xref: /openbmc/linux/fs/btrfs/file.c (revision 70151949)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "print-tree.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "volumes.h"
28 #include "qgroup.h"
29 #include "compression.h"
30 #include "delalloc-space.h"
31 #include "reflink.h"
32 #include "subpage.h"
33 #include "fs.h"
34 #include "accessors.h"
35 #include "extent-tree.h"
36 #include "file-item.h"
37 #include "ioctl.h"
38 #include "file.h"
39 #include "super.h"
40 
41 /* simple helper to fault in pages and copy.  This should go away
42  * and be replaced with calls into generic code.
43  */
44 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
45 					 struct page **prepared_pages,
46 					 struct iov_iter *i)
47 {
48 	size_t copied = 0;
49 	size_t total_copied = 0;
50 	int pg = 0;
51 	int offset = offset_in_page(pos);
52 
53 	while (write_bytes > 0) {
54 		size_t count = min_t(size_t,
55 				     PAGE_SIZE - offset, write_bytes);
56 		struct page *page = prepared_pages[pg];
57 		/*
58 		 * Copy data from userspace to the current page
59 		 */
60 		copied = copy_page_from_iter_atomic(page, offset, count, i);
61 
62 		/* Flush processor's dcache for this page */
63 		flush_dcache_page(page);
64 
65 		/*
66 		 * if we get a partial write, we can end up with
67 		 * partially up to date pages.  These add
68 		 * a lot of complexity, so make sure they don't
69 		 * happen by forcing this copy to be retried.
70 		 *
71 		 * The rest of the btrfs_file_write code will fall
72 		 * back to page at a time copies after we return 0.
73 		 */
74 		if (unlikely(copied < count)) {
75 			if (!PageUptodate(page)) {
76 				iov_iter_revert(i, copied);
77 				copied = 0;
78 			}
79 			if (!copied)
80 				break;
81 		}
82 
83 		write_bytes -= copied;
84 		total_copied += copied;
85 		offset += copied;
86 		if (offset == PAGE_SIZE) {
87 			pg++;
88 			offset = 0;
89 		}
90 	}
91 	return total_copied;
92 }
93 
94 /*
95  * unlocks pages after btrfs_file_write is done with them
96  */
97 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
98 			     struct page **pages, size_t num_pages,
99 			     u64 pos, u64 copied)
100 {
101 	size_t i;
102 	u64 block_start = round_down(pos, fs_info->sectorsize);
103 	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
104 
105 	ASSERT(block_len <= U32_MAX);
106 	for (i = 0; i < num_pages; i++) {
107 		/* page checked is some magic around finding pages that
108 		 * have been modified without going through btrfs_set_page_dirty
109 		 * clear it here. There should be no need to mark the pages
110 		 * accessed as prepare_pages should have marked them accessed
111 		 * in prepare_pages via find_or_create_page()
112 		 */
113 		btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
114 					       block_len);
115 		unlock_page(pages[i]);
116 		put_page(pages[i]);
117 	}
118 }
119 
120 /*
121  * After btrfs_copy_from_user(), update the following things for delalloc:
122  * - Mark newly dirtied pages as DELALLOC in the io tree.
123  *   Used to advise which range is to be written back.
124  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
125  * - Update inode size for past EOF write
126  */
127 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
128 		      size_t num_pages, loff_t pos, size_t write_bytes,
129 		      struct extent_state **cached, bool noreserve)
130 {
131 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
132 	int err = 0;
133 	int i;
134 	u64 num_bytes;
135 	u64 start_pos;
136 	u64 end_of_last_block;
137 	u64 end_pos = pos + write_bytes;
138 	loff_t isize = i_size_read(&inode->vfs_inode);
139 	unsigned int extra_bits = 0;
140 
141 	if (write_bytes == 0)
142 		return 0;
143 
144 	if (noreserve)
145 		extra_bits |= EXTENT_NORESERVE;
146 
147 	start_pos = round_down(pos, fs_info->sectorsize);
148 	num_bytes = round_up(write_bytes + pos - start_pos,
149 			     fs_info->sectorsize);
150 	ASSERT(num_bytes <= U32_MAX);
151 
152 	end_of_last_block = start_pos + num_bytes - 1;
153 
154 	/*
155 	 * The pages may have already been dirty, clear out old accounting so
156 	 * we can set things up properly
157 	 */
158 	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
159 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
160 			 cached);
161 
162 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
163 					extra_bits, cached);
164 	if (err)
165 		return err;
166 
167 	for (i = 0; i < num_pages; i++) {
168 		struct page *p = pages[i];
169 
170 		btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
171 		btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
172 		btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
173 	}
174 
175 	/*
176 	 * we've only changed i_size in ram, and we haven't updated
177 	 * the disk i_size.  There is no need to log the inode
178 	 * at this time.
179 	 */
180 	if (end_pos > isize)
181 		i_size_write(&inode->vfs_inode, end_pos);
182 	return 0;
183 }
184 
185 /*
186  * this is very complex, but the basic idea is to drop all extents
187  * in the range start - end.  hint_block is filled in with a block number
188  * that would be a good hint to the block allocator for this file.
189  *
190  * If an extent intersects the range but is not entirely inside the range
191  * it is either truncated or split.  Anything entirely inside the range
192  * is deleted from the tree.
193  *
194  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
195  * to deal with that. We set the field 'bytes_found' of the arguments structure
196  * with the number of allocated bytes found in the target range, so that the
197  * caller can update the inode's number of bytes in an atomic way when
198  * replacing extents in a range to avoid races with stat(2).
199  */
200 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
201 		       struct btrfs_root *root, struct btrfs_inode *inode,
202 		       struct btrfs_drop_extents_args *args)
203 {
204 	struct btrfs_fs_info *fs_info = root->fs_info;
205 	struct extent_buffer *leaf;
206 	struct btrfs_file_extent_item *fi;
207 	struct btrfs_ref ref = { 0 };
208 	struct btrfs_key key;
209 	struct btrfs_key new_key;
210 	u64 ino = btrfs_ino(inode);
211 	u64 search_start = args->start;
212 	u64 disk_bytenr = 0;
213 	u64 num_bytes = 0;
214 	u64 extent_offset = 0;
215 	u64 extent_end = 0;
216 	u64 last_end = args->start;
217 	int del_nr = 0;
218 	int del_slot = 0;
219 	int extent_type;
220 	int recow;
221 	int ret;
222 	int modify_tree = -1;
223 	int update_refs;
224 	int found = 0;
225 	struct btrfs_path *path = args->path;
226 
227 	args->bytes_found = 0;
228 	args->extent_inserted = false;
229 
230 	/* Must always have a path if ->replace_extent is true */
231 	ASSERT(!(args->replace_extent && !args->path));
232 
233 	if (!path) {
234 		path = btrfs_alloc_path();
235 		if (!path) {
236 			ret = -ENOMEM;
237 			goto out;
238 		}
239 	}
240 
241 	if (args->drop_cache)
242 		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
243 
244 	if (args->start >= inode->disk_i_size && !args->replace_extent)
245 		modify_tree = 0;
246 
247 	update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
248 	while (1) {
249 		recow = 0;
250 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
251 					       search_start, modify_tree);
252 		if (ret < 0)
253 			break;
254 		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
255 			leaf = path->nodes[0];
256 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
257 			if (key.objectid == ino &&
258 			    key.type == BTRFS_EXTENT_DATA_KEY)
259 				path->slots[0]--;
260 		}
261 		ret = 0;
262 next_slot:
263 		leaf = path->nodes[0];
264 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
265 			BUG_ON(del_nr > 0);
266 			ret = btrfs_next_leaf(root, path);
267 			if (ret < 0)
268 				break;
269 			if (ret > 0) {
270 				ret = 0;
271 				break;
272 			}
273 			leaf = path->nodes[0];
274 			recow = 1;
275 		}
276 
277 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
278 
279 		if (key.objectid > ino)
280 			break;
281 		if (WARN_ON_ONCE(key.objectid < ino) ||
282 		    key.type < BTRFS_EXTENT_DATA_KEY) {
283 			ASSERT(del_nr == 0);
284 			path->slots[0]++;
285 			goto next_slot;
286 		}
287 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
288 			break;
289 
290 		fi = btrfs_item_ptr(leaf, path->slots[0],
291 				    struct btrfs_file_extent_item);
292 		extent_type = btrfs_file_extent_type(leaf, fi);
293 
294 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
295 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
296 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
297 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
298 			extent_offset = btrfs_file_extent_offset(leaf, fi);
299 			extent_end = key.offset +
300 				btrfs_file_extent_num_bytes(leaf, fi);
301 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
302 			extent_end = key.offset +
303 				btrfs_file_extent_ram_bytes(leaf, fi);
304 		} else {
305 			/* can't happen */
306 			BUG();
307 		}
308 
309 		/*
310 		 * Don't skip extent items representing 0 byte lengths. They
311 		 * used to be created (bug) if while punching holes we hit
312 		 * -ENOSPC condition. So if we find one here, just ensure we
313 		 * delete it, otherwise we would insert a new file extent item
314 		 * with the same key (offset) as that 0 bytes length file
315 		 * extent item in the call to setup_items_for_insert() later
316 		 * in this function.
317 		 */
318 		if (extent_end == key.offset && extent_end >= search_start) {
319 			last_end = extent_end;
320 			goto delete_extent_item;
321 		}
322 
323 		if (extent_end <= search_start) {
324 			path->slots[0]++;
325 			goto next_slot;
326 		}
327 
328 		found = 1;
329 		search_start = max(key.offset, args->start);
330 		if (recow || !modify_tree) {
331 			modify_tree = -1;
332 			btrfs_release_path(path);
333 			continue;
334 		}
335 
336 		/*
337 		 *     | - range to drop - |
338 		 *  | -------- extent -------- |
339 		 */
340 		if (args->start > key.offset && args->end < extent_end) {
341 			BUG_ON(del_nr > 0);
342 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
343 				ret = -EOPNOTSUPP;
344 				break;
345 			}
346 
347 			memcpy(&new_key, &key, sizeof(new_key));
348 			new_key.offset = args->start;
349 			ret = btrfs_duplicate_item(trans, root, path,
350 						   &new_key);
351 			if (ret == -EAGAIN) {
352 				btrfs_release_path(path);
353 				continue;
354 			}
355 			if (ret < 0)
356 				break;
357 
358 			leaf = path->nodes[0];
359 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
360 					    struct btrfs_file_extent_item);
361 			btrfs_set_file_extent_num_bytes(leaf, fi,
362 							args->start - key.offset);
363 
364 			fi = btrfs_item_ptr(leaf, path->slots[0],
365 					    struct btrfs_file_extent_item);
366 
367 			extent_offset += args->start - key.offset;
368 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
369 			btrfs_set_file_extent_num_bytes(leaf, fi,
370 							extent_end - args->start);
371 			btrfs_mark_buffer_dirty(trans, leaf);
372 
373 			if (update_refs && disk_bytenr > 0) {
374 				btrfs_init_generic_ref(&ref,
375 						BTRFS_ADD_DELAYED_REF,
376 						disk_bytenr, num_bytes, 0);
377 				btrfs_init_data_ref(&ref,
378 						root->root_key.objectid,
379 						new_key.objectid,
380 						args->start - extent_offset,
381 						0, false);
382 				ret = btrfs_inc_extent_ref(trans, &ref);
383 				if (ret) {
384 					btrfs_abort_transaction(trans, ret);
385 					break;
386 				}
387 			}
388 			key.offset = args->start;
389 		}
390 		/*
391 		 * From here on out we will have actually dropped something, so
392 		 * last_end can be updated.
393 		 */
394 		last_end = extent_end;
395 
396 		/*
397 		 *  | ---- range to drop ----- |
398 		 *      | -------- extent -------- |
399 		 */
400 		if (args->start <= key.offset && args->end < extent_end) {
401 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
402 				ret = -EOPNOTSUPP;
403 				break;
404 			}
405 
406 			memcpy(&new_key, &key, sizeof(new_key));
407 			new_key.offset = args->end;
408 			btrfs_set_item_key_safe(trans, path, &new_key);
409 
410 			extent_offset += args->end - key.offset;
411 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
412 			btrfs_set_file_extent_num_bytes(leaf, fi,
413 							extent_end - args->end);
414 			btrfs_mark_buffer_dirty(trans, leaf);
415 			if (update_refs && disk_bytenr > 0)
416 				args->bytes_found += args->end - key.offset;
417 			break;
418 		}
419 
420 		search_start = extent_end;
421 		/*
422 		 *       | ---- range to drop ----- |
423 		 *  | -------- extent -------- |
424 		 */
425 		if (args->start > key.offset && args->end >= extent_end) {
426 			BUG_ON(del_nr > 0);
427 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
428 				ret = -EOPNOTSUPP;
429 				break;
430 			}
431 
432 			btrfs_set_file_extent_num_bytes(leaf, fi,
433 							args->start - key.offset);
434 			btrfs_mark_buffer_dirty(trans, leaf);
435 			if (update_refs && disk_bytenr > 0)
436 				args->bytes_found += extent_end - args->start;
437 			if (args->end == extent_end)
438 				break;
439 
440 			path->slots[0]++;
441 			goto next_slot;
442 		}
443 
444 		/*
445 		 *  | ---- range to drop ----- |
446 		 *    | ------ extent ------ |
447 		 */
448 		if (args->start <= key.offset && args->end >= extent_end) {
449 delete_extent_item:
450 			if (del_nr == 0) {
451 				del_slot = path->slots[0];
452 				del_nr = 1;
453 			} else {
454 				BUG_ON(del_slot + del_nr != path->slots[0]);
455 				del_nr++;
456 			}
457 
458 			if (update_refs &&
459 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
460 				args->bytes_found += extent_end - key.offset;
461 				extent_end = ALIGN(extent_end,
462 						   fs_info->sectorsize);
463 			} else if (update_refs && disk_bytenr > 0) {
464 				btrfs_init_generic_ref(&ref,
465 						BTRFS_DROP_DELAYED_REF,
466 						disk_bytenr, num_bytes, 0);
467 				btrfs_init_data_ref(&ref,
468 						root->root_key.objectid,
469 						key.objectid,
470 						key.offset - extent_offset, 0,
471 						false);
472 				ret = btrfs_free_extent(trans, &ref);
473 				if (ret) {
474 					btrfs_abort_transaction(trans, ret);
475 					break;
476 				}
477 				args->bytes_found += extent_end - key.offset;
478 			}
479 
480 			if (args->end == extent_end)
481 				break;
482 
483 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
484 				path->slots[0]++;
485 				goto next_slot;
486 			}
487 
488 			ret = btrfs_del_items(trans, root, path, del_slot,
489 					      del_nr);
490 			if (ret) {
491 				btrfs_abort_transaction(trans, ret);
492 				break;
493 			}
494 
495 			del_nr = 0;
496 			del_slot = 0;
497 
498 			btrfs_release_path(path);
499 			continue;
500 		}
501 
502 		BUG();
503 	}
504 
505 	if (!ret && del_nr > 0) {
506 		/*
507 		 * Set path->slots[0] to first slot, so that after the delete
508 		 * if items are move off from our leaf to its immediate left or
509 		 * right neighbor leafs, we end up with a correct and adjusted
510 		 * path->slots[0] for our insertion (if args->replace_extent).
511 		 */
512 		path->slots[0] = del_slot;
513 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
514 		if (ret)
515 			btrfs_abort_transaction(trans, ret);
516 	}
517 
518 	leaf = path->nodes[0];
519 	/*
520 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
521 	 * which case it unlocked our path, so check path->locks[0] matches a
522 	 * write lock.
