. 1663 */ 1664 only_release_metadata = true; 1665 /* 1666 * our prealloc extent may be smaller than 1667 * write_bytes, so scale down. 1668 */ 1669 num_pages = DIV_ROUND_UP(write_bytes + offset, 1670 PAGE_SIZE); 1671 reserve_bytes = round_up(write_bytes + 1672 sector_offset, 1673 fs_info->sectorsize); 1674 } else { 1675 break; 1676 } 1677 } 1678 1679 WARN_ON(reserve_bytes == 0); 1680 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1681 reserve_bytes); 1682 if (ret) { 1683 if (!only_release_metadata) 1684 btrfs_free_reserved_data_space(inode, 1685 data_reserved, pos, 1686 write_bytes); 1687 else 1688 btrfs_end_write_no_snapshotting(root); 1689 break; 1690 } 1691 1692 release_bytes = reserve_bytes; 1693 again: 1694 /* 1695 * This is going to setup the pages array with the number of 1696 * pages we want, so we don't really need to worry about the 1697 * contents of pages from loop to loop 1698 */ 1699 ret = prepare_pages(inode, pages, num_pages, 1700 pos, write_bytes, 1701 force_page_uptodate); 1702 if (ret) { 1703 btrfs_delalloc_release_extents(BTRFS_I(inode), 1704 reserve_bytes, true); 1705 break; 1706 } 1707 1708 extents_locked = lock_and_cleanup_extent_if_need( 1709 BTRFS_I(inode), pages, 1710 num_pages, pos, write_bytes, &lockstart, 1711 &lockend, &cached_state); 1712 if (extents_locked < 0) { 1713 if (extents_locked == -EAGAIN) 1714 goto again; 1715 btrfs_delalloc_release_extents(BTRFS_I(inode), 1716 reserve_bytes, true); 1717 ret = extents_locked; 1718 break; 1719 } 1720 1721 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1722 1723 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1724 dirty_sectors = round_up(copied + sector_offset, 1725 fs_info->sectorsize); 1726 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1727 1728 /* 1729 * if we have trouble faulting in the pages, fall 1730 * back to one page at a time 1731 */ 1732 if (copied < write_bytes) 1733 nrptrs = 1; 1734 1735 if (copied == 0) { 1736 force_page_uptodate = true; 1737 dirty_sectors = 0; 1738 dirty_pages = 0; 1739 } else { 1740 force_page_uptodate = false; 1741 dirty_pages = DIV_ROUND_UP(copied + offset, 1742 PAGE_SIZE); 1743 } 1744 1745 if (num_sectors > dirty_sectors) { 1746 /* release everything except the sectors we dirtied */ 1747 release_bytes -= dirty_sectors << 1748 fs_info->sb->s_blocksize_bits; 1749 if (only_release_metadata) { 1750 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1751 release_bytes, true); 1752 } else { 1753 u64 __pos; 1754 1755 __pos = round_down(pos, 1756 fs_info->sectorsize) + 1757 (dirty_pages << PAGE_SHIFT); 1758 btrfs_delalloc_release_space(inode, 1759 data_reserved, __pos, 1760 release_bytes, true); 1761 } 1762 } 1763 1764 release_bytes = round_up(copied + sector_offset, 1765 fs_info->sectorsize); 1766 1767 if (copied > 0) 1768 ret = btrfs_dirty_pages(inode, pages, dirty_pages, 1769 pos, copied, &cached_state); 1770 if (extents_locked) 1771 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1772 lockstart, lockend, &cached_state); 1773 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes, 1774 true); 1775 if (ret) { 1776 btrfs_drop_pages(pages, num_pages); 1777 break; 1778 } 1779 1780 release_bytes = 0; 1781 if (only_release_metadata) 1782 btrfs_end_write_no_snapshotting(root); 1783 1784 if (only_release_metadata && copied > 0) { 1785 lockstart = round_down(pos, 1786 fs_info->sectorsize); 1787 lockend = round_up(pos + copied, 1788 fs_info->sectorsize) - 1; 1789 1790 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1791 lockend, EXTENT_NORESERVE, NULL, 1792 NULL, GFP_NOFS); 1793 only_release_metadata = false; 1794 } 1795 1796 btrfs_drop_pages(pages, num_pages); 1797 1798 cond_resched(); 1799 1800 balance_dirty_pages_ratelimited(inode->i_mapping); 1801 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1) 1802 btrfs_btree_balance_dirty(fs_info); 1803 1804 pos += copied; 1805 num_written += copied; 1806 } 1807 1808 kfree(pages); 1809 1810 if (release_bytes) { 1811 if (only_release_metadata) { 1812 btrfs_end_write_no_snapshotting(root); 1813 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1814 release_bytes, true); 1815 } else { 1816 btrfs_delalloc_release_space(inode, data_reserved, 1817 round_down(pos, fs_info->sectorsize), 1818 release_bytes, true); 1819 } 1820 } 1821 1822 extent_changeset_free(data_reserved); 1823 return num_written ? num_written : ret; 1824 } 1825 1826 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1827 { 1828 struct file *file = iocb->ki_filp; 1829 struct inode *inode = file_inode(file); 1830 loff_t pos; 1831 ssize_t written; 1832 ssize_t written_buffered; 1833 loff_t endbyte; 1834 int err; 1835 1836 written = generic_file_direct_write(iocb, from); 1837 1838 if (written < 0 || !iov_iter_count(from)) 1839 return written; 1840 1841 pos = iocb->ki_pos; 1842 written_buffered = btrfs_buffered_write(iocb, from); 1843 if (written_buffered < 0) { 1844 err = written_buffered; 1845 goto out; 1846 } 1847 /* 1848 * Ensure all data is persisted. We want the next direct IO read to be 1849 * able to read what was just written. 1850 */ 1851 endbyte = pos + written_buffered - 1; 1852 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1853 if (err) 1854 goto out; 1855 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1856 if (err) 1857 goto out; 1858 written += written_buffered; 1859 iocb->ki_pos = pos + written_buffered; 1860 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1861 endbyte >> PAGE_SHIFT); 1862 out: 1863 return written ? written : err; 1864 } 1865 1866 static void update_time_for_write(struct inode *inode) 1867 { 1868 struct timespec64 now; 1869 1870 if (IS_NOCMTIME(inode)) 1871 return; 1872 1873 now = current_time(inode); 1874 if (!timespec64_equal(&inode->i_mtime, &now)) 1875 inode->i_mtime = now; 1876 1877 if (!timespec64_equal(&inode->i_ctime, &now)) 1878 inode->i_ctime = now; 1879 1880 if (IS_I_VERSION(inode)) 1881 inode_inc_iversion(inode); 1882 } 1883 1884 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1885 struct iov_iter *from) 1886 { 1887 struct file *file = iocb->ki_filp; 1888 struct inode *inode = file_inode(file); 1889 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1890 struct btrfs_root *root = BTRFS_I(inode)->root; 1891 u64 start_pos; 1892 u64 end_pos; 1893 ssize_t num_written = 0; 1894 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1895 ssize_t err; 1896 loff_t pos; 1897 size_t count = iov_iter_count(from); 1898 loff_t oldsize; 1899 int clean_page = 0; 1900 1901 if (!