1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/time.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/backing-dev.h> 26 #include <linux/mpage.h> 27 #include <linux/falloc.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/compat.h> 31 #include <linux/slab.h> 32 #include <linux/btrfs.h> 33 #include <linux/uio.h> 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "transaction.h" 37 #include "btrfs_inode.h" 38 #include "print-tree.h" 39 #include "tree-log.h" 40 #include "locking.h" 41 #include "volumes.h" 42 #include "qgroup.h" 43 #include "compression.h" 44 45 static struct kmem_cache *btrfs_inode_defrag_cachep; 46 /* 47 * when auto defrag is enabled we 48 * queue up these defrag structs to remember which 49 * inodes need defragging passes 50 */ 51 struct inode_defrag { 52 struct rb_node rb_node; 53 /* objectid */ 54 u64 ino; 55 /* 56 * transid where the defrag was added, we search for 57 * extents newer than this 58 */ 59 u64 transid; 60 61 /* root objectid */ 62 u64 root; 63 64 /* last offset we were able to defrag */ 65 u64 last_offset; 66 67 /* if we've wrapped around back to zero once already */ 68 int cycled; 69 }; 70 71 static int __compare_inode_defrag(struct inode_defrag *defrag1, 72 struct inode_defrag *defrag2) 73 { 74 if (defrag1->root > defrag2->root) 75 return 1; 76 else if (defrag1->root < defrag2->root) 77 return -1; 78 else if (defrag1->ino > defrag2->ino) 79 return 1; 80 else if (defrag1->ino < defrag2->ino) 81 return -1; 82 else 83 return 0; 84 } 85 86 /* pop a record for an inode into the defrag tree. The lock 87 * must be held already 88 * 89 * If you're inserting a record for an older transid than an 90 * existing record, the transid already in the tree is lowered 91 * 92 * If an existing record is found the defrag item you 93 * pass in is freed 94 */ 95 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 96 struct inode_defrag *defrag) 97 { 98 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 99 struct inode_defrag *entry; 100 struct rb_node **p; 101 struct rb_node *parent = NULL; 102 int ret; 103 104 p = &fs_info->defrag_inodes.rb_node; 105 while (*p) { 106 parent = *p; 107 entry = rb_entry(parent, struct inode_defrag, rb_node); 108 109 ret = __compare_inode_defrag(defrag, entry); 110 if (ret < 0) 111 p = &parent->rb_left; 112 else if (ret > 0) 113 p = &parent->rb_right; 114 else { 115 /* if we're reinserting an entry for 116 * an old defrag run, make sure to 117 * lower the transid of our existing record 118 */ 119 if (defrag->transid < entry->transid) 120 entry->transid = defrag->transid; 121 if (defrag->last_offset > entry->last_offset) 122 entry->last_offset = defrag->last_offset; 123 return -EEXIST; 124 } 125 } 126 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 127 rb_link_node(&defrag->rb_node, parent, p); 128 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 129 return 0; 130 } 131 132 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 133 { 134 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 135 return 0; 136 137 if (btrfs_fs_closing(fs_info)) 138 return 0; 139 140 return 1; 141 } 142 143 /* 144 * insert a defrag record for this inode if auto defrag is 145 * enabled 146 */ 147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 148 struct btrfs_inode *inode) 149 { 150 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 151 struct btrfs_root *root = inode->root; 152 struct inode_defrag *defrag; 153 u64 transid; 154 int ret; 155 156 if (!__need_auto_defrag(fs_info)) 157 return 0; 158 159 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 160 return 0; 161 162 if (trans) 163 transid = trans->transid; 164 else 165 transid = inode->root->last_trans; 166 167 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 168 if (!defrag) 169 return -ENOMEM; 170 171 defrag->ino = btrfs_ino(inode); 172 defrag->transid = transid; 173 defrag->root = root->root_key.objectid; 174 175 spin_lock(&fs_info->defrag_inodes_lock); 176 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 177 /* 178 * If we set IN_DEFRAG flag and evict the inode from memory, 179 * and then re-read this inode, this new inode doesn't have 180 * IN_DEFRAG flag. At the case, we may find the existed defrag. 181 */ 182 ret = __btrfs_add_inode_defrag(inode, defrag); 183 if (ret) 184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 185 } else { 186 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 187 } 188 spin_unlock(&fs_info->defrag_inodes_lock); 189 return 0; 190 } 191 192 /* 193 * Requeue the defrag object. If there is a defrag object that points to 194 * the same inode in the tree, we will merge them together (by 195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 196 */ 197 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode, 198 struct inode_defrag *defrag) 199 { 200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 201 int ret; 202 203 if (!__need_auto_defrag(fs_info)) 204 goto out; 205 206 /* 207 * Here we don't check the IN_DEFRAG flag, because we need merge 208 * them together. 209 */ 210 spin_lock(&fs_info->defrag_inodes_lock); 211 ret = __btrfs_add_inode_defrag(inode, defrag); 212 spin_unlock(&fs_info->defrag_inodes_lock); 213 if (ret) 214 goto out; 215 return; 216 out: 217 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 218 } 219 220 /* 221 * pick the defragable inode that we want, if it doesn't exist, we will get 222 * the next one. 223 */ 224 static struct inode_defrag * 225 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 226 { 227 struct inode_defrag *entry = NULL; 228 struct inode_defrag tmp; 229 struct rb_node *p; 230 struct rb_node *parent = NULL; 231 int ret; 232 233 tmp.ino = ino; 234 tmp.root = root; 235 236 spin_lock(&fs_info->defrag_inodes_lock); 237 p = fs_info->defrag_inodes.rb_node; 238 while (p) { 239 parent = p; 240 entry = rb_entry(parent, struct inode_defrag, rb_node); 241 242 ret = __compare_inode_defrag(&tmp, entry); 243 if (ret < 0) 244 p = parent->rb_left; 245 else if (ret > 0) 246 p = parent->rb_right; 247 else 248 goto out; 249 } 250 251 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 252 parent = rb_next(parent); 253 if (parent) 254 entry = rb_entry(parent, struct inode_defrag, rb_node); 255 else 256 entry = NULL; 257 } 258 out: 259 if (entry) 260 rb_erase(parent, &fs_info->defrag_inodes); 261 spin_unlock(&fs_info->defrag_inodes_lock); 262 return entry; 263 } 264 265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 266 { 267 struct inode_defrag *defrag; 268 struct rb_node *node; 269 270 spin_lock(&fs_info->defrag_inodes_lock); 271 node = rb_first(&fs_info->defrag_inodes); 272 while (node) { 273 rb_erase(node, &fs_info->defrag_inodes); 274 defrag = rb_entry(node, struct inode_defrag, rb_node); 275 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 276 277 cond_resched_lock(&fs_info->defrag_inodes_lock); 278 279 node = rb_first(&fs_info->defrag_inodes); 280 } 281 spin_unlock(&fs_info->defrag_inodes_lock); 282 } 283 284 #define BTRFS_DEFRAG_BATCH 1024 285 286 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 287 struct inode_defrag *defrag) 288 { 289 struct btrfs_root *inode_root; 290 struct inode *inode; 291 struct btrfs_key key; 292 struct btrfs_ioctl_defrag_range_args range; 293 int num_defrag; 294 int index; 295 int ret; 296 297 /* get the inode */ 298 key.objectid = defrag->root; 299 key.type = BTRFS_ROOT_ITEM_KEY; 300 key.offset = (u64)-1; 301 302 index = srcu_read_lock(&fs_info->subvol_srcu); 303 304 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 305 if (IS_ERR(inode_root)) { 306 ret = PTR_ERR(inode_root); 307 goto cleanup; 308 } 309 310 key.objectid = defrag->ino; 311 key.type = BTRFS_INODE_ITEM_KEY; 312 key.offset = 0; 313 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 314 if (IS_ERR(inode)) { 315 ret = PTR_ERR(inode); 316 goto cleanup; 317 } 318 srcu_read_unlock(&fs_info->subvol_srcu, index); 319 320 /* do a chunk of defrag */ 321 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 322 memset(&range, 0, sizeof(range)); 323 range.len = (u64)-1; 324 range.start = defrag->last_offset; 325 326 sb_start_write(fs_info->sb); 327 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 328 BTRFS_DEFRAG_BATCH); 329 sb_end_write(fs_info->sb); 330 /* 331 * if we filled the whole defrag batch, there 332 * must be more work to do. Queue this defrag 333 * again 334 */ 335 if (num_defrag == BTRFS_DEFRAG_BATCH) { 336 defrag->last_offset = range.start; 337 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 338 } else if (defrag->last_offset && !defrag->cycled) { 339 /* 340 * we didn't fill our defrag batch, but 341 * we didn't start at zero. Make sure we loop 342 * around to the start of the file. 343 */ 344 defrag->last_offset = 0; 345 defrag->cycled = 1; 346 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 347 } else { 348 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 349 } 350 351 iput(inode); 352 return 0; 353 cleanup: 354 srcu_read_unlock(&fs_info->subvol_srcu, index); 355 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 356 return ret; 357 } 358 359 /* 360 * run through the list of inodes in the FS that need 361 * defragging 362 */ 363 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 364 { 365 struct inode_defrag *defrag; 366 u64 first_ino = 0; 367 u64 root_objectid = 0; 368 369 atomic_inc(&fs_info->defrag_running); 370 while (1) { 371 /* Pause the auto defragger. */ 372 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 373 &fs_info->fs_state)) 374 break; 375 376 if (!__need_auto_defrag(fs_info)) 377 break; 378 379 /* find an inode to defrag */ 380 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 381 first_ino); 382 if (!defrag) { 383 if (root_objectid || first_ino) { 384 root_objectid = 0; 385 first_ino = 0; 386 continue; 387 } else { 388 break; 389 } 390 } 391 392 first_ino = defrag->ino + 1; 393 root_objectid = defrag->root; 394 395 __btrfs_run_defrag_inode(fs_info, defrag); 396 } 397 atomic_dec(&fs_info->defrag_running); 398 399 /* 400 * during unmount, we use the transaction_wait queue to 401 * wait for the defragger to stop 402 */ 403 wake_up(&fs_info->transaction_wait); 404 return 0; 405 } 406 407 /* simple helper to fault in pages and copy. This should go away 408 * and be replaced with calls into generic code. 409 */ 410 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 411 struct page **prepared_pages, 412 struct iov_iter *i) 413 { 414 size_t copied = 0; 415 size_t total_copied = 0; 416 int pg = 0; 417 int offset = pos & (PAGE_SIZE - 1); 418 419 while (write_bytes > 0) { 420 size_t count = min_t(size_t, 421 PAGE_SIZE - offset, write_bytes); 422 struct page *page = prepared_pages[pg]; 423 /* 424 * Copy data from userspace to the current page 425 */ 426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 427 428 /* Flush processor's dcache for this page */ 429 flush_dcache_page(page); 430 431 /* 432 * if we get a partial write, we can end up with 433 * partially up to date pages. These add 434 * a lot of complexity, so make sure they don't 435 * happen by forcing this copy to be retried. 436 * 437 * The rest of the btrfs_file_write code will fall 438 * back to page at a time copies after we return 0. 