1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "btrfs_inode.h" 24 #include "print-tree.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "volumes.h" 28 #include "qgroup.h" 29 #include "compression.h" 30 #include "delalloc-space.h" 31 #include "reflink.h" 32 #include "subpage.h" 33 #include "fs.h" 34 #include "accessors.h" 35 #include "extent-tree.h" 36 #include "file-item.h" 37 #include "ioctl.h" 38 #include "file.h" 39 #include "super.h" 40 41 /* simple helper to fault in pages and copy. This should go away 42 * and be replaced with calls into generic code. 43 */ 44 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 45 struct page **prepared_pages, 46 struct iov_iter *i) 47 { 48 size_t copied = 0; 49 size_t total_copied = 0; 50 int pg = 0; 51 int offset = offset_in_page(pos); 52 53 while (write_bytes > 0) { 54 size_t count = min_t(size_t, 55 PAGE_SIZE - offset, write_bytes); 56 struct page *page = prepared_pages[pg]; 57 /* 58 * Copy data from userspace to the current page 59 */ 60 copied = copy_page_from_iter_atomic(page, offset, count, i); 61 62 /* Flush processor's dcache for this page */ 63 flush_dcache_page(page); 64 65 /* 66 * if we get a partial write, we can end up with 67 * partially up to date pages. These add 68 * a lot of complexity, so make sure they don't 69 * happen by forcing this copy to be retried. 70 * 71 * The rest of the btrfs_file_write code will fall 72 * back to page at a time copies after we return 0. 73 */ 74 if (unlikely(copied < count)) { 75 if (!PageUptodate(page)) { 76 iov_iter_revert(i, copied); 77 copied = 0; 78 } 79 if (!copied) 80 break; 81 } 82 83 write_bytes -= copied; 84 total_copied += copied; 85 offset += copied; 86 if (offset == PAGE_SIZE) { 87 pg++; 88 offset = 0; 89 } 90 } 91 return total_copied; 92 } 93 94 /* 95 * unlocks pages after btrfs_file_write is done with them 96 */ 97 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, 98 struct page **pages, size_t num_pages, 99 u64 pos, u64 copied) 100 { 101 size_t i; 102 u64 block_start = round_down(pos, fs_info->sectorsize); 103 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 104 105 ASSERT(block_len <= U32_MAX); 106 for (i = 0; i < num_pages; i++) { 107 /* page checked is some magic around finding pages that 108 * have been modified without going through btrfs_set_page_dirty 109 * clear it here. There should be no need to mark the pages 110 * accessed as prepare_pages should have marked them accessed 111 * in prepare_pages via find_or_create_page() 112 */ 113 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start, 114 block_len); 115 unlock_page(pages[i]); 116 put_page(pages[i]); 117 } 118 } 119 120 /* 121 * After btrfs_copy_from_user(), update the following things for delalloc: 122 * - Mark newly dirtied pages as DELALLOC in the io tree. 123 * Used to advise which range is to be written back. 124 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 125 * - Update inode size for past EOF write 126 */ 127 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 128 size_t num_pages, loff_t pos, size_t write_bytes, 129 struct extent_state **cached, bool noreserve) 130 { 131 struct btrfs_fs_info *fs_info = inode->root->fs_info; 132 int err = 0; 133 int i; 134 u64 num_bytes; 135 u64 start_pos; 136 u64 end_of_last_block; 137 u64 end_pos = pos + write_bytes; 138 loff_t isize = i_size_read(&inode->vfs_inode); 139 unsigned int extra_bits = 0; 140 141 if (write_bytes == 0) 142 return 0; 143 144 if (noreserve) 145 extra_bits |= EXTENT_NORESERVE; 146 147 start_pos = round_down(pos, fs_info->sectorsize); 148 num_bytes = round_up(write_bytes + pos - start_pos, 149 fs_info->sectorsize); 150 ASSERT(num_bytes <= U32_MAX); 151 152 end_of_last_block = start_pos + num_bytes - 1; 153 154 /* 155 * The pages may have already been dirty, clear out old accounting so 156 * we can set things up properly 157 */ 158 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 159 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 160 cached); 161 162 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 163 extra_bits, cached); 164 if (err) 165 return err; 166 167 for (i = 0; i < num_pages; i++) { 168 struct page *p = pages[i]; 169 170 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes); 171 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes); 172 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes); 173 } 174 175 /* 176 * we've only changed i_size in ram, and we haven't updated 177 * the disk i_size. There is no need to log the inode 178 * at this time. 179 */ 180 if (end_pos > isize) 181 i_size_write(&inode->vfs_inode, end_pos); 182 return 0; 183 } 184 185 /* 186 * this is very complex, but the basic idea is to drop all extents 187 * in the range start - end. hint_block is filled in with a block number 188 * that would be a good hint to the block allocator for this file. 189 * 190 * If an extent intersects the range but is not entirely inside the range 191 * it is either truncated or split. Anything entirely inside the range 192 * is deleted from the tree. 193 * 194 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 195 * to deal with that. We set the field 'bytes_found' of the arguments structure 196 * with the number of allocated bytes found in the target range, so that the 197 * caller can update the inode's number of bytes in an atomic way when 198 * replacing extents in a range to avoid races with stat(2). 199 */ 200 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 201 struct btrfs_root *root, struct btrfs_inode *inode, 202 struct btrfs_drop_extents_args *args) 203 { 204 struct btrfs_fs_info *fs_info = root->fs_info; 205 struct extent_buffer *leaf; 206 struct btrfs_file_extent_item *fi; 207 struct btrfs_ref ref = { 0 }; 208 struct btrfs_key key; 209 struct btrfs_key new_key; 210 u64 ino = btrfs_ino(inode); 211 u64 search_start = args->start; 212 u64 disk_bytenr = 0; 213 u64 num_bytes = 0; 214 u64 extent_offset = 0; 215 u64 extent_end = 0; 216 u64 last_end = args->start; 217 int del_nr = 0; 218 int del_slot = 0; 219 int extent_type; 220 int recow; 221 int ret; 222 int modify_tree = -1; 223 int update_refs; 224 int found = 0; 225 struct btrfs_path *path = args->path; 226 227 args->bytes_found = 0; 228 args->extent_inserted = false; 229 230 /* Must always have a path if ->replace_extent is true */ 231 ASSERT(!(args->replace_extent && !args->path)); 232 233 if (!path) { 234 path = btrfs_alloc_path(); 235 if (!path) { 236 ret = -ENOMEM; 237 goto out; 238 } 239 } 240 241 if (args->drop_cache) 242 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false); 243 244 if (args->start >= inode->disk_i_size && !args->replace_extent) 245 modify_tree = 0; 246 247 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); 248 while (1) { 249 recow = 0; 250 ret = btrfs_lookup_file_extent(trans, root, path, ino, 251 search_start, modify_tree); 252 if (ret < 0) 253 break; 254 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 255 leaf = path->nodes[0]; 256 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 257 if (key.objectid == ino && 258 key.type == BTRFS_EXTENT_DATA_KEY) 259 path->slots[0]--; 260 } 261 ret = 0; 262 next_slot: 263 leaf = path->nodes[0]; 264 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 265 BUG_ON(del_nr > 0); 266 ret = btrfs_next_leaf(root, path); 267 if (ret < 0) 268 break; 269 if (ret > 0) { 270 ret = 0; 271 break; 272 } 273 leaf = path->nodes[0]; 274 recow = 1; 275 } 276 277 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 278 279 if (key.objectid > ino) 280 break; 281 if (WARN_ON_ONCE(key.objectid < ino) || 282 key.type < BTRFS_EXTENT_DATA_KEY) { 283 ASSERT(del_nr == 0); 284 path->slots[0]++; 285 goto next_slot; 286 } 287 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 288 break; 289 290 fi = btrfs_item_ptr(leaf, path->slots[0], 291 struct btrfs_file_extent_item); 292 extent_type = btrfs_file_extent_type(leaf, fi); 293 294 if (extent_type == BTRFS_FILE_EXTENT_REG || 295 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 296 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 297 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 298 extent_offset = btrfs_file_extent_offset(leaf, fi); 299 extent_end = key.offset + 300 btrfs_file_extent_num_bytes(leaf, fi); 301 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 302 extent_end = key.offset + 303 btrfs_file_extent_ram_bytes(leaf, fi); 304 } else { 305 /* can't happen */ 306 BUG(); 307 } 308 309 /* 310 * Don't skip extent items representing 0 byte lengths. They 311 * used to be created (bug) if while punching holes we hit 312 * -ENOSPC condition. So if we find one here, just ensure we 313 * delete it, otherwise we would insert a new file extent item 314 * with the same key (offset) as that 0 bytes length file 315 * extent item in the call to setup_items_for_insert() later 316 * in this function. 317 */ 318 if (extent_end == key.offset && extent_end >= search_start) { 319 last_end = extent_end; 320 goto delete_extent_item; 321 } 322 323 if (extent_end <= search_start) { 324 path->slots[0]++; 325 goto next_slot; 326 } 327 328 found = 1; 329 search_start = max(key.offset, args->start); 330 if (recow || !modify_tree) { 331 modify_tree = -1; 332 btrfs_release_path(path); 333 continue; 334 } 335 336 /* 337 * | - range to drop - | 338 * | -------- extent -------- | 339 */ 340 if (args->start > key.offset && args->end < extent_end) { 341 BUG_ON(del_nr > 0); 342 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 343 ret = -EOPNOTSUPP; 344 break; 345 } 346 347 memcpy(&new_key, &key, sizeof(new_key)); 348 new_key.offset = args->start; 349 ret = btrfs_duplicate_item(trans, root, path, 350 &new_key); 351 if (ret == -EAGAIN) { 352 btrfs_release_path(path); 353 continue; 354 } 355 if (ret < 0) 356 break; 357 358 leaf = path->nodes[0]; 359 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 360 struct btrfs_file_extent_item); 361 btrfs_set_file_extent_num_bytes(leaf, fi, 362 args->start - key.offset); 363 364 fi = btrfs_item_ptr(leaf, path->slots[0], 365 struct btrfs_file_extent_item); 366 367 extent_offset += args->start - key.offset; 368 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 369 btrfs_set_file_extent_num_bytes(leaf, fi, 370 extent_end - args->start); 371 btrfs_mark_buffer_dirty(trans, leaf); 372 373 if (update_refs && disk_bytenr > 0) { 374 btrfs_init_generic_ref(&ref, 375 BTRFS_ADD_DELAYED_REF, 376 disk_bytenr, num_bytes, 0); 377 btrfs_init_data_ref(&ref, 378 root->root_key.objectid, 379 new_key.objectid, 380 args->start - extent_offset, 381 0, false); 382 ret = btrfs_inc_extent_ref(trans, &ref); 383 if (ret) { 384 btrfs_abort_transaction(trans, ret); 385 break; 386 } 387 } 388 key.offset = args->start; 389 } 390 /* 391 * From here on out we will have actually dropped something, so 392 * last_end can be updated. 393 */ 394 last_end = extent_end; 395 396 /* 397 * | ---- range to drop ----- | 398 * | -------- extent -------- | 399 */ 400 if (args->start <= key.offset && args->end < extent_end) { 401 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 402 ret = -EOPNOTSUPP; 403 break; 404 } 405 406 memcpy(&new_key, &key, sizeof(new_key)); 407 new_key.offset = args->end; 408 btrfs_set_item_key_safe(trans, path, &new_key); 409 410 extent_offset += args->end - key.offset; 411 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 412 btrfs_set_file_extent_num_bytes(leaf, fi, 413 extent_end - args->end); 414 btrfs_mark_buffer_dirty(trans, leaf); 415 if (update_refs && disk_bytenr > 0) 416 args->bytes_found += args->end - key.offset; 417 break; 418 } 419 420 search_start = extent_end; 421 /* 422 * | ---- range to drop ----- | 423 * | -------- extent -------- | 424 */ 425 if (args->start > key.offset && args->end >= extent_end) { 426 BUG_ON(del_nr > 0); 427 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 428 ret = -EOPNOTSUPP; 429 break; 430 } 431 432 btrfs_set_file_extent_num_bytes(leaf, fi, 433 args->start - key.offset); 434 btrfs_mark_buffer_dirty(trans, leaf); 435 if (update_refs && disk_bytenr > 0) 436 args->bytes_found += extent_end - args->start; 437 if (args->end == extent_end) 438 break; 439 440 path->slots[0]++; 441 goto next_slot; 442 } 443 444 /* 445 * | ---- range to drop ----- | 446 * | ------ extent ------ | 447 */ 448 if (args->start <= key.offset && args->end >= extent_end) { 449 delete_extent_item: 450 if (del_nr == 0) { 451 del_slot = path->slots[0]; 452 del_nr = 1; 453 } else { 454 BUG_ON(del_slot + del_nr != path->slots[0]); 455 del_nr++; 456 } 457 458 if (update_refs && 459 extent_type == BTRFS_FILE_EXTENT_INLINE) { 460 args->bytes_found += extent_end - key.offset; 461 extent_end = ALIGN(extent_end, 462 fs_info->sectorsize); 463 } else if (update_refs && disk_bytenr > 0) { 464 btrfs_init_generic_ref(&ref, 465 BTRFS_DROP_DELAYED_REF, 466 disk_bytenr, num_bytes, 0); 467 btrfs_init_data_ref(&ref, 468 root->root_key.objectid, 469 key.objectid, 470 key.offset - extent_offset, 0, 471 false); 472 ret = btrfs_free_extent(trans, &ref); 473 if (ret) { 474 btrfs_abort_transaction(trans, ret); 475 break; 476 } 477 args->bytes_found += extent_end - key.offset; 478 } 479 480 if (args->end == extent_end) 481 break; 482 483 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 484 path->slots[0]++; 485 goto next_slot; 486 } 487 488 ret = btrfs_del_items(trans, root, path, del_slot, 489 del_nr); 490 if (ret) { 491 btrfs_abort_transaction(trans, ret); 492 break; 493 } 494 495 del_nr = 0; 496 del_slot = 0; 497 498 btrfs_release_path(path); 499 continue; 500 } 501 502 BUG(); 503 } 504 505 if (!ret && del_nr > 0) { 506 /* 507 * Set path->slots[0] to first slot, so that after the delete 508 * if items are move off from our leaf to its immediate left or 509 * right neighbor leafs, we end up with a correct and adjusted 510 * path->slots[0] for our insertion (if args->replace_extent). 