523 	 */
524 	if (!ret && args->replace_extent &&
525 	    path->locks[0] == BTRFS_WRITE_LOCK &&
526 	    btrfs_leaf_free_space(leaf) >=
527 	    sizeof(struct btrfs_item) + args->extent_item_size) {
528 
529 		key.objectid = ino;
530 		key.type = BTRFS_EXTENT_DATA_KEY;
531 		key.offset = args->start;
532 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
533 			struct btrfs_key slot_key;
534 
535 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
536 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
537 				path->slots[0]++;
538 		}
539 		btrfs_setup_item_for_insert(trans, root, path, &key,
540 					    args->extent_item_size);
541 		args->extent_inserted = true;
542 	}
543 
544 	if (!args->path)
545 		btrfs_free_path(path);
546 	else if (!args->extent_inserted)
547 		btrfs_release_path(path);
548 out:
549 	args->drop_end = found ? min(args->end, last_end) : args->end;
550 
551 	return ret;
552 }
553 
554 static int extent_mergeable(struct extent_buffer *leaf, int slot,
555 			    u64 objectid, u64 bytenr, u64 orig_offset,
556 			    u64 *start, u64 *end)
557 {
558 	struct btrfs_file_extent_item *fi;
559 	struct btrfs_key key;
560 	u64 extent_end;
561 
562 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
563 		return 0;
564 
565 	btrfs_item_key_to_cpu(leaf, &key, slot);
566 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
567 		return 0;
568 
569 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
570 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
571 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
572 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
573 	    btrfs_file_extent_compression(leaf, fi) ||
574 	    btrfs_file_extent_encryption(leaf, fi) ||
575 	    btrfs_file_extent_other_encoding(leaf, fi))
576 		return 0;
577 
578 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
579 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
580 		return 0;
581 
582 	*start = key.offset;
583 	*end = extent_end;
584 	return 1;
585 }
586 
587 /*
588  * Mark extent in the range start - end as written.
589  *
590  * This changes extent type from 'pre-allocated' to 'regular'. If only
591  * part of extent is marked as written, the extent will be split into
592  * two or three.
593  */
594 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
595 			      struct btrfs_inode *inode, u64 start, u64 end)
596 {
597 	struct btrfs_root *root = inode->root;
598 	struct extent_buffer *leaf;
599 	struct btrfs_path *path;
600 	struct btrfs_file_extent_item *fi;
601 	struct btrfs_ref ref = { 0 };
602 	struct btrfs_key key;
603 	struct btrfs_key new_key;
604 	u64 bytenr;
605 	u64 num_bytes;
606 	u64 extent_end;
607 	u64 orig_offset;
608 	u64 other_start;
609 	u64 other_end;
610 	u64 split;
611 	int del_nr = 0;
612 	int del_slot = 0;
613 	int recow;
614 	int ret = 0;
615 	u64 ino = btrfs_ino(inode);
616 
617 	path = btrfs_alloc_path();
618 	if (!path)
619 		return -ENOMEM;
620 again:
621 	recow = 0;
622 	split = start;
623 	key.objectid = ino;
624 	key.type = BTRFS_EXTENT_DATA_KEY;
625 	key.offset = split;
626 
627 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
628 	if (ret < 0)
629 		goto out;
630 	if (ret > 0 && path->slots[0] > 0)
631 		path->slots[0]--;
632 
633 	leaf = path->nodes[0];
634 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
635 	if (key.objectid != ino ||
636 	    key.type != BTRFS_EXTENT_DATA_KEY) {
637 		ret = -EINVAL;
638 		btrfs_abort_transaction(trans, ret);
639 		goto out;
640 	}
641 	fi = btrfs_item_ptr(leaf, path->slots[0],
642 			    struct btrfs_file_extent_item);
643 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
644 		ret = -EINVAL;
645 		btrfs_abort_transaction(trans, ret);
646 		goto out;
647 	}
648 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
649 	if (key.offset > start || extent_end < end) {
650 		ret = -EINVAL;
651 		btrfs_abort_transaction(trans, ret);
652 		goto out;
653 	}
654 
655 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
656 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
657 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
658 	memcpy(&new_key, &key, sizeof(new_key));
659 
660 	if (start == key.offset && end < extent_end) {
661 		other_start = 0;
662 		other_end = start;
663 		if (extent_mergeable(leaf, path->slots[0] - 1,
664 				     ino, bytenr, orig_offset,
665 				     &other_start, &other_end)) {
666 			new_key.offset = end;
667 			btrfs_set_item_key_safe(trans, path, &new_key);
668 			fi = btrfs_item_ptr(leaf, path->slots[0],
669 					    struct btrfs_file_extent_item);
670 			btrfs_set_file_extent_generation(leaf, fi,
671 							 trans->transid);
672 			btrfs_set_file_extent_num_bytes(leaf, fi,
673 							extent_end - end);
674 			btrfs_set_file_extent_offset(leaf, fi,
675 						     end - orig_offset);
676 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
677 					    struct btrfs_file_extent_item);
678 			btrfs_set_file_extent_generation(leaf, fi,
679 							 trans->transid);
680 			btrfs_set_file_extent_num_bytes(leaf, fi,
681 							end - other_start);
682 			btrfs_mark_buffer_dirty(trans, leaf);
683 			goto out;
684 		}
685 	}
686 
687 	if (start > key.offset && end == extent_end) {
688 		other_start = end;
689 		other_end = 0;
690 		if (extent_mergeable(leaf, path->slots[0] + 1,
691 				     ino, bytenr, orig_offset,
692 				     &other_start, &other_end)) {
693 			fi = btrfs_item_ptr(leaf, path->slots[0],
694 					    struct btrfs_file_extent_item);
695 			btrfs_set_file_extent_num_bytes(leaf, fi,
696 							start - key.offset);
697 			btrfs_set_file_extent_generation(leaf, fi,
698 							 trans->transid);
699 			path->slots[0]++;
700 			new_key.offset = start;
701 			btrfs_set_item_key_safe(trans, path, &new_key);
702 
703 			fi = btrfs_item_ptr(leaf, path->slots[0],
704 					    struct btrfs_file_extent_item);
705 			btrfs_set_file_extent_generation(leaf, fi,
706 							 trans->transid);
707 			btrfs_set_file_extent_num_bytes(leaf, fi,
708 							other_end - start);
709 			btrfs_set_file_extent_offset(leaf, fi,
710 						     start - orig_offset);
711 			btrfs_mark_buffer_dirty(trans, leaf);
712 			goto out;
713 		}
714 	}
715 
716 	while (start > key.offset || end < extent_end) {
717 		if (key.offset == start)
718 			split = end;
719 
720 		new_key.offset = split;
721 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
722 		if (ret == -EAGAIN) {
723 			btrfs_release_path(path);
724 			goto again;
725 		}
726 		if (ret < 0) {
727 			btrfs_abort_transaction(trans, ret);
728 			goto out;
729 		}
730 
731 		leaf = path->nodes[0];
732 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
733 				    struct btrfs_file_extent_item);
734 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
735 		btrfs_set_file_extent_num_bytes(leaf, fi,
736 						split - key.offset);
737 
738 		fi = btrfs_item_ptr(leaf, path->slots[0],
739 				    struct btrfs_file_extent_item);
740 
741 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
742 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
743 		btrfs_set_file_extent_num_bytes(leaf, fi,
744 						extent_end - split);
745 		btrfs_mark_buffer_dirty(trans, leaf);
746 
747 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
748 				       num_bytes, 0);
749 		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
750 				    orig_offset, 0, false);
751 		ret = btrfs_inc_extent_ref(trans, &ref);
752 		if (ret) {
753 			btrfs_abort_transaction(trans, ret);
754 			goto out;
755 		}
756 
757 		if (split == start) {
758 			key.offset = start;
759 		} else {
760 			if (start != key.offset) {
761 				ret = -EINVAL;
762 				btrfs_abort_transaction(trans, ret);
763 				goto out;
764 			}
765 			path->slots[0]--;
766 			extent_end = end;
767 		}
768 		recow = 1;
769 	}
770 
771 	other_start = end;
772 	other_end = 0;
773 	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
774 			       num_bytes, 0);
775 	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
776 			    0, false);
777 	if (extent_mergeable(leaf, path->slots[0] + 1,
778 			     ino, bytenr, orig_offset,
779 			     &other_start, &other_end)) {
780 		if (recow) {
781 			btrfs_release_path(path);
782 			goto again;
783 		}
784 		extent_end = other_end;
785 		del_slot = path->slots[0] + 1;
786 		del_nr++;
787 		ret = btrfs_free_extent(trans, &ref);
788 		if (ret) {
789 			btrfs_abort_transaction(trans, ret);
790 			goto out;
791 		}
792 	}
793 	other_start = 0;
794 	other_end = start;
795 	if (extent_mergeable(leaf, path->slots[0] - 1,
796 			     ino, bytenr, orig_offset,
797 			     &other_start, &other_end)) {
798 		if (recow) {
799 			btrfs_release_path(path);
800 			goto again;
801 		}
802 		key.offset = other_start;
803 		del_slot = path->slots[0];
804 		del_nr++;
805 		ret = btrfs_free_extent(trans, &ref);
806 		if (ret) {
807 			btrfs_abort_transaction(trans, ret);
808 			goto out;
809 		}
810 	}
811 	if (del_nr == 0) {
812 		fi = btrfs_item_ptr(leaf, path->slots[0],
813 			   struct btrfs_file_extent_item);
814 		btrfs_set_file_extent_type(leaf, fi,
815 					   BTRFS_FILE_EXTENT_REG);
816 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
817 		btrfs_mark_buffer_dirty(trans, leaf);
818 	} else {
819 		fi = btrfs_item_ptr(leaf, del_slot - 1,
820 			   struct btrfs_file_extent_item);
821 		btrfs_set_file_extent_type(leaf, fi,
822 					   BTRFS_FILE_EXTENT_REG);
823 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
824 		btrfs_set_file_extent_num_bytes(leaf, fi,
825 						extent_end - key.offset);
826 		btrfs_mark_buffer_dirty(trans, leaf);
827 
828 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
829 		if (ret < 0) {
830 			btrfs_abort_transaction(trans, ret);
831 			goto out;
832 		}
833 	}
834 out:
835 	btrfs_free_path(path);
836 	return ret;
837 }
838 
839 /*
840  * on error we return an unlocked page and the error value
841  * on success we return a locked page and 0
842  */
843 static int prepare_uptodate_page(struct inode *inode,
844 				 struct page *page, u64 pos,
845 				 bool force_uptodate)
846 {
847 	struct folio *folio = page_folio(page);
848 	int ret = 0;
849 
850 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
851 	    !PageUptodate(page)) {
852 		ret = btrfs_read_folio(NULL, folio);
853 		if (ret)
854 			return ret;
855 		lock_page(page);
856 		if (!PageUptodate(page)) {
857 			unlock_page(page);
858 			return -EIO;
859 		}
860 
861 		/*
862 		 * Since btrfs_read_folio() will unlock the folio before it
863 		 * returns, there is a window where btrfs_release_folio() can be
864 		 * called to release the page.  Here we check both inode
865 		 * mapping and PagePrivate() to make sure the page was not
866 		 * released.
867 		 *
868 		 * The private flag check is essential for subpage as we need
869 		 * to store extra bitmap using page->private.
870 		 */
871 		if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
872 			unlock_page(page);
873 			return -EAGAIN;
874 		}
875 	}
876 	return 0;
877 }
878 
879 static fgf_t get_prepare_fgp_flags(bool nowait)
880 {
881 	fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
882 
883 	if (nowait)
884 		fgp_flags |= FGP_NOWAIT;
885 
886 	return fgp_flags;
887 }
888 
889 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
890 {
891 	gfp_t gfp;
892 
893 	gfp = btrfs_alloc_write_mask(inode->i_mapping);
894 	if (nowait) {
895 		gfp &= ~__GFP_DIRECT_RECLAIM;
896 		gfp |= GFP_NOWAIT;
897 	}
898 
899 	return gfp;
900 }
901 
902 /*
903  * this just gets pages into the page cache and locks them down.
904  */
905 static noinline int prepare_pages(struct inode *inode, struct page **pages,
906 				  size_t num_pages, loff_t pos,
907 				  size_t write_bytes, bool force_uptodate,
908 				  bool nowait)
909 {
910 	int i;
911 	unsigned long index = pos >> PAGE_SHIFT;
912 	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
913 	fgf_t fgp_flags = get_prepare_fgp_flags(nowait);
914 	int err = 0;
915 	int faili;
916 
917 	for (i = 0; i < num_pages; i++) {
918 again:
919 		pages[i] = pagecache_get_page(inode->i_mapping, index + i,
920 					      fgp_flags, mask | __GFP_WRITE);
921 		if (!pages[i]) {
922 			faili = i - 1;
923 			if (nowait)
924 				err = -EAGAIN;
925 			else
926 				err = -ENOMEM;
927 			goto fail;
928 		}
929 
930 		err = set_page_extent_mapped(pages[i]);
931 		if (err < 0) {
932 			faili = i;
933 			goto fail;
934 		}
935 
936 		if (i == 0)
937 			err = prepare_uptodate_page(inode, pages[i], pos,
938 						    force_uptodate);
939 		if (!err && i == num_pages - 1)
940 			err = prepare_uptodate_page(inode, pages[i],
941 						    pos + write_bytes, false);
942 		if (err) {
943 			put_page(pages[i]);
944 			if (!nowait && err == -EAGAIN) {
945 				err = 0;
946 				goto again;
947 			}
948 			faili = i - 1;
949 			goto fail;
950 		}
951 		wait_on_page_writeback(pages[i]);
952 	}
953 
954 	return 0;
955 fail:
956 	while (faili >= 0) {
957 		unlock_page(pages[faili]);
958 		put_page(pages[faili]);
959 		faili--;
960 	}
961 	return err;
962 
963 }
964 
965 /*
966  * This function locks the extent and properly waits for data=ordered extents
967  * to finish before allowing the pages to be modified if need.
968  *
969  * The return value:
970  * 1 - the extent is locked
971  * 0 - the extent is not locked, and everything is OK
972  * -EAGAIN - need re-prepare the pages
973  * the other < 0 number - Something wrong happens
974  */
975 static noinline int
976 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
977 				size_t num_pages, loff_t pos,
978 				size_t write_bytes,
979 				u64 *lockstart, u64 *lockend, bool nowait,
980 				struct extent_state **cached_state)
981 {
982 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
983 	u64 start_pos;
984 	u64 last_pos;
985 	int i;
986 	int ret = 0;
987 
988 	start_pos = round_down(pos, fs_info->sectorsize);
989 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
990 
991 	if (start_pos < inode->vfs_inode.i_size) {
992 		struct btrfs_ordered_extent *ordered;
993 
994 		if (nowait) {
995 			if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
996 					     cached_state)) {
997 				for (i = 0; i < num_pages; i++) {
998 					unlock_page(pages[i]);
999 					put_page(pages[i]);
1000 					pages[i] = NULL;
1001 				}
1002 
1003 				return -EAGAIN;
1004 			}
1005 		} else {
1006 			lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1007 		}
1008 
1009 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1010 						     last_pos - start_pos + 1);
1011 		if (ordered &&
1012 		    ordered->file_offset + ordered->num_bytes > start_pos &&
1013 		    ordered->file_offset <= last_pos) {
1014 			unlock_extent(&inode->io_tree, start_pos, last_pos,
1015 				      cached_state);
1016 			for (i = 0; i < num_pages; i++) {
1017 				unlock_page(pages[i]);
1018 				put_page(pages[i]);
1019 			}
1020 			btrfs_start_ordered_extent(ordered);
1021 			btrfs_put_ordered_extent(ordered);
1022 			return -EAGAIN;
1023 		}
1024 		if (ordered)
1025 			btrfs_put_ordered_extent(ordered);
1026 
1027 		*lockstart = start_pos;
1028 		*lockend = last_pos;
1029 		ret = 1;
1030 	}
1031 
1032 	/*
1033 	 * We should be called after prepare_pages() which should have locked
1034 	 * all pages in the range.