439 */ 440 if (!PageUptodate(page) && copied < count) 441 copied = 0; 442 443 iov_iter_advance(i, copied); 444 write_bytes -= copied; 445 total_copied += copied; 446 447 /* Return to btrfs_file_write_iter to fault page */ 448 if (unlikely(copied == 0)) 449 break; 450 451 if (copied < PAGE_SIZE - offset) { 452 offset += copied; 453 } else { 454 pg++; 455 offset = 0; 456 } 457 } 458 return total_copied; 459 } 460 461 /* 462 * unlocks pages after btrfs_file_write is done with them 463 */ 464 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 465 { 466 size_t i; 467 for (i = 0; i < num_pages; i++) { 468 /* page checked is some magic around finding pages that 469 * have been modified without going through btrfs_set_page_dirty 470 * clear it here. There should be no need to mark the pages 471 * accessed as prepare_pages should have marked them accessed 472 * in prepare_pages via find_or_create_page() 473 */ 474 ClearPageChecked(pages[i]); 475 unlock_page(pages[i]); 476 put_page(pages[i]); 477 } 478 } 479 480 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 481 const u64 start, 482 const u64 len, 483 struct extent_state **cached_state) 484 { 485 u64 search_start = start; 486 const u64 end = start + len - 1; 487 488 while (search_start < end) { 489 const u64 search_len = end - search_start + 1; 490 struct extent_map *em; 491 u64 em_len; 492 int ret = 0; 493 494 em = btrfs_get_extent(inode, NULL, 0, search_start, 495 search_len, 0); 496 if (IS_ERR(em)) 497 return PTR_ERR(em); 498 499 if (em->block_start != EXTENT_MAP_HOLE) 500 goto next; 501 502 em_len = em->len; 503 if (em->start < search_start) 504 em_len -= search_start - em->start; 505 if (em_len > search_len) 506 em_len = search_len; 507 508 ret = set_extent_bit(&inode->io_tree, search_start, 509 search_start + em_len - 1, 510 EXTENT_DELALLOC_NEW, 511 NULL, cached_state, GFP_NOFS); 512 next: 513 search_start = extent_map_end(em); 514 free_extent_map(em); 515 if (ret) 516 return ret; 517 } 518 return 0; 519 } 520 521 /* 522 * after copy_from_user, pages need to be dirtied and we need to make 523 * sure holes are created between the current EOF and the start of 524 * any next extents (if required). 525 * 526 * this also makes the decision about creating an inline extent vs 527 * doing real data extents, marking pages dirty and delalloc as required. 528 */ 529 int btrfs_dirty_pages(struct inode *inode, struct page **pages, 530 size_t num_pages, loff_t pos, size_t write_bytes, 531 struct extent_state **cached) 532 { 533 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 534 int err = 0; 535 int i; 536 u64 num_bytes; 537 u64 start_pos; 538 u64 end_of_last_block; 539 u64 end_pos = pos + write_bytes; 540 loff_t isize = i_size_read(inode); 541 unsigned int extra_bits = 0; 542 543 start_pos = pos & ~((u64) fs_info->sectorsize - 1); 544 num_bytes = round_up(write_bytes + pos - start_pos, 545 fs_info->sectorsize); 546 547 end_of_last_block = start_pos + num_bytes - 1; 548 549 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) { 550 if (start_pos >= isize && 551 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) { 552 /* 553 * There can't be any extents following eof in this case 554 * so just set the delalloc new bit for the range 555 * directly. 556 */ 557 extra_bits |= EXTENT_DELALLOC_NEW; 558 } else { 559 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode), 560 start_pos, 561 num_bytes, cached); 562 if (err) 563 return err; 564 } 565 } 566 567 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 568 extra_bits, cached, 0); 569 if (err) 570 return err; 571 572 for (i = 0; i < num_pages; i++) { 573 struct page *p = pages[i]; 574 SetPageUptodate(p); 575 ClearPageChecked(p); 576 set_page_dirty(p); 577 } 578 579 /* 580 * we've only changed i_size in ram, and we haven't updated 581 * the disk i_size. There is no need to log the inode 582 * at this time. 583 */ 584 if (end_pos > isize) 585 i_size_write(inode, end_pos); 586 return 0; 587 } 588 589 /* 590 * this drops all the extents in the cache that intersect the range 591 * [start, end]. Existing extents are split as required. 592 */ 593 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 594 int skip_pinned) 595 { 596 struct extent_map *em; 597 struct extent_map *split = NULL; 598 struct extent_map *split2 = NULL; 599 struct extent_map_tree *em_tree = &inode->extent_tree; 600 u64 len = end - start + 1; 601 u64 gen; 602 int ret; 603 int testend = 1; 604 unsigned long flags; 605 int compressed = 0; 606 bool modified; 607 608 WARN_ON(end < start); 609 if (end == (u64)-1) { 610 len = (u64)-1; 611 testend = 0; 612 } 613 while (1) { 614 int no_splits = 0; 615 616 modified = false; 617 if (!split) 618 split = alloc_extent_map(); 619 if (!split2) 620 split2 = alloc_extent_map(); 621 if (!split || !split2) 622 no_splits = 1; 623 624 write_lock(&em_tree->lock); 625 em = lookup_extent_mapping(em_tree, start, len); 626 if (!em) { 627 write_unlock(&em_tree->lock); 628 break; 629 } 630 flags = em->flags; 631 gen = em->generation; 632 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 633 if (testend && em->start + em->len >= start + len) { 634 free_extent_map(em); 635 write_unlock(&em_tree->lock); 636 break; 637 } 638 start = em->start + em->len; 639 if (testend) 640 len = start + len - (em->start + em->len); 641 free_extent_map(em); 642 write_unlock(&em_tree->lock); 643 continue; 644 } 645 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 646 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 647 clear_bit(EXTENT_FLAG_LOGGING, &flags); 648 modified = !list_empty(&em->list); 649 if (no_splits) 650 goto next; 651 652 if (em->start < start) { 653 split->start = em->start; 654 split->len = start - em->start; 655 656 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 657 split->orig_start = em->orig_start; 658 split->block_start = em->block_start; 659 660 if (compressed) 661 split->block_len = em->block_len; 662 else 663 split->block_len = split->len; 664 split->orig_block_len = max(split->block_len, 665 em->orig_block_len); 666 split->ram_bytes = em->ram_bytes; 667 } else { 668 split->orig_start = split->start; 669 split->block_len = 0; 670 split->block_start = em->block_start; 671 split->orig_block_len = 0; 672 split->ram_bytes = split->len; 673 } 674 675 split->generation = gen; 676 split->bdev = em->bdev; 677 split->flags = flags; 678 split->compress_type = em->compress_type; 679 replace_extent_mapping(em_tree, em, split, modified); 680 free_extent_map(split); 681 split = split2; 682 split2 = NULL; 683 } 684 if (testend && em->start + em->len > start + len) { 685 u64 diff = start + len - em->start; 686 687 split->start = start + len; 688 split->len = em->start + em->len - (start + len); 689 split->bdev = em->bdev; 690 split->flags = flags; 691 split->compress_type = em->compress_type; 692 split->generation = gen; 693 694 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 695 split->orig_block_len = max(em->block_len, 696 em->orig_block_len); 697 698 split->ram_bytes = em->ram_bytes; 699 if (compressed) { 700 split->block_len = em->block_len; 701 split->block_start = em->block_start; 702 split->orig_start = em->orig_start; 703 } else { 704 split->block_len = split->len; 705 split->block_start = em->block_start 706 + diff; 707 split->orig_start = em->orig_start; 708 } 709 } else { 710 split->ram_bytes = split->len; 711 split->orig_start = split->start; 712 split->block_len = 0; 713 split->block_start = em->block_start; 714 split->orig_block_len = 0; 715 } 716 717 if (extent_map_in_tree(em)) { 718 replace_extent_mapping(em_tree, em, split, 719 modified); 720 } else { 721 ret = add_extent_mapping(em_tree, split, 722 modified); 723 ASSERT(ret == 0); /* Logic error */ 724 } 725 free_extent_map(split); 726 split = NULL; 727 } 728 next: 729 if (extent_map_in_tree(em)) 730 remove_extent_mapping(em_tree, em); 731 write_unlock(&em_tree->lock); 732 733 /* once for us */ 734 free_extent_map(em); 735 /* once for the tree*/ 736 free_extent_map(em); 737 } 738 if (split) 739 free_extent_map(split); 740 if (split2) 741 free_extent_map(split2); 742 } 743 744 /* 745 * this is very complex, but the basic idea is to drop all extents 746 * in the range start - end. hint_block is filled in with a block number 747 * that would be a good hint to the block allocator for this file. 748 * 749 * If an extent intersects the range but is not entirely inside the range 750 * it is either truncated or split. Anything entirely inside the range 751 * is deleted from the tree. 752 */ 753 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 754 struct btrfs_root *root, struct inode *inode, 755 struct btrfs_path *path, u64 start, u64 end, 756 u64 *drop_end, int drop_cache, 757 int replace_extent, 758 u32 extent_item_size, 759 int *key_inserted) 760 { 761 struct btrfs_fs_info *fs_info = root->fs_info; 762 struct extent_buffer *leaf; 763 struct btrfs_file_extent_item *fi; 764 struct btrfs_key key; 765 struct btrfs_key new_key; 766 u64 ino = btrfs_ino(BTRFS_I(inode)); 767 u64 search_start = start; 768 u64 disk_bytenr = 0; 769 u64 num_bytes = 0; 770 u64 extent_offset = 0; 771 u64 extent_end = 0; 772 u64 last_end = start; 773 int del_nr = 0; 774 int del_slot = 0; 775 int extent_type; 776 int recow; 777 int ret; 778 int modify_tree = -1; 779 int update_refs; 780 int found = 0; 781 int leafs_visited = 0; 782 783 if (drop_cache) 784 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0); 785 786 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 787 modify_tree = 0; 788 789 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 790 root == fs_info->tree_root); 791 while (1) { 792 recow = 0; 793 ret = btrfs_lookup_file_extent(trans, root, path, ino, 794 search_start, modify_tree); 795 if (ret < 0) 796 break; 797 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 798 leaf = path->nodes[0]; 799 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 800 if (key.objectid == ino && 801 key.type == BTRFS_EXTENT_DATA_KEY) 802 path->slots[0]--; 803 } 804 ret = 0; 805 leafs_visited++; 806 next_slot: 807 leaf = path->nodes[0]; 808 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 809 BUG_ON(del_nr > 0); 810 ret = btrfs_next_leaf(root, path); 811 if (ret < 0) 812 break; 813 if (ret > 0) { 814 ret = 0; 815 break; 816 } 817 leafs_visited++; 818 leaf = path->nodes[0]; 819 recow = 1; 820 } 821 822 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 823 824 if (key.objectid > ino) 825 break; 826 if (WARN_ON_ONCE(key.objectid < ino) || 827 key.type < BTRFS_EXTENT_DATA_KEY) { 828 ASSERT(del_nr == 0); 829 path->slots[0]++; 830 goto next_slot; 831 } 832 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 833 break; 834 835 fi = btrfs_item_ptr(leaf, path->slots[0], 836 struct btrfs_file_extent_item); 837 extent_type = btrfs_file_extent_type(leaf, fi); 838 839 if (extent_type == BTRFS_FILE_EXTENT_REG || 840 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 841 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 842 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 843 extent_offset = btrfs_file_extent_offset(leaf, fi); 844 extent_end = key.offset + 845 btrfs_file_extent_num_bytes(leaf, fi); 846 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 847 extent_end = key.offset + 848 btrfs_file_extent_inline_len(leaf, 849 path->slots[0], fi); 850 } else { 851 /* can't happen */ 852 BUG(); 853 } 854 855 /* 856 * Don't skip extent items representing 0 byte lengths. They 857 * used to be created (bug) if while punching holes we hit 858 * -ENOSPC condition. So if we find one here, just ensure we 859 * delete it, otherwise we would insert a new file extent item 860 * with the same key (offset) as that 0 bytes length file 861 * extent item in the call to setup_items_for_insert() later 862 * in this function. 