511 */ 512 path->slots[0] = del_slot; 513 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 514 if (ret) 515 btrfs_abort_transaction(trans, ret); 516 } 517 518 leaf = path->nodes[0]; 519 /* 520 * If btrfs_del_items() was called, it might have deleted a leaf, in 521 * which case it unlocked our path, so check path->locks[0] matches a 522 * write lock. 523 */ 524 if (!ret && args->replace_extent && 525 path->locks[0] == BTRFS_WRITE_LOCK && 526 btrfs_leaf_free_space(leaf) >= 527 sizeof(struct btrfs_item) + args->extent_item_size) { 528 529 key.objectid = ino; 530 key.type = BTRFS_EXTENT_DATA_KEY; 531 key.offset = args->start; 532 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 533 struct btrfs_key slot_key; 534 535 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 536 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 537 path->slots[0]++; 538 } 539 btrfs_setup_item_for_insert(trans, root, path, &key, 540 args->extent_item_size); 541 args->extent_inserted = true; 542 } 543 544 if (!args->path) 545 btrfs_free_path(path); 546 else if (!args->extent_inserted) 547 btrfs_release_path(path); 548 out: 549 args->drop_end = found ? min(args->end, last_end) : args->end; 550 551 return ret; 552 } 553 554 static int extent_mergeable(struct extent_buffer *leaf, int slot, 555 u64 objectid, u64 bytenr, u64 orig_offset, 556 u64 *start, u64 *end) 557 { 558 struct btrfs_file_extent_item *fi; 559 struct btrfs_key key; 560 u64 extent_end; 561 562 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 563 return 0; 564 565 btrfs_item_key_to_cpu(leaf, &key, slot); 566 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 567 return 0; 568 569 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 570 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 571 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 572 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 573 btrfs_file_extent_compression(leaf, fi) || 574 btrfs_file_extent_encryption(leaf, fi) || 575 btrfs_file_extent_other_encoding(leaf, fi)) 576 return 0; 577 578 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 579 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 580 return 0; 581 582 *start = key.offset; 583 *end = extent_end; 584 return 1; 585 } 586 587 /* 588 * Mark extent in the range start - end as written. 589 * 590 * This changes extent type from 'pre-allocated' to 'regular'. If only 591 * part of extent is marked as written, the extent will be split into 592 * two or three. 593 */ 594 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 595 struct btrfs_inode *inode, u64 start, u64 end) 596 { 597 struct btrfs_root *root = inode->root; 598 struct extent_buffer *leaf; 599 struct btrfs_path *path; 600 struct btrfs_file_extent_item *fi; 601 struct btrfs_ref ref = { 0 }; 602 struct btrfs_key key; 603 struct btrfs_key new_key; 604 u64 bytenr; 605 u64 num_bytes; 606 u64 extent_end; 607 u64 orig_offset; 608 u64 other_start; 609 u64 other_end; 610 u64 split; 611 int del_nr = 0; 612 int del_slot = 0; 613 int recow; 614 int ret = 0; 615 u64 ino = btrfs_ino(inode); 616 617 path = btrfs_alloc_path(); 618 if (!path) 619 return -ENOMEM; 620 again: 621 recow = 0; 622 split = start; 623 key.objectid = ino; 624 key.type = BTRFS_EXTENT_DATA_KEY; 625 key.offset = split; 626 627 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 628 if (ret < 0) 629 goto out; 630 if (ret > 0 && path->slots[0] > 0) 631 path->slots[0]--; 632 633 leaf = path->nodes[0]; 634 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 635 if (key.objectid != ino || 636 key.type != BTRFS_EXTENT_DATA_KEY) { 637 ret = -EINVAL; 638 btrfs_abort_transaction(trans, ret); 639 goto out; 640 } 641 fi = btrfs_item_ptr(leaf, path->slots[0], 642 struct btrfs_file_extent_item); 643 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 644 ret = -EINVAL; 645 btrfs_abort_transaction(trans, ret); 646 goto out; 647 } 648 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 649 if (key.offset > start || extent_end < end) { 650 ret = -EINVAL; 651 btrfs_abort_transaction(trans, ret); 652 goto out; 653 } 654 655 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 656 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 657 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 658 memcpy(&new_key, &key, sizeof(new_key)); 659 660 if (start == key.offset && end < extent_end) { 661 other_start = 0; 662 other_end = start; 663 if (extent_mergeable(leaf, path->slots[0] - 1, 664 ino, bytenr, orig_offset, 665 &other_start, &other_end)) { 666 new_key.offset = end; 667 btrfs_set_item_key_safe(trans, path, &new_key); 668 fi = btrfs_item_ptr(leaf, path->slots[0], 669 struct btrfs_file_extent_item); 670 btrfs_set_file_extent_generation(leaf, fi, 671 trans->transid); 672 btrfs_set_file_extent_num_bytes(leaf, fi, 673 extent_end - end); 674 btrfs_set_file_extent_offset(leaf, fi, 675 end - orig_offset); 676 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 677 struct btrfs_file_extent_item); 678 btrfs_set_file_extent_generation(leaf, fi, 679 trans->transid); 680 btrfs_set_file_extent_num_bytes(leaf, fi, 681 end - other_start); 682 btrfs_mark_buffer_dirty(trans, leaf); 683 goto out; 684 } 685 } 686 687 if (start > key.offset && end == extent_end) { 688 other_start = end; 689 other_end = 0; 690 if (extent_mergeable(leaf, path->slots[0] + 1, 691 ino, bytenr, orig_offset, 692 &other_start, &other_end)) { 693 fi = btrfs_item_ptr(leaf, path->slots[0], 694 struct btrfs_file_extent_item); 695 btrfs_set_file_extent_num_bytes(leaf, fi, 696 start - key.offset); 697 btrfs_set_file_extent_generation(leaf, fi, 698 trans->transid); 699 path->slots[0]++; 700 new_key.offset = start; 701 btrfs_set_item_key_safe(trans, path, &new_key); 702 703 fi = btrfs_item_ptr(leaf, path->slots[0], 704 struct btrfs_file_extent_item); 705 btrfs_set_file_extent_generation(leaf, fi, 706 trans->transid); 707 btrfs_set_file_extent_num_bytes(leaf, fi, 708 other_end - start); 709 btrfs_set_file_extent_offset(leaf, fi, 710 start - orig_offset); 711 btrfs_mark_buffer_dirty(trans, leaf); 712 goto out; 713 } 714 } 715 716 while (start > key.offset || end < extent_end) { 717 if (key.offset == start) 718 split = end; 719 720 new_key.offset = split; 721 ret = btrfs_duplicate_item(trans, root, path, &new_key); 722 if (ret == -EAGAIN) { 723 btrfs_release_path(path); 724 goto again; 725 } 726 if (ret < 0) { 727 btrfs_abort_transaction(trans, ret); 728 goto out; 729 } 730 731 leaf = path->nodes[0]; 732 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 733 struct btrfs_file_extent_item); 734 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 735 btrfs_set_file_extent_num_bytes(leaf, fi, 736 split - key.offset); 737 738 fi = btrfs_item_ptr(leaf, path->slots[0], 739 struct btrfs_file_extent_item); 740 741 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 742 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 743 btrfs_set_file_extent_num_bytes(leaf, fi, 744 extent_end - split); 745 btrfs_mark_buffer_dirty(trans, leaf); 746 747 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 748 num_bytes, 0); 749 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 750 orig_offset, 0, false); 751 ret = btrfs_inc_extent_ref(trans, &ref); 752 if (ret) { 753 btrfs_abort_transaction(trans, ret); 754 goto out; 755 } 756 757 if (split == start) { 758 key.offset = start; 759 } else { 760 if (start != key.offset) { 761 ret = -EINVAL; 762 btrfs_abort_transaction(trans, ret); 763 goto out; 764 } 765 path->slots[0]--; 766 extent_end = end; 767 } 768 recow = 1; 769 } 770 771 other_start = end; 772 other_end = 0; 773 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 774 num_bytes, 0); 775 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset, 776 0, false); 777 if (extent_mergeable(leaf, path->slots[0] + 1, 778 ino, bytenr, orig_offset, 779 &other_start, &other_end)) { 780 if (recow) { 781 btrfs_release_path(path); 782 goto again; 783 } 784 extent_end = other_end; 785 del_slot = path->slots[0] + 1; 786 del_nr++; 787 ret = btrfs_free_extent(trans, &ref); 788 if (ret) { 789 btrfs_abort_transaction(trans, ret); 790 goto out; 791 } 792 } 793 other_start = 0; 794 other_end = start; 795 if (extent_mergeable(leaf, path->slots[0] - 1, 796 ino, bytenr, orig_offset, 797 &other_start, &other_end)) { 798 if (recow) { 799 btrfs_release_path(path); 800 goto again; 801 } 802 key.offset = other_start; 803 del_slot = path->slots[0]; 804 del_nr++; 805 ret = btrfs_free_extent(trans, &ref); 806 if (ret) { 807 btrfs_abort_transaction(trans, ret); 808 goto out; 809 } 810 } 811 if (del_nr == 0) { 812 fi = btrfs_item_ptr(leaf, path->slots[0], 813 struct btrfs_file_extent_item); 814 btrfs_set_file_extent_type(leaf, fi, 815 BTRFS_FILE_EXTENT_REG); 816 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 817 btrfs_mark_buffer_dirty(trans, leaf); 818 } else { 819 fi = btrfs_item_ptr(leaf, del_slot - 1, 820 struct btrfs_file_extent_item); 821 btrfs_set_file_extent_type(leaf, fi, 822 BTRFS_FILE_EXTENT_REG); 823 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 824 btrfs_set_file_extent_num_bytes(leaf, fi, 825 extent_end - key.offset); 826 btrfs_mark_buffer_dirty(trans, leaf); 827 828 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 829 if (ret < 0) { 830 btrfs_abort_transaction(trans, ret); 831 goto out; 832 } 833 } 834 out: 835 btrfs_free_path(path); 836 return ret; 837 } 838 839 /* 840 * on error we return an unlocked page and the error value 841 * on success we return a locked page and 0 842 */ 843 static int prepare_uptodate_page(struct inode *inode, 844 struct page *page, u64 pos, 845 bool force_uptodate) 846 { 847 struct folio *folio = page_folio(page); 848 int ret = 0; 849 850 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 851 !PageUptodate(page)) { 852 ret = btrfs_read_folio(NULL, folio); 853 if (ret) 854 return ret; 855 lock_page(page); 856 if (!PageUptodate(page)) { 857 unlock_page(page); 858 return -EIO; 859 } 860 861 /* 862 * Since btrfs_read_folio() will unlock the folio before it 863 * returns, there is a window where btrfs_release_folio() can be 864 * called to release the page. Here we check both inode 865 * mapping and PagePrivate() to make sure the page was not 866 * released. 867 * 868 * The private flag check is essential for subpage as we need 869 * to store extra bitmap using page->private. 870 */ 871 if (page->mapping != inode->i_mapping || !PagePrivate(page)) { 872 unlock_page(page); 873 return -EAGAIN; 874 } 875 } 876 return 0; 877 } 878 879 static fgf_t get_prepare_fgp_flags(bool nowait) 880 { 881 fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT; 882 883 if (nowait) 884 fgp_flags |= FGP_NOWAIT; 885 886 return fgp_flags; 887 } 888 889 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait) 890 { 891 gfp_t gfp; 892 893 gfp = btrfs_alloc_write_mask(inode->i_mapping); 894 if (nowait) { 895 gfp &= ~__GFP_DIRECT_RECLAIM; 896 gfp |= GFP_NOWAIT; 897 } 898 899 return gfp; 900 } 901 902 /* 903 * this just gets pages into the page cache and locks them down. 904 */ 905 static noinline int prepare_pages(struct inode *inode, struct page **pages, 906 size_t num_pages, loff_t pos, 907 size_t write_bytes, bool force_uptodate, 908 bool nowait) 909 { 910 int i; 911 unsigned long index = pos >> PAGE_SHIFT; 912 gfp_t mask = get_prepare_gfp_flags(inode, nowait); 913 fgf_t fgp_flags = get_prepare_fgp_flags(nowait); 914 int err = 0; 915 int faili; 916 917 for (i = 0; i < num_pages; i++) { 918 again: 919 pages[i] = pagecache_get_page(inode->i_mapping, index + i, 920 fgp_flags, mask | __GFP_WRITE); 921 if (!pages[i]) { 922 faili = i - 1; 923 if (nowait) 924 err = -EAGAIN; 925 else 926 err = -ENOMEM; 927 goto fail; 928 } 929 930 err = set_page_extent_mapped(pages[i]); 931 if (err < 0) { 932 faili = i; 933 goto fail; 934 } 935 936 if (i == 0) 937 err = prepare_uptodate_page(inode, pages[i], pos, 938 force_uptodate); 939 if (!err && i == num_pages - 1) 940 err = prepare_uptodate_page(inode, pages[i], 941 pos + write_bytes, false); 942 if (err) { 943 put_page(pages[i]); 944 if (!nowait && err == -EAGAIN) { 945 err = 0; 946 goto again; 947 } 948 faili = i - 1; 949 goto fail; 950 } 951 wait_on_page_writeback(pages[i]); 952 } 953 954 return 0; 955 fail: 956 while (faili >= 0) { 957 unlock_page(pages[faili]); 958 put_page(pages[faili]); 959 faili--; 960 } 961 return err; 962 963 } 964 965 /* 966 * This function locks the extent and properly waits for data=ordered extents 967 * to finish before allowing the pages to be modified if need. 968 * 969 * The return value: 970 * 1 - the extent is locked 971 * 0 - the extent is not locked, and everything is OK 972 * -EAGAIN - need re-prepare the pages 973 * the other < 0 number - Something wrong happens 974 */ 975 static noinline int 976 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 977 size_t num_pages, loff_t pos, 978 size_t write_bytes, 979 u64 *lockstart, u64 *lockend, bool nowait, 980 struct extent_state **cached_state) 981 { 982 struct btrfs_fs_info *fs_info = inode->root->fs_info; 983 u64 start_pos; 984 u64 last_pos; 985 int i; 986 int ret = 0; 987 988 start_pos = round_down(pos, fs_info->sectorsize); 989 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 990 991 if (start_pos < inode->vfs_inode.i_size) { 992 struct btrfs_ordered_extent *ordered; 993 994 if (nowait) { 995 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos, 996 cached_state)) { 997 for (i = 0; i < num_pages; i++) { 998 unlock_page(pages[i]); 999 put_page(pages[i]); 1000 pages[i] = NULL; 1001 } 1002 1003 return -EAGAIN; 1004 } 1005 } else { 1006 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state); 1007 } 1008 1009 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1010 last_pos - start_pos + 1); 1011 if (ordered && 1012 ordered->file_offset + ordered->num_bytes > start_pos && 1013 ordered->file_offset <= last_pos) { 1014 unlock_extent(&inode->io_tree, start_pos, last_pos, 1015 cached_state); 1016 for (i = 0; i < num_pages; i++) { 1017 unlock_page(pages[i]); 1018 put_page(pages[i]); 1019 } 1020 btrfs_start_ordered_extent(ordered); 1021 btrfs_put_ordered_extent(ordered); 1022 return -EAGAIN; 1023 } 1024 if (ordered) 1025 btrfs_put_ordered_extent(ordered); 1026 1027 *lockstart = start_pos; 1028 *lockend = last_pos; 1029 ret = 1; 1030 } 1031 1032 /* 1033 * We should be called after prepare_pages() which should have locked 1034 * all pages in the range. 1035 */ 1036 for (i = 0; i < num_pages; i++) 1037 WARN_ON(!PageLocked(pages[i])); 1038 1039 return ret; 1040 } 1041 1042 /* 1043 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1044 * 1045 * @pos: File offset. 1046 * @write_bytes: The length to write, will be updated to the nocow writeable 1047 * range. 1048 * 1049 * This function will flush ordered extents in the range to ensure proper 1050 * nocow checks. 1051 * 1052 * Return: 1053 * > 0 If we can nocow, and updates @write_bytes. 1054 * 0 If we can't do a nocow write. 1055 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's 1056 * root is in progress. 1057 * < 0 If an error happened. 