1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "btrfs_inode.h" 24 #include "print-tree.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "volumes.h" 28 #include "qgroup.h" 29 #include "compression.h" 30 #include "delalloc-space.h" 31 #include "reflink.h" 32 #include "subpage.h" 33 #include "fs.h" 34 #include "accessors.h" 35 #include "extent-tree.h" 36 #include "file-item.h" 37 #include "ioctl.h" 38 #include "file.h" 39 #include "super.h" 40 41 /* simple helper to fault in pages and copy. This should go away 42 * and be replaced with calls into generic code. 43 */ 44 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 45 struct page **prepared_pages, 46 struct iov_iter *i) 47 { 48 size_t copied = 0; 49 size_t total_copied = 0; 50 int pg = 0; 51 int offset = offset_in_page(pos); 52 53 while (write_bytes > 0) { 54 size_t count = min_t(size_t, 55 PAGE_SIZE - offset, write_bytes); 56 struct page *page = prepared_pages[pg]; 57 /* 58 * Copy data from userspace to the current page 59 */ 60 copied = copy_page_from_iter_atomic(page, offset, count, i); 61 62 /* Flush processor's dcache for this page */ 63 flush_dcache_page(page); 64 65 /* 66 * if we get a partial write, we can end up with 67 * partially up to date pages. These add 68 * a lot of complexity, so make sure they don't 69 * happen by forcing this copy to be retried. 70 * 71 * The rest of the btrfs_file_write code will fall 72 * back to page at a time copies after we return 0. 73 */ 74 if (unlikely(copied < count)) { 75 if (!PageUptodate(page)) { 76 iov_iter_revert(i, copied); 77 copied = 0; 78 } 79 if (!copied) 80 break; 81 } 82 83 write_bytes -= copied; 84 total_copied += copied; 85 offset += copied; 86 if (offset == PAGE_SIZE) { 87 pg++; 88 offset = 0; 89 } 90 } 91 return total_copied; 92 } 93 94 /* 95 * unlocks pages after btrfs_file_write is done with them 96 */ 97 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, 98 struct page **pages, size_t num_pages, 99 u64 pos, u64 copied) 100 { 101 size_t i; 102 u64 block_start = round_down(pos, fs_info->sectorsize); 103 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 104 105 ASSERT(block_len <= U32_MAX); 106 for (i = 0; i < num_pages; i++) { 107 /* page checked is some magic around finding pages that 108 * have been modified without going through btrfs_set_page_dirty 109 * clear it here. There should be no need to mark the pages 110 * accessed as prepare_pages should have marked them accessed 111 * in prepare_pages via find_or_create_page() 112 */ 113 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start, 114 block_len); 115 unlock_page(pages[i]); 116 put_page(pages[i]); 117 } 118 } 119 120 /* 121 * After btrfs_copy_from_user(), update the following things for delalloc: 122 * - Mark newly dirtied pages as DELALLOC in the io tree. 123 * Used to advise which range is to be written back. 124 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 125 * - Update inode size for past EOF write 126 */ 127 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 128 size_t num_pages, loff_t pos, size_t write_bytes, 129 struct extent_state **cached, bool noreserve) 130 { 131 struct btrfs_fs_info *fs_info = inode->root->fs_info; 132 int err = 0; 133 int i; 134 u64 num_bytes; 135 u64 start_pos; 136 u64 end_of_last_block; 137 u64 end_pos = pos + write_bytes; 138 loff_t isize = i_size_read(&inode->vfs_inode); 139 unsigned int extra_bits = 0; 140 141 if (write_bytes == 0) 142 return 0; 143 144 if (noreserve) 145 extra_bits |= EXTENT_NORESERVE; 146 147 start_pos = round_down(pos, fs_info->sectorsize); 148 num_bytes = round_up(write_bytes + pos - start_pos, 149 fs_info->sectorsize); 150 ASSERT(num_bytes <= U32_MAX); 151 152 end_of_last_block = start_pos + num_bytes - 1; 153 154 /* 155 * The pages may have already been dirty, clear out old accounting so 156 * we can set things up properly 157 */ 158 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 159 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 160 cached); 161 162 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 163 extra_bits, cached); 164 if (err) 165 return err; 166 167 for (i = 0; i < num_pages; i++) { 168 struct page *p = pages[i]; 169 170 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes); 171 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes); 172 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes); 173 } 174 175 /* 176 * we've only changed i_size in ram, and we haven't updated 177 * the disk i_size. There is no need to log the inode 178 * at this time. 179 */ 180 if (end_pos > isize) 181 i_size_write(&inode->vfs_inode, end_pos); 182 return 0; 183 } 184 185 /* 186 * this is very complex, but the basic idea is to drop all extents 187 * in the range start - end. hint_block is filled in with a block number 188 * that would be a good hint to the block allocator for this file. 189 * 190 * If an extent intersects the range but is not entirely inside the range 191 * it is either truncated or split. Anything entirely inside the range 192 * is deleted from the tree. 193 * 194 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 195 * to deal with that. We set the field 'bytes_found' of the arguments structure 196 * with the number of allocated bytes found in the target range, so that the 197 * caller can update the inode's number of bytes in an atomic way when 198 * replacing extents in a range to avoid races with stat(2). 199 */ 200 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 201 struct btrfs_root *root, struct btrfs_inode *inode, 202 struct btrfs_drop_extents_args *args) 203 { 204 struct btrfs_fs_info *fs_info = root->fs_info; 205 struct extent_buffer *leaf; 206 struct btrfs_file_extent_item *fi; 207 struct btrfs_ref ref = { 0 }; 208 struct btrfs_key key; 209 struct btrfs_key new_key; 210 u64 ino = btrfs_ino(inode); 211 u64 search_start = args->start; 212 u64 disk_bytenr = 0; 213 u64 num_bytes = 0; 214 u64 extent_offset = 0; 215 u64 extent_end = 0; 216 u64 last_end = args->start; 217 int del_nr = 0; 218 int del_slot = 0; 219 int extent_type; 220 int recow; 221 int ret; 222 int modify_tree = -1; 223 int update_refs; 224 int found = 0; 225 struct btrfs_path *path = args->path; 226 227 args->bytes_found = 0; 228 args->extent_inserted = false; 229 230 /* Must always have a path if ->replace_extent is true */ 231 ASSERT(!(args->replace_extent && !args->path)); 232 233 if (!path) { 234 path = btrfs_alloc_path(); 235 if (!path) { 236 ret = -ENOMEM; 237 goto out; 238 } 239 } 240 241 if (args->drop_cache) 242 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false); 243 244 if (args->start >= inode->disk_i_size && !args->replace_extent) 245 modify_tree = 0; 246 247 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); 248 while (1) { 249 recow = 0; 250 ret = btrfs_lookup_file_extent(trans, root, path, ino, 251 search_start, modify_tree); 252 if (ret < 0) 253 break; 254 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 255 leaf = path->nodes[0]; 256 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 257 if (key.objectid == ino && 258 key.type == BTRFS_EXTENT_DATA_KEY) 259 path->slots[0]--; 260 } 261 ret = 0; 262 next_slot: 263 leaf = path->nodes[0]; 264 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 265 BUG_ON(del_nr > 0); 266 ret = btrfs_next_leaf(root, path); 267 if (ret < 0) 268 break; 269 if (ret > 0) { 270 ret = 0; 271 break; 272 } 273 leaf = path->nodes[0]; 274 recow = 1; 275 } 276 277 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 278 279 if (key.objectid > ino) 280 break; 281 if (WARN_ON_ONCE(key.objectid < ino) || 282 key.type < BTRFS_EXTENT_DATA_KEY) { 283 ASSERT(del_nr == 0); 284 path->slots[0]++; 285 goto next_slot; 286 } 287 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 288 break; 289 290 fi = btrfs_item_ptr(leaf, path->slots[0], 291 struct btrfs_file_extent_item); 292 extent_type = btrfs_file_extent_type(leaf, fi); 293 294 if (extent_type == BTRFS_FILE_EXTENT_REG || 295 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 296 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 297 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 298 extent_offset = btrfs_file_extent_offset(leaf, fi); 299 extent_end = key.offset + 300 btrfs_file_extent_num_bytes(leaf, fi); 301 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 302 extent_end = key.offset + 303 btrfs_file_extent_ram_bytes(leaf, fi); 304 } else { 305 /* can't happen */ 306 BUG(); 307 } 308 309 /* 310 * Don't skip extent items representing 0 byte lengths. They 311 * used to be created (bug) if while punching holes we hit 312 * -ENOSPC condition. So if we find one here, just ensure we 313 * delete it, otherwise we would insert a new file extent item 314 * with the same key (offset) as that 0 bytes length file 315 * extent item in the call to setup_items_for_insert() later 316 * in this function. 317 */ 318 if (extent_end == key.offset && extent_end >= search_start) { 319 last_end = extent_end; 320 goto delete_extent_item; 321 } 322 323 if (extent_end <= search_start) { 324 path->slots[0]++; 325 goto next_slot; 326 } 327 328 found = 1; 329 search_start = max(key.offset, args->start); 330 if (recow || !modify_tree) { 331 modify_tree = -1; 332 btrfs_release_path(path); 333 continue; 334 } 335 336 /* 337 * | - range to drop - | 338 * | -------- extent -------- | 339 */ 340 if (args->start > key.offset && args->end < extent_end) { 341 BUG_ON(del_nr > 0); 342 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 343 ret = -EOPNOTSUPP; 344 break; 345 } 346 347 memcpy(&new_key, &key, sizeof(new_key)); 348 new_key.offset = args->start; 349 ret = btrfs_duplicate_item(trans, root, path, 350 &new_key); 351 if (ret == -EAGAIN) { 352 btrfs_release_path(path); 353 continue; 354 } 355 if (ret < 0) 356 break; 357 358 leaf = path->nodes[0]; 359 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 360 struct btrfs_file_extent_item); 361 btrfs_set_file_extent_num_bytes(leaf, fi, 362 args->start - key.offset); 363 364 fi = btrfs_item_ptr(leaf, path->slots[0], 365 struct btrfs_file_extent_item); 366 367 extent_offset += args->start - key.offset; 368 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 369 btrfs_set_file_extent_num_bytes(leaf, fi, 370 extent_end - args->start); 371 btrfs_mark_buffer_dirty(leaf); 372 373 if (update_refs && disk_bytenr > 0) { 374 btrfs_init_generic_ref(&ref, 375 BTRFS_ADD_DELAYED_REF, 376 disk_bytenr, num_bytes, 0); 377 btrfs_init_data_ref(&ref, 378 root->root_key.objectid, 379 new_key.objectid, 380 args->start - extent_offset, 381 0, false); 382 ret = btrfs_inc_extent_ref(trans, &ref); 383 if (ret) { 384 btrfs_abort_transaction(trans, ret); 385 break; 386 } 387 } 388 key.offset = args->start; 389 } 390 /* 391 * From here on out we will have actually dropped something, so 392 * last_end can be updated. 393 */ 394 last_end = extent_end; 395 396 /* 397 * | ---- range to drop ----- | 398 * | -------- extent -------- | 399 */ 400 if (args->start <= key.offset && args->end < extent_end) { 401 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 402 ret = -EOPNOTSUPP; 403 break; 404 } 405 406 memcpy(&new_key, &key, sizeof(new_key)); 407 new_key.offset = args->end; 408 btrfs_set_item_key_safe(fs_info, path, &new_key); 409 410 extent_offset += args->end - key.offset; 411 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 412 btrfs_set_file_extent_num_bytes(leaf, fi, 413 extent_end - args->end); 414 btrfs_mark_buffer_dirty(leaf); 415 if (update_refs && disk_bytenr > 0) 416 args->bytes_found += args->end - key.offset; 417 break; 418 } 419 420 search_start = extent_end; 421 /* 422 * | ---- range to drop ----- | 423 * | -------- extent -------- | 424 */ 425 if (args->start > key.offset && args->end >= extent_end) { 426 BUG_ON(del_nr > 0); 427 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 428 ret = -EOPNOTSUPP; 429 break; 430 } 431 432 btrfs_set_file_extent_num_bytes(leaf, fi, 433 args->start - key.offset); 434 btrfs_mark_buffer_dirty(leaf); 435 if (update_refs && disk_bytenr > 0) 436 args->bytes_found += extent_end - args->start; 437 if (args->end == extent_end) 438 break; 439 440 path->slots[0]++; 441 goto next_slot; 442 } 443 444 /* 445 * | ---- range to drop ----- | 446 * | ------ extent ------ | 447 */ 448 if (args->start <= key.offset && args->end >= extent_end) { 449 delete_extent_item: 450 if (del_nr == 0) { 451 del_slot = path->slots[0]; 452 del_nr = 1; 453 } else { 454 BUG_ON(del_slot + del_nr != path->slots[0]); 455 del_nr++; 456 } 457 458 if (update_refs && 459 extent_type == BTRFS_FILE_EXTENT_INLINE) { 460 args->bytes_found += extent_end - key.offset; 461 extent_end = ALIGN(extent_end, 462 fs_info->sectorsize); 463 } else if (update_refs && disk_bytenr > 0) { 464 btrfs_init_generic_ref(&ref, 465 BTRFS_DROP_DELAYED_REF, 466 disk_bytenr, num_bytes, 0); 467 btrfs_init_data_ref(&ref, 468 root->root_key.objectid, 469 key.objectid, 470 key.offset - extent_offset, 0, 471 false); 472 ret = btrfs_free_extent(trans, &ref); 473 if (ret) { 474 btrfs_abort_transaction(trans, ret); 475 break; 476 } 477 args->bytes_found += extent_end - key.offset; 478 } 479 480 if (args->end == extent_end) 481 break; 482 483 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 484 path->slots[0]++; 485 goto next_slot; 486 } 487 488 ret = btrfs_del_items(trans, root, path, del_slot, 489 del_nr); 490 if (ret) { 491 btrfs_abort_transaction(trans, ret); 492 break; 493 } 494 495 del_nr = 0; 496 del_slot = 0; 497 498 btrfs_release_path(path); 499 continue; 500 } 501 502 BUG(); 503 } 504 505 if (!ret && del_nr > 0) { 506 /* 507 * Set path->slots[0] to first slot, so that after the delete 508 * if items are move off from our leaf to its immediate left or 509 * right neighbor leafs, we end up with a correct and adjusted 510 * path->slots[0] for our insertion (if args->replace_extent). 