863 */ 864 if (extent_end == key.offset && extent_end >= search_start) { 865 last_end = extent_end; 866 goto delete_extent_item; 867 } 868 869 if (extent_end <= search_start) { 870 path->slots[0]++; 871 goto next_slot; 872 } 873 874 found = 1; 875 search_start = max(key.offset, start); 876 if (recow || !modify_tree) { 877 modify_tree = -1; 878 btrfs_release_path(path); 879 continue; 880 } 881 882 /* 883 * | - range to drop - | 884 * | -------- extent -------- | 885 */ 886 if (start > key.offset && end < extent_end) { 887 BUG_ON(del_nr > 0); 888 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 889 ret = -EOPNOTSUPP; 890 break; 891 } 892 893 memcpy(&new_key, &key, sizeof(new_key)); 894 new_key.offset = start; 895 ret = btrfs_duplicate_item(trans, root, path, 896 &new_key); 897 if (ret == -EAGAIN) { 898 btrfs_release_path(path); 899 continue; 900 } 901 if (ret < 0) 902 break; 903 904 leaf = path->nodes[0]; 905 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 906 struct btrfs_file_extent_item); 907 btrfs_set_file_extent_num_bytes(leaf, fi, 908 start - key.offset); 909 910 fi = btrfs_item_ptr(leaf, path->slots[0], 911 struct btrfs_file_extent_item); 912 913 extent_offset += start - key.offset; 914 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 915 btrfs_set_file_extent_num_bytes(leaf, fi, 916 extent_end - start); 917 btrfs_mark_buffer_dirty(leaf); 918 919 if (update_refs && disk_bytenr > 0) { 920 ret = btrfs_inc_extent_ref(trans, root, 921 disk_bytenr, num_bytes, 0, 922 root->root_key.objectid, 923 new_key.objectid, 924 start - extent_offset); 925 BUG_ON(ret); /* -ENOMEM */ 926 } 927 key.offset = start; 928 } 929 /* 930 * From here on out we will have actually dropped something, so 931 * last_end can be updated. 932 */ 933 last_end = extent_end; 934 935 /* 936 * | ---- range to drop ----- | 937 * | -------- extent -------- | 938 */ 939 if (start <= key.offset && end < extent_end) { 940 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 941 ret = -EOPNOTSUPP; 942 break; 943 } 944 945 memcpy(&new_key, &key, sizeof(new_key)); 946 new_key.offset = end; 947 btrfs_set_item_key_safe(fs_info, path, &new_key); 948 949 extent_offset += end - key.offset; 950 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 951 btrfs_set_file_extent_num_bytes(leaf, fi, 952 extent_end - end); 953 btrfs_mark_buffer_dirty(leaf); 954 if (update_refs && disk_bytenr > 0) 955 inode_sub_bytes(inode, end - key.offset); 956 break; 957 } 958 959 search_start = extent_end; 960 /* 961 * | ---- range to drop ----- | 962 * | -------- extent -------- | 963 */ 964 if (start > key.offset && end >= extent_end) { 965 BUG_ON(del_nr > 0); 966 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 967 ret = -EOPNOTSUPP; 968 break; 969 } 970 971 btrfs_set_file_extent_num_bytes(leaf, fi, 972 start - key.offset); 973 btrfs_mark_buffer_dirty(leaf); 974 if (update_refs && disk_bytenr > 0) 975 inode_sub_bytes(inode, extent_end - start); 976 if (end == extent_end) 977 break; 978 979 path->slots[0]++; 980 goto next_slot; 981 } 982 983 /* 984 * | ---- range to drop ----- | 985 * | ------ extent ------ | 986 */ 987 if (start <= key.offset && end >= extent_end) { 988 delete_extent_item: 989 if (del_nr == 0) { 990 del_slot = path->slots[0]; 991 del_nr = 1; 992 } else { 993 BUG_ON(del_slot + del_nr != path->slots[0]); 994 del_nr++; 995 } 996 997 if (update_refs && 998 extent_type == BTRFS_FILE_EXTENT_INLINE) { 999 inode_sub_bytes(inode, 1000 extent_end - key.offset); 1001 extent_end = ALIGN(extent_end, 1002 fs_info->sectorsize); 1003 } else if (update_refs && disk_bytenr > 0) { 1004 ret = btrfs_free_extent(trans, root, 1005 disk_bytenr, num_bytes, 0, 1006 root->root_key.objectid, 1007 key.objectid, key.offset - 1008 extent_offset); 1009 BUG_ON(ret); /* -ENOMEM */ 1010 inode_sub_bytes(inode, 1011 extent_end - key.offset); 1012 } 1013 1014 if (end == extent_end) 1015 break; 1016 1017 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 1018 path->slots[0]++; 1019 goto next_slot; 1020 } 1021 1022 ret = btrfs_del_items(trans, root, path, del_slot, 1023 del_nr); 1024 if (ret) { 1025 btrfs_abort_transaction(trans, ret); 1026 break; 1027 } 1028 1029 del_nr = 0; 1030 del_slot = 0; 1031 1032 btrfs_release_path(path); 1033 continue; 1034 } 1035 1036 BUG_ON(1); 1037 } 1038 1039 if (!ret && del_nr > 0) { 1040 /* 1041 * Set path->slots[0] to first slot, so that after the delete 1042 * if items are move off from our leaf to its immediate left or 1043 * right neighbor leafs, we end up with a correct and adjusted 1044 * path->slots[0] for our insertion (if replace_extent != 0). 1045 */ 1046 path->slots[0] = del_slot; 1047 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1048 if (ret) 1049 btrfs_abort_transaction(trans, ret); 1050 } 1051 1052 leaf = path->nodes[0]; 1053 /* 1054 * If btrfs_del_items() was called, it might have deleted a leaf, in 1055 * which case it unlocked our path, so check path->locks[0] matches a 1056 * write lock. 1057 */ 1058 if (!ret && replace_extent && leafs_visited == 1 && 1059 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 1060 path->locks[0] == BTRFS_WRITE_LOCK) && 1061 btrfs_leaf_free_space(fs_info, leaf) >= 1062 sizeof(struct btrfs_item) + extent_item_size) { 1063 1064 key.objectid = ino; 1065 key.type = BTRFS_EXTENT_DATA_KEY; 1066 key.offset = start; 1067 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 1068 struct btrfs_key slot_key; 1069 1070 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 1071 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1072 path->slots[0]++; 1073 } 1074 setup_items_for_insert(root, path, &key, 1075 &extent_item_size, 1076 extent_item_size, 1077 sizeof(struct btrfs_item) + 1078 extent_item_size, 1); 1079 *key_inserted = 1; 1080 } 1081 1082 if (!replace_extent || !(*key_inserted)) 1083 btrfs_release_path(path); 1084 if (drop_end) 1085 *drop_end = found ? min(end, last_end) : end; 1086 return ret; 1087 } 1088 1089 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1090 struct btrfs_root *root, struct inode *inode, u64 start, 1091 u64 end, int drop_cache) 1092 { 1093 struct btrfs_path *path; 1094 int ret; 1095 1096 path = btrfs_alloc_path(); 1097 if (!path) 1098 return -ENOMEM; 1099 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1100 drop_cache, 0, 0, NULL); 1101 btrfs_free_path(path); 1102 return ret; 1103 } 1104 1105 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1106 u64 objectid, u64 bytenr, u64 orig_offset, 1107 u64 *start, u64 *end) 1108 { 1109 struct btrfs_file_extent_item *fi; 1110 struct btrfs_key key; 1111 u64 extent_end; 1112 1113 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1114 return 0; 1115 1116 btrfs_item_key_to_cpu(leaf, &key, slot); 1117 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1118 return 0; 1119 1120 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1121 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1122 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1123 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1124 btrfs_file_extent_compression(leaf, fi) || 1125 btrfs_file_extent_encryption(leaf, fi) || 1126 btrfs_file_extent_other_encoding(leaf, fi)) 1127 return 0; 1128 1129 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1130 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1131 return 0; 1132 1133 *start = key.offset; 1134 *end = extent_end; 1135 return 1; 1136 } 1137 1138 /* 1139 * Mark extent in the range start - end as written. 1140 * 1141 * This changes extent type from 'pre-allocated' to 'regular'. If only 1142 * part of extent is marked as written, the extent will be split into 1143 * two or three. 1144 */ 1145 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1146 struct btrfs_inode *inode, u64 start, u64 end) 1147 { 1148 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1149 struct btrfs_root *root = inode->root; 1150 struct extent_buffer *leaf; 1151 struct btrfs_path *path; 1152 struct btrfs_file_extent_item *fi; 1153 struct btrfs_key key; 1154 struct btrfs_key new_key; 1155 u64 bytenr; 1156 u64 num_bytes; 1157 u64 extent_end; 1158 u64 orig_offset; 1159 u64 other_start; 1160 u64 other_end; 1161 u64 split; 1162 int del_nr = 0; 1163 int del_slot = 0; 1164 int recow; 1165 int ret; 1166 u64 ino = btrfs_ino(inode); 1167 1168 path = btrfs_alloc_path(); 1169 if (!path) 1170 return -ENOMEM; 1171 again: 1172 recow = 0; 1173 split = start; 1174 key.objectid = ino; 1175 key.type = BTRFS_EXTENT_DATA_KEY; 1176 key.offset = split; 1177 1178 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1179 if (ret < 0) 1180 goto out; 1181 if (ret > 0 && path->slots[0] > 0) 1182 path->slots[0]--; 1183 1184 leaf = path->nodes[0]; 1185 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1186 if (key.objectid != ino || 1187 key.type != BTRFS_EXTENT_DATA_KEY) { 1188 ret = -EINVAL; 1189 btrfs_abort_transaction(trans, ret); 1190 goto out; 1191 } 1192 fi = btrfs_item_ptr(leaf, path->slots[0], 1193 struct btrfs_file_extent_item); 1194 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1195 ret = -EINVAL; 1196 btrfs_abort_transaction(trans, ret); 1197 goto out; 1198 } 1199 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1200 if (key.offset > start || extent_end < end) { 1201 ret = -EINVAL; 1202 btrfs_abort_transaction(trans, ret); 1203 goto out; 1204 } 1205 1206 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1207 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1208 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1209 memcpy(&new_key, &key, sizeof(new_key)); 1210 1211 if (start == key.offset && end < extent_end) { 1212 other_start = 0; 1213 other_end = start; 1214 if (extent_mergeable(leaf, path->slots[0] - 1, 1215 ino, bytenr, orig_offset, 1216 &other_start, &other_end)) { 1217 new_key.offset = end; 1218 btrfs_set_item_key_safe(fs_info, path, &new_key); 1219 fi = btrfs_item_ptr(leaf, path->slots[0], 1220 struct btrfs_file_extent_item); 1221 btrfs_set_file_extent_generation(leaf, fi, 1222 trans->transid); 1223 btrfs_set_file_extent_num_bytes(leaf, fi, 1224 extent_end - end); 1225 btrfs_set_file_extent_offset(leaf, fi, 1226 end - orig_offset); 1227 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1228 struct btrfs_file_extent_item); 1229 btrfs_set_file_extent_generation(leaf, fi, 1230 trans->transid); 1231 btrfs_set_file_extent_num_bytes(leaf, fi, 1232 end - other_start); 1233 btrfs_mark_buffer_dirty(leaf); 1234 goto out; 1235 } 1236 } 1237 1238 if (start > key.offset && end == extent_end) { 1239 other_start = end; 1240 other_end = 0; 1241 if (extent_mergeable(leaf, path->slots[0] + 1, 1242 ino, bytenr, orig_offset, 1243 &other_start, &other_end)) { 1244 fi = btrfs_item_ptr(leaf, path->slots[0], 1245 struct btrfs_file_extent_item); 1246 btrfs_set_file_extent_num_bytes(leaf, fi, 1247 start - key.offset); 1248 btrfs_set_file_extent_generation(leaf, fi, 1249 trans->transid); 1250 path->slots[0]++; 1251 new_key.offset = start; 1252 btrfs_set_item_key_safe(fs_info, path, &new_key); 1253 1254 fi = btrfs_item_ptr(leaf, path->slots[0], 1255 struct btrfs_file_extent_item); 1256 btrfs_set_file_extent_generation(leaf, fi, 1257 trans->transid); 1258 btrfs_set_file_extent_num_bytes(leaf, fi, 1259 other_end - start); 1260 btrfs_set_file_extent_offset(leaf, fi, 1261 start - orig_offset); 1262 btrfs_mark_buffer_dirty(leaf); 1263 goto out; 1264 } 1265 } 1266 1267 while (start > key.offset || end < extent_end) { 1268 if (key.offset == start) 1269 split = end; 1270 1271 new_key.offset = split; 1272 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1273 if (ret == -EAGAIN) { 1274 btrfs_release_path(path); 1275 goto again; 1276 } 1277 if (ret < 0) { 1278 