1035 	 */
1036 	for (i = 0; i < num_pages; i++)
1037 		WARN_ON(!PageLocked(pages[i]));
1038 
1039 	return ret;
1040 }
1041 
1042 /*
1043  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1044  *
1045  * @pos:         File offset.
1046  * @write_bytes: The length to write, will be updated to the nocow writeable
1047  *               range.
1048  *
1049  * This function will flush ordered extents in the range to ensure proper
1050  * nocow checks.
1051  *
1052  * Return:
1053  * > 0          If we can nocow, and updates @write_bytes.
1054  *  0           If we can't do a nocow write.
1055  * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
1056  *              root is in progress.
1057  * < 0          If an error happened.
1058  *
1059  * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1060  */
1061 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1062 			   size_t *write_bytes, bool nowait)
1063 {
1064 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1065 	struct btrfs_root *root = inode->root;
1066 	struct extent_state *cached_state = NULL;
1067 	u64 lockstart, lockend;
1068 	u64 num_bytes;
1069 	int ret;
1070 
1071 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1072 		return 0;
1073 
1074 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1075 		return -EAGAIN;
1076 
1077 	lockstart = round_down(pos, fs_info->sectorsize);
1078 	lockend = round_up(pos + *write_bytes,
1079 			   fs_info->sectorsize) - 1;
1080 	num_bytes = lockend - lockstart + 1;
1081 
1082 	if (nowait) {
1083 		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1084 						  &cached_state)) {
1085 			btrfs_drew_write_unlock(&root->snapshot_lock);
1086 			return -EAGAIN;
1087 		}
1088 	} else {
1089 		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1090 						   &cached_state);
1091 	}
1092 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1093 			NULL, NULL, NULL, nowait, false);
1094 	if (ret <= 0)
1095 		btrfs_drew_write_unlock(&root->snapshot_lock);
1096 	else
1097 		*write_bytes = min_t(size_t, *write_bytes ,
1098 				     num_bytes - pos + lockstart);
1099 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1100 
1101 	return ret;
1102 }
1103 
1104 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1105 {
1106 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1107 }
1108 
1109 static void update_time_for_write(struct inode *inode)
1110 {
1111 	struct timespec64 now, ctime;
1112 
1113 	if (IS_NOCMTIME(inode))
1114 		return;
1115 
1116 	now = current_time(inode);
1117 	if (!timespec64_equal(&inode->i_mtime, &now))
1118 		inode->i_mtime = now;
1119 
1120 	ctime = inode_get_ctime(inode);
1121 	if (!timespec64_equal(&ctime, &now))
1122 		inode_set_ctime_to_ts(inode, now);
1123 
1124 	if (IS_I_VERSION(inode))
1125 		inode_inc_iversion(inode);
1126 }
1127 
1128 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1129 			     size_t count)
1130 {
1131 	struct file *file = iocb->ki_filp;
1132 	struct inode *inode = file_inode(file);
1133 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1134 	loff_t pos = iocb->ki_pos;
1135 	int ret;
1136 	loff_t oldsize;
1137 	loff_t start_pos;
1138 
1139 	/*
1140 	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1141 	 * prealloc flags, as without those flags we always have to COW. We will
1142 	 * later check if we can really COW into the target range (using
1143 	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1144 	 */
1145 	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1146 	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1147 		return -EAGAIN;
1148 
1149 	ret = file_remove_privs(file);
1150 	if (ret)
1151 		return ret;
1152 
1153 	/*
1154 	 * We reserve space for updating the inode when we reserve space for the
1155 	 * extent we are going to write, so we will enospc out there.  We don't
1156 	 * need to start yet another transaction to update the inode as we will
1157 	 * update the inode when we finish writing whatever data we write.
1158 	 */
1159 	update_time_for_write(inode);
1160 
1161 	start_pos = round_down(pos, fs_info->sectorsize);
1162 	oldsize = i_size_read(inode);
1163 	if (start_pos > oldsize) {
1164 		/* Expand hole size to cover write data, preventing empty gap */
1165 		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1166 
1167 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1168 		if (ret)
1169 			return ret;
1170 	}
1171 
1172 	return 0;
1173 }
1174 
1175 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1176 					       struct iov_iter *i)
1177 {
1178 	struct file *file = iocb->ki_filp;
1179 	loff_t pos;
1180 	struct inode *inode = file_inode(file);
1181 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1182 	struct page **pages = NULL;
1183 	struct extent_changeset *data_reserved = NULL;
1184 	u64 release_bytes = 0;
1185 	u64 lockstart;
1186 	u64 lockend;
1187 	size_t num_written = 0;
1188 	int nrptrs;
1189 	ssize_t ret;
1190 	bool only_release_metadata = false;
1191 	bool force_page_uptodate = false;
1192 	loff_t old_isize = i_size_read(inode);
1193 	unsigned int ilock_flags = 0;
1194 	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1195 	unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1196 
1197 	if (nowait)
1198 		ilock_flags |= BTRFS_ILOCK_TRY;
1199 
1200 	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1201 	if (ret < 0)
1202 		return ret;
1203 
1204 	ret = generic_write_checks(iocb, i);
1205 	if (ret <= 0)
1206 		goto out;
1207 
1208 	ret = btrfs_write_check(iocb, i, ret);
1209 	if (ret < 0)
1210 		goto out;
1211 
1212 	pos = iocb->ki_pos;
1213 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1214 			PAGE_SIZE / (sizeof(struct page *)));
1215 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1216 	nrptrs = max(nrptrs, 8);
1217 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1218 	if (!pages) {
1219 		ret = -ENOMEM;
1220 		goto out;
1221 	}
1222 
1223 	while (iov_iter_count(i) > 0) {
1224 		struct extent_state *cached_state = NULL;
1225 		size_t offset = offset_in_page(pos);
1226 		size_t sector_offset;
1227 		size_t write_bytes = min(iov_iter_count(i),
1228 					 nrptrs * (size_t)PAGE_SIZE -
1229 					 offset);
1230 		size_t num_pages;
1231 		size_t reserve_bytes;
1232 		size_t dirty_pages;
1233 		size_t copied;
1234 		size_t dirty_sectors;
1235 		size_t num_sectors;
1236 		int extents_locked;
1237 
1238 		/*
1239 		 * Fault pages before locking them in prepare_pages
1240 		 * to avoid recursive lock
1241 		 */
1242 		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1243 			ret = -EFAULT;
1244 			break;
1245 		}
1246 
1247 		only_release_metadata = false;
1248 		sector_offset = pos & (fs_info->sectorsize - 1);
1249 
1250 		extent_changeset_release(data_reserved);
1251 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1252 						  &data_reserved, pos,
1253 						  write_bytes, nowait);
1254 		if (ret < 0) {
1255 			int can_nocow;
1256 
1257 			if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1258 				ret = -EAGAIN;
1259 				break;
1260 			}
1261 
1262 			/*
1263 			 * If we don't have to COW at the offset, reserve
1264 			 * metadata only. write_bytes may get smaller than
1265 			 * requested here.
1266 			 */
1267 			can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1268 							   &write_bytes, nowait);
1269 			if (can_nocow < 0)
1270 				ret = can_nocow;
1271 			if (can_nocow > 0)
1272 				ret = 0;
1273 			if (ret)
1274 				break;
1275 			only_release_metadata = true;
1276 		}
1277 
1278 		num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1279 		WARN_ON(num_pages > nrptrs);
1280 		reserve_bytes = round_up(write_bytes + sector_offset,
1281 					 fs_info->sectorsize);
1282 		WARN_ON(reserve_bytes == 0);
1283 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1284 						      reserve_bytes,
1285 						      reserve_bytes, nowait);
1286 		if (ret) {
1287 			if (!only_release_metadata)
1288 				btrfs_free_reserved_data_space(BTRFS_I(inode),
1289 						data_reserved, pos,
1290 						write_bytes);
1291 			else
1292 				btrfs_check_nocow_unlock(BTRFS_I(inode));
1293 
1294 			if (nowait && ret == -ENOSPC)
1295 				ret = -EAGAIN;
1296 			break;
1297 		}
1298 
1299 		release_bytes = reserve_bytes;
1300 again:
1301 		ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1302 		if (ret) {
1303 			btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1304 			break;
1305 		}
1306 
1307 		/*
1308 		 * This is going to setup the pages array with the number of
1309 		 * pages we want, so we don't really need to worry about the
1310 		 * contents of pages from loop to loop
1311 		 */
1312 		ret = prepare_pages(inode, pages, num_pages,
1313 				    pos, write_bytes, force_page_uptodate, false);
1314 		if (ret) {
1315 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1316 						       reserve_bytes);
1317 			break;
1318 		}
1319 
1320 		extents_locked = lock_and_cleanup_extent_if_need(
1321 				BTRFS_I(inode), pages,
1322 				num_pages, pos, write_bytes, &lockstart,
1323 				&lockend, nowait, &cached_state);
1324 		if (extents_locked < 0) {
1325 			if (!nowait && extents_locked == -EAGAIN)
1326 				goto again;
1327 
1328 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1329 						       reserve_bytes);
1330 			ret = extents_locked;
1331 			break;
1332 		}
1333 
1334 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1335 
1336 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1337 		dirty_sectors = round_up(copied + sector_offset,
1338 					fs_info->sectorsize);
1339 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1340 
1341 		/*
1342 		 * if we have trouble faulting in the pages, fall
1343 		 * back to one page at a time
1344 		 */
1345 		if (copied < write_bytes)
1346 			nrptrs = 1;
1347 
1348 		if (copied == 0) {
1349 			force_page_uptodate = true;
1350 			dirty_sectors = 0;
1351 			dirty_pages = 0;
1352 		} else {
1353 			force_page_uptodate = false;
1354 			dirty_pages = DIV_ROUND_UP(copied + offset,
1355 						   PAGE_SIZE);
1356 		}
1357 
1358 		if (num_sectors > dirty_sectors) {
1359 			/* release everything except the sectors we dirtied */
1360 			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1361 			if (only_release_metadata) {
1362 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1363 							release_bytes, true);
1364 			} else {
1365 				u64 __pos;
1366 
1367 				__pos = round_down(pos,
1368 						   fs_info->sectorsize) +
1369 					(dirty_pages << PAGE_SHIFT);
1370 				btrfs_delalloc_release_space(BTRFS_I(inode),
1371 						data_reserved, __pos,
1372 						release_bytes, true);
1373 			}
1374 		}
1375 
1376 		release_bytes = round_up(copied + sector_offset,
1377 					fs_info->sectorsize);
1378 
1379 		ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1380 					dirty_pages, pos, copied,
1381 					&cached_state, only_release_metadata);
1382 
1383 		/*
1384 		 * If we have not locked the extent range, because the range's
1385 		 * start offset is >= i_size, we might still have a non-NULL
1386 		 * cached extent state, acquired while marking the extent range
1387 		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1388 		 * possible cached extent state to avoid a memory leak.
1389 		 */
1390 		if (extents_locked)
1391 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1392 				      lockend, &cached_state);
1393 		else
1394 			free_extent_state(cached_state);
1395 
1396 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1397 		if (ret) {
1398 			btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1399 			break;
1400 		}
1401 
1402 		release_bytes = 0;
1403 		if (only_release_metadata)
1404 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1405 
1406 		btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1407 
1408 		cond_resched();
1409 
1410 		pos += copied;
1411 		num_written += copied;
1412 	}
1413 
1414 	kfree(pages);
1415 
1416 	if (release_bytes) {
1417 		if (only_release_metadata) {
1418 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1419 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1420 					release_bytes, true);
1421 		} else {
1422 			btrfs_delalloc_release_space(BTRFS_I(inode),
1423 					data_reserved,
1424 					round_down(pos, fs_info->sectorsize),
1425 					release_bytes, true);
1426 		}
1427 	}
1428 
1429 	extent_changeset_free(data_reserved);
1430 	if (num_written > 0) {
1431 		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1432 		iocb->ki_pos += num_written;
1433 	}
1434 out:
1435 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1436 	return num_written ? num_written : ret;
1437 }
1438 
1439 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1440 			       const struct iov_iter *iter, loff_t offset)
1441 {
1442 	const u32 blocksize_mask = fs_info->sectorsize - 1;
1443 
1444 	if (offset & blocksize_mask)
1445 		return -EINVAL;
1446 
1447 	if (iov_iter_alignment(iter) & blocksize_mask)
1448 		return -EINVAL;
1449 
1450 	return 0;
1451 }
1452 
1453 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1454 {
1455 	struct file *file = iocb->ki_filp;
1456 	struct inode *inode = file_inode(file);
1457 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1458 	loff_t pos;
1459 	ssize_t written = 0;
1460 	ssize_t written_buffered;
1461 	size_t prev_left = 0;
1462 	loff_t endbyte;
1463 	ssize_t err;
1464 	unsigned int ilock_flags = 0;
1465 	struct iomap_dio *dio;
1466 
1467 	if (iocb->ki_flags & IOCB_NOWAIT)
1468 		ilock_flags |= BTRFS_ILOCK_TRY;
1469 
1470 	/*
1471 	 * If the write DIO is within EOF, use a shared lock and also only if
1472 	 * security bits will likely not be dropped by file_remove_privs() called
1473 	 * from btrfs_write_check(). Either will need to be rechecked after the
1474 	 * lock was acquired.
1475 	 */
1476 	if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode))
1477 		ilock_flags |= BTRFS_ILOCK_SHARED;
1478 
1479 relock:
1480 	err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1481 	if (err < 0)
1482 		return err;
1483 
1484 	/* Shared lock cannot be used with security bits set. */
1485 	if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) {
1486 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1487 		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1488 		goto relock;
1489 	}
1490 
1491 	err = generic_write_checks(iocb, from);
1492 	if (err <= 0) {
1493 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1494 		return err;
1495 	}
1496 
1497 	err = btrfs_write_check(iocb, from, err);
1498 	if (err < 0) {
1499 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1500 		goto out;
1501 	}
1502 
1503 	pos = iocb->ki_pos;
1504 	/*
1505 	 * Re-check since file size may have changed just before taking the
1506 	 * lock or pos may have changed because of O_APPEND in generic_write_check()
1507 	 */
1508 	if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1509 	    pos + iov_iter_count(from) > i_size_read(inode)) {
1510 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1511 		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1512 		goto relock;
1513 	}
1514 
1515 	if (check_direct_IO(fs_info, from, pos)) {
1516 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1517 		goto buffered;
1518 	}
1519 
1520 	/*
1521 	 * The iov_iter can be mapped to the same file range we are writing to.
1522 	 * If that's the case, then we will deadlock in the iomap code, because
1523 	 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1524 	 * an ordered extent, and after that it will fault in the pages that the
1525 	 * iov_iter refers to. During the fault in we end up in the readahead
1526 	 * pages code (starting at btrfs_readahead()), which will lock the range,
1527 	 * find that ordered extent and then wait for it to complete (at
1528 	 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1529 	 * obviously the ordered extent can never complete as we didn't submit
1530 	 * yet the respective bio(s). This always happens when the buffer is
1531 	 * memory mapped to the same file range, since the iomap DIO code always
1532 	 * invalidates pages in the target file range (after starting and waiting
1533 	 * for any writeback).
