1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/time.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/backing-dev.h> 26 #include <linux/mpage.h> 27 #include <linux/falloc.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/statfs.h> 31 #include <linux/compat.h> 32 #include <linux/slab.h> 33 #include <linux/btrfs.h> 34 #include <linux/uio.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "print-tree.h" 40 #include "tree-log.h" 41 #include "locking.h" 42 #include "volumes.h" 43 #include "qgroup.h" 44 45 static struct kmem_cache *btrfs_inode_defrag_cachep; 46 /* 47 * when auto defrag is enabled we 48 * queue up these defrag structs to remember which 49 * inodes need defragging passes 50 */ 51 struct inode_defrag { 52 struct rb_node rb_node; 53 /* objectid */ 54 u64 ino; 55 /* 56 * transid where the defrag was added, we search for 57 * extents newer than this 58 */ 59 u64 transid; 60 61 /* root objectid */ 62 u64 root; 63 64 /* last offset we were able to defrag */ 65 u64 last_offset; 66 67 /* if we've wrapped around back to zero once already */ 68 int cycled; 69 }; 70 71 static int __compare_inode_defrag(struct inode_defrag *defrag1, 72 struct inode_defrag *defrag2) 73 { 74 if (defrag1->root > defrag2->root) 75 return 1; 76 else if (defrag1->root < defrag2->root) 77 return -1; 78 else if (defrag1->ino > defrag2->ino) 79 return 1; 80 else if (defrag1->ino < defrag2->ino) 81 return -1; 82 else 83 return 0; 84 } 85 86 /* pop a record for an inode into the defrag tree. The lock 87 * must be held already 88 * 89 * If you're inserting a record for an older transid than an 90 * existing record, the transid already in the tree is lowered 91 * 92 * If an existing record is found the defrag item you 93 * pass in is freed 94 */ 95 static int __btrfs_add_inode_defrag(struct inode *inode, 96 struct inode_defrag *defrag) 97 { 98 struct btrfs_root *root = BTRFS_I(inode)->root; 99 struct inode_defrag *entry; 100 struct rb_node **p; 101 struct rb_node *parent = NULL; 102 int ret; 103 104 p = &root->fs_info->defrag_inodes.rb_node; 105 while (*p) { 106 parent = *p; 107 entry = rb_entry(parent, struct inode_defrag, rb_node); 108 109 ret = __compare_inode_defrag(defrag, entry); 110 if (ret < 0) 111 p = &parent->rb_left; 112 else if (ret > 0) 113 p = &parent->rb_right; 114 else { 115 /* if we're reinserting an entry for 116 * an old defrag run, make sure to 117 * lower the transid of our existing record 118 */ 119 if (defrag->transid < entry->transid) 120 entry->transid = defrag->transid; 121 if (defrag->last_offset > entry->last_offset) 122 entry->last_offset = defrag->last_offset; 123 return -EEXIST; 124 } 125 } 126 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 127 rb_link_node(&defrag->rb_node, parent, p); 128 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes); 129 return 0; 130 } 131 132 static inline int __need_auto_defrag(struct btrfs_root *root) 133 { 134 if (!btrfs_test_opt(root, AUTO_DEFRAG)) 135 return 0; 136 137 if (btrfs_fs_closing(root->fs_info)) 138 return 0; 139 140 return 1; 141 } 142 143 /* 144 * insert a defrag record for this inode if auto defrag is 145 * enabled 146 */ 147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 148 struct inode *inode) 149 { 150 struct btrfs_root *root = BTRFS_I(inode)->root; 151 struct inode_defrag *defrag; 152 u64 transid; 153 int ret; 154 155 if (!__need_auto_defrag(root)) 156 return 0; 157 158 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) 159 return 0; 160 161 if (trans) 162 transid = trans->transid; 163 else 164 transid = BTRFS_I(inode)->root->last_trans; 165 166 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 167 if (!defrag) 168 return -ENOMEM; 169 170 defrag->ino = btrfs_ino(inode); 171 defrag->transid = transid; 172 defrag->root = root->root_key.objectid; 173 174 spin_lock(&root->fs_info->defrag_inodes_lock); 175 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) { 176 /* 177 * If we set IN_DEFRAG flag and evict the inode from memory, 178 * and then re-read this inode, this new inode doesn't have 179 * IN_DEFRAG flag. At the case, we may find the existed defrag. 180 */ 181 ret = __btrfs_add_inode_defrag(inode, defrag); 182 if (ret) 183 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 184 } else { 185 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 186 } 187 spin_unlock(&root->fs_info->defrag_inodes_lock); 188 return 0; 189 } 190 191 /* 192 * Requeue the defrag object. If there is a defrag object that points to 193 * the same inode in the tree, we will merge them together (by 194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 195 */ 196 static void btrfs_requeue_inode_defrag(struct inode *inode, 197 struct inode_defrag *defrag) 198 { 199 struct btrfs_root *root = BTRFS_I(inode)->root; 200 int ret; 201 202 if (!__need_auto_defrag(root)) 203 goto out; 204 205 /* 206 * Here we don't check the IN_DEFRAG flag, because we need merge 207 * them together. 208 */ 209 spin_lock(&root->fs_info->defrag_inodes_lock); 210 ret = __btrfs_add_inode_defrag(inode, defrag); 211 spin_unlock(&root->fs_info->defrag_inodes_lock); 212 if (ret) 213 goto out; 214 return; 215 out: 216 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 217 } 218 219 /* 220 * pick the defragable inode that we want, if it doesn't exist, we will get 221 * the next one. 222 */ 223 static struct inode_defrag * 224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 225 { 226 struct inode_defrag *entry = NULL; 227 struct inode_defrag tmp; 228 struct rb_node *p; 229 struct rb_node *parent = NULL; 230 int ret; 231 232 tmp.ino = ino; 233 tmp.root = root; 234 235 spin_lock(&fs_info->defrag_inodes_lock); 236 p = fs_info->defrag_inodes.rb_node; 237 while (p) { 238 parent = p; 239 entry = rb_entry(parent, struct inode_defrag, rb_node); 240 241 ret = __compare_inode_defrag(&tmp, entry); 242 if (ret < 0) 243 p = parent->rb_left; 244 else if (ret > 0) 245 p = parent->rb_right; 246 else 247 goto out; 248 } 249 250 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 251 parent = rb_next(parent); 252 if (parent) 253 entry = rb_entry(parent, struct inode_defrag, rb_node); 254 else 255 entry = NULL; 256 } 257 out: 258 if (entry) 259 rb_erase(parent, &fs_info->defrag_inodes); 260 spin_unlock(&fs_info->defrag_inodes_lock); 261 return entry; 262 } 263 264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 265 { 266 struct inode_defrag *defrag; 267 struct rb_node *node; 268 269 spin_lock(&fs_info->defrag_inodes_lock); 270 node = rb_first(&fs_info->defrag_inodes); 271 while (node) { 272 rb_erase(node, &fs_info->defrag_inodes); 273 defrag = rb_entry(node, struct inode_defrag, rb_node); 274 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 275 276 cond_resched_lock(&fs_info->defrag_inodes_lock); 277 278 node = rb_first(&fs_info->defrag_inodes); 279 } 280 spin_unlock(&fs_info->defrag_inodes_lock); 281 } 282 283 #define BTRFS_DEFRAG_BATCH 1024 284 285 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 286 struct inode_defrag *defrag) 287 { 288 struct btrfs_root *inode_root; 289 struct inode *inode; 290 struct btrfs_key key; 291 struct btrfs_ioctl_defrag_range_args range; 292 int num_defrag; 293 int index; 294 int ret; 295 296 /* get the inode */ 297 key.objectid = defrag->root; 298 key.type = BTRFS_ROOT_ITEM_KEY; 299 key.offset = (u64)-1; 300 301 index = srcu_read_lock(&fs_info->subvol_srcu); 302 303 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 304 if (IS_ERR(inode_root)) { 305 ret = PTR_ERR(inode_root); 306 goto cleanup; 307 } 308 309 key.objectid = defrag->ino; 310 key.type = BTRFS_INODE_ITEM_KEY; 311 key.offset = 0; 312 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 313 if (IS_ERR(inode)) { 314 ret = PTR_ERR(inode); 315 goto cleanup; 316 } 317 srcu_read_unlock(&fs_info->subvol_srcu, index); 318 319 /* do a chunk of defrag */ 320 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 321 memset(&range, 0, sizeof(range)); 322 range.len = (u64)-1; 323 range.start = defrag->last_offset; 324 325 sb_start_write(fs_info->sb); 326 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 327 BTRFS_DEFRAG_BATCH); 328 sb_end_write(fs_info->sb); 329 /* 330 * if we filled the whole defrag batch, there 331 * must be more work to do. Queue this defrag 332 * again 333 */ 334 if (num_defrag == BTRFS_DEFRAG_BATCH) { 335 defrag->last_offset = range.start; 336 btrfs_requeue_inode_defrag(inode, defrag); 337 } else if (defrag->last_offset && !defrag->cycled) { 338 /* 339 * we didn't fill our defrag batch, but 340 * we didn't start at zero. Make sure we loop 341 * around to the start of the file. 342 */ 343 defrag->last_offset = 0; 344 defrag->cycled = 1; 345 btrfs_requeue_inode_defrag(inode, defrag); 346 } else { 347 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 348 } 349 350 iput(inode); 351 return 0; 352 cleanup: 353 srcu_read_unlock(&fs_info->subvol_srcu, index); 354 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 355 return ret; 356 } 357 358 /* 359 * run through the list of inodes in the FS that need 360 * defragging 361 */ 362 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 363 { 364 struct inode_defrag *defrag; 365 u64 first_ino = 0; 366 u64 root_objectid = 0; 367 368 atomic_inc(&fs_info->defrag_running); 369 while (1) { 370 /* Pause the auto defragger. */ 371 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 372 &fs_info->fs_state)) 373 break; 374 375 if (!__need_auto_defrag(fs_info->tree_root)) 376 break; 377 378 /* find an inode to defrag */ 379 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 380 first_ino); 381 if (!defrag) { 382 if (root_objectid || first_ino) { 383 root_objectid = 0; 384 first_ino = 0; 385 continue; 386 } else { 387 break; 388 } 389 } 390 391 first_ino = defrag->ino + 1; 392 root_objectid = defrag->root; 393 394 __btrfs_run_defrag_inode(fs_info, defrag); 395 } 396 atomic_dec(&fs_info->defrag_running); 397 398 /* 399 * during unmount, we use the transaction_wait queue to 400 * wait for the defragger to stop 401 */ 402 wake_up(&fs_info->transaction_wait); 403 return 0; 404 } 405 406 /* simple helper to fault in pages and copy. This should go away 407 * and be replaced with calls into generic code. 408 */ 409 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages, 410 size_t write_bytes, 411 struct page **prepared_pages, 412 struct iov_iter *i) 413 { 414 size_t copied = 0; 415 size_t total_copied = 0; 416 int pg = 0; 417 int offset = pos & (PAGE_CACHE_SIZE - 1); 418 419 while (write_bytes > 0) { 420 size_t count = min_t(size_t, 421 PAGE_CACHE_SIZE - offset, write_bytes); 422 struct page *page = prepared_pages[pg]; 423 /* 424 * Copy data from userspace to the current page 425 */ 426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 427 428 /* Flush processor's dcache for this page */ 429 flush_dcache_page(page); 430 431 /* 432 * if we get a partial write, we can end up with 433 * partially up to date pages. These add 434 * a lot of complexity, so make sure they don't 435 * happen by forcing this copy to be retried. 