511 */ 512 path->slots[0] = del_slot; 513 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 514 if (ret) 515 btrfs_abort_transaction(trans, ret); 516 } 517 518 leaf = path->nodes[0]; 519 /* 520 * If btrfs_del_items() was called, it might have deleted a leaf, in 521 * which case it unlocked our path, so check path->locks[0] matches a 522 * write lock. 523 */ 524 if (!ret && args->replace_extent && 525 path->locks[0] == BTRFS_WRITE_LOCK && 526 btrfs_leaf_free_space(leaf) >= 527 sizeof(struct btrfs_item) + args->extent_item_size) { 528 529 key.objectid = ino; 530 key.type = BTRFS_EXTENT_DATA_KEY; 531 key.offset = args->start; 532 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 533 struct btrfs_key slot_key; 534 535 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 536 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 537 path->slots[0]++; 538 } 539 btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size); 540 args->extent_inserted = true; 541 } 542 543 if (!args->path) 544 btrfs_free_path(path); 545 else if (!args->extent_inserted) 546 btrfs_release_path(path); 547 out: 548 args->drop_end = found ? min(args->end, last_end) : args->end; 549 550 return ret; 551 } 552 553 static int extent_mergeable(struct extent_buffer *leaf, int slot, 554 u64 objectid, u64 bytenr, u64 orig_offset, 555 u64 *start, u64 *end) 556 { 557 struct btrfs_file_extent_item *fi; 558 struct btrfs_key key; 559 u64 extent_end; 560 561 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 562 return 0; 563 564 btrfs_item_key_to_cpu(leaf, &key, slot); 565 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 566 return 0; 567 568 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 569 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 570 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 571 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 572 btrfs_file_extent_compression(leaf, fi) || 573 btrfs_file_extent_encryption(leaf, fi) || 574 btrfs_file_extent_other_encoding(leaf, fi)) 575 return 0; 576 577 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 578 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 579 return 0; 580 581 *start = key.offset; 582 *end = extent_end; 583 return 1; 584 } 585 586 /* 587 * Mark extent in the range start - end as written. 588 * 589 * This changes extent type from 'pre-allocated' to 'regular'. If only 590 * part of extent is marked as written, the extent will be split into 591 * two or three. 592 */ 593 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 594 struct btrfs_inode *inode, u64 start, u64 end) 595 { 596 struct btrfs_fs_info *fs_info = trans->fs_info; 597 struct btrfs_root *root = inode->root; 598 struct extent_buffer *leaf; 599 struct btrfs_path *path; 600 struct btrfs_file_extent_item *fi; 601 struct btrfs_ref ref = { 0 }; 602 struct btrfs_key key; 603 struct btrfs_key new_key; 604 u64 bytenr; 605 u64 num_bytes; 606 u64 extent_end; 607 u64 orig_offset; 608 u64 other_start; 609 u64 other_end; 610 u64 split; 611 int del_nr = 0; 612 int del_slot = 0; 613 int recow; 614 int ret = 0; 615 u64 ino = btrfs_ino(inode); 616 617 path = btrfs_alloc_path(); 618 if (!path) 619 return -ENOMEM; 620 again: 621 recow = 0; 622 split = start; 623 key.objectid = ino; 624 key.type = BTRFS_EXTENT_DATA_KEY; 625 key.offset = split; 626 627 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 628 if (ret < 0) 629 goto out; 630 if (ret > 0 && path->slots[0] > 0) 631 path->slots[0]--; 632 633 leaf = path->nodes[0]; 634 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 635 if (key.objectid != ino || 636 key.type != BTRFS_EXTENT_DATA_KEY) { 637 ret = -EINVAL; 638 btrfs_abort_transaction(trans, ret); 639 goto out; 640 } 641 fi = btrfs_item_ptr(leaf, path->slots[0], 642 struct btrfs_file_extent_item); 643 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 644 ret = -EINVAL; 645 btrfs_abort_transaction(trans, ret); 646 goto out; 647 } 648 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 649 if (key.offset > start || extent_end < end) { 650 ret = -EINVAL; 651 btrfs_abort_transaction(trans, ret); 652 goto out; 653 } 654 655 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 656 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 657 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 658 memcpy(&new_key, &key, sizeof(new_key)); 659 660 if (start == key.offset && end < extent_end) { 661 other_start = 0; 662 other_end = start; 663 if (extent_mergeable(leaf, path->slots[0] - 1, 664 ino, bytenr, orig_offset, 665 &other_start, &other_end)) { 666 new_key.offset = end; 667 btrfs_set_item_key_safe(fs_info, path, &new_key); 668 fi = btrfs_item_ptr(leaf, path->slots[0], 669 struct btrfs_file_extent_item); 670 btrfs_set_file_extent_generation(leaf, fi, 671 trans->transid); 672 btrfs_set_file_extent_num_bytes(leaf, fi, 673 extent_end - end); 674 btrfs_set_file_extent_offset(leaf, fi, 675 end - orig_offset); 676 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 677 struct btrfs_file_extent_item); 678 btrfs_set_file_extent_generation(leaf, fi, 679 trans->transid); 680 btrfs_set_file_extent_num_bytes(leaf, fi, 681 end - other_start); 682 btrfs_mark_buffer_dirty(leaf); 683 goto out; 684 } 685 } 686 687 if (start > key.offset && end == extent_end) { 688 other_start = end; 689 other_end = 0; 690 if (extent_mergeable(leaf, path->slots[0] + 1, 691 ino, bytenr, orig_offset, 692 &other_start, &other_end)) { 693 fi = btrfs_item_ptr(leaf, path->slots[0], 694 struct btrfs_file_extent_item); 695 btrfs_set_file_extent_num_bytes(leaf, fi, 696 start - key.offset); 697 btrfs_set_file_extent_generation(leaf, fi, 698 trans->transid); 699 path->slots[0]++; 700 new_key.offset = start; 701 btrfs_set_item_key_safe(fs_info, path, &new_key); 702 703 fi = btrfs_item_ptr(leaf, path->slots[0], 704 struct btrfs_file_extent_item); 705 btrfs_set_file_extent_generation(leaf, fi, 706 trans->transid); 707 btrfs_set_file_extent_num_bytes(leaf, fi, 708 other_end - start); 709 btrfs_set_file_extent_offset(leaf, fi, 710 start - orig_offset); 711 btrfs_mark_buffer_dirty(leaf); 712 goto out; 713 } 714 } 715 716 while (start > key.offset || end < extent_end) { 717 if (key.offset == start) 718 split = end; 719 720 new_key.offset = split; 721 ret = btrfs_duplicate_item(trans, root, path, &new_key); 722 if (ret == -EAGAIN) { 723 btrfs_release_path(path); 724 goto again; 725 } 726 if (ret < 0) { 727 btrfs_abort_transaction(trans, ret); 728 goto out; 729 } 730 731 leaf = path->nodes[0]; 732 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 733 struct btrfs_file_extent_item); 734 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 735 btrfs_set_file_extent_num_bytes(leaf, fi, 736 split - key.offset); 737 738 fi = btrfs_item_ptr(leaf, path->slots[0], 739 struct btrfs_file_extent_item); 740 741 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 742 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 743 btrfs_set_file_extent_num_bytes(leaf, fi, 744 extent_end - split); 745 btrfs_mark_buffer_dirty(leaf); 746 747 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 748 num_bytes, 0); 749 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 750 orig_offset, 0, false); 751 ret = btrfs_inc_extent_ref(trans, &ref); 752 if (ret) { 753 btrfs_abort_transaction(trans, ret); 754 goto out; 755 } 756 757 if (split == start) { 758 key.offset = start; 759 } else { 760 if (start != key.offset) { 761 ret = -EINVAL; 762 btrfs_abort_transaction(trans, ret); 763 goto out; 764 } 765 path->slots[0]--; 766 extent_end = end; 767 } 768 recow = 1; 769 } 770 771 other_start = end; 772 other_end = 0; 773 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 774 num_bytes, 0); 775 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset, 776 0, false); 777 if (extent_mergeable(leaf, path->slots[0] + 1, 778 ino, bytenr, orig_offset, 779 &other_start, &other_end)) { 780 if (recow) { 781 btrfs_release_path(path); 782 goto again; 783 } 784 extent_end = other_end; 785 del_slot = path->slots[0] + 1; 786 del_nr++; 787 ret = btrfs_free_extent(trans, &ref); 788 if (ret) { 789 btrfs_abort_transaction(trans, ret); 790 goto out; 791 } 792 } 793 other_start = 0; 794 other_end = start; 795 if (extent_mergeable(leaf, path->slots[0] - 1, 796 ino, bytenr, orig_offset, 797 &other_start, &other_end)) { 798 if (recow) { 799 btrfs_release_path(path); 800 goto again; 801 } 802 key.offset = other_start; 803 del_slot = path->slots[0]; 804 del_nr++; 805 ret = btrfs_free_extent(trans, &ref); 806 if (ret) { 807 btrfs_abort_transaction(trans, ret); 808 goto out; 809 } 810 } 811 if (del_nr == 0) { 812 fi = btrfs_item_ptr(leaf, path->slots[0], 813 struct btrfs_file_extent_item); 814 btrfs_set_file_extent_type(leaf, fi, 815 BTRFS_FILE_EXTENT_REG); 816 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 817 btrfs_mark_buffer_dirty(leaf); 818 } else { 819 fi = btrfs_item_ptr(leaf, del_slot - 1, 820 struct btrfs_file_extent_item); 821 btrfs_set_file_extent_type(leaf, fi, 822 BTRFS_FILE_EXTENT_REG); 823 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 824 btrfs_set_file_extent_num_bytes(leaf, fi, 825 extent_end - key.offset); 826 btrfs_mark_buffer_dirty(leaf); 827 828 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 829 if (ret < 0) { 830 btrfs_abort_transaction(trans, ret); 831 goto out; 832 } 833 } 834 out: 835 btrfs_free_path(path); 836 return ret; 837 } 838 839 /* 840 * on error we return an unlocked page and the error value 841 * on success we return a locked page and 0 842 */ 843 static int prepare_uptodate_page(struct inode *inode, 844 struct page *page, u64 pos, 845 bool force_uptodate) 846 { 847 struct folio *folio = page_folio(page); 848 int ret = 0; 849 850 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 851 !PageUptodate(page)) { 852 ret = btrfs_read_folio(NULL, folio); 853 if (ret) 854 return ret; 855 lock_page(page); 856 if (!PageUptodate(page)) { 857 unlock_page(page); 858 return -EIO; 859 } 860 861 /* 862 * Since btrfs_read_folio() will unlock the folio before it 863 * returns, there is a window where btrfs_release_folio() can be 864 * called to release the page. Here we check both inode 865 * mapping and PagePrivate() to make sure the page was not 866 * released. 867 * 868 * The private flag check is essential for subpage as we need 869 * to store extra bitmap using page->private. 870 */ 871 if (page->mapping != inode->i_mapping || !PagePrivate(page)) { 872 unlock_page(page); 873 return -EAGAIN; 874 } 875 } 876 return 0; 877 } 878 879 static unsigned int get_prepare_fgp_flags(bool nowait) 880 { 881 unsigned int fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT; 882 883 if (nowait) 884 fgp_flags |= FGP_NOWAIT; 885 886 return fgp_flags; 887 } 888 889 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait) 890 { 891 gfp_t gfp; 892 893 gfp = btrfs_alloc_write_mask(inode->i_mapping); 894 if (nowait) { 895 gfp &= ~__GFP_DIRECT_RECLAIM; 896 gfp |= GFP_NOWAIT; 897 } 898 899 return gfp; 900 } 901 902 /* 903 * this just gets pages into the page cache and locks them down. 904 */ 905 static noinline int prepare_pages(struct inode *inode, struct page **pages, 906 size_t num_pages, loff_t pos, 907 size_t write_bytes, bool force_uptodate, 908 bool nowait) 909 { 910 int i; 911 unsigned long index = pos >> PAGE_SHIFT; 912 gfp_t mask = get_prepare_gfp_flags(inode, nowait); 913 unsigned int fgp_flags = get_prepare_fgp_flags(nowait); 914 int err = 0; 915 int faili; 916 917 for (i = 0; i < num_pages; i++) { 918 again: 919 pages[i] = pagecache_get_page(inode->i_mapping, index + i, 920 fgp_flags, mask | __GFP_WRITE); 921 if (!pages[i]) { 922 faili = i - 1; 923 if (nowait) 924 err = -EAGAIN; 925 else 926 err = -ENOMEM; 927 goto fail; 928 } 929 930 err = set_page_extent_mapped(pages[i]); 931 if (err < 0) { 932 faili = i; 933 goto fail; 934 } 935 936 if (i == 0) 937 err = prepare_uptodate_page(inode, pages[i], pos, 938 force_uptodate); 939 if (!err && i == num_pages - 1) 940 err = prepare_uptodate_page(inode, pages[i], 941 pos + write_bytes, false); 942 if (err) { 943 put_page(pages[i]); 944 if (!nowait && err == -EAGAIN) { 945 err = 0; 946 goto again; 947 } 948 faili = i - 1; 949 goto fail; 950 } 951 wait_on_page_writeback(pages[i]); 952 } 953 954 return 0; 955 fail: 956 while (faili >= 0) { 957 unlock_page(pages[faili]); 958 put_page(pages[faili]); 959 faili--; 960 } 961 return err; 962 963 } 964 965 /* 966 * This function locks the extent and properly waits for data=ordered extents 967 * to finish before allowing the pages to be modified if need. 968 * 969 * The return value: 970 * 1 - the extent is locked 971 * 0 - the extent is not locked, and everything is OK 972 * -EAGAIN - need re-prepare the pages 973 * the other < 0 number - Something wrong happens 974 */ 975 static noinline int 976 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 977 size_t num_pages, loff_t pos, 978 size_t write_bytes, 979 u64 *lockstart, u64 *lockend, bool nowait, 980 struct extent_state **cached_state) 981 { 982 struct btrfs_fs_info *fs_info = inode->root->fs_info; 983 u64 start_pos; 984 u64 last_pos; 985 int i; 986 int ret = 0; 987 988 start_pos = round_down(pos, fs_info->sectorsize); 989 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 990 991 if (start_pos < inode->vfs_inode.i_size) { 992 struct btrfs_ordered_extent *ordered; 993 994 if (nowait) { 995 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos, 996 cached_state)) { 997 for (i = 0; i < num_pages; i++) { 998 unlock_page(pages[i]); 999 put_page(pages[i]); 1000 pages[i] = NULL; 1001 } 1002 1003 return -EAGAIN; 1004 } 1005 } else { 1006 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state); 1007 } 1008 1009 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1010 last_pos - start_pos + 1); 1011 if (ordered && 1012 ordered->file_offset + ordered->num_bytes > start_pos && 1013 ordered->file_offset <= last_pos) { 1014 unlock_extent(&inode->io_tree, start_pos, last_pos, 1015 cached_state); 1016 for (i = 0; i < num_pages; i++) { 1017 unlock_page(pages[i]); 1018 put_page(pages[i]); 1019 } 1020 btrfs_start_ordered_extent(ordered); 1021 btrfs_put_ordered_extent(ordered); 1022 return -EAGAIN; 1023 } 1024 if (ordered) 1025 btrfs_put_ordered_extent(ordered); 1026 1027 *lockstart = start_pos; 1028 *lockend = last_pos; 1029 ret = 1; 1030 } 1031 1032 /* 1033 * We should be called after prepare_pages() which should have locked 1034 * all pages in the range. 1035 */ 1036 for (i = 0; i < num_pages; i++) 1037 WARN_ON(!PageLocked(pages[i])); 1038 1039 return ret; 1040 } 1041 1042 /* 1043 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1044 * 1045 * @pos: File offset. 1046 * @write_bytes: The length to write, will be updated to the nocow writeable 1047 * range. 1048 * 1049 * This function will flush ordered extents in the range to ensure proper 1050 * nocow checks. 1051 * 1052 * Return: 1053 * > 0 If we can nocow, and updates @write_bytes. 1054 * 0 If we can't do a nocow write. 1055 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's 1056 * root is in progress. 1057 * < 0 If an error happened. 