1534 	 *
1535 	 * So here we disable page faults in the iov_iter and then retry if we
1536 	 * got -EFAULT, faulting in the pages before the retry.
1537 	 */
1538 	from->nofault = true;
1539 	dio = btrfs_dio_write(iocb, from, written);
1540 	from->nofault = false;
1541 
1542 	/*
1543 	 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1544 	 * iocb, and that needs to lock the inode. So unlock it before calling
1545 	 * iomap_dio_complete() to avoid a deadlock.
1546 	 */
1547 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1548 
1549 	if (IS_ERR_OR_NULL(dio))
1550 		err = PTR_ERR_OR_ZERO(dio);
1551 	else
1552 		err = iomap_dio_complete(dio);
1553 
1554 	/* No increment (+=) because iomap returns a cumulative value. */
1555 	if (err > 0)
1556 		written = err;
1557 
1558 	if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1559 		const size_t left = iov_iter_count(from);
1560 		/*
1561 		 * We have more data left to write. Try to fault in as many as
1562 		 * possible of the remainder pages and retry. We do this without
1563 		 * releasing and locking again the inode, to prevent races with
1564 		 * truncate.
1565 		 *
1566 		 * Also, in case the iov refers to pages in the file range of the
1567 		 * file we want to write to (due to a mmap), we could enter an
1568 		 * infinite loop if we retry after faulting the pages in, since
1569 		 * iomap will invalidate any pages in the range early on, before
1570 		 * it tries to fault in the pages of the iov. So we keep track of
1571 		 * how much was left of iov in the previous EFAULT and fallback
1572 		 * to buffered IO in case we haven't made any progress.
1573 		 */
1574 		if (left == prev_left) {
1575 			err = -ENOTBLK;
1576 		} else {
1577 			fault_in_iov_iter_readable(from, left);
1578 			prev_left = left;
1579 			goto relock;
1580 		}
1581 	}
1582 
1583 	/*
1584 	 * If 'err' is -ENOTBLK or we have not written all data, then it means
1585 	 * we must fallback to buffered IO.
1586 	 */
1587 	if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
1588 		goto out;
1589 
1590 buffered:
1591 	/*
1592 	 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1593 	 * it must retry the operation in a context where blocking is acceptable,
1594 	 * because even if we end up not blocking during the buffered IO attempt
1595 	 * below, we will block when flushing and waiting for the IO.
1596 	 */
1597 	if (iocb->ki_flags & IOCB_NOWAIT) {
1598 		err = -EAGAIN;
1599 		goto out;
1600 	}
1601 
1602 	pos = iocb->ki_pos;
1603 	written_buffered = btrfs_buffered_write(iocb, from);
1604 	if (written_buffered < 0) {
1605 		err = written_buffered;
1606 		goto out;
1607 	}
1608 	/*
1609 	 * Ensure all data is persisted. We want the next direct IO read to be
1610 	 * able to read what was just written.
1611 	 */
1612 	endbyte = pos + written_buffered - 1;
1613 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1614 	if (err)
1615 		goto out;
1616 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1617 	if (err)
1618 		goto out;
1619 	written += written_buffered;
1620 	iocb->ki_pos = pos + written_buffered;
1621 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1622 				 endbyte >> PAGE_SHIFT);
1623 out:
1624 	return err < 0 ? err : written;
1625 }
1626 
1627 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1628 			const struct btrfs_ioctl_encoded_io_args *encoded)
1629 {
1630 	struct file *file = iocb->ki_filp;
1631 	struct inode *inode = file_inode(file);
1632 	loff_t count;
1633 	ssize_t ret;
1634 
1635 	btrfs_inode_lock(BTRFS_I(inode), 0);
1636 	count = encoded->len;
1637 	ret = generic_write_checks_count(iocb, &count);
1638 	if (ret == 0 && count != encoded->len) {
1639 		/*
1640 		 * The write got truncated by generic_write_checks_count(). We
1641 		 * can't do a partial encoded write.
1642 		 */
1643 		ret = -EFBIG;
1644 	}
1645 	if (ret || encoded->len == 0)
1646 		goto out;
1647 
1648 	ret = btrfs_write_check(iocb, from, encoded->len);
1649 	if (ret < 0)
1650 		goto out;
1651 
1652 	ret = btrfs_do_encoded_write(iocb, from, encoded);
1653 out:
1654 	btrfs_inode_unlock(BTRFS_I(inode), 0);
1655 	return ret;
1656 }
1657 
1658 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1659 			    const struct btrfs_ioctl_encoded_io_args *encoded)
1660 {
1661 	struct file *file = iocb->ki_filp;
1662 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1663 	ssize_t num_written, num_sync;
1664 
1665 	/*
1666 	 * If the fs flips readonly due to some impossible error, although we
1667 	 * have opened a file as writable, we have to stop this write operation
1668 	 * to ensure consistency.
1669 	 */
1670 	if (BTRFS_FS_ERROR(inode->root->fs_info))
1671 		return -EROFS;
1672 
1673 	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1674 		return -EOPNOTSUPP;
1675 
1676 	if (encoded) {
1677 		num_written = btrfs_encoded_write(iocb, from, encoded);
1678 		num_sync = encoded->len;
1679 	} else if (iocb->ki_flags & IOCB_DIRECT) {
1680 		num_written = btrfs_direct_write(iocb, from);
1681 		num_sync = num_written;
1682 	} else {
1683 		num_written = btrfs_buffered_write(iocb, from);
1684 		num_sync = num_written;
1685 	}
1686 
1687 	btrfs_set_inode_last_sub_trans(inode);
1688 
1689 	if (num_sync > 0) {
1690 		num_sync = generic_write_sync(iocb, num_sync);
1691 		if (num_sync < 0)
1692 			num_written = num_sync;
1693 	}
1694 
1695 	return num_written;
1696 }
1697 
1698 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1699 {
1700 	return btrfs_do_write_iter(iocb, from, NULL);
1701 }
1702 
1703 int btrfs_release_file(struct inode *inode, struct file *filp)
1704 {
1705 	struct btrfs_file_private *private = filp->private_data;
1706 
1707 	if (private) {
1708 		kfree(private->filldir_buf);
1709 		free_extent_state(private->llseek_cached_state);
1710 		kfree(private);
1711 		filp->private_data = NULL;
1712 	}
1713 
1714 	/*
1715 	 * Set by setattr when we are about to truncate a file from a non-zero
1716 	 * size to a zero size.  This tries to flush down new bytes that may
1717 	 * have been written if the application were using truncate to replace
1718 	 * a file in place.
1719 	 */
1720 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1721 			       &BTRFS_I(inode)->runtime_flags))
1722 			filemap_flush(inode->i_mapping);
1723 	return 0;
1724 }
1725 
1726 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1727 {
1728 	int ret;
1729 	struct blk_plug plug;
1730 
1731 	/*
1732 	 * This is only called in fsync, which would do synchronous writes, so
1733 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
1734 	 * multiple disks using raid profile, a large IO can be split to
1735 	 * several segments of stripe length (currently 64K).
1736 	 */
1737 	blk_start_plug(&plug);
1738 	ret = btrfs_fdatawrite_range(inode, start, end);
1739 	blk_finish_plug(&plug);
1740 
1741 	return ret;
1742 }
1743 
1744 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1745 {
1746 	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1747 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1748 
1749 	if (btrfs_inode_in_log(inode, fs_info->generation) &&
1750 	    list_empty(&ctx->ordered_extents))
1751 		return true;
1752 
1753 	/*
1754 	 * If we are doing a fast fsync we can not bail out if the inode's
1755 	 * last_trans is <= then the last committed transaction, because we only
1756 	 * update the last_trans of the inode during ordered extent completion,
1757 	 * and for a fast fsync we don't wait for that, we only wait for the
1758 	 * writeback to complete.
1759 	 */
1760 	if (inode->last_trans <= fs_info->last_trans_committed &&
1761 	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1762 	     list_empty(&ctx->ordered_extents)))
1763 		return true;
1764 
1765 	return false;
1766 }
1767 
1768 /*
1769  * fsync call for both files and directories.  This logs the inode into
1770  * the tree log instead of forcing full commits whenever possible.
1771  *
1772  * It needs to call filemap_fdatawait so that all ordered extent updates are
1773  * in the metadata btree are up to date for copying to the log.
1774  *
1775  * It drops the inode mutex before doing the tree log commit.  This is an
1776  * important optimization for directories because holding the mutex prevents
1777  * new operations on the dir while we write to disk.
1778  */
1779 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1780 {
1781 	struct dentry *dentry = file_dentry(file);
1782 	struct inode *inode = d_inode(dentry);
1783 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1784 	struct btrfs_root *root = BTRFS_I(inode)->root;
1785 	struct btrfs_trans_handle *trans;
1786 	struct btrfs_log_ctx ctx;
1787 	int ret = 0, err;
1788 	u64 len;
1789 	bool full_sync;
1790 
1791 	trace_btrfs_sync_file(file, datasync);
1792 
1793 	btrfs_init_log_ctx(&ctx, inode);
1794 
1795 	/*
1796 	 * Always set the range to a full range, otherwise we can get into
1797 	 * several problems, from missing file extent items to represent holes
1798 	 * when not using the NO_HOLES feature, to log tree corruption due to
1799 	 * races between hole detection during logging and completion of ordered
1800 	 * extents outside the range, to missing checksums due to ordered extents
1801 	 * for which we flushed only a subset of their pages.
1802 	 */
1803 	start = 0;
1804 	end = LLONG_MAX;
1805 	len = (u64)LLONG_MAX + 1;
1806 
1807 	/*
1808 	 * We write the dirty pages in the range and wait until they complete
1809 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1810 	 * multi-task, and make the performance up.  See
1811 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1812 	 */
1813 	ret = start_ordered_ops(inode, start, end);
1814 	if (ret)
1815 		goto out;
1816 
1817 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1818 
1819 	atomic_inc(&root->log_batch);
1820 
1821 	/*
1822 	 * Before we acquired the inode's lock and the mmap lock, someone may
1823 	 * have dirtied more pages in the target range. We need to make sure
1824 	 * that writeback for any such pages does not start while we are logging
1825 	 * the inode, because if it does, any of the following might happen when
1826 	 * we are not doing a full inode sync:
1827 	 *
1828 	 * 1) We log an extent after its writeback finishes but before its
1829 	 *    checksums are added to the csum tree, leading to -EIO errors
1830 	 *    when attempting to read the extent after a log replay.
1831 	 *
1832 	 * 2) We can end up logging an extent before its writeback finishes.
1833 	 *    Therefore after the log replay we will have a file extent item
1834 	 *    pointing to an unwritten extent (and no data checksums as well).
1835 	 *
1836 	 * So trigger writeback for any eventual new dirty pages and then we
1837 	 * wait for all ordered extents to complete below.
1838 	 */
1839 	ret = start_ordered_ops(inode, start, end);
1840 	if (ret) {
1841 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1842 		goto out;
1843 	}
1844 
1845 	/*
1846 	 * Always check for the full sync flag while holding the inode's lock,
1847 	 * to avoid races with other tasks. The flag must be either set all the
1848 	 * time during logging or always off all the time while logging.
1849 	 * We check the flag here after starting delalloc above, because when
1850 	 * running delalloc the full sync flag may be set if we need to drop
1851 	 * extra extent map ranges due to temporary memory allocation failures.
1852 	 */
1853 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1854 			     &BTRFS_I(inode)->runtime_flags);
1855 
1856 	/*
1857 	 * We have to do this here to avoid the priority inversion of waiting on
1858 	 * IO of a lower priority task while holding a transaction open.
1859 	 *
1860 	 * For a full fsync we wait for the ordered extents to complete while
1861 	 * for a fast fsync we wait just for writeback to complete, and then
1862 	 * attach the ordered extents to the transaction so that a transaction
1863 	 * commit waits for their completion, to avoid data loss if we fsync,
1864 	 * the current transaction commits before the ordered extents complete
1865 	 * and a power failure happens right after that.
1866 	 *
1867 	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1868 	 * logical address recorded in the ordered extent may change. We need
1869 	 * to wait for the IO to stabilize the logical address.
1870 	 */
1871 	if (full_sync || btrfs_is_zoned(fs_info)) {
1872 		ret = btrfs_wait_ordered_range(inode, start, len);
1873 	} else {
1874 		/*
1875 		 * Get our ordered extents as soon as possible to avoid doing
1876 		 * checksum lookups in the csum tree, and use instead the
1877 		 * checksums attached to the ordered extents.
1878 		 */
1879 		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1880 						      &ctx.ordered_extents);
1881 		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
1882 	}
1883 
1884 	if (ret)
1885 		goto out_release_extents;
1886 
1887 	atomic_inc(&root->log_batch);
1888 
1889 	smp_mb();
1890 	if (skip_inode_logging(&ctx)) {
1891 		/*
1892 		 * We've had everything committed since the last time we were
1893 		 * modified so clear this flag in case it was set for whatever
1894 		 * reason, it's no longer relevant.
1895 		 */
1896 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1897 			  &BTRFS_I(inode)->runtime_flags);
1898 		/*
1899 		 * An ordered extent might have started before and completed
1900 		 * already with io errors, in which case the inode was not
1901 		 * updated and we end up here. So check the inode's mapping
1902 		 * for any errors that might have happened since we last
1903 		 * checked called fsync.
1904 		 */
1905 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
1906 		goto out_release_extents;
1907 	}
1908 
1909 	/*
1910 	 * We use start here because we will need to wait on the IO to complete
1911 	 * in btrfs_sync_log, which could require joining a transaction (for
1912 	 * example checking cross references in the nocow path).  If we use join
1913 	 * here we could get into a situation where we're waiting on IO to
1914 	 * happen that is blocked on a transaction trying to commit.  With start
1915 	 * we inc the extwriter counter, so we wait for all extwriters to exit
1916 	 * before we start blocking joiners.  This comment is to keep somebody
1917 	 * from thinking they are super smart and changing this to
1918 	 * btrfs_join_transaction *cough*Josef*cough*.
1919 	 */
1920 	trans = btrfs_start_transaction(root, 0);
1921 	if (IS_ERR(trans)) {
1922 		ret = PTR_ERR(trans);
1923 		goto out_release_extents;
1924 	}
1925 	trans->in_fsync = true;
1926 
1927 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1928 	btrfs_release_log_ctx_extents(&ctx);
1929 	if (ret < 0) {
1930 		/* Fallthrough and commit/free transaction. */
1931 		ret = BTRFS_LOG_FORCE_COMMIT;
1932 	}
1933 
1934 	/* we've logged all the items and now have a consistent
1935 	 * version of the file in the log.  It is possible that
1936 	 * someone will come in and modify the file, but that's
1937 	 * fine because the log is consistent on disk, and we
1938 	 * have references to all of the file's extents
1939 	 *
1940 	 * It is possible that someone will come in and log the
1941 	 * file again, but that will end up using the synchronization
1942 	 * inside btrfs_sync_log to keep things safe.
1943 	 */
1944 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1945 
1946 	if (ret == BTRFS_NO_LOG_SYNC) {
1947 		ret = btrfs_end_transaction(trans);
1948 		goto out;
1949 	}
1950 
1951 	/* We successfully logged the inode, attempt to sync the log. */
1952 	if (!ret) {
1953 		ret = btrfs_sync_log(trans, root, &ctx);
1954 		if (!ret) {
1955 			ret = btrfs_end_transaction(trans);
1956 			goto out;
1957 		}
1958 	}
1959 
1960 	/*
1961 	 * At this point we need to commit the transaction because we had
1962 	 * btrfs_need_log_full_commit() or some other error.