(iocb->ki_flags & IOCB_DIRECT) && 1902 (iocb->ki_flags & IOCB_NOWAIT)) 1903 return -EOPNOTSUPP; 1904 1905 if (!inode_trylock(inode)) { 1906 if (iocb->ki_flags & IOCB_NOWAIT) 1907 return -EAGAIN; 1908 inode_lock(inode); 1909 } 1910 1911 err = generic_write_checks(iocb, from); 1912 if (err <= 0) { 1913 inode_unlock(inode); 1914 return err; 1915 } 1916 1917 pos = iocb->ki_pos; 1918 if (iocb->ki_flags & IOCB_NOWAIT) { 1919 /* 1920 * We will allocate space in case nodatacow is not set, 1921 * so bail 1922 */ 1923 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1924 BTRFS_INODE_PREALLOC)) || 1925 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) { 1926 inode_unlock(inode); 1927 return -EAGAIN; 1928 } 1929 } 1930 1931 current->backing_dev_info = inode_to_bdi(inode); 1932 err = file_remove_privs(file); 1933 if (err) { 1934 inode_unlock(inode); 1935 goto out; 1936 } 1937 1938 /* 1939 * If BTRFS flips readonly due to some impossible error 1940 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1941 * although we have opened a file as writable, we have 1942 * to stop this write operation to ensure FS consistency. 1943 */ 1944 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1945 inode_unlock(inode); 1946 err = -EROFS; 1947 goto out; 1948 } 1949 1950 /* 1951 * We reserve space for updating the inode when we reserve space for the 1952 * extent we are going to write, so we will enospc out there. We don't 1953 * need to start yet another transaction to update the inode as we will 1954 * update the inode when we finish writing whatever data we write. 1955 */ 1956 update_time_for_write(inode); 1957 1958 start_pos = round_down(pos, fs_info->sectorsize); 1959 oldsize = i_size_read(inode); 1960 if (start_pos > oldsize) { 1961 /* Expand hole size to cover write data, preventing empty gap */ 1962 end_pos = round_up(pos + count, 1963 fs_info->sectorsize); 1964 err = btrfs_cont_expand(inode, oldsize, end_pos); 1965 if (err) { 1966 inode_unlock(inode); 1967 goto out; 1968 } 1969 if (start_pos > round_up(oldsize, fs_info->sectorsize)) 1970 clean_page = 1; 1971 } 1972 1973 if (sync) 1974 atomic_inc(&BTRFS_I(inode)->sync_writers); 1975 1976 if (iocb->ki_flags & IOCB_DIRECT) { 1977 num_written = __btrfs_direct_write(iocb, from); 1978 } else { 1979 num_written = btrfs_buffered_write(iocb, from); 1980 if (num_written > 0) 1981 iocb->ki_pos = pos + num_written; 1982 if (clean_page) 1983 pagecache_isize_extended(inode, oldsize, 1984 i_size_read(inode)); 1985 } 1986 1987 inode_unlock(inode); 1988 1989 /* 1990 * We also have to set last_sub_trans to the current log transid, 1991 * otherwise subsequent syncs to a file that's been synced in this 1992 * transaction will appear to have already occurred. 1993 */ 1994 spin_lock(&BTRFS_I(inode)->lock); 1995 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1996 spin_unlock(&BTRFS_I(inode)->lock); 1997 if (num_written > 0) 1998 num_written = generic_write_sync(iocb, num_written); 1999 2000 if (sync) 2001 atomic_dec(&BTRFS_I(inode)->sync_writers); 2002 out: 2003 current->backing_dev_info = NULL; 2004 return num_written ? num_written : err; 2005 } 2006 2007 int btrfs_release_file(struct inode *inode, struct file *filp) 2008 { 2009 struct btrfs_file_private *private = filp->private_data; 2010 2011 if (private && private->filldir_buf) 2012 kfree(private->filldir_buf); 2013 kfree(private); 2014 filp->private_data = NULL; 2015 2016 /* 2017 * ordered_data_close is set by setattr when we are about to truncate 2018 * a file from a non-zero size to a zero size. This tries to 2019 * flush down new bytes that may have been written if the 2020 * application were using truncate to replace a file in place. 2021 */ 2022 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 2023 &BTRFS_I(inode)->runtime_flags)) 2024 filemap_flush(inode->i_mapping); 2025 return 0; 2026 } 2027 2028 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2029 { 2030 int ret; 2031 struct blk_plug plug; 2032 2033 /* 2034 * This is only called in fsync, which would do synchronous writes, so 2035 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2036 * multiple disks using raid profile, a large IO can be split to 2037 * several segments of stripe length (currently 64K). 2038 */ 2039 blk_start_plug(&plug); 2040 atomic_inc(&BTRFS_I(inode)->sync_writers); 2041 ret = btrfs_fdatawrite_range(inode, start, end); 2042 atomic_dec(&BTRFS_I(inode)->sync_writers); 2043 blk_finish_plug(&plug); 2044 2045 return ret; 2046 } 2047 2048 /* 2049 * fsync call for both files and directories. This logs the inode into 2050 * the tree log instead of forcing full commits whenever possible. 2051 * 2052 * It needs to call filemap_fdatawait so that all ordered extent updates are 2053 * in the metadata btree are up to date for copying to the log. 2054 * 2055 * It drops the inode mutex before doing the tree log commit. This is an 2056 * important optimization for directories because holding the mutex prevents 2057 * new operations on the dir while we write to disk. 2058 */ 2059 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2060 { 2061 struct dentry *dentry = file_dentry(file); 2062 struct inode *inode = d_inode(dentry); 2063 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2064 struct btrfs_root *root = BTRFS_I(inode)->root; 2065 struct btrfs_trans_handle *trans; 2066 struct btrfs_log_ctx ctx; 2067 int ret = 0, err; 2068 u64 len; 2069 2070 /* 2071 * The range length can be represented by u64, we have to do the typecasts 2072 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync() 2073 */ 2074 len = (u64)end - (u64)start + 1; 2075 trace_btrfs_sync_file(file, datasync); 2076 2077 btrfs_init_log_ctx(&ctx, inode); 2078 2079 /* 2080 * We write the dirty pages in the range and wait until they complete 2081 * out of the ->i_mutex. If so, we can flush the dirty pages by 2082 * multi-task, and make the performance up. See 2083 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2084 */ 2085 ret = start_ordered_ops(inode, start, end); 2086 if (ret) 2087 goto out; 2088 2089 inode_lock(inode); 2090 2091 /* 2092 * We take the dio_sem here because the tree log stuff can race with 2093 * lockless dio writes and get an extent map logged for an extent we 2094 * never waited on. We need it this high up for lockdep reasons. 