1058 * 1059 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 1060 */ 1061 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1062 size_t *write_bytes, bool nowait) 1063 { 1064 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1065 struct btrfs_root *root = inode->root; 1066 struct extent_state *cached_state = NULL; 1067 u64 lockstart, lockend; 1068 u64 num_bytes; 1069 int ret; 1070 1071 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1072 return 0; 1073 1074 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1075 return -EAGAIN; 1076 1077 lockstart = round_down(pos, fs_info->sectorsize); 1078 lockend = round_up(pos + *write_bytes, 1079 fs_info->sectorsize) - 1; 1080 num_bytes = lockend - lockstart + 1; 1081 1082 if (nowait) { 1083 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend, 1084 &cached_state)) { 1085 btrfs_drew_write_unlock(&root->snapshot_lock); 1086 return -EAGAIN; 1087 } 1088 } else { 1089 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, 1090 &cached_state); 1091 } 1092 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1093 NULL, NULL, NULL, nowait, false); 1094 if (ret <= 0) 1095 btrfs_drew_write_unlock(&root->snapshot_lock); 1096 else 1097 *write_bytes = min_t(size_t, *write_bytes , 1098 num_bytes - pos + lockstart); 1099 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 1100 1101 return ret; 1102 } 1103 1104 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1105 { 1106 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1107 } 1108 1109 static void update_time_for_write(struct inode *inode) 1110 { 1111 struct timespec64 now; 1112 1113 if (IS_NOCMTIME(inode)) 1114 return; 1115 1116 now = current_time(inode); 1117 if (!timespec64_equal(&inode->i_mtime, &now)) 1118 inode->i_mtime = now; 1119 1120 if (!timespec64_equal(&inode->i_ctime, &now)) 1121 inode->i_ctime = now; 1122 1123 if (IS_I_VERSION(inode)) 1124 inode_inc_iversion(inode); 1125 } 1126 1127 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1128 size_t count) 1129 { 1130 struct file *file = iocb->ki_filp; 1131 struct inode *inode = file_inode(file); 1132 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1133 loff_t pos = iocb->ki_pos; 1134 int ret; 1135 loff_t oldsize; 1136 loff_t start_pos; 1137 1138 /* 1139 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1140 * prealloc flags, as without those flags we always have to COW. We will 1141 * later check if we can really COW into the target range (using 1142 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1143 */ 1144 if ((iocb->ki_flags & IOCB_NOWAIT) && 1145 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1146 return -EAGAIN; 1147 1148 ret = file_remove_privs(file); 1149 if (ret) 1150 return ret; 1151 1152 /* 1153 * We reserve space for updating the inode when we reserve space for the 1154 * extent we are going to write, so we will enospc out there. We don't 1155 * need to start yet another transaction to update the inode as we will 1156 * update the inode when we finish writing whatever data we write. 1157 */ 1158 update_time_for_write(inode); 1159 1160 start_pos = round_down(pos, fs_info->sectorsize); 1161 oldsize = i_size_read(inode); 1162 if (start_pos > oldsize) { 1163 /* Expand hole size to cover write data, preventing empty gap */ 1164 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1165 1166 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1167 if (ret) 1168 return ret; 1169 } 1170 1171 return 0; 1172 } 1173 1174 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1175 struct iov_iter *i) 1176 { 1177 struct file *file = iocb->ki_filp; 1178 loff_t pos; 1179 struct inode *inode = file_inode(file); 1180 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1181 struct page **pages = NULL; 1182 struct extent_changeset *data_reserved = NULL; 1183 u64 release_bytes = 0; 1184 u64 lockstart; 1185 u64 lockend; 1186 size_t num_written = 0; 1187 int nrptrs; 1188 ssize_t ret; 1189 bool only_release_metadata = false; 1190 bool force_page_uptodate = false; 1191 loff_t old_isize = i_size_read(inode); 1192 unsigned int ilock_flags = 0; 1193 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 1194 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0); 1195 1196 if (nowait) 1197 ilock_flags |= BTRFS_ILOCK_TRY; 1198 1199 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1200 if (ret < 0) 1201 return ret; 1202 1203 ret = generic_write_checks(iocb, i); 1204 if (ret <= 0) 1205 goto out; 1206 1207 ret = btrfs_write_check(iocb, i, ret); 1208 if (ret < 0) 1209 goto out; 1210 1211 pos = iocb->ki_pos; 1212 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1213 PAGE_SIZE / (sizeof(struct page *))); 1214 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1215 nrptrs = max(nrptrs, 8); 1216 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1217 if (!pages) { 1218 ret = -ENOMEM; 1219 goto out; 1220 } 1221 1222 while (iov_iter_count(i) > 0) { 1223 struct extent_state *cached_state = NULL; 1224 size_t offset = offset_in_page(pos); 1225 size_t sector_offset; 1226 size_t write_bytes = min(iov_iter_count(i), 1227 nrptrs * (size_t)PAGE_SIZE - 1228 offset); 1229 size_t num_pages; 1230 size_t reserve_bytes; 1231 size_t dirty_pages; 1232 size_t copied; 1233 size_t dirty_sectors; 1234 size_t num_sectors; 1235 int extents_locked; 1236 1237 /* 1238 * Fault pages before locking them in prepare_pages 1239 * to avoid recursive lock 1240 */ 1241 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1242 ret = -EFAULT; 1243 break; 1244 } 1245 1246 only_release_metadata = false; 1247 sector_offset = pos & (fs_info->sectorsize - 1); 1248 1249 extent_changeset_release(data_reserved); 1250 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1251 &data_reserved, pos, 1252 write_bytes, nowait); 1253 if (ret < 0) { 1254 int can_nocow; 1255 1256 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) { 1257 ret = -EAGAIN; 1258 break; 1259 } 1260 1261 /* 1262 * If we don't have to COW at the offset, reserve 1263 * metadata only. write_bytes may get smaller than 1264 * requested here. 1265 */ 1266 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1267 &write_bytes, nowait); 1268 if (can_nocow < 0) 1269 ret = can_nocow; 1270 if (can_nocow > 0) 1271 ret = 0; 1272 if (ret) 1273 break; 1274 only_release_metadata = true; 1275 } 1276 1277 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1278 WARN_ON(num_pages > nrptrs); 1279 reserve_bytes = round_up(write_bytes + sector_offset, 1280 fs_info->sectorsize); 1281 WARN_ON(reserve_bytes == 0); 1282 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1283 reserve_bytes, 1284 reserve_bytes, nowait); 1285 if (ret) { 1286 if (!only_release_metadata) 1287 btrfs_free_reserved_data_space(BTRFS_I(inode), 1288 data_reserved, pos, 1289 write_bytes); 1290 else 1291 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1292 1293 if (nowait && ret == -ENOSPC) 1294 ret = -EAGAIN; 1295 break; 1296 } 1297 1298 release_bytes = reserve_bytes; 1299 again: 1300 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags); 1301 if (ret) { 1302 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1303 break; 1304 } 1305 1306 /* 1307 * This is going to setup the pages array with the number of 1308 * pages we want, so we don't really need to worry about the 1309 * contents of pages from loop to loop 1310 */ 1311 ret = prepare_pages(inode, pages, num_pages, 1312 pos, write_bytes, force_page_uptodate, false); 1313 if (ret) { 1314 btrfs_delalloc_release_extents(BTRFS_I(inode), 1315 reserve_bytes); 1316 break; 1317 } 1318 1319 extents_locked = lock_and_cleanup_extent_if_need( 1320 BTRFS_I(inode), pages, 1321 num_pages, pos, write_bytes, &lockstart, 1322 &lockend, nowait, &cached_state); 1323 if (extents_locked < 0) { 1324 if (!nowait && extents_locked == -EAGAIN) 1325 goto again; 1326 1327 btrfs_delalloc_release_extents(BTRFS_I(inode), 1328 reserve_bytes); 1329 ret = extents_locked; 1330 break; 1331 } 1332 1333 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1334 1335 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1336 dirty_sectors = round_up(copied + sector_offset, 1337 fs_info->sectorsize); 1338 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1339 1340 /* 1341 * if we have trouble faulting in the pages, fall 1342 * back to one page at a time 1343 */ 1344 if (copied < write_bytes) 1345 nrptrs = 1; 1346 1347 if (copied == 0) { 1348 force_page_uptodate = true; 1349 dirty_sectors = 0; 1350 dirty_pages = 0; 1351 } else { 1352 force_page_uptodate = false; 1353 dirty_pages = DIV_ROUND_UP(copied + offset, 1354 PAGE_SIZE); 1355 } 1356 1357 if (num_sectors > dirty_sectors) { 1358 /* release everything except the sectors we dirtied */ 1359 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1360 if (only_release_metadata) { 1361 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1362 release_bytes, true); 1363 } else { 1364 u64 __pos; 1365 1366 __pos = round_down(pos, 1367 fs_info->sectorsize) + 1368 (dirty_pages << PAGE_SHIFT); 1369 btrfs_delalloc_release_space(BTRFS_I(inode), 1370 data_reserved, __pos, 1371 release_bytes, true); 1372 } 1373 } 1374 1375 release_bytes = round_up(copied + sector_offset, 1376 fs_info->sectorsize); 1377 1378 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1379 dirty_pages, pos, copied, 1380 &cached_state, only_release_metadata); 1381 1382 /* 1383 * If we have not locked the extent range, because the range's 1384 * start offset is >= i_size, we might still have a non-NULL 1385 * cached extent state, acquired while marking the extent range 1386 * as delalloc through btrfs_dirty_pages(). Therefore free any 1387 * possible cached extent state to avoid a memory leak. 1388 */ 1389 if (extents_locked) 1390 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 1391 lockend, &cached_state); 1392 else 1393 free_extent_state(cached_state); 1394 1395 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1396 if (ret) { 1397 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1398 break; 1399 } 1400 1401 release_bytes = 0; 1402 if (only_release_metadata) 1403 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1404 1405 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1406 1407 cond_resched(); 1408 1409 pos += copied; 1410 num_written += copied; 1411 } 1412 1413 kfree(pages); 1414 1415 if (release_bytes) { 1416 if (only_release_metadata) { 1417 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1418 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1419 release_bytes, true); 1420 } else { 1421 btrfs_delalloc_release_space(BTRFS_I(inode), 1422 data_reserved, 1423 round_down(pos, fs_info->sectorsize), 1424 release_bytes, true); 1425 } 1426 } 1427 1428 extent_changeset_free(data_reserved); 1429 if (num_written > 0) { 1430 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1431 iocb->ki_pos += num_written; 1432 } 1433 out: 1434 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1435 return num_written ? num_written : ret; 1436 } 1437 1438 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1439 const struct iov_iter *iter, loff_t offset) 1440 { 1441 const u32 blocksize_mask = fs_info->sectorsize - 1; 1442 1443 if (offset & blocksize_mask) 1444 return -EINVAL; 1445 1446 if (iov_iter_alignment(iter) & blocksize_mask) 1447 return -EINVAL; 1448 1449 return 0; 1450 } 1451 1452 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1453 { 1454 struct file *file = iocb->ki_filp; 1455 struct inode *inode = file_inode(file); 1456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1457 loff_t pos; 1458 ssize_t written = 0; 1459 ssize_t written_buffered; 1460 size_t prev_left = 0; 1461 loff_t endbyte; 1462 ssize_t err; 1463 unsigned int ilock_flags = 0; 1464 struct iomap_dio *dio; 1465 1466 if (iocb->ki_flags & IOCB_NOWAIT) 1467 ilock_flags |= BTRFS_ILOCK_TRY; 1468 1469 /* If the write DIO is within EOF, use a shared lock */ 1470 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode)) 1471 ilock_flags |= BTRFS_ILOCK_SHARED; 1472 1473 relock: 1474 err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1475 if (err < 0) 1476 return err; 1477 1478 err = generic_write_checks(iocb, from); 1479 if (err <= 0) { 1480 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1481 return err; 1482 } 1483 1484 err = btrfs_write_check(iocb, from, err); 1485 if (err < 0) { 1486 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1487 goto out; 1488 } 1489 1490 pos = iocb->ki_pos; 1491 /* 1492 * Re-check since file size may have changed just before taking the 1493 * lock or pos may have changed because of O_APPEND in generic_write_check() 1494 */ 1495 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1496 pos + iov_iter_count(from) > i_size_read(inode)) { 1497 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1498 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1499 goto relock; 1500 } 1501 1502 if (check_direct_IO(fs_info, from, pos)) { 1503 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1504 goto buffered; 1505 } 1506 1507 /* 1508 * The iov_iter can be mapped to the same file range we are writing to. 1509 * If that's the case, then we will deadlock in the iomap code, because 1510 * it first calls our callback btrfs_dio_iomap_begin(), which will create 1511 * an ordered extent, and after that it will fault in the pages that the 1512 * iov_iter refers to. During the fault in we end up in the readahead 1513 * pages code (starting at btrfs_readahead()), which will lock the range, 1514 * find that ordered extent and then wait for it to complete (at 1515 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since 1516 * obviously the ordered extent can never complete as we didn't submit 1517 * yet the respective bio(s). This always happens when the buffer is 1518 * memory mapped to the same file range, since the iomap DIO code always 1519 * invalidates pages in the target file range (after starting and waiting 1520 * for any writeback). 1521 * 1522 * So here we disable page faults in the iov_iter and then retry if we 1523 * got -EFAULT, faulting in the pages before the retry. 1524 */ 1525 from->nofault = true; 1526 dio = btrfs_dio_write(iocb, from, written); 1527 from->nofault = false; 1528 1529 /* 1530 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync 1531 * iocb, and that needs to lock the inode. So unlock it before calling 1532 * iomap_dio_complete() to avoid a deadlock. 1533 */ 1534 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1535 1536 if (IS_ERR_OR_NULL(dio)) 1537 err = PTR_ERR_OR_ZERO(dio); 1538 else 1539 err = iomap_dio_complete(dio); 1540 1541 /* No increment (+=) because iomap returns a cumulative value. */ 1542 if (err > 0) 1543 written = err; 1544 1545 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) { 1546 const size_t left = iov_iter_count(from); 1547 /* 1548 * We have more data left to write. Try to fault in as many as 1549 * possible of the remainder pages and retry. We do this without 1550 * releasing and locking again the inode, to prevent races with 1551 * truncate. 