1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/time.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/backing-dev.h> 26 #include <linux/mpage.h> 27 #include <linux/falloc.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/statfs.h> 31 #include <linux/compat.h> 32 #include <linux/slab.h> 33 #include <linux/btrfs.h> 34 #include <linux/uio.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "print-tree.h" 40 #include "tree-log.h" 41 #include "locking.h" 42 #include "volumes.h" 43 #include "qgroup.h" 44 #include "compression.h" 45 46 static struct kmem_cache *btrfs_inode_defrag_cachep; 47 /* 48 * when auto defrag is enabled we 49 * queue up these defrag structs to remember which 50 * inodes need defragging passes 51 */ 52 struct inode_defrag { 53 struct rb_node rb_node; 54 /* objectid */ 55 u64 ino; 56 /* 57 * transid where the defrag was added, we search for 58 * extents newer than this 59 */ 60 u64 transid; 61 62 /* root objectid */ 63 u64 root; 64 65 /* last offset we were able to defrag */ 66 u64 last_offset; 67 68 /* if we've wrapped around back to zero once already */ 69 int cycled; 70 }; 71 72 static int __compare_inode_defrag(struct inode_defrag *defrag1, 73 struct inode_defrag *defrag2) 74 { 75 if (defrag1->root > defrag2->root) 76 return 1; 77 else if (defrag1->root < defrag2->root) 78 return -1; 79 else if (defrag1->ino > defrag2->ino) 80 return 1; 81 else if (defrag1->ino < defrag2->ino) 82 return -1; 83 else 84 return 0; 85 } 86 87 /* pop a record for an inode into the defrag tree. The lock 88 * must be held already 89 * 90 * If you're inserting a record for an older transid than an 91 * existing record, the transid already in the tree is lowered 92 * 93 * If an existing record is found the defrag item you 94 * pass in is freed 95 */ 96 static int __btrfs_add_inode_defrag(struct inode *inode, 97 struct inode_defrag *defrag) 98 { 99 struct btrfs_root *root = BTRFS_I(inode)->root; 100 struct inode_defrag *entry; 101 struct rb_node **p; 102 struct rb_node *parent = NULL; 103 int ret; 104 105 p = &root->fs_info->defrag_inodes.rb_node; 106 while (*p) { 107 parent = *p; 108 entry = rb_entry(parent, struct inode_defrag, rb_node); 109 110 ret = __compare_inode_defrag(defrag, entry); 111 if (ret < 0) 112 p = &parent->rb_left; 113 else if (ret > 0) 114 p = &parent->rb_right; 115 else { 116 /* if we're reinserting an entry for 117 * an old defrag run, make sure to 118 * lower the transid of our existing record 119 */ 120 if (defrag->transid < entry->transid) 121 entry->transid = defrag->transid; 122 if (defrag->last_offset > entry->last_offset) 123 entry->last_offset = defrag->last_offset; 124 return -EEXIST; 125 } 126 } 127 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 128 rb_link_node(&defrag->rb_node, parent, p); 129 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes); 130 return 0; 131 } 132 133 static inline int __need_auto_defrag(struct btrfs_root *root) 134 { 135 if (!btrfs_test_opt(root->fs_info, AUTO_DEFRAG)) 136 return 0; 137 138 if (btrfs_fs_closing(root->fs_info)) 139 return 0; 140 141 return 1; 142 } 143 144 /* 145 * insert a defrag record for this inode if auto defrag is 146 * enabled 147 */ 148 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 149 struct inode *inode) 150 { 151 struct btrfs_root *root = BTRFS_I(inode)->root; 152 struct inode_defrag *defrag; 153 u64 transid; 154 int ret; 155 156 if (!__need_auto_defrag(root)) 157 return 0; 158 159 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) 160 return 0; 161 162 if (trans) 163 transid = trans->transid; 164 else 165 transid = BTRFS_I(inode)->root->last_trans; 166 167 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 168 if (!defrag) 169 return -ENOMEM; 170 171 defrag->ino = btrfs_ino(inode); 172 defrag->transid = transid; 173 defrag->root = root->root_key.objectid; 174 175 spin_lock(&root->fs_info->defrag_inodes_lock); 176 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) { 177 /* 178 * If we set IN_DEFRAG flag and evict the inode from memory, 179 * and then re-read this inode, this new inode doesn't have 180 * IN_DEFRAG flag. At the case, we may find the existed defrag. 181 */ 182 ret = __btrfs_add_inode_defrag(inode, defrag); 183 if (ret) 184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 185 } else { 186 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 187 } 188 spin_unlock(&root->fs_info->defrag_inodes_lock); 189 return 0; 190 } 191 192 /* 193 * Requeue the defrag object. If there is a defrag object that points to 194 * the same inode in the tree, we will merge them together (by 195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 196 */ 197 static void btrfs_requeue_inode_defrag(struct inode *inode, 198 struct inode_defrag *defrag) 199 { 200 struct btrfs_root *root = BTRFS_I(inode)->root; 201 int ret; 202 203 if (!__need_auto_defrag(root)) 204 goto out; 205 206 /* 207 * Here we don't check the IN_DEFRAG flag, because we need merge 208 * them together. 209 */ 210 spin_lock(&root->fs_info->defrag_inodes_lock); 211 ret = __btrfs_add_inode_defrag(inode, defrag); 212 spin_unlock(&root->fs_info->defrag_inodes_lock); 213 if (ret) 214 goto out; 215 return; 216 out: 217 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 218 } 219 220 /* 221 * pick the defragable inode that we want, if it doesn't exist, we will get 222 * the next one. 223 */ 224 static struct inode_defrag * 225 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 226 { 227 struct inode_defrag *entry = NULL; 228 struct inode_defrag tmp; 229 struct rb_node *p; 230 struct rb_node *parent = NULL; 231 int ret; 232 233 tmp.ino = ino; 234 tmp.root = root; 235 236 spin_lock(&fs_info->defrag_inodes_lock); 237 p = fs_info->defrag_inodes.rb_node; 238 while (p) { 239 parent = p; 240 entry = rb_entry(parent, struct inode_defrag, rb_node); 241 242 ret = __compare_inode_defrag(&tmp, entry); 243 if (ret < 0) 244 p = parent->rb_left; 245 else if (ret > 0) 246 p = parent->rb_right; 247 else 248 goto out; 249 } 250 251 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 252 parent = rb_next(parent); 253 if (parent) 254 entry = rb_entry(parent, struct inode_defrag, rb_node); 255 else 256 entry = NULL; 257 } 258 out: 259 if (entry) 260 rb_erase(parent, &fs_info->defrag_inodes); 261 spin_unlock(&fs_info->defrag_inodes_lock); 262 return entry; 263 } 264 265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 266 { 267 struct inode_defrag *defrag; 268 struct rb_node *node; 269 270 spin_lock(&fs_info->defrag_inodes_lock); 271 node = rb_first(&fs_info->defrag_inodes); 272 while (node) { 273 rb_erase(node, &fs_info->defrag_inodes); 274 defrag = rb_entry(node, struct inode_defrag, rb_node); 275 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 276 277 cond_resched_lock(&fs_info->defrag_inodes_lock); 278 279 node = rb_first(&fs_info->defrag_inodes); 280 } 281 spin_unlock(&fs_info->defrag_inodes_lock); 282 } 283 284 #define BTRFS_DEFRAG_BATCH 1024 285 286 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 287 struct inode_defrag *defrag) 288 { 289 struct btrfs_root *inode_root; 290 struct inode *inode; 291 struct btrfs_key key; 292 struct btrfs_ioctl_defrag_range_args range; 293 int num_defrag; 294 int index; 295 int ret; 296 297 /* get the inode */ 298 key.objectid = defrag->root; 299 key.type = BTRFS_ROOT_ITEM_KEY; 300 key.offset = (u64)-1; 301 302 index = srcu_read_lock(&fs_info->subvol_srcu); 303 304 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 305 if (IS_ERR(inode_root)) { 306 ret = PTR_ERR(inode_root); 307 goto cleanup; 308 } 309 310 key.objectid = defrag->ino; 311 key.type = BTRFS_INODE_ITEM_KEY; 312 key.offset = 0; 313 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 314 if (IS_ERR(inode)) { 315 ret = PTR_ERR(inode); 316 goto cleanup; 317 } 318 srcu_read_unlock(&fs_info->subvol_srcu, index); 319 320 /* do a chunk of defrag */ 321 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 322 memset(&range, 0, sizeof(range)); 323 range.len = (u64)-1; 324 range.start = defrag->last_offset; 325 326 sb_start_write(fs_info->sb); 327 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 328 BTRFS_DEFRAG_BATCH); 329 sb_end_write(fs_info->sb); 330 /* 331 * if we filled the whole defrag batch, there 332 * must be more work to do. Queue this defrag 333 * again 334 */ 335 if (num_defrag == BTRFS_DEFRAG_BATCH) { 336 defrag->last_offset = range.start; 337 btrfs_requeue_inode_defrag(inode, defrag); 338 } else if (defrag->last_offset && !defrag->cycled) { 339 /* 340 * we didn't fill our defrag batch, but 341 * we didn't start at zero. Make sure we loop 342 * around to the start of the file. 343 */ 344 defrag->last_offset = 0; 345 defrag->cycled = 1; 346 btrfs_requeue_inode_defrag(inode, defrag); 347 } else { 348 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 349 } 350 351 iput(inode); 352 return 0; 353 cleanup: 354 srcu_read_unlock(&fs_info->subvol_srcu, index); 355 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 356 return ret; 357 } 358 359 /* 360 * run through the list of inodes in the FS that need 361 * defragging 362 */ 363 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 364 { 365 struct inode_defrag *defrag; 366 u64 first_ino = 0; 367 u64 root_objectid = 0; 368 369 atomic_inc(&fs_info->defrag_running); 370 while (1) { 371 /* Pause the auto defragger. */ 372 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 373 &fs_info->fs_state)) 374 break; 375 376 if (!__need_auto_defrag(fs_info->tree_root)) 377 break; 378 379 /* find an inode to defrag */ 380 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 381 first_ino); 382 if (!defrag) { 383 if (root_objectid || first_ino) { 384 root_objectid = 0; 385 first_ino = 0; 386 continue; 387 } else { 388 break; 389 } 390 } 391 392 first_ino = defrag->ino + 1; 393 root_objectid = defrag->root; 394 395 __btrfs_run_defrag_inode(fs_info, defrag); 396 } 397 atomic_dec(&fs_info->defrag_running); 398 399 /* 400 * during unmount, we use the transaction_wait queue to 401 * wait for the defragger to stop 402 */ 403 wake_up(&fs_info->transaction_wait); 404 return 0; 405 } 406 407 /* simple helper to fault in pages and copy. This should go away 408 * and be replaced with calls into generic code. 409 */ 410 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 411 struct page **prepared_pages, 412 struct iov_iter *i) 413 { 414 size_t copied = 0; 415 size_t total_copied = 0; 416 int pg = 0; 417 int offset = pos & (PAGE_SIZE - 1); 418 419 while (write_bytes > 0) { 420 size_t count = min_t(size_t, 421 PAGE_SIZE - offset, write_bytes); 422 struct page *page = prepared_pages[pg]; 423 /* 424 * Copy data from userspace to the current page 425 */ 426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 427 428 /* Flush processor's dcache for this page */ 429 flush_dcache_page(page); 430 431 /* 432 * if we get a partial write, we can end up with 433 * partially up to date pages. These add 434 * a lot of complexity, so make sure they don't 435 * happen by forcing this copy to be retried. 