1058 * 1059 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 1060 */ 1061 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1062 size_t *write_bytes, bool nowait) 1063 { 1064 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1065 struct btrfs_root *root = inode->root; 1066 struct extent_state *cached_state = NULL; 1067 u64 lockstart, lockend; 1068 u64 num_bytes; 1069 int ret; 1070 1071 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1072 return 0; 1073 1074 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1075 return -EAGAIN; 1076 1077 lockstart = round_down(pos, fs_info->sectorsize); 1078 lockend = round_up(pos + *write_bytes, 1079 fs_info->sectorsize) - 1; 1080 num_bytes = lockend - lockstart + 1; 1081 1082 if (nowait) { 1083 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend, 1084 &cached_state)) { 1085 btrfs_drew_write_unlock(&root->snapshot_lock); 1086 return -EAGAIN; 1087 } 1088 } else { 1089 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, 1090 &cached_state); 1091 } 1092 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1093 NULL, NULL, NULL, nowait, false); 1094 if (ret <= 0) 1095 btrfs_drew_write_unlock(&root->snapshot_lock); 1096 else 1097 *write_bytes = min_t(size_t, *write_bytes , 1098 num_bytes - pos + lockstart); 1099 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 1100 1101 return ret; 1102 } 1103 1104 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1105 { 1106 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1107 } 1108 1109 static void update_time_for_write(struct inode *inode) 1110 { 1111 struct timespec64 now, ctime; 1112 1113 if (IS_NOCMTIME(inode)) 1114 return; 1115 1116 now = current_time(inode); 1117 if (!timespec64_equal(&inode->i_mtime, &now)) 1118 inode->i_mtime = now; 1119 1120 ctime = inode_get_ctime(inode); 1121 if (!timespec64_equal(&ctime, &now)) 1122 inode_set_ctime_to_ts(inode, now); 1123 1124 if (IS_I_VERSION(inode)) 1125 inode_inc_iversion(inode); 1126 } 1127 1128 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1129 size_t count) 1130 { 1131 struct file *file = iocb->ki_filp; 1132 struct inode *inode = file_inode(file); 1133 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1134 loff_t pos = iocb->ki_pos; 1135 int ret; 1136 loff_t oldsize; 1137 loff_t start_pos; 1138 1139 /* 1140 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1141 * prealloc flags, as without those flags we always have to COW. We will 1142 * later check if we can really COW into the target range (using 1143 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1144 */ 1145 if ((iocb->ki_flags & IOCB_NOWAIT) && 1146 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1147 return -EAGAIN; 1148 1149 ret = file_remove_privs(file); 1150 if (ret) 1151 return ret; 1152 1153 /* 1154 * We reserve space for updating the inode when we reserve space for the 1155 * extent we are going to write, so we will enospc out there. We don't 1156 * need to start yet another transaction to update the inode as we will 1157 * update the inode when we finish writing whatever data we write. 1158 */ 1159 update_time_for_write(inode); 1160 1161 start_pos = round_down(pos, fs_info->sectorsize); 1162 oldsize = i_size_read(inode); 1163 if (start_pos > oldsize) { 1164 /* Expand hole size to cover write data, preventing empty gap */ 1165 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1166 1167 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1168 if (ret) 1169 return ret; 1170 } 1171 1172 return 0; 1173 } 1174 1175 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1176 struct iov_iter *i) 1177 { 1178 struct file *file = iocb->ki_filp; 1179 loff_t pos; 1180 struct inode *inode = file_inode(file); 1181 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1182 struct page **pages = NULL; 1183 struct extent_changeset *data_reserved = NULL; 1184 u64 release_bytes = 0; 1185 u64 lockstart; 1186 u64 lockend; 1187 size_t num_written = 0; 1188 int nrptrs; 1189 ssize_t ret; 1190 bool only_release_metadata = false; 1191 bool force_page_uptodate = false; 1192 loff_t old_isize = i_size_read(inode); 1193 unsigned int ilock_flags = 0; 1194 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 1195 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0); 1196 1197 if (nowait) 1198 ilock_flags |= BTRFS_ILOCK_TRY; 1199 1200 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1201 if (ret < 0) 1202 return ret; 1203 1204 ret = generic_write_checks(iocb, i); 1205 if (ret <= 0) 1206 goto out; 1207 1208 ret = btrfs_write_check(iocb, i, ret); 1209 if (ret < 0) 1210 goto out; 1211 1212 pos = iocb->ki_pos; 1213 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1214 PAGE_SIZE / (sizeof(struct page *))); 1215 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1216 nrptrs = max(nrptrs, 8); 1217 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1218 if (!pages) { 1219 ret = -ENOMEM; 1220 goto out; 1221 } 1222 1223 while (iov_iter_count(i) > 0) { 1224 struct extent_state *cached_state = NULL; 1225 size_t offset = offset_in_page(pos); 1226 size_t sector_offset; 1227 size_t write_bytes = min(iov_iter_count(i), 1228 nrptrs * (size_t)PAGE_SIZE - 1229 offset); 1230 size_t num_pages; 1231 size_t reserve_bytes; 1232 size_t dirty_pages; 1233 size_t copied; 1234 size_t dirty_sectors; 1235 size_t num_sectors; 1236 int extents_locked; 1237 1238 /* 1239 * Fault pages before locking them in prepare_pages 1240 * to avoid recursive lock 1241 */ 1242 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1243 ret = -EFAULT; 1244 break; 1245 } 1246 1247 only_release_metadata = false; 1248 sector_offset = pos & (fs_info->sectorsize - 1); 1249 1250 extent_changeset_release(data_reserved); 1251 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1252 &data_reserved, pos, 1253 write_bytes, nowait); 1254 if (ret < 0) { 1255 int can_nocow; 1256 1257 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) { 1258 ret = -EAGAIN; 1259 break; 1260 } 1261 1262 /* 1263 * If we don't have to COW at the offset, reserve 1264 * metadata only. write_bytes may get smaller than 1265 * requested here. 1266 */ 1267 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1268 &write_bytes, nowait); 1269 if (can_nocow < 0) 1270 ret = can_nocow; 1271 if (can_nocow > 0) 1272 ret = 0; 1273 if (ret) 1274 break; 1275 only_release_metadata = true; 1276 } 1277 1278 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1279 WARN_ON(num_pages > nrptrs); 1280 reserve_bytes = round_up(write_bytes + sector_offset, 1281 fs_info->sectorsize); 1282 WARN_ON(reserve_bytes == 0); 1283 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1284 reserve_bytes, 1285 reserve_bytes, nowait); 1286 if (ret) { 1287 if (!only_release_metadata) 1288 btrfs_free_reserved_data_space(BTRFS_I(inode), 1289 data_reserved, pos, 1290 write_bytes); 1291 else 1292 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1293 1294 if (nowait && ret == -ENOSPC) 1295 ret = -EAGAIN; 1296 break; 1297 } 1298 1299 release_bytes = reserve_bytes; 1300 again: 1301 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags); 1302 if (ret) { 1303 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1304 break; 1305 } 1306 1307 /* 1308 * This is going to setup the pages array with the number of 1309 * pages we want, so we don't really need to worry about the 1310 * contents of pages from loop to loop 1311 */ 1312 ret = prepare_pages(inode, pages, num_pages, 1313 pos, write_bytes, force_page_uptodate, false); 1314 if (ret) { 1315 btrfs_delalloc_release_extents(BTRFS_I(inode), 1316 reserve_bytes); 1317 break; 1318 } 1319 1320 extents_locked = lock_and_cleanup_extent_if_need( 1321 BTRFS_I(inode), pages, 1322 num_pages, pos, write_bytes, &lockstart, 1323 &lockend, nowait, &cached_state); 1324 if (extents_locked < 0) { 1325 if (!nowait && extents_locked == -EAGAIN) 1326 goto again; 1327 1328 btrfs_delalloc_release_extents(BTRFS_I(inode), 1329 reserve_bytes); 1330 ret = extents_locked; 1331 break; 1332 } 1333 1334 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1335 1336 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1337 dirty_sectors = round_up(copied + sector_offset, 1338 fs_info->sectorsize); 1339 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1340 1341 /* 1342 * if we have trouble faulting in the pages, fall 1343 * back to one page at a time 1344 */ 1345 if (copied < write_bytes) 1346 nrptrs = 1; 1347 1348 if (copied == 0) { 1349 force_page_uptodate = true; 1350 dirty_sectors = 0; 1351 dirty_pages = 0; 1352 } else { 1353 force_page_uptodate = false; 1354 dirty_pages = DIV_ROUND_UP(copied + offset, 1355 PAGE_SIZE); 1356 } 1357 1358 if (num_sectors > dirty_sectors) { 1359 /* release everything except the sectors we dirtied */ 1360 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1361 if (only_release_metadata) { 1362 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1363 release_bytes, true); 1364 } else { 1365 u64 __pos; 1366 1367 __pos = round_down(pos, 1368 fs_info->sectorsize) + 1369 (dirty_pages << PAGE_SHIFT); 1370 btrfs_delalloc_release_space(BTRFS_I(inode), 1371 data_reserved, __pos, 1372 release_bytes, true); 1373 } 1374 } 1375 1376 release_bytes = round_up(copied + sector_offset, 1377 fs_info->sectorsize); 1378 1379 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1380 dirty_pages, pos, copied, 1381 &cached_state, only_release_metadata); 1382 1383 /* 1384 * If we have not locked the extent range, because the range's 1385 * start offset is >= i_size, we might still have a non-NULL 1386 * cached extent state, acquired while marking the extent range 1387 * as delalloc through btrfs_dirty_pages(). Therefore free any 1388 * possible cached extent state to avoid a memory leak. 1389 */ 1390 if (extents_locked) 1391 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 1392 lockend, &cached_state); 1393 else 1394 free_extent_state(cached_state); 1395 1396 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1397 if (ret) { 1398 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1399 break; 1400 } 1401 1402 release_bytes = 0; 1403 if (only_release_metadata) 1404 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1405 1406 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1407 1408 cond_resched(); 1409 1410 pos += copied; 1411 num_written += copied; 1412 } 1413 1414 kfree(pages); 1415 1416 if (release_bytes) { 1417 if (only_release_metadata) { 1418 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1419 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1420 release_bytes, true); 1421 } else { 1422 btrfs_delalloc_release_space(BTRFS_I(inode), 1423 data_reserved, 1424 round_down(pos, fs_info->sectorsize), 1425 release_bytes, true); 1426 } 1427 } 1428 1429 extent_changeset_free(data_reserved); 1430 if (num_written > 0) { 1431 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1432 iocb->ki_pos += num_written; 1433 } 1434 out: 1435 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1436 return num_written ? num_written : ret; 1437 } 1438 1439 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1440 const struct iov_iter *iter, loff_t offset) 1441 { 1442 const u32 blocksize_mask = fs_info->sectorsize - 1; 1443 1444 if (offset & blocksize_mask) 1445 return -EINVAL; 1446 1447 if (iov_iter_alignment(iter) & blocksize_mask) 1448 return -EINVAL; 1449 1450 return 0; 1451 } 1452 1453 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1454 { 1455 struct file *file = iocb->ki_filp; 1456 struct inode *inode = file_inode(file); 1457 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1458 loff_t pos; 1459 ssize_t written = 0; 1460 ssize_t written_buffered; 1461 size_t prev_left = 0; 1462 loff_t endbyte; 1463 ssize_t err; 1464 unsigned int ilock_flags = 0; 1465 struct iomap_dio *dio; 1466 1467 if (iocb->ki_flags & IOCB_NOWAIT) 1468 ilock_flags |= BTRFS_ILOCK_TRY; 1469 1470 /* 1471 * If the write DIO is within EOF, use a shared lock and also only if 1472 * security bits will likely not be dropped by file_remove_privs() called 1473 * from btrfs_write_check(). Either will need to be rechecked after the 1474 * lock was acquired. 1475 */ 1476 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode)) 1477 ilock_flags |= BTRFS_ILOCK_SHARED; 1478 1479 relock: 1480 err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1481 if (err < 0) 1482 return err; 1483 1484 /* Shared lock cannot be used with security bits set. */ 1485 if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) { 1486 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1487 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1488 goto relock; 1489 } 1490 1491 err = generic_write_checks(iocb, from); 1492 if (err <= 0) { 1493 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1494 return err; 1495 } 1496 1497 err = btrfs_write_check(iocb, from, err); 1498 if (err < 0) { 1499 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1500 goto out; 1501 } 1502 1503 pos = iocb->ki_pos; 1504 /* 1505 * Re-check since file size may have changed just before taking the 1506 * lock or pos may have changed because of O_APPEND in generic_write_check() 1507 */ 1508 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1509 pos + iov_iter_count(from) > i_size_read(inode)) { 1510 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1511 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1512 goto relock; 1513 } 1514 1515 if (check_direct_IO(fs_info, from, pos)) { 1516 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1517 goto buffered; 1518 } 1519 1520 /* 1521 * The iov_iter can be mapped to the same file range we are writing to. 1522 * If that's the case, then we will deadlock in the iomap code, because 1523 * it first calls our callback btrfs_dio_iomap_begin(), which will create 1524 * an ordered extent, and after that it will fault in the pages that the 1525 * iov_iter refers to. During the fault in we end up in the readahead 1526 * pages code (starting at btrfs_readahead()), which will lock the range, 1527 * find that ordered extent and then wait for it to complete (at 1528 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since 1529 * obviously the ordered extent can never complete as we didn't submit 1530 * yet the respective bio(s). This always happens when the buffer is 1531 * memory mapped to the same file range, since the iomap DIO code always 1532 * invalidates pages in the target file range (after starting and waiting 1533 * for any writeback). 1534 * 1535 * So here we disable page faults in the iov_iter and then retry if we 1536 * got -EFAULT, faulting in the pages before the retry. 1537 */ 1538 again: 1539 from->nofault = true; 1540 dio = btrfs_dio_write(iocb, from, written); 1541 from->nofault = false; 1542 1543 if (IS_ERR_OR_NULL(dio)) { 1544 err = PTR_ERR_OR_ZERO(dio); 1545 } else { 1546 /* 1547 * If we have a synchoronous write, we must make sure the fsync 1548 * triggered by the iomap_dio_complete() call below doesn't 1549 * deadlock on the inode lock - we are already holding it and we 1550 * can't call it after unlocking because we may need to complete 1551 * partial writes due to the input buffer (or parts of it) not 1552 * being already faulted in. 1553 */ 1554 ASSERT(current->journal_info == NULL); 1555 current->journal_info = BTRFS_TRANS_DIO_WRITE_STUB; 1556 err = iomap_dio_complete(dio); 1557 current->journal_info = NULL; 1558 } 1559 1560 /* No increment (+=) because iomap returns a cumulative value. */ 1561 if (err > 0) 1562 written = err; 1563 1564 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) { 1565 const size_t left = iov_iter_count(from); 1566 /* 1567 * We have more data left to write. Try to fault in as many as 1568 * possible of the remainder pages and retry. We do this without 1569 * releasing and locking again the inode, to prevent races with 1570 * truncate. 