1552 * 1553 * Also, in case the iov refers to pages in the file range of the 1554 * file we want to write to (due to a mmap), we could enter an 1555 * infinite loop if we retry after faulting the pages in, since 1556 * iomap will invalidate any pages in the range early on, before 1557 * it tries to fault in the pages of the iov. So we keep track of 1558 * how much was left of iov in the previous EFAULT and fallback 1559 * to buffered IO in case we haven't made any progress. 1560 */ 1561 if (left == prev_left) { 1562 err = -ENOTBLK; 1563 } else { 1564 fault_in_iov_iter_readable(from, left); 1565 prev_left = left; 1566 goto relock; 1567 } 1568 } 1569 1570 /* 1571 * If 'err' is -ENOTBLK or we have not written all data, then it means 1572 * we must fallback to buffered IO. 1573 */ 1574 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from)) 1575 goto out; 1576 1577 buffered: 1578 /* 1579 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller 1580 * it must retry the operation in a context where blocking is acceptable, 1581 * because even if we end up not blocking during the buffered IO attempt 1582 * below, we will block when flushing and waiting for the IO. 1583 */ 1584 if (iocb->ki_flags & IOCB_NOWAIT) { 1585 err = -EAGAIN; 1586 goto out; 1587 } 1588 1589 pos = iocb->ki_pos; 1590 written_buffered = btrfs_buffered_write(iocb, from); 1591 if (written_buffered < 0) { 1592 err = written_buffered; 1593 goto out; 1594 } 1595 /* 1596 * Ensure all data is persisted. We want the next direct IO read to be 1597 * able to read what was just written. 1598 */ 1599 endbyte = pos + written_buffered - 1; 1600 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1601 if (err) 1602 goto out; 1603 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1604 if (err) 1605 goto out; 1606 written += written_buffered; 1607 iocb->ki_pos = pos + written_buffered; 1608 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1609 endbyte >> PAGE_SHIFT); 1610 out: 1611 return err < 0 ? err : written; 1612 } 1613 1614 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 1615 const struct btrfs_ioctl_encoded_io_args *encoded) 1616 { 1617 struct file *file = iocb->ki_filp; 1618 struct inode *inode = file_inode(file); 1619 loff_t count; 1620 ssize_t ret; 1621 1622 btrfs_inode_lock(BTRFS_I(inode), 0); 1623 count = encoded->len; 1624 ret = generic_write_checks_count(iocb, &count); 1625 if (ret == 0 && count != encoded->len) { 1626 /* 1627 * The write got truncated by generic_write_checks_count(). We 1628 * can't do a partial encoded write. 1629 */ 1630 ret = -EFBIG; 1631 } 1632 if (ret || encoded->len == 0) 1633 goto out; 1634 1635 ret = btrfs_write_check(iocb, from, encoded->len); 1636 if (ret < 0) 1637 goto out; 1638 1639 ret = btrfs_do_encoded_write(iocb, from, encoded); 1640 out: 1641 btrfs_inode_unlock(BTRFS_I(inode), 0); 1642 return ret; 1643 } 1644 1645 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 1646 const struct btrfs_ioctl_encoded_io_args *encoded) 1647 { 1648 struct file *file = iocb->ki_filp; 1649 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 1650 ssize_t num_written, num_sync; 1651 const bool sync = iocb_is_dsync(iocb); 1652 1653 /* 1654 * If the fs flips readonly due to some impossible error, although we 1655 * have opened a file as writable, we have to stop this write operation 1656 * to ensure consistency. 1657 */ 1658 if (BTRFS_FS_ERROR(inode->root->fs_info)) 1659 return -EROFS; 1660 1661 if (encoded && (iocb->ki_flags & IOCB_NOWAIT)) 1662 return -EOPNOTSUPP; 1663 1664 if (sync) 1665 atomic_inc(&inode->sync_writers); 1666 1667 if (encoded) { 1668 num_written = btrfs_encoded_write(iocb, from, encoded); 1669 num_sync = encoded->len; 1670 } else if (iocb->ki_flags & IOCB_DIRECT) { 1671 num_written = btrfs_direct_write(iocb, from); 1672 num_sync = num_written; 1673 } else { 1674 num_written = btrfs_buffered_write(iocb, from); 1675 num_sync = num_written; 1676 } 1677 1678 btrfs_set_inode_last_sub_trans(inode); 1679 1680 if (num_sync > 0) { 1681 num_sync = generic_write_sync(iocb, num_sync); 1682 if (num_sync < 0) 1683 num_written = num_sync; 1684 } 1685 1686 if (sync) 1687 atomic_dec(&inode->sync_writers); 1688 1689 return num_written; 1690 } 1691 1692 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1693 { 1694 return btrfs_do_write_iter(iocb, from, NULL); 1695 } 1696 1697 int btrfs_release_file(struct inode *inode, struct file *filp) 1698 { 1699 struct btrfs_file_private *private = filp->private_data; 1700 1701 if (private) { 1702 kfree(private->filldir_buf); 1703 free_extent_state(private->llseek_cached_state); 1704 kfree(private); 1705 filp->private_data = NULL; 1706 } 1707 1708 /* 1709 * Set by setattr when we are about to truncate a file from a non-zero 1710 * size to a zero size. This tries to flush down new bytes that may 1711 * have been written if the application were using truncate to replace 1712 * a file in place. 1713 */ 1714 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 1715 &BTRFS_I(inode)->runtime_flags)) 1716 filemap_flush(inode->i_mapping); 1717 return 0; 1718 } 1719 1720 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 1721 { 1722 int ret; 1723 struct blk_plug plug; 1724 1725 /* 1726 * This is only called in fsync, which would do synchronous writes, so 1727 * a plug can merge adjacent IOs as much as possible. Esp. in case of 1728 * multiple disks using raid profile, a large IO can be split to 1729 * several segments of stripe length (currently 64K). 1730 */ 1731 blk_start_plug(&plug); 1732 atomic_inc(&BTRFS_I(inode)->sync_writers); 1733 ret = btrfs_fdatawrite_range(inode, start, end); 1734 atomic_dec(&BTRFS_I(inode)->sync_writers); 1735 blk_finish_plug(&plug); 1736 1737 return ret; 1738 } 1739 1740 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 1741 { 1742 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 1743 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1744 1745 if (btrfs_inode_in_log(inode, fs_info->generation) && 1746 list_empty(&ctx->ordered_extents)) 1747 return true; 1748 1749 /* 1750 * If we are doing a fast fsync we can not bail out if the inode's 1751 * last_trans is <= then the last committed transaction, because we only 1752 * update the last_trans of the inode during ordered extent completion, 1753 * and for a fast fsync we don't wait for that, we only wait for the 1754 * writeback to complete. 1755 */ 1756 if (inode->last_trans <= fs_info->last_trans_committed && 1757 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 1758 list_empty(&ctx->ordered_extents))) 1759 return true; 1760 1761 return false; 1762 } 1763 1764 /* 1765 * fsync call for both files and directories. This logs the inode into 1766 * the tree log instead of forcing full commits whenever possible. 1767 * 1768 * It needs to call filemap_fdatawait so that all ordered extent updates are 1769 * in the metadata btree are up to date for copying to the log. 1770 * 1771 * It drops the inode mutex before doing the tree log commit. This is an 1772 * important optimization for directories because holding the mutex prevents 1773 * new operations on the dir while we write to disk. 1774 */ 1775 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1776 { 1777 struct dentry *dentry = file_dentry(file); 1778 struct inode *inode = d_inode(dentry); 1779 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1780 struct btrfs_root *root = BTRFS_I(inode)->root; 1781 struct btrfs_trans_handle *trans; 1782 struct btrfs_log_ctx ctx; 1783 int ret = 0, err; 1784 u64 len; 1785 bool full_sync; 1786 1787 trace_btrfs_sync_file(file, datasync); 1788 1789 btrfs_init_log_ctx(&ctx, inode); 1790 1791 /* 1792 * Always set the range to a full range, otherwise we can get into 1793 * several problems, from missing file extent items to represent holes 1794 * when not using the NO_HOLES feature, to log tree corruption due to 1795 * races between hole detection during logging and completion of ordered 1796 * extents outside the range, to missing checksums due to ordered extents 1797 * for which we flushed only a subset of their pages. 1798 */ 1799 start = 0; 1800 end = LLONG_MAX; 1801 len = (u64)LLONG_MAX + 1; 1802 1803 /* 1804 * We write the dirty pages in the range and wait until they complete 1805 * out of the ->i_mutex. If so, we can flush the dirty pages by 1806 * multi-task, and make the performance up. See 1807 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1808 */ 1809 ret = start_ordered_ops(inode, start, end); 1810 if (ret) 1811 goto out; 1812 1813 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1814 1815 atomic_inc(&root->log_batch); 1816 1817 /* 1818 * Before we acquired the inode's lock and the mmap lock, someone may 1819 * have dirtied more pages in the target range. We need to make sure 1820 * that writeback for any such pages does not start while we are logging 1821 * the inode, because if it does, any of the following might happen when 1822 * we are not doing a full inode sync: 1823 * 1824 * 1) We log an extent after its writeback finishes but before its 1825 * checksums are added to the csum tree, leading to -EIO errors 1826 * when attempting to read the extent after a log replay. 1827 * 1828 * 2) We can end up logging an extent before its writeback finishes. 1829 * Therefore after the log replay we will have a file extent item 1830 * pointing to an unwritten extent (and no data checksums as well). 1831 * 1832 * So trigger writeback for any eventual new dirty pages and then we 1833 * wait for all ordered extents to complete below. 1834 */ 1835 ret = start_ordered_ops(inode, start, end); 1836 if (ret) { 1837 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1838 goto out; 1839 } 1840 1841 /* 1842 * Always check for the full sync flag while holding the inode's lock, 1843 * to avoid races with other tasks. The flag must be either set all the 1844 * time during logging or always off all the time while logging. 1845 * We check the flag here after starting delalloc above, because when 1846 * running delalloc the full sync flag may be set if we need to drop 1847 * extra extent map ranges due to temporary memory allocation failures. 1848 */ 1849 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1850 &BTRFS_I(inode)->runtime_flags); 1851 1852 /* 1853 * We have to do this here to avoid the priority inversion of waiting on 1854 * IO of a lower priority task while holding a transaction open. 1855 * 1856 * For a full fsync we wait for the ordered extents to complete while 1857 * for a fast fsync we wait just for writeback to complete, and then 1858 * attach the ordered extents to the transaction so that a transaction 1859 * commit waits for their completion, to avoid data loss if we fsync, 1860 * the current transaction commits before the ordered extents complete 1861 * and a power failure happens right after that. 1862 * 1863 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 1864 * logical address recorded in the ordered extent may change. We need 1865 * to wait for the IO to stabilize the logical address. 1866 */ 1867 if (full_sync || btrfs_is_zoned(fs_info)) { 1868 ret = btrfs_wait_ordered_range(inode, start, len); 1869 } else { 1870 /* 1871 * Get our ordered extents as soon as possible to avoid doing 1872 * checksum lookups in the csum tree, and use instead the 1873 * checksums attached to the ordered extents. 1874 */ 1875 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 1876 &ctx.ordered_extents); 1877 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 1878 } 1879 1880 if (ret) 1881 goto out_release_extents; 1882 1883 atomic_inc(&root->log_batch); 1884 1885 smp_mb(); 1886 if (skip_inode_logging(&ctx)) { 1887 /* 1888 * We've had everything committed since the last time we were 1889 * modified so clear this flag in case it was set for whatever 1890 * reason, it's no longer relevant. 1891 */ 1892 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1893 &BTRFS_I(inode)->runtime_flags); 1894 /* 1895 * An ordered extent might have started before and completed 1896 * already with io errors, in which case the inode was not 1897 * updated and we end up here. So check the inode's mapping 1898 * for any errors that might have happened since we last 1899 * checked called fsync. 1900 */ 1901 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 1902 goto out_release_extents; 1903 } 1904 1905 /* 1906 * We use start here because we will need to wait on the IO to complete 1907 * in btrfs_sync_log, which could require joining a transaction (for 1908 * example checking cross references in the nocow path). If we use join 1909 * here we could get into a situation where we're waiting on IO to 1910 * happen that is blocked on a transaction trying to commit. With start 1911 * we inc the extwriter counter, so we wait for all extwriters to exit 1912 * before we start blocking joiners. This comment is to keep somebody 1913 * from thinking they are super smart and changing this to 1914 * btrfs_join_transaction *cough*Josef*cough*. 1915 */ 1916 trans = btrfs_start_transaction(root, 0); 1917 if (IS_ERR(trans)) { 1918 ret = PTR_ERR(trans); 1919 goto out_release_extents; 1920 } 1921 trans->in_fsync = true; 1922 1923 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 1924 btrfs_release_log_ctx_extents(&ctx); 1925 if (ret < 0) { 1926 /* Fallthrough and commit/free transaction. */ 1927 ret = BTRFS_LOG_FORCE_COMMIT; 1928 } 1929 1930 /* we've logged all the items and now have a consistent 1931 * version of the file in the log. It is possible that 1932 * someone will come in and modify the file, but that's 1933 * fine because the log is consistent on disk, and we 1934 * have references to all of the file's extents 1935 * 1936 * It is possible that someone will come in and log the 1937 * file again, but that will end up using the synchronization 1938 * inside btrfs_sync_log to keep things safe. 1939 */ 1940 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1941 1942 if (ret == BTRFS_NO_LOG_SYNC) { 1943 ret = btrfs_end_transaction(trans); 1944 goto out; 1945 } 1946 1947 /* We successfully logged the inode, attempt to sync the log. */ 1948 if (!ret) { 1949 ret = btrfs_sync_log(trans, root, &ctx); 1950 if (!ret) { 1951 ret = btrfs_end_transaction(trans); 1952 goto out; 1953 } 1954 } 1955 1956 /* 1957 * At this point we need to commit the transaction because we had 1958 * btrfs_need_log_full_commit() or some other error. 