btrfs_abort_transaction(trans, ret); 1279 goto out; 1280 } 1281 1282 leaf = path->nodes[0]; 1283 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1284 struct btrfs_file_extent_item); 1285 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1286 btrfs_set_file_extent_num_bytes(leaf, fi, 1287 split - key.offset); 1288 1289 fi = btrfs_item_ptr(leaf, path->slots[0], 1290 struct btrfs_file_extent_item); 1291 1292 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1293 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1294 btrfs_set_file_extent_num_bytes(leaf, fi, 1295 extent_end - split); 1296 btrfs_mark_buffer_dirty(leaf); 1297 1298 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 1299 0, root->root_key.objectid, 1300 ino, orig_offset); 1301 if (ret) { 1302 btrfs_abort_transaction(trans, ret); 1303 goto out; 1304 } 1305 1306 if (split == start) { 1307 key.offset = start; 1308 } else { 1309 if (start != key.offset) { 1310 ret = -EINVAL; 1311 btrfs_abort_transaction(trans, ret); 1312 goto out; 1313 } 1314 path->slots[0]--; 1315 extent_end = end; 1316 } 1317 recow = 1; 1318 } 1319 1320 other_start = end; 1321 other_end = 0; 1322 if (extent_mergeable(leaf, path->slots[0] + 1, 1323 ino, bytenr, orig_offset, 1324 &other_start, &other_end)) { 1325 if (recow) { 1326 btrfs_release_path(path); 1327 goto again; 1328 } 1329 extent_end = other_end; 1330 del_slot = path->slots[0] + 1; 1331 del_nr++; 1332 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1333 0, root->root_key.objectid, 1334 ino, orig_offset); 1335 if (ret) { 1336 btrfs_abort_transaction(trans, ret); 1337 goto out; 1338 } 1339 } 1340 other_start = 0; 1341 other_end = start; 1342 if (extent_mergeable(leaf, path->slots[0] - 1, 1343 ino, bytenr, orig_offset, 1344 &other_start, &other_end)) { 1345 if (recow) { 1346 btrfs_release_path(path); 1347 goto again; 1348 } 1349 key.offset = other_start; 1350 del_slot = path->slots[0]; 1351 del_nr++; 1352 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1353 0, root->root_key.objectid, 1354 ino, orig_offset); 1355 if (ret) { 1356 btrfs_abort_transaction(trans, ret); 1357 goto out; 1358 } 1359 } 1360 if (del_nr == 0) { 1361 fi = btrfs_item_ptr(leaf, path->slots[0], 1362 struct btrfs_file_extent_item); 1363 btrfs_set_file_extent_type(leaf, fi, 1364 BTRFS_FILE_EXTENT_REG); 1365 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1366 btrfs_mark_buffer_dirty(leaf); 1367 } else { 1368 fi = btrfs_item_ptr(leaf, del_slot - 1, 1369 struct btrfs_file_extent_item); 1370 btrfs_set_file_extent_type(leaf, fi, 1371 BTRFS_FILE_EXTENT_REG); 1372 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1373 btrfs_set_file_extent_num_bytes(leaf, fi, 1374 extent_end - key.offset); 1375 btrfs_mark_buffer_dirty(leaf); 1376 1377 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1378 if (ret < 0) { 1379 btrfs_abort_transaction(trans, ret); 1380 goto out; 1381 } 1382 } 1383 out: 1384 btrfs_free_path(path); 1385 return 0; 1386 } 1387 1388 /* 1389 * on error we return an unlocked page and the error value 1390 * on success we return a locked page and 0 1391 */ 1392 static int prepare_uptodate_page(struct inode *inode, 1393 struct page *page, u64 pos, 1394 bool force_uptodate) 1395 { 1396 int ret = 0; 1397 1398 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1399 !PageUptodate(page)) { 1400 ret = btrfs_readpage(NULL, page); 1401 if (ret) 1402 return ret; 1403 lock_page(page); 1404 if (!PageUptodate(page)) { 1405 unlock_page(page); 1406 return -EIO; 1407 } 1408 if (page->mapping != inode->i_mapping) { 1409 unlock_page(page); 1410 return -EAGAIN; 1411 } 1412 } 1413 return 0; 1414 } 1415 1416 /* 1417 * this just gets pages into the page cache and locks them down. 1418 */ 1419 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1420 size_t num_pages, loff_t pos, 1421 size_t write_bytes, bool force_uptodate) 1422 { 1423 int i; 1424 unsigned long index = pos >> PAGE_SHIFT; 1425 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1426 int err = 0; 1427 int faili; 1428 1429 for (i = 0; i < num_pages; i++) { 1430 again: 1431 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1432 mask | __GFP_WRITE); 1433 if (!pages[i]) { 1434 faili = i - 1; 1435 err = -ENOMEM; 1436 goto fail; 1437 } 1438 1439 if (i == 0) 1440 err = prepare_uptodate_page(inode, pages[i], pos, 1441 force_uptodate); 1442 if (!err && i == num_pages - 1) 1443 err = prepare_uptodate_page(inode, pages[i], 1444 pos + write_bytes, false); 1445 if (err) { 1446 put_page(pages[i]); 1447 if (err == -EAGAIN) { 1448 err = 0; 1449 goto again; 1450 } 1451 faili = i - 1; 1452 goto fail; 1453 } 1454 wait_on_page_writeback(pages[i]); 1455 } 1456 1457 return 0; 1458 fail: 1459 while (faili >= 0) { 1460 unlock_page(pages[faili]); 1461 put_page(pages[faili]); 1462 faili--; 1463 } 1464 return err; 1465 1466 } 1467 1468 /* 1469 * This function locks the extent and properly waits for data=ordered extents 1470 * to finish before allowing the pages to be modified if need. 1471 * 1472 * The return value: 1473 * 1 - the extent is locked 1474 * 0 - the extent is not locked, and everything is OK 1475 * -EAGAIN - need re-prepare the pages 1476 * the other < 0 number - Something wrong happens 1477 */ 1478 static noinline int 1479 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1480 size_t num_pages, loff_t pos, 1481 size_t write_bytes, 1482 u64 *lockstart, u64 *lockend, 1483 struct extent_state **cached_state) 1484 { 1485 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1486 u64 start_pos; 1487 u64 last_pos; 1488 int i; 1489 int ret = 0; 1490 1491 start_pos = round_down(pos, fs_info->sectorsize); 1492 last_pos = start_pos 1493 + round_up(pos + write_bytes - start_pos, 1494 fs_info->sectorsize) - 1; 1495 1496 if (start_pos < inode->vfs_inode.i_size) { 1497 struct btrfs_ordered_extent *ordered; 1498 1499 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1500 cached_state); 1501 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1502 last_pos - start_pos + 1); 1503 if (ordered && 1504 ordered->file_offset + ordered->len > start_pos && 1505 ordered->file_offset <= last_pos) { 1506 unlock_extent_cached(&inode->io_tree, start_pos, 1507 last_pos, cached_state, GFP_NOFS); 1508 for (i = 0; i < num_pages; i++) { 1509 unlock_page(pages[i]); 1510 put_page(pages[i]); 1511 } 1512 btrfs_start_ordered_extent(&inode->vfs_inode, 1513 ordered, 1); 1514 btrfs_put_ordered_extent(ordered); 1515 return -EAGAIN; 1516 } 1517 if (ordered) 1518 btrfs_put_ordered_extent(ordered); 1519 clear_extent_bit(&inode->io_tree, start_pos, last_pos, 1520 EXTENT_DIRTY | EXTENT_DELALLOC | 1521 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1522 0, 0, cached_state, GFP_NOFS); 1523 *lockstart = start_pos; 1524 *lockend = last_pos; 1525 ret = 1; 1526 } 1527 1528 for (i = 0; i < num_pages; i++) { 1529 if (clear_page_dirty_for_io(pages[i])) 1530 account_page_redirty(pages[i]); 1531 set_page_extent_mapped(pages[i]); 1532 WARN_ON(!PageLocked(pages[i])); 1533 } 1534 1535 return ret; 1536 } 1537 1538 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1539 size_t *write_bytes) 1540 { 1541 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1542 struct btrfs_root *root = inode->root; 1543 struct btrfs_ordered_extent *ordered; 1544 u64 lockstart, lockend; 1545 u64 num_bytes; 1546 int ret; 1547 1548 ret = btrfs_start_write_no_snapshotting(root); 1549 if (!ret) 1550 return -ENOSPC; 1551 1552 lockstart = round_down(pos, fs_info->sectorsize); 1553 lockend = round_up(pos + *write_bytes, 1554 fs_info->sectorsize) - 1; 1555 1556 while (1) { 1557 lock_extent(&inode->io_tree, lockstart, lockend); 1558 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1559 lockend - lockstart + 1); 1560 if (!ordered) { 1561 break; 1562 } 1563 unlock_extent(&inode->io_tree, lockstart, lockend); 1564 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1); 1565 btrfs_put_ordered_extent(ordered); 1566 } 1567 1568 num_bytes = lockend - lockstart + 1; 1569 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1570 NULL, NULL, NULL); 1571 if (ret <= 0) { 1572 ret = 0; 1573 btrfs_end_write_no_snapshotting(root); 1574 } else { 1575 *write_bytes = min_t(size_t, *write_bytes , 1576 num_bytes - pos + lockstart); 1577 } 1578 1579 unlock_extent(&inode->io_tree, lockstart, lockend); 1580 1581 return ret; 1582 } 1583 1584 static noinline ssize_t __btrfs_buffered_write(struct file *file, 1585 struct iov_iter *i, 1586 loff_t pos) 1587 { 1588 struct inode *inode = file_inode(file); 1589 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1590 struct btrfs_root *root = BTRFS_I(inode)->root; 1591 struct page **pages = NULL; 1592 struct extent_state *cached_state = NULL; 1593 struct extent_changeset *data_reserved = NULL; 1594 u64 release_bytes = 0; 1595 u64 lockstart; 1596 u64 lockend; 1597 size_t num_written = 0; 1598 int nrptrs; 1599 int ret = 0; 1600 bool only_release_metadata = false; 1601 bool force_page_uptodate = false; 1602 1603 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1604 PAGE_SIZE / (sizeof(struct page *))); 1605 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1606 nrptrs = max(nrptrs, 8); 1607 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1608 if (!pages) 1609 return -ENOMEM; 1610 1611 while (iov_iter_count(i) > 0) { 1612 size_t offset = pos & (PAGE_SIZE - 1); 1613 size_t sector_offset; 1614 size_t write_bytes = min(iov_iter_count(i), 1615 nrptrs * (size_t)PAGE_SIZE - 1616 offset); 1617 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1618 PAGE_SIZE); 1619 size_t reserve_bytes; 1620 size_t dirty_pages; 1621 size_t copied; 1622 size_t dirty_sectors; 1623 size_t num_sectors; 1624 int extents_locked; 1625 1626 WARN_ON(num_pages > nrptrs); 1627 1628 /* 1629 * Fault pages before locking them in prepare_pages 1630 * to avoid recursive lock 1631 */ 1632 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1633 ret = -EFAULT; 1634 break; 1635 } 1636 1637 sector_offset = pos & (fs_info->sectorsize - 1); 1638 reserve_bytes = round_up(write_bytes + sector_offset, 1639 fs_info->sectorsize); 1640 1641 extent_changeset_release(data_reserved); 1642 ret = btrfs_check_data_free_space(inode, &data_reserved, pos, 1643 write_bytes); 1644 if (ret < 0) { 1645 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1646 BTRFS_INODE_PREALLOC)) && 1647 check_can_nocow(BTRFS_I(inode), pos, 1648 &write_bytes) > 0) { 1649 /* 1650 * For nodata cow case, no need to reserve 1651 * data space. 