1571 * 1572 * Also, in case the iov refers to pages in the file range of the 1573 * file we want to write to (due to a mmap), we could enter an 1574 * infinite loop if we retry after faulting the pages in, since 1575 * iomap will invalidate any pages in the range early on, before 1576 * it tries to fault in the pages of the iov. So we keep track of 1577 * how much was left of iov in the previous EFAULT and fallback 1578 * to buffered IO in case we haven't made any progress. 1579 */ 1580 if (left == prev_left) { 1581 err = -ENOTBLK; 1582 } else { 1583 fault_in_iov_iter_readable(from, left); 1584 prev_left = left; 1585 goto again; 1586 } 1587 } 1588 1589 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1590 1591 /* 1592 * If 'err' is -ENOTBLK or we have not written all data, then it means 1593 * we must fallback to buffered IO. 1594 */ 1595 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from)) 1596 goto out; 1597 1598 buffered: 1599 /* 1600 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller 1601 * it must retry the operation in a context where blocking is acceptable, 1602 * because even if we end up not blocking during the buffered IO attempt 1603 * below, we will block when flushing and waiting for the IO. 1604 */ 1605 if (iocb->ki_flags & IOCB_NOWAIT) { 1606 err = -EAGAIN; 1607 goto out; 1608 } 1609 1610 pos = iocb->ki_pos; 1611 written_buffered = btrfs_buffered_write(iocb, from); 1612 if (written_buffered < 0) { 1613 err = written_buffered; 1614 goto out; 1615 } 1616 /* 1617 * Ensure all data is persisted. We want the next direct IO read to be 1618 * able to read what was just written. 1619 */ 1620 endbyte = pos + written_buffered - 1; 1621 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1622 if (err) 1623 goto out; 1624 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1625 if (err) 1626 goto out; 1627 written += written_buffered; 1628 iocb->ki_pos = pos + written_buffered; 1629 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1630 endbyte >> PAGE_SHIFT); 1631 out: 1632 return err < 0 ? err : written; 1633 } 1634 1635 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 1636 const struct btrfs_ioctl_encoded_io_args *encoded) 1637 { 1638 struct file *file = iocb->ki_filp; 1639 struct inode *inode = file_inode(file); 1640 loff_t count; 1641 ssize_t ret; 1642 1643 btrfs_inode_lock(BTRFS_I(inode), 0); 1644 count = encoded->len; 1645 ret = generic_write_checks_count(iocb, &count); 1646 if (ret == 0 && count != encoded->len) { 1647 /* 1648 * The write got truncated by generic_write_checks_count(). We 1649 * can't do a partial encoded write. 1650 */ 1651 ret = -EFBIG; 1652 } 1653 if (ret || encoded->len == 0) 1654 goto out; 1655 1656 ret = btrfs_write_check(iocb, from, encoded->len); 1657 if (ret < 0) 1658 goto out; 1659 1660 ret = btrfs_do_encoded_write(iocb, from, encoded); 1661 out: 1662 btrfs_inode_unlock(BTRFS_I(inode), 0); 1663 return ret; 1664 } 1665 1666 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 1667 const struct btrfs_ioctl_encoded_io_args *encoded) 1668 { 1669 struct file *file = iocb->ki_filp; 1670 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 1671 ssize_t num_written, num_sync; 1672 1673 /* 1674 * If the fs flips readonly due to some impossible error, although we 1675 * have opened a file as writable, we have to stop this write operation 1676 * to ensure consistency. 1677 */ 1678 if (BTRFS_FS_ERROR(inode->root->fs_info)) 1679 return -EROFS; 1680 1681 if (encoded && (iocb->ki_flags & IOCB_NOWAIT)) 1682 return -EOPNOTSUPP; 1683 1684 if (encoded) { 1685 num_written = btrfs_encoded_write(iocb, from, encoded); 1686 num_sync = encoded->len; 1687 } else if (iocb->ki_flags & IOCB_DIRECT) { 1688 num_written = btrfs_direct_write(iocb, from); 1689 num_sync = num_written; 1690 } else { 1691 num_written = btrfs_buffered_write(iocb, from); 1692 num_sync = num_written; 1693 } 1694 1695 btrfs_set_inode_last_sub_trans(inode); 1696 1697 if (num_sync > 0) { 1698 num_sync = generic_write_sync(iocb, num_sync); 1699 if (num_sync < 0) 1700 num_written = num_sync; 1701 } 1702 1703 return num_written; 1704 } 1705 1706 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1707 { 1708 return btrfs_do_write_iter(iocb, from, NULL); 1709 } 1710 1711 int btrfs_release_file(struct inode *inode, struct file *filp) 1712 { 1713 struct btrfs_file_private *private = filp->private_data; 1714 1715 if (private) { 1716 kfree(private->filldir_buf); 1717 free_extent_state(private->llseek_cached_state); 1718 kfree(private); 1719 filp->private_data = NULL; 1720 } 1721 1722 /* 1723 * Set by setattr when we are about to truncate a file from a non-zero 1724 * size to a zero size. This tries to flush down new bytes that may 1725 * have been written if the application were using truncate to replace 1726 * a file in place. 1727 */ 1728 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 1729 &BTRFS_I(inode)->runtime_flags)) 1730 filemap_flush(inode->i_mapping); 1731 return 0; 1732 } 1733 1734 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 1735 { 1736 int ret; 1737 struct blk_plug plug; 1738 1739 /* 1740 * This is only called in fsync, which would do synchronous writes, so 1741 * a plug can merge adjacent IOs as much as possible. Esp. in case of 1742 * multiple disks using raid profile, a large IO can be split to 1743 * several segments of stripe length (currently 64K). 1744 */ 1745 blk_start_plug(&plug); 1746 ret = btrfs_fdatawrite_range(inode, start, end); 1747 blk_finish_plug(&plug); 1748 1749 return ret; 1750 } 1751 1752 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 1753 { 1754 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 1755 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1756 1757 if (btrfs_inode_in_log(inode, fs_info->generation) && 1758 list_empty(&ctx->ordered_extents)) 1759 return true; 1760 1761 /* 1762 * If we are doing a fast fsync we can not bail out if the inode's 1763 * last_trans is <= then the last committed transaction, because we only 1764 * update the last_trans of the inode during ordered extent completion, 1765 * and for a fast fsync we don't wait for that, we only wait for the 1766 * writeback to complete. 1767 */ 1768 if (inode->last_trans <= fs_info->last_trans_committed && 1769 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 1770 list_empty(&ctx->ordered_extents))) 1771 return true; 1772 1773 return false; 1774 } 1775 1776 /* 1777 * fsync call for both files and directories. This logs the inode into 1778 * the tree log instead of forcing full commits whenever possible. 1779 * 1780 * It needs to call filemap_fdatawait so that all ordered extent updates are 1781 * in the metadata btree are up to date for copying to the log. 1782 * 1783 * It drops the inode mutex before doing the tree log commit. This is an 1784 * important optimization for directories because holding the mutex prevents 1785 * new operations on the dir while we write to disk. 1786 */ 1787 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1788 { 1789 struct dentry *dentry = file_dentry(file); 1790 struct inode *inode = d_inode(dentry); 1791 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1792 struct btrfs_root *root = BTRFS_I(inode)->root; 1793 struct btrfs_trans_handle *trans; 1794 struct btrfs_log_ctx ctx; 1795 int ret = 0, err; 1796 u64 len; 1797 bool full_sync; 1798 bool skip_ilock = false; 1799 1800 if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) { 1801 skip_ilock = true; 1802 current->journal_info = NULL; 1803 lockdep_assert_held(&inode->i_rwsem); 1804 } 1805 1806 trace_btrfs_sync_file(file, datasync); 1807 1808 btrfs_init_log_ctx(&ctx, inode); 1809 1810 /* 1811 * Always set the range to a full range, otherwise we can get into 1812 * several problems, from missing file extent items to represent holes 1813 * when not using the NO_HOLES feature, to log tree corruption due to 1814 * races between hole detection during logging and completion of ordered 1815 * extents outside the range, to missing checksums due to ordered extents 1816 * for which we flushed only a subset of their pages. 1817 */ 1818 start = 0; 1819 end = LLONG_MAX; 1820 len = (u64)LLONG_MAX + 1; 1821 1822 /* 1823 * We write the dirty pages in the range and wait until they complete 1824 * out of the ->i_mutex. If so, we can flush the dirty pages by 1825 * multi-task, and make the performance up. See 1826 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1827 */ 1828 ret = start_ordered_ops(inode, start, end); 1829 if (ret) 1830 goto out; 1831 1832 if (skip_ilock) 1833 down_write(&BTRFS_I(inode)->i_mmap_lock); 1834 else 1835 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1836 1837 atomic_inc(&root->log_batch); 1838 1839 /* 1840 * Before we acquired the inode's lock and the mmap lock, someone may 1841 * have dirtied more pages in the target range. We need to make sure 1842 * that writeback for any such pages does not start while we are logging 1843 * the inode, because if it does, any of the following might happen when 1844 * we are not doing a full inode sync: 1845 * 1846 * 1) We log an extent after its writeback finishes but before its 1847 * checksums are added to the csum tree, leading to -EIO errors 1848 * when attempting to read the extent after a log replay. 1849 * 1850 * 2) We can end up logging an extent before its writeback finishes. 1851 * Therefore after the log replay we will have a file extent item 1852 * pointing to an unwritten extent (and no data checksums as well). 1853 * 1854 * So trigger writeback for any eventual new dirty pages and then we 1855 * wait for all ordered extents to complete below. 1856 */ 1857 ret = start_ordered_ops(inode, start, end); 1858 if (ret) { 1859 if (skip_ilock) 1860 up_write(&BTRFS_I(inode)->i_mmap_lock); 1861 else 1862 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1863 goto out; 1864 } 1865 1866 /* 1867 * Always check for the full sync flag while holding the inode's lock, 1868 * to avoid races with other tasks. The flag must be either set all the 1869 * time during logging or always off all the time while logging. 1870 * We check the flag here after starting delalloc above, because when 1871 * running delalloc the full sync flag may be set if we need to drop 1872 * extra extent map ranges due to temporary memory allocation failures. 1873 */ 1874 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1875 &BTRFS_I(inode)->runtime_flags); 1876 1877 /* 1878 * We have to do this here to avoid the priority inversion of waiting on 1879 * IO of a lower priority task while holding a transaction open. 1880 * 1881 * For a full fsync we wait for the ordered extents to complete while 1882 * for a fast fsync we wait just for writeback to complete, and then 1883 * attach the ordered extents to the transaction so that a transaction 1884 * commit waits for their completion, to avoid data loss if we fsync, 1885 * the current transaction commits before the ordered extents complete 1886 * and a power failure happens right after that. 1887 * 1888 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 1889 * logical address recorded in the ordered extent may change. We need 1890 * to wait for the IO to stabilize the logical address. 1891 */ 1892 if (full_sync || btrfs_is_zoned(fs_info)) { 1893 ret = btrfs_wait_ordered_range(inode, start, len); 1894 } else { 1895 /* 1896 * Get our ordered extents as soon as possible to avoid doing 1897 * checksum lookups in the csum tree, and use instead the 1898 * checksums attached to the ordered extents. 1899 */ 1900 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 1901 &ctx.ordered_extents); 1902 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 1903 } 1904 1905 if (ret) 1906 goto out_release_extents; 1907 1908 atomic_inc(&root->log_batch); 1909 1910 smp_mb(); 1911 if (skip_inode_logging(&ctx)) { 1912 /* 1913 * We've had everything committed since the last time we were 1914 * modified so clear this flag in case it was set for whatever 1915 * reason, it's no longer relevant. 1916 */ 1917 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1918 &BTRFS_I(inode)->runtime_flags); 1919 /* 1920 * An ordered extent might have started before and completed 1921 * already with io errors, in which case the inode was not 1922 * updated and we end up here. So check the inode's mapping 1923 * for any errors that might have happened since we last 1924 * checked called fsync. 1925 */ 1926 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 1927 goto out_release_extents; 1928 } 1929 1930 /* 1931 * We use start here because we will need to wait on the IO to complete 1932 * in btrfs_sync_log, which could require joining a transaction (for 1933 * example checking cross references in the nocow path). If we use join 1934 * here we could get into a situation where we're waiting on IO to 1935 * happen that is blocked on a transaction trying to commit. With start 1936 * we inc the extwriter counter, so we wait for all extwriters to exit 1937 * before we start blocking joiners. This comment is to keep somebody 1938 * from thinking they are super smart and changing this to 1939 * btrfs_join_transaction *cough*Josef*cough*. 1940 */ 1941 trans = btrfs_start_transaction(root, 0); 1942 if (IS_ERR(trans)) { 1943 ret = PTR_ERR(trans); 1944 goto out_release_extents; 1945 } 1946 trans->in_fsync = true; 1947 1948 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 1949 btrfs_release_log_ctx_extents(&ctx); 1950 if (ret < 0) { 1951 /* Fallthrough and commit/free transaction. */ 1952 ret = BTRFS_LOG_FORCE_COMMIT; 1953 } 1954 1955 /* we've logged all the items and now have a consistent 1956 * version of the file in the log. It is possible that 1957 * someone will come in and modify the file, but that's 1958 * fine because the log is consistent on disk, and we 1959 * have references to all of the file's extents 1960 * 1961 * It is possible that someone will come in and log the 1962 * file again, but that will end up using the synchronization 1963 * inside btrfs_sync_log to keep things safe. 1964 */ 1965 if (skip_ilock) 1966 up_write(&BTRFS_I(inode)->i_mmap_lock); 1967 else 1968 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1969 1970 if (ret == BTRFS_NO_LOG_SYNC) { 1971 ret = btrfs_end_transaction(trans); 1972 goto out; 1973 } 1974 1975 /* We successfully logged the inode, attempt to sync the log. */ 1976 if (!ret) { 1977 ret = btrfs_sync_log(trans, root, &ctx); 1978 if (!ret) { 1979 ret = btrfs_end_transaction(trans); 1980 goto out; 1981 } 1982 } 1983 1984 /* 1985 * At this point we need to commit the transaction because we had 1986 * btrfs_need_log_full_commit() or some other error. 