1959 * 1960 * If we didn't do a full sync we have to stop the trans handle, wait on 1961 * the ordered extents, start it again and commit the transaction. If 1962 * we attempt to wait on the ordered extents here we could deadlock with 1963 * something like fallocate() that is holding the extent lock trying to 1964 * start a transaction while some other thread is trying to commit the 1965 * transaction while we (fsync) are currently holding the transaction 1966 * open. 1967 */ 1968 if (!full_sync) { 1969 ret = btrfs_end_transaction(trans); 1970 if (ret) 1971 goto out; 1972 ret = btrfs_wait_ordered_range(inode, start, len); 1973 if (ret) 1974 goto out; 1975 1976 /* 1977 * This is safe to use here because we're only interested in 1978 * making sure the transaction that had the ordered extents is 1979 * committed. We aren't waiting on anything past this point, 1980 * we're purely getting the transaction and committing it. 1981 */ 1982 trans = btrfs_attach_transaction_barrier(root); 1983 if (IS_ERR(trans)) { 1984 ret = PTR_ERR(trans); 1985 1986 /* 1987 * We committed the transaction and there's no currently 1988 * running transaction, this means everything we care 1989 * about made it to disk and we are done. 1990 */ 1991 if (ret == -ENOENT) 1992 ret = 0; 1993 goto out; 1994 } 1995 } 1996 1997 ret = btrfs_commit_transaction(trans); 1998 out: 1999 ASSERT(list_empty(&ctx.list)); 2000 ASSERT(list_empty(&ctx.conflict_inodes)); 2001 err = file_check_and_advance_wb_err(file); 2002 if (!ret) 2003 ret = err; 2004 return ret > 0 ? -EIO : ret; 2005 2006 out_release_extents: 2007 btrfs_release_log_ctx_extents(&ctx); 2008 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2009 goto out; 2010 } 2011 2012 static const struct vm_operations_struct btrfs_file_vm_ops = { 2013 .fault = filemap_fault, 2014 .map_pages = filemap_map_pages, 2015 .page_mkwrite = btrfs_page_mkwrite, 2016 }; 2017 2018 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2019 { 2020 struct address_space *mapping = filp->f_mapping; 2021 2022 if (!mapping->a_ops->read_folio) 2023 return -ENOEXEC; 2024 2025 file_accessed(filp); 2026 vma->vm_ops = &btrfs_file_vm_ops; 2027 2028 return 0; 2029 } 2030 2031 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2032 int slot, u64 start, u64 end) 2033 { 2034 struct btrfs_file_extent_item *fi; 2035 struct btrfs_key key; 2036 2037 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2038 return 0; 2039 2040 btrfs_item_key_to_cpu(leaf, &key, slot); 2041 if (key.objectid != btrfs_ino(inode) || 2042 key.type != BTRFS_EXTENT_DATA_KEY) 2043 return 0; 2044 2045 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2046 2047 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2048 return 0; 2049 2050 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2051 return 0; 2052 2053 if (key.offset == end) 2054 return 1; 2055 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2056 return 1; 2057 return 0; 2058 } 2059 2060 static int fill_holes(struct btrfs_trans_handle *trans, 2061 struct btrfs_inode *inode, 2062 struct btrfs_path *path, u64 offset, u64 end) 2063 { 2064 struct btrfs_fs_info *fs_info = trans->fs_info; 2065 struct btrfs_root *root = inode->root; 2066 struct extent_buffer *leaf; 2067 struct btrfs_file_extent_item *fi; 2068 struct extent_map *hole_em; 2069 struct btrfs_key key; 2070 int ret; 2071 2072 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2073 goto out; 2074 2075 key.objectid = btrfs_ino(inode); 2076 key.type = BTRFS_EXTENT_DATA_KEY; 2077 key.offset = offset; 2078 2079 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2080 if (ret <= 0) { 2081 /* 2082 * We should have dropped this offset, so if we find it then 2083 * something has gone horribly wrong. 2084 */ 2085 if (ret == 0) 2086 ret = -EINVAL; 2087 return ret; 2088 } 2089 2090 leaf = path->nodes[0]; 2091 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2092 u64 num_bytes; 2093 2094 path->slots[0]--; 2095 fi = btrfs_item_ptr(leaf, path->slots[0], 2096 struct btrfs_file_extent_item); 2097 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2098 end - offset; 2099 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2100 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2101 btrfs_set_file_extent_offset(leaf, fi, 0); 2102 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2103 btrfs_mark_buffer_dirty(leaf); 2104 goto out; 2105 } 2106 2107 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2108 u64 num_bytes; 2109 2110 key.offset = offset; 2111 btrfs_set_item_key_safe(fs_info, path, &key); 2112 fi = btrfs_item_ptr(leaf, path->slots[0], 2113 struct btrfs_file_extent_item); 2114 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2115 offset; 2116 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2117 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2118 btrfs_set_file_extent_offset(leaf, fi, 0); 2119 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2120 btrfs_mark_buffer_dirty(leaf); 2121 goto out; 2122 } 2123 btrfs_release_path(path); 2124 2125 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, 2126 end - offset); 2127 if (ret) 2128 return ret; 2129 2130 out: 2131 btrfs_release_path(path); 2132 2133 hole_em = alloc_extent_map(); 2134 if (!hole_em) { 2135 btrfs_drop_extent_map_range(inode, offset, end - 1, false); 2136 btrfs_set_inode_full_sync(inode); 2137 } else { 2138 hole_em->start = offset; 2139 hole_em->len = end - offset; 2140 hole_em->ram_bytes = hole_em->len; 2141 hole_em->orig_start = offset; 2142 2143 hole_em->block_start = EXTENT_MAP_HOLE; 2144 hole_em->block_len = 0; 2145 hole_em->orig_block_len = 0; 2146 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2147 hole_em->generation = trans->transid; 2148 2149 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 2150 free_extent_map(hole_em); 2151 if (ret) 2152 btrfs_set_inode_full_sync(inode); 2153 } 2154 2155 return 0; 2156 } 2157 2158 /* 2159 * Find a hole extent on given inode and change start/len to the end of hole 2160 * extent.(hole/vacuum extent whose em->start <= start && 2161 * em->start + em->len > start) 2162 * When a hole extent is found, return 1 and modify start/len. 2163 */ 2164 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2165 { 2166 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2167 struct extent_map *em; 2168 int ret = 0; 2169 2170 em = btrfs_get_extent(inode, NULL, 0, 2171 round_down(*start, fs_info->sectorsize), 2172 round_up(*len, fs_info->sectorsize)); 2173 if (IS_ERR(em)) 2174 return PTR_ERR(em); 2175 2176 /* Hole or vacuum extent(only exists in no-hole mode) */ 2177 if (em->block_start == EXTENT_MAP_HOLE) { 2178 ret = 1; 2179 *len = em->start + em->len > *start + *len ? 2180 0 : *start + *len - em->start - em->len; 2181 *start = em->start + em->len; 2182 } 2183 free_extent_map(em); 2184 return ret; 2185 } 2186 2187 static void btrfs_punch_hole_lock_range(struct inode *inode, 2188 const u64 lockstart, 2189 const u64 lockend, 2190 struct extent_state **cached_state) 2191 { 2192 /* 2193 * For subpage case, if the range is not at page boundary, we could 2194 * have pages at the leading/tailing part of the range. 2195 * This could lead to dead loop since filemap_range_has_page() 2196 * will always return true. 2197 * So here we need to do extra page alignment for 2198 * filemap_range_has_page(). 2199 */ 2200 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2201 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2202 2203 while (1) { 2204 truncate_pagecache_range(inode, lockstart, lockend); 2205 2206 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2207 cached_state); 2208 /* 2209 * We can't have ordered extents in the range, nor dirty/writeback 2210 * pages, because we have locked the inode's VFS lock in exclusive 2211 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2212 * we have flushed all delalloc in the range and we have waited 2213 * for any ordered extents in the range to complete. 2214 * We can race with anyone reading pages from this range, so after 2215 * locking the range check if we have pages in the range, and if 2216 * we do, unlock the range and retry. 2217 */ 2218 if (!filemap_range_has_page(inode->i_mapping, page_lockstart, 2219 page_lockend)) 2220 break; 2221 2222 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2223 cached_state); 2224 } 2225 2226 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2227 } 2228 2229 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2230 struct btrfs_inode *inode, 2231 struct btrfs_path *path, 2232 struct btrfs_replace_extent_info *extent_info, 2233 const u64 replace_len, 2234 const u64 bytes_to_drop) 2235 { 2236 struct btrfs_fs_info *fs_info = trans->fs_info; 2237 struct btrfs_root *root = inode->root; 2238 struct btrfs_file_extent_item *extent; 2239 struct extent_buffer *leaf; 2240 struct btrfs_key key; 2241 int slot; 2242 struct btrfs_ref ref = { 0 }; 2243 int ret; 2244 2245 if (replace_len == 0) 2246 return 0; 2247 2248 if (extent_info->disk_offset == 0 && 2249 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2250 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2251 return 0; 2252 } 2253 2254 key.objectid = btrfs_ino(inode); 2255 key.type = BTRFS_EXTENT_DATA_KEY; 2256 key.offset = extent_info->file_offset; 2257 ret = btrfs_insert_empty_item(trans, root, path, &key, 2258 sizeof(struct btrfs_file_extent_item)); 2259 if (ret) 2260 return ret; 2261 leaf = path->nodes[0]; 2262 slot = path->slots[0]; 2263 write_extent_buffer(leaf, extent_info->extent_buf, 2264 btrfs_item_ptr_offset(leaf, slot), 2265 sizeof(struct btrfs_file_extent_item)); 2266 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2267 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2268 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2269 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2270 if (extent_info->is_new_extent) 2271 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2272 btrfs_mark_buffer_dirty(leaf); 2273 btrfs_release_path(path); 2274 2275 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2276 replace_len); 2277 if (ret) 2278 return ret; 2279 2280 /* If it's a hole, nothing more needs to be done. */ 2281 if (extent_info->disk_offset == 0) { 2282 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2283 return 0; 2284 } 2285 2286 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2287 2288 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2289 key.objectid = extent_info->disk_offset; 2290 key.type = BTRFS_EXTENT_ITEM_KEY; 2291 key.offset = extent_info->disk_len; 2292 ret = btrfs_alloc_reserved_file_extent(trans, root, 2293 btrfs_ino(inode), 2294 extent_info->file_offset, 2295 extent_info->qgroup_reserved, 2296 &key); 2297 } else { 2298 u64 ref_offset; 2299 2300 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2301 extent_info->disk_offset, 2302 extent_info->disk_len, 0); 2303 ref_offset = extent_info->file_offset - extent_info->data_offset; 2304 btrfs_init_data_ref(&ref, root->root_key.objectid, 2305 btrfs_ino(inode), ref_offset, 0, false); 2306 ret = btrfs_inc_extent_ref(trans, &ref); 2307 } 2308 2309 extent_info->insertions++; 2310 2311 return ret; 2312 } 2313 2314 /* 2315 * The respective range must have been previously locked, as well as the inode. 2316 * The end offset is inclusive (last byte of the range). 2317 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2318 * the file range with an extent. 2319 * When not punching a hole, we don't want to end up in a state where we dropped 2320 * extents without inserting a new one, so we must abort the transaction to avoid 2321 * a corruption. 2322 */ 2323 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2324 struct btrfs_path *path, const u64 start, 2325 const u64 end, 2326 struct btrfs_replace_extent_info *extent_info, 2327 struct btrfs_trans_handle **trans_out) 2328 { 2329 struct btrfs_drop_extents_args drop_args = { 0 }; 2330 struct btrfs_root *root = inode->root; 2331 struct btrfs_fs_info *fs_info = root->fs_info; 2332 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2333 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2334 struct btrfs_trans_handle *trans = NULL; 2335 struct btrfs_block_rsv *rsv; 2336 unsigned int rsv_count; 2337 u64 cur_offset; 2338 u64 len = end - start; 2339 int ret = 0; 2340 2341 if (end <= start) 2342 return -EINVAL; 2343 2344 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2345 if (!rsv) { 2346 ret = -ENOMEM; 2347 goto out; 2348 } 2349 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2350 rsv->failfast = true; 2351 2352 /* 2353 * 1 - update the inode 2354 * 1 - removing the extents in the range 2355 * 1 - adding the hole extent if no_holes isn't set or if we are 2356 * replacing the range with a new extent 2357 */ 2358 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2359 rsv_count = 3; 2360 else 2361 rsv_count = 2; 2362 2363 trans = btrfs_start_transaction(root, rsv_count); 2364 if (IS_ERR(trans)) { 2365 ret = PTR_ERR(trans); 2366 trans = NULL; 2367 goto out_free; 2368 } 2369 2370 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2371 min_size, false); 2372 if (WARN_ON(ret)) 2373 goto out_trans; 2374 trans->block_rsv = rsv; 2375 2376 cur_offset = start; 2377 drop_args.path = path; 2378 drop_args.end = end + 1; 2379 drop_args.drop_cache = true; 2380 while (cur_offset < end) { 2381 drop_args.start = cur_offset; 2382 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2383 /* If we are punching a hole decrement the inode's byte count */ 2384 if (!extent_info) 2385 btrfs_update_inode_bytes(inode, 0, 2386 drop_args.bytes_found); 2387 if (ret != -ENOSPC) { 2388 /* 2389 * The only time we don't want to abort is if we are 2390 * attempting to clone a partial inline extent, in which 2391 * case we'll get EOPNOTSUPP. However if we aren't 2392 * clone we need to abort no matter what, because if we 2393 * got EOPNOTSUPP via prealloc then we messed up and 2394 * need to abort. 2395 */ 2396 if (ret && 2397 (ret != -EOPNOTSUPP || 2398 (extent_info && extent_info->is_new_extent))) 2399 btrfs_abort_transaction(trans, ret); 2400 break; 2401 } 2402 2403 trans->block_rsv = &fs_info->trans_block_rsv; 2404 2405 if (!extent_info && cur_offset < drop_args.drop_end && 2406 cur_offset < ino_size) { 2407 ret = fill_holes(trans, inode, path, cur_offset, 2408 drop_args.drop_end); 2409 if (ret) { 2410 /* 2411 * If we failed then we didn't insert our hole 2412 * entries for the area we dropped, so now the 2413 * fs is corrupted, so we must abort the 2414 * transaction. 2415 */ 2416 btrfs_abort_transaction(trans, ret); 2417 break; 2418 } 2419 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2420 /* 2421 * We are past the i_size here, but since we didn't 2422 * insert holes we need to clear the mapped area so we 2423 * know to not set disk_i_size in this area until a new 2424 * file extent is inserted here. 2425 */ 2426 ret = btrfs_inode_clear_file_extent_range(inode, 2427 cur_offset, 2428 drop_args.drop_end - cur_offset); 2429 if (ret) { 2430 /* 2431 * We couldn't clear our area, so we could 2432 * presumably adjust up and corrupt the fs, so 2433 * we need to abort. 