436 * 437 * The rest of the btrfs_file_write code will fall 438 * back to page at a time copies after we return 0. 439 */ 440 if (!PageUptodate(page) && copied < count) 441 copied = 0; 442 443 iov_iter_advance(i, copied); 444 write_bytes -= copied; 445 total_copied += copied; 446 447 /* Return to btrfs_file_write_iter to fault page */ 448 if (unlikely(copied == 0)) 449 break; 450 451 if (copied < PAGE_SIZE - offset) { 452 offset += copied; 453 } else { 454 pg++; 455 offset = 0; 456 } 457 } 458 return total_copied; 459 } 460 461 /* 462 * unlocks pages after btrfs_file_write is done with them 463 */ 464 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 465 { 466 size_t i; 467 for (i = 0; i < num_pages; i++) { 468 /* page checked is some magic around finding pages that 469 * have been modified without going through btrfs_set_page_dirty 470 * clear it here. There should be no need to mark the pages 471 * accessed as prepare_pages should have marked them accessed 472 * in prepare_pages via find_or_create_page() 473 */ 474 ClearPageChecked(pages[i]); 475 unlock_page(pages[i]); 476 put_page(pages[i]); 477 } 478 } 479 480 /* 481 * after copy_from_user, pages need to be dirtied and we need to make 482 * sure holes are created between the current EOF and the start of 483 * any next extents (if required). 484 * 485 * this also makes the decision about creating an inline extent vs 486 * doing real data extents, marking pages dirty and delalloc as required. 487 */ 488 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, 489 struct page **pages, size_t num_pages, 490 loff_t pos, size_t write_bytes, 491 struct extent_state **cached) 492 { 493 int err = 0; 494 int i; 495 u64 num_bytes; 496 u64 start_pos; 497 u64 end_of_last_block; 498 u64 end_pos = pos + write_bytes; 499 loff_t isize = i_size_read(inode); 500 501 start_pos = pos & ~((u64)root->sectorsize - 1); 502 num_bytes = round_up(write_bytes + pos - start_pos, root->sectorsize); 503 504 end_of_last_block = start_pos + num_bytes - 1; 505 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 506 cached, 0); 507 if (err) 508 return err; 509 510 for (i = 0; i < num_pages; i++) { 511 struct page *p = pages[i]; 512 SetPageUptodate(p); 513 ClearPageChecked(p); 514 set_page_dirty(p); 515 } 516 517 /* 518 * we've only changed i_size in ram, and we haven't updated 519 * the disk i_size. There is no need to log the inode 520 * at this time. 521 */ 522 if (end_pos > isize) 523 i_size_write(inode, end_pos); 524 return 0; 525 } 526 527 /* 528 * this drops all the extents in the cache that intersect the range 529 * [start, end]. Existing extents are split as required. 530 */ 531 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, 532 int skip_pinned) 533 { 534 struct extent_map *em; 535 struct extent_map *split = NULL; 536 struct extent_map *split2 = NULL; 537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 538 u64 len = end - start + 1; 539 u64 gen; 540 int ret; 541 int testend = 1; 542 unsigned long flags; 543 int compressed = 0; 544 bool modified; 545 546 WARN_ON(end < start); 547 if (end == (u64)-1) { 548 len = (u64)-1; 549 testend = 0; 550 } 551 while (1) { 552 int no_splits = 0; 553 554 modified = false; 555 if (!split) 556 split = alloc_extent_map(); 557 if (!split2) 558 split2 = alloc_extent_map(); 559 if (!split || !split2) 560 no_splits = 1; 561 562 write_lock(&em_tree->lock); 563 em = lookup_extent_mapping(em_tree, start, len); 564 if (!em) { 565 write_unlock(&em_tree->lock); 566 break; 567 } 568 flags = em->flags; 569 gen = em->generation; 570 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 571 if (testend && em->start + em->len >= start + len) { 572 free_extent_map(em); 573 write_unlock(&em_tree->lock); 574 break; 575 } 576 start = em->start + em->len; 577 if (testend) 578 len = start + len - (em->start + em->len); 579 free_extent_map(em); 580 write_unlock(&em_tree->lock); 581 continue; 582 } 583 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 584 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 585 clear_bit(EXTENT_FLAG_LOGGING, &flags); 586 modified = !list_empty(&em->list); 587 if (no_splits) 588 goto next; 589 590 if (em->start < start) { 591 split->start = em->start; 592 split->len = start - em->start; 593 594 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 595 split->orig_start = em->orig_start; 596 split->block_start = em->block_start; 597 598 if (compressed) 599 split->block_len = em->block_len; 600 else 601 split->block_len = split->len; 602 split->orig_block_len = max(split->block_len, 603 em->orig_block_len); 604 split->ram_bytes = em->ram_bytes; 605 } else { 606 split->orig_start = split->start; 607 split->block_len = 0; 608 split->block_start = em->block_start; 609 split->orig_block_len = 0; 610 split->ram_bytes = split->len; 611 } 612 613 split->generation = gen; 614 split->bdev = em->bdev; 615 split->flags = flags; 616 split->compress_type = em->compress_type; 617 replace_extent_mapping(em_tree, em, split, modified); 618 free_extent_map(split); 619 split = split2; 620 split2 = NULL; 621 } 622 if (testend && em->start + em->len > start + len) { 623 u64 diff = start + len - em->start; 624 625 split->start = start + len; 626 split->len = em->start + em->len - (start + len); 627 split->bdev = em->bdev; 628 split->flags = flags; 629 split->compress_type = em->compress_type; 630 split->generation = gen; 631 632 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 633 split->orig_block_len = max(em->block_len, 634 em->orig_block_len); 635 636 split->ram_bytes = em->ram_bytes; 637 if (compressed) { 638 split->block_len = em->block_len; 639 split->block_start = em->block_start; 640 split->orig_start = em->orig_start; 641 } else { 642 split->block_len = split->len; 643 split->block_start = em->block_start 644 + diff; 645 split->orig_start = em->orig_start; 646 } 647 } else { 648 split->ram_bytes = split->len; 649 split->orig_start = split->start; 650 split->block_len = 0; 651 split->block_start = em->block_start; 652 split->orig_block_len = 0; 653 } 654 655 if (extent_map_in_tree(em)) { 656 replace_extent_mapping(em_tree, em, split, 657 modified); 658 } else { 659 ret = add_extent_mapping(em_tree, split, 660 modified); 661 ASSERT(ret == 0); /* Logic error */ 662 } 663 free_extent_map(split); 664 split = NULL; 665 } 666 next: 667 if (extent_map_in_tree(em)) 668 remove_extent_mapping(em_tree, em); 669 write_unlock(&em_tree->lock); 670 671 /* once for us */ 672 free_extent_map(em); 673 /* once for the tree*/ 674 free_extent_map(em); 675 } 676 if (split) 677 free_extent_map(split); 678 if (split2) 679 free_extent_map(split2); 680 } 681 682 /* 683 * this is very complex, but the basic idea is to drop all extents 684 * in the range start - end. hint_block is filled in with a block number 685 * that would be a good hint to the block allocator for this file. 686 * 687 * If an extent intersects the range but is not entirely inside the range 688 * it is either truncated or split. Anything entirely inside the range 689 * is deleted from the tree. 690 */ 691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 692 struct btrfs_root *root, struct inode *inode, 693 struct btrfs_path *path, u64 start, u64 end, 694 u64 *drop_end, int drop_cache, 695 int replace_extent, 696 u32 extent_item_size, 697 int *key_inserted) 698 { 699 struct extent_buffer *leaf; 700 struct btrfs_file_extent_item *fi; 701 struct btrfs_key key; 702 struct btrfs_key new_key; 703 u64 ino = btrfs_ino(inode); 704 u64 search_start = start; 705 u64 disk_bytenr = 0; 706 u64 num_bytes = 0; 707 u64 extent_offset = 0; 708 u64 extent_end = 0; 709 int del_nr = 0; 710 int del_slot = 0; 711 int extent_type; 712 int recow; 713 int ret; 714 int modify_tree = -1; 715 int update_refs; 716 int found = 0; 717 int leafs_visited = 0; 718 719 if (drop_cache) 720 btrfs_drop_extent_cache(inode, start, end - 1, 0); 721 722 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 723 modify_tree = 0; 724 725 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 726 root == root->fs_info->tree_root); 727 while (1) { 728 recow = 0; 729 ret = btrfs_lookup_file_extent(trans, root, path, ino, 730 search_start, modify_tree); 731 if (ret < 0) 732 break; 733 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 734 leaf = path->nodes[0]; 735 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 736 if (key.objectid == ino && 737 key.type == BTRFS_EXTENT_DATA_KEY) 738 path->slots[0]--; 739 } 740 ret = 0; 741 leafs_visited++; 742 next_slot: 743 leaf = path->nodes[0]; 744 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 745 BUG_ON(del_nr > 0); 746 ret = btrfs_next_leaf(root, path); 747 if (ret < 0) 748 break; 749 if (ret > 0) { 750 ret = 0; 751 break; 752 } 753 leafs_visited++; 754 leaf = path->nodes[0]; 755 recow = 1; 756 } 757 758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 759 760 if (key.objectid > ino) 761 break; 762 if (WARN_ON_ONCE(key.objectid < ino) || 763 key.type < BTRFS_EXTENT_DATA_KEY) { 764 ASSERT(del_nr == 0); 765 path->slots[0]++; 766 goto next_slot; 767 } 768 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 769 break; 770 771 fi = btrfs_item_ptr(leaf, path->slots[0], 772 struct btrfs_file_extent_item); 773 extent_type = btrfs_file_extent_type(leaf, fi); 774 775 if (extent_type == BTRFS_FILE_EXTENT_REG || 776 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 777 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 778 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 779 extent_offset = btrfs_file_extent_offset(leaf, fi); 780 extent_end = key.offset + 781 btrfs_file_extent_num_bytes(leaf, fi); 782 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 783 extent_end = key.offset + 784 btrfs_file_extent_inline_len(leaf, 785 path->slots[0], fi); 786 } else { 787 /* can't happen */ 788 BUG(); 789 } 790 791 /* 792 * Don't skip extent items representing 0 byte lengths. They 793 * used to be created (bug) if while punching holes we hit 794 * -ENOSPC condition. So if we find one here, just ensure we 795 * delete it, otherwise we would insert a new file extent item 796 * with the same key (offset) as that 0 bytes length file 797 * extent item in the call to setup_items_for_insert() later 798 * in this function. 