2095 */ 2096 down_write(&BTRFS_I(inode)->dio_sem); 2097 2098 atomic_inc(&root->log_batch); 2099 2100 /* 2101 * Before we acquired the inode's lock, someone may have dirtied more 2102 * pages in the target range. We need to make sure that writeback for 2103 * any such pages does not start while we are logging the inode, because 2104 * if it does, any of the following might happen when we are not doing a 2105 * full inode sync: 2106 * 2107 * 1) We log an extent after its writeback finishes but before its 2108 * checksums are added to the csum tree, leading to -EIO errors 2109 * when attempting to read the extent after a log replay. 2110 * 2111 * 2) We can end up logging an extent before its writeback finishes. 2112 * Therefore after the log replay we will have a file extent item 2113 * pointing to an unwritten extent (and no data checksums as well). 2114 * 2115 * So trigger writeback for any eventual new dirty pages and then we 2116 * wait for all ordered extents to complete below. 2117 */ 2118 ret = start_ordered_ops(inode, start, end); 2119 if (ret) { 2120 inode_unlock(inode); 2121 goto out; 2122 } 2123 2124 /* 2125 * We have to do this here to avoid the priority inversion of waiting on 2126 * IO of a lower priority task while holding a transaction open. 2127 */ 2128 ret = btrfs_wait_ordered_range(inode, start, len); 2129 if (ret) { 2130 up_write(&BTRFS_I(inode)->dio_sem); 2131 inode_unlock(inode); 2132 goto out; 2133 } 2134 atomic_inc(&root->log_batch); 2135 2136 smp_mb(); 2137 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) || 2138 BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) { 2139 /* 2140 * We've had everything committed since the last time we were 2141 * modified so clear this flag in case it was set for whatever 2142 * reason, it's no longer relevant. 2143 */ 2144 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2145 &BTRFS_I(inode)->runtime_flags); 2146 /* 2147 * An ordered extent might have started before and completed 2148 * already with io errors, in which case the inode was not 2149 * updated and we end up here. So check the inode's mapping 2150 * for any errors that might have happened since we last 2151 * checked called fsync. 2152 */ 2153 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2154 up_write(&BTRFS_I(inode)->dio_sem); 2155 inode_unlock(inode); 2156 goto out; 2157 } 2158 2159 /* 2160 * We use start here because we will need to wait on the IO to complete 2161 * in btrfs_sync_log, which could require joining a transaction (for 2162 * example checking cross references in the nocow path). If we use join 2163 * here we could get into a situation where we're waiting on IO to 2164 * happen that is blocked on a transaction trying to commit. With start 2165 * we inc the extwriter counter, so we wait for all extwriters to exit 2166 * before we start blocking joiners. This comment is to keep somebody 2167 * from thinking they are super smart and changing this to 2168 * btrfs_join_transaction *cough*Josef*cough*. 2169 */ 2170 trans = btrfs_start_transaction(root, 0); 2171 if (IS_ERR(trans)) { 2172 ret = PTR_ERR(trans); 2173 up_write(&BTRFS_I(inode)->dio_sem); 2174 inode_unlock(inode); 2175 goto out; 2176 } 2177 2178 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx); 2179 if (ret < 0) { 2180 /* Fallthrough and commit/free transaction. */ 2181 ret = 1; 2182 } 2183 2184 /* we've logged all the items and now have a consistent 2185 * version of the file in the log. It is possible that 2186 * someone will come in and modify the file, but that's 2187 * fine because the log is consistent on disk, and we 2188 * have references to all of the file's extents 2189 * 2190 * It is possible that someone will come in and log the 2191 * file again, but that will end up using the synchronization 2192 * inside btrfs_sync_log to keep things safe. 2193 */ 2194 up_write(&BTRFS_I(inode)->dio_sem); 2195 inode_unlock(inode); 2196 2197 if (ret != BTRFS_NO_LOG_SYNC) { 2198 if (!ret) { 2199 ret = btrfs_sync_log(trans, root, &ctx); 2200 if (!ret) { 2201 ret = btrfs_end_transaction(trans); 2202 goto out; 2203 } 2204 } 2205 ret = btrfs_commit_transaction(trans); 2206 } else { 2207 ret = btrfs_end_transaction(trans); 2208 } 2209 out: 2210 ASSERT(list_empty(&ctx.list)); 2211 err = file_check_and_advance_wb_err(file); 2212 if (!ret) 2213 ret = err; 2214 return ret > 0 ? -EIO : ret; 2215 } 2216 2217 static const struct vm_operations_struct btrfs_file_vm_ops = { 2218 .fault = filemap_fault, 2219 .map_pages = filemap_map_pages, 2220 .page_mkwrite = btrfs_page_mkwrite, 2221 }; 2222 2223 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2224 { 2225 struct address_space *mapping = filp->f_mapping; 2226 2227 if (!mapping->a_ops->readpage) 2228 return -ENOEXEC; 2229 2230 file_accessed(filp); 2231 vma->vm_ops = &btrfs_file_vm_ops; 2232 2233 return 0; 2234 } 2235 2236 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2237 int slot, u64 start, u64 end) 2238 { 2239 struct btrfs_file_extent_item *fi; 2240 struct btrfs_key key; 2241 2242 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2243 return 0; 2244 2245 btrfs_item_key_to_cpu(leaf, &key, slot); 2246 if (key.objectid != btrfs_ino(inode) || 2247 key.type != BTRFS_EXTENT_DATA_KEY) 2248 return 0; 2249 2250 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2251 2252 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2253 return 0; 2254 2255 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2256 return 0; 2257 2258 if (key.offset == end) 2259 return 1; 2260 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2261 return 1; 2262 return 0; 2263 } 2264 2265 static int fill_holes(struct btrfs_trans_handle *trans, 2266 struct btrfs_inode *inode, 2267 struct btrfs_path *path, u64 offset, u64 end) 2268 { 2269 struct btrfs_fs_info *fs_info = trans->fs_info; 2270 struct btrfs_root *root = inode->root; 2271 struct extent_buffer *leaf; 2272 struct btrfs_file_extent_item *fi; 2273 struct extent_map *hole_em; 2274 struct extent_map_tree *em_tree = &inode->extent_tree; 2275 struct btrfs_key key; 2276 int ret; 2277 2278 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2279 goto out; 2280 2281 key.objectid = btrfs_ino(inode); 2282 key.type = BTRFS_EXTENT_DATA_KEY; 2283 key.offset = offset; 2284 2285 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2286 if (ret <= 0) { 2287 /* 2288 * We should have dropped this offset, so if we find it then 2289 * something has gone horribly wrong. 