436 * 437 * The rest of the btrfs_file_write code will fall 438 * back to page at a time copies after we return 0. 439 */ 440 if (!PageUptodate(page) && copied < count) 441 copied = 0; 442 443 iov_iter_advance(i, copied); 444 write_bytes -= copied; 445 total_copied += copied; 446 447 /* Return to btrfs_file_write_iter to fault page */ 448 if (unlikely(copied == 0)) 449 break; 450 451 if (copied < PAGE_CACHE_SIZE - offset) { 452 offset += copied; 453 } else { 454 pg++; 455 offset = 0; 456 } 457 } 458 return total_copied; 459 } 460 461 /* 462 * unlocks pages after btrfs_file_write is done with them 463 */ 464 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 465 { 466 size_t i; 467 for (i = 0; i < num_pages; i++) { 468 /* page checked is some magic around finding pages that 469 * have been modified without going through btrfs_set_page_dirty 470 * clear it here. There should be no need to mark the pages 471 * accessed as prepare_pages should have marked them accessed 472 * in prepare_pages via find_or_create_page() 473 */ 474 ClearPageChecked(pages[i]); 475 unlock_page(pages[i]); 476 page_cache_release(pages[i]); 477 } 478 } 479 480 /* 481 * after copy_from_user, pages need to be dirtied and we need to make 482 * sure holes are created between the current EOF and the start of 483 * any next extents (if required). 484 * 485 * this also makes the decision about creating an inline extent vs 486 * doing real data extents, marking pages dirty and delalloc as required. 487 */ 488 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, 489 struct page **pages, size_t num_pages, 490 loff_t pos, size_t write_bytes, 491 struct extent_state **cached) 492 { 493 int err = 0; 494 int i; 495 u64 num_bytes; 496 u64 start_pos; 497 u64 end_of_last_block; 498 u64 end_pos = pos + write_bytes; 499 loff_t isize = i_size_read(inode); 500 501 start_pos = pos & ~((u64)root->sectorsize - 1); 502 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize); 503 504 end_of_last_block = start_pos + num_bytes - 1; 505 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 506 cached); 507 if (err) 508 return err; 509 510 for (i = 0; i < num_pages; i++) { 511 struct page *p = pages[i]; 512 SetPageUptodate(p); 513 ClearPageChecked(p); 514 set_page_dirty(p); 515 } 516 517 /* 518 * we've only changed i_size in ram, and we haven't updated 519 * the disk i_size. There is no need to log the inode 520 * at this time. 521 */ 522 if (end_pos > isize) 523 i_size_write(inode, end_pos); 524 return 0; 525 } 526 527 /* 528 * this drops all the extents in the cache that intersect the range 529 * [start, end]. Existing extents are split as required. 530 */ 531 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, 532 int skip_pinned) 533 { 534 struct extent_map *em; 535 struct extent_map *split = NULL; 536 struct extent_map *split2 = NULL; 537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 538 u64 len = end - start + 1; 539 u64 gen; 540 int ret; 541 int testend = 1; 542 unsigned long flags; 543 int compressed = 0; 544 bool modified; 545 546 WARN_ON(end < start); 547 if (end == (u64)-1) { 548 len = (u64)-1; 549 testend = 0; 550 } 551 while (1) { 552 int no_splits = 0; 553 554 modified = false; 555 if (!split) 556 split = alloc_extent_map(); 557 if (!split2) 558 split2 = alloc_extent_map(); 559 if (!split || !split2) 560 no_splits = 1; 561 562 write_lock(&em_tree->lock); 563 em = lookup_extent_mapping(em_tree, start, len); 564 if (!em) { 565 write_unlock(&em_tree->lock); 566 break; 567 } 568 flags = em->flags; 569 gen = em->generation; 570 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 571 if (testend && em->start + em->len >= start + len) { 572 free_extent_map(em); 573 write_unlock(&em_tree->lock); 574 break; 575 } 576 start = em->start + em->len; 577 if (testend) 578 len = start + len - (em->start + em->len); 579 free_extent_map(em); 580 write_unlock(&em_tree->lock); 581 continue; 582 } 583 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 584 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 585 clear_bit(EXTENT_FLAG_LOGGING, &flags); 586 modified = !list_empty(&em->list); 587 if (no_splits) 588 goto next; 589 590 if (em->start < start) { 591 split->start = em->start; 592 split->len = start - em->start; 593 594 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 595 split->orig_start = em->orig_start; 596 split->block_start = em->block_start; 597 598 if (compressed) 599 split->block_len = em->block_len; 600 else 601 split->block_len = split->len; 602 split->orig_block_len = max(split->block_len, 603 em->orig_block_len); 604 split->ram_bytes = em->ram_bytes; 605 } else { 606 split->orig_start = split->start; 607 split->block_len = 0; 608 split->block_start = em->block_start; 609 split->orig_block_len = 0; 610 split->ram_bytes = split->len; 611 } 612 613 split->generation = gen; 614 split->bdev = em->bdev; 615 split->flags = flags; 616 split->compress_type = em->compress_type; 617 replace_extent_mapping(em_tree, em, split, modified); 618 free_extent_map(split); 619 split = split2; 620 split2 = NULL; 621 } 622 if (testend && em->start + em->len > start + len) { 623 u64 diff = start + len - em->start; 624 625 split->start = start + len; 626 split->len = em->start + em->len - (start + len); 627 split->bdev = em->bdev; 628 split->flags = flags; 629 split->compress_type = em->compress_type; 630 split->generation = gen; 631 632 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 633 split->orig_block_len = max(em->block_len, 634 em->orig_block_len); 635 636 split->ram_bytes = em->ram_bytes; 637 if (compressed) { 638 split->block_len = em->block_len; 639 split->block_start = em->block_start; 640 split->orig_start = em->orig_start; 641 } else { 642 split->block_len = split->len; 643 split->block_start = em->block_start 644 + diff; 645 split->orig_start = em->orig_start; 646 } 647 } else { 648 split->ram_bytes = split->len; 649 split->orig_start = split->start; 650 split->block_len = 0; 651 split->block_start = em->block_start; 652 split->orig_block_len = 0; 653 } 654 655 if (extent_map_in_tree(em)) { 656 replace_extent_mapping(em_tree, em, split, 657 modified); 658 } else { 659 ret = add_extent_mapping(em_tree, split, 660 modified); 661 ASSERT(ret == 0); /* Logic error */ 662 } 663 free_extent_map(split); 664 split = NULL; 665 } 666 next: 667 if (extent_map_in_tree(em)) 668 remove_extent_mapping(em_tree, em); 669 write_unlock(&em_tree->lock); 670 671 /* once for us */ 672 free_extent_map(em); 673 /* once for the tree*/ 674 free_extent_map(em); 675 } 676 if (split) 677 free_extent_map(split); 678 if (split2) 679 free_extent_map(split2); 680 } 681 682 /* 683 * this is very complex, but the basic idea is to drop all extents 684 * in the range start - end. hint_block is filled in with a block number 685 * that would be a good hint to the block allocator for this file. 686 * 687 * If an extent intersects the range but is not entirely inside the range 688 * it is either truncated or split. Anything entirely inside the range 689 * is deleted from the tree. 690 */ 691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 692 struct btrfs_root *root, struct inode *inode, 693 struct btrfs_path *path, u64 start, u64 end, 694 u64 *drop_end, int drop_cache, 695 int replace_extent, 696 u32 extent_item_size, 697 int *key_inserted) 698 { 699 struct extent_buffer *leaf; 700 struct btrfs_file_extent_item *fi; 701 struct btrfs_key key; 702 struct btrfs_key new_key; 703 u64 ino = btrfs_ino(inode); 704 u64 search_start = start; 705 u64 disk_bytenr = 0; 706 u64 num_bytes = 0; 707 u64 extent_offset = 0; 708 u64 extent_end = 0; 709 int del_nr = 0; 710 int del_slot = 0; 711 int extent_type; 712 int recow; 713 int ret; 714 int modify_tree = -1; 715 int update_refs; 716 int found = 0; 717 int leafs_visited = 0; 718 719 if (drop_cache) 720 btrfs_drop_extent_cache(inode, start, end - 1, 0); 721 722 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 723 modify_tree = 0; 724 725 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 726 root == root->fs_info->tree_root); 727 while (1) { 728 recow = 0; 729 ret = btrfs_lookup_file_extent(trans, root, path, ino, 730 search_start, modify_tree); 731 if (ret < 0) 732 break; 733 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 734 leaf = path->nodes[0]; 735 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 736 if (key.objectid == ino && 737 key.type == BTRFS_EXTENT_DATA_KEY) 738 path->slots[0]--; 739 } 740 ret = 0; 741 leafs_visited++; 742 next_slot: 743 leaf = path->nodes[0]; 744 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 745 BUG_ON(del_nr > 0); 746 ret = btrfs_next_leaf(root, path); 747 if (ret < 0) 748 break; 749 if (ret > 0) { 750 ret = 0; 751 break; 752 } 753 leafs_visited++; 754 leaf = path->nodes[0]; 755 recow = 1; 756 } 757 758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 759 if (key.objectid > ino || 760 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 761 break; 762 763 fi = btrfs_item_ptr(leaf, path->slots[0], 764 struct btrfs_file_extent_item); 765 extent_type = btrfs_file_extent_type(leaf, fi); 766 767 if (extent_type == BTRFS_FILE_EXTENT_REG || 768 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 769 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 770 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 771 extent_offset = btrfs_file_extent_offset(leaf, fi); 772 extent_end = key.offset + 773 btrfs_file_extent_num_bytes(leaf, fi); 774 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 775 extent_end = key.offset + 776 btrfs_file_extent_inline_len(leaf, 777 path->slots[0], fi); 778 } else { 779 WARN_ON(1); 780 extent_end = search_start; 781 } 782 783 /* 784 * Don't skip extent items representing 0 byte lengths. They 785 * used to be created (bug) if while punching holes we hit 786 * -ENOSPC condition. So if we find one here, just ensure we 787 * delete it, otherwise we would insert a new file extent item 788 * with the same key (offset) as that 0 bytes length file 789 * extent item in the call to setup_items_for_insert() later 790 * in this function. 