799 */ 800 if (extent_end == key.offset && extent_end >= search_start) 801 goto delete_extent_item; 802 803 if (extent_end <= search_start) { 804 path->slots[0]++; 805 goto next_slot; 806 } 807 808 found = 1; 809 search_start = max(key.offset, start); 810 if (recow || !modify_tree) { 811 modify_tree = -1; 812 btrfs_release_path(path); 813 continue; 814 } 815 816 /* 817 * | - range to drop - | 818 * | -------- extent -------- | 819 */ 820 if (start > key.offset && end < extent_end) { 821 BUG_ON(del_nr > 0); 822 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 823 ret = -EOPNOTSUPP; 824 break; 825 } 826 827 memcpy(&new_key, &key, sizeof(new_key)); 828 new_key.offset = start; 829 ret = btrfs_duplicate_item(trans, root, path, 830 &new_key); 831 if (ret == -EAGAIN) { 832 btrfs_release_path(path); 833 continue; 834 } 835 if (ret < 0) 836 break; 837 838 leaf = path->nodes[0]; 839 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 840 struct btrfs_file_extent_item); 841 btrfs_set_file_extent_num_bytes(leaf, fi, 842 start - key.offset); 843 844 fi = btrfs_item_ptr(leaf, path->slots[0], 845 struct btrfs_file_extent_item); 846 847 extent_offset += start - key.offset; 848 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 849 btrfs_set_file_extent_num_bytes(leaf, fi, 850 extent_end - start); 851 btrfs_mark_buffer_dirty(leaf); 852 853 if (update_refs && disk_bytenr > 0) { 854 ret = btrfs_inc_extent_ref(trans, root, 855 disk_bytenr, num_bytes, 0, 856 root->root_key.objectid, 857 new_key.objectid, 858 start - extent_offset); 859 BUG_ON(ret); /* -ENOMEM */ 860 } 861 key.offset = start; 862 } 863 /* 864 * | ---- range to drop ----- | 865 * | -------- extent -------- | 866 */ 867 if (start <= key.offset && end < extent_end) { 868 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 869 ret = -EOPNOTSUPP; 870 break; 871 } 872 873 memcpy(&new_key, &key, sizeof(new_key)); 874 new_key.offset = end; 875 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 876 877 extent_offset += end - key.offset; 878 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 879 btrfs_set_file_extent_num_bytes(leaf, fi, 880 extent_end - end); 881 btrfs_mark_buffer_dirty(leaf); 882 if (update_refs && disk_bytenr > 0) 883 inode_sub_bytes(inode, end - key.offset); 884 break; 885 } 886 887 search_start = extent_end; 888 /* 889 * | ---- range to drop ----- | 890 * | -------- extent -------- | 891 */ 892 if (start > key.offset && end >= extent_end) { 893 BUG_ON(del_nr > 0); 894 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 895 ret = -EOPNOTSUPP; 896 break; 897 } 898 899 btrfs_set_file_extent_num_bytes(leaf, fi, 900 start - key.offset); 901 btrfs_mark_buffer_dirty(leaf); 902 if (update_refs && disk_bytenr > 0) 903 inode_sub_bytes(inode, extent_end - start); 904 if (end == extent_end) 905 break; 906 907 path->slots[0]++; 908 goto next_slot; 909 } 910 911 /* 912 * | ---- range to drop ----- | 913 * | ------ extent ------ | 914 */ 915 if (start <= key.offset && end >= extent_end) { 916 delete_extent_item: 917 if (del_nr == 0) { 918 del_slot = path->slots[0]; 919 del_nr = 1; 920 } else { 921 BUG_ON(del_slot + del_nr != path->slots[0]); 922 del_nr++; 923 } 924 925 if (update_refs && 926 extent_type == BTRFS_FILE_EXTENT_INLINE) { 927 inode_sub_bytes(inode, 928 extent_end - key.offset); 929 extent_end = ALIGN(extent_end, 930 root->sectorsize); 931 } else if (update_refs && disk_bytenr > 0) { 932 ret = btrfs_free_extent(trans, root, 933 disk_bytenr, num_bytes, 0, 934 root->root_key.objectid, 935 key.objectid, key.offset - 936 extent_offset); 937 BUG_ON(ret); /* -ENOMEM */ 938 inode_sub_bytes(inode, 939 extent_end - key.offset); 940 } 941 942 if (end == extent_end) 943 break; 944 945 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 946 path->slots[0]++; 947 goto next_slot; 948 } 949 950 ret = btrfs_del_items(trans, root, path, del_slot, 951 del_nr); 952 if (ret) { 953 btrfs_abort_transaction(trans, ret); 954 break; 955 } 956 957 del_nr = 0; 958 del_slot = 0; 959 960 btrfs_release_path(path); 961 continue; 962 } 963 964 BUG_ON(1); 965 } 966 967 if (!ret && del_nr > 0) { 968 /* 969 * Set path->slots[0] to first slot, so that after the delete 970 * if items are move off from our leaf to its immediate left or 971 * right neighbor leafs, we end up with a correct and adjusted 972 * path->slots[0] for our insertion (if replace_extent != 0). 973 */ 974 path->slots[0] = del_slot; 975 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 976 if (ret) 977 btrfs_abort_transaction(trans, ret); 978 } 979 980 leaf = path->nodes[0]; 981 /* 982 * If btrfs_del_items() was called, it might have deleted a leaf, in 983 * which case it unlocked our path, so check path->locks[0] matches a 984 * write lock. 985 */ 986 if (!ret && replace_extent && leafs_visited == 1 && 987 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 988 path->locks[0] == BTRFS_WRITE_LOCK) && 989 btrfs_leaf_free_space(root, leaf) >= 990 sizeof(struct btrfs_item) + extent_item_size) { 991 992 key.objectid = ino; 993 key.type = BTRFS_EXTENT_DATA_KEY; 994 key.offset = start; 995 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 996 struct btrfs_key slot_key; 997 998 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 999 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1000 path->slots[0]++; 1001 } 1002 setup_items_for_insert(root, path, &key, 1003 &extent_item_size, 1004 extent_item_size, 1005 sizeof(struct btrfs_item) + 1006 extent_item_size, 1); 1007 *key_inserted = 1; 1008 } 1009 1010 if (!replace_extent || !(*key_inserted)) 1011 btrfs_release_path(path); 1012 if (drop_end) 1013 *drop_end = found ? min(end, extent_end) : end; 1014 return ret; 1015 } 1016 1017 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1018 struct btrfs_root *root, struct inode *inode, u64 start, 1019 u64 end, int drop_cache) 1020 { 1021 struct btrfs_path *path; 1022 int ret; 1023 1024 path = btrfs_alloc_path(); 1025 if (!path) 1026 return -ENOMEM; 1027 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1028 drop_cache, 0, 0, NULL); 1029 btrfs_free_path(path); 1030 return ret; 1031 } 1032 1033 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1034 u64 objectid, u64 bytenr, u64 orig_offset, 1035 u64 *start, u64 *end) 1036 { 1037 struct btrfs_file_extent_item *fi; 1038 struct btrfs_key key; 1039 u64 extent_end; 1040 1041 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1042 return 0; 1043 1044 btrfs_item_key_to_cpu(leaf, &key, slot); 1045 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1046 return 0; 1047 1048 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1049 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1050 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1051 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1052 btrfs_file_extent_compression(leaf, fi) || 1053 btrfs_file_extent_encryption(leaf, fi) || 1054 btrfs_file_extent_other_encoding(leaf, fi)) 1055 return 0; 1056 1057 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1058 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1059 return 0; 1060 1061 *start = key.offset; 1062 *end = extent_end; 1063 return 1; 1064 } 1065 1066 /* 1067 * Mark extent in the range start - end as written. 1068 * 1069 * This changes extent type from 'pre-allocated' to 'regular'. If only 1070 * part of extent is marked as written, the extent will be split into 1071 * two or three. 1072 */ 1073 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1074 struct inode *inode, u64 start, u64 end) 1075 { 1076 struct btrfs_root *root = BTRFS_I(inode)->root; 1077 struct extent_buffer *leaf; 1078 struct btrfs_path *path; 1079 struct btrfs_file_extent_item *fi; 1080 struct btrfs_key key; 1081 struct btrfs_key new_key; 1082 u64 bytenr; 1083 u64 num_bytes; 1084 u64 extent_end; 1085 u64 orig_offset; 1086 u64 other_start; 1087 u64 other_end; 1088 u64 split; 1089 int del_nr = 0; 1090 int del_slot = 0; 1091 int recow; 1092 int ret; 1093 u64 ino = btrfs_ino(inode); 1094 1095 path = btrfs_alloc_path(); 1096 if (!path) 1097 return -ENOMEM; 1098 again: 1099 recow = 0; 1100 split = start; 1101 key.objectid = ino; 1102 key.type = BTRFS_EXTENT_DATA_KEY; 1103 key.offset = split; 1104 1105 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1106 if (ret < 0) 1107 goto out; 1108 if (ret > 0 && path->slots[0] > 0) 1109 path->slots[0]--; 1110 1111 leaf = path->nodes[0]; 1112 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1113 if (key.objectid != ino || 1114 key.type != BTRFS_EXTENT_DATA_KEY) { 1115 ret = -EINVAL; 1116 btrfs_abort_transaction(trans, ret); 1117 goto out; 1118 } 1119 fi = btrfs_item_ptr(leaf, path->slots[0], 1120 struct btrfs_file_extent_item); 1121 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1122 ret = -EINVAL; 1123 btrfs_abort_transaction(trans, ret); 1124 goto out; 1125 } 1126 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1127 if (key.offset > start || extent_end < end) { 1128 ret = -EINVAL; 1129 btrfs_abort_transaction(trans, ret); 1130 goto out; 1131 } 1132 1133 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1134 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1135 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1136 memcpy(&new_key, &key, sizeof(new_key)); 1137 1138 if (start == key.offset && end < extent_end) { 1139 other_start = 0; 1140 other_end = start; 1141 if (extent_mergeable(leaf, path->slots[0] - 1, 1142 ino, bytenr, orig_offset, 1143 &other_start, &other_end)) { 1144 new_key.offset = end; 1145 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 1146 fi = btrfs_item_ptr(leaf, path->slots[0], 1147 struct btrfs_file_extent_item); 1148 btrfs_set_file_extent_generation(leaf, fi, 1149 trans->transid); 1150 btrfs_set_file_extent_num_bytes(leaf, fi, 1151 extent_end - end); 1152 btrfs_set_file_extent_offset(leaf, fi, 1153 end - orig_offset); 1154 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1155 struct btrfs_file_extent_item); 1156 btrfs_set_file_extent_generation(leaf, fi, 1157 trans->transid); 1158 btrfs_set_file_extent_num_bytes(leaf, fi, 1159 end - other_start); 1160 btrfs_mark_buffer_dirty(leaf); 1161 goto out; 1162 } 1163 } 1164 1165 if (start > key.offset && end == extent_end) { 1166 other_start = end; 1167 other_end = 0; 1168 if (extent_mergeable(leaf, path->slots[0] + 1, 1169 ino, bytenr, orig_offset, 1170 &other_start, &other_end)) { 1171 fi = btrfs_item_ptr(leaf, path->slots[0], 1172 struct btrfs_file_extent_item); 1173 btrfs_set_file_extent_num_bytes(leaf, fi, 1174 start - key.offset); 1175 btrfs_set_file_extent_generation(leaf, fi, 1176 trans->transid); 1177 path->slots[0]++; 1178 new_key.offset = start; 1179 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 1180 1181 fi = btrfs_item_ptr(leaf, path->slots[0], 1182 struct btrfs_file_extent_item); 1183 btrfs_set_file_extent_generation(leaf, fi, 1184 trans->transid); 1185 btrfs_set_file_extent_num_bytes(leaf, fi, 1186 other_end - start); 1187 btrfs_set_file_extent_offset(leaf, fi, 1188 start - orig_offset); 1189 btrfs_mark_buffer_dirty(leaf); 1190 goto out; 1191 } 1192 } 1193 1194 while (start > key.offset || end < extent_end) { 1195 if (key.offset == start) 1196 split = end; 1197 1198 new_key.offset = split; 1199 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1200 if (ret == -EAGAIN) { 1201 btrfs_release_path(path); 1202 goto again; 1203 } 1204 if (ret < 0) { 1205 btrfs_abort_transaction(trans, ret); 1206 goto out; 1207 } 1208 1209 leaf = path->nodes[0]; 1210 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1211 struct btrfs_file_extent_item); 1212 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1213 btrfs_set_file_extent_num_bytes(leaf, fi, 1214 split - key.offset); 1215 1216 fi = btrfs_item_ptr(leaf, path->slots[0], 1217 struct btrfs_file_extent_item); 1218 1219 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1220 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1221 