xref: /openbmc/linux/fs/btrfs/file.c (revision 6189f1b0)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
34 #include <linux/uio.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 #include "qgroup.h"
44 
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 /*
47  * when auto defrag is enabled we
48  * queue up these defrag structs to remember which
49  * inodes need defragging passes
50  */
51 struct inode_defrag {
52 	struct rb_node rb_node;
53 	/* objectid */
54 	u64 ino;
55 	/*
56 	 * transid where the defrag was added, we search for
57 	 * extents newer than this
58 	 */
59 	u64 transid;
60 
61 	/* root objectid */
62 	u64 root;
63 
64 	/* last offset we were able to defrag */
65 	u64 last_offset;
66 
67 	/* if we've wrapped around back to zero once already */
68 	int cycled;
69 };
70 
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 				  struct inode_defrag *defrag2)
73 {
74 	if (defrag1->root > defrag2->root)
75 		return 1;
76 	else if (defrag1->root < defrag2->root)
77 		return -1;
78 	else if (defrag1->ino > defrag2->ino)
79 		return 1;
80 	else if (defrag1->ino < defrag2->ino)
81 		return -1;
82 	else
83 		return 0;
84 }
85 
86 /* pop a record for an inode into the defrag tree.  The lock
87  * must be held already
88  *
89  * If you're inserting a record for an older transid than an
90  * existing record, the transid already in the tree is lowered
91  *
92  * If an existing record is found the defrag item you
93  * pass in is freed
94  */
95 static int __btrfs_add_inode_defrag(struct inode *inode,
96 				    struct inode_defrag *defrag)
97 {
98 	struct btrfs_root *root = BTRFS_I(inode)->root;
99 	struct inode_defrag *entry;
100 	struct rb_node **p;
101 	struct rb_node *parent = NULL;
102 	int ret;
103 
104 	p = &root->fs_info->defrag_inodes.rb_node;
105 	while (*p) {
106 		parent = *p;
107 		entry = rb_entry(parent, struct inode_defrag, rb_node);
108 
109 		ret = __compare_inode_defrag(defrag, entry);
110 		if (ret < 0)
111 			p = &parent->rb_left;
112 		else if (ret > 0)
113 			p = &parent->rb_right;
114 		else {
115 			/* if we're reinserting an entry for
116 			 * an old defrag run, make sure to
117 			 * lower the transid of our existing record
118 			 */
119 			if (defrag->transid < entry->transid)
120 				entry->transid = defrag->transid;
121 			if (defrag->last_offset > entry->last_offset)
122 				entry->last_offset = defrag->last_offset;
123 			return -EEXIST;
124 		}
125 	}
126 	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
127 	rb_link_node(&defrag->rb_node, parent, p);
128 	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
129 	return 0;
130 }
131 
132 static inline int __need_auto_defrag(struct btrfs_root *root)
133 {
134 	if (!btrfs_test_opt(root, AUTO_DEFRAG))
135 		return 0;
136 
137 	if (btrfs_fs_closing(root->fs_info))
138 		return 0;
139 
140 	return 1;
141 }
142 
143 /*
144  * insert a defrag record for this inode if auto defrag is
145  * enabled
146  */
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 			   struct inode *inode)
149 {
150 	struct btrfs_root *root = BTRFS_I(inode)->root;
151 	struct inode_defrag *defrag;
152 	u64 transid;
153 	int ret;
154 
155 	if (!__need_auto_defrag(root))
156 		return 0;
157 
158 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
159 		return 0;
160 
161 	if (trans)
162 		transid = trans->transid;
163 	else
164 		transid = BTRFS_I(inode)->root->last_trans;
165 
166 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
167 	if (!defrag)
168 		return -ENOMEM;
169 
170 	defrag->ino = btrfs_ino(inode);
171 	defrag->transid = transid;
172 	defrag->root = root->root_key.objectid;
173 
174 	spin_lock(&root->fs_info->defrag_inodes_lock);
175 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
176 		/*
177 		 * If we set IN_DEFRAG flag and evict the inode from memory,
178 		 * and then re-read this inode, this new inode doesn't have
179 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
180 		 */
181 		ret = __btrfs_add_inode_defrag(inode, defrag);
182 		if (ret)
183 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 	} else {
185 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
186 	}
187 	spin_unlock(&root->fs_info->defrag_inodes_lock);
188 	return 0;
189 }
190 
191 /*
192  * Requeue the defrag object. If there is a defrag object that points to
193  * the same inode in the tree, we will merge them together (by
194  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
195  */
196 static void btrfs_requeue_inode_defrag(struct inode *inode,
197 				       struct inode_defrag *defrag)
198 {
199 	struct btrfs_root *root = BTRFS_I(inode)->root;
200 	int ret;
201 
202 	if (!__need_auto_defrag(root))
203 		goto out;
204 
205 	/*
206 	 * Here we don't check the IN_DEFRAG flag, because we need merge
207 	 * them together.