2290 */ 2291 if (ret == 0) 2292 ret = -EINVAL; 2293 return ret; 2294 } 2295 2296 leaf = path->nodes[0]; 2297 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2298 u64 num_bytes; 2299 2300 path->slots[0]--; 2301 fi = btrfs_item_ptr(leaf, path->slots[0], 2302 struct btrfs_file_extent_item); 2303 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2304 end - offset; 2305 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2306 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2307 btrfs_set_file_extent_offset(leaf, fi, 0); 2308 btrfs_mark_buffer_dirty(leaf); 2309 goto out; 2310 } 2311 2312 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2313 u64 num_bytes; 2314 2315 key.offset = offset; 2316 btrfs_set_item_key_safe(fs_info, path, &key); 2317 fi = btrfs_item_ptr(leaf, path->slots[0], 2318 struct btrfs_file_extent_item); 2319 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2320 offset; 2321 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2322 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2323 btrfs_set_file_extent_offset(leaf, fi, 0); 2324 btrfs_mark_buffer_dirty(leaf); 2325 goto out; 2326 } 2327 btrfs_release_path(path); 2328 2329 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2330 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2331 if (ret) 2332 return ret; 2333 2334 out: 2335 btrfs_release_path(path); 2336 2337 hole_em = alloc_extent_map(); 2338 if (!hole_em) { 2339 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2340 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2341 } else { 2342 hole_em->start = offset; 2343 hole_em->len = end - offset; 2344 hole_em->ram_bytes = hole_em->len; 2345 hole_em->orig_start = offset; 2346 2347 hole_em->block_start = EXTENT_MAP_HOLE; 2348 hole_em->block_len = 0; 2349 hole_em->orig_block_len = 0; 2350 hole_em->bdev = fs_info->fs_devices->latest_bdev; 2351 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2352 hole_em->generation = trans->transid; 2353 2354 do { 2355 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2356 write_lock(&em_tree->lock); 2357 ret = add_extent_mapping(em_tree, hole_em, 1); 2358 write_unlock(&em_tree->lock); 2359 } while (ret == -EEXIST); 2360 free_extent_map(hole_em); 2361 if (ret) 2362 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2363 &inode->runtime_flags); 2364 } 2365 2366 return 0; 2367 } 2368 2369 /* 2370 * Find a hole extent on given inode and change start/len to the end of hole 2371 * extent.(hole/vacuum extent whose em->start <= start && 2372 * em->start + em->len > start) 2373 * When a hole extent is found, return 1 and modify start/len. 2374 */ 2375 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2376 { 2377 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2378 struct extent_map *em; 2379 int ret = 0; 2380 2381 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2382 round_down(*start, fs_info->sectorsize), 2383 round_up(*len, fs_info->sectorsize), 0); 2384 if (IS_ERR(em)) 2385 return PTR_ERR(em); 2386 2387 /* Hole or vacuum extent(only exists in no-hole mode) */ 2388 if (em->block_start == EXTENT_MAP_HOLE) { 2389 ret = 1; 2390 *len = em->start + em->len > *start + *len ? 2391 0 : *start + *len - em->start - em->len; 2392 *start = em->start + em->len; 2393 } 2394 free_extent_map(em); 2395 return ret; 2396 } 2397 2398 static int btrfs_punch_hole_lock_range(struct inode *inode, 2399 const u64 lockstart, 2400 const u64 lockend, 2401 struct extent_state **cached_state) 2402 { 2403 while (1) { 2404 struct btrfs_ordered_extent *ordered; 2405 int ret; 2406 2407 truncate_pagecache_range(inode, lockstart, lockend); 2408 2409 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2410 cached_state); 2411 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2412 2413 /* 2414 * We need to make sure we have no ordered extents in this range 2415 * and nobody raced in and read a page in this range, if we did 2416 * we need to try again. 2417 */ 2418 if ((!ordered || 2419 (ordered->file_offset + ordered->len <= lockstart || 2420 ordered->file_offset > lockend)) && 2421 !filemap_range_has_page(inode->i_mapping, 2422 lockstart, lockend)) { 2423 if (ordered) 2424 btrfs_put_ordered_extent(ordered); 2425 break; 2426 } 2427 if (ordered) 2428 btrfs_put_ordered_extent(ordered); 2429 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2430 lockend, cached_state); 2431 ret = btrfs_wait_ordered_range(inode, lockstart, 2432 lockend - lockstart + 1); 2433 if (ret) 2434 return ret; 2435 } 2436 return 0; 2437 } 2438 2439 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2440 { 2441 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2442 struct btrfs_root *root = BTRFS_I(inode)->root; 2443 struct extent_state *cached_state = NULL; 2444 struct btrfs_path *path; 2445 struct btrfs_block_rsv *rsv; 2446 struct btrfs_trans_handle *trans; 2447 u64 lockstart; 2448 u64 lockend; 2449 u64 tail_start; 2450 u64 tail_len; 2451 u64 orig_start = offset; 2452 u64 cur_offset; 2453 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1); 2454 u64 drop_end; 2455 int ret = 0; 2456 int err = 0; 2457 unsigned int rsv_count; 2458 bool same_block; 2459 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES); 2460 u64 ino_size; 2461 bool truncated_block = false; 2462 bool updated_inode = false; 2463 2464 ret = btrfs_wait_ordered_range(inode, offset, len); 2465 if (ret) 2466 return ret; 2467 2468 inode_lock(inode); 2469 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2470 ret = find_first_non_hole(inode, &offset, &len); 2471 if (ret < 0) 2472 goto out_only_mutex; 2473 if (ret && !len) { 2474 /* Already in a large hole */ 2475 ret = 0; 2476 goto out_only_mutex; 2477 } 2478 2479 lockstart = round_up(offset, btrfs_inode_sectorsize(inode)); 2480 lockend = round_down(offset + len, 2481 btrfs_inode_sectorsize(inode)) - 1; 2482 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2483 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2484 /* 2485 * We needn't truncate any block which is beyond the end of the file 2486 * because we are sure there is no data there. 