btrfs_set_file_extent_num_bytes(leaf, fi, 1222 extent_end - split); 1223 btrfs_mark_buffer_dirty(leaf); 1224 1225 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, 1226 root->root_key.objectid, 1227 ino, orig_offset); 1228 if (ret) { 1229 btrfs_abort_transaction(trans, ret); 1230 goto out; 1231 } 1232 1233 if (split == start) { 1234 key.offset = start; 1235 } else { 1236 if (start != key.offset) { 1237 ret = -EINVAL; 1238 btrfs_abort_transaction(trans, ret); 1239 goto out; 1240 } 1241 path->slots[0]--; 1242 extent_end = end; 1243 } 1244 recow = 1; 1245 } 1246 1247 other_start = end; 1248 other_end = 0; 1249 if (extent_mergeable(leaf, path->slots[0] + 1, 1250 ino, bytenr, orig_offset, 1251 &other_start, &other_end)) { 1252 if (recow) { 1253 btrfs_release_path(path); 1254 goto again; 1255 } 1256 extent_end = other_end; 1257 del_slot = path->slots[0] + 1; 1258 del_nr++; 1259 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1260 0, root->root_key.objectid, 1261 ino, orig_offset); 1262 if (ret) { 1263 btrfs_abort_transaction(trans, ret); 1264 goto out; 1265 } 1266 } 1267 other_start = 0; 1268 other_end = start; 1269 if (extent_mergeable(leaf, path->slots[0] - 1, 1270 ino, bytenr, orig_offset, 1271 &other_start, &other_end)) { 1272 if (recow) { 1273 btrfs_release_path(path); 1274 goto again; 1275 } 1276 key.offset = other_start; 1277 del_slot = path->slots[0]; 1278 del_nr++; 1279 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1280 0, root->root_key.objectid, 1281 ino, orig_offset); 1282 if (ret) { 1283 btrfs_abort_transaction(trans, ret); 1284 goto out; 1285 } 1286 } 1287 if (del_nr == 0) { 1288 fi = btrfs_item_ptr(leaf, path->slots[0], 1289 struct btrfs_file_extent_item); 1290 btrfs_set_file_extent_type(leaf, fi, 1291 BTRFS_FILE_EXTENT_REG); 1292 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1293 btrfs_mark_buffer_dirty(leaf); 1294 } else { 1295 fi = btrfs_item_ptr(leaf, del_slot - 1, 1296 struct btrfs_file_extent_item); 1297 btrfs_set_file_extent_type(leaf, fi, 1298 BTRFS_FILE_EXTENT_REG); 1299 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1300 btrfs_set_file_extent_num_bytes(leaf, fi, 1301 extent_end - key.offset); 1302 btrfs_mark_buffer_dirty(leaf); 1303 1304 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1305 if (ret < 0) { 1306 btrfs_abort_transaction(trans, ret); 1307 goto out; 1308 } 1309 } 1310 out: 1311 btrfs_free_path(path); 1312 return 0; 1313 } 1314 1315 /* 1316 * on error we return an unlocked page and the error value 1317 * on success we return a locked page and 0 1318 */ 1319 static int prepare_uptodate_page(struct inode *inode, 1320 struct page *page, u64 pos, 1321 bool force_uptodate) 1322 { 1323 int ret = 0; 1324 1325 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1326 !PageUptodate(page)) { 1327 ret = btrfs_readpage(NULL, page); 1328 if (ret) 1329 return ret; 1330 lock_page(page); 1331 if (!PageUptodate(page)) { 1332 unlock_page(page); 1333 return -EIO; 1334 } 1335 if (page->mapping != inode->i_mapping) { 1336 unlock_page(page); 1337 return -EAGAIN; 1338 } 1339 } 1340 return 0; 1341 } 1342 1343 /* 1344 * this just gets pages into the page cache and locks them down. 1345 */ 1346 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1347 size_t num_pages, loff_t pos, 1348 size_t write_bytes, bool force_uptodate) 1349 { 1350 int i; 1351 unsigned long index = pos >> PAGE_SHIFT; 1352 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1353 int err = 0; 1354 int faili; 1355 1356 for (i = 0; i < num_pages; i++) { 1357 again: 1358 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1359 mask | __GFP_WRITE); 1360 if (!pages[i]) { 1361 faili = i - 1; 1362 err = -ENOMEM; 1363 goto fail; 1364 } 1365 1366 if (i == 0) 1367 err = prepare_uptodate_page(inode, pages[i], pos, 1368 force_uptodate); 1369 if (!err && i == num_pages - 1) 1370 err = prepare_uptodate_page(inode, pages[i], 1371 pos + write_bytes, false); 1372 if (err) { 1373 put_page(pages[i]); 1374 if (err == -EAGAIN) { 1375 err = 0; 1376 goto again; 1377 } 1378 faili = i - 1; 1379 goto fail; 1380 } 1381 wait_on_page_writeback(pages[i]); 1382 } 1383 1384 return 0; 1385 fail: 1386 while (faili >= 0) { 1387 unlock_page(pages[faili]); 1388 put_page(pages[faili]); 1389 faili--; 1390 } 1391 return err; 1392 1393 } 1394 1395 /* 1396 * This function locks the extent and properly waits for data=ordered extents 1397 * to finish before allowing the pages to be modified if need. 1398 * 1399 * The return value: 1400 * 1 - the extent is locked 1401 * 0 - the extent is not locked, and everything is OK 1402 * -EAGAIN - need re-prepare the pages 1403 * the other < 0 number - Something wrong happens 1404 */ 1405 static noinline int 1406 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages, 1407 size_t num_pages, loff_t pos, 1408 size_t write_bytes, 1409 u64 *lockstart, u64 *lockend, 1410 struct extent_state **cached_state) 1411 { 1412 struct btrfs_root *root = BTRFS_I(inode)->root; 1413 u64 start_pos; 1414 u64 last_pos; 1415 int i; 1416 int ret = 0; 1417 1418 start_pos = round_down(pos, root->sectorsize); 1419 last_pos = start_pos 1420 + round_up(pos + write_bytes - start_pos, root->sectorsize) - 1; 1421 1422 if (start_pos < inode->i_size) { 1423 struct btrfs_ordered_extent *ordered; 1424 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1425 start_pos, last_pos, cached_state); 1426 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1427 last_pos - start_pos + 1); 1428 if (ordered && 1429 ordered->file_offset + ordered->len > start_pos && 1430 ordered->file_offset <= last_pos) { 1431 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1432 start_pos, last_pos, 1433 cached_state, GFP_NOFS); 1434 for (i = 0; i < num_pages; i++) { 1435 unlock_page(pages[i]); 1436 put_page(pages[i]); 1437 } 1438 btrfs_start_ordered_extent(inode, ordered, 1); 1439 btrfs_put_ordered_extent(ordered); 1440 return -EAGAIN; 1441 } 1442 if (ordered) 1443 btrfs_put_ordered_extent(ordered); 1444 1445 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, 1446 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC | 1447 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1448 0, 0, cached_state, GFP_NOFS); 1449 *lockstart = start_pos; 1450 *lockend = last_pos; 1451 ret = 1; 1452 } 1453 1454 for (i = 0; i < num_pages; i++) { 1455 if (clear_page_dirty_for_io(pages[i])) 1456 account_page_redirty(pages[i]); 1457 set_page_extent_mapped(pages[i]); 1458 WARN_ON(!PageLocked(pages[i])); 1459 } 1460 1461 return ret; 1462 } 1463 1464 static noinline int check_can_nocow(struct inode *inode, loff_t pos, 1465 size_t *write_bytes) 1466 { 1467 struct btrfs_root *root = BTRFS_I(inode)->root; 1468 struct btrfs_ordered_extent *ordered; 1469 u64 lockstart, lockend; 1470 u64 num_bytes; 1471 int ret; 1472 1473 ret = btrfs_start_write_no_snapshoting(root); 1474 if (!ret) 1475 return -ENOSPC; 1476 1477 lockstart = round_down(pos, root->sectorsize); 1478 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1; 1479 1480 while (1) { 1481 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1482 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1483 lockend - lockstart + 1); 1484 if (!ordered) { 1485 break; 1486 } 1487 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1488 btrfs_start_ordered_extent(inode, ordered, 1); 1489 btrfs_put_ordered_extent(ordered); 1490 } 1491 1492 num_bytes = lockend - lockstart + 1; 1493 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL); 1494 if (ret <= 0) { 1495 ret = 0; 1496 btrfs_end_write_no_snapshoting(root); 1497 } else { 1498 *write_bytes = min_t(size_t, *write_bytes , 1499 num_bytes - pos + lockstart); 1500 } 1501 1502 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1503 1504 return ret; 1505 } 1506 1507 static noinline ssize_t __btrfs_buffered_write(struct file *file, 1508 struct iov_iter *i, 1509 loff_t pos) 1510 { 1511 struct inode *inode = file_inode(file); 1512 struct btrfs_root *root = BTRFS_I(inode)->root; 1513 struct page **pages = NULL; 1514 struct extent_state *cached_state = NULL; 1515 u64 release_bytes = 0; 1516 u64 lockstart; 1517 u64 lockend; 1518 size_t num_written = 0; 1519 int nrptrs; 1520 int ret = 0; 1521 bool only_release_metadata = false; 1522 bool force_page_uptodate = false; 1523 bool need_unlock; 1524 1525 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1526 PAGE_SIZE / (sizeof(struct page *))); 1527 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1528 nrptrs = max(nrptrs, 8); 1529 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1530 if (!pages) 1531 return -ENOMEM; 1532 1533 while (iov_iter_count(i) > 0) { 1534 size_t offset = pos & (PAGE_SIZE - 1); 1535 size_t sector_offset; 1536 size_t write_bytes = min(iov_iter_count(i), 1537 nrptrs * (size_t)PAGE_SIZE - 1538 offset); 1539 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1540 PAGE_SIZE); 1541 size_t reserve_bytes; 1542 size_t dirty_pages; 1543 size_t copied; 1544 size_t dirty_sectors; 1545 size_t num_sectors; 1546 1547 WARN_ON(num_pages > nrptrs); 1548 1549 /* 1550 * Fault pages before locking them in prepare_pages 1551 * to avoid recursive lock 1552 */ 1553 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1554 ret = -EFAULT; 1555 break; 1556 } 1557 1558 sector_offset = pos & (root->sectorsize - 1); 1559 reserve_bytes = round_up(write_bytes + sector_offset, 1560 root->sectorsize); 1561 1562 ret = btrfs_check_data_free_space(inode, pos, write_bytes); 1563 if (ret < 0) { 1564 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1565 BTRFS_INODE_PREALLOC)) && 1566 check_can_nocow(inode, pos, &write_bytes) > 0) { 1567 /* 1568 * For nodata cow case, no need to reserve 1569 * data space. 