1652 */ 1653 only_release_metadata = true; 1654 /* 1655 * our prealloc extent may be smaller than 1656 * write_bytes, so scale down. 1657 */ 1658 num_pages = DIV_ROUND_UP(write_bytes + offset, 1659 PAGE_SIZE); 1660 reserve_bytes = round_up(write_bytes + 1661 sector_offset, 1662 fs_info->sectorsize); 1663 } else { 1664 break; 1665 } 1666 } 1667 1668 WARN_ON(reserve_bytes == 0); 1669 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1670 reserve_bytes); 1671 if (ret) { 1672 if (!only_release_metadata) 1673 btrfs_free_reserved_data_space(inode, 1674 data_reserved, pos, 1675 write_bytes); 1676 else 1677 btrfs_end_write_no_snapshotting(root); 1678 break; 1679 } 1680 1681 release_bytes = reserve_bytes; 1682 again: 1683 /* 1684 * This is going to setup the pages array with the number of 1685 * pages we want, so we don't really need to worry about the 1686 * contents of pages from loop to loop 1687 */ 1688 ret = prepare_pages(inode, pages, num_pages, 1689 pos, write_bytes, 1690 force_page_uptodate); 1691 if (ret) { 1692 btrfs_delalloc_release_extents(BTRFS_I(inode), 1693 reserve_bytes); 1694 break; 1695 } 1696 1697 extents_locked = lock_and_cleanup_extent_if_need( 1698 BTRFS_I(inode), pages, 1699 num_pages, pos, write_bytes, &lockstart, 1700 &lockend, &cached_state); 1701 if (extents_locked < 0) { 1702 if (extents_locked == -EAGAIN) 1703 goto again; 1704 btrfs_delalloc_release_extents(BTRFS_I(inode), 1705 reserve_bytes); 1706 ret = extents_locked; 1707 break; 1708 } 1709 1710 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1711 1712 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1713 dirty_sectors = round_up(copied + sector_offset, 1714 fs_info->sectorsize); 1715 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1716 1717 /* 1718 * if we have trouble faulting in the pages, fall 1719 * back to one page at a time 1720 */ 1721 if (copied < write_bytes) 1722 nrptrs = 1; 1723 1724 if (copied == 0) { 1725 force_page_uptodate = true; 1726 dirty_sectors = 0; 1727 dirty_pages = 0; 1728 } else { 1729 force_page_uptodate = false; 1730 dirty_pages = DIV_ROUND_UP(copied + offset, 1731 PAGE_SIZE); 1732 } 1733 1734 if (num_sectors > dirty_sectors) { 1735 /* release everything except the sectors we dirtied */ 1736 release_bytes -= dirty_sectors << 1737 fs_info->sb->s_blocksize_bits; 1738 if (only_release_metadata) { 1739 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1740 release_bytes); 1741 } else { 1742 u64 __pos; 1743 1744 __pos = round_down(pos, 1745 fs_info->sectorsize) + 1746 (dirty_pages << PAGE_SHIFT); 1747 btrfs_delalloc_release_space(inode, 1748 data_reserved, __pos, 1749 release_bytes); 1750 } 1751 } 1752 1753 release_bytes = round_up(copied + sector_offset, 1754 fs_info->sectorsize); 1755 1756 if (copied > 0) 1757 ret = btrfs_dirty_pages(inode, pages, dirty_pages, 1758 pos, copied, NULL); 1759 if (extents_locked) 1760 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1761 lockstart, lockend, &cached_state, 1762 GFP_NOFS); 1763 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1764 if (ret) { 1765 btrfs_drop_pages(pages, num_pages); 1766 break; 1767 } 1768 1769 release_bytes = 0; 1770 if (only_release_metadata) 1771 btrfs_end_write_no_snapshotting(root); 1772 1773 if (only_release_metadata && copied > 0) { 1774 lockstart = round_down(pos, 1775 fs_info->sectorsize); 1776 lockend = round_up(pos + copied, 1777 fs_info->sectorsize) - 1; 1778 1779 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1780 lockend, EXTENT_NORESERVE, NULL, 1781 NULL, GFP_NOFS); 1782 only_release_metadata = false; 1783 } 1784 1785 btrfs_drop_pages(pages, num_pages); 1786 1787 cond_resched(); 1788 1789 balance_dirty_pages_ratelimited(inode->i_mapping); 1790 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1) 1791 btrfs_btree_balance_dirty(fs_info); 1792 1793 pos += copied; 1794 num_written += copied; 1795 } 1796 1797 kfree(pages); 1798 1799 if (release_bytes) { 1800 if (only_release_metadata) { 1801 btrfs_end_write_no_snapshotting(root); 1802 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1803 release_bytes); 1804 } else { 1805 btrfs_delalloc_release_space(inode, data_reserved, 1806 round_down(pos, fs_info->sectorsize), 1807 release_bytes); 1808 } 1809 } 1810 1811 extent_changeset_free(data_reserved); 1812 return num_written ? num_written : ret; 1813 } 1814 1815 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1816 { 1817 struct file *file = iocb->ki_filp; 1818 struct inode *inode = file_inode(file); 1819 loff_t pos = iocb->ki_pos; 1820 ssize_t written; 1821 ssize_t written_buffered; 1822 loff_t endbyte; 1823 int err; 1824 1825 written = generic_file_direct_write(iocb, from); 1826 1827 if (written < 0 || !iov_iter_count(from)) 1828 return written; 1829 1830 pos += written; 1831 written_buffered = __btrfs_buffered_write(file, from, pos); 1832 if (written_buffered < 0) { 1833 err = written_buffered; 1834 goto out; 1835 } 1836 /* 1837 * Ensure all data is persisted. We want the next direct IO read to be 1838 * able to read what was just written. 1839 */ 1840 endbyte = pos + written_buffered - 1; 1841 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1842 if (err) 1843 goto out; 1844 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1845 if (err) 1846 goto out; 1847 written += written_buffered; 1848 iocb->ki_pos = pos + written_buffered; 1849 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1850 endbyte >> PAGE_SHIFT); 1851 out: 1852 return written ? written : err; 1853 } 1854 1855 static void update_time_for_write(struct inode *inode) 1856 { 1857 struct timespec now; 1858 1859 if (IS_NOCMTIME(inode)) 1860 return; 1861 1862 now = current_time(inode); 1863 if (!timespec_equal(&inode->i_mtime, &now)) 1864 inode->i_mtime = now; 1865 1866 if (!timespec_equal(&inode->i_ctime, &now)) 1867 inode->i_ctime = now; 1868 1869 if (IS_I_VERSION(inode)) 1870 inode_inc_iversion(inode); 1871 } 1872 1873 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1874 struct iov_iter *from) 1875 { 1876 struct file *file = iocb->ki_filp; 1877 struct inode *inode = file_inode(file); 1878 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1879 struct btrfs_root *root = BTRFS_I(inode)->root; 1880 u64 start_pos; 1881 u64 end_pos; 1882 ssize_t num_written = 0; 1883 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1884 ssize_t err; 1885 loff_t pos; 1886 size_t count = iov_iter_count(from); 1887 loff_t oldsize; 1888 int clean_page = 0; 1889 1890 if (!(iocb->ki_flags & IOCB_DIRECT) && 1891 (iocb->ki_flags & IOCB_NOWAIT)) 1892 return -EOPNOTSUPP; 1893 1894 if (!inode_trylock(inode)) { 1895 if (iocb->ki_flags & IOCB_NOWAIT) 1896 return -EAGAIN; 1897 inode_lock(inode); 1898 } 1899 1900 err = generic_write_checks(iocb, from); 1901 if (err <= 0) { 1902 inode_unlock(inode); 1903 return err; 1904 } 1905 1906 pos = iocb->ki_pos; 1907 if (iocb->ki_flags & IOCB_NOWAIT) { 1908 /* 1909 * We will allocate space in case nodatacow is not set, 1910 * so bail 1911 */ 1912 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1913 BTRFS_INODE_PREALLOC)) || 1914 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) { 1915 inode_unlock(inode); 1916 return -EAGAIN; 1917 } 1918 } 1919 1920 current->backing_dev_info = inode_to_bdi(inode); 1921 err = file_remove_privs(file); 1922 if (err) { 1923 inode_unlock(inode); 1924 goto out; 1925 } 1926 1927 /* 1928 * If BTRFS flips readonly due to some impossible error 1929 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1930 * although we have opened a file as writable, we have 1931 * to stop this write operation to ensure FS consistency. 1932 */ 1933 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1934 inode_unlock(inode); 1935 err = -EROFS; 1936 goto out; 1937 } 1938 1939 /* 1940 * We reserve space for updating the inode when we reserve space for the 1941 * extent we are going to write, so we will enospc out there. We don't 1942 * need to start yet another transaction to update the inode as we will 1943 * update the inode when we finish writing whatever data we write. 1944 */ 1945 update_time_for_write(inode); 1946 1947 start_pos = round_down(pos, fs_info->sectorsize); 1948 oldsize = i_size_read(inode); 1949 if (start_pos > oldsize) { 1950 /* Expand hole size to cover write data, preventing empty gap */ 1951 end_pos = round_up(pos + count, 1952 fs_info->sectorsize); 1953 err = btrfs_cont_expand(inode, oldsize, end_pos); 1954 if (err) { 1955 inode_unlock(inode); 1956 goto out; 1957 } 1958 if (start_pos > round_up(oldsize, fs_info->sectorsize)) 1959 clean_page = 1; 1960 } 1961 1962 if (sync) 1963 atomic_inc(&BTRFS_I(inode)->sync_writers); 1964 1965 if (iocb->ki_flags & IOCB_DIRECT) { 1966 num_written = __btrfs_direct_write(iocb, from); 1967 } else { 1968 num_written = __btrfs_buffered_write(file, from, pos); 1969 if (num_written > 0) 1970 iocb->ki_pos = pos + num_written; 1971 if (clean_page) 1972 pagecache_isize_extended(inode, oldsize, 1973 i_size_read(inode)); 1974 } 1975 1976 inode_unlock(inode); 1977 1978 /* 1979 * We also have to set last_sub_trans to the current log transid, 1980 * otherwise subsequent syncs to a file that's been synced in this 1981 * transaction will appear to have already occurred. 1982 */ 1983 spin_lock(&BTRFS_I(inode)->lock); 1984 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1985 spin_unlock(&BTRFS_I(inode)->lock); 1986 if (num_written > 0) 1987 num_written = generic_write_sync(iocb, num_written); 1988 1989 if (sync) 1990 atomic_dec(&BTRFS_I(inode)->sync_writers); 1991 out: 1992 current->backing_dev_info = NULL; 1993 return num_written ? num_written : err; 1994 } 1995 1996 int btrfs_release_file(struct inode *inode, struct file *filp) 1997 { 1998 struct btrfs_file_private *private = filp->private_data; 1999 2000 if (private && private->trans) 2001 btrfs_ioctl_trans_end(filp); 2002 if (private && private->filldir_buf) 2003 kfree(private->filldir_buf); 2004 kfree(private); 2005 filp->private_data = NULL; 2006 2007 /* 2008 * ordered_data_close is set by settattr when we are about to truncate 2009 * a file from a non-zero size to a zero size. This tries to 2010 * flush down new bytes that may have been written if the 2011 * application were using truncate to replace a file in place. 2012 */ 2013 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 2014 &BTRFS_I(inode)->runtime_flags)) 2015 filemap_flush(inode->i_mapping); 2016 return 0; 2017 } 2018 2019 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2020 { 2021 int ret; 2022 2023 atomic_inc(&BTRFS_I(inode)->sync_writers); 2024 ret = btrfs_fdatawrite_range(inode, start, end); 2025 atomic_dec(&BTRFS_I(inode)->sync_writers); 2026 2027 return ret; 2028 } 2029 2030 /* 2031 * fsync call for both files and directories. This logs the inode into 2032 * the tree log instead of forcing full commits whenever possible. 2033 * 2034 * It needs to call filemap_fdatawait so that all ordered extent updates are 2035 * in the metadata btree are up to date for copying to the log. 2036 * 2037 * It drops the inode mutex before doing the tree log commit. This is an 2038 * important optimization for directories because holding the mutex prevents 2039 * new operations on the dir while we write to disk. 2040 */ 2041 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2042 { 2043 struct dentry *dentry = file_dentry(file); 2044 struct inode *inode = d_inode(dentry); 2045 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2046 struct btrfs_root *root = BTRFS_I(inode)->root; 2047 struct btrfs_trans_handle *trans; 2048 struct btrfs_log_ctx ctx; 2049 int ret = 0, err; 2050 bool full_sync = false; 2051 u64 len; 2052 2053 /* 2054 * The range length can be represented by u64, we have to do the typecasts 2055 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync() 2056 */ 2057 len = (u64)end - (u64)start + 1; 2058 trace_btrfs_sync_file(file, datasync); 2059 2060 btrfs_init_log_ctx(&ctx, inode); 2061 2062 /* 2063 * We write the dirty pages in the range and wait until they complete 2064 * out of the ->i_mutex. If so, we can flush the dirty pages by 2065 * multi-task, and make the performance up. See 2066 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2067 */ 2068 ret = start_ordered_ops(inode, start, end); 2069 if (ret) 2070 goto out; 2071 2072 inode_lock(inode); 2073 atomic_inc(&root->log_batch); 2074 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2075 &BTRFS_I(inode)->runtime_flags); 2076 /* 2077 * We might have have had more pages made dirty after calling 2078 * start_ordered_ops and before acquiring the inode's i_mutex. 