2434 */ 2435 btrfs_abort_transaction(trans, ret); 2436 break; 2437 } 2438 } 2439 2440 if (extent_info && 2441 drop_args.drop_end > extent_info->file_offset) { 2442 u64 replace_len = drop_args.drop_end - 2443 extent_info->file_offset; 2444 2445 ret = btrfs_insert_replace_extent(trans, inode, path, 2446 extent_info, replace_len, 2447 drop_args.bytes_found); 2448 if (ret) { 2449 btrfs_abort_transaction(trans, ret); 2450 break; 2451 } 2452 extent_info->data_len -= replace_len; 2453 extent_info->data_offset += replace_len; 2454 extent_info->file_offset += replace_len; 2455 } 2456 2457 /* 2458 * We are releasing our handle on the transaction, balance the 2459 * dirty pages of the btree inode and flush delayed items, and 2460 * then get a new transaction handle, which may now point to a 2461 * new transaction in case someone else may have committed the 2462 * transaction we used to replace/drop file extent items. So 2463 * bump the inode's iversion and update mtime and ctime except 2464 * if we are called from a dedupe context. This is because a 2465 * power failure/crash may happen after the transaction is 2466 * committed and before we finish replacing/dropping all the 2467 * file extent items we need. 2468 */ 2469 inode_inc_iversion(&inode->vfs_inode); 2470 2471 if (!extent_info || extent_info->update_times) { 2472 inode->vfs_inode.i_mtime = current_time(&inode->vfs_inode); 2473 inode->vfs_inode.i_ctime = inode->vfs_inode.i_mtime; 2474 } 2475 2476 ret = btrfs_update_inode(trans, root, inode); 2477 if (ret) 2478 break; 2479 2480 btrfs_end_transaction(trans); 2481 btrfs_btree_balance_dirty(fs_info); 2482 2483 trans = btrfs_start_transaction(root, rsv_count); 2484 if (IS_ERR(trans)) { 2485 ret = PTR_ERR(trans); 2486 trans = NULL; 2487 break; 2488 } 2489 2490 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2491 rsv, min_size, false); 2492 if (WARN_ON(ret)) 2493 break; 2494 trans->block_rsv = rsv; 2495 2496 cur_offset = drop_args.drop_end; 2497 len = end - cur_offset; 2498 if (!extent_info && len) { 2499 ret = find_first_non_hole(inode, &cur_offset, &len); 2500 if (unlikely(ret < 0)) 2501 break; 2502 if (ret && !len) { 2503 ret = 0; 2504 break; 2505 } 2506 } 2507 } 2508 2509 /* 2510 * If we were cloning, force the next fsync to be a full one since we 2511 * we replaced (or just dropped in the case of cloning holes when 2512 * NO_HOLES is enabled) file extent items and did not setup new extent 2513 * maps for the replacement extents (or holes). 2514 */ 2515 if (extent_info && !extent_info->is_new_extent) 2516 btrfs_set_inode_full_sync(inode); 2517 2518 if (ret) 2519 goto out_trans; 2520 2521 trans->block_rsv = &fs_info->trans_block_rsv; 2522 /* 2523 * If we are using the NO_HOLES feature we might have had already an 2524 * hole that overlaps a part of the region [lockstart, lockend] and 2525 * ends at (or beyond) lockend. Since we have no file extent items to 2526 * represent holes, drop_end can be less than lockend and so we must 2527 * make sure we have an extent map representing the existing hole (the 2528 * call to __btrfs_drop_extents() might have dropped the existing extent 2529 * map representing the existing hole), otherwise the fast fsync path 2530 * will not record the existence of the hole region 2531 * [existing_hole_start, lockend]. 2532 */ 2533 if (drop_args.drop_end <= end) 2534 drop_args.drop_end = end + 1; 2535 /* 2536 * Don't insert file hole extent item if it's for a range beyond eof 2537 * (because it's useless) or if it represents a 0 bytes range (when 2538 * cur_offset == drop_end). 2539 */ 2540 if (!extent_info && cur_offset < ino_size && 2541 cur_offset < drop_args.drop_end) { 2542 ret = fill_holes(trans, inode, path, cur_offset, 2543 drop_args.drop_end); 2544 if (ret) { 2545 /* Same comment as above. */ 2546 btrfs_abort_transaction(trans, ret); 2547 goto out_trans; 2548 } 2549 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2550 /* See the comment in the loop above for the reasoning here. */ 2551 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2552 drop_args.drop_end - cur_offset); 2553 if (ret) { 2554 btrfs_abort_transaction(trans, ret); 2555 goto out_trans; 2556 } 2557 2558 } 2559 if (extent_info) { 2560 ret = btrfs_insert_replace_extent(trans, inode, path, 2561 extent_info, extent_info->data_len, 2562 drop_args.bytes_found); 2563 if (ret) { 2564 btrfs_abort_transaction(trans, ret); 2565 goto out_trans; 2566 } 2567 } 2568 2569 out_trans: 2570 if (!trans) 2571 goto out_free; 2572 2573 trans->block_rsv = &fs_info->trans_block_rsv; 2574 if (ret) 2575 btrfs_end_transaction(trans); 2576 else 2577 *trans_out = trans; 2578 out_free: 2579 btrfs_free_block_rsv(fs_info, rsv); 2580 out: 2581 return ret; 2582 } 2583 2584 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2585 { 2586 struct inode *inode = file_inode(file); 2587 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2588 struct btrfs_root *root = BTRFS_I(inode)->root; 2589 struct extent_state *cached_state = NULL; 2590 struct btrfs_path *path; 2591 struct btrfs_trans_handle *trans = NULL; 2592 u64 lockstart; 2593 u64 lockend; 2594 u64 tail_start; 2595 u64 tail_len; 2596 u64 orig_start = offset; 2597 int ret = 0; 2598 bool same_block; 2599 u64 ino_size; 2600 bool truncated_block = false; 2601 bool updated_inode = false; 2602 2603 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2604 2605 ret = btrfs_wait_ordered_range(inode, offset, len); 2606 if (ret) 2607 goto out_only_mutex; 2608 2609 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2610 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2611 if (ret < 0) 2612 goto out_only_mutex; 2613 if (ret && !len) { 2614 /* Already in a large hole */ 2615 ret = 0; 2616 goto out_only_mutex; 2617 } 2618 2619 ret = file_modified(file); 2620 if (ret) 2621 goto out_only_mutex; 2622 2623 lockstart = round_up(offset, fs_info->sectorsize); 2624 lockend = round_down(offset + len, fs_info->sectorsize) - 1; 2625 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2626 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2627 /* 2628 * We needn't truncate any block which is beyond the end of the file 2629 * because we are sure there is no data there. 2630 */ 2631 /* 2632 * Only do this if we are in the same block and we aren't doing the 2633 * entire block. 2634 */ 2635 if (same_block && len < fs_info->sectorsize) { 2636 if (offset < ino_size) { 2637 truncated_block = true; 2638 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2639 0); 2640 } else { 2641 ret = 0; 2642 } 2643 goto out_only_mutex; 2644 } 2645 2646 /* zero back part of the first block */ 2647 if (offset < ino_size) { 2648 truncated_block = true; 2649 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2650 if (ret) { 2651 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2652 return ret; 2653 } 2654 } 2655 2656 /* Check the aligned pages after the first unaligned page, 2657 * if offset != orig_start, which means the first unaligned page 2658 * including several following pages are already in holes, 2659 * the extra check can be skipped */ 2660 if (offset == orig_start) { 2661 /* after truncate page, check hole again */ 2662 len = offset + len - lockstart; 2663 offset = lockstart; 2664 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2665 if (ret < 0) 2666 goto out_only_mutex; 2667 if (ret && !len) { 2668 ret = 0; 2669 goto out_only_mutex; 2670 } 2671 lockstart = offset; 2672 } 2673 2674 /* Check the tail unaligned part is in a hole */ 2675 tail_start = lockend + 1; 2676 tail_len = offset + len - tail_start; 2677 if (tail_len) { 2678 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2679 if (unlikely(ret < 0)) 2680 goto out_only_mutex; 2681 if (!ret) { 2682 /* zero the front end of the last page */ 2683 if (tail_start + tail_len < ino_size) { 2684 truncated_block = true; 2685 ret = btrfs_truncate_block(BTRFS_I(inode), 2686 tail_start + tail_len, 2687 0, 1); 2688 if (ret) 2689 goto out_only_mutex; 2690 } 2691 } 2692 } 2693 2694 if (lockend < lockstart) { 2695 ret = 0; 2696 goto out_only_mutex; 2697 } 2698 2699 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 2700 2701 path = btrfs_alloc_path(); 2702 if (!path) { 2703 ret = -ENOMEM; 2704 goto out; 2705 } 2706 2707 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 2708 lockend, NULL, &trans); 2709 btrfs_free_path(path); 2710 if (ret) 2711 goto out; 2712 2713 ASSERT(trans != NULL); 2714 inode_inc_iversion(inode); 2715 inode->i_mtime = current_time(inode); 2716 inode->i_ctime = inode->i_mtime; 2717 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2718 updated_inode = true; 2719 btrfs_end_transaction(trans); 2720 btrfs_btree_balance_dirty(fs_info); 2721 out: 2722 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2723 &cached_state); 2724 out_only_mutex: 2725 if (!updated_inode && truncated_block && !ret) { 2726 /* 2727 * If we only end up zeroing part of a page, we still need to 2728 * update the inode item, so that all the time fields are 2729 * updated as well as the necessary btrfs inode in memory fields 2730 * for detecting, at fsync time, if the inode isn't yet in the 2731 * log tree or it's there but not up to date. 2732 */ 2733 struct timespec64 now = current_time(inode); 2734 2735 inode_inc_iversion(inode); 2736 inode->i_mtime = now; 2737 inode->i_ctime = now; 2738 trans = btrfs_start_transaction(root, 1); 2739 if (IS_ERR(trans)) { 2740 ret = PTR_ERR(trans); 2741 } else { 2742 int ret2; 2743 2744 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2745 ret2 = btrfs_end_transaction(trans); 2746 if (!ret) 2747 ret = ret2; 2748 } 2749 } 2750 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2751 return ret; 2752 } 2753 2754 /* Helper structure to record which range is already reserved */ 2755 struct falloc_range { 2756 struct list_head list; 2757 u64 start; 2758 u64 len; 2759 }; 2760 2761 /* 2762 * Helper function to add falloc range 2763 * 2764 * Caller should have locked the larger range of extent containing 2765 * [start, len) 2766 */ 2767 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2768 { 2769 struct falloc_range *range = NULL; 2770 2771 if (!list_empty(head)) { 2772 /* 2773 * As fallocate iterates by bytenr order, we only need to check 2774 * the last range. 2775 */ 2776 range = list_last_entry(head, struct falloc_range, list); 2777 if (range->start + range->len == start) { 2778 range->len += len; 2779 return 0; 2780 } 2781 } 2782 2783 range = kmalloc(sizeof(*range), GFP_KERNEL); 2784 if (!range) 2785 return -ENOMEM; 2786 range->start = start; 2787 range->len = len; 2788 list_add_tail(&range->list, head); 2789 return 0; 2790 } 2791 2792 static int btrfs_fallocate_update_isize(struct inode *inode, 2793 const u64 end, 2794 const int mode) 2795 { 2796 struct btrfs_trans_handle *trans; 2797 struct btrfs_root *root = BTRFS_I(inode)->root; 2798 int ret; 2799 int ret2; 2800 2801 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2802 return 0; 2803 2804 trans = btrfs_start_transaction(root, 1); 2805 if (IS_ERR(trans)) 2806 return PTR_ERR(trans); 2807 2808 inode->i_ctime = current_time(inode); 2809 i_size_write(inode, end); 2810 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 2811 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2812 ret2 = btrfs_end_transaction(trans); 2813 2814 return ret ? ret : ret2; 2815 } 2816 2817 enum { 2818 RANGE_BOUNDARY_WRITTEN_EXTENT, 2819 RANGE_BOUNDARY_PREALLOC_EXTENT, 2820 RANGE_BOUNDARY_HOLE, 2821 }; 2822 2823 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 2824 u64 offset) 2825 { 2826 const u64 sectorsize = inode->root->fs_info->sectorsize; 2827 struct extent_map *em; 2828 int ret; 2829 2830 offset = round_down(offset, sectorsize); 2831 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize); 2832 if (IS_ERR(em)) 2833 return PTR_ERR(em); 2834 2835 if (em->block_start == EXTENT_MAP_HOLE) 2836 ret = RANGE_BOUNDARY_HOLE; 2837 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2838 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2839 else 2840 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2841 2842 free_extent_map(em); 2843 return ret; 2844 } 2845 2846 static int btrfs_zero_range(struct inode *inode, 2847 loff_t offset, 2848 loff_t len, 2849 const int mode) 2850 { 2851 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2852 struct extent_map *em; 2853 struct extent_changeset *data_reserved = NULL; 2854 int ret; 2855 u64 alloc_hint = 0; 2856 const u64 sectorsize = fs_info->sectorsize; 2857 u64 alloc_start = round_down(offset, sectorsize); 2858 u64 alloc_end = round_up(offset + len, sectorsize); 2859 u64 bytes_to_reserve = 0; 2860 bool space_reserved = false; 2861 2862 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 2863 alloc_end - alloc_start); 2864 if (IS_ERR(em)) { 2865 ret = PTR_ERR(em); 2866 goto out; 2867 } 2868 2869 /* 2870 * Avoid hole punching and extent allocation for some cases. More cases 2871 * could be considered, but these are unlikely common and we keep things 2872 * as simple as possible for now. Also, intentionally, if the target 2873 * range contains one or more prealloc extents together with regular 2874 * extents and holes, we drop all the existing extents and allocate a 2875 * new prealloc extent, so that we get a larger contiguous disk extent. 2876 */ 2877 if (em->start <= alloc_start && 2878 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2879 const u64 em_end = em->start + em->len; 2880 2881 if (em_end >= offset + len) { 2882 /* 2883 * The whole range is already a prealloc extent, 2884 * do nothing except updating the inode's i_size if 2885 * needed. 2886 */ 2887 free_extent_map(em); 2888 ret = btrfs_fallocate_update_isize(inode, offset + len, 2889 mode); 2890 goto out; 2891 } 2892 /* 2893 * Part of the range is already a prealloc extent, so operate 2894 * only on the remaining part of the range. 