1570 */ 1571 only_release_metadata = true; 1572 /* 1573 * our prealloc extent may be smaller than 1574 * write_bytes, so scale down. 1575 */ 1576 num_pages = DIV_ROUND_UP(write_bytes + offset, 1577 PAGE_SIZE); 1578 reserve_bytes = round_up(write_bytes + 1579 sector_offset, 1580 root->sectorsize); 1581 } else { 1582 break; 1583 } 1584 } 1585 1586 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes); 1587 if (ret) { 1588 if (!only_release_metadata) 1589 btrfs_free_reserved_data_space(inode, pos, 1590 write_bytes); 1591 else 1592 btrfs_end_write_no_snapshoting(root); 1593 break; 1594 } 1595 1596 release_bytes = reserve_bytes; 1597 need_unlock = false; 1598 again: 1599 /* 1600 * This is going to setup the pages array with the number of 1601 * pages we want, so we don't really need to worry about the 1602 * contents of pages from loop to loop 1603 */ 1604 ret = prepare_pages(inode, pages, num_pages, 1605 pos, write_bytes, 1606 force_page_uptodate); 1607 if (ret) 1608 break; 1609 1610 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages, 1611 pos, write_bytes, &lockstart, 1612 &lockend, &cached_state); 1613 if (ret < 0) { 1614 if (ret == -EAGAIN) 1615 goto again; 1616 break; 1617 } else if (ret > 0) { 1618 need_unlock = true; 1619 ret = 0; 1620 } 1621 1622 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1623 1624 num_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, 1625 reserve_bytes); 1626 dirty_sectors = round_up(copied + sector_offset, 1627 root->sectorsize); 1628 dirty_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, 1629 dirty_sectors); 1630 1631 /* 1632 * if we have trouble faulting in the pages, fall 1633 * back to one page at a time 1634 */ 1635 if (copied < write_bytes) 1636 nrptrs = 1; 1637 1638 if (copied == 0) { 1639 force_page_uptodate = true; 1640 dirty_sectors = 0; 1641 dirty_pages = 0; 1642 } else { 1643 force_page_uptodate = false; 1644 dirty_pages = DIV_ROUND_UP(copied + offset, 1645 PAGE_SIZE); 1646 } 1647 1648 /* 1649 * If we had a short copy we need to release the excess delaloc 1650 * bytes we reserved. We need to increment outstanding_extents 1651 * because btrfs_delalloc_release_space and 1652 * btrfs_delalloc_release_metadata will decrement it, but 1653 * we still have an outstanding extent for the chunk we actually 1654 * managed to copy. 1655 */ 1656 if (num_sectors > dirty_sectors) { 1657 1658 /* release everything except the sectors we dirtied */ 1659 release_bytes -= dirty_sectors << 1660 root->fs_info->sb->s_blocksize_bits; 1661 1662 if (copied > 0) { 1663 spin_lock(&BTRFS_I(inode)->lock); 1664 BTRFS_I(inode)->outstanding_extents++; 1665 spin_unlock(&BTRFS_I(inode)->lock); 1666 } 1667 if (only_release_metadata) { 1668 btrfs_delalloc_release_metadata(inode, 1669 release_bytes); 1670 } else { 1671 u64 __pos; 1672 1673 __pos = round_down(pos, root->sectorsize) + 1674 (dirty_pages << PAGE_SHIFT); 1675 btrfs_delalloc_release_space(inode, __pos, 1676 release_bytes); 1677 } 1678 } 1679 1680 release_bytes = round_up(copied + sector_offset, 1681 root->sectorsize); 1682 1683 if (copied > 0) 1684 ret = btrfs_dirty_pages(root, inode, pages, 1685 dirty_pages, pos, copied, 1686 NULL); 1687 if (need_unlock) 1688 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1689 lockstart, lockend, &cached_state, 1690 GFP_NOFS); 1691 if (ret) { 1692 btrfs_drop_pages(pages, num_pages); 1693 break; 1694 } 1695 1696 release_bytes = 0; 1697 if (only_release_metadata) 1698 btrfs_end_write_no_snapshoting(root); 1699 1700 if (only_release_metadata && copied > 0) { 1701 lockstart = round_down(pos, root->sectorsize); 1702 lockend = round_up(pos + copied, root->sectorsize) - 1; 1703 1704 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1705 lockend, EXTENT_NORESERVE, NULL, 1706 NULL, GFP_NOFS); 1707 only_release_metadata = false; 1708 } 1709 1710 btrfs_drop_pages(pages, num_pages); 1711 1712 cond_resched(); 1713 1714 balance_dirty_pages_ratelimited(inode->i_mapping); 1715 if (dirty_pages < (root->nodesize >> PAGE_SHIFT) + 1) 1716 btrfs_btree_balance_dirty(root); 1717 1718 pos += copied; 1719 num_written += copied; 1720 } 1721 1722 kfree(pages); 1723 1724 if (release_bytes) { 1725 if (only_release_metadata) { 1726 btrfs_end_write_no_snapshoting(root); 1727 btrfs_delalloc_release_metadata(inode, release_bytes); 1728 } else { 1729 btrfs_delalloc_release_space(inode, 1730 round_down(pos, root->sectorsize), 1731 release_bytes); 1732 } 1733 } 1734 1735 return num_written ? num_written : ret; 1736 } 1737 1738 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1739 { 1740 struct file *file = iocb->ki_filp; 1741 struct inode *inode = file_inode(file); 1742 loff_t pos = iocb->ki_pos; 1743 ssize_t written; 1744 ssize_t written_buffered; 1745 loff_t endbyte; 1746 int err; 1747 1748 written = generic_file_direct_write(iocb, from); 1749 1750 if (written < 0 || !iov_iter_count(from)) 1751 return written; 1752 1753 pos += written; 1754 written_buffered = __btrfs_buffered_write(file, from, pos); 1755 if (written_buffered < 0) { 1756 err = written_buffered; 1757 goto out; 1758 } 1759 /* 1760 * Ensure all data is persisted. We want the next direct IO read to be 1761 * able to read what was just written. 1762 */ 1763 endbyte = pos + written_buffered - 1; 1764 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1765 if (err) 1766 goto out; 1767 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1768 if (err) 1769 goto out; 1770 written += written_buffered; 1771 iocb->ki_pos = pos + written_buffered; 1772 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1773 endbyte >> PAGE_SHIFT); 1774 out: 1775 return written ? written : err; 1776 } 1777 1778 static void update_time_for_write(struct inode *inode) 1779 { 1780 struct timespec now; 1781 1782 if (IS_NOCMTIME(inode)) 1783 return; 1784 1785 now = current_time(inode); 1786 if (!timespec_equal(&inode->i_mtime, &now)) 1787 inode->i_mtime = now; 1788 1789 if (!timespec_equal(&inode->i_ctime, &now)) 1790 inode->i_ctime = now; 1791 1792 if (IS_I_VERSION(inode)) 1793 inode_inc_iversion(inode); 1794 } 1795 1796 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1797 struct iov_iter *from) 1798 { 1799 struct file *file = iocb->ki_filp; 1800 struct inode *inode = file_inode(file); 1801 struct btrfs_root *root = BTRFS_I(inode)->root; 1802 u64 start_pos; 1803 u64 end_pos; 1804 ssize_t num_written = 0; 1805 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1806 ssize_t err; 1807 loff_t pos; 1808 size_t count; 1809 loff_t oldsize; 1810 int clean_page = 0; 1811 1812 inode_lock(inode); 1813 err = generic_write_checks(iocb, from); 1814 if (err <= 0) { 1815 inode_unlock(inode); 1816 return err; 1817 } 1818 1819 current->backing_dev_info = inode_to_bdi(inode); 1820 err = file_remove_privs(file); 1821 if (err) { 1822 inode_unlock(inode); 1823 goto out; 1824 } 1825 1826 /* 1827 * If BTRFS flips readonly due to some impossible error 1828 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1829 * although we have opened a file as writable, we have 1830 * to stop this write operation to ensure FS consistency. 1831 */ 1832 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1833 inode_unlock(inode); 1834 err = -EROFS; 1835 goto out; 1836 } 1837 1838 /* 1839 * We reserve space for updating the inode when we reserve space for the 1840 * extent we are going to write, so we will enospc out there. We don't 1841 * need to start yet another transaction to update the inode as we will 1842 * update the inode when we finish writing whatever data we write. 1843 */ 1844 update_time_for_write(inode); 1845 1846 pos = iocb->ki_pos; 1847 count = iov_iter_count(from); 1848 start_pos = round_down(pos, root->sectorsize); 1849 oldsize = i_size_read(inode); 1850 if (start_pos > oldsize) { 1851 /* Expand hole size to cover write data, preventing empty gap */ 1852 end_pos = round_up(pos + count, root->sectorsize); 1853 err = btrfs_cont_expand(inode, oldsize, end_pos); 1854 if (err) { 1855 inode_unlock(inode); 1856 goto out; 1857 } 1858 if (start_pos > round_up(oldsize, root->sectorsize)) 1859 clean_page = 1; 1860 } 1861 1862 if (sync) 1863 atomic_inc(&BTRFS_I(inode)->sync_writers); 1864 1865 if (iocb->ki_flags & IOCB_DIRECT) { 1866 num_written = __btrfs_direct_write(iocb, from); 1867 } else { 1868 num_written = __btrfs_buffered_write(file, from, pos); 1869 if (num_written > 0) 1870 iocb->ki_pos = pos + num_written; 1871 if (clean_page) 1872 pagecache_isize_extended(inode, oldsize, 1873 i_size_read(inode)); 1874 } 1875 1876 inode_unlock(inode); 1877 1878 /* 1879 * We also have to set last_sub_trans to the current log transid, 1880 * otherwise subsequent syncs to a file that's been synced in this 1881 * transaction will appear to have already occurred. 1882 */ 1883 spin_lock(&BTRFS_I(inode)->lock); 1884 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1885 spin_unlock(&BTRFS_I(inode)->lock); 1886 if (num_written > 0) 1887 num_written = generic_write_sync(iocb, num_written); 1888 1889 if (sync) 1890 atomic_dec(&BTRFS_I(inode)->sync_writers); 1891 out: 1892 current->backing_dev_info = NULL; 1893 return num_written ? num_written : err; 1894 } 1895 1896 int btrfs_release_file(struct inode *inode, struct file *filp) 1897 { 1898 if (filp->private_data) 1899 btrfs_ioctl_trans_end(filp); 1900 /* 1901 * ordered_data_close is set by settattr when we are about to truncate 1902 * a file from a non-zero size to a zero size. This tries to 1903 * flush down new bytes that may have been written if the 1904 * application were using truncate to replace a file in place. 1905 */ 1906 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 1907 &BTRFS_I(inode)->runtime_flags)) 1908 filemap_flush(inode->i_mapping); 1909 return 0; 1910 } 1911 1912 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 1913 { 1914 int ret; 1915 1916 atomic_inc(&BTRFS_I(inode)->sync_writers); 1917 ret = btrfs_fdatawrite_range(inode, start, end); 1918 atomic_dec(&BTRFS_I(inode)->sync_writers); 1919 1920 return ret; 1921 } 1922 1923 /* 1924 * fsync call for both files and directories. This logs the inode into 1925 * the tree log instead of forcing full commits whenever possible. 1926 * 1927 * It needs to call filemap_fdatawait so that all ordered extent updates are 1928 * in the metadata btree are up to date for copying to the log. 1929 * 1930 * It drops the inode mutex before doing the tree log commit. This is an 1931 * important optimization for directories because holding the mutex prevents 1932 * new operations on the dir while we write to disk. 1933 */ 1934 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1935 { 1936 struct dentry *dentry = file_dentry(file); 1937 struct inode *inode = d_inode(dentry); 1938 struct btrfs_root *root = BTRFS_I(inode)->root; 1939 struct btrfs_trans_handle *trans; 1940 struct btrfs_log_ctx ctx; 1941 int ret = 0; 1942 bool full_sync = 0; 1943 u64 len; 1944 1945 /* 1946 * The range length can be represented by u64, we have to do the typecasts 1947 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync() 1948 */ 1949 len = (u64)end - (u64)start + 1; 1950 trace_btrfs_sync_file(file, datasync); 1951 1952 /* 1953 * We write the dirty pages in the range and wait until they complete 1954 * out of the ->i_mutex. If so, we can flush the dirty pages by 1955 * multi-task, and make the performance up. See 1956 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1957 */ 1958 ret = start_ordered_ops(inode, start, end); 1959 if (ret) 1960 return ret; 1961 1962 inode_lock(inode); 1963 atomic_inc(&root->log_batch); 1964 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1965 &BTRFS_I(inode)->runtime_flags); 1966 /* 1967 * We might have have had more pages made dirty after calling 1968 * start_ordered_ops and before acquiring the inode's i_mutex. 1969 */ 1970 if (full_sync) { 1971 /* 1972 * For a full sync, we need to make sure any ordered operations 1973 * start and finish before we start logging the inode, so that 1974 * all extents are persisted and the respective file extent 1975 * items are in the fs/subvol btree. 1976 */ 1977 ret = btrfs_wait_ordered_range(inode, start, len); 1978 } else { 1979 /* 1980 * Start any new ordered operations before starting to log the 1981 * inode. We will wait for them to finish in btrfs_sync_log(). 