1987 * 1988 * If we didn't do a full sync we have to stop the trans handle, wait on 1989 * the ordered extents, start it again and commit the transaction. If 1990 * we attempt to wait on the ordered extents here we could deadlock with 1991 * something like fallocate() that is holding the extent lock trying to 1992 * start a transaction while some other thread is trying to commit the 1993 * transaction while we (fsync) are currently holding the transaction 1994 * open. 1995 */ 1996 if (!full_sync) { 1997 ret = btrfs_end_transaction(trans); 1998 if (ret) 1999 goto out; 2000 ret = btrfs_wait_ordered_range(inode, start, len); 2001 if (ret) 2002 goto out; 2003 2004 /* 2005 * This is safe to use here because we're only interested in 2006 * making sure the transaction that had the ordered extents is 2007 * committed. We aren't waiting on anything past this point, 2008 * we're purely getting the transaction and committing it. 2009 */ 2010 trans = btrfs_attach_transaction_barrier(root); 2011 if (IS_ERR(trans)) { 2012 ret = PTR_ERR(trans); 2013 2014 /* 2015 * We committed the transaction and there's no currently 2016 * running transaction, this means everything we care 2017 * about made it to disk and we are done. 2018 */ 2019 if (ret == -ENOENT) 2020 ret = 0; 2021 goto out; 2022 } 2023 } 2024 2025 ret = btrfs_commit_transaction(trans); 2026 out: 2027 ASSERT(list_empty(&ctx.list)); 2028 ASSERT(list_empty(&ctx.conflict_inodes)); 2029 err = file_check_and_advance_wb_err(file); 2030 if (!ret) 2031 ret = err; 2032 return ret > 0 ? -EIO : ret; 2033 2034 out_release_extents: 2035 btrfs_release_log_ctx_extents(&ctx); 2036 if (skip_ilock) 2037 up_write(&BTRFS_I(inode)->i_mmap_lock); 2038 else 2039 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2040 goto out; 2041 } 2042 2043 static const struct vm_operations_struct btrfs_file_vm_ops = { 2044 .fault = filemap_fault, 2045 .map_pages = filemap_map_pages, 2046 .page_mkwrite = btrfs_page_mkwrite, 2047 }; 2048 2049 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2050 { 2051 struct address_space *mapping = filp->f_mapping; 2052 2053 if (!mapping->a_ops->read_folio) 2054 return -ENOEXEC; 2055 2056 file_accessed(filp); 2057 vma->vm_ops = &btrfs_file_vm_ops; 2058 2059 return 0; 2060 } 2061 2062 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2063 int slot, u64 start, u64 end) 2064 { 2065 struct btrfs_file_extent_item *fi; 2066 struct btrfs_key key; 2067 2068 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2069 return 0; 2070 2071 btrfs_item_key_to_cpu(leaf, &key, slot); 2072 if (key.objectid != btrfs_ino(inode) || 2073 key.type != BTRFS_EXTENT_DATA_KEY) 2074 return 0; 2075 2076 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2077 2078 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2079 return 0; 2080 2081 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2082 return 0; 2083 2084 if (key.offset == end) 2085 return 1; 2086 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2087 return 1; 2088 return 0; 2089 } 2090 2091 static int fill_holes(struct btrfs_trans_handle *trans, 2092 struct btrfs_inode *inode, 2093 struct btrfs_path *path, u64 offset, u64 end) 2094 { 2095 struct btrfs_fs_info *fs_info = trans->fs_info; 2096 struct btrfs_root *root = inode->root; 2097 struct extent_buffer *leaf; 2098 struct btrfs_file_extent_item *fi; 2099 struct extent_map *hole_em; 2100 struct btrfs_key key; 2101 int ret; 2102 2103 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2104 goto out; 2105 2106 key.objectid = btrfs_ino(inode); 2107 key.type = BTRFS_EXTENT_DATA_KEY; 2108 key.offset = offset; 2109 2110 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2111 if (ret <= 0) { 2112 /* 2113 * We should have dropped this offset, so if we find it then 2114 * something has gone horribly wrong. 2115 */ 2116 if (ret == 0) 2117 ret = -EINVAL; 2118 return ret; 2119 } 2120 2121 leaf = path->nodes[0]; 2122 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2123 u64 num_bytes; 2124 2125 path->slots[0]--; 2126 fi = btrfs_item_ptr(leaf, path->slots[0], 2127 struct btrfs_file_extent_item); 2128 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2129 end - offset; 2130 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2131 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2132 btrfs_set_file_extent_offset(leaf, fi, 0); 2133 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2134 btrfs_mark_buffer_dirty(trans, leaf); 2135 goto out; 2136 } 2137 2138 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2139 u64 num_bytes; 2140 2141 key.offset = offset; 2142 btrfs_set_item_key_safe(trans, path, &key); 2143 fi = btrfs_item_ptr(leaf, path->slots[0], 2144 struct btrfs_file_extent_item); 2145 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2146 offset; 2147 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2148 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2149 btrfs_set_file_extent_offset(leaf, fi, 0); 2150 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2151 btrfs_mark_buffer_dirty(trans, leaf); 2152 goto out; 2153 } 2154 btrfs_release_path(path); 2155 2156 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, 2157 end - offset); 2158 if (ret) 2159 return ret; 2160 2161 out: 2162 btrfs_release_path(path); 2163 2164 hole_em = alloc_extent_map(); 2165 if (!hole_em) { 2166 btrfs_drop_extent_map_range(inode, offset, end - 1, false); 2167 btrfs_set_inode_full_sync(inode); 2168 } else { 2169 hole_em->start = offset; 2170 hole_em->len = end - offset; 2171 hole_em->ram_bytes = hole_em->len; 2172 hole_em->orig_start = offset; 2173 2174 hole_em->block_start = EXTENT_MAP_HOLE; 2175 hole_em->block_len = 0; 2176 hole_em->orig_block_len = 0; 2177 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2178 hole_em->generation = trans->transid; 2179 2180 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 2181 free_extent_map(hole_em); 2182 if (ret) 2183 btrfs_set_inode_full_sync(inode); 2184 } 2185 2186 return 0; 2187 } 2188 2189 /* 2190 * Find a hole extent on given inode and change start/len to the end of hole 2191 * extent.(hole/vacuum extent whose em->start <= start && 2192 * em->start + em->len > start) 2193 * When a hole extent is found, return 1 and modify start/len. 2194 */ 2195 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2196 { 2197 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2198 struct extent_map *em; 2199 int ret = 0; 2200 2201 em = btrfs_get_extent(inode, NULL, 0, 2202 round_down(*start, fs_info->sectorsize), 2203 round_up(*len, fs_info->sectorsize)); 2204 if (IS_ERR(em)) 2205 return PTR_ERR(em); 2206 2207 /* Hole or vacuum extent(only exists in no-hole mode) */ 2208 if (em->block_start == EXTENT_MAP_HOLE) { 2209 ret = 1; 2210 *len = em->start + em->len > *start + *len ? 2211 0 : *start + *len - em->start - em->len; 2212 *start = em->start + em->len; 2213 } 2214 free_extent_map(em); 2215 return ret; 2216 } 2217 2218 static void btrfs_punch_hole_lock_range(struct inode *inode, 2219 const u64 lockstart, 2220 const u64 lockend, 2221 struct extent_state **cached_state) 2222 { 2223 /* 2224 * For subpage case, if the range is not at page boundary, we could 2225 * have pages at the leading/tailing part of the range. 2226 * This could lead to dead loop since filemap_range_has_page() 2227 * will always return true. 2228 * So here we need to do extra page alignment for 2229 * filemap_range_has_page(). 2230 */ 2231 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2232 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2233 2234 while (1) { 2235 truncate_pagecache_range(inode, lockstart, lockend); 2236 2237 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2238 cached_state); 2239 /* 2240 * We can't have ordered extents in the range, nor dirty/writeback 2241 * pages, because we have locked the inode's VFS lock in exclusive 2242 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2243 * we have flushed all delalloc in the range and we have waited 2244 * for any ordered extents in the range to complete. 2245 * We can race with anyone reading pages from this range, so after 2246 * locking the range check if we have pages in the range, and if 2247 * we do, unlock the range and retry. 2248 */ 2249 if (!filemap_range_has_page(inode->i_mapping, page_lockstart, 2250 page_lockend)) 2251 break; 2252 2253 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2254 cached_state); 2255 } 2256 2257 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2258 } 2259 2260 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2261 struct btrfs_inode *inode, 2262 struct btrfs_path *path, 2263 struct btrfs_replace_extent_info *extent_info, 2264 const u64 replace_len, 2265 const u64 bytes_to_drop) 2266 { 2267 struct btrfs_fs_info *fs_info = trans->fs_info; 2268 struct btrfs_root *root = inode->root; 2269 struct btrfs_file_extent_item *extent; 2270 struct extent_buffer *leaf; 2271 struct btrfs_key key; 2272 int slot; 2273 struct btrfs_ref ref = { 0 }; 2274 int ret; 2275 2276 if (replace_len == 0) 2277 return 0; 2278 2279 if (extent_info->disk_offset == 0 && 2280 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2281 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2282 return 0; 2283 } 2284 2285 key.objectid = btrfs_ino(inode); 2286 key.type = BTRFS_EXTENT_DATA_KEY; 2287 key.offset = extent_info->file_offset; 2288 ret = btrfs_insert_empty_item(trans, root, path, &key, 2289 sizeof(struct btrfs_file_extent_item)); 2290 if (ret) 2291 return ret; 2292 leaf = path->nodes[0]; 2293 slot = path->slots[0]; 2294 write_extent_buffer(leaf, extent_info->extent_buf, 2295 btrfs_item_ptr_offset(leaf, slot), 2296 sizeof(struct btrfs_file_extent_item)); 2297 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2298 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2299 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2300 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2301 if (extent_info->is_new_extent) 2302 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2303 btrfs_mark_buffer_dirty(trans, leaf); 2304 btrfs_release_path(path); 2305 2306 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2307 replace_len); 2308 if (ret) 2309 return ret; 2310 2311 /* If it's a hole, nothing more needs to be done. */ 2312 if (extent_info->disk_offset == 0) { 2313 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2314 return 0; 2315 } 2316 2317 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2318 2319 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2320 key.objectid = extent_info->disk_offset; 2321 key.type = BTRFS_EXTENT_ITEM_KEY; 2322 key.offset = extent_info->disk_len; 2323 ret = btrfs_alloc_reserved_file_extent(trans, root, 2324 btrfs_ino(inode), 2325 extent_info->file_offset, 2326 extent_info->qgroup_reserved, 2327 &key); 2328 } else { 2329 u64 ref_offset; 2330 2331 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2332 extent_info->disk_offset, 2333 extent_info->disk_len, 0); 2334 ref_offset = extent_info->file_offset - extent_info->data_offset; 2335 btrfs_init_data_ref(&ref, root->root_key.objectid, 2336 btrfs_ino(inode), ref_offset, 0, false); 2337 ret = btrfs_inc_extent_ref(trans, &ref); 2338 } 2339 2340 extent_info->insertions++; 2341 2342 return ret; 2343 } 2344 2345 /* 2346 * The respective range must have been previously locked, as well as the inode. 2347 * The end offset is inclusive (last byte of the range). 2348 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2349 * the file range with an extent. 2350 * When not punching a hole, we don't want to end up in a state where we dropped 2351 * extents without inserting a new one, so we must abort the transaction to avoid 2352 * a corruption. 2353 */ 2354 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2355 struct btrfs_path *path, const u64 start, 2356 const u64 end, 2357 struct btrfs_replace_extent_info *extent_info, 2358 struct btrfs_trans_handle **trans_out) 2359 { 2360 struct btrfs_drop_extents_args drop_args = { 0 }; 2361 struct btrfs_root *root = inode->root; 2362 struct btrfs_fs_info *fs_info = root->fs_info; 2363 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2364 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2365 struct btrfs_trans_handle *trans = NULL; 2366 struct btrfs_block_rsv *rsv; 2367 unsigned int rsv_count; 2368 u64 cur_offset; 2369 u64 len = end - start; 2370 int ret = 0; 2371 2372 if (end <= start) 2373 return -EINVAL; 2374 2375 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2376 if (!rsv) { 2377 ret = -ENOMEM; 2378 goto out; 2379 } 2380 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2381 rsv->failfast = true; 2382 2383 /* 2384 * 1 - update the inode 2385 * 1 - removing the extents in the range 2386 * 1 - adding the hole extent if no_holes isn't set or if we are 2387 * replacing the range with a new extent 2388 */ 2389 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2390 rsv_count = 3; 2391 else 2392 rsv_count = 2; 2393 2394 trans = btrfs_start_transaction(root, rsv_count); 2395 if (IS_ERR(trans)) { 2396 ret = PTR_ERR(trans); 2397 trans = NULL; 2398 goto out_free; 2399 } 2400 2401 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2402 min_size, false); 2403 if (WARN_ON(ret)) 2404 goto out_trans; 2405 trans->block_rsv = rsv; 2406 2407 cur_offset = start; 2408 drop_args.path = path; 2409 drop_args.end = end + 1; 2410 drop_args.drop_cache = true; 2411 while (cur_offset < end) { 2412 drop_args.start = cur_offset; 2413 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2414 /* If we are punching a hole decrement the inode's byte count */ 2415 if (!extent_info) 2416 btrfs_update_inode_bytes(inode, 0, 2417 drop_args.bytes_found); 2418 if (ret != -ENOSPC) { 2419 /* 2420 * The only time we don't want to abort is if we are 2421 * attempting to clone a partial inline extent, in which 2422 * case we'll get EOPNOTSUPP. However if we aren't 2423 * clone we need to abort no matter what, because if we 2424 * got EOPNOTSUPP via prealloc then we messed up and 2425 * need to abort. 2426 */ 2427 if (ret && 2428 (ret != -EOPNOTSUPP || 2429 (extent_info && extent_info->is_new_extent))) 2430 btrfs_abort_transaction(trans, ret); 2431 break; 2432 } 2433 2434 trans->block_rsv = &fs_info->trans_block_rsv; 2435 2436 if (!extent_info && cur_offset < drop_args.drop_end && 2437 cur_offset < ino_size) { 2438 ret = fill_holes(trans, inode, path, cur_offset, 2439 drop_args.drop_end); 2440 if (ret) { 2441 /* 2442 * If we failed then we didn't insert our hole 2443 * entries for the area we dropped, so now the 2444 * fs is corrupted, so we must abort the 2445 * transaction. 2446 */ 2447 btrfs_abort_transaction(trans, ret); 2448 break; 2449 } 2450 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2451 /* 2452 * We are past the i_size here, but since we didn't 2453 * insert holes we need to clear the mapped area so we 2454 * know to not set disk_i_size in this area until a new 2455 * file extent is inserted here. 2456 */ 2457 ret = btrfs_inode_clear_file_extent_range(inode, 2458 cur_offset, 2459 drop_args.drop_end - cur_offset); 2460 if (ret) { 2461 /* 2462 * We couldn't clear our area, so we could 2463 * presumably adjust up and corrupt the fs, so 2464 * we need to abort. 