1963 	 *
1964 	 * If we didn't do a full sync we have to stop the trans handle, wait on
1965 	 * the ordered extents, start it again and commit the transaction.  If
1966 	 * we attempt to wait on the ordered extents here we could deadlock with
1967 	 * something like fallocate() that is holding the extent lock trying to
1968 	 * start a transaction while some other thread is trying to commit the
1969 	 * transaction while we (fsync) are currently holding the transaction
1970 	 * open.
1971 	 */
1972 	if (!full_sync) {
1973 		ret = btrfs_end_transaction(trans);
1974 		if (ret)
1975 			goto out;
1976 		ret = btrfs_wait_ordered_range(inode, start, len);
1977 		if (ret)
1978 			goto out;
1979 
1980 		/*
1981 		 * This is safe to use here because we're only interested in
1982 		 * making sure the transaction that had the ordered extents is
1983 		 * committed.  We aren't waiting on anything past this point,
1984 		 * we're purely getting the transaction and committing it.
1985 		 */
1986 		trans = btrfs_attach_transaction_barrier(root);
1987 		if (IS_ERR(trans)) {
1988 			ret = PTR_ERR(trans);
1989 
1990 			/*
1991 			 * We committed the transaction and there's no currently
1992 			 * running transaction, this means everything we care
1993 			 * about made it to disk and we are done.
1994 			 */
1995 			if (ret == -ENOENT)
1996 				ret = 0;
1997 			goto out;
1998 		}
1999 	}
2000 
2001 	ret = btrfs_commit_transaction(trans);
2002 out:
2003 	ASSERT(list_empty(&ctx.list));
2004 	ASSERT(list_empty(&ctx.conflict_inodes));
2005 	err = file_check_and_advance_wb_err(file);
2006 	if (!ret)
2007 		ret = err;
2008 	return ret > 0 ? -EIO : ret;
2009 
2010 out_release_extents:
2011 	btrfs_release_log_ctx_extents(&ctx);
2012 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2013 	goto out;
2014 }
2015 
2016 static const struct vm_operations_struct btrfs_file_vm_ops = {
2017 	.fault		= filemap_fault,
2018 	.map_pages	= filemap_map_pages,
2019 	.page_mkwrite	= btrfs_page_mkwrite,
2020 };
2021 
2022 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2023 {
2024 	struct address_space *mapping = filp->f_mapping;
2025 
2026 	if (!mapping->a_ops->read_folio)
2027 		return -ENOEXEC;
2028 
2029 	file_accessed(filp);
2030 	vma->vm_ops = &btrfs_file_vm_ops;
2031 
2032 	return 0;
2033 }
2034 
2035 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2036 			  int slot, u64 start, u64 end)
2037 {
2038 	struct btrfs_file_extent_item *fi;
2039 	struct btrfs_key key;
2040 
2041 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2042 		return 0;
2043 
2044 	btrfs_item_key_to_cpu(leaf, &key, slot);
2045 	if (key.objectid != btrfs_ino(inode) ||
2046 	    key.type != BTRFS_EXTENT_DATA_KEY)
2047 		return 0;
2048 
2049 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2050 
2051 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2052 		return 0;
2053 
2054 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2055 		return 0;
2056 
2057 	if (key.offset == end)
2058 		return 1;
2059 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2060 		return 1;
2061 	return 0;
2062 }
2063 
2064 static int fill_holes(struct btrfs_trans_handle *trans,
2065 		struct btrfs_inode *inode,
2066 		struct btrfs_path *path, u64 offset, u64 end)
2067 {
2068 	struct btrfs_fs_info *fs_info = trans->fs_info;
2069 	struct btrfs_root *root = inode->root;
2070 	struct extent_buffer *leaf;
2071 	struct btrfs_file_extent_item *fi;
2072 	struct extent_map *hole_em;
2073 	struct btrfs_key key;
2074 	int ret;
2075 
2076 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2077 		goto out;
2078 
2079 	key.objectid = btrfs_ino(inode);
2080 	key.type = BTRFS_EXTENT_DATA_KEY;
2081 	key.offset = offset;
2082 
2083 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2084 	if (ret <= 0) {
2085 		/*
2086 		 * We should have dropped this offset, so if we find it then
2087 		 * something has gone horribly wrong.
2088 		 */
2089 		if (ret == 0)
2090 			ret = -EINVAL;
2091 		return ret;
2092 	}
2093 
2094 	leaf = path->nodes[0];
2095 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2096 		u64 num_bytes;
2097 
2098 		path->slots[0]--;
2099 		fi = btrfs_item_ptr(leaf, path->slots[0],
2100 				    struct btrfs_file_extent_item);
2101 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2102 			end - offset;
2103 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2104 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2105 		btrfs_set_file_extent_offset(leaf, fi, 0);
2106 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2107 		btrfs_mark_buffer_dirty(trans, leaf);
2108 		goto out;
2109 	}
2110 
2111 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2112 		u64 num_bytes;
2113 
2114 		key.offset = offset;
2115 		btrfs_set_item_key_safe(trans, path, &key);
2116 		fi = btrfs_item_ptr(leaf, path->slots[0],
2117 				    struct btrfs_file_extent_item);
2118 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2119 			offset;
2120 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2121 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2122 		btrfs_set_file_extent_offset(leaf, fi, 0);
2123 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2124 		btrfs_mark_buffer_dirty(trans, leaf);
2125 		goto out;
2126 	}
2127 	btrfs_release_path(path);
2128 
2129 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2130 				       end - offset);
2131 	if (ret)
2132 		return ret;
2133 
2134 out:
2135 	btrfs_release_path(path);
2136 
2137 	hole_em = alloc_extent_map();
2138 	if (!hole_em) {
2139 		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2140 		btrfs_set_inode_full_sync(inode);
2141 	} else {
2142 		hole_em->start = offset;
2143 		hole_em->len = end - offset;
2144 		hole_em->ram_bytes = hole_em->len;
2145 		hole_em->orig_start = offset;
2146 
2147 		hole_em->block_start = EXTENT_MAP_HOLE;
2148 		hole_em->block_len = 0;
2149 		hole_em->orig_block_len = 0;
2150 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2151 		hole_em->generation = trans->transid;
2152 
2153 		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2154 		free_extent_map(hole_em);
2155 		if (ret)
2156 			btrfs_set_inode_full_sync(inode);
2157 	}
2158 
2159 	return 0;
2160 }
2161 
2162 /*
2163  * Find a hole extent on given inode and change start/len to the end of hole
2164  * extent.(hole/vacuum extent whose em->start <= start &&
2165  *	   em->start + em->len > start)
2166  * When a hole extent is found, return 1 and modify start/len.
2167  */
2168 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2169 {
2170 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2171 	struct extent_map *em;
2172 	int ret = 0;
2173 
2174 	em = btrfs_get_extent(inode, NULL, 0,
2175 			      round_down(*start, fs_info->sectorsize),
2176 			      round_up(*len, fs_info->sectorsize));
2177 	if (IS_ERR(em))
2178 		return PTR_ERR(em);
2179 
2180 	/* Hole or vacuum extent(only exists in no-hole mode) */
2181 	if (em->block_start == EXTENT_MAP_HOLE) {
2182 		ret = 1;
2183 		*len = em->start + em->len > *start + *len ?
2184 		       0 : *start + *len - em->start - em->len;
2185 		*start = em->start + em->len;
2186 	}
2187 	free_extent_map(em);
2188 	return ret;
2189 }
2190 
2191 static void btrfs_punch_hole_lock_range(struct inode *inode,
2192 					const u64 lockstart,
2193 					const u64 lockend,
2194 					struct extent_state **cached_state)
2195 {
2196 	/*
2197 	 * For subpage case, if the range is not at page boundary, we could
2198 	 * have pages at the leading/tailing part of the range.
2199 	 * This could lead to dead loop since filemap_range_has_page()
2200 	 * will always return true.
2201 	 * So here we need to do extra page alignment for
2202 	 * filemap_range_has_page().
2203 	 */
2204 	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2205 	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2206 
2207 	while (1) {
2208 		truncate_pagecache_range(inode, lockstart, lockend);
2209 
2210 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2211 			    cached_state);
2212 		/*
2213 		 * We can't have ordered extents in the range, nor dirty/writeback
2214 		 * pages, because we have locked the inode's VFS lock in exclusive
2215 		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2216 		 * we have flushed all delalloc in the range and we have waited
2217 		 * for any ordered extents in the range to complete.
2218 		 * We can race with anyone reading pages from this range, so after
2219 		 * locking the range check if we have pages in the range, and if
2220 		 * we do, unlock the range and retry.
2221 		 */
2222 		if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2223 					    page_lockend))
2224 			break;
2225 
2226 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2227 			      cached_state);
2228 	}
2229 
2230 	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2231 }
2232 
2233 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2234 				     struct btrfs_inode *inode,
2235 				     struct btrfs_path *path,
2236 				     struct btrfs_replace_extent_info *extent_info,
2237 				     const u64 replace_len,
2238 				     const u64 bytes_to_drop)
2239 {
2240 	struct btrfs_fs_info *fs_info = trans->fs_info;
2241 	struct btrfs_root *root = inode->root;
2242 	struct btrfs_file_extent_item *extent;
2243 	struct extent_buffer *leaf;
2244 	struct btrfs_key key;
2245 	int slot;
2246 	struct btrfs_ref ref = { 0 };
2247 	int ret;
2248 
2249 	if (replace_len == 0)
2250 		return 0;
2251 
2252 	if (extent_info->disk_offset == 0 &&
2253 	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2254 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2255 		return 0;
2256 	}
2257 
2258 	key.objectid = btrfs_ino(inode);
2259 	key.type = BTRFS_EXTENT_DATA_KEY;
2260 	key.offset = extent_info->file_offset;
2261 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2262 				      sizeof(struct btrfs_file_extent_item));
2263 	if (ret)
2264 		return ret;
2265 	leaf = path->nodes[0];
2266 	slot = path->slots[0];
2267 	write_extent_buffer(leaf, extent_info->extent_buf,
2268 			    btrfs_item_ptr_offset(leaf, slot),
2269 			    sizeof(struct btrfs_file_extent_item));
2270 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2271 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2272 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2273 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2274 	if (extent_info->is_new_extent)
2275 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2276 	btrfs_mark_buffer_dirty(trans, leaf);
2277 	btrfs_release_path(path);
2278 
2279 	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2280 						replace_len);
2281 	if (ret)
2282 		return ret;
2283 
2284 	/* If it's a hole, nothing more needs to be done. */
2285 	if (extent_info->disk_offset == 0) {
2286 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2287 		return 0;
2288 	}
2289 
2290 	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2291 
2292 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2293 		key.objectid = extent_info->disk_offset;
2294 		key.type = BTRFS_EXTENT_ITEM_KEY;
2295 		key.offset = extent_info->disk_len;
2296 		ret = btrfs_alloc_reserved_file_extent(trans, root,
2297 						       btrfs_ino(inode),
2298 						       extent_info->file_offset,
2299 						       extent_info->qgroup_reserved,
2300 						       &key);
2301 	} else {
2302 		u64 ref_offset;
2303 
2304 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2305 				       extent_info->disk_offset,
2306 				       extent_info->disk_len, 0);
2307 		ref_offset = extent_info->file_offset - extent_info->data_offset;
2308 		btrfs_init_data_ref(&ref, root->root_key.objectid,
2309 				    btrfs_ino(inode), ref_offset, 0, false);
2310 		ret = btrfs_inc_extent_ref(trans, &ref);
2311 	}
2312 
2313 	extent_info->insertions++;
2314 
2315 	return ret;
2316 }
2317 
2318 /*
2319  * The respective range must have been previously locked, as well as the inode.
2320  * The end offset is inclusive (last byte of the range).
2321  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2322  * the file range with an extent.
2323  * When not punching a hole, we don't want to end up in a state where we dropped
2324  * extents without inserting a new one, so we must abort the transaction to avoid
2325  * a corruption.
2326  */
2327 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2328 			       struct btrfs_path *path, const u64 start,
2329 			       const u64 end,
2330 			       struct btrfs_replace_extent_info *extent_info,
2331 			       struct btrfs_trans_handle **trans_out)
2332 {
2333 	struct btrfs_drop_extents_args drop_args = { 0 };
2334 	struct btrfs_root *root = inode->root;
2335 	struct btrfs_fs_info *fs_info = root->fs_info;
2336 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2337 	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2338 	struct btrfs_trans_handle *trans = NULL;
2339 	struct btrfs_block_rsv *rsv;
2340 	unsigned int rsv_count;
2341 	u64 cur_offset;
2342 	u64 len = end - start;
2343 	int ret = 0;
2344 
2345 	if (end <= start)
2346 		return -EINVAL;
2347 
2348 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2349 	if (!rsv) {
2350 		ret = -ENOMEM;
2351 		goto out;
2352 	}
2353 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2354 	rsv->failfast = true;
2355 
2356 	/*
2357 	 * 1 - update the inode
2358 	 * 1 - removing the extents in the range
2359 	 * 1 - adding the hole extent if no_holes isn't set or if we are
2360 	 *     replacing the range with a new extent
2361 	 */
2362 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2363 		rsv_count = 3;
2364 	else
2365 		rsv_count = 2;
2366 
2367 	trans = btrfs_start_transaction(root, rsv_count);
2368 	if (IS_ERR(trans)) {
2369 		ret = PTR_ERR(trans);
2370 		trans = NULL;
2371 		goto out_free;
2372 	}
2373 
2374 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2375 				      min_size, false);
2376 	if (WARN_ON(ret))
2377 		goto out_trans;
2378 	trans->block_rsv = rsv;
2379 
2380 	cur_offset = start;
2381 	drop_args.path = path;
2382 	drop_args.end = end + 1;
2383 	drop_args.drop_cache = true;
2384 	while (cur_offset < end) {
2385 		drop_args.start = cur_offset;
2386 		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2387 		/* If we are punching a hole decrement the inode's byte count */
2388 		if (!extent_info)
2389 			btrfs_update_inode_bytes(inode, 0,
2390 						 drop_args.bytes_found);
2391 		if (ret != -ENOSPC) {
2392 			/*
2393 			 * The only time we don't want to abort is if we are
2394 			 * attempting to clone a partial inline extent, in which
2395 			 * case we'll get EOPNOTSUPP.  However if we aren't
2396 			 * clone we need to abort no matter what, because if we
2397 			 * got EOPNOTSUPP via prealloc then we messed up and
2398 			 * need to abort.
2399 			 */
2400 			if (ret &&
2401 			    (ret != -EOPNOTSUPP ||
2402 			     (extent_info && extent_info->is_new_extent)))
2403 				btrfs_abort_transaction(trans, ret);
2404 			break;
2405 		}
2406 
2407 		trans->block_rsv = &fs_info->trans_block_rsv;
2408 
2409 		if (!extent_info && cur_offset < drop_args.drop_end &&
2410 		    cur_offset < ino_size) {
2411 			ret = fill_holes(trans, inode, path, cur_offset,
2412 					 drop_args.drop_end);
2413 			if (ret) {
2414 				/*
2415 				 * If we failed then we didn't insert our hole
2416 				 * entries for the area we dropped, so now the
2417 				 * fs is corrupted, so we must abort the
2418 				 * transaction.
2419 				 */
2420 				btrfs_abort_transaction(trans, ret);
2421 				break;
2422 			}
2423 		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2424 			/*
2425 			 * We are past the i_size here, but since we didn't
2426 			 * insert holes we need to clear the mapped area so we
2427 			 * know to not set disk_i_size in this area until a new
2428 			 * file extent is inserted here.