1982 * 1983 * Right before acquiring the inode's mutex, we might have new 1984 * writes dirtying pages, which won't immediately start the 1985 * respective ordered operations - that is done through the 1986 * fill_delalloc callbacks invoked from the writepage and 1987 * writepages address space operations. So make sure we start 1988 * all ordered operations before starting to log our inode. Not 1989 * doing this means that while logging the inode, writeback 1990 * could start and invoke writepage/writepages, which would call 1991 * the fill_delalloc callbacks (cow_file_range, 1992 * submit_compressed_extents). These callbacks add first an 1993 * extent map to the modified list of extents and then create 1994 * the respective ordered operation, which means in 1995 * tree-log.c:btrfs_log_inode() we might capture all existing 1996 * ordered operations (with btrfs_get_logged_extents()) before 1997 * the fill_delalloc callback adds its ordered operation, and by 1998 * the time we visit the modified list of extent maps (with 1999 * btrfs_log_changed_extents()), we see and process the extent 2000 * map they created. We then use the extent map to construct a 2001 * file extent item for logging without waiting for the 2002 * respective ordered operation to finish - this file extent 2003 * item points to a disk location that might not have yet been 2004 * written to, containing random data - so after a crash a log 2005 * replay will make our inode have file extent items that point 2006 * to disk locations containing invalid data, as we returned 2007 * success to userspace without waiting for the respective 2008 * ordered operation to finish, because it wasn't captured by 2009 * btrfs_get_logged_extents(). 2010 */ 2011 ret = start_ordered_ops(inode, start, end); 2012 } 2013 if (ret) { 2014 inode_unlock(inode); 2015 goto out; 2016 } 2017 atomic_inc(&root->log_batch); 2018 2019 /* 2020 * If the last transaction that changed this file was before the current 2021 * transaction and we have the full sync flag set in our inode, we can 2022 * bail out now without any syncing. 2023 * 2024 * Note that we can't bail out if the full sync flag isn't set. This is 2025 * because when the full sync flag is set we start all ordered extents 2026 * and wait for them to fully complete - when they complete they update 2027 * the inode's last_trans field through: 2028 * 2029 * btrfs_finish_ordered_io() -> 2030 * btrfs_update_inode_fallback() -> 2031 * btrfs_update_inode() -> 2032 * btrfs_set_inode_last_trans() 2033 * 2034 * So we are sure that last_trans is up to date and can do this check to 2035 * bail out safely. For the fast path, when the full sync flag is not 2036 * set in our inode, we can not do it because we start only our ordered 2037 * extents and don't wait for them to complete (that is when 2038 * btrfs_finish_ordered_io runs), so here at this point their last_trans 2039 * value might be less than or equals to fs_info->last_trans_committed, 2040 * and setting a speculative last_trans for an inode when a buffered 2041 * write is made (such as fs_info->generation + 1 for example) would not 2042 * be reliable since after setting the value and before fsync is called 2043 * any number of transactions can start and commit (transaction kthread 2044 * commits the current transaction periodically), and a transaction 2045 * commit does not start nor waits for ordered extents to complete. 2046 */ 2047 smp_mb(); 2048 if (btrfs_inode_in_log(inode, root->fs_info->generation) || 2049 (full_sync && BTRFS_I(inode)->last_trans <= 2050 root->fs_info->last_trans_committed) || 2051 (!btrfs_have_ordered_extents_in_range(inode, start, len) && 2052 BTRFS_I(inode)->last_trans 2053 <= root->fs_info->last_trans_committed)) { 2054 /* 2055 * We've had everything committed since the last time we were 2056 * modified so clear this flag in case it was set for whatever 2057 * reason, it's no longer relevant. 2058 */ 2059 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2060 &BTRFS_I(inode)->runtime_flags); 2061 /* 2062 * An ordered extent might have started before and completed 2063 * already with io errors, in which case the inode was not 2064 * updated and we end up here. So check the inode's mapping 2065 * flags for any errors that might have happened while doing 2066 * writeback of file data. 2067 */ 2068 ret = filemap_check_errors(inode->i_mapping); 2069 inode_unlock(inode); 2070 goto out; 2071 } 2072 2073 /* 2074 * ok we haven't committed the transaction yet, lets do a commit 2075 */ 2076 if (file->private_data) 2077 btrfs_ioctl_trans_end(file); 2078 2079 /* 2080 * We use start here because we will need to wait on the IO to complete 2081 * in btrfs_sync_log, which could require joining a transaction (for 2082 * example checking cross references in the nocow path). If we use join 2083 * here we could get into a situation where we're waiting on IO to 2084 * happen that is blocked on a transaction trying to commit. With start 2085 * we inc the extwriter counter, so we wait for all extwriters to exit 2086 * before we start blocking join'ers. This comment is to keep somebody 2087 * from thinking they are super smart and changing this to 2088 * btrfs_join_transaction *cough*Josef*cough*. 2089 */ 2090 trans = btrfs_start_transaction(root, 0); 2091 if (IS_ERR(trans)) { 2092 ret = PTR_ERR(trans); 2093 inode_unlock(inode); 2094 goto out; 2095 } 2096 trans->sync = true; 2097 2098 btrfs_init_log_ctx(&ctx, inode); 2099 2100 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx); 2101 if (ret < 0) { 2102 /* Fallthrough and commit/free transaction. */ 2103 ret = 1; 2104 } 2105 2106 /* we've logged all the items and now have a consistent 2107 * version of the file in the log. It is possible that 2108 * someone will come in and modify the file, but that's 2109 * fine because the log is consistent on disk, and we 2110 * have references to all of the file's extents 2111 * 2112 * It is possible that someone will come in and log the 2113 * file again, but that will end up using the synchronization 2114 * inside btrfs_sync_log to keep things safe. 2115 */ 2116 inode_unlock(inode); 2117 2118 /* 2119 * If any of the ordered extents had an error, just return it to user 2120 * space, so that the application knows some writes didn't succeed and 2121 * can take proper action (retry for e.g.). Blindly committing the 2122 * transaction in this case, would fool userspace that everything was 2123 * successful. And we also want to make sure our log doesn't contain 2124 * file extent items pointing to extents that weren't fully written to - 2125 * just like in the non fast fsync path, where we check for the ordered 2126 * operation's error flag before writing to the log tree and return -EIO 2127 * if any of them had this flag set (btrfs_wait_ordered_range) - 2128 * therefore we need to check for errors in the ordered operations, 2129 * which are indicated by ctx.io_err. 2130 */ 2131 if (ctx.io_err) { 2132 btrfs_end_transaction(trans, root); 2133 ret = ctx.io_err; 2134 goto out; 2135 } 2136 2137 if (ret != BTRFS_NO_LOG_SYNC) { 2138 if (!ret) { 2139 ret = btrfs_sync_log(trans, root, &ctx); 2140 if (!ret) { 2141 ret = btrfs_end_transaction(trans, root); 2142 goto out; 2143 } 2144 } 2145 if (!full_sync) { 2146 ret = btrfs_wait_ordered_range(inode, start, len); 2147 if (ret) { 2148 btrfs_end_transaction(trans, root); 2149 goto out; 2150 } 2151 } 2152 ret = btrfs_commit_transaction(trans, root); 2153 } else { 2154 ret = btrfs_end_transaction(trans, root); 2155 } 2156 out: 2157 return ret > 0 ? -EIO : ret; 2158 } 2159 2160 static const struct vm_operations_struct btrfs_file_vm_ops = { 2161 .fault = filemap_fault, 2162 .map_pages = filemap_map_pages, 2163 .page_mkwrite = btrfs_page_mkwrite, 2164 }; 2165 2166 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2167 { 2168 struct address_space *mapping = filp->f_mapping; 2169 2170 if (!mapping->a_ops->readpage) 2171 return -ENOEXEC; 2172 2173 file_accessed(filp); 2174 vma->vm_ops = &btrfs_file_vm_ops; 2175 2176 return 0; 2177 } 2178 2179 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf, 2180 int slot, u64 start, u64 end) 2181 { 2182 struct btrfs_file_extent_item *fi; 2183 struct btrfs_key key; 2184 2185 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2186 return 0; 2187 2188 btrfs_item_key_to_cpu(leaf, &key, slot); 2189 if (key.objectid != btrfs_ino(inode) || 2190 key.type != BTRFS_EXTENT_DATA_KEY) 2191 return 0; 2192 2193 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2194 2195 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2196 return 0; 2197 2198 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2199 return 0; 2200 2201 if (key.offset == end) 2202 return 1; 2203 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2204 return 1; 2205 return 0; 2206 } 2207 2208 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode, 2209 struct btrfs_path *path, u64 offset, u64 end) 2210 { 2211 struct btrfs_root *root = BTRFS_I(inode)->root; 2212 struct extent_buffer *leaf; 2213 struct btrfs_file_extent_item *fi; 2214 struct extent_map *hole_em; 2215 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2216 struct btrfs_key key; 2217 int ret; 2218 2219 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) 2220 goto out; 2221 2222 key.objectid = btrfs_ino(inode); 2223 key.type = BTRFS_EXTENT_DATA_KEY; 2224 key.offset = offset; 2225 2226 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2227 if (ret < 0) 2228 return ret; 2229 BUG_ON(!ret); 2230 2231 leaf = path->nodes[0]; 2232 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) { 2233 u64 num_bytes; 2234 2235 path->slots[0]--; 2236 fi = btrfs_item_ptr(leaf, path->slots[0], 2237 struct btrfs_file_extent_item); 2238 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2239 end - offset; 2240 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2241 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2242 btrfs_set_file_extent_offset(leaf, fi, 0); 2243 btrfs_mark_buffer_dirty(leaf); 2244 goto out; 2245 } 2246 2247 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2248 u64 num_bytes; 2249 2250 key.offset = offset; 2251 btrfs_set_item_key_safe(root->fs_info, path, &key); 2252 fi = btrfs_item_ptr(leaf, path->slots[0], 2253 struct btrfs_file_extent_item); 2254 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2255 offset; 2256 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2257 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2258 btrfs_set_file_extent_offset(leaf, fi, 0); 2259 btrfs_mark_buffer_dirty(leaf); 2260 goto out; 2261 } 2262 btrfs_release_path(path); 2263 2264 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 2265 0, 0, end - offset, 0, end - offset, 2266 0, 0, 0); 2267 if (ret) 2268 return ret; 2269 2270 out: 2271 btrfs_release_path(path); 2272 2273 hole_em = alloc_extent_map(); 2274 if (!hole_em) { 2275 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2276 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2277 &BTRFS_I(inode)->runtime_flags); 2278 } else { 2279 hole_em->start = offset; 2280 hole_em->len = end - offset; 2281 hole_em->ram_bytes = hole_em->len; 2282 hole_em->orig_start = offset; 2283 2284 hole_em->block_start = EXTENT_MAP_HOLE; 2285 hole_em->block_len = 0; 2286 hole_em->orig_block_len = 0; 2287 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 2288 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2289 hole_em->generation = trans->transid; 2290 2291 do { 2292 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2293 write_lock(&em_tree->lock); 2294 ret = add_extent_mapping(em_tree, hole_em, 1); 2295 write_unlock(&em_tree->lock); 2296 } while (ret == -EEXIST); 2297 free_extent_map(hole_em); 2298 if (ret) 2299 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2300 &BTRFS_I(inode)->runtime_flags); 2301 } 2302 2303 return 0; 2304 } 2305 2306 /* 2307 * Find a hole extent on given inode and change start/len to the end of hole 2308 * extent.