791 */ 792 if (extent_end == key.offset && extent_end >= search_start) 793 goto delete_extent_item; 794 795 if (extent_end <= search_start) { 796 path->slots[0]++; 797 goto next_slot; 798 } 799 800 found = 1; 801 search_start = max(key.offset, start); 802 if (recow || !modify_tree) { 803 modify_tree = -1; 804 btrfs_release_path(path); 805 continue; 806 } 807 808 /* 809 * | - range to drop - | 810 * | -------- extent -------- | 811 */ 812 if (start > key.offset && end < extent_end) { 813 BUG_ON(del_nr > 0); 814 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 815 ret = -EOPNOTSUPP; 816 break; 817 } 818 819 memcpy(&new_key, &key, sizeof(new_key)); 820 new_key.offset = start; 821 ret = btrfs_duplicate_item(trans, root, path, 822 &new_key); 823 if (ret == -EAGAIN) { 824 btrfs_release_path(path); 825 continue; 826 } 827 if (ret < 0) 828 break; 829 830 leaf = path->nodes[0]; 831 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 832 struct btrfs_file_extent_item); 833 btrfs_set_file_extent_num_bytes(leaf, fi, 834 start - key.offset); 835 836 fi = btrfs_item_ptr(leaf, path->slots[0], 837 struct btrfs_file_extent_item); 838 839 extent_offset += start - key.offset; 840 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 841 btrfs_set_file_extent_num_bytes(leaf, fi, 842 extent_end - start); 843 btrfs_mark_buffer_dirty(leaf); 844 845 if (update_refs && disk_bytenr > 0) { 846 ret = btrfs_inc_extent_ref(trans, root, 847 disk_bytenr, num_bytes, 0, 848 root->root_key.objectid, 849 new_key.objectid, 850 start - extent_offset, 1); 851 BUG_ON(ret); /* -ENOMEM */ 852 } 853 key.offset = start; 854 } 855 /* 856 * | ---- range to drop ----- | 857 * | -------- extent -------- | 858 */ 859 if (start <= key.offset && end < extent_end) { 860 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 861 ret = -EOPNOTSUPP; 862 break; 863 } 864 865 memcpy(&new_key, &key, sizeof(new_key)); 866 new_key.offset = end; 867 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 868 869 extent_offset += end - key.offset; 870 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 871 btrfs_set_file_extent_num_bytes(leaf, fi, 872 extent_end - end); 873 btrfs_mark_buffer_dirty(leaf); 874 if (update_refs && disk_bytenr > 0) 875 inode_sub_bytes(inode, end - key.offset); 876 break; 877 } 878 879 search_start = extent_end; 880 /* 881 * | ---- range to drop ----- | 882 * | -------- extent -------- | 883 */ 884 if (start > key.offset && end >= extent_end) { 885 BUG_ON(del_nr > 0); 886 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 887 ret = -EOPNOTSUPP; 888 break; 889 } 890 891 btrfs_set_file_extent_num_bytes(leaf, fi, 892 start - key.offset); 893 btrfs_mark_buffer_dirty(leaf); 894 if (update_refs && disk_bytenr > 0) 895 inode_sub_bytes(inode, extent_end - start); 896 if (end == extent_end) 897 break; 898 899 path->slots[0]++; 900 goto next_slot; 901 } 902 903 /* 904 * | ---- range to drop ----- | 905 * | ------ extent ------ | 906 */ 907 if (start <= key.offset && end >= extent_end) { 908 delete_extent_item: 909 if (del_nr == 0) { 910 del_slot = path->slots[0]; 911 del_nr = 1; 912 } else { 913 BUG_ON(del_slot + del_nr != path->slots[0]); 914 del_nr++; 915 } 916 917 if (update_refs && 918 extent_type == BTRFS_FILE_EXTENT_INLINE) { 919 inode_sub_bytes(inode, 920 extent_end - key.offset); 921 extent_end = ALIGN(extent_end, 922 root->sectorsize); 923 } else if (update_refs && disk_bytenr > 0) { 924 ret = btrfs_free_extent(trans, root, 925 disk_bytenr, num_bytes, 0, 926 root->root_key.objectid, 927 key.objectid, key.offset - 928 extent_offset, 0); 929 BUG_ON(ret); /* -ENOMEM */ 930 inode_sub_bytes(inode, 931 extent_end - key.offset); 932 } 933 934 if (end == extent_end) 935 break; 936 937 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 938 path->slots[0]++; 939 goto next_slot; 940 } 941 942 ret = btrfs_del_items(trans, root, path, del_slot, 943 del_nr); 944 if (ret) { 945 btrfs_abort_transaction(trans, root, ret); 946 break; 947 } 948 949 del_nr = 0; 950 del_slot = 0; 951 952 btrfs_release_path(path); 953 continue; 954 } 955 956 BUG_ON(1); 957 } 958 959 if (!ret && del_nr > 0) { 960 /* 961 * Set path->slots[0] to first slot, so that after the delete 962 * if items are move off from our leaf to its immediate left or 963 * right neighbor leafs, we end up with a correct and adjusted 964 * path->slots[0] for our insertion (if replace_extent != 0). 965 */ 966 path->slots[0] = del_slot; 967 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 968 if (ret) 969 btrfs_abort_transaction(trans, root, ret); 970 } 971 972 leaf = path->nodes[0]; 973 /* 974 * If btrfs_del_items() was called, it might have deleted a leaf, in 975 * which case it unlocked our path, so check path->locks[0] matches a 976 * write lock. 977 */ 978 if (!ret && replace_extent && leafs_visited == 1 && 979 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 980 path->locks[0] == BTRFS_WRITE_LOCK) && 981 btrfs_leaf_free_space(root, leaf) >= 982 sizeof(struct btrfs_item) + extent_item_size) { 983 984 key.objectid = ino; 985 key.type = BTRFS_EXTENT_DATA_KEY; 986 key.offset = start; 987 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 988 struct btrfs_key slot_key; 989 990 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 991 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 992 path->slots[0]++; 993 } 994 setup_items_for_insert(root, path, &key, 995 &extent_item_size, 996 extent_item_size, 997 sizeof(struct btrfs_item) + 998 extent_item_size, 1); 999 *key_inserted = 1; 1000 } 1001 1002 if (!replace_extent || !(*key_inserted)) 1003 btrfs_release_path(path); 1004 if (drop_end) 1005 *drop_end = found ? min(end, extent_end) : end; 1006 return ret; 1007 } 1008 1009 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1010 struct btrfs_root *root, struct inode *inode, u64 start, 1011 u64 end, int drop_cache) 1012 { 1013 struct btrfs_path *path; 1014 int ret; 1015 1016 path = btrfs_alloc_path(); 1017 if (!path) 1018 return -ENOMEM; 1019 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1020 drop_cache, 0, 0, NULL); 1021 btrfs_free_path(path); 1022 return ret; 1023 } 1024 1025 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1026 u64 objectid, u64 bytenr, u64 orig_offset, 1027 u64 *start, u64 *end) 1028 { 1029 struct btrfs_file_extent_item *fi; 1030 struct btrfs_key key; 1031 u64 extent_end; 1032 1033 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1034 return 0; 1035 1036 btrfs_item_key_to_cpu(leaf, &key, slot); 1037 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1038 return 0; 1039 1040 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1041 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1042 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1043 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1044 btrfs_file_extent_compression(leaf, fi) || 1045 btrfs_file_extent_encryption(leaf, fi) || 1046 btrfs_file_extent_other_encoding(leaf, fi)) 1047 return 0; 1048 1049 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1050 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1051 return 0; 1052 1053 *start = key.offset; 1054 *end = extent_end; 1055 return 1; 1056 } 1057 1058 /* 1059 * Mark extent in the range start - end as written. 1060 * 1061 * This changes extent type from 'pre-allocated' to 'regular'. If only 1062 * part of extent is marked as written, the extent will be split into 1063 * two or three. 1064 */ 1065 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1066 struct inode *inode, u64 start, u64 end) 1067 { 1068 struct btrfs_root *root = BTRFS_I(inode)->root; 1069 struct extent_buffer *leaf; 1070 struct btrfs_path *path; 1071 struct btrfs_file_extent_item *fi; 1072 struct btrfs_key key; 1073 struct btrfs_key new_key; 1074 u64 bytenr; 1075 u64 num_bytes; 1076 u64 extent_end; 1077 u64 orig_offset; 1078 u64 other_start; 1079 u64 other_end; 1080 u64 split; 1081 int del_nr = 0; 1082 int del_slot = 0; 1083 int recow; 1084 int ret; 1085 u64 ino = btrfs_ino(inode); 1086 1087 path = btrfs_alloc_path(); 1088 if (!path) 1089 return -ENOMEM; 1090 again: 1091 recow = 0; 1092 split = start; 1093 key.objectid = ino; 1094 key.type = BTRFS_EXTENT_DATA_KEY; 1095 key.offset = split; 1096 1097 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1098 if (ret < 0) 1099 goto out; 1100 if (ret > 0 && path->slots[0] > 0) 1101 path->slots[0]--; 1102 1103 leaf = path->nodes[0]; 1104 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1105 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY); 1106 fi = btrfs_item_ptr(leaf, path->slots[0], 1107 struct btrfs_file_extent_item); 1108 BUG_ON(btrfs_file_extent_type(leaf, fi) != 1109 BTRFS_FILE_EXTENT_PREALLOC); 1110 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1111 BUG_ON(key.offset > start || extent_end < end); 1112 1113 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1114 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1115 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1116 memcpy(&new_key, &key, sizeof(new_key)); 1117 1118 if (start == key.offset && end < extent_end) { 1119 other_start = 0; 1120 other_end = start; 1121 if (extent_mergeable(leaf, path->slots[0] - 1, 1122 ino, bytenr, orig_offset, 1123 &other_start, &other_end)) { 1124 new_key.offset = end; 1125 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 1126 fi = btrfs_item_ptr(leaf, path->slots[0], 1127 struct btrfs_file_extent_item); 1128 btrfs_set_file_extent_generation(leaf, fi, 1129 trans->transid); 1130 btrfs_set_file_extent_num_bytes(leaf, fi, 1131 extent_end - end); 1132 btrfs_set_file_extent_offset(leaf, fi, 1133 end - orig_offset); 1134 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1135 struct btrfs_file_extent_item); 1136 btrfs_set_file_extent_generation(leaf, fi, 1137 trans->transid); 1138 btrfs_set_file_extent_num_bytes(leaf, fi, 1139 end - other_start); 1140 btrfs_mark_buffer_dirty(leaf); 1141 goto out; 1142 } 1143 } 1144 1145 if (start > key.offset && end == extent_end) { 1146 other_start = end; 1147 other_end = 0; 1148 if (extent_mergeable(leaf, path->slots[0] + 1, 1149 ino, bytenr, orig_offset, 1150 &other_start, &other_end)) { 1151 fi = btrfs_item_ptr(leaf, path->slots[0], 1152 struct btrfs_file_extent_item); 1153 btrfs_set_file_extent_num_bytes(leaf, fi, 1154 start - key.offset); 1155 btrfs_set_file_extent_generation(leaf, fi, 1156 trans->transid); 1157 path->slots[0]++; 1158 new_key.offset = start; 1159 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 1160 1161 fi = btrfs_item_ptr(leaf, path->slots[0], 1162 struct btrfs_file_extent_item); 1163 btrfs_set_file_extent_generation(leaf, fi, 1164 trans->transid); 1165 btrfs_set_file_extent_num_bytes(leaf, fi, 1166 other_end - start); 1167 btrfs_set_file_extent_offset(leaf, fi, 1168 start - orig_offset); 1169 btrfs_mark_buffer_dirty(leaf); 1170 goto out; 1171 } 1172 } 1173 1174 while (start > key.offset || end < extent_end) { 1175 if (key.offset == start) 1176 split = end; 1177 1178 new_key.offset = split; 1179 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1180 if (ret == -EAGAIN) { 1181 btrfs_release_path(path); 1182 goto again; 1183 } 1184 if (ret < 0) { 1185 btrfs_abort_transaction(trans, root, ret); 1186 goto out; 1187 } 1188 1189 leaf = path->nodes[0]; 1190 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1191 struct btrfs_file_extent_item); 1192 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1193 btrfs_set_file_extent_num_bytes(leaf, fi, 1194 split - key.offset); 1195 1196 fi = btrfs_item_ptr(leaf, path->slots[0], 1197 struct btrfs_file_extent_item); 1198 1199 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1200 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1201 btrfs_set_file_extent_num_bytes(leaf, fi, 1202 extent_end - split); 1203 btrfs_mark_buffer_dirty(leaf); 1204 1205 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, 1206 root->root_key.objectid, 1207 ino, orig_offset, 1); 1208 BUG_ON(ret); /* -ENOMEM */ 1209 1210 if (split == start) { 1211 key.offset = start; 1212 } else { 1213 BUG_ON(start != key.offset); 1214 path->slots[0]--; 1215 extent_end = end; 1216 } 1217 recow = 1; 1218 } 1219 1220 other_start = end; 1221 other_end = 0; 1222 if (extent_mergeable(leaf, path->slots[0] + 1, 1223 ino, bytenr, orig_offset, 1224 &other_start, &other_end)) { 1225 if (recow) { 1226 btrfs_release_path(path); 1227 goto again; 1228 } 1229 extent_end = other_end; 1230 del_slot = path->slots[0] + 1; 1231 del_nr++; 1232 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1233 0, root->root_key.objectid, 1234 ino, orig_offset, 0); 1235 BUG_ON(ret); /* -ENOMEM */ 1236 } 1237 other_start = 0; 1238 other_end = start; 1239 if (extent_mergeable(leaf, path->slots[0] - 1, 1240 ino, bytenr, orig_offset, 1241 &other_start, &other_end)) { 1242 if (recow) { 1243 btrfs_release_path(path); 1244 goto again; 1245 } 1246 key.offset = other_start; 1247 del_slot = path->slots[0]; 1248 del_nr++; 1249 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1250 0, root->root_key.objectid, 1251 ino, orig_offset, 0); 1252 BUG_ON(ret); /* -ENOMEM */ 1253 } 1254 if (del_nr == 0) { 1255 fi = btrfs_item_ptr(leaf, path->slots[0], 1256 struct btrfs_file_extent_item); 1257 btrfs_set_file_extent_type(leaf, fi, 1258 BTRFS_FILE_EXTENT_REG); 1259 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1260 btrfs_mark_buffer_dirty(leaf); 1261 } else { 1262 fi = btrfs_item_ptr(leaf, del_slot - 1, 1263 struct btrfs_file_extent_item); 1264 btrfs_set_file_extent_type(leaf, fi, 1265 BTRFS_FILE_EXTENT_REG); 1266 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1267 btrfs_set_file_extent_num_bytes(leaf, fi, 1268 extent_end - key.offset); 1269 btrfs_mark_buffer_dirty(leaf); 1270 1271 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1272 if (ret < 0) { 1273 btrfs_abort_transaction(trans, root, ret); 1274 goto out; 1275 } 1276 } 1277 out: 1278 btrfs_free_path(path); 1279 return 0; 1280 } 1281 1282 /* 1283 * on error we return an unlocked page and the error value 1284 * on success we return a locked page and 0 1285 */ 1286 static int prepare_uptodate_page(struct page *page, u64 pos, 1287 bool force_uptodate) 1288 { 1289 int ret = 0; 1290 1291 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) && 1292 !PageUptodate(page)) { 1293 ret = btrfs_readpage(NULL, page); 1294 if (ret) 1295 return ret; 1296 lock_page(page); 1297 if (!PageUptodate(page)) { 1298 unlock_page(page); 1299 return -EIO; 1300 } 1301 } 1302 return 0; 1303 } 1304 1305 /* 1306 * this just gets pages into the page cache and locks them down. 1307 */ 1308 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1309 size_t num_pages, loff_t pos, 1310 size_t write_bytes, bool force_uptodate) 1311 { 1312 int i; 1313 unsigned long index = pos >> PAGE_CACHE_SHIFT; 1314 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1315 int err = 0; 1316 int faili; 1317 1318 for (i = 0; i < num_pages; i++) { 1319 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1320 mask | __GFP_WRITE); 1321 if (!pages[i]) { 1322 faili = i - 1; 1323 err = -ENOMEM; 1324 goto fail; 1325 } 1326 1327 if (i == 0) 1328 err = prepare_uptodate_page(pages[i], pos, 1329 force_uptodate); 1330 if (i == num_pages - 1) 1331 err = prepare_uptodate_page(pages[i], 1332 pos + write_bytes, false); 1333 if (err) { 1334 page_cache_release(pages[i]); 1335 faili = i - 1; 1336 goto fail; 1337 } 1338 wait_on_page_writeback(pages[i]); 1339 } 1340 1341 return 0; 1342 fail: 1343 while (faili >= 0) { 1344 unlock_page(pages[faili]); 1345 page_cache_release(pages[faili]); 1346 faili--; 1347 } 1348 return err; 1349 1350 } 1351 1352 /* 1353 * This function locks the extent and properly waits for data=ordered extents 1354 * to finish before allowing the pages to be modified if need. 1355 * 1356 * The return value: 1357 * 1 - the extent is locked 1358 * 0 - the extent is not locked, and everything is OK 1359 * -EAGAIN - need re-prepare the pages 1360 * the other < 0 number - Something wrong happens 1361 */ 1362 static noinline int 1363 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages, 1364 size_t num_pages, loff_t pos, 1365 u64 *lockstart, u64 *lockend, 1366 struct extent_state **cached_state) 1367 { 1368 u64 start_pos; 1369 u64 last_pos; 1370 int i; 1371 int ret = 0; 1372 1373 start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1); 1374 last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1; 1375 1376 if (start_pos < inode->i_size) { 1377 struct btrfs_ordered_extent *ordered; 1378 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1379 start_pos, last_pos, 0, cached_state); 1380 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1381 last_pos - start_pos + 1); 1382 if (ordered && 1383 ordered->file_offset + ordered->len > start_pos && 1384 ordered->file_offset <= last_pos) { 1385 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1386 start_pos, last_pos, 1387 cached_state, GFP_NOFS); 1388 for (i = 0; i < num_pages; i++) { 1389 unlock_page(pages[i]); 1390 page_cache_release(pages[i]); 1391 } 1392 btrfs_start_ordered_extent(inode, ordered, 1); 1393 btrfs_put_ordered_extent(ordered); 1394 return -EAGAIN; 1395 } 1396 if (ordered) 1397 btrfs_put_ordered_extent(ordered); 1398 1399 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, 1400 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC | 1401 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1402 0, 0, cached_state, GFP_NOFS); 1403 *lockstart = start_pos; 1404 *lockend = last_pos; 1405 ret = 1; 1406 } 1407 1408 for (i = 0; i < num_pages; i++) { 1409 if (clear_page_dirty_for_io(pages[i])) 1410 account_page_redirty(pages[i]); 1411 set_page_extent_mapped(pages[i]); 1412 WARN_ON(!PageLocked(pages[i])); 1413 } 1414 1415 return ret; 1416 } 1417 1418 static noinline int check_can_nocow(struct inode *inode, loff_t pos, 1419 size_t *write_bytes) 1420 { 1421 struct btrfs_root *root = BTRFS_I(inode)->root; 1422 struct btrfs_ordered_extent *ordered; 1423 u64 lockstart, lockend; 1424 u64 num_bytes; 1425 int ret; 1426 1427 ret = btrfs_start_write_no_snapshoting(root); 1428 if (!ret) 1429 return -ENOSPC; 1430 1431 lockstart = round_down(pos, root->sectorsize); 1432 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1; 1433 1434 while (1) { 1435 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1436 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1437 lockend - lockstart + 1); 1438 if (!ordered) { 1439 break; 1440 } 1441 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1442 btrfs_start_ordered_extent(inode, ordered, 1); 1443 btrfs_put_ordered_extent(ordered); 1444 } 1445 1446 num_bytes = lockend - lockstart + 1; 1447 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL); 1448 if (ret <= 0) { 1449 ret = 0; 1450 btrfs_end_write_no_snapshoting(root); 1451 } else { 1452 *write_bytes = min_t(size_t, *write_bytes , 1453 num_bytes - pos + lockstart); 1454 } 1455 1456 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1457 1458 return ret; 1459 } 1460 1461 static noinline ssize_t __btrfs_buffered_write(struct file *file, 1462 struct iov_iter *i, 1463 loff_t pos) 1464 { 1465 struct inode *inode = file_inode(file); 1466 struct btrfs_root *root = BTRFS_I(inode)->root; 1467 struct page **pages = NULL; 1468 struct extent_state *cached_state = NULL; 1469 u64 release_bytes = 0; 1470 u64 lockstart; 1471 u64 lockend; 1472 unsigned long first_index; 1473 size_t num_written = 0; 1474 int nrptrs; 1475 int ret = 0; 1476 bool only_release_metadata = false; 1477 bool force_page_uptodate = false; 1478 bool need_unlock; 1479 1480 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_CACHE_SIZE), 1481 PAGE_CACHE_SIZE / (sizeof(struct page *))); 1482 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1483 nrptrs = max(nrptrs, 8); 1484 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1485 if (!pages) 1486 return -ENOMEM; 1487 1488 first_index = pos >> PAGE_CACHE_SHIFT; 1489 1490 while (iov_iter_count(i) > 0) { 1491 size_t offset = pos & (PAGE_CACHE_SIZE - 1); 1492 size_t write_bytes = min(iov_iter_count(i), 1493 nrptrs * (size_t)PAGE_CACHE_SIZE - 1494 offset); 1495 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1496 PAGE_CACHE_SIZE); 1497 size_t reserve_bytes; 1498 size_t dirty_pages; 1499 size_t copied; 1500 1501 WARN_ON(num_pages > nrptrs); 1502 1503 /* 1504 * Fault pages before locking them in prepare_pages 1505 * to avoid recursive lock 1506 */ 1507 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1508 