2465 */ 2466 btrfs_abort_transaction(trans, ret); 2467 break; 2468 } 2469 } 2470 2471 if (extent_info && 2472 drop_args.drop_end > extent_info->file_offset) { 2473 u64 replace_len = drop_args.drop_end - 2474 extent_info->file_offset; 2475 2476 ret = btrfs_insert_replace_extent(trans, inode, path, 2477 extent_info, replace_len, 2478 drop_args.bytes_found); 2479 if (ret) { 2480 btrfs_abort_transaction(trans, ret); 2481 break; 2482 } 2483 extent_info->data_len -= replace_len; 2484 extent_info->data_offset += replace_len; 2485 extent_info->file_offset += replace_len; 2486 } 2487 2488 /* 2489 * We are releasing our handle on the transaction, balance the 2490 * dirty pages of the btree inode and flush delayed items, and 2491 * then get a new transaction handle, which may now point to a 2492 * new transaction in case someone else may have committed the 2493 * transaction we used to replace/drop file extent items. So 2494 * bump the inode's iversion and update mtime and ctime except 2495 * if we are called from a dedupe context. This is because a 2496 * power failure/crash may happen after the transaction is 2497 * committed and before we finish replacing/dropping all the 2498 * file extent items we need. 2499 */ 2500 inode_inc_iversion(&inode->vfs_inode); 2501 2502 if (!extent_info || extent_info->update_times) 2503 inode->vfs_inode.i_mtime = inode_set_ctime_current(&inode->vfs_inode); 2504 2505 ret = btrfs_update_inode(trans, root, inode); 2506 if (ret) 2507 break; 2508 2509 btrfs_end_transaction(trans); 2510 btrfs_btree_balance_dirty(fs_info); 2511 2512 trans = btrfs_start_transaction(root, rsv_count); 2513 if (IS_ERR(trans)) { 2514 ret = PTR_ERR(trans); 2515 trans = NULL; 2516 break; 2517 } 2518 2519 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2520 rsv, min_size, false); 2521 if (WARN_ON(ret)) 2522 break; 2523 trans->block_rsv = rsv; 2524 2525 cur_offset = drop_args.drop_end; 2526 len = end - cur_offset; 2527 if (!extent_info && len) { 2528 ret = find_first_non_hole(inode, &cur_offset, &len); 2529 if (unlikely(ret < 0)) 2530 break; 2531 if (ret && !len) { 2532 ret = 0; 2533 break; 2534 } 2535 } 2536 } 2537 2538 /* 2539 * If we were cloning, force the next fsync to be a full one since we 2540 * we replaced (or just dropped in the case of cloning holes when 2541 * NO_HOLES is enabled) file extent items and did not setup new extent 2542 * maps for the replacement extents (or holes). 2543 */ 2544 if (extent_info && !extent_info->is_new_extent) 2545 btrfs_set_inode_full_sync(inode); 2546 2547 if (ret) 2548 goto out_trans; 2549 2550 trans->block_rsv = &fs_info->trans_block_rsv; 2551 /* 2552 * If we are using the NO_HOLES feature we might have had already an 2553 * hole that overlaps a part of the region [lockstart, lockend] and 2554 * ends at (or beyond) lockend. Since we have no file extent items to 2555 * represent holes, drop_end can be less than lockend and so we must 2556 * make sure we have an extent map representing the existing hole (the 2557 * call to __btrfs_drop_extents() might have dropped the existing extent 2558 * map representing the existing hole), otherwise the fast fsync path 2559 * will not record the existence of the hole region 2560 * [existing_hole_start, lockend]. 2561 */ 2562 if (drop_args.drop_end <= end) 2563 drop_args.drop_end = end + 1; 2564 /* 2565 * Don't insert file hole extent item if it's for a range beyond eof 2566 * (because it's useless) or if it represents a 0 bytes range (when 2567 * cur_offset == drop_end). 2568 */ 2569 if (!extent_info && cur_offset < ino_size && 2570 cur_offset < drop_args.drop_end) { 2571 ret = fill_holes(trans, inode, path, cur_offset, 2572 drop_args.drop_end); 2573 if (ret) { 2574 /* Same comment as above. */ 2575 btrfs_abort_transaction(trans, ret); 2576 goto out_trans; 2577 } 2578 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2579 /* See the comment in the loop above for the reasoning here. */ 2580 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2581 drop_args.drop_end - cur_offset); 2582 if (ret) { 2583 btrfs_abort_transaction(trans, ret); 2584 goto out_trans; 2585 } 2586 2587 } 2588 if (extent_info) { 2589 ret = btrfs_insert_replace_extent(trans, inode, path, 2590 extent_info, extent_info->data_len, 2591 drop_args.bytes_found); 2592 if (ret) { 2593 btrfs_abort_transaction(trans, ret); 2594 goto out_trans; 2595 } 2596 } 2597 2598 out_trans: 2599 if (!trans) 2600 goto out_free; 2601 2602 trans->block_rsv = &fs_info->trans_block_rsv; 2603 if (ret) 2604 btrfs_end_transaction(trans); 2605 else 2606 *trans_out = trans; 2607 out_free: 2608 btrfs_free_block_rsv(fs_info, rsv); 2609 out: 2610 return ret; 2611 } 2612 2613 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2614 { 2615 struct inode *inode = file_inode(file); 2616 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2617 struct btrfs_root *root = BTRFS_I(inode)->root; 2618 struct extent_state *cached_state = NULL; 2619 struct btrfs_path *path; 2620 struct btrfs_trans_handle *trans = NULL; 2621 u64 lockstart; 2622 u64 lockend; 2623 u64 tail_start; 2624 u64 tail_len; 2625 u64 orig_start = offset; 2626 int ret = 0; 2627 bool same_block; 2628 u64 ino_size; 2629 bool truncated_block = false; 2630 bool updated_inode = false; 2631 2632 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2633 2634 ret = btrfs_wait_ordered_range(inode, offset, len); 2635 if (ret) 2636 goto out_only_mutex; 2637 2638 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2639 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2640 if (ret < 0) 2641 goto out_only_mutex; 2642 if (ret && !len) { 2643 /* Already in a large hole */ 2644 ret = 0; 2645 goto out_only_mutex; 2646 } 2647 2648 ret = file_modified(file); 2649 if (ret) 2650 goto out_only_mutex; 2651 2652 lockstart = round_up(offset, fs_info->sectorsize); 2653 lockend = round_down(offset + len, fs_info->sectorsize) - 1; 2654 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2655 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2656 /* 2657 * We needn't truncate any block which is beyond the end of the file 2658 * because we are sure there is no data there. 2659 */ 2660 /* 2661 * Only do this if we are in the same block and we aren't doing the 2662 * entire block. 2663 */ 2664 if (same_block && len < fs_info->sectorsize) { 2665 if (offset < ino_size) { 2666 truncated_block = true; 2667 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2668 0); 2669 } else { 2670 ret = 0; 2671 } 2672 goto out_only_mutex; 2673 } 2674 2675 /* zero back part of the first block */ 2676 if (offset < ino_size) { 2677 truncated_block = true; 2678 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2679 if (ret) { 2680 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2681 return ret; 2682 } 2683 } 2684 2685 /* Check the aligned pages after the first unaligned page, 2686 * if offset != orig_start, which means the first unaligned page 2687 * including several following pages are already in holes, 2688 * the extra check can be skipped */ 2689 if (offset == orig_start) { 2690 /* after truncate page, check hole again */ 2691 len = offset + len - lockstart; 2692 offset = lockstart; 2693 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2694 if (ret < 0) 2695 goto out_only_mutex; 2696 if (ret && !len) { 2697 ret = 0; 2698 goto out_only_mutex; 2699 } 2700 lockstart = offset; 2701 } 2702 2703 /* Check the tail unaligned part is in a hole */ 2704 tail_start = lockend + 1; 2705 tail_len = offset + len - tail_start; 2706 if (tail_len) { 2707 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2708 if (unlikely(ret < 0)) 2709 goto out_only_mutex; 2710 if (!ret) { 2711 /* zero the front end of the last page */ 2712 if (tail_start + tail_len < ino_size) { 2713 truncated_block = true; 2714 ret = btrfs_truncate_block(BTRFS_I(inode), 2715 tail_start + tail_len, 2716 0, 1); 2717 if (ret) 2718 goto out_only_mutex; 2719 } 2720 } 2721 } 2722 2723 if (lockend < lockstart) { 2724 ret = 0; 2725 goto out_only_mutex; 2726 } 2727 2728 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 2729 2730 path = btrfs_alloc_path(); 2731 if (!path) { 2732 ret = -ENOMEM; 2733 goto out; 2734 } 2735 2736 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 2737 lockend, NULL, &trans); 2738 btrfs_free_path(path); 2739 if (ret) 2740 goto out; 2741 2742 ASSERT(trans != NULL); 2743 inode_inc_iversion(inode); 2744 inode->i_mtime = inode_set_ctime_current(inode); 2745 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2746 updated_inode = true; 2747 btrfs_end_transaction(trans); 2748 btrfs_btree_balance_dirty(fs_info); 2749 out: 2750 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2751 &cached_state); 2752 out_only_mutex: 2753 if (!updated_inode && truncated_block && !ret) { 2754 /* 2755 * If we only end up zeroing part of a page, we still need to 2756 * update the inode item, so that all the time fields are 2757 * updated as well as the necessary btrfs inode in memory fields 2758 * for detecting, at fsync time, if the inode isn't yet in the 2759 * log tree or it's there but not up to date. 2760 */ 2761 struct timespec64 now = inode_set_ctime_current(inode); 2762 2763 inode_inc_iversion(inode); 2764 inode->i_mtime = now; 2765 trans = btrfs_start_transaction(root, 1); 2766 if (IS_ERR(trans)) { 2767 ret = PTR_ERR(trans); 2768 } else { 2769 int ret2; 2770 2771 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2772 ret2 = btrfs_end_transaction(trans); 2773 if (!ret) 2774 ret = ret2; 2775 } 2776 } 2777 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2778 return ret; 2779 } 2780 2781 /* Helper structure to record which range is already reserved */ 2782 struct falloc_range { 2783 struct list_head list; 2784 u64 start; 2785 u64 len; 2786 }; 2787 2788 /* 2789 * Helper function to add falloc range 2790 * 2791 * Caller should have locked the larger range of extent containing 2792 * [start, len) 2793 */ 2794 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2795 { 2796 struct falloc_range *range = NULL; 2797 2798 if (!list_empty(head)) { 2799 /* 2800 * As fallocate iterates by bytenr order, we only need to check 2801 * the last range. 2802 */ 2803 range = list_last_entry(head, struct falloc_range, list); 2804 if (range->start + range->len == start) { 2805 range->len += len; 2806 return 0; 2807 } 2808 } 2809 2810 range = kmalloc(sizeof(*range), GFP_KERNEL); 2811 if (!range) 2812 return -ENOMEM; 2813 range->start = start; 2814 range->len = len; 2815 list_add_tail(&range->list, head); 2816 return 0; 2817 } 2818 2819 static int btrfs_fallocate_update_isize(struct inode *inode, 2820 const u64 end, 2821 const int mode) 2822 { 2823 struct btrfs_trans_handle *trans; 2824 struct btrfs_root *root = BTRFS_I(inode)->root; 2825 int ret; 2826 int ret2; 2827 2828 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2829 return 0; 2830 2831 trans = btrfs_start_transaction(root, 1); 2832 if (IS_ERR(trans)) 2833 return PTR_ERR(trans); 2834 2835 inode_set_ctime_current(inode); 2836 i_size_write(inode, end); 2837 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 2838 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2839 ret2 = btrfs_end_transaction(trans); 2840 2841 return ret ? ret : ret2; 2842 } 2843 2844 enum { 2845 RANGE_BOUNDARY_WRITTEN_EXTENT, 2846 RANGE_BOUNDARY_PREALLOC_EXTENT, 2847 RANGE_BOUNDARY_HOLE, 2848 }; 2849 2850 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 2851 u64 offset) 2852 { 2853 const u64 sectorsize = inode->root->fs_info->sectorsize; 2854 struct extent_map *em; 2855 int ret; 2856 2857 offset = round_down(offset, sectorsize); 2858 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize); 2859 if (IS_ERR(em)) 2860 return PTR_ERR(em); 2861 2862 if (em->block_start == EXTENT_MAP_HOLE) 2863 ret = RANGE_BOUNDARY_HOLE; 2864 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2865 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2866 else 2867 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2868 2869 free_extent_map(em); 2870 return ret; 2871 } 2872 2873 static int btrfs_zero_range(struct inode *inode, 2874 loff_t offset, 2875 loff_t len, 2876 const int mode) 2877 { 2878 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2879 struct extent_map *em; 2880 struct extent_changeset *data_reserved = NULL; 2881 int ret; 2882 u64 alloc_hint = 0; 2883 const u64 sectorsize = fs_info->sectorsize; 2884 u64 alloc_start = round_down(offset, sectorsize); 2885 u64 alloc_end = round_up(offset + len, sectorsize); 2886 u64 bytes_to_reserve = 0; 2887 bool space_reserved = false; 2888 2889 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 2890 alloc_end - alloc_start); 2891 if (IS_ERR(em)) { 2892 ret = PTR_ERR(em); 2893 goto out; 2894 } 2895 2896 /* 2897 * Avoid hole punching and extent allocation for some cases. More cases 2898 * could be considered, but these are unlikely common and we keep things 2899 * as simple as possible for now. Also, intentionally, if the target 2900 * range contains one or more prealloc extents together with regular 2901 * extents and holes, we drop all the existing extents and allocate a 2902 * new prealloc extent, so that we get a larger contiguous disk extent. 2903 */ 2904 if (em->start <= alloc_start && 2905 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2906 const u64 em_end = em->start + em->len; 2907 2908 if (em_end >= offset + len) { 2909 /* 2910 * The whole range is already a prealloc extent, 2911 * do nothing except updating the inode's i_size if 2912 * needed. 2913 */ 2914 free_extent_map(em); 2915 ret = btrfs_fallocate_update_isize(inode, offset + len, 2916 mode); 2917 goto out; 2918 } 2919 /* 2920 * Part of the range is already a prealloc extent, so operate 2921 * only on the remaining part of the range. 