2487 */ 2488 /* 2489 * Only do this if we are in the same block and we aren't doing the 2490 * entire block. 2491 */ 2492 if (same_block && len < fs_info->sectorsize) { 2493 if (offset < ino_size) { 2494 truncated_block = true; 2495 ret = btrfs_truncate_block(inode, offset, len, 0); 2496 } else { 2497 ret = 0; 2498 } 2499 goto out_only_mutex; 2500 } 2501 2502 /* zero back part of the first block */ 2503 if (offset < ino_size) { 2504 truncated_block = true; 2505 ret = btrfs_truncate_block(inode, offset, 0, 0); 2506 if (ret) { 2507 inode_unlock(inode); 2508 return ret; 2509 } 2510 } 2511 2512 /* Check the aligned pages after the first unaligned page, 2513 * if offset != orig_start, which means the first unaligned page 2514 * including several following pages are already in holes, 2515 * the extra check can be skipped */ 2516 if (offset == orig_start) { 2517 /* after truncate page, check hole again */ 2518 len = offset + len - lockstart; 2519 offset = lockstart; 2520 ret = find_first_non_hole(inode, &offset, &len); 2521 if (ret < 0) 2522 goto out_only_mutex; 2523 if (ret && !len) { 2524 ret = 0; 2525 goto out_only_mutex; 2526 } 2527 lockstart = offset; 2528 } 2529 2530 /* Check the tail unaligned part is in a hole */ 2531 tail_start = lockend + 1; 2532 tail_len = offset + len - tail_start; 2533 if (tail_len) { 2534 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2535 if (unlikely(ret < 0)) 2536 goto out_only_mutex; 2537 if (!ret) { 2538 /* zero the front end of the last page */ 2539 if (tail_start + tail_len < ino_size) { 2540 truncated_block = true; 2541 ret = btrfs_truncate_block(inode, 2542 tail_start + tail_len, 2543 0, 1); 2544 if (ret) 2545 goto out_only_mutex; 2546 } 2547 } 2548 } 2549 2550 if (lockend < lockstart) { 2551 ret = 0; 2552 goto out_only_mutex; 2553 } 2554 2555 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2556 &cached_state); 2557 if (ret) { 2558 inode_unlock(inode); 2559 goto out_only_mutex; 2560 } 2561 2562 path = btrfs_alloc_path(); 2563 if (!path) { 2564 ret = -ENOMEM; 2565 goto out; 2566 } 2567 2568 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2569 if (!rsv) { 2570 ret = -ENOMEM; 2571 goto out_free; 2572 } 2573 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1); 2574 rsv->failfast = 1; 2575 2576 /* 2577 * 1 - update the inode 2578 * 1 - removing the extents in the range 2579 * 1 - adding the hole extent if no_holes isn't set 2580 */ 2581 rsv_count = no_holes ? 2 : 3; 2582 trans = btrfs_start_transaction(root, rsv_count); 2583 if (IS_ERR(trans)) { 2584 err = PTR_ERR(trans); 2585 goto out_free; 2586 } 2587 2588 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2589 min_size, false); 2590 BUG_ON(ret); 2591 trans->block_rsv = rsv; 2592 2593 cur_offset = lockstart; 2594 len = lockend - cur_offset; 2595 while (cur_offset < lockend) { 2596 ret = __btrfs_drop_extents(trans, root, inode, path, 2597 cur_offset, lockend + 1, 2598 &drop_end, 1, 0, 0, NULL); 2599 if (ret != -ENOSPC) 2600 break; 2601 2602 trans->block_rsv = &fs_info->trans_block_rsv; 2603 2604 if (cur_offset < drop_end && cur_offset < ino_size) { 2605 ret = fill_holes(trans, BTRFS_I(inode), path, 2606 cur_offset, drop_end); 2607 if (ret) { 2608 /* 2609 * If we failed then we didn't insert our hole 2610 * entries for the area we dropped, so now the 2611 * fs is corrupted, so we must abort the 2612 * transaction. 2613 */ 2614 btrfs_abort_transaction(trans, ret); 2615 err = ret; 2616 break; 2617 } 2618 } 2619 2620 cur_offset = drop_end; 2621 2622 ret = btrfs_update_inode(trans, root, inode); 2623 if (ret) { 2624 err = ret; 2625 break; 2626 } 2627 2628 btrfs_end_transaction(trans); 2629 btrfs_btree_balance_dirty(fs_info); 2630 2631 trans = btrfs_start_transaction(root, rsv_count); 2632 if (IS_ERR(trans)) { 2633 ret = PTR_ERR(trans); 2634 trans = NULL; 2635 break; 2636 } 2637 2638 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2639 rsv, min_size, false); 2640 BUG_ON(ret); /* shouldn't happen */ 2641 trans->block_rsv = rsv; 2642 2643 ret = find_first_non_hole(inode, &cur_offset, &len); 2644 if (unlikely(ret < 0)) 2645 break; 2646 if (ret && !len) { 2647 ret = 0; 2648 break; 2649 } 2650 } 2651 2652 if (ret) { 2653 err = ret; 2654 goto out_trans; 2655 } 2656 2657 trans->block_rsv = &fs_info->trans_block_rsv; 2658 /* 2659 * If we are using the NO_HOLES feature we might have had already an 2660 * hole that overlaps a part of the region [lockstart, lockend] and 2661 * ends at (or beyond) lockend. Since we have no file extent items to 2662 * represent holes, drop_end can be less than lockend and so we must 2663 * make sure we have an extent map representing the existing hole (the 2664 * call to __btrfs_drop_extents() might have dropped the existing extent 2665 * map representing the existing hole), otherwise the fast fsync path 2666 * will not record the existence of the hole region 2667 * [existing_hole_start, lockend]. 2668 */ 2669 if (drop_end <= lockend) 2670 drop_end = lockend + 1; 2671 /* 2672 * Don't insert file hole extent item if it's for a range beyond eof 2673 * (because it's useless) or if it represents a 0 bytes range (when 2674 * cur_offset == drop_end). 2675 */ 2676 if (cur_offset < ino_size && cur_offset < drop_end) { 2677 ret = fill_holes(trans, BTRFS_I(inode), path, 2678 cur_offset, drop_end); 2679 if (ret) { 2680 /* Same comment as above. */ 2681 btrfs_abort_transaction(trans, ret); 2682 err = ret; 2683 goto out_trans; 2684 } 2685 } 2686 2687 out_trans: 2688 if (!trans) 2689 goto out_free; 2690 2691 inode_inc_iversion(inode); 2692 inode->i_mtime = inode->i_ctime = current_time(inode); 2693 2694 trans->block_rsv = &fs_info->trans_block_rsv; 2695 ret = btrfs_update_inode(trans, root, inode); 2696 updated_inode = true; 2697 btrfs_end_transaction(trans); 2698 btrfs_btree_balance_dirty(fs_info); 2699 out_free: 2700 btrfs_free_path(path); 2701 btrfs_free_block_rsv(fs_info, rsv); 2702 out: 2703 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2704 &cached_state); 2705 out_only_mutex: 2706 if (!updated_inode && truncated_block && !ret && !err) { 2707 /* 2708 * If we only end up zeroing part of a page, we still need to 2709 * update the inode item, so that all the time fields are 2710 * updated as well as the necessary btrfs inode in memory fields 2711 * for detecting, at fsync time, if the inode isn't yet in the 2712 * log tree or it's there but not up to date. 2713 */ 2714 trans = btrfs_start_transaction(root, 1); 2715 if (IS_ERR(trans)) { 2716 err = PTR_ERR(trans); 2717 } else { 2718 err = btrfs_update_inode(trans, root, inode); 2719 ret = btrfs_end_transaction(trans); 2720 } 2721 } 2722 inode_unlock(inode); 2723 if (ret && !err) 2724 err = ret; 2725 return err; 2726 } 2727 2728 /* Helper structure to record which range is already reserved */ 2729 struct falloc_range { 2730 struct list_head list; 2731 u64 start; 2732 u64 len; 2733 }; 2734 2735 /* 2736 * Helper function to add falloc range 2737 * 2738 * Caller should have locked the larger range of extent containing 2739 * [start, len) 2740 */ 2741 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2742 { 2743 struct falloc_range *prev = NULL; 2744 struct falloc_range *range = NULL; 2745 2746 if (list_empty(head)) 2747 goto insert; 2748 2749 /* 2750 * As fallocate iterate by bytenr order, we only need to check 2751 * the last range. 