ret = -EFAULT; 1509 break; 1510 } 1511 1512 reserve_bytes = num_pages << PAGE_CACHE_SHIFT; 1513 ret = btrfs_check_data_free_space(inode, reserve_bytes, write_bytes); 1514 if (ret == -ENOSPC && 1515 (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1516 BTRFS_INODE_PREALLOC))) { 1517 ret = check_can_nocow(inode, pos, &write_bytes); 1518 if (ret > 0) { 1519 only_release_metadata = true; 1520 /* 1521 * our prealloc extent may be smaller than 1522 * write_bytes, so scale down. 1523 */ 1524 num_pages = DIV_ROUND_UP(write_bytes + offset, 1525 PAGE_CACHE_SIZE); 1526 reserve_bytes = num_pages << PAGE_CACHE_SHIFT; 1527 ret = 0; 1528 } else { 1529 ret = -ENOSPC; 1530 } 1531 } 1532 1533 if (ret) 1534 break; 1535 1536 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes); 1537 if (ret) { 1538 if (!only_release_metadata) 1539 btrfs_free_reserved_data_space(inode, 1540 reserve_bytes); 1541 else 1542 btrfs_end_write_no_snapshoting(root); 1543 break; 1544 } 1545 1546 release_bytes = reserve_bytes; 1547 need_unlock = false; 1548 again: 1549 /* 1550 * This is going to setup the pages array with the number of 1551 * pages we want, so we don't really need to worry about the 1552 * contents of pages from loop to loop 1553 */ 1554 ret = prepare_pages(inode, pages, num_pages, 1555 pos, write_bytes, 1556 force_page_uptodate); 1557 if (ret) 1558 break; 1559 1560 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages, 1561 pos, &lockstart, &lockend, 1562 &cached_state); 1563 if (ret < 0) { 1564 if (ret == -EAGAIN) 1565 goto again; 1566 break; 1567 } else if (ret > 0) { 1568 need_unlock = true; 1569 ret = 0; 1570 } 1571 1572 copied = btrfs_copy_from_user(pos, num_pages, 1573 write_bytes, pages, i); 1574 1575 /* 1576 * if we have trouble faulting in the pages, fall 1577 * back to one page at a time 1578 */ 1579 if (copied < write_bytes) 1580 nrptrs = 1; 1581 1582 if (copied == 0) { 1583 force_page_uptodate = true; 1584 dirty_pages = 0; 1585 } else { 1586 force_page_uptodate = false; 1587 dirty_pages = DIV_ROUND_UP(copied + offset, 1588 PAGE_CACHE_SIZE); 1589 } 1590 1591 /* 1592 * If we had a short copy we need to release the excess delaloc 1593 * bytes we reserved. We need to increment outstanding_extents 1594 * because btrfs_delalloc_release_space will decrement it, but 1595 * we still have an outstanding extent for the chunk we actually 1596 * managed to copy. 1597 */ 1598 if (num_pages > dirty_pages) { 1599 release_bytes = (num_pages - dirty_pages) << 1600 PAGE_CACHE_SHIFT; 1601 if (copied > 0) { 1602 spin_lock(&BTRFS_I(inode)->lock); 1603 BTRFS_I(inode)->outstanding_extents++; 1604 spin_unlock(&BTRFS_I(inode)->lock); 1605 } 1606 if (only_release_metadata) 1607 btrfs_delalloc_release_metadata(inode, 1608 release_bytes); 1609 else 1610 btrfs_delalloc_release_space(inode, 1611 release_bytes); 1612 } 1613 1614 release_bytes = dirty_pages << PAGE_CACHE_SHIFT; 1615 1616 if (copied > 0) 1617 ret = btrfs_dirty_pages(root, inode, pages, 1618 dirty_pages, pos, copied, 1619 NULL); 1620 if (need_unlock) 1621 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1622 lockstart, lockend, &cached_state, 1623 GFP_NOFS); 1624 if (ret) { 1625 btrfs_drop_pages(pages, num_pages); 1626 break; 1627 } 1628 1629 release_bytes = 0; 1630 if (only_release_metadata) 1631 btrfs_end_write_no_snapshoting(root); 1632 1633 if (only_release_metadata && copied > 0) { 1634 lockstart = round_down(pos, root->sectorsize); 1635 lockend = lockstart + 1636 (dirty_pages << PAGE_CACHE_SHIFT) - 1; 1637 1638 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1639 lockend, EXTENT_NORESERVE, NULL, 1640 NULL, GFP_NOFS); 1641 only_release_metadata = false; 1642 } 1643 1644 btrfs_drop_pages(pages, num_pages); 1645 1646 cond_resched(); 1647 1648 balance_dirty_pages_ratelimited(inode->i_mapping); 1649 if (dirty_pages < (root->nodesize >> PAGE_CACHE_SHIFT) + 1) 1650 btrfs_btree_balance_dirty(root); 1651 1652 pos += copied; 1653 num_written += copied; 1654 } 1655 1656 kfree(pages); 1657 1658 if (release_bytes) { 1659 if (only_release_metadata) { 1660 btrfs_end_write_no_snapshoting(root); 1661 btrfs_delalloc_release_metadata(inode, release_bytes); 1662 } else { 1663 btrfs_delalloc_release_space(inode, release_bytes); 1664 } 1665 } 1666 1667 return num_written ? num_written : ret; 1668 } 1669 1670 static ssize_t __btrfs_direct_write(struct kiocb *iocb, 1671 struct iov_iter *from, 1672 loff_t pos) 1673 { 1674 struct file *file = iocb->ki_filp; 1675 struct inode *inode = file_inode(file); 1676 ssize_t written; 1677 ssize_t written_buffered; 1678 loff_t endbyte; 1679 int err; 1680 1681 written = generic_file_direct_write(iocb, from, pos); 1682 1683 if (written < 0 || !iov_iter_count(from)) 1684 return written; 1685 1686 pos += written; 1687 written_buffered = __btrfs_buffered_write(file, from, pos); 1688 if (written_buffered < 0) { 1689 err = written_buffered; 1690 goto out; 1691 } 1692 /* 1693 * Ensure all data is persisted. We want the next direct IO read to be 1694 * able to read what was just written. 1695 */ 1696 endbyte = pos + written_buffered - 1; 1697 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1698 if (err) 1699 goto out; 1700 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1701 if (err) 1702 goto out; 1703 written += written_buffered; 1704 iocb->ki_pos = pos + written_buffered; 1705 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT, 1706 endbyte >> PAGE_CACHE_SHIFT); 1707 out: 1708 return written ? written : err; 1709 } 1710 1711 static void update_time_for_write(struct inode *inode) 1712 { 1713 struct timespec now; 1714 1715 if (IS_NOCMTIME(inode)) 1716 return; 1717 1718 now = current_fs_time(inode->i_sb); 1719 if (!timespec_equal(&inode->i_mtime, &now)) 1720 inode->i_mtime = now; 1721 1722 if (!timespec_equal(&inode->i_ctime, &now)) 1723 inode->i_ctime = now; 1724 1725 if (IS_I_VERSION(inode)) 1726 inode_inc_iversion(inode); 1727 } 1728 1729 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1730 struct iov_iter *from) 1731 { 1732 struct file *file = iocb->ki_filp; 1733 struct inode *inode = file_inode(file); 1734 struct btrfs_root *root = BTRFS_I(inode)->root; 1735 u64 start_pos; 1736 u64 end_pos; 1737 ssize_t num_written = 0; 1738 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1739 ssize_t err; 1740 loff_t pos; 1741 size_t count; 1742 1743 mutex_lock(&inode->i_mutex); 1744 err = generic_write_checks(iocb, from); 1745 if (err <= 0) { 1746 mutex_unlock(&inode->i_mutex); 1747 return err; 1748 } 1749 1750 current->backing_dev_info = inode_to_bdi(inode); 1751 err = file_remove_suid(file); 1752 if (err) { 1753 mutex_unlock(&inode->i_mutex); 1754 goto out; 1755 } 1756 1757 /* 1758 * If BTRFS flips readonly due to some impossible error 1759 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1760 * although we have opened a file as writable, we have 1761 * to stop this write operation to ensure FS consistency. 1762 */ 1763 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1764 mutex_unlock(&inode->i_mutex); 1765 err = -EROFS; 1766 goto out; 1767 } 1768 1769 /* 1770 * We reserve space for updating the inode when we reserve space for the 1771 * extent we are going to write, so we will enospc out there. We don't 1772 * need to start yet another transaction to update the inode as we will 1773 * update the inode when we finish writing whatever data we write. 1774 */ 1775 update_time_for_write(inode); 1776 1777 pos = iocb->ki_pos; 1778 count = iov_iter_count(from); 1779 start_pos = round_down(pos, root->sectorsize); 1780 if (start_pos > i_size_read(inode)) { 1781 /* Expand hole size to cover write data, preventing empty gap */ 1782 end_pos = round_up(pos + count, root->sectorsize); 1783 err = btrfs_cont_expand(inode, i_size_read(inode), end_pos); 1784 if (err) { 1785 mutex_unlock(&inode->i_mutex); 1786 goto out; 1787 } 1788 } 1789 1790 if (sync) 1791 atomic_inc(&BTRFS_I(inode)->sync_writers); 1792 1793 if (iocb->ki_flags & IOCB_DIRECT) { 1794 num_written = __btrfs_direct_write(iocb, from, pos); 1795 } else { 1796 num_written = __btrfs_buffered_write(file, from, pos); 1797 if (num_written > 0) 1798 iocb->ki_pos = pos + num_written; 1799 } 1800 1801 mutex_unlock(&inode->i_mutex); 1802 1803 /* 1804 * We also have to set last_sub_trans to the current log transid, 1805 * otherwise subsequent syncs to a file that's been synced in this 1806 * transaction will appear to have already occured. 1807 */ 1808 spin_lock(&BTRFS_I(inode)->lock); 1809 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1810 spin_unlock(&BTRFS_I(inode)->lock); 1811 if (num_written > 0) { 1812 err = generic_write_sync(file, pos, num_written); 1813 if (err < 0) 1814 num_written = err; 1815 } 1816 1817 if (sync) 1818 atomic_dec(&BTRFS_I(inode)->sync_writers); 1819 out: 1820 current->backing_dev_info = NULL; 1821 return num_written ? num_written : err; 1822 } 1823 1824 int btrfs_release_file(struct inode *inode, struct file *filp) 1825 { 1826 if (filp->private_data) 1827 btrfs_ioctl_trans_end(filp); 1828 /* 1829 * ordered_data_close is set by settattr when we are about to truncate 1830 * a file from a non-zero size to a zero size. This tries to 1831 * flush down new bytes that may have been written if the 1832 * application were using truncate to replace a file in place. 1833 */ 1834 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 1835 &BTRFS_I(inode)->runtime_flags)) 1836 filemap_flush(inode->i_mapping); 1837 return 0; 1838 } 1839 1840 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 1841 { 1842 int ret; 1843 1844 atomic_inc(&BTRFS_I(inode)->sync_writers); 1845 ret = btrfs_fdatawrite_range(inode, start, end); 1846 atomic_dec(&BTRFS_I(inode)->sync_writers); 1847 1848 return ret; 1849 } 1850 1851 /* 1852 * fsync call for both files and directories. This logs the inode into 1853 * the tree log instead of forcing full commits whenever possible. 