2429 			 */
2430 			ret = btrfs_inode_clear_file_extent_range(inode,
2431 					cur_offset,
2432 					drop_args.drop_end - cur_offset);
2433 			if (ret) {
2434 				/*
2435 				 * We couldn't clear our area, so we could
2436 				 * presumably adjust up and corrupt the fs, so
2437 				 * we need to abort.
2438 				 */
2439 				btrfs_abort_transaction(trans, ret);
2440 				break;
2441 			}
2442 		}
2443 
2444 		if (extent_info &&
2445 		    drop_args.drop_end > extent_info->file_offset) {
2446 			u64 replace_len = drop_args.drop_end -
2447 					  extent_info->file_offset;
2448 
2449 			ret = btrfs_insert_replace_extent(trans, inode,	path,
2450 					extent_info, replace_len,
2451 					drop_args.bytes_found);
2452 			if (ret) {
2453 				btrfs_abort_transaction(trans, ret);
2454 				break;
2455 			}
2456 			extent_info->data_len -= replace_len;
2457 			extent_info->data_offset += replace_len;
2458 			extent_info->file_offset += replace_len;
2459 		}
2460 
2461 		/*
2462 		 * We are releasing our handle on the transaction, balance the
2463 		 * dirty pages of the btree inode and flush delayed items, and
2464 		 * then get a new transaction handle, which may now point to a
2465 		 * new transaction in case someone else may have committed the
2466 		 * transaction we used to replace/drop file extent items. So
2467 		 * bump the inode's iversion and update mtime and ctime except
2468 		 * if we are called from a dedupe context. This is because a
2469 		 * power failure/crash may happen after the transaction is
2470 		 * committed and before we finish replacing/dropping all the
2471 		 * file extent items we need.
2472 		 */
2473 		inode_inc_iversion(&inode->vfs_inode);
2474 
2475 		if (!extent_info || extent_info->update_times)
2476 			inode->vfs_inode.i_mtime = inode_set_ctime_current(&inode->vfs_inode);
2477 
2478 		ret = btrfs_update_inode(trans, root, inode);
2479 		if (ret)
2480 			break;
2481 
2482 		btrfs_end_transaction(trans);
2483 		btrfs_btree_balance_dirty(fs_info);
2484 
2485 		trans = btrfs_start_transaction(root, rsv_count);
2486 		if (IS_ERR(trans)) {
2487 			ret = PTR_ERR(trans);
2488 			trans = NULL;
2489 			break;
2490 		}
2491 
2492 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2493 					      rsv, min_size, false);
2494 		if (WARN_ON(ret))
2495 			break;
2496 		trans->block_rsv = rsv;
2497 
2498 		cur_offset = drop_args.drop_end;
2499 		len = end - cur_offset;
2500 		if (!extent_info && len) {
2501 			ret = find_first_non_hole(inode, &cur_offset, &len);
2502 			if (unlikely(ret < 0))
2503 				break;
2504 			if (ret && !len) {
2505 				ret = 0;
2506 				break;
2507 			}
2508 		}
2509 	}
2510 
2511 	/*
2512 	 * If we were cloning, force the next fsync to be a full one since we
2513 	 * we replaced (or just dropped in the case of cloning holes when
2514 	 * NO_HOLES is enabled) file extent items and did not setup new extent
2515 	 * maps for the replacement extents (or holes).
2516 	 */
2517 	if (extent_info && !extent_info->is_new_extent)
2518 		btrfs_set_inode_full_sync(inode);
2519 
2520 	if (ret)
2521 		goto out_trans;
2522 
2523 	trans->block_rsv = &fs_info->trans_block_rsv;
2524 	/*
2525 	 * If we are using the NO_HOLES feature we might have had already an
2526 	 * hole that overlaps a part of the region [lockstart, lockend] and
2527 	 * ends at (or beyond) lockend. Since we have no file extent items to
2528 	 * represent holes, drop_end can be less than lockend and so we must
2529 	 * make sure we have an extent map representing the existing hole (the
2530 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2531 	 * map representing the existing hole), otherwise the fast fsync path
2532 	 * will not record the existence of the hole region
2533 	 * [existing_hole_start, lockend].
2534 	 */
2535 	if (drop_args.drop_end <= end)
2536 		drop_args.drop_end = end + 1;
2537 	/*
2538 	 * Don't insert file hole extent item if it's for a range beyond eof
2539 	 * (because it's useless) or if it represents a 0 bytes range (when
2540 	 * cur_offset == drop_end).
2541 	 */
2542 	if (!extent_info && cur_offset < ino_size &&
2543 	    cur_offset < drop_args.drop_end) {
2544 		ret = fill_holes(trans, inode, path, cur_offset,
2545 				 drop_args.drop_end);
2546 		if (ret) {
2547 			/* Same comment as above. */
2548 			btrfs_abort_transaction(trans, ret);
2549 			goto out_trans;
2550 		}
2551 	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2552 		/* See the comment in the loop above for the reasoning here. */
2553 		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2554 					drop_args.drop_end - cur_offset);
2555 		if (ret) {
2556 			btrfs_abort_transaction(trans, ret);
2557 			goto out_trans;
2558 		}
2559 
2560 	}
2561 	if (extent_info) {
2562 		ret = btrfs_insert_replace_extent(trans, inode, path,
2563 				extent_info, extent_info->data_len,
2564 				drop_args.bytes_found);
2565 		if (ret) {
2566 			btrfs_abort_transaction(trans, ret);
2567 			goto out_trans;
2568 		}
2569 	}
2570 
2571 out_trans:
2572 	if (!trans)
2573 		goto out_free;
2574 
2575 	trans->block_rsv = &fs_info->trans_block_rsv;
2576 	if (ret)
2577 		btrfs_end_transaction(trans);
2578 	else
2579 		*trans_out = trans;
2580 out_free:
2581 	btrfs_free_block_rsv(fs_info, rsv);
2582 out:
2583 	return ret;
2584 }
2585 
2586 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2587 {
2588 	struct inode *inode = file_inode(file);
2589 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2590 	struct btrfs_root *root = BTRFS_I(inode)->root;
2591 	struct extent_state *cached_state = NULL;
2592 	struct btrfs_path *path;
2593 	struct btrfs_trans_handle *trans = NULL;
2594 	u64 lockstart;
2595 	u64 lockend;
2596 	u64 tail_start;
2597 	u64 tail_len;
2598 	u64 orig_start = offset;
2599 	int ret = 0;
2600 	bool same_block;
2601 	u64 ino_size;
2602 	bool truncated_block = false;
2603 	bool updated_inode = false;
2604 
2605 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2606 
2607 	ret = btrfs_wait_ordered_range(inode, offset, len);
2608 	if (ret)
2609 		goto out_only_mutex;
2610 
2611 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2612 	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2613 	if (ret < 0)
2614 		goto out_only_mutex;
2615 	if (ret && !len) {
2616 		/* Already in a large hole */
2617 		ret = 0;
2618 		goto out_only_mutex;
2619 	}
2620 
2621 	ret = file_modified(file);
2622 	if (ret)
2623 		goto out_only_mutex;
2624 
2625 	lockstart = round_up(offset, fs_info->sectorsize);
2626 	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2627 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2628 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2629 	/*
2630 	 * We needn't truncate any block which is beyond the end of the file
2631 	 * because we are sure there is no data there.
2632 	 */
2633 	/*
2634 	 * Only do this if we are in the same block and we aren't doing the
2635 	 * entire block.
2636 	 */
2637 	if (same_block && len < fs_info->sectorsize) {
2638 		if (offset < ino_size) {
2639 			truncated_block = true;
2640 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2641 						   0);
2642 		} else {
2643 			ret = 0;
2644 		}
2645 		goto out_only_mutex;
2646 	}
2647 
2648 	/* zero back part of the first block */
2649 	if (offset < ino_size) {
2650 		truncated_block = true;
2651 		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2652 		if (ret) {
2653 			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2654 			return ret;
2655 		}
2656 	}
2657 
2658 	/* Check the aligned pages after the first unaligned page,
2659 	 * if offset != orig_start, which means the first unaligned page
2660 	 * including several following pages are already in holes,
2661 	 * the extra check can be skipped */
2662 	if (offset == orig_start) {
2663 		/* after truncate page, check hole again */
2664 		len = offset + len - lockstart;
2665 		offset = lockstart;
2666 		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2667 		if (ret < 0)
2668 			goto out_only_mutex;
2669 		if (ret && !len) {
2670 			ret = 0;
2671 			goto out_only_mutex;
2672 		}
2673 		lockstart = offset;
2674 	}
2675 
2676 	/* Check the tail unaligned part is in a hole */
2677 	tail_start = lockend + 1;
2678 	tail_len = offset + len - tail_start;
2679 	if (tail_len) {
2680 		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2681 		if (unlikely(ret < 0))
2682 			goto out_only_mutex;
2683 		if (!ret) {
2684 			/* zero the front end of the last page */
2685 			if (tail_start + tail_len < ino_size) {
2686 				truncated_block = true;
2687 				ret = btrfs_truncate_block(BTRFS_I(inode),
2688 							tail_start + tail_len,
2689 							0, 1);
2690 				if (ret)
2691 					goto out_only_mutex;
2692 			}
2693 		}
2694 	}
2695 
2696 	if (lockend < lockstart) {
2697 		ret = 0;
2698 		goto out_only_mutex;
2699 	}
2700 
2701 	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2702 
2703 	path = btrfs_alloc_path();
2704 	if (!path) {
2705 		ret = -ENOMEM;
2706 		goto out;
2707 	}
2708 
2709 	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2710 					 lockend, NULL, &trans);
2711 	btrfs_free_path(path);
2712 	if (ret)
2713 		goto out;
2714 
2715 	ASSERT(trans != NULL);
2716 	inode_inc_iversion(inode);
2717 	inode->i_mtime = inode_set_ctime_current(inode);
2718 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2719 	updated_inode = true;
2720 	btrfs_end_transaction(trans);
2721 	btrfs_btree_balance_dirty(fs_info);
2722 out:
2723 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2724 		      &cached_state);
2725 out_only_mutex:
2726 	if (!updated_inode && truncated_block && !ret) {
2727 		/*
2728 		 * If we only end up zeroing part of a page, we still need to
2729 		 * update the inode item, so that all the time fields are
2730 		 * updated as well as the necessary btrfs inode in memory fields
2731 		 * for detecting, at fsync time, if the inode isn't yet in the
2732 		 * log tree or it's there but not up to date.
2733 		 */
2734 		struct timespec64 now = inode_set_ctime_current(inode);
2735 
2736 		inode_inc_iversion(inode);
2737 		inode->i_mtime = now;
2738 		trans = btrfs_start_transaction(root, 1);
2739 		if (IS_ERR(trans)) {
2740 			ret = PTR_ERR(trans);
2741 		} else {
2742 			int ret2;
2743 
2744 			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2745 			ret2 = btrfs_end_transaction(trans);
2746 			if (!ret)
2747 				ret = ret2;
2748 		}
2749 	}
2750 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2751 	return ret;
2752 }
2753 
2754 /* Helper structure to record which range is already reserved */
2755 struct falloc_range {
2756 	struct list_head list;
2757 	u64 start;
2758 	u64 len;
2759 };
2760 
2761 /*
2762  * Helper function to add falloc range
2763  *
2764  * Caller should have locked the larger range of extent containing
2765  * [start, len)
2766  */
2767 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2768 {
2769 	struct falloc_range *range = NULL;
2770 
2771 	if (!list_empty(head)) {
2772 		/*
2773 		 * As fallocate iterates by bytenr order, we only need to check
2774 		 * the last range.
2775 		 */
2776 		range = list_last_entry(head, struct falloc_range, list);
2777 		if (range->start + range->len == start) {
2778 			range->len += len;
2779 			return 0;
2780 		}
2781 	}
2782 
2783 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2784 	if (!range)
2785 		return -ENOMEM;
2786 	range->start = start;
2787 	range->len = len;
2788 	list_add_tail(&range->list, head);
2789 	return 0;
2790 }
2791 
2792 static int btrfs_fallocate_update_isize(struct inode *inode,
2793 					const u64 end,
2794 					const int mode)
2795 {
2796 	struct btrfs_trans_handle *trans;
2797 	struct btrfs_root *root = BTRFS_I(inode)->root;
2798 	int ret;
2799 	int ret2;
2800 
2801 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2802 		return 0;
2803 
2804 	trans = btrfs_start_transaction(root, 1);
2805 	if (IS_ERR(trans))
2806 		return PTR_ERR(trans);
2807 
2808 	inode_set_ctime_current(inode);
2809 	i_size_write(inode, end);
2810 	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2811 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2812 	ret2 = btrfs_end_transaction(trans);
2813 
2814 	return ret ? ret : ret2;
2815 }
2816 
2817 enum {
2818 	RANGE_BOUNDARY_WRITTEN_EXTENT,
2819 	RANGE_BOUNDARY_PREALLOC_EXTENT,
2820 	RANGE_BOUNDARY_HOLE,
2821 };
2822 
2823 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2824 						 u64 offset)
2825 {
2826 	const u64 sectorsize = inode->root->fs_info->sectorsize;
2827 	struct extent_map *em;
2828 	int ret;
2829 
2830 	offset = round_down(offset, sectorsize);
2831 	em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
2832 	if (IS_ERR(em))
2833 		return PTR_ERR(em);
2834 
2835 	if (em->block_start == EXTENT_MAP_HOLE)
2836 		ret = RANGE_BOUNDARY_HOLE;
2837 	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2838 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2839 	else
2840 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2841 
2842 	free_extent_map(em);
2843 	return ret;
2844 }
2845 
2846 static int btrfs_zero_range(struct inode *inode,
2847 			    loff_t offset,
2848 			    loff_t len,
2849 			    const int mode)
2850 {
2851 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2852 	struct extent_map *em;
2853 	struct extent_changeset *data_reserved = NULL;
2854 	int ret;
2855 	u64 alloc_hint = 0;
2856 	const u64 sectorsize = fs_info->sectorsize;
2857 	u64 alloc_start = round_down(offset, sectorsize);
2858 	u64 alloc_end = round_up(offset + len, sectorsize);
2859 	u64 bytes_to_reserve = 0;
2860 	bool space_reserved = false;
2861 
2862 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2863 			      alloc_end - alloc_start);
2864 	if (IS_ERR(em)) {
2865 		ret = PTR_ERR(em);
2866 		goto out;
2867 	}
2868 
2869 	/*
2870 	 * Avoid hole punching and extent allocation for some cases. More cases
2871 	 * could be considered, but these are unlikely common and we keep things
2872 	 * as simple as possible for now. Also, intentionally, if the target
2873 	 * range contains one or more prealloc extents together with regular
2874 	 * extents and holes, we drop all the existing extents and allocate a
2875 	 * new prealloc extent, so that we get a larger contiguous disk extent.
2876 	 */
2877 	if (em->start <= alloc_start &&
2878 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2879 		const u64 em_end = em->start + em->len;
2880 
2881 		if (em_end >= offset + len) {
2882 			/*
2883 			 * The whole range is already a prealloc extent,
2884 			 * do nothing except updating the inode's i_size if
2885 			 * needed.
2886 			 */
2887 			free_extent_map(em);
2888 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2889 							   mode);
2890 			goto out;
2891 		}
2892 		/*
2893 		 * Part of the range is already a prealloc extent, so operate
2894 		 * only on the remaining part of the range.