2895 */ 2896 alloc_start = em_end; 2897 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2898 len = offset + len - alloc_start; 2899 offset = alloc_start; 2900 alloc_hint = em->block_start + em->len; 2901 } 2902 free_extent_map(em); 2903 2904 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2905 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2906 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 2907 sectorsize); 2908 if (IS_ERR(em)) { 2909 ret = PTR_ERR(em); 2910 goto out; 2911 } 2912 2913 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2914 free_extent_map(em); 2915 ret = btrfs_fallocate_update_isize(inode, offset + len, 2916 mode); 2917 goto out; 2918 } 2919 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 2920 free_extent_map(em); 2921 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2922 0); 2923 if (!ret) 2924 ret = btrfs_fallocate_update_isize(inode, 2925 offset + len, 2926 mode); 2927 return ret; 2928 } 2929 free_extent_map(em); 2930 alloc_start = round_down(offset, sectorsize); 2931 alloc_end = alloc_start + sectorsize; 2932 goto reserve_space; 2933 } 2934 2935 alloc_start = round_up(offset, sectorsize); 2936 alloc_end = round_down(offset + len, sectorsize); 2937 2938 /* 2939 * For unaligned ranges, check the pages at the boundaries, they might 2940 * map to an extent, in which case we need to partially zero them, or 2941 * they might map to a hole, in which case we need our allocation range 2942 * to cover them. 2943 */ 2944 if (!IS_ALIGNED(offset, sectorsize)) { 2945 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2946 offset); 2947 if (ret < 0) 2948 goto out; 2949 if (ret == RANGE_BOUNDARY_HOLE) { 2950 alloc_start = round_down(offset, sectorsize); 2951 ret = 0; 2952 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2953 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2954 if (ret) 2955 goto out; 2956 } else { 2957 ret = 0; 2958 } 2959 } 2960 2961 if (!IS_ALIGNED(offset + len, sectorsize)) { 2962 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2963 offset + len); 2964 if (ret < 0) 2965 goto out; 2966 if (ret == RANGE_BOUNDARY_HOLE) { 2967 alloc_end = round_up(offset + len, sectorsize); 2968 ret = 0; 2969 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2970 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 2971 0, 1); 2972 if (ret) 2973 goto out; 2974 } else { 2975 ret = 0; 2976 } 2977 } 2978 2979 reserve_space: 2980 if (alloc_start < alloc_end) { 2981 struct extent_state *cached_state = NULL; 2982 const u64 lockstart = alloc_start; 2983 const u64 lockend = alloc_end - 1; 2984 2985 bytes_to_reserve = alloc_end - alloc_start; 2986 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 2987 bytes_to_reserve); 2988 if (ret < 0) 2989 goto out; 2990 space_reserved = true; 2991 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2992 &cached_state); 2993 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 2994 alloc_start, bytes_to_reserve); 2995 if (ret) { 2996 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 2997 lockend, &cached_state); 2998 goto out; 2999 } 3000 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3001 alloc_end - alloc_start, 3002 i_blocksize(inode), 3003 offset + len, &alloc_hint); 3004 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3005 &cached_state); 3006 /* btrfs_prealloc_file_range releases reserved space on error */ 3007 if (ret) { 3008 space_reserved = false; 3009 goto out; 3010 } 3011 } 3012 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3013 out: 3014 if (ret && space_reserved) 3015 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3016 alloc_start, bytes_to_reserve); 3017 extent_changeset_free(data_reserved); 3018 3019 return ret; 3020 } 3021 3022 static long btrfs_fallocate(struct file *file, int mode, 3023 loff_t offset, loff_t len) 3024 { 3025 struct inode *inode = file_inode(file); 3026 struct extent_state *cached_state = NULL; 3027 struct extent_changeset *data_reserved = NULL; 3028 struct falloc_range *range; 3029 struct falloc_range *tmp; 3030 struct list_head reserve_list; 3031 u64 cur_offset; 3032 u64 last_byte; 3033 u64 alloc_start; 3034 u64 alloc_end; 3035 u64 alloc_hint = 0; 3036 u64 locked_end; 3037 u64 actual_end = 0; 3038 u64 data_space_needed = 0; 3039 u64 data_space_reserved = 0; 3040 u64 qgroup_reserved = 0; 3041 struct extent_map *em; 3042 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize; 3043 int ret; 3044 3045 /* Do not allow fallocate in ZONED mode */ 3046 if (btrfs_is_zoned(btrfs_sb(inode->i_sb))) 3047 return -EOPNOTSUPP; 3048 3049 alloc_start = round_down(offset, blocksize); 3050 alloc_end = round_up(offset + len, blocksize); 3051 cur_offset = alloc_start; 3052 3053 /* Make sure we aren't being give some crap mode */ 3054 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3055 FALLOC_FL_ZERO_RANGE)) 3056 return -EOPNOTSUPP; 3057 3058 if (mode & FALLOC_FL_PUNCH_HOLE) 3059 return btrfs_punch_hole(file, offset, len); 3060 3061 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3062 3063 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3064 ret = inode_newsize_ok(inode, offset + len); 3065 if (ret) 3066 goto out; 3067 } 3068 3069 ret = file_modified(file); 3070 if (ret) 3071 goto out; 3072 3073 /* 3074 * TODO: Move these two operations after we have checked 3075 * accurate reserved space, or fallocate can still fail but 3076 * with page truncated or size expanded. 3077 * 3078 * But that's a minor problem and won't do much harm BTW. 3079 */ 3080 if (alloc_start > inode->i_size) { 3081 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3082 alloc_start); 3083 if (ret) 3084 goto out; 3085 } else if (offset + len > inode->i_size) { 3086 /* 3087 * If we are fallocating from the end of the file onward we 3088 * need to zero out the end of the block if i_size lands in the 3089 * middle of a block. 3090 */ 3091 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3092 if (ret) 3093 goto out; 3094 } 3095 3096 /* 3097 * We have locked the inode at the VFS level (in exclusive mode) and we 3098 * have locked the i_mmap_lock lock (in exclusive mode). Now before 3099 * locking the file range, flush all dealloc in the range and wait for 3100 * all ordered extents in the range to complete. After this we can lock 3101 * the file range and, due to the previous locking we did, we know there 3102 * can't be more delalloc or ordered extents in the range. 3103 */ 3104 ret = btrfs_wait_ordered_range(inode, alloc_start, 3105 alloc_end - alloc_start); 3106 if (ret) 3107 goto out; 3108 3109 if (mode & FALLOC_FL_ZERO_RANGE) { 3110 ret = btrfs_zero_range(inode, offset, len, mode); 3111 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3112 return ret; 3113 } 3114 3115 locked_end = alloc_end - 1; 3116 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3117 &cached_state); 3118 3119 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3120 3121 /* First, check if we exceed the qgroup limit */ 3122 INIT_LIST_HEAD(&reserve_list); 3123 while (cur_offset < alloc_end) { 3124 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3125 alloc_end - cur_offset); 3126 if (IS_ERR(em)) { 3127 ret = PTR_ERR(em); 3128 break; 3129 } 3130 last_byte = min(extent_map_end(em), alloc_end); 3131 actual_end = min_t(u64, extent_map_end(em), offset + len); 3132 last_byte = ALIGN(last_byte, blocksize); 3133 if (em->block_start == EXTENT_MAP_HOLE || 3134 (cur_offset >= inode->i_size && 3135 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3136 const u64 range_len = last_byte - cur_offset; 3137 3138 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3139 if (ret < 0) { 3140 free_extent_map(em); 3141 break; 3142 } 3143 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3144 &data_reserved, cur_offset, range_len); 3145 if (ret < 0) { 3146 free_extent_map(em); 3147 break; 3148 } 3149 qgroup_reserved += range_len; 3150 data_space_needed += range_len; 3151 } 3152 free_extent_map(em); 3153 cur_offset = last_byte; 3154 } 3155 3156 if (!ret && data_space_needed > 0) { 3157 /* 3158 * We are safe to reserve space here as we can't have delalloc 3159 * in the range, see above. 3160 */ 3161 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3162 data_space_needed); 3163 if (!ret) 3164 data_space_reserved = data_space_needed; 3165 } 3166 3167 /* 3168 * If ret is still 0, means we're OK to fallocate. 3169 * Or just cleanup the list and exit. 3170 */ 3171 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3172 if (!ret) { 3173 ret = btrfs_prealloc_file_range(inode, mode, 3174 range->start, 3175 range->len, i_blocksize(inode), 3176 offset + len, &alloc_hint); 3177 /* 3178 * btrfs_prealloc_file_range() releases space even 3179 * if it returns an error. 3180 */ 3181 data_space_reserved -= range->len; 3182 qgroup_reserved -= range->len; 3183 } else if (data_space_reserved > 0) { 3184 btrfs_free_reserved_data_space(BTRFS_I(inode), 3185 data_reserved, range->start, 3186 range->len); 3187 data_space_reserved -= range->len; 3188 qgroup_reserved -= range->len; 3189 } else if (qgroup_reserved > 0) { 3190 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3191 range->start, range->len); 3192 qgroup_reserved -= range->len; 3193 } 3194 list_del(&range->list); 3195 kfree(range); 3196 } 3197 if (ret < 0) 3198 goto out_unlock; 3199 3200 /* 3201 * We didn't need to allocate any more space, but we still extended the 3202 * size of the file so we need to update i_size and the inode item. 3203 */ 3204 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3205 out_unlock: 3206 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3207 &cached_state); 3208 out: 3209 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3210 extent_changeset_free(data_reserved); 3211 return ret; 3212 } 3213 3214 /* 3215 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range 3216 * that has unflushed and/or flushing delalloc. There might be other adjacent 3217 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps 3218 * looping while it gets adjacent subranges, and merging them together. 3219 */ 3220 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end, 3221 struct extent_state **cached_state, 3222 bool *search_io_tree, 3223 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3224 { 3225 u64 len = end + 1 - start; 3226 u64 delalloc_len = 0; 3227 struct btrfs_ordered_extent *oe; 3228 u64 oe_start; 3229 u64 oe_end; 3230 3231 /* 3232 * Search the io tree first for EXTENT_DELALLOC. If we find any, it 3233 * means we have delalloc (dirty pages) for which writeback has not 3234 * started yet. 3235 */ 3236 if (*search_io_tree) { 3237 spin_lock(&inode->lock); 3238 if (inode->delalloc_bytes > 0) { 3239 spin_unlock(&inode->lock); 3240 *delalloc_start_ret = start; 3241 delalloc_len = count_range_bits(&inode->io_tree, 3242 delalloc_start_ret, end, 3243 len, EXTENT_DELALLOC, 1, 3244 cached_state); 3245 } else { 3246 spin_unlock(&inode->lock); 3247 } 3248 } 3249 3250 if (delalloc_len > 0) { 3251 /* 3252 * If delalloc was found then *delalloc_start_ret has a sector size 3253 * aligned value (rounded down). 3254 */ 3255 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1; 3256 3257 if (*delalloc_start_ret == start) { 3258 /* Delalloc for the whole range, nothing more to do. */ 3259 if (*delalloc_end_ret == end) 3260 return true; 3261 /* Else trim our search range for ordered extents. */ 3262 start = *delalloc_end_ret + 1; 3263 len = end + 1 - start; 3264 } 3265 } else { 3266 /* No delalloc, future calls don't need to search again. */ 3267 *search_io_tree = false; 3268 } 3269 3270 /* 3271 * Now also check if there's any ordered extent in the range. 3272 * We do this because: 3273 * 3274 * 1) When delalloc is flushed, the file range is locked, we clear the 3275 * EXTENT_DELALLOC bit from the io tree and create an extent map and 3276 * an ordered extent for the write. So we might just have been called 3277 * after delalloc is flushed and before the ordered extent completes 3278 * and inserts the new file extent item in the subvolume's btree; 3279 * 3280 * 2) We may have an ordered extent created by flushing delalloc for a 3281 * subrange that starts before the subrange we found marked with 3282 * EXTENT_DELALLOC in the io tree. 3283 * 3284 * We could also use the extent map tree to find such delalloc that is 3285 * being flushed, but using the ordered extents tree is more efficient 3286 * because it's usually much smaller as ordered extents are removed from 3287 * the tree once they complete. With the extent maps, we mau have them 3288 * in the extent map tree for a very long time, and they were either 3289 * created by previous writes or loaded by read operations. 3290 */ 3291 oe = btrfs_lookup_first_ordered_range(inode, start, len); 3292 if (!oe) 3293 return (delalloc_len > 0); 3294 3295 /* The ordered extent may span beyond our search range. */ 3296 oe_start = max(oe->file_offset, start); 3297 oe_end = min(oe->file_offset + oe->num_bytes - 1, end); 3298 3299 btrfs_put_ordered_extent(oe); 3300 3301 /* Don't have unflushed delalloc, return the ordered extent range. */ 3302 if (delalloc_len == 0) { 3303 *delalloc_start_ret = oe_start; 3304 *delalloc_end_ret = oe_end; 3305 return true; 3306 } 3307 3308 /* 3309 * We have both unflushed delalloc (io_tree) and an ordered extent. 3310 * If the ranges are adjacent returned a combined range, otherwise 3311 * return the leftmost range. 3312 */ 3313 if (oe_start < *delalloc_start_ret) { 3314 if (oe_end < *delalloc_start_ret) 3315 *delalloc_end_ret = oe_end; 3316 *delalloc_start_ret = oe_start; 3317 } else if (*delalloc_end_ret + 1 == oe_start) { 3318 *delalloc_end_ret = oe_end; 3319 } 3320 3321 return true; 3322 } 3323 3324 /* 3325 * Check if there's delalloc in a given range. 3326 * 3327 * @inode: The inode. 3328 * @start: The start offset of the range. It does not need to be 3329 * sector size aligned. 3330 * @end: The end offset (inclusive value) of the search range. 3331 * It does not need to be sector size aligned. 3332 * @cached_state: Extent state record used for speeding up delalloc 3333 * searches in the inode's io_tree. Can be NULL. 3334 * @delalloc_start_ret: Output argument, set to the start offset of the 3335 * subrange found with delalloc (may not be sector size 3336 * aligned). 3337 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value) 3338 * of the subrange found with delalloc. 3339 * 3340 * Returns true if a subrange with delalloc is found within the given range, and 3341 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and 3342 * end offsets of the subrange. 3343 */ 3344 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, 3345 struct extent_state **cached_state, 3346 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3347 { 3348 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize); 3349 u64 prev_delalloc_end = 0; 3350 bool search_io_tree = true; 3351 bool ret = false; 3352 3353 while (cur_offset <= end) { 3354 u64 delalloc_start; 3355 u64 delalloc_end; 3356 bool delalloc; 3357 3358 delalloc = find_delalloc_subrange(inode, cur_offset, end, 3359 cached_state, &search_io_tree, 3360 &delalloc_start, 3361 &delalloc_end); 3362 if (!delalloc) 3363 break; 3364 3365 if (prev_delalloc_end == 0) { 3366 /* First subrange found. */ 3367 *delalloc_start_ret = max(delalloc_start, start); 3368 *delalloc_end_ret = delalloc_end; 3369 ret = true; 3370 } else if (delalloc_start == prev_delalloc_end + 1) { 3371 /* Subrange adjacent to the previous one, merge them. */ 3372 *delalloc_end_ret = delalloc_end; 3373 } else { 3374 /* Subrange not adjacent to the previous one, exit. */ 3375 break; 3376 } 3377 3378 prev_delalloc_end = delalloc_end; 3379 cur_offset = delalloc_end + 1; 3380 cond_resched(); 3381 } 3382 3383 return ret; 3384 } 3385 3386 /* 3387 * Check if there's a hole or delalloc range in a range representing a hole (or 3388 * prealloc extent) found in the inode's subvolume btree. 