1854 * 1855 * It needs to call filemap_fdatawait so that all ordered extent updates are 1856 * in the metadata btree are up to date for copying to the log. 1857 * 1858 * It drops the inode mutex before doing the tree log commit. This is an 1859 * important optimization for directories because holding the mutex prevents 1860 * new operations on the dir while we write to disk. 1861 */ 1862 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1863 { 1864 struct dentry *dentry = file->f_path.dentry; 1865 struct inode *inode = d_inode(dentry); 1866 struct btrfs_root *root = BTRFS_I(inode)->root; 1867 struct btrfs_trans_handle *trans; 1868 struct btrfs_log_ctx ctx; 1869 int ret = 0; 1870 bool full_sync = 0; 1871 1872 trace_btrfs_sync_file(file, datasync); 1873 1874 /* 1875 * We write the dirty pages in the range and wait until they complete 1876 * out of the ->i_mutex. If so, we can flush the dirty pages by 1877 * multi-task, and make the performance up. See 1878 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1879 */ 1880 ret = start_ordered_ops(inode, start, end); 1881 if (ret) 1882 return ret; 1883 1884 mutex_lock(&inode->i_mutex); 1885 atomic_inc(&root->log_batch); 1886 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1887 &BTRFS_I(inode)->runtime_flags); 1888 /* 1889 * We might have have had more pages made dirty after calling 1890 * start_ordered_ops and before acquiring the inode's i_mutex. 1891 */ 1892 if (full_sync) { 1893 /* 1894 * For a full sync, we need to make sure any ordered operations 1895 * start and finish before we start logging the inode, so that 1896 * all extents are persisted and the respective file extent 1897 * items are in the fs/subvol btree. 1898 */ 1899 ret = btrfs_wait_ordered_range(inode, start, end - start + 1); 1900 } else { 1901 /* 1902 * Start any new ordered operations before starting to log the 1903 * inode. We will wait for them to finish in btrfs_sync_log(). 1904 * 1905 * Right before acquiring the inode's mutex, we might have new 1906 * writes dirtying pages, which won't immediately start the 1907 * respective ordered operations - that is done through the 1908 * fill_delalloc callbacks invoked from the writepage and 1909 * writepages address space operations. So make sure we start 1910 * all ordered operations before starting to log our inode. Not 1911 * doing this means that while logging the inode, writeback 1912 * could start and invoke writepage/writepages, which would call 1913 * the fill_delalloc callbacks (cow_file_range, 1914 * submit_compressed_extents). These callbacks add first an 1915 * extent map to the modified list of extents and then create 1916 * the respective ordered operation, which means in 1917 * tree-log.c:btrfs_log_inode() we might capture all existing 1918 * ordered operations (with btrfs_get_logged_extents()) before 1919 * the fill_delalloc callback adds its ordered operation, and by 1920 * the time we visit the modified list of extent maps (with 1921 * btrfs_log_changed_extents()), we see and process the extent 1922 * map they created. We then use the extent map to construct a 1923 * file extent item for logging without waiting for the 1924 * respective ordered operation to finish - this file extent 1925 * item points to a disk location that might not have yet been 1926 * written to, containing random data - so after a crash a log 1927 * replay will make our inode have file extent items that point 1928 * to disk locations containing invalid data, as we returned 1929 * success to userspace without waiting for the respective 1930 * ordered operation to finish, because it wasn't captured by 1931 * btrfs_get_logged_extents(). 1932 */ 1933 ret = start_ordered_ops(inode, start, end); 1934 } 1935 if (ret) { 1936 mutex_unlock(&inode->i_mutex); 1937 goto out; 1938 } 1939 atomic_inc(&root->log_batch); 1940 1941 /* 1942 * If the last transaction that changed this file was before the current 1943 * transaction and we have the full sync flag set in our inode, we can 1944 * bail out now without any syncing. 1945 * 1946 * Note that we can't bail out if the full sync flag isn't set. This is 1947 * because when the full sync flag is set we start all ordered extents 1948 * and wait for them to fully complete - when they complete they update 1949 * the inode's last_trans field through: 1950 * 1951 * btrfs_finish_ordered_io() -> 1952 * btrfs_update_inode_fallback() -> 1953 * btrfs_update_inode() -> 1954 * btrfs_set_inode_last_trans() 1955 * 1956 * So we are sure that last_trans is up to date and can do this check to 1957 * bail out safely. For the fast path, when the full sync flag is not 1958 * set in our inode, we can not do it because we start only our ordered 1959 * extents and don't wait for them to complete (that is when 1960 * btrfs_finish_ordered_io runs), so here at this point their last_trans 1961 * value might be less than or equals to fs_info->last_trans_committed, 1962 * and setting a speculative last_trans for an inode when a buffered 1963 * write is made (such as fs_info->generation + 1 for example) would not 1964 * be reliable since after setting the value and before fsync is called 1965 * any number of transactions can start and commit (transaction kthread 1966 * commits the current transaction periodically), and a transaction 1967 * commit does not start nor waits for ordered extents to complete. 1968 */ 1969 smp_mb(); 1970 if (btrfs_inode_in_log(inode, root->fs_info->generation) || 1971 (full_sync && BTRFS_I(inode)->last_trans <= 1972 root->fs_info->last_trans_committed)) { 1973 /* 1974 * We'v had everything committed since the last time we were 1975 * modified so clear this flag in case it was set for whatever 1976 * reason, it's no longer relevant. 1977 */ 1978 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1979 &BTRFS_I(inode)->runtime_flags); 1980 mutex_unlock(&inode->i_mutex); 1981 goto out; 1982 } 1983 1984 /* 1985 * ok we haven't committed the transaction yet, lets do a commit 1986 */ 1987 if (file->private_data) 1988 btrfs_ioctl_trans_end(file); 1989 1990 /* 1991 * We use start here because we will need to wait on the IO to complete 1992 * in btrfs_sync_log, which could require joining a transaction (for 1993 * example checking cross references in the nocow path). If we use join 1994 * here we could get into a situation where we're waiting on IO to 1995 * happen that is blocked on a transaction trying to commit. With start 1996 * we inc the extwriter counter, so we wait for all extwriters to exit 1997 * before we start blocking join'ers. This comment is to keep somebody 1998 * from thinking they are super smart and changing this to 1999 * btrfs_join_transaction *cough*Josef*cough*. 2000 */ 2001 trans = btrfs_start_transaction(root, 0); 2002 if (IS_ERR(trans)) { 2003 ret = PTR_ERR(trans); 2004 mutex_unlock(&inode->i_mutex); 2005 goto out; 2006 } 2007 trans->sync = true; 2008 2009 btrfs_init_log_ctx(&ctx); 2010 2011 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx); 2012 if (ret < 0) { 2013 /* Fallthrough and commit/free transaction. */ 2014 ret = 1; 2015 } 2016 2017 /* we've logged all the items and now have a consistent 2018 * version of the file in the log. It is possible that 2019 * someone will come in and modify the file, but that's 2020 * fine because the log is consistent on disk, and we 2021 * have references to all of the file's extents 2022 * 2023 * It is possible that someone will come in and log the 2024 * file again, but that will end up using the synchronization 2025 * inside btrfs_sync_log to keep things safe. 2026 */ 2027 mutex_unlock(&inode->i_mutex); 2028 2029 /* 2030 * If any of the ordered extents had an error, just return it to user 2031 * space, so that the application knows some writes didn't succeed and 2032 * can take proper action (retry for e.g.). Blindly committing the 2033 * transaction in this case, would fool userspace that everything was 2034 * successful. And we also want to make sure our log doesn't contain 2035 * file extent items pointing to extents that weren't fully written to - 2036 * just like in the non fast fsync path, where we check for the ordered 2037 * operation's error flag before writing to the log tree and return -EIO 2038 * if any of them had this flag set (btrfs_wait_ordered_range) - 2039 * therefore we need to check for errors in the ordered operations, 2040 * which are indicated by ctx.io_err. 2041 */ 2042 if (ctx.io_err) { 2043 btrfs_end_transaction(trans, root); 2044 ret = ctx.io_err; 2045 goto out; 2046 } 2047 2048 if (ret != BTRFS_NO_LOG_SYNC) { 2049 if (!ret) { 2050 ret = btrfs_sync_log(trans, root, &ctx); 2051 if (!ret) { 2052 ret = btrfs_end_transaction(trans, root); 2053 goto out; 2054 } 2055 } 2056 if (!full_sync) { 2057 ret = btrfs_wait_ordered_range(inode, start, 2058 end - start + 1); 2059 if (ret) { 2060 btrfs_end_transaction(trans, root); 2061 goto out; 2062 } 2063 } 2064 ret = btrfs_commit_transaction(trans, root); 2065 } else { 2066 ret = btrfs_end_transaction(trans, root); 2067 } 2068 out: 2069 return ret > 0 ? -EIO : ret; 2070 } 2071 2072 static const struct vm_operations_struct btrfs_file_vm_ops = { 2073 .fault = filemap_fault, 2074 .map_pages = filemap_map_pages, 2075 .page_mkwrite = btrfs_page_mkwrite, 2076 }; 2077 2078 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2079 { 2080 struct address_space *mapping = filp->f_mapping; 2081 2082 if (!mapping->a_ops->readpage) 2083 return -ENOEXEC; 2084 2085 file_accessed(filp); 2086 vma->vm_ops = &btrfs_file_vm_ops; 2087 2088 return 0; 2089 } 2090 2091 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf, 2092 int slot, u64 start, u64 end) 2093 { 2094 struct btrfs_file_extent_item *fi; 2095 struct btrfs_key key; 2096 2097 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2098 return 0; 2099 2100 btrfs_item_key_to_cpu(leaf, &key, slot); 2101 if (key.objectid != btrfs_ino(inode) || 2102 key.type != BTRFS_EXTENT_DATA_KEY) 2103 return 0; 2104 2105 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2106 2107 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2108 return 0; 2109 2110 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2111 return 0; 2112 2113 if (key.offset == end) 2114 return 1; 2115 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2116 return 1; 2117 return 0; 2118 } 2119 2120 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode, 2121 struct btrfs_path *path, u64 offset, u64 end) 2122 { 2123 struct btrfs_root *root = BTRFS_I(inode)->root; 2124 struct extent_buffer *leaf; 2125 struct btrfs_file_extent_item *fi; 2126 struct extent_map *hole_em; 2127 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2128 struct btrfs_key key; 2129 int ret; 2130 2131 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) 2132 goto out; 2133 2134 key.objectid = btrfs_ino(inode); 2135 key.type = BTRFS_EXTENT_DATA_KEY; 2136 key.offset = offset; 2137 