208 	 */
209 	spin_lock(&root->fs_info->defrag_inodes_lock);
210 	ret = __btrfs_add_inode_defrag(inode, defrag);
211 	spin_unlock(&root->fs_info->defrag_inodes_lock);
212 	if (ret)
213 		goto out;
214 	return;
215 out:
216 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
217 }
218 
219 /*
220  * pick the defragable inode that we want, if it doesn't exist, we will get
221  * the next one.
222  */
223 static struct inode_defrag *
224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
225 {
226 	struct inode_defrag *entry = NULL;
227 	struct inode_defrag tmp;
228 	struct rb_node *p;
229 	struct rb_node *parent = NULL;
230 	int ret;
231 
232 	tmp.ino = ino;
233 	tmp.root = root;
234 
235 	spin_lock(&fs_info->defrag_inodes_lock);
236 	p = fs_info->defrag_inodes.rb_node;
237 	while (p) {
238 		parent = p;
239 		entry = rb_entry(parent, struct inode_defrag, rb_node);
240 
241 		ret = __compare_inode_defrag(&tmp, entry);
242 		if (ret < 0)
243 			p = parent->rb_left;
244 		else if (ret > 0)
245 			p = parent->rb_right;
246 		else
247 			goto out;
248 	}
249 
250 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
251 		parent = rb_next(parent);
252 		if (parent)
253 			entry = rb_entry(parent, struct inode_defrag, rb_node);
254 		else
255 			entry = NULL;
256 	}
257 out:
258 	if (entry)
259 		rb_erase(parent, &fs_info->defrag_inodes);
260 	spin_unlock(&fs_info->defrag_inodes_lock);
261 	return entry;
262 }
263 
264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
265 {
266 	struct inode_defrag *defrag;
267 	struct rb_node *node;
268 
269 	spin_lock(&fs_info->defrag_inodes_lock);
270 	node = rb_first(&fs_info->defrag_inodes);
271 	while (node) {
272 		rb_erase(node, &fs_info->defrag_inodes);
273 		defrag = rb_entry(node, struct inode_defrag, rb_node);
274 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
275 
276 		cond_resched_lock(&fs_info->defrag_inodes_lock);
277 
278 		node = rb_first(&fs_info->defrag_inodes);
279 	}
280 	spin_unlock(&fs_info->defrag_inodes_lock);
281 }
282 
283 #define BTRFS_DEFRAG_BATCH	1024
284 
285 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
286 				    struct inode_defrag *defrag)
287 {
288 	struct btrfs_root *inode_root;
289 	struct inode *inode;
290 	struct btrfs_key key;
291 	struct btrfs_ioctl_defrag_range_args range;
292 	int num_defrag;
293 	int index;
294 	int ret;
295 
296 	/* get the inode */
297 	key.objectid = defrag->root;
298 	key.type = BTRFS_ROOT_ITEM_KEY;
299 	key.offset = (u64)-1;
300 
301 	index = srcu_read_lock(&fs_info->subvol_srcu);
302 
303 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
304 	if (IS_ERR(inode_root)) {
305 		ret = PTR_ERR(inode_root);
306 		goto cleanup;
307 	}
308 
309 	key.objectid = defrag->ino;
310 	key.type = BTRFS_INODE_ITEM_KEY;
311 	key.offset = 0;
312 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
313 	if (IS_ERR(inode)) {
314 		ret = PTR_ERR(inode);
315 		goto cleanup;
316 	}
317 	srcu_read_unlock(&fs_info->subvol_srcu, index);
318 
319 	/* do a chunk of defrag */
320 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
321 	memset(&range, 0, sizeof(range));
322 	range.len = (u64)-1;
323 	range.start = defrag->last_offset;
324 
325 	sb_start_write(fs_info->sb);
326 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
327 				       BTRFS_DEFRAG_BATCH);
328 	sb_end_write(fs_info->sb);
329 	/*
330 	 * if we filled the whole defrag batch, there
331 	 * must be more work to do.  Queue this defrag
332 	 * again
333 	 */
334 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
335 		defrag->last_offset = range.start;
336 		btrfs_requeue_inode_defrag(inode, defrag);
337 	} else if (defrag->last_offset && !defrag->cycled) {
338 		/*
339 		 * we didn't fill our defrag batch, but
340 		 * we didn't start at zero.  Make sure we loop
341 		 * around to the start of the file.