2079 */ 2080 if (full_sync) { 2081 /* 2082 * For a full sync, we need to make sure any ordered operations 2083 * start and finish before we start logging the inode, so that 2084 * all extents are persisted and the respective file extent 2085 * items are in the fs/subvol btree. 2086 */ 2087 ret = btrfs_wait_ordered_range(inode, start, len); 2088 } else { 2089 /* 2090 * Start any new ordered operations before starting to log the 2091 * inode. We will wait for them to finish in btrfs_sync_log(). 2092 * 2093 * Right before acquiring the inode's mutex, we might have new 2094 * writes dirtying pages, which won't immediately start the 2095 * respective ordered operations - that is done through the 2096 * fill_delalloc callbacks invoked from the writepage and 2097 * writepages address space operations. So make sure we start 2098 * all ordered operations before starting to log our inode. Not 2099 * doing this means that while logging the inode, writeback 2100 * could start and invoke writepage/writepages, which would call 2101 * the fill_delalloc callbacks (cow_file_range, 2102 * submit_compressed_extents). These callbacks add first an 2103 * extent map to the modified list of extents and then create 2104 * the respective ordered operation, which means in 2105 * tree-log.c:btrfs_log_inode() we might capture all existing 2106 * ordered operations (with btrfs_get_logged_extents()) before 2107 * the fill_delalloc callback adds its ordered operation, and by 2108 * the time we visit the modified list of extent maps (with 2109 * btrfs_log_changed_extents()), we see and process the extent 2110 * map they created. We then use the extent map to construct a 2111 * file extent item for logging without waiting for the 2112 * respective ordered operation to finish - this file extent 2113 * item points to a disk location that might not have yet been 2114 * written to, containing random data - so after a crash a log 2115 * replay will make our inode have file extent items that point 2116 * to disk locations containing invalid data, as we returned 2117 * success to userspace without waiting for the respective 2118 * ordered operation to finish, because it wasn't captured by 2119 * btrfs_get_logged_extents(). 2120 */ 2121 ret = start_ordered_ops(inode, start, end); 2122 } 2123 if (ret) { 2124 inode_unlock(inode); 2125 goto out; 2126 } 2127 atomic_inc(&root->log_batch); 2128 2129 /* 2130 * If the last transaction that changed this file was before the current 2131 * transaction and we have the full sync flag set in our inode, we can 2132 * bail out now without any syncing. 2133 * 2134 * Note that we can't bail out if the full sync flag isn't set. This is 2135 * because when the full sync flag is set we start all ordered extents 2136 * and wait for them to fully complete - when they complete they update 2137 * the inode's last_trans field through: 2138 * 2139 * btrfs_finish_ordered_io() -> 2140 * btrfs_update_inode_fallback() -> 2141 * btrfs_update_inode() -> 2142 * btrfs_set_inode_last_trans() 2143 * 2144 * So we are sure that last_trans is up to date and can do this check to 2145 * bail out safely. For the fast path, when the full sync flag is not 2146 * set in our inode, we can not do it because we start only our ordered 2147 * extents and don't wait for them to complete (that is when 2148 * btrfs_finish_ordered_io runs), so here at this point their last_trans 2149 * value might be less than or equals to fs_info->last_trans_committed, 2150 * and setting a speculative last_trans for an inode when a buffered 2151 * write is made (such as fs_info->generation + 1 for example) would not 2152 * be reliable since after setting the value and before fsync is called 2153 * any number of transactions can start and commit (transaction kthread 2154 * commits the current transaction periodically), and a transaction 2155 * commit does not start nor waits for ordered extents to complete. 2156 */ 2157 smp_mb(); 2158 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) || 2159 (full_sync && BTRFS_I(inode)->last_trans <= 2160 fs_info->last_trans_committed) || 2161 (!btrfs_have_ordered_extents_in_range(inode, start, len) && 2162 BTRFS_I(inode)->last_trans 2163 <= fs_info->last_trans_committed)) { 2164 /* 2165 * We've had everything committed since the last time we were 2166 * modified so clear this flag in case it was set for whatever 2167 * reason, it's no longer relevant. 2168 */ 2169 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2170 &BTRFS_I(inode)->runtime_flags); 2171 /* 2172 * An ordered extent might have started before and completed 2173 * already with io errors, in which case the inode was not 2174 * updated and we end up here. So check the inode's mapping 2175 * for any errors that might have happened since we last 2176 * checked called fsync. 2177 */ 2178 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2179 inode_unlock(inode); 2180 goto out; 2181 } 2182 2183 /* 2184 * ok we haven't committed the transaction yet, lets do a commit 2185 */ 2186 if (file->private_data) 2187 btrfs_ioctl_trans_end(file); 2188 2189 /* 2190 * We use start here because we will need to wait on the IO to complete 2191 * in btrfs_sync_log, which could require joining a transaction (for 2192 * example checking cross references in the nocow path). If we use join 2193 * here we could get into a situation where we're waiting on IO to 2194 * happen that is blocked on a transaction trying to commit. With start 2195 * we inc the extwriter counter, so we wait for all extwriters to exit 2196 * before we start blocking join'ers. This comment is to keep somebody 2197 * from thinking they are super smart and changing this to 2198 * btrfs_join_transaction *cough*Josef*cough*. 2199 */ 2200 trans = btrfs_start_transaction(root, 0); 2201 if (IS_ERR(trans)) { 2202 ret = PTR_ERR(trans); 2203 inode_unlock(inode); 2204 goto out; 2205 } 2206 trans->sync = true; 2207 2208 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx); 2209 if (ret < 0) { 2210 /* Fallthrough and commit/free transaction. */ 2211 ret = 1; 2212 } 2213 2214 /* we've logged all the items and now have a consistent 2215 * version of the file in the log. It is possible that 2216 * someone will come in and modify the file, but that's 2217 * fine because the log is consistent on disk, and we 2218 * have references to all of the file's extents 2219 * 2220 * It is possible that someone will come in and log the 2221 * file again, but that will end up using the synchronization 2222 * inside btrfs_sync_log to keep things safe. 2223 */ 2224 inode_unlock(inode); 2225 2226 /* 2227 * If any of the ordered extents had an error, just return it to user 2228 * space, so that the application knows some writes didn't succeed and 2229 * can take proper action (retry for e.g.). Blindly committing the 2230 * transaction in this case, would fool userspace that everything was 2231 * successful. And we also want to make sure our log doesn't contain 2232 * file extent items pointing to extents that weren't fully written to - 2233 * just like in the non fast fsync path, where we check for the ordered 2234 * operation's error flag before writing to the log tree and return -EIO 2235 * if any of them had this flag set (btrfs_wait_ordered_range) - 2236 * therefore we need to check for errors in the ordered operations, 2237 * which are indicated by ctx.io_err. 2238 */ 2239 if (ctx.io_err) { 2240 btrfs_end_transaction(trans); 2241 ret = ctx.io_err; 2242 goto out; 2243 } 2244 2245 if (ret != BTRFS_NO_LOG_SYNC) { 2246 if (!ret) { 2247 ret = btrfs_sync_log(trans, root, &ctx); 2248 if (!ret) { 2249 ret = btrfs_end_transaction(trans); 2250 goto out; 2251 } 2252 } 2253 if (!full_sync) { 2254 ret = btrfs_wait_ordered_range(inode, start, len); 2255 if (ret) { 2256 btrfs_end_transaction(trans); 2257 goto out; 2258 } 2259 } 2260 ret = btrfs_commit_transaction(trans); 2261 } else { 2262 ret = btrfs_end_transaction(trans); 2263 } 2264 out: 2265 ASSERT(list_empty(&ctx.list)); 2266 err = file_check_and_advance_wb_err(file); 2267 if (!ret) 2268 ret = err; 2269 return ret > 0 ? -EIO : ret; 2270 } 2271 2272 static const struct vm_operations_struct btrfs_file_vm_ops = { 2273 .fault = filemap_fault, 2274 .map_pages = filemap_map_pages, 2275 .page_mkwrite = btrfs_page_mkwrite, 2276 }; 2277 2278 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2279 { 2280 struct address_space *mapping = filp->f_mapping; 2281 2282 if (!mapping->a_ops->readpage) 2283 return -ENOEXEC; 2284 2285 file_accessed(filp); 2286 vma->vm_ops = &btrfs_file_vm_ops; 2287 2288 return 0; 2289 } 2290 2291 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2292 int slot, u64 start, u64 end) 2293 { 2294 struct btrfs_file_extent_item *fi; 2295 struct btrfs_key key; 2296 2297 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2298 return 0; 2299 2300 btrfs_item_key_to_cpu(leaf, &key, slot); 2301 if (key.objectid != btrfs_ino(inode) || 2302 key.type != BTRFS_EXTENT_DATA_KEY) 2303 return 0; 2304 2305 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2306 2307 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2308 return 0; 2309 2310 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2311 return 0; 2312 2313 if (key.offset == end) 2314 return 1; 2315 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2316 return 1; 2317 return 0; 2318 } 2319 2320 static int fill_holes(struct btrfs_trans_handle *trans, 2321 struct btrfs_inode *inode, 2322 struct btrfs_path *path, u64 offset, u64 end) 2323 { 2324 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 2325 struct btrfs_root *root = inode->root; 2326 struct extent_buffer *leaf; 2327 struct btrfs_file_extent_item *fi; 2328 struct extent_map *hole_em; 2329 struct extent_map_tree *em_tree = &inode->extent_tree; 2330 struct btrfs_key key; 2331 int ret; 2332 2333 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2334 goto out; 2335 2336 key.objectid = btrfs_ino(inode); 2337 key.type = BTRFS_EXTENT_DATA_KEY; 2338 key.offset = offset; 2339 2340 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2341 if (ret <= 0) { 2342 /* 2343 * We should have dropped this offset, so if we find it then 2344 * something has gone horribly wrong. 2345 */ 2346 if (ret == 0) 2347 ret = -EINVAL; 2348 return ret; 2349 } 2350 2351 leaf = path->nodes[0]; 2352 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2353 u64 num_bytes; 2354 2355 path->slots[0]--; 2356 fi = btrfs_item_ptr(leaf, path->slots[0], 2357 struct btrfs_file_extent_item); 2358 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2359 end - offset; 2360 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2361 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2362 btrfs_set_file_extent_offset(leaf, fi, 0); 2363 btrfs_mark_buffer_dirty(leaf); 2364 goto out; 2365 } 2366 2367 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2368 u64 num_bytes; 2369 2370 key.offset = offset; 2371 btrfs_set_item_key_safe(fs_info, path, &key); 2372 fi = btrfs_item_ptr(leaf, path->slots[0], 2373 struct btrfs_file_extent_item); 2374 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2375 offset; 2376 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2377 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2378 btrfs_set_file_extent_offset(leaf, fi, 0); 2379 btrfs_mark_buffer_dirty(leaf); 2380 goto out; 2381 } 2382 btrfs_release_path(path); 2383 2384 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2385 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2386 if (ret) 2387 return ret; 2388 2389 out: 2390 btrfs_release_path(path); 2391 2392 hole_em = alloc_extent_map(); 2393 if (!hole_em) { 2394 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2395 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2396 } else { 2397 hole_em->start = offset; 2398 hole_em->len = end - offset; 2399 hole_em->ram_bytes = hole_em->len; 2400 hole_em->orig_start = offset; 2401 2402 hole_em->block_start = EXTENT_MAP_HOLE; 2403 hole_em->block_len = 0; 2404 hole_em->orig_block_len = 0; 2405 hole_em->bdev = fs_info->fs_devices->latest_bdev; 2406 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2407 hole_em->generation = trans->transid; 2408 2409 do { 2410 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2411 write_lock(&em_tree->lock); 2412 ret = add_extent_mapping(em_tree, hole_em, 1); 2413 write_unlock(&em_tree->lock); 2414 } while (ret == -EEXIST); 2415 free_extent_map(hole_em); 2416 if (ret) 2417 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2418 &inode->runtime_flags); 2419 } 2420 2421 return 0; 2422 } 2423 2424 /* 2425 * Find a hole extent on given inode and change start/len to the end of hole 2426 * extent.