2138 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2139 if (ret < 0) 2140 return ret; 2141 BUG_ON(!ret); 2142 2143 leaf = path->nodes[0]; 2144 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) { 2145 u64 num_bytes; 2146 2147 path->slots[0]--; 2148 fi = btrfs_item_ptr(leaf, path->slots[0], 2149 struct btrfs_file_extent_item); 2150 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2151 end - offset; 2152 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2153 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2154 btrfs_set_file_extent_offset(leaf, fi, 0); 2155 btrfs_mark_buffer_dirty(leaf); 2156 goto out; 2157 } 2158 2159 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2160 u64 num_bytes; 2161 2162 key.offset = offset; 2163 btrfs_set_item_key_safe(root->fs_info, path, &key); 2164 fi = btrfs_item_ptr(leaf, path->slots[0], 2165 struct btrfs_file_extent_item); 2166 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2167 offset; 2168 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2169 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2170 btrfs_set_file_extent_offset(leaf, fi, 0); 2171 btrfs_mark_buffer_dirty(leaf); 2172 goto out; 2173 } 2174 btrfs_release_path(path); 2175 2176 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 2177 0, 0, end - offset, 0, end - offset, 2178 0, 0, 0); 2179 if (ret) 2180 return ret; 2181 2182 out: 2183 btrfs_release_path(path); 2184 2185 hole_em = alloc_extent_map(); 2186 if (!hole_em) { 2187 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2188 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2189 &BTRFS_I(inode)->runtime_flags); 2190 } else { 2191 hole_em->start = offset; 2192 hole_em->len = end - offset; 2193 hole_em->ram_bytes = hole_em->len; 2194 hole_em->orig_start = offset; 2195 2196 hole_em->block_start = EXTENT_MAP_HOLE; 2197 hole_em->block_len = 0; 2198 hole_em->orig_block_len = 0; 2199 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 2200 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2201 hole_em->generation = trans->transid; 2202 2203 do { 2204 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2205 write_lock(&em_tree->lock); 2206 ret = add_extent_mapping(em_tree, hole_em, 1); 2207 write_unlock(&em_tree->lock); 2208 } while (ret == -EEXIST); 2209 free_extent_map(hole_em); 2210 if (ret) 2211 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2212 &BTRFS_I(inode)->runtime_flags); 2213 } 2214 2215 return 0; 2216 } 2217 2218 /* 2219 * Find a hole extent on given inode and change start/len to the end of hole 2220 * extent.(hole/vacuum extent whose em->start <= start && 2221 * em->start + em->len > start) 2222 * When a hole extent is found, return 1 and modify start/len. 2223 */ 2224 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2225 { 2226 struct extent_map *em; 2227 int ret = 0; 2228 2229 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0); 2230 if (IS_ERR_OR_NULL(em)) { 2231 if (!em) 2232 ret = -ENOMEM; 2233 else 2234 ret = PTR_ERR(em); 2235 return ret; 2236 } 2237 2238 /* Hole or vacuum extent(only exists in no-hole mode) */ 2239 if (em->block_start == EXTENT_MAP_HOLE) { 2240 ret = 1; 2241 *len = em->start + em->len > *start + *len ? 2242 0 : *start + *len - em->start - em->len; 2243 *start = em->start + em->len; 2244 } 2245 free_extent_map(em); 2246 return ret; 2247 } 2248 2249 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2250 { 2251 struct btrfs_root *root = BTRFS_I(inode)->root; 2252 struct extent_state *cached_state = NULL; 2253 struct btrfs_path *path; 2254 struct btrfs_block_rsv *rsv; 2255 struct btrfs_trans_handle *trans; 2256 u64 lockstart; 2257 u64 lockend; 2258 u64 tail_start; 2259 u64 tail_len; 2260 u64 orig_start = offset; 2261 u64 cur_offset; 2262 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 2263 u64 drop_end; 2264 int ret = 0; 2265 int err = 0; 2266 int rsv_count; 2267 bool same_page; 2268 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES); 2269 u64 ino_size; 2270 bool truncated_page = false; 2271 bool updated_inode = false; 2272 2273 ret = btrfs_wait_ordered_range(inode, offset, len); 2274 if (ret) 2275 return ret; 2276 2277 mutex_lock(&inode->i_mutex); 2278 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE); 2279 ret = find_first_non_hole(inode, &offset, &len); 2280 if (ret < 0) 2281 goto out_only_mutex; 2282 if (ret && !len) { 2283 /* Already in a large hole */ 2284 ret = 0; 2285 goto out_only_mutex; 2286 } 2287 2288 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize); 2289 lockend = round_down(offset + len, 2290 BTRFS_I(inode)->root->sectorsize) - 1; 2291 same_page = ((offset >> PAGE_CACHE_SHIFT) == 2292 ((offset + len - 1) >> PAGE_CACHE_SHIFT)); 2293 2294 /* 2295 * We needn't truncate any page which is beyond the end of the file 2296 * because we are sure there is no data there. 2297 */ 2298 /* 2299 * Only do this if we are in the same page and we aren't doing the 2300 * entire page. 2301 */ 2302 if (same_page && len < PAGE_CACHE_SIZE) { 2303 if (offset < ino_size) { 2304 truncated_page = true; 2305 ret = btrfs_truncate_page(inode, offset, len, 0); 2306 } else { 2307 ret = 0; 2308 } 2309 goto out_only_mutex; 2310 } 2311 2312 /* zero back part of the first page */ 2313 if (offset < ino_size) { 2314 truncated_page = true; 2315 ret = btrfs_truncate_page(inode, offset, 0, 0); 2316 if (ret) { 2317 mutex_unlock(&inode->i_mutex); 2318 return ret; 2319 } 2320 } 2321 2322 /* Check the aligned pages after the first unaligned page, 2323 * if offset != orig_start, which means the first unaligned page 2324 * including serveral following pages are already in holes, 2325 * the extra check can be skipped */ 2326 if (offset == orig_start) { 2327 /* after truncate page, check hole again */ 2328 len = offset + len - lockstart; 2329 offset = lockstart; 2330 ret = find_first_non_hole(inode, &offset, &len); 2331 if (ret < 0) 2332 goto out_only_mutex; 2333 if (ret && !len) { 2334 ret = 0; 2335 goto out_only_mutex; 2336 } 2337 lockstart = offset; 2338 } 2339 2340 /* Check the tail unaligned part is in a hole */ 2341 tail_start = lockend + 1; 2342 tail_len = offset + len - tail_start; 2343 if (tail_len) { 2344 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2345 if (unlikely(ret < 0)) 2346 goto out_only_mutex; 2347 if (!ret) { 2348 /* zero the front end of the last page */ 2349 if (tail_start + tail_len < ino_size) { 2350 truncated_page = true; 2351 ret = btrfs_truncate_page(inode, 2352 tail_start + tail_len, 0, 1); 2353 if (ret) 2354 goto out_only_mutex; 2355 } 2356 } 2357 } 2358 2359 if (lockend < lockstart) { 2360 ret = 0; 2361 goto out_only_mutex; 2362 } 2363 2364 while (1) { 2365 struct btrfs_ordered_extent *ordered; 2366 2367 truncate_pagecache_range(inode, lockstart, lockend); 2368 2369 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2370 0, &cached_state); 2371 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2372 2373 /* 2374 * We need to make sure we have no ordered extents in this range 2375 * and nobody raced in and read a page in this range, if we did 2376 * we need to try again. 2377 */ 2378 if ((!ordered || 2379 (ordered->file_offset + ordered->len <= lockstart || 2380 ordered->file_offset > lockend)) && 2381 !btrfs_page_exists_in_range(inode, lockstart, lockend)) { 2382 if (ordered) 2383 btrfs_put_ordered_extent(ordered); 2384 break; 2385 } 2386 if (ordered) 2387 btrfs_put_ordered_extent(ordered); 2388 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2389 lockend, &cached_state, GFP_NOFS); 2390 ret = btrfs_wait_ordered_range(inode, lockstart, 2391 lockend - lockstart + 1); 2392 if (ret) { 2393 mutex_unlock(&inode->i_mutex); 2394 return ret; 2395 } 2396 } 2397 2398 path = btrfs_alloc_path(); 2399 if (!path) { 2400 ret = -ENOMEM; 2401 goto out; 2402 } 2403 2404 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2405 if (!rsv) { 2406 ret = -ENOMEM; 2407 goto out_free; 2408 } 2409 rsv->size = btrfs_calc_trunc_metadata_size(root, 1); 2410 rsv->failfast = 1; 2411 2412 /* 2413 * 1 - update the inode 2414 * 1 - removing the extents in the range 2415 * 1 - adding the hole extent if no_holes isn't set 2416 */ 2417 rsv_count = no_holes ? 2 : 3; 2418 trans = btrfs_start_transaction(root, rsv_count); 2419 if (IS_ERR(trans)) { 2420 err = PTR_ERR(trans); 2421 goto out_free; 2422 } 2423 2424 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 2425 min_size); 2426 BUG_ON(ret); 2427 trans->block_rsv = rsv; 2428 2429 cur_offset = lockstart; 2430 len = lockend - cur_offset; 2431 while (cur_offset < lockend) { 2432 ret = __btrfs_drop_extents(trans, root, inode, path, 2433 cur_offset, lockend + 1, 2434 &drop_end, 1, 0, 0, NULL); 2435 if (ret != -ENOSPC) 2436 break; 2437 2438 trans->block_rsv = &root->fs_info->trans_block_rsv; 2439 2440 if (cur_offset < ino_size) { 2441 ret = fill_holes(trans, inode, path, cur_offset, 2442 drop_end); 2443 if (ret) { 2444 err = ret; 2445 break; 2446 } 2447 } 2448 2449 cur_offset = drop_end; 2450 2451 ret = btrfs_update_inode(trans, root, inode); 2452 if (ret) { 2453 err = ret; 2454 break; 2455 } 2456 2457 btrfs_end_transaction(trans, root); 2458 btrfs_btree_balance_dirty(root); 2459 2460 trans = btrfs_start_transaction(root, rsv_count); 2461 if (IS_ERR(trans)) { 2462 ret = PTR_ERR(trans); 2463 trans = NULL; 2464 break; 2465 } 2466 2467 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 2468 rsv, min_size); 2469 BUG_ON(ret); /* shouldn't happen */ 2470 trans->block_rsv = rsv; 2471 2472 ret = find_first_non_hole(inode, &cur_offset, &len); 2473 if (unlikely(ret < 0)) 2474 break; 2475 if (ret && !len) { 2476 ret = 0; 2477 break; 2478 } 2479 } 2480 2481 if (ret) { 2482 err = ret; 2483 goto out_trans; 2484 } 2485 2486 trans->block_rsv = &root->fs_info->trans_block_rsv; 2487 /* 2488 * Don't insert file hole extent item if it's for a range beyond eof 2489 * (because it's useless) or if it represents a 0 bytes range (when 2490 * cur_offset == drop_end). 