342 		 */
343 		defrag->last_offset = 0;
344 		defrag->cycled = 1;
345 		btrfs_requeue_inode_defrag(inode, defrag);
346 	} else {
347 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
348 	}
349 
350 	iput(inode);
351 	return 0;
352 cleanup:
353 	srcu_read_unlock(&fs_info->subvol_srcu, index);
354 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
355 	return ret;
356 }
357 
358 /*
359  * run through the list of inodes in the FS that need
360  * defragging
361  */
362 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
363 {
364 	struct inode_defrag *defrag;
365 	u64 first_ino = 0;
366 	u64 root_objectid = 0;
367 
368 	atomic_inc(&fs_info->defrag_running);
369 	while (1) {
370 		/* Pause the auto defragger. */
371 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
372 			     &fs_info->fs_state))
373 			break;
374 
375 		if (!__need_auto_defrag(fs_info->tree_root))
376 			break;
377 
378 		/* find an inode to defrag */
379 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
380 						 first_ino);
381 		if (!defrag) {
382 			if (root_objectid || first_ino) {
383 				root_objectid = 0;
384 				first_ino = 0;
385 				continue;
386 			} else {
387 				break;
388 			}
389 		}
390 
391 		first_ino = defrag->ino + 1;
392 		root_objectid = defrag->root;
393 
394 		__btrfs_run_defrag_inode(fs_info, defrag);
395 	}
396 	atomic_dec(&fs_info->defrag_running);
397 
398 	/*
399 	 * during unmount, we use the transaction_wait queue to
400 	 * wait for the defragger to stop
401 	 */
402 	wake_up(&fs_info->transaction_wait);
403 	return 0;
404 }
405 
406 /* simple helper to fault in pages and copy.  This should go away
407  * and be replaced with calls into generic code.
408  */
409 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
410 					 size_t write_bytes,
411 					 struct page **prepared_pages,
412 					 struct iov_iter *i)
413 {
414 	size_t copied = 0;
415 	size_t total_copied = 0;
416 	int pg = 0;
417 	int offset = pos & (PAGE_CACHE_SIZE - 1);
418 
419 	while (write_bytes > 0) {
420 		size_t count = min_t(size_t,
421 				     PAGE_CACHE_SIZE - offset, write_bytes);
422 		struct page *page = prepared_pages[pg];
423 		/*
424 		 * Copy data from userspace to the current page
425 		 */
426 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
427 
428 		/* Flush processor's dcache for this page */
429 		flush_dcache_page(page);
430 
431 		/*
432 		 * if we get a partial write, we can end up with
433 		 * partially up to date pages.  These add
434 		 * a lot of complexity, so make sure they don't
435 		 * happen by forcing this copy to be retried.
436 		 *
437 		 * The rest of the btrfs_file_write code will fall
438 		 * back to page at a time copies after we return 0.
439 		 */
440 		if (!PageUptodate(page) && copied < count)
441 			copied = 0;
442 
443 		iov_iter_advance(i, copied);
444 		write_bytes -= copied;
445 		total_copied += copied;
446 
447 		/* Return to btrfs_file_write_iter to fault page */
448 		if (unlikely(copied == 0))
449 			break;
450 
451 		if (copied < PAGE_CACHE_SIZE - offset) {
452 			offset += copied;
453 		} else {
454 			pg++;
455 			offset = 0;
456 		}
457 	}
458 	return total_copied;
459 }
460 
461 /*
462  * unlocks pages after btrfs_file_write is done with them
463  */
464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
465 {
466 	size_t i;
467 	for (i = 0; i < num_pages; i++) {
468 		/* page checked is some magic around finding pages that
469 		 * have been modified without going through btrfs_set_page_dirty
470 		 * clear it here. There should be no need to mark the pages
471 		 * accessed as prepare_pages should have marked them accessed
472 		 * in prepare_pages via find_or_create_page()
473 		 */
474 		ClearPageChecked(pages[i]);
475 		unlock_page(pages[i]);
476 		page_cache_release(pages[i]);
477 	}
478 }
479 
480 /*
481  * after copy_from_user, pages need to be dirtied and we need to make
482  * sure holes are created between the current EOF and the start of
483  * any next extents (if required).