3389 * 3390 * @inode: The inode. 3391 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE). 3392 * @start: Start offset of the hole region. It does not need to be sector 3393 * size aligned. 3394 * @end: End offset (inclusive value) of the hole region. It does not 3395 * need to be sector size aligned. 3396 * @start_ret: Return parameter, used to set the start of the subrange in the 3397 * hole that matches the search criteria (seek mode), if such 3398 * subrange is found (return value of the function is true). 3399 * The value returned here may not be sector size aligned. 3400 * 3401 * Returns true if a subrange matching the given seek mode is found, and if one 3402 * is found, it updates @start_ret with the start of the subrange. 3403 */ 3404 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence, 3405 struct extent_state **cached_state, 3406 u64 start, u64 end, u64 *start_ret) 3407 { 3408 u64 delalloc_start; 3409 u64 delalloc_end; 3410 bool delalloc; 3411 3412 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state, 3413 &delalloc_start, &delalloc_end); 3414 if (delalloc && whence == SEEK_DATA) { 3415 *start_ret = delalloc_start; 3416 return true; 3417 } 3418 3419 if (delalloc && whence == SEEK_HOLE) { 3420 /* 3421 * We found delalloc but it starts after out start offset. So we 3422 * have a hole between our start offset and the delalloc start. 3423 */ 3424 if (start < delalloc_start) { 3425 *start_ret = start; 3426 return true; 3427 } 3428 /* 3429 * Delalloc range starts at our start offset. 3430 * If the delalloc range's length is smaller than our range, 3431 * then it means we have a hole that starts where the delalloc 3432 * subrange ends. 3433 */ 3434 if (delalloc_end < end) { 3435 *start_ret = delalloc_end + 1; 3436 return true; 3437 } 3438 3439 /* There's delalloc for the whole range. */ 3440 return false; 3441 } 3442 3443 if (!delalloc && whence == SEEK_HOLE) { 3444 *start_ret = start; 3445 return true; 3446 } 3447 3448 /* 3449 * No delalloc in the range and we are seeking for data. The caller has 3450 * to iterate to the next extent item in the subvolume btree. 3451 */ 3452 return false; 3453 } 3454 3455 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence) 3456 { 3457 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host); 3458 struct btrfs_file_private *private = file->private_data; 3459 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3460 struct extent_state *cached_state = NULL; 3461 struct extent_state **delalloc_cached_state; 3462 const loff_t i_size = i_size_read(&inode->vfs_inode); 3463 const u64 ino = btrfs_ino(inode); 3464 struct btrfs_root *root = inode->root; 3465 struct btrfs_path *path; 3466 struct btrfs_key key; 3467 u64 last_extent_end; 3468 u64 lockstart; 3469 u64 lockend; 3470 u64 start; 3471 int ret; 3472 bool found = false; 3473 3474 if (i_size == 0 || offset >= i_size) 3475 return -ENXIO; 3476 3477 /* 3478 * Quick path. If the inode has no prealloc extents and its number of 3479 * bytes used matches its i_size, then it can not have holes. 3480 */ 3481 if (whence == SEEK_HOLE && 3482 !(inode->flags & BTRFS_INODE_PREALLOC) && 3483 inode_get_bytes(&inode->vfs_inode) == i_size) 3484 return i_size; 3485 3486 if (!private) { 3487 private = kzalloc(sizeof(*private), GFP_KERNEL); 3488 /* 3489 * No worries if memory allocation failed. 3490 * The private structure is used only for speeding up multiple 3491 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc, 3492 * so everything will still be correct. 3493 */ 3494 file->private_data = private; 3495 } 3496 3497 if (private) 3498 delalloc_cached_state = &private->llseek_cached_state; 3499 else 3500 delalloc_cached_state = NULL; 3501 3502 /* 3503 * offset can be negative, in this case we start finding DATA/HOLE from 3504 * the very start of the file. 3505 */ 3506 start = max_t(loff_t, 0, offset); 3507 3508 lockstart = round_down(start, fs_info->sectorsize); 3509 lockend = round_up(i_size, fs_info->sectorsize); 3510 if (lockend <= lockstart) 3511 lockend = lockstart + fs_info->sectorsize; 3512 lockend--; 3513 3514 path = btrfs_alloc_path(); 3515 if (!path) 3516 return -ENOMEM; 3517 path->reada = READA_FORWARD; 3518 3519 key.objectid = ino; 3520 key.type = BTRFS_EXTENT_DATA_KEY; 3521 key.offset = start; 3522 3523 last_extent_end = lockstart; 3524 3525 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3526 3527 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3528 if (ret < 0) { 3529 goto out; 3530 } else if (ret > 0 && path->slots[0] > 0) { 3531 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3532 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3533 path->slots[0]--; 3534 } 3535 3536 while (start < i_size) { 3537 struct extent_buffer *leaf = path->nodes[0]; 3538 struct btrfs_file_extent_item *extent; 3539 u64 extent_end; 3540 u8 type; 3541 3542 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3543 ret = btrfs_next_leaf(root, path); 3544 if (ret < 0) 3545 goto out; 3546 else if (ret > 0) 3547 break; 3548 3549 leaf = path->nodes[0]; 3550 } 3551 3552 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3553 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3554 break; 3555 3556 extent_end = btrfs_file_extent_end(path); 3557 3558 /* 3559 * In the first iteration we may have a slot that points to an 3560 * extent that ends before our start offset, so skip it. 3561 */ 3562 if (extent_end <= start) { 3563 path->slots[0]++; 3564 continue; 3565 } 3566 3567 /* We have an implicit hole, NO_HOLES feature is likely set. */ 3568 if (last_extent_end < key.offset) { 3569 u64 search_start = last_extent_end; 3570 u64 found_start; 3571 3572 /* 3573 * First iteration, @start matches @offset and it's 3574 * within the hole. 3575 */ 3576 if (start == offset) 3577 search_start = offset; 3578 3579 found = find_desired_extent_in_hole(inode, whence, 3580 delalloc_cached_state, 3581 search_start, 3582 key.offset - 1, 3583 &found_start); 3584 if (found) { 3585 start = found_start; 3586 break; 3587 } 3588 /* 3589 * Didn't find data or a hole (due to delalloc) in the 3590 * implicit hole range, so need to analyze the extent. 3591 */ 3592 } 3593 3594 extent = btrfs_item_ptr(leaf, path->slots[0], 3595 struct btrfs_file_extent_item); 3596 type = btrfs_file_extent_type(leaf, extent); 3597 3598 /* 3599 * Can't access the extent's disk_bytenr field if this is an 3600 * inline extent, since at that offset, it's where the extent 3601 * data starts. 3602 */ 3603 if (type == BTRFS_FILE_EXTENT_PREALLOC || 3604 (type == BTRFS_FILE_EXTENT_REG && 3605 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) { 3606 /* 3607 * Explicit hole or prealloc extent, search for delalloc. 3608 * A prealloc extent is treated like a hole. 3609 */ 3610 u64 search_start = key.offset; 3611 u64 found_start; 3612 3613 /* 3614 * First iteration, @start matches @offset and it's 3615 * within the hole. 3616 */ 3617 if (start == offset) 3618 search_start = offset; 3619 3620 found = find_desired_extent_in_hole(inode, whence, 3621 delalloc_cached_state, 3622 search_start, 3623 extent_end - 1, 3624 &found_start); 3625 if (found) { 3626 start = found_start; 3627 break; 3628 } 3629 /* 3630 * Didn't find data or a hole (due to delalloc) in the 3631 * implicit hole range, so need to analyze the next 3632 * extent item. 3633 */ 3634 } else { 3635 /* 3636 * Found a regular or inline extent. 3637 * If we are seeking for data, adjust the start offset 3638 * and stop, we're done. 3639 */ 3640 if (whence == SEEK_DATA) { 3641 start = max_t(u64, key.offset, offset); 3642 found = true; 3643 break; 3644 } 3645 /* 3646 * Else, we are seeking for a hole, check the next file 3647 * extent item. 3648 */ 3649 } 3650 3651 start = extent_end; 3652 last_extent_end = extent_end; 3653 path->slots[0]++; 3654 if (fatal_signal_pending(current)) { 3655 ret = -EINTR; 3656 goto out; 3657 } 3658 cond_resched(); 3659 } 3660 3661 /* We have an implicit hole from the last extent found up to i_size. */ 3662 if (!found && start < i_size) { 3663 found = find_desired_extent_in_hole(inode, whence, 3664 delalloc_cached_state, start, 3665 i_size - 1, &start); 3666 if (!found) 3667 start = i_size; 3668 } 3669 3670 out: 3671 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3672 btrfs_free_path(path); 3673 3674 if (ret < 0) 3675 return ret; 3676 3677 if (whence == SEEK_DATA && start >= i_size) 3678 return -ENXIO; 3679 3680 return min_t(loff_t, start, i_size); 3681 } 3682 3683 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3684 { 3685 struct inode *inode = file->f_mapping->host; 3686 3687 switch (whence) { 3688 default: 3689 return generic_file_llseek(file, offset, whence); 3690 case SEEK_DATA: 3691 case SEEK_HOLE: 3692 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3693 offset = find_desired_extent(file, offset, whence); 3694 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3695 break; 3696 } 3697 3698 if (offset < 0) 3699 return offset; 3700 3701 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3702 } 3703 3704 static int btrfs_file_open(struct inode *inode, struct file *filp) 3705 { 3706 int ret; 3707 3708 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC; 3709 3710 ret = fsverity_file_open(inode, filp); 3711 if (ret) 3712 return ret; 3713 return generic_file_open(inode, filp); 3714 } 3715 3716 static int check_direct_read(struct btrfs_fs_info *fs_info, 3717 const struct iov_iter *iter, loff_t offset) 3718 { 3719 int ret; 3720 int i, seg; 3721 3722 ret = check_direct_IO(fs_info, iter, offset); 3723 if (ret < 0) 3724 return ret; 3725 3726 if (!iter_is_iovec(iter)) 3727 return 0; 3728 3729 for (seg = 0; seg < iter->nr_segs; seg++) { 3730 for (i = seg + 1; i < iter->nr_segs; i++) { 3731 const struct iovec *iov1 = iter_iov(iter) + seg; 3732 const struct iovec *iov2 = iter_iov(iter) + i; 3733 3734 if (iov1->iov_base == iov2->iov_base) 3735 return -EINVAL; 3736 } 3737 } 3738 return 0; 3739 } 3740 3741 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 3742 { 3743 struct inode *inode = file_inode(iocb->ki_filp); 3744 size_t prev_left = 0; 3745 ssize_t read = 0; 3746 ssize_t ret; 3747 3748 if (fsverity_active(inode)) 3749 return 0; 3750 3751 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos)) 3752 return 0; 3753 3754 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3755 again: 3756 /* 3757 * This is similar to what we do for direct IO writes, see the comment 3758 * at btrfs_direct_write(), but we also disable page faults in addition 3759 * to disabling them only at the iov_iter level. This is because when 3760 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(), 3761 * which can still trigger page fault ins despite having set ->nofault 3762 * to true of our 'to' iov_iter. 3763 * 3764 * The difference to direct IO writes is that we deadlock when trying 3765 * to lock the extent range in the inode's tree during he page reads 3766 * triggered by the fault in (while for writes it is due to waiting for 3767 * our own ordered extent). This is because for direct IO reads, 3768 * btrfs_dio_iomap_begin() returns with the extent range locked, which 3769 * is only unlocked in the endio callback (end_bio_extent_readpage()). 3770 */ 3771 pagefault_disable(); 3772 to->nofault = true; 3773 ret = btrfs_dio_read(iocb, to, read); 3774 to->nofault = false; 3775 pagefault_enable(); 3776 3777 /* No increment (+=) because iomap returns a cumulative value. */ 3778 if (ret > 0) 3779 read = ret; 3780 3781 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) { 3782 const size_t left = iov_iter_count(to); 3783 3784 if (left == prev_left) { 3785 /* 3786 * We didn't make any progress since the last attempt, 3787 * fallback to a buffered read for the remainder of the 3788 * range. This is just to avoid any possibility of looping 3789 * for too long. 3790 */ 3791 ret = read; 3792 } else { 3793 /* 3794 * We made some progress since the last retry or this is 3795 * the first time we are retrying. Fault in as many pages 3796 * as possible and retry. 3797 */ 3798 fault_in_iov_iter_writeable(to, left); 3799 prev_left = left; 3800 goto again; 3801 } 3802 } 3803 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3804 return ret < 0 ? ret : read; 3805 } 3806 3807 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3808 { 3809 ssize_t ret = 0; 3810 3811 if (iocb->ki_flags & IOCB_DIRECT) { 3812 ret = btrfs_direct_read(iocb, to); 3813 if (ret < 0 || !iov_iter_count(to) || 3814 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3815 return ret; 3816 } 3817 3818 return filemap_read(iocb, to, ret); 3819 } 3820 3821 const struct file_operations btrfs_file_operations = { 3822 .llseek = btrfs_file_llseek, 3823 .read_iter = btrfs_file_read_iter, 3824 .splice_read = generic_file_splice_read, 3825 .write_iter = btrfs_file_write_iter, 3826 .splice_write = iter_file_splice_write, 3827 .mmap = btrfs_file_mmap, 3828 .open = btrfs_file_open, 3829 .release = btrfs_release_file, 3830 .get_unmapped_area = thp_get_unmapped_area, 3831 .fsync = btrfs_sync_file, 3832 .fallocate = btrfs_fallocate, 3833 .unlocked_ioctl = btrfs_ioctl, 3834 #ifdef CONFIG_COMPAT 3835 .compat_ioctl = btrfs_compat_ioctl, 3836 #endif 3837 .remap_file_range = btrfs_remap_file_range, 3838 }; 3839 3840 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3841 { 3842 int ret; 3843 3844 /* 3845 * So with compression we will find and lock a dirty page and clear the 3846 * first one as dirty, setup an async extent, and immediately return 3847 * with the entire range locked but with nobody actually marked with 3848 * writeback. So we can't just filemap_write_and_wait_range() and 3849 * expect it to work since it will just kick off a thread to do the 3850 * actual work. So we need to call filemap_fdatawrite_range _again_ 3851 * since it will wait on the page lock, which won't be unlocked until 3852 * after the pages have been marked as writeback and so we're good to go 3853 * from there. We have to do this otherwise we'll miss the ordered 3854 * extents and that results in badness. Please Josef, do not think you 3855 * know better and pull this out at some point in the future, it is 3856 * right and you are wrong. 3857 */ 3858 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3859 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3860 &BTRFS_I(inode)->runtime_flags)) 3861 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3862 3863 return ret; 3864 } 3865