(hole/vacuum extent whose em->start <= start && 2309 * em->start + em->len > start) 2310 * When a hole extent is found, return 1 and modify start/len. 2311 */ 2312 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2313 { 2314 struct extent_map *em; 2315 int ret = 0; 2316 2317 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0); 2318 if (IS_ERR_OR_NULL(em)) { 2319 if (!em) 2320 ret = -ENOMEM; 2321 else 2322 ret = PTR_ERR(em); 2323 return ret; 2324 } 2325 2326 /* Hole or vacuum extent(only exists in no-hole mode) */ 2327 if (em->block_start == EXTENT_MAP_HOLE) { 2328 ret = 1; 2329 *len = em->start + em->len > *start + *len ? 2330 0 : *start + *len - em->start - em->len; 2331 *start = em->start + em->len; 2332 } 2333 free_extent_map(em); 2334 return ret; 2335 } 2336 2337 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2338 { 2339 struct btrfs_root *root = BTRFS_I(inode)->root; 2340 struct extent_state *cached_state = NULL; 2341 struct btrfs_path *path; 2342 struct btrfs_block_rsv *rsv; 2343 struct btrfs_trans_handle *trans; 2344 u64 lockstart; 2345 u64 lockend; 2346 u64 tail_start; 2347 u64 tail_len; 2348 u64 orig_start = offset; 2349 u64 cur_offset; 2350 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 2351 u64 drop_end; 2352 int ret = 0; 2353 int err = 0; 2354 unsigned int rsv_count; 2355 bool same_block; 2356 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES); 2357 u64 ino_size; 2358 bool truncated_block = false; 2359 bool updated_inode = false; 2360 2361 ret = btrfs_wait_ordered_range(inode, offset, len); 2362 if (ret) 2363 return ret; 2364 2365 inode_lock(inode); 2366 ino_size = round_up(inode->i_size, root->sectorsize); 2367 ret = find_first_non_hole(inode, &offset, &len); 2368 if (ret < 0) 2369 goto out_only_mutex; 2370 if (ret && !len) { 2371 /* Already in a large hole */ 2372 ret = 0; 2373 goto out_only_mutex; 2374 } 2375 2376 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize); 2377 lockend = round_down(offset + len, 2378 BTRFS_I(inode)->root->sectorsize) - 1; 2379 same_block = (BTRFS_BYTES_TO_BLKS(root->fs_info, offset)) 2380 == (BTRFS_BYTES_TO_BLKS(root->fs_info, offset + len - 1)); 2381 /* 2382 * We needn't truncate any block which is beyond the end of the file 2383 * because we are sure there is no data there. 2384 */ 2385 /* 2386 * Only do this if we are in the same block and we aren't doing the 2387 * entire block. 2388 */ 2389 if (same_block && len < root->sectorsize) { 2390 if (offset < ino_size) { 2391 truncated_block = true; 2392 ret = btrfs_truncate_block(inode, offset, len, 0); 2393 } else { 2394 ret = 0; 2395 } 2396 goto out_only_mutex; 2397 } 2398 2399 /* zero back part of the first block */ 2400 if (offset < ino_size) { 2401 truncated_block = true; 2402 ret = btrfs_truncate_block(inode, offset, 0, 0); 2403 if (ret) { 2404 inode_unlock(inode); 2405 return ret; 2406 } 2407 } 2408 2409 /* Check the aligned pages after the first unaligned page, 2410 * if offset != orig_start, which means the first unaligned page 2411 * including several following pages are already in holes, 2412 * the extra check can be skipped */ 2413 if (offset == orig_start) { 2414 /* after truncate page, check hole again */ 2415 len = offset + len - lockstart; 2416 offset = lockstart; 2417 ret = find_first_non_hole(inode, &offset, &len); 2418 if (ret < 0) 2419 goto out_only_mutex; 2420 if (ret && !len) { 2421 ret = 0; 2422 goto out_only_mutex; 2423 } 2424 lockstart = offset; 2425 } 2426 2427 /* Check the tail unaligned part is in a hole */ 2428 tail_start = lockend + 1; 2429 tail_len = offset + len - tail_start; 2430 if (tail_len) { 2431 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2432 if (unlikely(ret < 0)) 2433 goto out_only_mutex; 2434 if (!ret) { 2435 /* zero the front end of the last page */ 2436 if (tail_start + tail_len < ino_size) { 2437 truncated_block = true; 2438 ret = btrfs_truncate_block(inode, 2439 tail_start + tail_len, 2440 0, 1); 2441 if (ret) 2442 goto out_only_mutex; 2443 } 2444 } 2445 } 2446 2447 if (lockend < lockstart) { 2448 ret = 0; 2449 goto out_only_mutex; 2450 } 2451 2452 while (1) { 2453 struct btrfs_ordered_extent *ordered; 2454 2455 truncate_pagecache_range(inode, lockstart, lockend); 2456 2457 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2458 &cached_state); 2459 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2460 2461 /* 2462 * We need to make sure we have no ordered extents in this range 2463 * and nobody raced in and read a page in this range, if we did 2464 * we need to try again. 2465 */ 2466 if ((!ordered || 2467 (ordered->file_offset + ordered->len <= lockstart || 2468 ordered->file_offset > lockend)) && 2469 !btrfs_page_exists_in_range(inode, lockstart, lockend)) { 2470 if (ordered) 2471 btrfs_put_ordered_extent(ordered); 2472 break; 2473 } 2474 if (ordered) 2475 btrfs_put_ordered_extent(ordered); 2476 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2477 lockend, &cached_state, GFP_NOFS); 2478 ret = btrfs_wait_ordered_range(inode, lockstart, 2479 lockend - lockstart + 1); 2480 if (ret) { 2481 inode_unlock(inode); 2482 return ret; 2483 } 2484 } 2485 2486 path = btrfs_alloc_path(); 2487 if (!path) { 2488 ret = -ENOMEM; 2489 goto out; 2490 } 2491 2492 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2493 if (!rsv) { 2494 ret = -ENOMEM; 2495 goto out_free; 2496 } 2497 rsv->size = btrfs_calc_trunc_metadata_size(root, 1); 2498 rsv->failfast = 1; 2499 2500 /* 2501 * 1 - update the inode 2502 * 1 - removing the extents in the range 2503 * 1 - adding the hole extent if no_holes isn't set 2504 */ 2505 rsv_count = no_holes ? 2 : 3; 2506 trans = btrfs_start_transaction(root, rsv_count); 2507 if (IS_ERR(trans)) { 2508 err = PTR_ERR(trans); 2509 goto out_free; 2510 } 2511 2512 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 2513 min_size, 0); 2514 BUG_ON(ret); 2515 trans->block_rsv = rsv; 2516 2517 cur_offset = lockstart; 2518 len = lockend - cur_offset; 2519 while (cur_offset < lockend) { 2520 ret = __btrfs_drop_extents(trans, root, inode, path, 2521 cur_offset, lockend + 1, 2522 &drop_end, 1, 0, 0, NULL); 2523 if (ret != -ENOSPC) 2524 break; 2525 2526 trans->block_rsv = &root->fs_info->trans_block_rsv; 2527 2528 if (cur_offset < ino_size) { 2529 ret = fill_holes(trans, inode, path, cur_offset, 2530 drop_end); 2531 if (ret) { 2532 err = ret; 2533 break; 2534 } 2535 } 2536 2537 cur_offset = drop_end; 2538 2539 ret = btrfs_update_inode(trans, root, inode); 2540 if (ret) { 2541 err = ret; 2542 break; 2543 } 2544 2545 btrfs_end_transaction(trans, root); 2546 btrfs_btree_balance_dirty(root); 2547 2548 trans = btrfs_start_transaction(root, rsv_count); 2549 if (IS_ERR(trans)) { 2550 ret = PTR_ERR(trans); 2551 trans = NULL; 2552 break; 2553 } 2554 2555 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 2556 rsv, min_size, 0); 2557 BUG_ON(ret); /* shouldn't happen */ 2558 trans->block_rsv = rsv; 2559 2560 ret = find_first_non_hole(inode, &cur_offset, &len); 2561 if (unlikely(ret < 0)) 2562 break; 2563 if (ret && !len) { 2564 ret = 0; 2565 break; 2566 } 2567 } 2568 2569 if (ret) { 2570 err = ret; 2571 goto out_trans; 2572 } 2573 2574 trans->block_rsv = &root->fs_info->trans_block_rsv; 2575 /* 2576 * If we are using the NO_HOLES feature we might have had already an 2577 * hole that overlaps a part of the region [lockstart, lockend] and 2578 * ends at (or beyond) lockend. Since we have no file extent items to 2579 * represent holes, drop_end can be less than lockend and so we must 2580 * make sure we have an extent map representing the existing hole (the 2581 * call to __btrfs_drop_extents() might have dropped the existing extent 2582 * map representing the existing hole), otherwise the fast fsync path 2583 * will not record the existence of the hole region 2584 * [existing_hole_start, lockend]. 2585 */ 2586 if (drop_end <= lockend) 2587 drop_end = lockend + 1; 2588 /* 2589 * Don't insert file hole extent item if it's for a range beyond eof 2590 * (because it's useless) or if it represents a 0 bytes range (when 2591 * cur_offset == drop_end). 2592 */ 2593 if (cur_offset < ino_size && cur_offset < drop_end) { 2594 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2595 if (ret) { 2596 err = ret; 2597 goto out_trans; 2598 } 2599 } 2600 2601 out_trans: 2602 if (!trans) 2603 goto out_free; 2604 2605 inode_inc_iversion(inode); 2606 inode->i_mtime = inode->i_ctime = current_time(inode); 2607 2608 trans->block_rsv = &root->fs_info->trans_block_rsv; 2609 ret = btrfs_update_inode(trans, root, inode); 2610 updated_inode = true; 2611 btrfs_end_transaction(trans, root); 2612 btrfs_btree_balance_dirty(root); 2613 out_free: 2614 btrfs_free_path(path); 2615 btrfs_free_block_rsv(root, rsv); 2616 out: 2617 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2618 &cached_state, GFP_NOFS); 2619 out_only_mutex: 2620 if (!updated_inode && truncated_block && !ret && !err) { 2621 /* 2622 * If we only end up zeroing part of a page, we still need to 2623 * update the inode item, so that all the time fields are 2624 * updated as well as the necessary btrfs inode in memory fields 2625 * for detecting, at fsync time, if the inode isn't yet in the 2626 * log tree or it's there but not up to date. 2627 */ 2628 trans = btrfs_start_transaction(root, 1); 2629 if (IS_ERR(trans)) { 2630 err = PTR_ERR(trans); 2631 } else { 2632 err = btrfs_update_inode(trans, root, inode); 2633 ret = btrfs_end_transaction(trans, root); 2634 } 2635 } 2636 inode_unlock(inode); 2637 if (ret && !err) 2638 err = ret; 2639 return err; 2640 } 2641 2642 /* Helper structure to record which range is already reserved */ 2643 struct falloc_range { 2644 struct list_head list; 2645 u64 start; 2646 u64 len; 2647 }; 2648 2649 /* 2650 * Helper function to add falloc range 2651 * 2652 * Caller should have locked the larger range of extent containing 2653 * [start, len) 2654 */ 2655 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2656 { 2657 struct falloc_range *prev = NULL; 2658 struct falloc_range *range = NULL; 2659 2660 if (list_empty(head)) 2661 goto insert; 2662 2663 /* 2664 * As fallocate iterate by bytenr order, we only need to check 2665 * the last range. 