2752 */ 2753 prev = list_entry(head->prev, struct falloc_range, list); 2754 if (prev->start + prev->len == start) { 2755 prev->len += len; 2756 return 0; 2757 } 2758 insert: 2759 range = kmalloc(sizeof(*range), GFP_KERNEL); 2760 if (!range) 2761 return -ENOMEM; 2762 range->start = start; 2763 range->len = len; 2764 list_add_tail(&range->list, head); 2765 return 0; 2766 } 2767 2768 static int btrfs_fallocate_update_isize(struct inode *inode, 2769 const u64 end, 2770 const int mode) 2771 { 2772 struct btrfs_trans_handle *trans; 2773 struct btrfs_root *root = BTRFS_I(inode)->root; 2774 int ret; 2775 int ret2; 2776 2777 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2778 return 0; 2779 2780 trans = btrfs_start_transaction(root, 1); 2781 if (IS_ERR(trans)) 2782 return PTR_ERR(trans); 2783 2784 inode->i_ctime = current_time(inode); 2785 i_size_write(inode, end); 2786 btrfs_ordered_update_i_size(inode, end, NULL); 2787 ret = btrfs_update_inode(trans, root, inode); 2788 ret2 = btrfs_end_transaction(trans); 2789 2790 return ret ? ret : ret2; 2791 } 2792 2793 enum { 2794 RANGE_BOUNDARY_WRITTEN_EXTENT = 0, 2795 RANGE_BOUNDARY_PREALLOC_EXTENT = 1, 2796 RANGE_BOUNDARY_HOLE = 2, 2797 }; 2798 2799 static int btrfs_zero_range_check_range_boundary(struct inode *inode, 2800 u64 offset) 2801 { 2802 const u64 sectorsize = btrfs_inode_sectorsize(inode); 2803 struct extent_map *em; 2804 int ret; 2805 2806 offset = round_down(offset, sectorsize); 2807 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0); 2808 if (IS_ERR(em)) 2809 return PTR_ERR(em); 2810 2811 if (em->block_start == EXTENT_MAP_HOLE) 2812 ret = RANGE_BOUNDARY_HOLE; 2813 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2814 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2815 else 2816 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2817 2818 free_extent_map(em); 2819 return ret; 2820 } 2821 2822 static int btrfs_zero_range(struct inode *inode, 2823 loff_t offset, 2824 loff_t len, 2825 const int mode) 2826 { 2827 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2828 struct extent_map *em; 2829 struct extent_changeset *data_reserved = NULL; 2830 int ret; 2831 u64 alloc_hint = 0; 2832 const u64 sectorsize = btrfs_inode_sectorsize(inode); 2833 u64 alloc_start = round_down(offset, sectorsize); 2834 u64 alloc_end = round_up(offset + len, sectorsize); 2835 u64 bytes_to_reserve = 0; 2836 bool space_reserved = false; 2837 2838 inode_dio_wait(inode); 2839 2840 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2841 alloc_start, alloc_end - alloc_start, 0); 2842 if (IS_ERR(em)) { 2843 ret = PTR_ERR(em); 2844 goto out; 2845 } 2846 2847 /* 2848 * Avoid hole punching and extent allocation for some cases. More cases 2849 * could be considered, but these are unlikely common and we keep things 2850 * as simple as possible for now. Also, intentionally, if the target 2851 * range contains one or more prealloc extents together with regular 2852 * extents and holes, we drop all the existing extents and allocate a 2853 * new prealloc extent, so that we get a larger contiguous disk extent. 2854 */ 2855 if (em->start <= alloc_start && 2856 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2857 const u64 em_end = em->start + em->len; 2858 2859 if (em_end >= offset + len) { 2860 /* 2861 * The whole range is already a prealloc extent, 2862 * do nothing except updating the inode's i_size if 2863 * needed. 2864 */ 2865 free_extent_map(em); 2866 ret = btrfs_fallocate_update_isize(inode, offset + len, 2867 mode); 2868 goto out; 2869 } 2870 /* 2871 * Part of the range is already a prealloc extent, so operate 2872 * only on the remaining part of the range. 2873 */ 2874 alloc_start = em_end; 2875 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2876 len = offset + len - alloc_start; 2877 offset = alloc_start; 2878 alloc_hint = em->block_start + em->len; 2879 } 2880 free_extent_map(em); 2881 2882 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2883 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2884 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2885 alloc_start, sectorsize, 0); 2886 if (IS_ERR(em)) { 2887 ret = PTR_ERR(em); 2888 goto out; 2889 } 2890 2891 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2892 free_extent_map(em); 2893 ret = btrfs_fallocate_update_isize(inode, offset + len, 2894 mode); 2895 goto out; 2896 } 2897 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 2898 free_extent_map(em); 2899 ret = btrfs_truncate_block(inode, offset, len, 0); 2900 if (!ret) 2901 ret = btrfs_fallocate_update_isize(inode, 2902 offset + len, 2903 mode); 2904 return ret; 2905 } 2906 free_extent_map(em); 2907 alloc_start = round_down(offset, sectorsize); 2908 alloc_end = alloc_start + sectorsize; 2909 goto reserve_space; 2910 } 2911 2912 alloc_start = round_up(offset, sectorsize); 2913 alloc_end = round_down(offset + len, sectorsize); 2914 2915 /* 2916 * For unaligned ranges, check the pages at the boundaries, they might 2917 * map to an extent, in which case we need to partially zero them, or 2918 * they might map to a hole, in which case we need our allocation range 2919 * to cover them. 2920 */ 2921 if (!IS_ALIGNED(offset, sectorsize)) { 2922 ret = btrfs_zero_range_check_range_boundary(inode, offset); 2923 if (ret < 0) 2924 goto out; 2925 if (ret == RANGE_BOUNDARY_HOLE) { 2926 alloc_start = round_down(offset, sectorsize); 2927 ret = 