2922 */ 2923 alloc_start = em_end; 2924 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2925 len = offset + len - alloc_start; 2926 offset = alloc_start; 2927 alloc_hint = em->block_start + em->len; 2928 } 2929 free_extent_map(em); 2930 2931 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2932 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2933 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 2934 sectorsize); 2935 if (IS_ERR(em)) { 2936 ret = PTR_ERR(em); 2937 goto out; 2938 } 2939 2940 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2941 free_extent_map(em); 2942 ret = btrfs_fallocate_update_isize(inode, offset + len, 2943 mode); 2944 goto out; 2945 } 2946 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 2947 free_extent_map(em); 2948 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2949 0); 2950 if (!ret) 2951 ret = btrfs_fallocate_update_isize(inode, 2952 offset + len, 2953 mode); 2954 return ret; 2955 } 2956 free_extent_map(em); 2957 alloc_start = round_down(offset, sectorsize); 2958 alloc_end = alloc_start + sectorsize; 2959 goto reserve_space; 2960 } 2961 2962 alloc_start = round_up(offset, sectorsize); 2963 alloc_end = round_down(offset + len, sectorsize); 2964 2965 /* 2966 * For unaligned ranges, check the pages at the boundaries, they might 2967 * map to an extent, in which case we need to partially zero them, or 2968 * they might map to a hole, in which case we need our allocation range 2969 * to cover them. 2970 */ 2971 if (!IS_ALIGNED(offset, sectorsize)) { 2972 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2973 offset); 2974 if (ret < 0) 2975 goto out; 2976 if (ret == RANGE_BOUNDARY_HOLE) { 2977 alloc_start = round_down(offset, sectorsize); 2978 ret = 0; 2979 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2980 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2981 if (ret) 2982 goto out; 2983 } else { 2984 ret = 0; 2985 } 2986 } 2987 2988 if (!IS_ALIGNED(offset + len, sectorsize)) { 2989 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2990 offset + len); 2991 if (ret < 0) 2992 goto out; 2993 if (ret == RANGE_BOUNDARY_HOLE) { 2994 alloc_end = round_up(offset + len, sectorsize); 2995 ret = 0; 2996 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2997 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 2998 0, 1); 2999 if (ret) 3000 goto out; 3001 } else { 3002 ret = 0; 3003 } 3004 } 3005 3006 reserve_space: 3007 if (alloc_start < alloc_end) { 3008 struct extent_state *cached_state = NULL; 3009 const u64 lockstart = alloc_start; 3010 const u64 lockend = alloc_end - 1; 3011 3012 bytes_to_reserve = alloc_end - alloc_start; 3013 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3014 bytes_to_reserve); 3015 if (ret < 0) 3016 goto out; 3017 space_reserved = true; 3018 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3019 &cached_state); 3020 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3021 alloc_start, bytes_to_reserve); 3022 if (ret) { 3023 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 3024 lockend, &cached_state); 3025 goto out; 3026 } 3027 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3028 alloc_end - alloc_start, 3029 i_blocksize(inode), 3030 offset + len, &alloc_hint); 3031 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3032 &cached_state); 3033 /* btrfs_prealloc_file_range releases reserved space on error */ 3034 if (ret) { 3035 space_reserved = false; 3036 goto out; 3037 } 3038 } 3039 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3040 out: 3041 if (ret && space_reserved) 3042 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3043 alloc_start, bytes_to_reserve); 3044 extent_changeset_free(data_reserved); 3045 3046 return ret; 3047 } 3048 3049 static long btrfs_fallocate(struct file *file, int mode, 3050 loff_t offset, loff_t len) 3051 { 3052 struct inode *inode = file_inode(file); 3053 struct extent_state *cached_state = NULL; 3054 struct extent_changeset *data_reserved = NULL; 3055 struct falloc_range *range; 3056 struct falloc_range *tmp; 3057 LIST_HEAD(reserve_list); 3058 u64 cur_offset; 3059 u64 last_byte; 3060 u64 alloc_start; 3061 u64 alloc_end; 3062 u64 alloc_hint = 0; 3063 u64 locked_end; 3064 u64 actual_end = 0; 3065 u64 data_space_needed = 0; 3066 u64 data_space_reserved = 0; 3067 u64 qgroup_reserved = 0; 3068 struct extent_map *em; 3069 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize; 3070 int ret; 3071 3072 /* Do not allow fallocate in ZONED mode */ 3073 if (btrfs_is_zoned(btrfs_sb(inode->i_sb))) 3074 return -EOPNOTSUPP; 3075 3076 alloc_start = round_down(offset, blocksize); 3077 alloc_end = round_up(offset + len, blocksize); 3078 cur_offset = alloc_start; 3079 3080 /* Make sure we aren't being give some crap mode */ 3081 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3082 FALLOC_FL_ZERO_RANGE)) 3083 return -EOPNOTSUPP; 3084 3085 if (mode & FALLOC_FL_PUNCH_HOLE) 3086 return btrfs_punch_hole(file, offset, len); 3087 3088 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3089 3090 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3091 ret = inode_newsize_ok(inode, offset + len); 3092 if (ret) 3093 goto out; 3094 } 3095 3096 ret = file_modified(file); 3097 if (ret) 3098 goto out; 3099 3100 /* 3101 * TODO: Move these two operations after we have checked 3102 * accurate reserved space, or fallocate can still fail but 3103 * with page truncated or size expanded. 3104 * 3105 * But that's a minor problem and won't do much harm BTW. 3106 */ 3107 if (alloc_start > inode->i_size) { 3108 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3109 alloc_start); 3110 if (ret) 3111 goto out; 3112 } else if (offset + len > inode->i_size) { 3113 /* 3114 * If we are fallocating from the end of the file onward we 3115 * need to zero out the end of the block if i_size lands in the 3116 * middle of a block. 3117 */ 3118 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3119 if (ret) 3120 goto out; 3121 } 3122 3123 /* 3124 * We have locked the inode at the VFS level (in exclusive mode) and we 3125 * have locked the i_mmap_lock lock (in exclusive mode). Now before 3126 * locking the file range, flush all dealloc in the range and wait for 3127 * all ordered extents in the range to complete. After this we can lock 3128 * the file range and, due to the previous locking we did, we know there 3129 * can't be more delalloc or ordered extents in the range. 3130 */ 3131 ret = btrfs_wait_ordered_range(inode, alloc_start, 3132 alloc_end - alloc_start); 3133 if (ret) 3134 goto out; 3135 3136 if (mode & FALLOC_FL_ZERO_RANGE) { 3137 ret = btrfs_zero_range(inode, offset, len, mode); 3138 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3139 return ret; 3140 } 3141 3142 locked_end = alloc_end - 1; 3143 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3144 &cached_state); 3145 3146 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3147 3148 /* First, check if we exceed the qgroup limit */ 3149 while (cur_offset < alloc_end) { 3150 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3151 alloc_end - cur_offset); 3152 if (IS_ERR(em)) { 3153 ret = PTR_ERR(em); 3154 break; 3155 } 3156 last_byte = min(extent_map_end(em), alloc_end); 3157 actual_end = min_t(u64, extent_map_end(em), offset + len); 3158 last_byte = ALIGN(last_byte, blocksize); 3159 if (em->block_start == EXTENT_MAP_HOLE || 3160 (cur_offset >= inode->i_size && 3161 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3162 const u64 range_len = last_byte - cur_offset; 3163 3164 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3165 if (ret < 0) { 3166 free_extent_map(em); 3167 break; 3168 } 3169 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3170 &data_reserved, cur_offset, range_len); 3171 if (ret < 0) { 3172 free_extent_map(em); 3173 break; 3174 } 3175 qgroup_reserved += range_len; 3176 data_space_needed += range_len; 3177 } 3178 free_extent_map(em); 3179 cur_offset = last_byte; 3180 } 3181 3182 if (!ret && data_space_needed > 0) { 3183 /* 3184 * We are safe to reserve space here as we can't have delalloc 3185 * in the range, see above. 3186 */ 3187 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3188 data_space_needed); 3189 if (!ret) 3190 data_space_reserved = data_space_needed; 3191 } 3192 3193 /* 3194 * If ret is still 0, means we're OK to fallocate. 3195 * Or just cleanup the list and exit. 3196 */ 3197 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3198 if (!ret) { 3199 ret = btrfs_prealloc_file_range(inode, mode, 3200 range->start, 3201 range->len, i_blocksize(inode), 3202 offset + len, &alloc_hint); 3203 /* 3204 * btrfs_prealloc_file_range() releases space even 3205 * if it returns an error. 3206 */ 3207 data_space_reserved -= range->len; 3208 qgroup_reserved -= range->len; 3209 } else if (data_space_reserved > 0) { 3210 btrfs_free_reserved_data_space(BTRFS_I(inode), 3211 data_reserved, range->start, 3212 range->len); 3213 data_space_reserved -= range->len; 3214 qgroup_reserved -= range->len; 3215 } else if (qgroup_reserved > 0) { 3216 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3217 range->start, range->len, NULL); 3218 qgroup_reserved -= range->len; 3219 } 3220 list_del(&range->list); 3221 kfree(range); 3222 } 3223 if (ret < 0) 3224 goto out_unlock; 3225 3226 /* 3227 * We didn't need to allocate any more space, but we still extended the 3228 * size of the file so we need to update i_size and the inode item. 3229 */ 3230 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3231 out_unlock: 3232 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3233 &cached_state); 3234 out: 3235 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3236 extent_changeset_free(data_reserved); 3237 return ret; 3238 } 3239 3240 /* 3241 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range 3242 * that has unflushed and/or flushing delalloc. There might be other adjacent 3243 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps 3244 * looping while it gets adjacent subranges, and merging them together. 3245 */ 3246 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end, 3247 struct extent_state **cached_state, 3248 bool *search_io_tree, 3249 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3250 { 3251 u64 len = end + 1 - start; 3252 u64 delalloc_len = 0; 3253 struct btrfs_ordered_extent *oe; 3254 u64 oe_start; 3255 u64 oe_end; 3256 3257 /* 3258 * Search the io tree first for EXTENT_DELALLOC. If we find any, it 3259 * means we have delalloc (dirty pages) for which writeback has not 3260 * started yet. 3261 */ 3262 if (*search_io_tree) { 3263 spin_lock(&inode->lock); 3264 if (inode->delalloc_bytes > 0) { 3265 spin_unlock(&inode->lock); 3266 *delalloc_start_ret = start; 3267 delalloc_len = count_range_bits(&inode->io_tree, 3268 delalloc_start_ret, end, 3269 len, EXTENT_DELALLOC, 1, 3270 cached_state); 3271 } else { 3272 spin_unlock(&inode->lock); 3273 } 3274 } 3275 3276 if (delalloc_len > 0) { 3277 /* 3278 * If delalloc was found then *delalloc_start_ret has a sector size 3279 * aligned value (rounded down). 3280 */ 3281 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1; 3282 3283 if (*delalloc_start_ret == start) { 3284 /* Delalloc for the whole range, nothing more to do. */ 3285 if (*delalloc_end_ret == end) 3286 return true; 3287 /* Else trim our search range for ordered extents. */ 3288 start = *delalloc_end_ret + 1; 3289 len = end + 1 - start; 3290 } 3291 } else { 3292 /* No delalloc, future calls don't need to search again. */ 3293 *search_io_tree = false; 3294 } 3295 3296 /* 3297 * Now also check if there's any ordered extent in the range. 3298 * We do this because: 3299 * 3300 * 1) When delalloc is flushed, the file range is locked, we clear the 3301 * EXTENT_DELALLOC bit from the io tree and create an extent map and 3302 * an ordered extent for the write. So we might just have been called 3303 * after delalloc is flushed and before the ordered extent completes 3304 * and inserts the new file extent item in the subvolume's btree; 3305 * 3306 * 2) We may have an ordered extent created by flushing delalloc for a 3307 * subrange that starts before the subrange we found marked with 3308 * EXTENT_DELALLOC in the io tree. 3309 * 3310 * We could also use the extent map tree to find such delalloc that is 3311 * being flushed, but using the ordered extents tree is more efficient 3312 * because it's usually much smaller as ordered extents are removed from 3313 * the tree once they complete. With the extent maps, we mau have them 3314 * in the extent map tree for a very long time, and they were either 3315 * created by previous writes or loaded by read operations. 3316 */ 3317 oe = btrfs_lookup_first_ordered_range(inode, start, len); 3318 if (!oe) 3319 return (delalloc_len > 0); 3320 3321 /* The ordered extent may span beyond our search range. */ 3322 oe_start = max(oe->file_offset, start); 3323 oe_end = min(oe->file_offset + oe->num_bytes - 1, end); 3324 3325 btrfs_put_ordered_extent(oe); 3326 3327 /* Don't have unflushed delalloc, return the ordered extent range. */ 3328 if (delalloc_len == 0) { 3329 *delalloc_start_ret = oe_start; 3330 *delalloc_end_ret = oe_end; 3331 return true; 3332 } 3333 3334 /* 3335 * We have both unflushed delalloc (io_tree) and an ordered extent. 3336 * If the ranges are adjacent returned a combined range, otherwise 3337 * return the leftmost range. 3338 */ 3339 if (oe_start < *delalloc_start_ret) { 3340 if (oe_end < *delalloc_start_ret) 3341 *delalloc_end_ret = oe_end; 3342 *delalloc_start_ret = oe_start; 3343 } else if (*delalloc_end_ret + 1 == oe_start) { 3344 *delalloc_end_ret = oe_end; 3345 } 3346 3347 return true; 3348 } 3349 3350 /* 3351 * Check if there's delalloc in a given range. 3352 * 3353 * @inode: The inode. 3354 * @start: The start offset of the range. It does not need to be 3355 * sector size aligned. 3356 * @end: The end offset (inclusive value) of the search range. 3357 * It does not need to be sector size aligned. 3358 * @cached_state: Extent state record used for speeding up delalloc 3359 * searches in the inode's io_tree. Can be NULL. 3360 * @delalloc_start_ret: Output argument, set to the start offset of the 3361 * subrange found with delalloc (may not be sector size 3362 * aligned). 3363 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value) 3364 * of the subrange found with delalloc. 3365 * 3366 * Returns true if a subrange with delalloc is found within the given range, and 3367 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and 3368 * end offsets of the subrange. 3369 */ 3370 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, 3371 struct extent_state **cached_state, 3372 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3373 { 3374 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize); 3375 u64 prev_delalloc_end = 0; 3376 bool search_io_tree = true; 3377 bool ret = false; 3378 3379 while (cur_offset <= end) { 3380 u64 delalloc_start; 3381 u64 delalloc_end; 3382 bool delalloc; 3383 3384 delalloc = find_delalloc_subrange(inode, cur_offset, end, 3385 cached_state, &search_io_tree, 3386 &delalloc_start, 3387 &delalloc_end); 3388 if (!delalloc) 3389 break; 3390 3391 if (prev_delalloc_end == 0) { 3392 /* First subrange found. */ 3393 *delalloc_start_ret = max(delalloc_start, start); 3394 *delalloc_end_ret = delalloc_end; 3395 ret = true; 3396 } else if (delalloc_start == prev_delalloc_end + 1) { 3397 /* Subrange adjacent to the previous one, merge them. */ 3398 *delalloc_end_ret = delalloc_end; 3399 } else { 3400 /* Subrange not adjacent to the previous one, exit. */ 3401 break; 3402 } 3403 3404 prev_delalloc_end = delalloc_end; 3405 cur_offset = delalloc_end + 1; 3406 cond_resched(); 3407 } 3408 3409 return ret; 3410 } 3411 3412 /* 3413 * Check if there's a hole or delalloc range in a range representing a hole (or 3414 * prealloc extent) found in the inode's subvolume btree. 3415 * 3416 * @inode: The inode. 3417 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE). 3418 * @start: Start offset of the hole region. It does not need to be sector 3419 * size aligned. 