2666 */ 2667 prev = list_entry(head->prev, struct falloc_range, list); 2668 if (prev->start + prev->len == start) { 2669 prev->len += len; 2670 return 0; 2671 } 2672 insert: 2673 range = kmalloc(sizeof(*range), GFP_KERNEL); 2674 if (!range) 2675 return -ENOMEM; 2676 range->start = start; 2677 range->len = len; 2678 list_add_tail(&range->list, head); 2679 return 0; 2680 } 2681 2682 static long btrfs_fallocate(struct file *file, int mode, 2683 loff_t offset, loff_t len) 2684 { 2685 struct inode *inode = file_inode(file); 2686 struct extent_state *cached_state = NULL; 2687 struct falloc_range *range; 2688 struct falloc_range *tmp; 2689 struct list_head reserve_list; 2690 u64 cur_offset; 2691 u64 last_byte; 2692 u64 alloc_start; 2693 u64 alloc_end; 2694 u64 alloc_hint = 0; 2695 u64 locked_end; 2696 u64 actual_end = 0; 2697 struct extent_map *em; 2698 int blocksize = BTRFS_I(inode)->root->sectorsize; 2699 int ret; 2700 2701 alloc_start = round_down(offset, blocksize); 2702 alloc_end = round_up(offset + len, blocksize); 2703 cur_offset = alloc_start; 2704 2705 /* Make sure we aren't being give some crap mode */ 2706 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2707 return -EOPNOTSUPP; 2708 2709 if (mode & FALLOC_FL_PUNCH_HOLE) 2710 return btrfs_punch_hole(inode, offset, len); 2711 2712 /* 2713 * Only trigger disk allocation, don't trigger qgroup reserve 2714 * 2715 * For qgroup space, it will be checked later. 2716 */ 2717 ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start); 2718 if (ret < 0) 2719 return ret; 2720 2721 inode_lock(inode); 2722 2723 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 2724 ret = inode_newsize_ok(inode, offset + len); 2725 if (ret) 2726 goto out; 2727 } 2728 2729 /* 2730 * TODO: Move these two operations after we have checked 2731 * accurate reserved space, or fallocate can still fail but 2732 * with page truncated or size expanded. 2733 * 2734 * But that's a minor problem and won't do much harm BTW. 2735 */ 2736 if (alloc_start > inode->i_size) { 2737 ret = btrfs_cont_expand(inode, i_size_read(inode), 2738 alloc_start); 2739 if (ret) 2740 goto out; 2741 } else if (offset + len > inode->i_size) { 2742 /* 2743 * If we are fallocating from the end of the file onward we 2744 * need to zero out the end of the block if i_size lands in the 2745 * middle of a block. 2746 */ 2747 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 2748 if (ret) 2749 goto out; 2750 } 2751 2752 /* 2753 * wait for ordered IO before we have any locks. We'll loop again 2754 * below with the locks held. 2755 */ 2756 ret = btrfs_wait_ordered_range(inode, alloc_start, 2757 alloc_end - alloc_start); 2758 if (ret) 2759 goto out; 2760 2761 locked_end = alloc_end - 1; 2762 while (1) { 2763 struct btrfs_ordered_extent *ordered; 2764 2765 /* the extent lock is ordered inside the running 2766 * transaction 2767 */ 2768 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 2769 locked_end, &cached_state); 2770 ordered = btrfs_lookup_first_ordered_extent(inode, 2771 alloc_end - 1); 2772 if (ordered && 2773 ordered->file_offset + ordered->len > alloc_start && 2774 ordered->file_offset < alloc_end) { 2775 btrfs_put_ordered_extent(ordered); 2776 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 2777 alloc_start, locked_end, 2778 &cached_state, GFP_KERNEL); 2779 /* 2780 * we can't wait on the range with the transaction 2781 * running or with the extent lock held 2782 */ 2783 ret = btrfs_wait_ordered_range(inode, alloc_start, 2784 alloc_end - alloc_start); 2785 if (ret) 2786 goto out; 2787 } else { 2788 if (ordered) 2789 btrfs_put_ordered_extent(ordered); 2790 break; 2791 } 2792 } 2793 2794 /* First, check if we exceed the qgroup limit */ 2795 INIT_LIST_HEAD(&reserve_list); 2796 while (1) { 2797 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2798 alloc_end - cur_offset, 0); 2799 if (IS_ERR_OR_NULL(em)) { 2800 if (!em) 2801 ret = -ENOMEM; 2802 else 2803 ret = PTR_ERR(em); 2804 break; 2805 } 2806 last_byte = min(extent_map_end(em), alloc_end); 2807 actual_end = min_t(u64, extent_map_end(em), offset + len); 2808 last_byte = ALIGN(last_byte, blocksize); 2809 if (em->block_start == EXTENT_MAP_HOLE || 2810 (cur_offset >= inode->i_size && 2811 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 2812 ret = add_falloc_range(&reserve_list, cur_offset, 2813 last_byte - cur_offset); 2814 if (ret < 0) { 2815 free_extent_map(em); 2816 break; 2817 } 2818 ret = btrfs_qgroup_reserve_data(inode, cur_offset, 2819 last_byte - cur_offset); 2820 if (ret < 0) 2821 break; 2822 } else { 2823 /* 2824 * Do not need to reserve unwritten extent for this 2825 * range, free reserved data space first, otherwise 2826 * it'll result in false ENOSPC error. 2827 */ 2828 btrfs_free_reserved_data_space(inode, cur_offset, 2829 last_byte - cur_offset); 2830 } 2831 free_extent_map(em); 2832 cur_offset = last_byte; 2833 if (cur_offset >= alloc_end) 2834 break; 2835 } 2836 2837 /* 2838 * If ret is still 0, means we're OK to fallocate. 2839 * Or just cleanup the list and exit. 2840 */ 2841 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 2842 if (!ret) 2843 ret = btrfs_prealloc_file_range(inode, mode, 2844 range->start, 2845 range->len, 1 << inode->i_blkbits, 2846 offset + len, &alloc_hint); 2847 else 2848 btrfs_free_reserved_data_space(inode, range->start, 2849 range->len); 2850 list_del(&range->list); 2851 kfree(range); 2852 } 2853 if (ret < 0) 2854 goto out_unlock; 2855 2856 if (actual_end > inode->i_size && 2857 !(mode & FALLOC_FL_KEEP_SIZE)) { 2858 struct btrfs_trans_handle *trans; 2859 struct btrfs_root *root = BTRFS_I(inode)->root; 2860 2861 /* 2862 * We didn't need to allocate any more space, but we 2863 * still extended the size of the file so we need to 2864 * update i_size and the inode item. 2865 */ 2866 trans = btrfs_start_transaction(root, 1); 2867 if (IS_ERR(trans)) { 2868 ret = PTR_ERR(trans); 2869 } else { 2870 inode->i_ctime = current_time(inode); 2871 i_size_write(inode, actual_end); 2872 btrfs_ordered_update_i_size(inode, actual_end, NULL); 2873 ret = btrfs_update_inode(trans, root, inode); 2874 if (ret) 2875 btrfs_end_transaction(trans, root); 2876 else 2877 ret = btrfs_end_transaction(trans, root); 2878 } 2879 } 2880 out_unlock: 2881 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 2882 &cached_state, GFP_KERNEL); 2883 out: 2884 inode_unlock(inode); 2885 /* Let go of our reservation. */ 2886 if (ret != 0) 2887 btrfs_free_reserved_data_space(inode, alloc_start, 2888 alloc_end - cur_offset); 2889 return ret; 2890 } 2891 2892 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 2893 { 2894 struct btrfs_root *root = BTRFS_I(inode)->root; 2895 struct extent_map *em = NULL; 2896 struct extent_state *cached_state = NULL; 2897 u64 lockstart; 2898 u64 lockend; 2899 u64 start; 2900 u64 len; 2901 int ret = 0; 2902 2903 if (inode->i_size == 0) 2904 return -ENXIO; 2905 2906 /* 2907 * *offset can be negative, in this case we start finding DATA/HOLE from 2908 * the very start of the file. 2909 */ 2910 start = max_t(loff_t, 0, *offset); 2911 2912 lockstart = round_down(start, root->sectorsize); 2913 lockend = round_up(i_size_read(inode), root->sectorsize); 2914 if (lockend <= lockstart) 2915 lockend = lockstart + root->sectorsize; 2916 lockend--; 2917 len = lockend - lockstart + 1; 2918 2919 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2920 &cached_state); 2921 2922 while (start < inode->i_size) { 2923 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0); 2924 if (IS_ERR(em)) { 2925 ret = PTR_ERR(em); 2926 em = NULL; 2927 break; 2928 } 2929 2930 if (whence == SEEK_HOLE && 2931 (em->block_start == EXTENT_MAP_HOLE || 2932 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2933 break; 2934 else if (whence == SEEK_DATA && 2935 (em->block_start != EXTENT_MAP_HOLE && 2936 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2937 break; 2938 2939 start = em->start + em->len; 2940 free_extent_map(em); 2941 em = NULL; 2942 cond_resched(); 2943 } 2944 free_extent_map(em); 2945 if (!ret) { 2946 if (whence == SEEK_DATA && start >= inode->i_size) 2947 ret = -ENXIO; 2948 else 2949 *offset = min_t(loff_t, start, inode->i_size); 2950 } 2951 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2952 &cached_state, GFP_NOFS); 2953 return ret; 2954 } 2955 2956 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 2957 { 2958 struct inode *inode = file->f_mapping->host; 2959 int ret; 2960 2961 inode_lock(inode); 2962 switch (whence) { 2963 case SEEK_END: 2964 case SEEK_CUR: 2965 offset = generic_file_llseek(file, offset, whence); 2966 goto out; 2967 case SEEK_DATA: 2968 case SEEK_HOLE: 2969 if (offset >= i_size_read(inode)) { 2970 inode_unlock(inode); 2971 return -ENXIO; 2972 } 2973 2974 ret = find_desired_extent(inode, &offset, whence); 2975 if (ret) { 2976 inode_unlock(inode); 2977 return ret; 2978 } 2979 } 2980 2981 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2982 out: 2983 inode_unlock(inode); 2984 return offset; 2985 } 2986 2987 const struct file_operations btrfs_file_operations = { 2988 .llseek = btrfs_file_llseek, 2989 .read_iter = generic_file_read_iter, 2990 .splice_read = generic_file_splice_read, 2991 .write_iter = btrfs_file_write_iter, 2992 .mmap = btrfs_file_mmap, 2993 .open = generic_file_open, 2994 .release = btrfs_release_file, 2995 .fsync = btrfs_sync_file, 2996 .fallocate = btrfs_fallocate, 2997 .unlocked_ioctl = btrfs_ioctl, 2998 #ifdef CONFIG_COMPAT 2999 .compat_ioctl = btrfs_compat_ioctl, 3000 #endif 3001 .copy_file_range = btrfs_copy_file_range, 3002 .clone_file_range = btrfs_clone_file_range, 3003 .dedupe_file_range = btrfs_dedupe_file_range, 3004 }; 3005 3006 void btrfs_auto_defrag_exit(void) 3007 { 3008 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3009 } 3010 3011 int btrfs_auto_defrag_init(void) 3012 { 3013 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3014 sizeof(struct inode_defrag), 0, 3015 SLAB_MEM_SPREAD, 3016 NULL); 3017 if (!btrfs_inode_defrag_cachep) 3018 return -ENOMEM; 3019 3020 return 0; 3021 } 3022 3023 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3024 { 3025 int ret; 3026 3027 /* 3028 * So with compression we will find and lock a dirty page and clear the 3029 * first one as dirty, setup an async extent, and immediately return 3030 * with the entire range locked but with nobody actually marked with 3031 * writeback. So we can't just filemap_write_and_wait_range() and 3032 * expect it to work since it will just kick off a thread to do the 3033 * actual work. So we need to call filemap_fdatawrite_range _again_ 3034 * since it will wait on the page lock, which won't be unlocked until 3035 * after the pages have been marked as writeback and so we're good to go 3036 * from there. We have to do this otherwise we'll miss the ordered 3037 * extents and that results in badness. Please Josef, do not think you 3038 * know better and pull this out at some point in the future, it is 3039 * right and you are wrong. 3040 */ 3041 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3042 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3043 &BTRFS_I(inode)->runtime_flags)) 3044 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3045 3046 return ret; 3047 } 3048