2491 */ 2492 if (cur_offset < ino_size && cur_offset < drop_end) { 2493 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2494 if (ret) { 2495 err = ret; 2496 goto out_trans; 2497 } 2498 } 2499 2500 out_trans: 2501 if (!trans) 2502 goto out_free; 2503 2504 inode_inc_iversion(inode); 2505 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2506 2507 trans->block_rsv = &root->fs_info->trans_block_rsv; 2508 ret = btrfs_update_inode(trans, root, inode); 2509 updated_inode = true; 2510 btrfs_end_transaction(trans, root); 2511 btrfs_btree_balance_dirty(root); 2512 out_free: 2513 btrfs_free_path(path); 2514 btrfs_free_block_rsv(root, rsv); 2515 out: 2516 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2517 &cached_state, GFP_NOFS); 2518 out_only_mutex: 2519 if (!updated_inode && truncated_page && !ret && !err) { 2520 /* 2521 * If we only end up zeroing part of a page, we still need to 2522 * update the inode item, so that all the time fields are 2523 * updated as well as the necessary btrfs inode in memory fields 2524 * for detecting, at fsync time, if the inode isn't yet in the 2525 * log tree or it's there but not up to date. 2526 */ 2527 trans = btrfs_start_transaction(root, 1); 2528 if (IS_ERR(trans)) { 2529 err = PTR_ERR(trans); 2530 } else { 2531 err = btrfs_update_inode(trans, root, inode); 2532 ret = btrfs_end_transaction(trans, root); 2533 } 2534 } 2535 mutex_unlock(&inode->i_mutex); 2536 if (ret && !err) 2537 err = ret; 2538 return err; 2539 } 2540 2541 static long btrfs_fallocate(struct file *file, int mode, 2542 loff_t offset, loff_t len) 2543 { 2544 struct inode *inode = file_inode(file); 2545 struct extent_state *cached_state = NULL; 2546 u64 cur_offset; 2547 u64 last_byte; 2548 u64 alloc_start; 2549 u64 alloc_end; 2550 u64 alloc_hint = 0; 2551 u64 locked_end; 2552 struct extent_map *em; 2553 int blocksize = BTRFS_I(inode)->root->sectorsize; 2554 int ret; 2555 2556 alloc_start = round_down(offset, blocksize); 2557 alloc_end = round_up(offset + len, blocksize); 2558 2559 /* Make sure we aren't being give some crap mode */ 2560 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2561 return -EOPNOTSUPP; 2562 2563 if (mode & FALLOC_FL_PUNCH_HOLE) 2564 return btrfs_punch_hole(inode, offset, len); 2565 2566 /* 2567 * Make sure we have enough space before we do the 2568 * allocation. 2569 */ 2570 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start, alloc_end - alloc_start); 2571 if (ret) 2572 return ret; 2573 2574 mutex_lock(&inode->i_mutex); 2575 ret = inode_newsize_ok(inode, alloc_end); 2576 if (ret) 2577 goto out; 2578 2579 if (alloc_start > inode->i_size) { 2580 ret = btrfs_cont_expand(inode, i_size_read(inode), 2581 alloc_start); 2582 if (ret) 2583 goto out; 2584 } else { 2585 /* 2586 * If we are fallocating from the end of the file onward we 2587 * need to zero out the end of the page if i_size lands in the 2588 * middle of a page. 2589 */ 2590 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0); 2591 if (ret) 2592 goto out; 2593 } 2594 2595 /* 2596 * wait for ordered IO before we have any locks. We'll loop again 2597 * below with the locks held. 2598 */ 2599 ret = btrfs_wait_ordered_range(inode, alloc_start, 2600 alloc_end - alloc_start); 2601 if (ret) 2602 goto out; 2603 2604 locked_end = alloc_end - 1; 2605 while (1) { 2606 struct btrfs_ordered_extent *ordered; 2607 2608 /* the extent lock is ordered inside the running 2609 * transaction 2610 */ 2611 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 2612 locked_end, 0, &cached_state); 2613 ordered = btrfs_lookup_first_ordered_extent(inode, 2614 alloc_end - 1); 2615 if (ordered && 2616 ordered->file_offset + ordered->len > alloc_start && 2617 ordered->file_offset < alloc_end) { 2618 btrfs_put_ordered_extent(ordered); 2619 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 2620 alloc_start, locked_end, 2621 &cached_state, GFP_NOFS); 2622 /* 2623 * we can't wait on the range with the transaction 2624 * running or with the extent lock held 2625 */ 2626 ret = btrfs_wait_ordered_range(inode, alloc_start, 2627 alloc_end - alloc_start); 2628 if (ret) 2629 goto out; 2630 } else { 2631 if (ordered) 2632 btrfs_put_ordered_extent(ordered); 2633 break; 2634 } 2635 } 2636 2637 cur_offset = alloc_start; 2638 while (1) { 2639 u64 actual_end; 2640 2641 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2642 alloc_end - cur_offset, 0); 2643 if (IS_ERR_OR_NULL(em)) { 2644 if (!em) 2645 ret = -ENOMEM; 2646 else 2647 ret = PTR_ERR(em); 2648 break; 2649 } 2650 last_byte = min(extent_map_end(em), alloc_end); 2651 actual_end = min_t(u64, extent_map_end(em), offset + len); 2652 last_byte = ALIGN(last_byte, blocksize); 2653 2654 if (em->block_start == EXTENT_MAP_HOLE || 2655 (cur_offset >= inode->i_size && 2656 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 2657 ret = btrfs_prealloc_file_range(inode, mode, cur_offset, 2658 last_byte - cur_offset, 2659 1 << inode->i_blkbits, 2660 offset + len, 2661 &alloc_hint); 2662 } else if (actual_end > inode->i_size && 2663 !(mode & FALLOC_FL_KEEP_SIZE)) { 2664 struct btrfs_trans_handle *trans; 2665 struct btrfs_root *root = BTRFS_I(inode)->root; 2666 2667 /* 2668 * We didn't need to allocate any more space, but we 2669 * still extended the size of the file so we need to 2670 * update i_size and the inode item. 2671 */ 2672 trans = btrfs_start_transaction(root, 1); 2673 if (IS_ERR(trans)) { 2674 ret = PTR_ERR(trans); 2675 } else { 2676 inode->i_ctime = CURRENT_TIME; 2677 i_size_write(inode, actual_end); 2678 btrfs_ordered_update_i_size(inode, actual_end, 2679 NULL); 2680 ret = btrfs_update_inode(trans, root, inode); 2681 if (ret) 2682 btrfs_end_transaction(trans, root); 2683 else 2684 ret = btrfs_end_transaction(trans, 2685 root); 2686 } 2687 } 2688 free_extent_map(em); 2689 if (ret < 0) 2690 break; 2691 2692 cur_offset = last_byte; 2693 if (cur_offset >= alloc_end) { 2694 ret = 0; 2695 break; 2696 } 2697 } 2698 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 2699 &cached_state, GFP_NOFS); 2700 out: 2701 mutex_unlock(&inode->i_mutex); 2702 /* Let go of our reservation. */ 2703 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start); 2704 return ret; 2705 } 2706 2707 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 2708 { 2709 struct btrfs_root *root = BTRFS_I(inode)->root; 2710 struct extent_map *em = NULL; 2711 struct extent_state *cached_state = NULL; 2712 u64 lockstart; 2713 u64 lockend; 2714 u64 start; 2715 u64 len; 2716 int ret = 0; 2717 2718 if (inode->i_size == 0) 2719 return -ENXIO; 2720 2721 /* 2722 * *offset can be negative, in this case we start finding DATA/HOLE from 2723 * the very start of the file. 2724 */ 2725 start = max_t(loff_t, 0, *offset); 2726 2727 lockstart = round_down(start, root->sectorsize); 2728 lockend = round_up(i_size_read(inode), root->sectorsize); 2729 if (lockend <= lockstart) 2730 lockend = lockstart + root->sectorsize; 2731 lockend--; 2732 len = lockend - lockstart + 1; 2733 2734 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0, 2735 &cached_state); 2736 2737 while (start < inode->i_size) { 2738 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0); 2739 if (IS_ERR(em)) { 2740 ret = PTR_ERR(em); 2741 em = NULL; 2742 break; 2743 } 2744 2745 if (whence == SEEK_HOLE && 2746 (em->block_start == EXTENT_MAP_HOLE || 2747 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2748 break; 2749 else if (whence == SEEK_DATA && 2750 (em->block_start != EXTENT_MAP_HOLE && 2751 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2752 break; 2753 2754 start = em->start + em->len; 2755 free_extent_map(em); 2756 em = NULL; 2757 cond_resched(); 2758 } 2759 free_extent_map(em); 2760 if (!ret) { 2761 if (whence == SEEK_DATA && start >= inode->i_size) 2762 ret = -ENXIO; 2763 else 2764 *offset = min_t(loff_t, start, inode->i_size); 2765 } 2766 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2767 &cached_state, GFP_NOFS); 2768 return ret; 2769 } 2770 2771 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 2772 { 2773 struct inode *inode = file->f_mapping->host; 2774 int ret; 2775 2776 mutex_lock(&inode->i_mutex); 2777 switch (whence) { 2778 case SEEK_END: 2779 case SEEK_CUR: 2780 offset = generic_file_llseek(file, offset, whence); 2781 goto out; 2782 case SEEK_DATA: 2783 case SEEK_HOLE: 2784 if (offset >= i_size_read(inode)) { 2785 mutex_unlock(&inode->i_mutex); 2786 return -ENXIO; 2787 } 2788 2789 ret = find_desired_extent(inode, &offset, whence); 2790 if (ret) { 2791 mutex_unlock(&inode->i_mutex); 2792 return ret; 2793 } 2794 } 2795 2796 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2797 out: 2798 mutex_unlock(&inode->i_mutex); 2799 return offset; 2800 } 2801 2802 const struct file_operations btrfs_file_operations = { 2803 .llseek = btrfs_file_llseek, 2804 .read_iter = generic_file_read_iter, 2805 .splice_read = generic_file_splice_read, 2806 .write_iter = btrfs_file_write_iter, 2807 .mmap = btrfs_file_mmap, 2808 .open = generic_file_open, 2809 .release = btrfs_release_file, 2810 .fsync = btrfs_sync_file, 2811 .fallocate = btrfs_fallocate, 2812 .unlocked_ioctl = btrfs_ioctl, 2813 #ifdef CONFIG_COMPAT 2814 .compat_ioctl = btrfs_ioctl, 2815 #endif 2816 }; 2817 2818 void btrfs_auto_defrag_exit(void) 2819 { 2820 if (btrfs_inode_defrag_cachep) 2821 kmem_cache_destroy(btrfs_inode_defrag_cachep); 2822 } 2823 2824 int btrfs_auto_defrag_init(void) 2825 { 2826 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 2827 sizeof(struct inode_defrag), 0, 2828 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 2829 NULL); 2830 if (!btrfs_inode_defrag_cachep) 2831 return -ENOMEM; 2832 2833 return 0; 2834 } 2835 2836 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 2837 { 2838 int ret; 2839 2840 /* 2841 * So with compression we will find and lock a dirty page and clear the 2842 * first one as dirty, setup an async extent, and immediately return 2843 * with the entire range locked but with nobody actually marked with 2844 * writeback. So we can't just filemap_write_and_wait_range() and 2845 * expect it to work since it will just kick off a thread to do the 2846 * actual work. So we need to call filemap_fdatawrite_range _again_ 2847 * since it will wait on the page lock, which won't be unlocked until 2848 * after the pages have been marked as writeback and so we're good to go 2849 * from there. We have to do this otherwise we'll miss the ordered 2850 * extents and that results in badness. Please Josef, do not think you 2851 * know better and pull this out at some point in the future, it is 2852 * right and you are wrong. 2853 */ 2854 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 2855 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 2856 &BTRFS_I(inode)->runtime_flags)) 2857 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 2858 2859 return ret; 2860 } 2861