0; 2928 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2929 ret = btrfs_truncate_block(inode, offset, 0, 0); 2930 if (ret) 2931 goto out; 2932 } else { 2933 ret = 0; 2934 } 2935 } 2936 2937 if (!IS_ALIGNED(offset + len, sectorsize)) { 2938 ret = btrfs_zero_range_check_range_boundary(inode, 2939 offset + len); 2940 if (ret < 0) 2941 goto out; 2942 if (ret == RANGE_BOUNDARY_HOLE) { 2943 alloc_end = round_up(offset + len, sectorsize); 2944 ret = 0; 2945 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2946 ret = btrfs_truncate_block(inode, offset + len, 0, 1); 2947 if (ret) 2948 goto out; 2949 } else { 2950 ret = 0; 2951 } 2952 } 2953 2954 reserve_space: 2955 if (alloc_start < alloc_end) { 2956 struct extent_state *cached_state = NULL; 2957 const u64 lockstart = alloc_start; 2958 const u64 lockend = alloc_end - 1; 2959 2960 bytes_to_reserve = alloc_end - alloc_start; 2961 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 2962 bytes_to_reserve); 2963 if (ret < 0) 2964 goto out; 2965 space_reserved = true; 2966 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 2967 alloc_start, bytes_to_reserve); 2968 if (ret) 2969 goto out; 2970 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2971 &cached_state); 2972 if (ret) 2973 goto out; 2974 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 2975 alloc_end - alloc_start, 2976 i_blocksize(inode), 2977 offset + len, &alloc_hint); 2978 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2979 lockend, &cached_state); 2980 /* btrfs_prealloc_file_range releases reserved space on error */ 2981 if (ret) { 2982 space_reserved = false; 2983 goto out; 2984 } 2985 } 2986 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 2987 out: 2988 if (ret && space_reserved) 2989 btrfs_free_reserved_data_space(inode, data_reserved, 2990 alloc_start, bytes_to_reserve); 2991 extent_changeset_free(data_reserved); 2992 2993 return ret; 2994 } 2995 2996 static long btrfs_fallocate(struct file *file, int mode, 2997 loff_t offset, loff_t len) 2998 { 2999 struct inode *inode = file_inode(file); 3000 struct extent_state *cached_state = NULL; 3001 struct extent_changeset *data_reserved = NULL; 3002 struct falloc_range *range; 3003 struct falloc_range *tmp; 3004 struct list_head reserve_list; 3005 u64 cur_offset; 3006 u64 last_byte; 3007 u64 alloc_start; 3008 u64 alloc_end; 3009 u64 alloc_hint = 0; 3010 u64 locked_end; 3011 u64 actual_end = 0; 3012 struct extent_map *em; 3013 int blocksize = btrfs_inode_sectorsize(inode); 3014 int ret; 3015 3016 alloc_start = round_down(offset, blocksize); 3017 alloc_end = round_up(offset + len, blocksize); 3018 cur_offset = alloc_start; 3019 3020 /* Make sure we aren't being give some crap mode */ 3021 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3022 FALLOC_FL_ZERO_RANGE)) 3023 return -EOPNOTSUPP; 3024 3025 if (mode & FALLOC_FL_PUNCH_HOLE) 3026 return btrfs_punch_hole(inode, offset, len); 3027 3028 /* 3029 * Only trigger disk allocation, don't trigger qgroup reserve 3030 * 3031 * For qgroup space, it will be checked later. 3032 */ 3033 if (!(mode & FALLOC_FL_ZERO_RANGE)) { 3034 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3035 alloc_end - alloc_start); 3036 if (ret < 0) 3037 return ret; 3038 } 3039 3040 inode_lock(inode); 3041 3042 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3043 ret = inode_newsize_ok(inode, offset + len); 3044 if (ret) 3045 goto out; 3046 } 3047 3048 /* 3049 * TODO: Move these two operations after we have checked 3050 * accurate reserved space, or fallocate can still fail but 3051 * with page truncated or size expanded. 3052 * 3053 * But that's a minor problem and won't do much harm BTW. 3054 */ 3055 if (alloc_start > inode->i_size) { 3056 ret = btrfs_cont_expand(inode, i_size_read(inode), 3057 alloc_start); 3058 if (ret) 3059 goto out; 3060 } else if (offset + len > inode->i_size) { 3061 /* 3062 * If we are fallocating from the end of the file onward we 3063 * need to zero out the end of the block if i_size lands in the 3064 * middle of a block. 3065 */ 3066 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 3067 if (ret) 3068 goto out; 3069 } 3070 3071 /* 3072 * wait for ordered IO before we have any locks. We'll loop again 3073 * below with the locks held. 3074 */ 3075 ret = btrfs_wait_ordered_range(inode, alloc_start, 3076 alloc_end - alloc_start); 3077 if (ret) 3078 goto out; 3079 3080 if (mode & FALLOC_FL_ZERO_RANGE) { 3081 ret = btrfs_zero_range(inode, offset, len, mode); 3082 inode_unlock(inode); 3083 return ret; 3084 } 3085 3086 locked_end = alloc_end - 1; 3087 while (1) { 3088 struct btrfs_ordered_extent *ordered; 3089 3090 /* the extent lock is ordered inside the running 3091 * transaction 3092 */ 3093 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 3094 locked_end, &cached_state); 3095 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end); 3096 3097 if (ordered && 3098 ordered->file_offset + ordered->len > alloc_start && 3099 ordered->file_offset < alloc_end) { 3100 btrfs_put_ordered_extent(ordered); 3101 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 3102 alloc_start, locked_end, 3103 &cached_state); 3104 /* 3105 * we can't wait on the range with the transaction 3106 * running or with the extent lock held 3107 */ 3108 ret = btrfs_wait_ordered_range(inode, alloc_start, 3109 alloc_end - alloc_start); 3110 if (ret) 3111 goto out; 3112 } else { 3113 if (ordered) 3114 btrfs_put_ordered_extent(ordered); 3115 break; 3116 } 3117 } 3118 3119 /* First, check if we exceed the qgroup limit */ 3120 INIT_LIST_HEAD(&reserve_list); 3121 while (cur_offset < alloc_end) { 3122 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3123 alloc_end - cur_offset, 0); 3124 if (IS_ERR(em)) { 3125 ret = PTR_ERR(em); 3126 break; 3127 } 3128 last_byte = min(extent_map_end(em), alloc_end); 3129 actual_end = min_t(u64, extent_map_end(em), offset + len); 3130 last_byte = ALIGN(last_byte, blocksize); 3131 if (em->block_start == EXTENT_MAP_HOLE || 3132 (cur_offset >= inode->i_size && 3133 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3134 ret = add_falloc_range(&reserve_list, cur_offset, 3135 last_byte - cur_offset); 3136 if (ret < 0) { 3137 free_extent_map(em); 3138 break; 3139 } 3140 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 3141 cur_offset, last_byte - cur_offset); 3142 if (ret < 0) { 3143 cur_offset = last_byte; 3144 free_extent_map(em); 3145 break; 3146 } 3147 } else { 3148 /* 3149 * Do not need to reserve unwritten extent for this 3150 * range, free reserved data space first, otherwise 3151 * it'll result in false ENOSPC error. 