2895 		 */
2896 		alloc_start = em_end;
2897 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2898 		len = offset + len - alloc_start;
2899 		offset = alloc_start;
2900 		alloc_hint = em->block_start + em->len;
2901 	}
2902 	free_extent_map(em);
2903 
2904 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2905 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2906 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2907 				      sectorsize);
2908 		if (IS_ERR(em)) {
2909 			ret = PTR_ERR(em);
2910 			goto out;
2911 		}
2912 
2913 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2914 			free_extent_map(em);
2915 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2916 							   mode);
2917 			goto out;
2918 		}
2919 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2920 			free_extent_map(em);
2921 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2922 						   0);
2923 			if (!ret)
2924 				ret = btrfs_fallocate_update_isize(inode,
2925 								   offset + len,
2926 								   mode);
2927 			return ret;
2928 		}
2929 		free_extent_map(em);
2930 		alloc_start = round_down(offset, sectorsize);
2931 		alloc_end = alloc_start + sectorsize;
2932 		goto reserve_space;
2933 	}
2934 
2935 	alloc_start = round_up(offset, sectorsize);
2936 	alloc_end = round_down(offset + len, sectorsize);
2937 
2938 	/*
2939 	 * For unaligned ranges, check the pages at the boundaries, they might
2940 	 * map to an extent, in which case we need to partially zero them, or
2941 	 * they might map to a hole, in which case we need our allocation range
2942 	 * to cover them.
2943 	 */
2944 	if (!IS_ALIGNED(offset, sectorsize)) {
2945 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2946 							    offset);
2947 		if (ret < 0)
2948 			goto out;
2949 		if (ret == RANGE_BOUNDARY_HOLE) {
2950 			alloc_start = round_down(offset, sectorsize);
2951 			ret = 0;
2952 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2953 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2954 			if (ret)
2955 				goto out;
2956 		} else {
2957 			ret = 0;
2958 		}
2959 	}
2960 
2961 	if (!IS_ALIGNED(offset + len, sectorsize)) {
2962 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2963 							    offset + len);
2964 		if (ret < 0)
2965 			goto out;
2966 		if (ret == RANGE_BOUNDARY_HOLE) {
2967 			alloc_end = round_up(offset + len, sectorsize);
2968 			ret = 0;
2969 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2970 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2971 						   0, 1);
2972 			if (ret)
2973 				goto out;
2974 		} else {
2975 			ret = 0;
2976 		}
2977 	}
2978 
2979 reserve_space:
2980 	if (alloc_start < alloc_end) {
2981 		struct extent_state *cached_state = NULL;
2982 		const u64 lockstart = alloc_start;
2983 		const u64 lockend = alloc_end - 1;
2984 
2985 		bytes_to_reserve = alloc_end - alloc_start;
2986 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2987 						      bytes_to_reserve);
2988 		if (ret < 0)
2989 			goto out;
2990 		space_reserved = true;
2991 		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2992 					    &cached_state);
2993 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
2994 						alloc_start, bytes_to_reserve);
2995 		if (ret) {
2996 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
2997 				      lockend, &cached_state);
2998 			goto out;
2999 		}
3000 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3001 						alloc_end - alloc_start,
3002 						i_blocksize(inode),
3003 						offset + len, &alloc_hint);
3004 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3005 			      &cached_state);
3006 		/* btrfs_prealloc_file_range releases reserved space on error */
3007 		if (ret) {
3008 			space_reserved = false;
3009 			goto out;
3010 		}
3011 	}
3012 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3013  out:
3014 	if (ret && space_reserved)
3015 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3016 					       alloc_start, bytes_to_reserve);
3017 	extent_changeset_free(data_reserved);
3018 
3019 	return ret;
3020 }
3021 
3022 static long btrfs_fallocate(struct file *file, int mode,
3023 			    loff_t offset, loff_t len)
3024 {
3025 	struct inode *inode = file_inode(file);
3026 	struct extent_state *cached_state = NULL;
3027 	struct extent_changeset *data_reserved = NULL;
3028 	struct falloc_range *range;
3029 	struct falloc_range *tmp;
3030 	LIST_HEAD(reserve_list);
3031 	u64 cur_offset;
3032 	u64 last_byte;
3033 	u64 alloc_start;
3034 	u64 alloc_end;
3035 	u64 alloc_hint = 0;
3036 	u64 locked_end;
3037 	u64 actual_end = 0;
3038 	u64 data_space_needed = 0;
3039 	u64 data_space_reserved = 0;
3040 	u64 qgroup_reserved = 0;
3041 	struct extent_map *em;
3042 	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3043 	int ret;
3044 
3045 	/* Do not allow fallocate in ZONED mode */
3046 	if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3047 		return -EOPNOTSUPP;
3048 
3049 	alloc_start = round_down(offset, blocksize);
3050 	alloc_end = round_up(offset + len, blocksize);
3051 	cur_offset = alloc_start;
3052 
3053 	/* Make sure we aren't being give some crap mode */
3054 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3055 		     FALLOC_FL_ZERO_RANGE))
3056 		return -EOPNOTSUPP;
3057 
3058 	if (mode & FALLOC_FL_PUNCH_HOLE)
3059 		return btrfs_punch_hole(file, offset, len);
3060 
3061 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3062 
3063 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3064 		ret = inode_newsize_ok(inode, offset + len);
3065 		if (ret)
3066 			goto out;
3067 	}
3068 
3069 	ret = file_modified(file);
3070 	if (ret)
3071 		goto out;
3072 
3073 	/*
3074 	 * TODO: Move these two operations after we have checked
3075 	 * accurate reserved space, or fallocate can still fail but
3076 	 * with page truncated or size expanded.
3077 	 *
3078 	 * But that's a minor problem and won't do much harm BTW.
3079 	 */
3080 	if (alloc_start > inode->i_size) {
3081 		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3082 					alloc_start);
3083 		if (ret)
3084 			goto out;
3085 	} else if (offset + len > inode->i_size) {
3086 		/*
3087 		 * If we are fallocating from the end of the file onward we
3088 		 * need to zero out the end of the block if i_size lands in the
3089 		 * middle of a block.
3090 		 */
3091 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3092 		if (ret)
3093 			goto out;
3094 	}
3095 
3096 	/*
3097 	 * We have locked the inode at the VFS level (in exclusive mode) and we
3098 	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3099 	 * locking the file range, flush all dealloc in the range and wait for
3100 	 * all ordered extents in the range to complete. After this we can lock
3101 	 * the file range and, due to the previous locking we did, we know there
3102 	 * can't be more delalloc or ordered extents in the range.
3103 	 */
3104 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3105 				       alloc_end - alloc_start);
3106 	if (ret)
3107 		goto out;
3108 
3109 	if (mode & FALLOC_FL_ZERO_RANGE) {
3110 		ret = btrfs_zero_range(inode, offset, len, mode);
3111 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3112 		return ret;
3113 	}
3114 
3115 	locked_end = alloc_end - 1;
3116 	lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3117 		    &cached_state);
3118 
3119 	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3120 
3121 	/* First, check if we exceed the qgroup limit */
3122 	while (cur_offset < alloc_end) {
3123 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3124 				      alloc_end - cur_offset);
3125 		if (IS_ERR(em)) {
3126 			ret = PTR_ERR(em);
3127 			break;
3128 		}
3129 		last_byte = min(extent_map_end(em), alloc_end);
3130 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3131 		last_byte = ALIGN(last_byte, blocksize);
3132 		if (em->block_start == EXTENT_MAP_HOLE ||
3133 		    (cur_offset >= inode->i_size &&
3134 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3135 			const u64 range_len = last_byte - cur_offset;
3136 
3137 			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3138 			if (ret < 0) {
3139 				free_extent_map(em);
3140 				break;
3141 			}
3142 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3143 					&data_reserved, cur_offset, range_len);
3144 			if (ret < 0) {
3145 				free_extent_map(em);
3146 				break;
3147 			}
3148 			qgroup_reserved += range_len;
3149 			data_space_needed += range_len;
3150 		}
3151 		free_extent_map(em);
3152 		cur_offset = last_byte;
3153 	}
3154 
3155 	if (!ret && data_space_needed > 0) {
3156 		/*
3157 		 * We are safe to reserve space here as we can't have delalloc
3158 		 * in the range, see above.
3159 		 */
3160 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3161 						      data_space_needed);
3162 		if (!ret)
3163 			data_space_reserved = data_space_needed;
3164 	}
3165 
3166 	/*
3167 	 * If ret is still 0, means we're OK to fallocate.
3168 	 * Or just cleanup the list and exit.
3169 	 */
3170 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3171 		if (!ret) {
3172 			ret = btrfs_prealloc_file_range(inode, mode,
3173 					range->start,
3174 					range->len, i_blocksize(inode),
3175 					offset + len, &alloc_hint);
3176 			/*
3177 			 * btrfs_prealloc_file_range() releases space even
3178 			 * if it returns an error.
3179 			 */
3180 			data_space_reserved -= range->len;
3181 			qgroup_reserved -= range->len;
3182 		} else if (data_space_reserved > 0) {
3183 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3184 					       data_reserved, range->start,
3185 					       range->len);
3186 			data_space_reserved -= range->len;
3187 			qgroup_reserved -= range->len;
3188 		} else if (qgroup_reserved > 0) {
3189 			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3190 					       range->start, range->len);
3191 			qgroup_reserved -= range->len;
3192 		}
3193 		list_del(&range->list);
3194 		kfree(range);
3195 	}
3196 	if (ret < 0)
3197 		goto out_unlock;
3198 
3199 	/*
3200 	 * We didn't need to allocate any more space, but we still extended the
3201 	 * size of the file so we need to update i_size and the inode item.
3202 	 */
3203 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3204 out_unlock:
3205 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3206 		      &cached_state);
3207 out:
3208 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3209 	extent_changeset_free(data_reserved);
3210 	return ret;
3211 }
3212 
3213 /*
3214  * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3215  * that has unflushed and/or flushing delalloc. There might be other adjacent
3216  * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3217  * looping while it gets adjacent subranges, and merging them together.
3218  */
3219 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3220 				   struct extent_state **cached_state,
3221 				   bool *search_io_tree,
3222 				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3223 {
3224 	u64 len = end + 1 - start;
3225 	u64 delalloc_len = 0;
3226 	struct btrfs_ordered_extent *oe;
3227 	u64 oe_start;
3228 	u64 oe_end;
3229 
3230 	/*
3231 	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3232 	 * means we have delalloc (dirty pages) for which writeback has not
3233 	 * started yet.
3234 	 */
3235 	if (*search_io_tree) {
3236 		spin_lock(&inode->lock);
3237 		if (inode->delalloc_bytes > 0) {
3238 			spin_unlock(&inode->lock);
3239 			*delalloc_start_ret = start;
3240 			delalloc_len = count_range_bits(&inode->io_tree,
3241 							delalloc_start_ret, end,
3242 							len, EXTENT_DELALLOC, 1,
3243 							cached_state);
3244 		} else {
3245 			spin_unlock(&inode->lock);
3246 		}
3247 	}
3248 
3249 	if (delalloc_len > 0) {
3250 		/*
3251 		 * If delalloc was found then *delalloc_start_ret has a sector size
3252 		 * aligned value (rounded down).
3253 		 */
3254 		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3255 
3256 		if (*delalloc_start_ret == start) {
3257 			/* Delalloc for the whole range, nothing more to do. */
3258 			if (*delalloc_end_ret == end)
3259 				return true;
3260 			/* Else trim our search range for ordered extents. */
3261 			start = *delalloc_end_ret + 1;
3262 			len = end + 1 - start;
3263 		}
3264 	} else {
3265 		/* No delalloc, future calls don't need to search again. */
3266 		*search_io_tree = false;
3267 	}
3268 
3269 	/*
3270 	 * Now also check if there's any ordered extent in the range.
3271 	 * We do this because:
3272 	 *
3273 	 * 1) When delalloc is flushed, the file range is locked, we clear the
3274 	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
3275 	 *    an ordered extent for the write. So we might just have been called
3276 	 *    after delalloc is flushed and before the ordered extent completes
3277 	 *    and inserts the new file extent item in the subvolume's btree;
3278 	 *
3279 	 * 2) We may have an ordered extent created by flushing delalloc for a
3280 	 *    subrange that starts before the subrange we found marked with
3281 	 *    EXTENT_DELALLOC in the io tree.
3282 	 *
3283 	 * We could also use the extent map tree to find such delalloc that is
3284 	 * being flushed, but using the ordered extents tree is more efficient
3285 	 * because it's usually much smaller as ordered extents are removed from
3286 	 * the tree once they complete. With the extent maps, we mau have them
3287 	 * in the extent map tree for a very long time, and they were either
3288 	 * created by previous writes or loaded by read operations.
3289 	 */
3290 	oe = btrfs_lookup_first_ordered_range(inode, start, len);
3291 	if (!oe)
3292 		return (delalloc_len > 0);
3293 
3294 	/* The ordered extent may span beyond our search range. */
3295 	oe_start = max(oe->file_offset, start);
3296 	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3297 
3298 	btrfs_put_ordered_extent(oe);
3299 
3300 	/* Don't have unflushed delalloc, return the ordered extent range. */
3301 	if (delalloc_len == 0) {
3302 		*delalloc_start_ret = oe_start;
3303 		*delalloc_end_ret = oe_end;
3304 		return true;
3305 	}
3306 
3307 	/*
3308 	 * We have both unflushed delalloc (io_tree) and an ordered extent.
3309 	 * If the ranges are adjacent returned a combined range, otherwise
3310 	 * return the leftmost range.
3311 	 */
3312 	if (oe_start < *delalloc_start_ret) {
3313 		if (oe_end < *delalloc_start_ret)
3314 			*delalloc_end_ret = oe_end;
3315 		*delalloc_start_ret = oe_start;
3316 	} else if (*delalloc_end_ret + 1 == oe_start) {
3317 		*delalloc_end_ret = oe_end;
3318 	}
3319 
3320 	return true;
3321 }
3322 
3323 /*
3324  * Check if there's delalloc in a given range.
3325  *
3326  * @inode:               The inode.
3327  * @start:               The start offset of the range. It does not need to be
3328  *                       sector size aligned.
3329  * @end:                 The end offset (inclusive value) of the search range.
3330  *                       It does not need to be sector size aligned.
3331  * @cached_state:        Extent state record used for speeding up delalloc
3332  *                       searches in the inode's io_tree. Can be NULL.
3333  * @delalloc_start_ret:  Output argument, set to the start offset of the
3334  *                       subrange found with delalloc (may not be sector size
3335  *                       aligned).
3336  * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3337  *                       of the subrange found with delalloc.
3338  *
3339  * Returns true if a subrange with delalloc is found within the given range, and
3340  * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3341  * end offsets of the subrange.
3342  */
3343 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3344 				  struct extent_state **cached_state,
3345 				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3346 {
3347 	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3348 	u64 prev_delalloc_end = 0;
3349 	bool search_io_tree = true;
3350 	bool ret = false;
3351 
3352 	while (cur_offset <= end) {
3353 		u64 delalloc_start;
3354 		u64 delalloc_end;
3355 		bool delalloc;
3356 
3357 		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3358 						  cached_state, &search_io_tree,
3359 						  &delalloc_start,
3360 						  &delalloc_end);
3361 		if (!delalloc)
3362 			break;
3363 
3364 		if (prev_delalloc_end == 0) {
3365 			/* First subrange found. */
3366 			*delalloc_start_ret = max(delalloc_start, start);
3367 			*delalloc_end_ret = delalloc_end;
3368 			ret = true;
3369 		} else if (delalloc_start == prev_delalloc_end + 1) {
3370 			/* Subrange adjacent to the previous one, merge them. */
3371 			*delalloc_end_ret = delalloc_end;
3372 		} else {
3373 			/* Subrange not adjacent to the previous one, exit. */
3374 			break;
3375 		}
3376 
3377 		prev_delalloc_end = delalloc_end;
3378 		cur_offset = delalloc_end + 1;
3379 		cond_resched();
3380 	}
3381 
3382 	return ret;
3383 }
3384 
3385 /*
3386  * Check if there's a hole or delalloc range in a range representing a hole (or
3387  * prealloc extent) found in the inode's subvolume btree.