3420 * @end: End offset (inclusive value) of the hole region. It does not 3421 * need to be sector size aligned. 3422 * @start_ret: Return parameter, used to set the start of the subrange in the 3423 * hole that matches the search criteria (seek mode), if such 3424 * subrange is found (return value of the function is true). 3425 * The value returned here may not be sector size aligned. 3426 * 3427 * Returns true if a subrange matching the given seek mode is found, and if one 3428 * is found, it updates @start_ret with the start of the subrange. 3429 */ 3430 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence, 3431 struct extent_state **cached_state, 3432 u64 start, u64 end, u64 *start_ret) 3433 { 3434 u64 delalloc_start; 3435 u64 delalloc_end; 3436 bool delalloc; 3437 3438 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state, 3439 &delalloc_start, &delalloc_end); 3440 if (delalloc && whence == SEEK_DATA) { 3441 *start_ret = delalloc_start; 3442 return true; 3443 } 3444 3445 if (delalloc && whence == SEEK_HOLE) { 3446 /* 3447 * We found delalloc but it starts after out start offset. So we 3448 * have a hole between our start offset and the delalloc start. 3449 */ 3450 if (start < delalloc_start) { 3451 *start_ret = start; 3452 return true; 3453 } 3454 /* 3455 * Delalloc range starts at our start offset. 3456 * If the delalloc range's length is smaller than our range, 3457 * then it means we have a hole that starts where the delalloc 3458 * subrange ends. 3459 */ 3460 if (delalloc_end < end) { 3461 *start_ret = delalloc_end + 1; 3462 return true; 3463 } 3464 3465 /* There's delalloc for the whole range. */ 3466 return false; 3467 } 3468 3469 if (!delalloc && whence == SEEK_HOLE) { 3470 *start_ret = start; 3471 return true; 3472 } 3473 3474 /* 3475 * No delalloc in the range and we are seeking for data. The caller has 3476 * to iterate to the next extent item in the subvolume btree. 3477 */ 3478 return false; 3479 } 3480 3481 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence) 3482 { 3483 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host); 3484 struct btrfs_file_private *private; 3485 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3486 struct extent_state *cached_state = NULL; 3487 struct extent_state **delalloc_cached_state; 3488 const loff_t i_size = i_size_read(&inode->vfs_inode); 3489 const u64 ino = btrfs_ino(inode); 3490 struct btrfs_root *root = inode->root; 3491 struct btrfs_path *path; 3492 struct btrfs_key key; 3493 u64 last_extent_end; 3494 u64 lockstart; 3495 u64 lockend; 3496 u64 start; 3497 int ret; 3498 bool found = false; 3499 3500 if (i_size == 0 || offset >= i_size) 3501 return -ENXIO; 3502 3503 /* 3504 * Quick path. If the inode has no prealloc extents and its number of 3505 * bytes used matches its i_size, then it can not have holes. 3506 */ 3507 if (whence == SEEK_HOLE && 3508 !(inode->flags & BTRFS_INODE_PREALLOC) && 3509 inode_get_bytes(&inode->vfs_inode) == i_size) 3510 return i_size; 3511 3512 spin_lock(&inode->lock); 3513 private = file->private_data; 3514 spin_unlock(&inode->lock); 3515 3516 if (private && private->owner_task != current) { 3517 /* 3518 * Not allocated by us, don't use it as its cached state is used 3519 * by the task that allocated it and we don't want neither to 3520 * mess with it nor get incorrect results because it reflects an 3521 * invalid state for the current task. 3522 */ 3523 private = NULL; 3524 } else if (!private) { 3525 private = kzalloc(sizeof(*private), GFP_KERNEL); 3526 /* 3527 * No worries if memory allocation failed. 3528 * The private structure is used only for speeding up multiple 3529 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc, 3530 * so everything will still be correct. 3531 */ 3532 if (private) { 3533 bool free = false; 3534 3535 private->owner_task = current; 3536 3537 spin_lock(&inode->lock); 3538 if (file->private_data) 3539 free = true; 3540 else 3541 file->private_data = private; 3542 spin_unlock(&inode->lock); 3543 3544 if (free) { 3545 kfree(private); 3546 private = NULL; 3547 } 3548 } 3549 } 3550 3551 if (private) 3552 delalloc_cached_state = &private->llseek_cached_state; 3553 else 3554 delalloc_cached_state = NULL; 3555 3556 /* 3557 * offset can be negative, in this case we start finding DATA/HOLE from 3558 * the very start of the file. 3559 */ 3560 start = max_t(loff_t, 0, offset); 3561 3562 lockstart = round_down(start, fs_info->sectorsize); 3563 lockend = round_up(i_size, fs_info->sectorsize); 3564 if (lockend <= lockstart) 3565 lockend = lockstart + fs_info->sectorsize; 3566 lockend--; 3567 3568 path = btrfs_alloc_path(); 3569 if (!path) 3570 return -ENOMEM; 3571 path->reada = READA_FORWARD; 3572 3573 key.objectid = ino; 3574 key.type = BTRFS_EXTENT_DATA_KEY; 3575 key.offset = start; 3576 3577 last_extent_end = lockstart; 3578 3579 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3580 3581 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3582 if (ret < 0) { 3583 goto out; 3584 } else if (ret > 0 && path->slots[0] > 0) { 3585 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3586 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3587 path->slots[0]--; 3588 } 3589 3590 while (start < i_size) { 3591 struct extent_buffer *leaf = path->nodes[0]; 3592 struct btrfs_file_extent_item *extent; 3593 u64 extent_end; 3594 u8 type; 3595 3596 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3597 ret = btrfs_next_leaf(root, path); 3598 if (ret < 0) 3599 goto out; 3600 else if (ret > 0) 3601 break; 3602 3603 leaf = path->nodes[0]; 3604 } 3605 3606 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3607 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3608 break; 3609 3610 extent_end = btrfs_file_extent_end(path); 3611 3612 /* 3613 * In the first iteration we may have a slot that points to an 3614 * extent that ends before our start offset, so skip it. 3615 */ 3616 if (extent_end <= start) { 3617 path->slots[0]++; 3618 continue; 3619 } 3620 3621 /* We have an implicit hole, NO_HOLES feature is likely set. */ 3622 if (last_extent_end < key.offset) { 3623 u64 search_start = last_extent_end; 3624 u64 found_start; 3625 3626 /* 3627 * First iteration, @start matches @offset and it's 3628 * within the hole. 3629 */ 3630 if (start == offset) 3631 search_start = offset; 3632 3633 found = find_desired_extent_in_hole(inode, whence, 3634 delalloc_cached_state, 3635 search_start, 3636 key.offset - 1, 3637 &found_start); 3638 if (found) { 3639 start = found_start; 3640 break; 3641 } 3642 /* 3643 * Didn't find data or a hole (due to delalloc) in the 3644 * implicit hole range, so need to analyze the extent. 3645 */ 3646 } 3647 3648 extent = btrfs_item_ptr(leaf, path->slots[0], 3649 struct btrfs_file_extent_item); 3650 type = btrfs_file_extent_type(leaf, extent); 3651 3652 /* 3653 * Can't access the extent's disk_bytenr field if this is an 3654 * inline extent, since at that offset, it's where the extent 3655 * data starts. 3656 */ 3657 if (type == BTRFS_FILE_EXTENT_PREALLOC || 3658 (type == BTRFS_FILE_EXTENT_REG && 3659 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) { 3660 /* 3661 * Explicit hole or prealloc extent, search for delalloc. 3662 * A prealloc extent is treated like a hole. 3663 */ 3664 u64 search_start = key.offset; 3665 u64 found_start; 3666 3667 /* 3668 * First iteration, @start matches @offset and it's 3669 * within the hole. 3670 */ 3671 if (start == offset) 3672 search_start = offset; 3673 3674 found = find_desired_extent_in_hole(inode, whence, 3675 delalloc_cached_state, 3676 search_start, 3677 extent_end - 1, 3678 &found_start); 3679 if (found) { 3680 start = found_start; 3681 break; 3682 } 3683 /* 3684 * Didn't find data or a hole (due to delalloc) in the 3685 * implicit hole range, so need to analyze the next 3686 * extent item. 3687 */ 3688 } else { 3689 /* 3690 * Found a regular or inline extent. 3691 * If we are seeking for data, adjust the start offset 3692 * and stop, we're done. 3693 */ 3694 if (whence == SEEK_DATA) { 3695 start = max_t(u64, key.offset, offset); 3696 found = true; 3697 break; 3698 } 3699 /* 3700 * Else, we are seeking for a hole, check the next file 3701 * extent item. 3702 */ 3703 } 3704 3705 start = extent_end; 3706 last_extent_end = extent_end; 3707 path->slots[0]++; 3708 if (fatal_signal_pending(current)) { 3709 ret = -EINTR; 3710 goto out; 3711 } 3712 cond_resched(); 3713 } 3714 3715 /* We have an implicit hole from the last extent found up to i_size. */ 3716 if (!found && start < i_size) { 3717 found = find_desired_extent_in_hole(inode, whence, 3718 delalloc_cached_state, start, 3719 i_size - 1, &start); 3720 if (!found) 3721 start = i_size; 3722 } 3723 3724 out: 3725 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3726 btrfs_free_path(path); 3727 3728 if (ret < 0) 3729 return ret; 3730 3731 if (whence == SEEK_DATA && start >= i_size) 3732 return -ENXIO; 3733 3734 return min_t(loff_t, start, i_size); 3735 } 3736 3737 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3738 { 3739 struct inode *inode = file->f_mapping->host; 3740 3741 switch (whence) { 3742 default: 3743 return generic_file_llseek(file, offset, whence); 3744 case SEEK_DATA: 3745 case SEEK_HOLE: 3746 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3747 offset = find_desired_extent(file, offset, whence); 3748 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3749 break; 3750 } 3751 3752 if (offset < 0) 3753 return offset; 3754 3755 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3756 } 3757 3758 static int btrfs_file_open(struct inode *inode, struct file *filp) 3759 { 3760 int ret; 3761 3762 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC | 3763 FMODE_CAN_ODIRECT; 3764 3765 ret = fsverity_file_open(inode, filp); 3766 if (ret) 3767 return ret; 3768 return generic_file_open(inode, filp); 3769 } 3770 3771 static int check_direct_read(struct btrfs_fs_info *fs_info, 3772 const struct iov_iter *iter, loff_t offset) 3773 { 3774 int ret; 3775 int i, seg; 3776 3777 ret = check_direct_IO(fs_info, iter, offset); 3778 if (ret < 0) 3779 return ret; 3780 3781 if (!iter_is_iovec(iter)) 3782 return 0; 3783 3784 for (seg = 0; seg < iter->nr_segs; seg++) { 3785 for (i = seg + 1; i < iter->nr_segs; i++) { 3786 const struct iovec *iov1 = iter_iov(iter) + seg; 3787 const struct iovec *iov2 = iter_iov(iter) + i; 3788 3789 if (iov1->iov_base == iov2->iov_base) 3790 return -EINVAL; 3791 } 3792 } 3793 return 0; 3794 } 3795 3796 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 3797 { 3798 struct inode *inode = file_inode(iocb->ki_filp); 3799 size_t prev_left = 0; 3800 ssize_t read = 0; 3801 ssize_t ret; 3802 3803 if (fsverity_active(inode)) 3804 return 0; 3805 3806 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos)) 3807 return 0; 3808 3809 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3810 again: 3811 /* 3812 * This is similar to what we do for direct IO writes, see the comment 3813 * at btrfs_direct_write(), but we also disable page faults in addition 3814 * to disabling them only at the iov_iter level. This is because when 3815 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(), 3816 * which can still trigger page fault ins despite having set ->nofault 3817 * to true of our 'to' iov_iter. 3818 * 3819 * The difference to direct IO writes is that we deadlock when trying 3820 * to lock the extent range in the inode's tree during he page reads 3821 * triggered by the fault in (while for writes it is due to waiting for 3822 * our own ordered extent). This is because for direct IO reads, 3823 * btrfs_dio_iomap_begin() returns with the extent range locked, which 3824 * is only unlocked in the endio callback (end_bio_extent_readpage()). 3825 */ 3826 pagefault_disable(); 3827 to->nofault = true; 3828 ret = btrfs_dio_read(iocb, to, read); 3829 to->nofault = false; 3830 pagefault_enable(); 3831 3832 /* No increment (+=) because iomap returns a cumulative value. */ 3833 if (ret > 0) 3834 read = ret; 3835 3836 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) { 3837 const size_t left = iov_iter_count(to); 3838 3839 if (left == prev_left) { 3840 /* 3841 * We didn't make any progress since the last attempt, 3842 * fallback to a buffered read for the remainder of the 3843 * range. This is just to avoid any possibility of looping 3844 * for too long. 3845 */ 3846 ret = read; 3847 } else { 3848 /* 3849 * We made some progress since the last retry or this is 3850 * the first time we are retrying. Fault in as many pages 3851 * as possible and retry. 3852 */ 3853 fault_in_iov_iter_writeable(to, left); 3854 prev_left = left; 3855 goto again; 3856 } 3857 } 3858 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3859 return ret < 0 ? ret : read; 3860 } 3861 3862 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3863 { 3864 ssize_t ret = 0; 3865 3866 if (iocb->ki_flags & IOCB_DIRECT) { 3867 ret = btrfs_direct_read(iocb, to); 3868 if (ret < 0 || !iov_iter_count(to) || 3869 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3870 return ret; 3871 } 3872 3873 return filemap_read(iocb, to, ret); 3874 } 3875 3876 const struct file_operations btrfs_file_operations = { 3877 .llseek = btrfs_file_llseek, 3878 .read_iter = btrfs_file_read_iter, 3879 .splice_read = filemap_splice_read, 3880 .write_iter = btrfs_file_write_iter, 3881 .splice_write = iter_file_splice_write, 3882 .mmap = btrfs_file_mmap, 3883 .open = btrfs_file_open, 3884 .release = btrfs_release_file, 3885 .get_unmapped_area = thp_get_unmapped_area, 3886 .fsync = btrfs_sync_file, 3887 .fallocate = btrfs_fallocate, 3888 .unlocked_ioctl = btrfs_ioctl, 3889 #ifdef CONFIG_COMPAT 3890 .compat_ioctl = btrfs_compat_ioctl, 3891 #endif 3892 .remap_file_range = btrfs_remap_file_range, 3893 }; 3894 3895 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3896 { 3897 int ret; 3898 3899 /* 3900 * So with compression we will find and lock a dirty page and clear the 3901 * first one as dirty, setup an async extent, and immediately return 3902 * with the entire range locked but with nobody actually marked with 3903 * writeback. So we can't just filemap_write_and_wait_range() and 3904 * expect it to work since it will just kick off a thread to do the 3905 * actual work. So we need to call filemap_fdatawrite_range _again_ 3906 * since it will wait on the page lock, which won't be unlocked until 3907 * after the pages have been marked as writeback and so we're good to go 3908 * from there. We have to do this otherwise we'll miss the ordered 3909 * extents and that results in badness. Please Josef, do not think you 3910 * know better and pull this out at some point in the future, it is 3911 * right and you are wrong. 3912 */ 3913 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3914 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3915 &BTRFS_I(inode)->runtime_flags)) 3916 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3917 3918 return ret; 3919 } 3920