3152 */ 3153 btrfs_free_reserved_data_space(inode, data_reserved, 3154 cur_offset, last_byte - cur_offset); 3155 } 3156 free_extent_map(em); 3157 cur_offset = last_byte; 3158 } 3159 3160 /* 3161 * If ret is still 0, means we're OK to fallocate. 3162 * Or just cleanup the list and exit. 3163 */ 3164 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3165 if (!ret) 3166 ret = btrfs_prealloc_file_range(inode, mode, 3167 range->start, 3168 range->len, i_blocksize(inode), 3169 offset + len, &alloc_hint); 3170 else 3171 btrfs_free_reserved_data_space(inode, 3172 data_reserved, range->start, 3173 range->len); 3174 list_del(&range->list); 3175 kfree(range); 3176 } 3177 if (ret < 0) 3178 goto out_unlock; 3179 3180 /* 3181 * We didn't need to allocate any more space, but we still extended the 3182 * size of the file so we need to update i_size and the inode item. 3183 */ 3184 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3185 out_unlock: 3186 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3187 &cached_state); 3188 out: 3189 inode_unlock(inode); 3190 /* Let go of our reservation. */ 3191 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) 3192 btrfs_free_reserved_data_space(inode, data_reserved, 3193 cur_offset, alloc_end - cur_offset); 3194 extent_changeset_free(data_reserved); 3195 return ret; 3196 } 3197 3198 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 3199 { 3200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3201 struct extent_map *em = NULL; 3202 struct extent_state *cached_state = NULL; 3203 u64 lockstart; 3204 u64 lockend; 3205 u64 start; 3206 u64 len; 3207 int ret = 0; 3208 3209 if (inode->i_size == 0) 3210 return -ENXIO; 3211 3212 /* 3213 * *offset can be negative, in this case we start finding DATA/HOLE from 3214 * the very start of the file. 3215 */ 3216 start = max_t(loff_t, 0, *offset); 3217 3218 lockstart = round_down(start, fs_info->sectorsize); 3219 lockend = round_up(i_size_read(inode), 3220 fs_info->sectorsize); 3221 if (lockend <= lockstart) 3222 lockend = lockstart + fs_info->sectorsize; 3223 lockend--; 3224 len = lockend - lockstart + 1; 3225 3226 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3227 &cached_state); 3228 3229 while (start < inode->i_size) { 3230 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len); 3231 if (IS_ERR(em)) { 3232 ret = PTR_ERR(em); 3233 em = NULL; 3234 break; 3235 } 3236 3237 if (whence == SEEK_HOLE && 3238 (em->block_start == EXTENT_MAP_HOLE || 3239 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3240 break; 3241 else if (whence == SEEK_DATA && 3242 (em->block_start != EXTENT_MAP_HOLE && 3243 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3244 break; 3245 3246 start = em->start + em->len; 3247 free_extent_map(em); 3248 em = NULL; 3249 cond_resched(); 3250 } 3251 free_extent_map(em); 3252 if (!ret) { 3253 if (whence == SEEK_DATA && start >= inode->i_size) 3254 ret = -ENXIO; 3255 else 3256 *offset = min_t(loff_t, start, inode->i_size); 3257 } 3258 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3259 &cached_state); 3260 return ret; 3261 } 3262 3263 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3264 { 3265 struct inode *inode = file->f_mapping->host; 3266 int ret; 3267 3268 inode_lock(inode); 3269 switch (whence) { 3270 case SEEK_END: 3271 case SEEK_CUR: 3272 offset = generic_file_llseek(file, offset, whence); 3273 goto out; 3274 case SEEK_DATA: 3275 case SEEK_HOLE: 3276 if (offset >= i_size_read(inode)) { 3277 inode_unlock(inode); 3278 return -ENXIO; 3279 } 3280 3281 ret = find_desired_extent(inode, &offset, whence); 3282 if (ret) { 3283 inode_unlock(inode); 3284 return ret; 3285 } 3286 } 3287 3288 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3289 out: 3290 inode_unlock(inode); 3291 return offset; 3292 } 3293 3294 static int btrfs_file_open(struct inode *inode, struct file *filp) 3295 { 3296 filp->f_mode |= FMODE_NOWAIT; 3297 return generic_file_open(inode, filp); 3298 } 3299 3300 const struct file_operations btrfs_file_operations = { 3301 .llseek = btrfs_file_llseek, 3302 .read_iter = generic_file_read_iter, 3303 .splice_read = generic_file_splice_read, 3304 .write_iter = btrfs_file_write_iter, 3305 .mmap = btrfs_file_mmap, 3306 .open = btrfs_file_open, 3307 .release = btrfs_release_file, 3308 .fsync = btrfs_sync_file, 3309 .fallocate = btrfs_fallocate, 3310 .unlocked_ioctl = btrfs_ioctl, 3311 #ifdef CONFIG_COMPAT 3312 .compat_ioctl = btrfs_compat_ioctl, 3313 #endif 3314 .remap_file_range = btrfs_remap_file_range, 3315 }; 3316 3317 void __cold btrfs_auto_defrag_exit(void) 3318 { 3319 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3320 } 3321 3322 int __init btrfs_auto_defrag_init(void) 3323 { 3324 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3325 sizeof(struct inode_defrag), 0, 3326 SLAB_MEM_SPREAD, 3327 NULL); 3328 if (!btrfs_inode_defrag_cachep) 3329 return -ENOMEM; 3330 3331 return 0; 3332 } 3333 3334 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3335 { 3336 int ret; 3337 3338 /* 3339 * So with compression we will find and lock a dirty page and clear the 3340 * first one as dirty, setup an async extent, and immediately return 3341 * with the entire range locked but with nobody actually marked with 3342 * writeback. So we can't just filemap_write_and_wait_range() and 3343 * expect it to work since it will just kick off a thread to do the 3344 * actual work. So we need to call filemap_fdatawrite_range _again_ 3345 * since it will wait on the page lock, which won't be unlocked until 3346 * after the pages have been marked as writeback and so we're good to go 3347 * from there. We have to do this otherwise we'll miss the ordered 3348 * extents and that results in badness. Please Josef, do not think you 3349 * know better and pull this out at some point in the future, it is 3350 * right and you are wrong. 3351 */ 3352 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3353 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3354 &BTRFS_I(inode)->runtime_flags)) 3355 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3356 3357 return ret; 3358 } 3359