3388  *
3389  * @inode:      The inode.
3390  * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3391  * @start:      Start offset of the hole region. It does not need to be sector
3392  *              size aligned.
3393  * @end:        End offset (inclusive value) of the hole region. It does not
3394  *              need to be sector size aligned.
3395  * @start_ret:  Return parameter, used to set the start of the subrange in the
3396  *              hole that matches the search criteria (seek mode), if such
3397  *              subrange is found (return value of the function is true).
3398  *              The value returned here may not be sector size aligned.
3399  *
3400  * Returns true if a subrange matching the given seek mode is found, and if one
3401  * is found, it updates @start_ret with the start of the subrange.
3402  */
3403 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3404 					struct extent_state **cached_state,
3405 					u64 start, u64 end, u64 *start_ret)
3406 {
3407 	u64 delalloc_start;
3408 	u64 delalloc_end;
3409 	bool delalloc;
3410 
3411 	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3412 						&delalloc_start, &delalloc_end);
3413 	if (delalloc && whence == SEEK_DATA) {
3414 		*start_ret = delalloc_start;
3415 		return true;
3416 	}
3417 
3418 	if (delalloc && whence == SEEK_HOLE) {
3419 		/*
3420 		 * We found delalloc but it starts after out start offset. So we
3421 		 * have a hole between our start offset and the delalloc start.
3422 		 */
3423 		if (start < delalloc_start) {
3424 			*start_ret = start;
3425 			return true;
3426 		}
3427 		/*
3428 		 * Delalloc range starts at our start offset.
3429 		 * If the delalloc range's length is smaller than our range,
3430 		 * then it means we have a hole that starts where the delalloc
3431 		 * subrange ends.
3432 		 */
3433 		if (delalloc_end < end) {
3434 			*start_ret = delalloc_end + 1;
3435 			return true;
3436 		}
3437 
3438 		/* There's delalloc for the whole range. */
3439 		return false;
3440 	}
3441 
3442 	if (!delalloc && whence == SEEK_HOLE) {
3443 		*start_ret = start;
3444 		return true;
3445 	}
3446 
3447 	/*
3448 	 * No delalloc in the range and we are seeking for data. The caller has
3449 	 * to iterate to the next extent item in the subvolume btree.
3450 	 */
3451 	return false;
3452 }
3453 
3454 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3455 {
3456 	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3457 	struct btrfs_file_private *private = file->private_data;
3458 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3459 	struct extent_state *cached_state = NULL;
3460 	struct extent_state **delalloc_cached_state;
3461 	const loff_t i_size = i_size_read(&inode->vfs_inode);
3462 	const u64 ino = btrfs_ino(inode);
3463 	struct btrfs_root *root = inode->root;
3464 	struct btrfs_path *path;
3465 	struct btrfs_key key;
3466 	u64 last_extent_end;
3467 	u64 lockstart;
3468 	u64 lockend;
3469 	u64 start;
3470 	int ret;
3471 	bool found = false;
3472 
3473 	if (i_size == 0 || offset >= i_size)
3474 		return -ENXIO;
3475 
3476 	/*
3477 	 * Quick path. If the inode has no prealloc extents and its number of
3478 	 * bytes used matches its i_size, then it can not have holes.
3479 	 */
3480 	if (whence == SEEK_HOLE &&
3481 	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3482 	    inode_get_bytes(&inode->vfs_inode) == i_size)
3483 		return i_size;
3484 
3485 	if (!private) {
3486 		private = kzalloc(sizeof(*private), GFP_KERNEL);
3487 		/*
3488 		 * No worries if memory allocation failed.
3489 		 * The private structure is used only for speeding up multiple
3490 		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3491 		 * so everything will still be correct.
3492 		 */
3493 		file->private_data = private;
3494 	}
3495 
3496 	if (private)
3497 		delalloc_cached_state = &private->llseek_cached_state;
3498 	else
3499 		delalloc_cached_state = NULL;
3500 
3501 	/*
3502 	 * offset can be negative, in this case we start finding DATA/HOLE from
3503 	 * the very start of the file.
3504 	 */
3505 	start = max_t(loff_t, 0, offset);
3506 
3507 	lockstart = round_down(start, fs_info->sectorsize);
3508 	lockend = round_up(i_size, fs_info->sectorsize);
3509 	if (lockend <= lockstart)
3510 		lockend = lockstart + fs_info->sectorsize;
3511 	lockend--;
3512 
3513 	path = btrfs_alloc_path();
3514 	if (!path)
3515 		return -ENOMEM;
3516 	path->reada = READA_FORWARD;
3517 
3518 	key.objectid = ino;
3519 	key.type = BTRFS_EXTENT_DATA_KEY;
3520 	key.offset = start;
3521 
3522 	last_extent_end = lockstart;
3523 
3524 	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3525 
3526 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3527 	if (ret < 0) {
3528 		goto out;
3529 	} else if (ret > 0 && path->slots[0] > 0) {
3530 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3531 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3532 			path->slots[0]--;
3533 	}
3534 
3535 	while (start < i_size) {
3536 		struct extent_buffer *leaf = path->nodes[0];
3537 		struct btrfs_file_extent_item *extent;
3538 		u64 extent_end;
3539 		u8 type;
3540 
3541 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3542 			ret = btrfs_next_leaf(root, path);
3543 			if (ret < 0)
3544 				goto out;
3545 			else if (ret > 0)
3546 				break;
3547 
3548 			leaf = path->nodes[0];
3549 		}
3550 
3551 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3552 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3553 			break;
3554 
3555 		extent_end = btrfs_file_extent_end(path);
3556 
3557 		/*
3558 		 * In the first iteration we may have a slot that points to an
3559 		 * extent that ends before our start offset, so skip it.
3560 		 */
3561 		if (extent_end <= start) {
3562 			path->slots[0]++;
3563 			continue;
3564 		}
3565 
3566 		/* We have an implicit hole, NO_HOLES feature is likely set. */
3567 		if (last_extent_end < key.offset) {
3568 			u64 search_start = last_extent_end;
3569 			u64 found_start;
3570 
3571 			/*
3572 			 * First iteration, @start matches @offset and it's
3573 			 * within the hole.
3574 			 */
3575 			if (start == offset)
3576 				search_start = offset;
3577 
3578 			found = find_desired_extent_in_hole(inode, whence,
3579 							    delalloc_cached_state,
3580 							    search_start,
3581 							    key.offset - 1,
3582 							    &found_start);
3583 			if (found) {
3584 				start = found_start;
3585 				break;
3586 			}
3587 			/*
3588 			 * Didn't find data or a hole (due to delalloc) in the
3589 			 * implicit hole range, so need to analyze the extent.
3590 			 */
3591 		}
3592 
3593 		extent = btrfs_item_ptr(leaf, path->slots[0],
3594 					struct btrfs_file_extent_item);
3595 		type = btrfs_file_extent_type(leaf, extent);
3596 
3597 		/*
3598 		 * Can't access the extent's disk_bytenr field if this is an
3599 		 * inline extent, since at that offset, it's where the extent
3600 		 * data starts.
3601 		 */
3602 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3603 		    (type == BTRFS_FILE_EXTENT_REG &&
3604 		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3605 			/*
3606 			 * Explicit hole or prealloc extent, search for delalloc.
3607 			 * A prealloc extent is treated like a hole.
3608 			 */
3609 			u64 search_start = key.offset;
3610 			u64 found_start;
3611 
3612 			/*
3613 			 * First iteration, @start matches @offset and it's
3614 			 * within the hole.
3615 			 */
3616 			if (start == offset)
3617 				search_start = offset;
3618 
3619 			found = find_desired_extent_in_hole(inode, whence,
3620 							    delalloc_cached_state,
3621 							    search_start,
3622 							    extent_end - 1,
3623 							    &found_start);
3624 			if (found) {
3625 				start = found_start;
3626 				break;
3627 			}
3628 			/*
3629 			 * Didn't find data or a hole (due to delalloc) in the
3630 			 * implicit hole range, so need to analyze the next
3631 			 * extent item.
3632 			 */
3633 		} else {
3634 			/*
3635 			 * Found a regular or inline extent.
3636 			 * If we are seeking for data, adjust the start offset
3637 			 * and stop, we're done.
3638 			 */
3639 			if (whence == SEEK_DATA) {
3640 				start = max_t(u64, key.offset, offset);
3641 				found = true;
3642 				break;
3643 			}
3644 			/*
3645 			 * Else, we are seeking for a hole, check the next file
3646 			 * extent item.
3647 			 */
3648 		}
3649 
3650 		start = extent_end;
3651 		last_extent_end = extent_end;
3652 		path->slots[0]++;
3653 		if (fatal_signal_pending(current)) {
3654 			ret = -EINTR;
3655 			goto out;
3656 		}
3657 		cond_resched();
3658 	}
3659 
3660 	/* We have an implicit hole from the last extent found up to i_size. */
3661 	if (!found && start < i_size) {
3662 		found = find_desired_extent_in_hole(inode, whence,
3663 						    delalloc_cached_state, start,
3664 						    i_size - 1, &start);
3665 		if (!found)
3666 			start = i_size;
3667 	}
3668 
3669 out:
3670 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3671 	btrfs_free_path(path);
3672 
3673 	if (ret < 0)
3674 		return ret;
3675 
3676 	if (whence == SEEK_DATA && start >= i_size)
3677 		return -ENXIO;
3678 
3679 	return min_t(loff_t, start, i_size);
3680 }
3681 
3682 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3683 {
3684 	struct inode *inode = file->f_mapping->host;
3685 
3686 	switch (whence) {
3687 	default:
3688 		return generic_file_llseek(file, offset, whence);
3689 	case SEEK_DATA:
3690 	case SEEK_HOLE:
3691 		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3692 		offset = find_desired_extent(file, offset, whence);
3693 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3694 		break;
3695 	}
3696 
3697 	if (offset < 0)
3698 		return offset;
3699 
3700 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3701 }
3702 
3703 static int btrfs_file_open(struct inode *inode, struct file *filp)
3704 {
3705 	int ret;
3706 
3707 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
3708 		        FMODE_CAN_ODIRECT;
3709 
3710 	ret = fsverity_file_open(inode, filp);
3711 	if (ret)
3712 		return ret;
3713 	return generic_file_open(inode, filp);
3714 }
3715 
3716 static int check_direct_read(struct btrfs_fs_info *fs_info,
3717 			     const struct iov_iter *iter, loff_t offset)
3718 {
3719 	int ret;
3720 	int i, seg;
3721 
3722 	ret = check_direct_IO(fs_info, iter, offset);
3723 	if (ret < 0)
3724 		return ret;
3725 
3726 	if (!iter_is_iovec(iter))
3727 		return 0;
3728 
3729 	for (seg = 0; seg < iter->nr_segs; seg++) {
3730 		for (i = seg + 1; i < iter->nr_segs; i++) {
3731 			const struct iovec *iov1 = iter_iov(iter) + seg;
3732 			const struct iovec *iov2 = iter_iov(iter) + i;
3733 
3734 			if (iov1->iov_base == iov2->iov_base)
3735 				return -EINVAL;
3736 		}
3737 	}
3738 	return 0;
3739 }
3740 
3741 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3742 {
3743 	struct inode *inode = file_inode(iocb->ki_filp);
3744 	size_t prev_left = 0;
3745 	ssize_t read = 0;
3746 	ssize_t ret;
3747 
3748 	if (fsverity_active(inode))
3749 		return 0;
3750 
3751 	if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3752 		return 0;
3753 
3754 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3755 again:
3756 	/*
3757 	 * This is similar to what we do for direct IO writes, see the comment
3758 	 * at btrfs_direct_write(), but we also disable page faults in addition
3759 	 * to disabling them only at the iov_iter level. This is because when
3760 	 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3761 	 * which can still trigger page fault ins despite having set ->nofault
3762 	 * to true of our 'to' iov_iter.
3763 	 *
3764 	 * The difference to direct IO writes is that we deadlock when trying
3765 	 * to lock the extent range in the inode's tree during he page reads
3766 	 * triggered by the fault in (while for writes it is due to waiting for
3767 	 * our own ordered extent). This is because for direct IO reads,
3768 	 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3769 	 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3770 	 */
3771 	pagefault_disable();
3772 	to->nofault = true;
3773 	ret = btrfs_dio_read(iocb, to, read);
3774 	to->nofault = false;
3775 	pagefault_enable();
3776 
3777 	/* No increment (+=) because iomap returns a cumulative value. */
3778 	if (ret > 0)
3779 		read = ret;
3780 
3781 	if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3782 		const size_t left = iov_iter_count(to);
3783 
3784 		if (left == prev_left) {
3785 			/*
3786 			 * We didn't make any progress since the last attempt,
3787 			 * fallback to a buffered read for the remainder of the
3788 			 * range. This is just to avoid any possibility of looping
3789 			 * for too long.
3790 			 */
3791 			ret = read;
3792 		} else {
3793 			/*
3794 			 * We made some progress since the last retry or this is
3795 			 * the first time we are retrying. Fault in as many pages
3796 			 * as possible and retry.
3797 			 */
3798 			fault_in_iov_iter_writeable(to, left);
3799 			prev_left = left;
3800 			goto again;
3801 		}
3802 	}
3803 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3804 	return ret < 0 ? ret : read;
3805 }
3806 
3807 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3808 {
3809 	ssize_t ret = 0;
3810 
3811 	if (iocb->ki_flags & IOCB_DIRECT) {
3812 		ret = btrfs_direct_read(iocb, to);
3813 		if (ret < 0 || !iov_iter_count(to) ||
3814 		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3815 			return ret;
3816 	}
3817 
3818 	return filemap_read(iocb, to, ret);
3819 }
3820 
3821 const struct file_operations btrfs_file_operations = {
3822 	.llseek		= btrfs_file_llseek,
3823 	.read_iter      = btrfs_file_read_iter,
3824 	.splice_read	= filemap_splice_read,
3825 	.write_iter	= btrfs_file_write_iter,
3826 	.splice_write	= iter_file_splice_write,
3827 	.mmap		= btrfs_file_mmap,
3828 	.open		= btrfs_file_open,
3829 	.release	= btrfs_release_file,
3830 	.get_unmapped_area = thp_get_unmapped_area,
3831 	.fsync		= btrfs_sync_file,
3832 	.fallocate	= btrfs_fallocate,
3833 	.unlocked_ioctl	= btrfs_ioctl,
3834 #ifdef CONFIG_COMPAT
3835 	.compat_ioctl	= btrfs_compat_ioctl,
3836 #endif
3837 	.remap_file_range = btrfs_remap_file_range,
3838 };
3839 
3840 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3841 {
3842 	int ret;
3843 
3844 	/*
3845 	 * So with compression we will find and lock a dirty page and clear the
3846 	 * first one as dirty, setup an async extent, and immediately return
3847 	 * with the entire range locked but with nobody actually marked with
3848 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3849 	 * expect it to work since it will just kick off a thread to do the
3850 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3851 	 * since it will wait on the page lock, which won't be unlocked until
3852 	 * after the pages have been marked as writeback and so we're good to go
3853 	 * from there.  We have to do this otherwise we'll miss the ordered
3854 	 * extents and that results in badness.  Please Josef, do not think you
3855 	 * know better and pull this out at some point in the future, it is
3856 	 * right and you are wrong.
3857 	 */
3858 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3859 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3860 			     &BTRFS_I(inode)->runtime_flags))
3861 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3862 
3863 	return ret;
3864 }
3865