(hole/vacuum extent whose em->start <= start && 2427 * em->start + em->len > start) 2428 * When a hole extent is found, return 1 and modify start/len. 2429 */ 2430 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2431 { 2432 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2433 struct extent_map *em; 2434 int ret = 0; 2435 2436 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2437 round_down(*start, fs_info->sectorsize), 2438 round_up(*len, fs_info->sectorsize), 0); 2439 if (IS_ERR(em)) 2440 return PTR_ERR(em); 2441 2442 /* Hole or vacuum extent(only exists in no-hole mode) */ 2443 if (em->block_start == EXTENT_MAP_HOLE) { 2444 ret = 1; 2445 *len = em->start + em->len > *start + *len ? 2446 0 : *start + *len - em->start - em->len; 2447 *start = em->start + em->len; 2448 } 2449 free_extent_map(em); 2450 return ret; 2451 } 2452 2453 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2454 { 2455 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2456 struct btrfs_root *root = BTRFS_I(inode)->root; 2457 struct extent_state *cached_state = NULL; 2458 struct btrfs_path *path; 2459 struct btrfs_block_rsv *rsv; 2460 struct btrfs_trans_handle *trans; 2461 u64 lockstart; 2462 u64 lockend; 2463 u64 tail_start; 2464 u64 tail_len; 2465 u64 orig_start = offset; 2466 u64 cur_offset; 2467 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1); 2468 u64 drop_end; 2469 int ret = 0; 2470 int err = 0; 2471 unsigned int rsv_count; 2472 bool same_block; 2473 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES); 2474 u64 ino_size; 2475 bool truncated_block = false; 2476 bool updated_inode = false; 2477 2478 ret = btrfs_wait_ordered_range(inode, offset, len); 2479 if (ret) 2480 return ret; 2481 2482 inode_lock(inode); 2483 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2484 ret = find_first_non_hole(inode, &offset, &len); 2485 if (ret < 0) 2486 goto out_only_mutex; 2487 if (ret && !len) { 2488 /* Already in a large hole */ 2489 ret = 0; 2490 goto out_only_mutex; 2491 } 2492 2493 lockstart = round_up(offset, btrfs_inode_sectorsize(inode)); 2494 lockend = round_down(offset + len, 2495 btrfs_inode_sectorsize(inode)) - 1; 2496 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2497 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2498 /* 2499 * We needn't truncate any block which is beyond the end of the file 2500 * because we are sure there is no data there. 2501 */ 2502 /* 2503 * Only do this if we are in the same block and we aren't doing the 2504 * entire block. 2505 */ 2506 if (same_block && len < fs_info->sectorsize) { 2507 if (offset < ino_size) { 2508 truncated_block = true; 2509 ret = btrfs_truncate_block(inode, offset, len, 0); 2510 } else { 2511 ret = 0; 2512 } 2513 goto out_only_mutex; 2514 } 2515 2516 /* zero back part of the first block */ 2517 if (offset < ino_size) { 2518 truncated_block = true; 2519 ret = btrfs_truncate_block(inode, offset, 0, 0); 2520 if (ret) { 2521 inode_unlock(inode); 2522 return ret; 2523 } 2524 } 2525 2526 /* Check the aligned pages after the first unaligned page, 2527 * if offset != orig_start, which means the first unaligned page 2528 * including several following pages are already in holes, 2529 * the extra check can be skipped */ 2530 if (offset == orig_start) { 2531 /* after truncate page, check hole again */ 2532 len = offset + len - lockstart; 2533 offset = lockstart; 2534 ret = find_first_non_hole(inode, &offset, &len); 2535 if (ret < 0) 2536 goto out_only_mutex; 2537 if (ret && !len) { 2538 ret = 0; 2539 goto out_only_mutex; 2540 } 2541 lockstart = offset; 2542 } 2543 2544 /* Check the tail unaligned part is in a hole */ 2545 tail_start = lockend + 1; 2546 tail_len = offset + len - tail_start; 2547 if (tail_len) { 2548 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2549 if (unlikely(ret < 0)) 2550 goto out_only_mutex; 2551 if (!ret) { 2552 /* zero the front end of the last page */ 2553 if (tail_start + tail_len < ino_size) { 2554 truncated_block = true; 2555 ret = btrfs_truncate_block(inode, 2556 tail_start + tail_len, 2557 0, 1); 2558 if (ret) 2559 goto out_only_mutex; 2560 } 2561 } 2562 } 2563 2564 if (lockend < lockstart) { 2565 ret = 0; 2566 goto out_only_mutex; 2567 } 2568 2569 while (1) { 2570 struct btrfs_ordered_extent *ordered; 2571 2572 truncate_pagecache_range(inode, lockstart, lockend); 2573 2574 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2575 &cached_state); 2576 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2577 2578 /* 2579 * We need to make sure we have no ordered extents in this range 2580 * and nobody raced in and read a page in this range, if we did 2581 * we need to try again. 2582 */ 2583 if ((!ordered || 2584 (ordered->file_offset + ordered->len <= lockstart || 2585 ordered->file_offset > lockend)) && 2586 !btrfs_page_exists_in_range(inode, lockstart, lockend)) { 2587 if (ordered) 2588 btrfs_put_ordered_extent(ordered); 2589 break; 2590 } 2591 if (ordered) 2592 btrfs_put_ordered_extent(ordered); 2593 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2594 lockend, &cached_state, GFP_NOFS); 2595 ret = btrfs_wait_ordered_range(inode, lockstart, 2596 lockend - lockstart + 1); 2597 if (ret) { 2598 inode_unlock(inode); 2599 return ret; 2600 } 2601 } 2602 2603 path = btrfs_alloc_path(); 2604 if (!path) { 2605 ret = -ENOMEM; 2606 goto out; 2607 } 2608 2609 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2610 if (!rsv) { 2611 ret = -ENOMEM; 2612 goto out_free; 2613 } 2614 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1); 2615 rsv->failfast = 1; 2616 2617 /* 2618 * 1 - update the inode 2619 * 1 - removing the extents in the range 2620 * 1 - adding the hole extent if no_holes isn't set 2621 */ 2622 rsv_count = no_holes ? 2 : 3; 2623 trans = btrfs_start_transaction(root, rsv_count); 2624 if (IS_ERR(trans)) { 2625 err = PTR_ERR(trans); 2626 goto out_free; 2627 } 2628 2629 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2630 min_size, 0); 2631 BUG_ON(ret); 2632 trans->block_rsv = rsv; 2633 2634 cur_offset = lockstart; 2635 len = lockend - cur_offset; 2636 while (cur_offset < lockend) { 2637 ret = __btrfs_drop_extents(trans, root, inode, path, 2638 cur_offset, lockend + 1, 2639 &drop_end, 1, 0, 0, NULL); 2640 if (ret != -ENOSPC) 2641 break; 2642 2643 trans->block_rsv = &fs_info->trans_block_rsv; 2644 2645 if (cur_offset < drop_end && cur_offset < ino_size) { 2646 ret = fill_holes(trans, BTRFS_I(inode), path, 2647 cur_offset, drop_end); 2648 if (ret) { 2649 /* 2650 * If we failed then we didn't insert our hole 2651 * entries for the area we dropped, so now the 2652 * fs is corrupted, so we must abort the 2653 * transaction. 2654 */ 2655 btrfs_abort_transaction(trans, ret); 2656 err = ret; 2657 break; 2658 } 2659 } 2660 2661 cur_offset = drop_end; 2662 2663 ret = btrfs_update_inode(trans, root, inode); 2664 if (ret) { 2665 err = ret; 2666 break; 2667 } 2668 2669 btrfs_end_transaction(trans); 2670 btrfs_btree_balance_dirty(fs_info); 2671 2672 trans = btrfs_start_transaction(root, rsv_count); 2673 if (IS_ERR(trans)) { 2674 ret = PTR_ERR(trans); 2675 trans = NULL; 2676 break; 2677 } 2678 2679 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2680 rsv, min_size, 0); 2681 BUG_ON(ret); /* shouldn't happen */ 2682 trans->block_rsv = rsv; 2683 2684 ret = find_first_non_hole(inode, &cur_offset, &len); 2685 if (unlikely(ret < 0)) 2686 break; 2687 if (ret && !len) { 2688 ret = 0; 2689 break; 2690 } 2691 } 2692 2693 if (ret) { 2694 err = ret; 2695 goto out_trans; 2696 } 2697 2698 trans->block_rsv = &fs_info->trans_block_rsv; 2699 /* 2700 * If we are using the NO_HOLES feature we might have had already an 2701 * hole that overlaps a part of the region [lockstart, lockend] and 2702 * ends at (or beyond) lockend. Since we have no file extent items to 2703 * represent holes, drop_end can be less than lockend and so we must 2704 * make sure we have an extent map representing the existing hole (the 2705 * call to __btrfs_drop_extents() might have dropped the existing extent 2706 * map representing the existing hole), otherwise the fast fsync path 2707 * will not record the existence of the hole region 2708 * [existing_hole_start, lockend]. 2709 */ 2710 if (drop_end <= lockend) 2711 drop_end = lockend + 1; 2712 /* 2713 * Don't insert file hole extent item if it's for a range beyond eof 2714 * (because it's useless) or if it represents a 0 bytes range (when 2715 * cur_offset == drop_end). 2716 */ 2717 if (cur_offset < ino_size && cur_offset < drop_end) { 2718 ret = fill_holes(trans, BTRFS_I(inode), path, 2719 cur_offset, drop_end); 2720 if (ret) { 2721 /* Same comment as above. */ 2722 btrfs_abort_transaction(trans, ret); 2723 err = ret; 2724 goto out_trans; 2725 } 2726 } 2727 2728 out_trans: 2729 if (!trans) 2730 goto out_free; 2731 2732 inode_inc_iversion(inode); 2733 inode->i_mtime = inode->i_ctime = current_time(inode); 2734 2735 trans->block_rsv = &fs_info->trans_block_rsv; 2736 ret = btrfs_update_inode(trans, root, inode); 2737 updated_inode = true; 2738 btrfs_end_transaction(trans); 2739 btrfs_btree_balance_dirty(fs_info); 2740 out_free: 2741 btrfs_free_path(path); 2742 btrfs_free_block_rsv(fs_info, rsv); 2743 out: 2744 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2745 &cached_state, GFP_NOFS); 2746 out_only_mutex: 2747 if (!updated_inode && truncated_block && !ret && !err) { 2748 /* 2749 * If we only end up zeroing part of a page, we still need to 2750 * update the inode item, so that all the time fields are 2751 * updated as well as the necessary btrfs inode in memory fields 2752 * for detecting, at fsync time, if the inode isn't yet in the 2753 * log tree or it's there but not up to date. 2754 */ 2755 trans = btrfs_start_transaction(root, 1); 2756 if (IS_ERR(trans)) { 2757 err = PTR_ERR(trans); 2758 } else { 2759 err = btrfs_update_inode(trans, root, inode); 2760 ret = btrfs_end_transaction(trans); 2761 } 2762 } 2763 inode_unlock(inode); 2764 if (ret && !err) 2765 err = ret; 2766 return err; 2767 } 2768 2769 /* Helper structure to record which range is already reserved */ 2770 struct falloc_range { 2771 struct list_head list; 2772 u64 start; 2773 u64 len; 2774 }; 2775 2776 /* 2777 * Helper function to add falloc range 2778 * 2779 * Caller should have locked the larger range of extent containing 2780 * [start, len) 2781 */ 2782 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2783 { 2784 struct falloc_range *prev = NULL; 2785 struct falloc_range *range = NULL; 2786 2787 if (list_empty(head)) 2788 goto insert; 2789 2790 /* 2791 * As fallocate iterate by bytenr order, we only need to check 2792 * the last range. 2793 */ 2794 prev = list_entry(head->prev, struct falloc_range, list); 2795 if (prev->start + prev->len == start) { 2796 prev->len += len; 2797 return 0; 2798 } 2799 insert: 2800 range = kmalloc(sizeof(*range), GFP_KERNEL); 2801 if (!range) 2802 return -ENOMEM; 2803 range->start = start; 2804 range->len = len; 2805 list_add_tail(&range->list, head); 2806 return 0; 2807 } 2808 2809 static long btrfs_fallocate(struct file *file, int mode, 2810 loff_t offset, loff_t len) 2811 { 2812 struct inode *inode = file_inode(file); 2813 struct extent_state *cached_state = NULL; 2814 struct extent_changeset *data_reserved = NULL; 2815 struct falloc_range *range; 2816 struct falloc_range *tmp; 2817 struct list_head reserve_list; 2818 u64 cur_offset; 2819 u64 last_byte; 2820 u64 alloc_start; 2821 u64 alloc_end; 2822 u64 alloc_hint = 0; 2823 u64 locked_end; 2824 u64 actual_end = 0; 2825 struct extent_map *em; 2826 int blocksize = btrfs_inode_sectorsize(inode); 2827 int ret; 2828 2829 alloc_start = round_down(offset, blocksize); 2830 alloc_end = round_up(offset + len, blocksize); 2831 cur_offset = alloc_start; 2832 2833 /* Make sure we aren't being give some crap mode */ 2834 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2835 return -EOPNOTSUPP; 2836 2837 if (mode & FALLOC_FL_PUNCH_HOLE) 2838 return btrfs_punch_hole(inode, offset, len); 2839 2840 /* 2841 * Only trigger disk allocation, don't trigger qgroup reserve 2842 * 2843 * For qgroup space, it will be checked later. 2844 */ 2845 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 2846 alloc_end - alloc_start); 2847 if (ret < 0) 2848 return ret; 2849 2850 inode_lock(inode); 2851 2852 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 2853 ret = inode_newsize_ok(inode, offset + len); 2854 if (ret) 2855 goto out; 2856 } 2857 2858 /* 2859 * TODO: Move these two operations after we have checked 2860 * accurate reserved space, or fallocate can still fail but 2861 * with page truncated or size expanded. 2862 * 2863 * But that's a minor problem and won't do much harm BTW. 2864 */ 2865 if (alloc_start > inode->i_size) { 2866 ret = btrfs_cont_expand(inode, i_size_read(inode), 2867 alloc_start); 2868 if (ret) 2869 goto out; 2870 } else if (offset + len > inode->i_size) { 2871 /* 2872 * If we are fallocating from the end of the file onward we 2873 * need to zero out the end of the block if i_size lands in the 2874 * middle of a block. 2875 */ 2876 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 2877 if (ret) 2878 goto out; 2879 } 2880 2881 /* 2882 * wait for ordered IO before we have any locks. We'll loop again 2883 * below with the locks held. 2884 */ 2885 ret = btrfs_wait_ordered_range(inode, alloc_start, 2886 alloc_end - alloc_start); 2887 if (ret) 2888 goto out; 2889 2890 locked_end = alloc_end - 1; 2891 while (1) { 2892 struct btrfs_ordered_extent *ordered; 2893 2894 /* the extent lock is ordered inside the running 2895 * transaction 2896 */ 2897 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 2898 locked_end, &cached_state); 2899 ordered = btrfs_lookup_first_ordered_extent(inode, 2900 alloc_end - 1); 2901 if (ordered && 2902 ordered->file_offset + ordered->len > alloc_start && 2903 ordered->file_offset < alloc_end) { 2904 btrfs_put_ordered_extent(ordered); 2905 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 2906 alloc_start, locked_end, 2907 &cached_state, GFP_KERNEL); 2908 /* 2909 * we can't wait on the range with the transaction 2910 * running or with the extent lock held 2911 */ 2912 ret = btrfs_wait_ordered_range(inode, alloc_start, 2913 alloc_end - alloc_start); 2914 if (ret) 2915 goto out; 2916 } else { 2917 if (ordered) 2918 btrfs_put_ordered_extent(ordered); 2919 break; 2920 } 2921 } 2922 2923 /* First, check if we exceed the qgroup limit */ 2924 INIT_LIST_HEAD(&reserve_list); 2925 while (1) { 2926 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 2927 alloc_end - cur_offset, 0); 2928 if (IS_ERR(em)) { 2929 ret = PTR_ERR(em); 2930 break; 2931 } 2932 last_byte = min(extent_map_end(em), alloc_end); 2933 actual_end = min_t(u64, extent_map_end(em), offset + len); 2934 last_byte = ALIGN(last_byte, blocksize); 2935 if (em->block_start == EXTENT_MAP_HOLE || 2936 (cur_offset >= inode->i_size && 2937 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 2938 ret = add_falloc_range(&reserve_list, cur_offset, 2939 last_byte - cur_offset); 2940 if (ret < 0) { 2941 free_extent_map(em); 2942 break; 2943 } 2944 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 2945 cur_offset, last_byte - cur_offset); 2946 if (ret < 0) { 2947 free_extent_map(em); 2948 break; 2949 } 2950 } else { 2951 /* 2952 * Do not need to reserve unwritten extent for this 2953 * range, free reserved data space first, otherwise 2954 * it'll result in false ENOSPC error. 2955 */ 2956 btrfs_free_reserved_data_space(inode, data_reserved, 2957 cur_offset, last_byte - cur_offset); 2958 } 2959 free_extent_map(em); 2960 cur_offset = last_byte; 2961 if (cur_offset >= alloc_end) 2962 break; 2963 } 2964 2965 /* 2966 * If ret is still 0, means we're OK to fallocate. 2967 * Or just cleanup the list and exit. 2968 */ 2969 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 2970 if (!ret) 2971 ret = btrfs_prealloc_file_range(inode, mode, 2972 range->start, 2973 range->len, i_blocksize(inode), 2974 offset + len, &alloc_hint); 2975 else 2976 btrfs_free_reserved_data_space(inode, 2977 data_reserved, range->start, 2978 range->len); 2979 list_del(&range->list); 2980 kfree(range); 2981 } 2982 if (ret < 0) 2983 goto out_unlock; 2984 2985 if (actual_end > inode->i_size && 2986 !(mode & FALLOC_FL_KEEP_SIZE)) { 2987 struct btrfs_trans_handle *trans; 2988 struct btrfs_root *root = BTRFS_I(inode)->root; 2989 2990 /* 2991 * We didn't need to allocate any more space, but we 2992 * still extended the size of the file so we need to 2993 * update i_size and the inode item. 2994 */ 2995 trans = btrfs_start_transaction(root, 1); 2996 if (IS_ERR(trans)) { 2997 ret = PTR_ERR(trans); 2998 } else { 2999 inode->i_ctime = current_time(inode); 3000 i_size_write(inode, actual_end); 3001 btrfs_ordered_update_i_size(inode, actual_end, NULL); 3002 ret = btrfs_update_inode(trans, root, inode); 3003 if (ret) 3004 btrfs_end_transaction(trans); 3005 else 3006 ret = btrfs_end_transaction(trans); 3007 } 3008 } 3009 out_unlock: 3010 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3011 &cached_state, GFP_KERNEL); 3012 out: 3013 inode_unlock(inode); 3014 /* Let go of our reservation. */ 3015 if (ret != 0) 3016 btrfs_free_reserved_data_space(inode, data_reserved, 3017 alloc_start, alloc_end - cur_offset); 3018 extent_changeset_free(data_reserved); 3019 return ret; 3020 } 3021 3022 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 3023 { 3024 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3025 struct extent_map *em = NULL; 3026 struct extent_state *cached_state = NULL; 3027 u64 lockstart; 3028 u64 lockend; 3029 u64 start; 3030 u64 len; 3031 int ret = 0; 3032 3033 if (inode->i_size == 0) 3034 return -ENXIO; 3035 3036 /* 3037 * *offset can be negative, in this case we start finding DATA/HOLE from 3038 * the very start of the file. 3039 */ 3040 start = max_t(loff_t, 0, *offset); 3041 3042 lockstart = round_down(start, fs_info->sectorsize); 3043 lockend = round_up(i_size_read(inode), 3044 fs_info->sectorsize); 3045 if (lockend <= lockstart) 3046 lockend = lockstart + fs_info->sectorsize; 3047 lockend--; 3048 len = lockend - lockstart + 1; 3049 3050 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3051 &cached_state); 3052 3053 while (start < inode->i_size) { 3054 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, 3055 start, len, 0); 3056 if (IS_ERR(em)) { 3057 ret = PTR_ERR(em); 3058 em = NULL; 3059 break; 3060 } 3061 3062 if (whence == SEEK_HOLE && 3063 (em->block_start == EXTENT_MAP_HOLE || 3064 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3065 break; 3066 else if (whence == SEEK_DATA && 3067 (em->block_start != EXTENT_MAP_HOLE && 3068 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3069 break; 3070 3071 start = em->start + em->len; 3072 free_extent_map(em); 3073 em = NULL; 3074 cond_resched(); 3075 } 3076 free_extent_map(em); 3077 if (!ret) { 3078 if (whence == SEEK_DATA && start >= inode->i_size) 3079 ret = -ENXIO; 3080 else 3081 *offset = min_t(loff_t, start, inode->i_size); 3082 } 3083 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3084 &cached_state, GFP_NOFS); 3085 return ret; 3086 } 3087 3088 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3089 { 3090 struct inode *inode = file->f_mapping->host; 3091 int ret; 3092 3093 inode_lock(inode); 3094 switch (whence) { 3095 case SEEK_END: 3096 case SEEK_CUR: 3097 offset = generic_file_llseek(file, offset, whence); 3098 goto out; 3099 case SEEK_DATA: 3100 case SEEK_HOLE: 3101 if (offset >= i_size_read(inode)) { 3102 inode_unlock(inode); 3103 return -ENXIO; 3104 } 3105 3106 ret = find_desired_extent(inode, &offset, whence); 3107 if (ret) { 3108 inode_unlock(inode); 3109 return ret; 3110 } 3111 } 3112 3113 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3114 out: 3115 inode_unlock(inode); 3116 return offset; 3117 } 3118 3119 static int btrfs_file_open(struct inode *inode, struct file *filp) 3120 { 3121 filp->f_mode |= FMODE_NOWAIT; 3122 return generic_file_open(inode, filp); 3123 } 3124 3125 const struct file_operations btrfs_file_operations = { 3126 .llseek = btrfs_file_llseek, 3127 .read_iter = generic_file_read_iter, 3128 .splice_read = generic_file_splice_read, 3129 .write_iter = btrfs_file_write_iter, 3130 .mmap = btrfs_file_mmap, 3131 .open = btrfs_file_open, 3132 .release = btrfs_release_file, 3133 .fsync = btrfs_sync_file, 3134 .fallocate = btrfs_fallocate, 3135 .unlocked_ioctl = btrfs_ioctl, 3136 #ifdef CONFIG_COMPAT 3137 .compat_ioctl = btrfs_compat_ioctl, 3138 #endif 3139 .clone_file_range = btrfs_clone_file_range, 3140 .dedupe_file_range = btrfs_dedupe_file_range, 3141 }; 3142 3143 void btrfs_auto_defrag_exit(void) 3144 { 3145 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3146 } 3147 3148 int btrfs_auto_defrag_init(void) 3149 { 3150 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3151 sizeof(struct inode_defrag), 0, 3152 SLAB_MEM_SPREAD, 3153 NULL); 3154 if (!btrfs_inode_defrag_cachep) 3155 return -ENOMEM; 3156 3157 return 0; 3158 } 3159 3160 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3161 { 3162 int ret; 3163 3164 /* 3165 * So with compression we will find and lock a dirty page and clear the 3166 * first one as dirty, setup an async extent, and immediately return 3167 * with the entire range locked but with nobody actually marked with 3168 * writeback. So we can't just filemap_write_and_wait_range() and 3169 * expect it to work since it will just kick off a thread to do the 3170 * actual work. So we need to call filemap_fdatawrite_range _again_ 3171 * since it will wait on the page lock, which won't be unlocked until 3172 * after the pages have been marked as writeback and so we're good to go 3173 * from there. We have to do this otherwise we'll miss the ordered 3174 * extents and that results in badness. Please Josef, do not think you 3175 * know better and pull this out at some point in the future, it is 3176 * right and you are wrong. 3177 */ 3178 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3179 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3180 &BTRFS_I(inode)->runtime_flags)) 3181 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3182 3183 return ret; 3184 } 3185