484  *
485  * this also makes the decision about creating an inline extent vs
486  * doing real data extents, marking pages dirty and delalloc as required.
487  */
488 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
489 			     struct page **pages, size_t num_pages,
490 			     loff_t pos, size_t write_bytes,
491 			     struct extent_state **cached)
492 {
493 	int err = 0;
494 	int i;
495 	u64 num_bytes;
496 	u64 start_pos;
497 	u64 end_of_last_block;
498 	u64 end_pos = pos + write_bytes;
499 	loff_t isize = i_size_read(inode);
500 
501 	start_pos = pos & ~((u64)root->sectorsize - 1);
502 	num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
503 
504 	end_of_last_block = start_pos + num_bytes - 1;
505 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
506 					cached);
507 	if (err)
508 		return err;
509 
510 	for (i = 0; i < num_pages; i++) {
511 		struct page *p = pages[i];
512 		SetPageUptodate(p);
513 		ClearPageChecked(p);
514 		set_page_dirty(p);
515 	}
516 
517 	/*
518 	 * we've only changed i_size in ram, and we haven't updated
519 	 * the disk i_size.  There is no need to log the inode
520 	 * at this time.
521 	 */
522 	if (end_pos > isize)
523 		i_size_write(inode, end_pos);
524 	return 0;
525 }
526 
527 /*
528  * this drops all the extents in the cache that intersect the range
529  * [start, end].  Existing extents are split as required.
530  */
531 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
532 			     int skip_pinned)
533 {
534 	struct extent_map *em;
535 	struct extent_map *split = NULL;
536 	struct extent_map *split2 = NULL;
537 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538 	u64 len = end - start + 1;
539 	u64 gen;
540 	int ret;
541 	int testend = 1;
542 	unsigned long flags;
543 	int compressed = 0;
544 	bool modified;
545 
546 	WARN_ON(end < start);
547 	if (end == (u64)-1) {
548 		len = (u64)-1;
549 		testend = 0;
550 	}
551 	while (1) {
552 		int no_splits = 0;
553 
554 		modified = false;
555 		if (!split)
556 			split = alloc_extent_map();
557 		if (!split2)
558 			split2 = alloc_extent_map();
559 		if (!split || !split2)
560 			no_splits = 1;
561 
562 		write_lock(&em_tree->lock);
563 		em = lookup_extent_mapping(em_tree, start, len);
564 		if (!em) {
565 			write_unlock(&em_tree->lock);
566 			break;
567 		}
568 		flags = em->flags;
569 		gen = em->generation;
570 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
571 			if (testend && em->start + em->len >= start + len) {
572 				free_extent_map(em);
573 				write_unlock(&em_tree->lock);
574 				break;
575 			}
576 			start = em->start + em->len;
577 			if (testend)
578 				len = start + len - (em->start + em->len);
579 			free_extent_map(em);
580 			write_unlock(&em_tree->lock);
581 			continue;
582 		}
583 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
584 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
585 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
586 		modified = !list_empty(&em->list);
587 		if (no_splits)
588 			goto next;
589 
590 		if (em->start < start) {
591 			split->start = em->start;
592 			split->len = start - em->start;
593 
594 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
595 				split->orig_start = em->orig_start;
596 				split->block_start = em->block_start;
597 
598 				if (compressed)
599 					split->block_len = em->block_len;
600 				else
601 					split->block_len = split->len;
602 				split->orig_block_len = max(split->block_len,
603 						em->orig_block_len);
604 				split->ram_bytes = em->ram_bytes;
605 			} else {
606 				split->orig_start = split->start;
607 				split->block_len = 0;
608 				split->block_start = em->block_start;
609 				split->orig_block_len = 0;
610 				split->ram_bytes = split->len;
611 			}
612 
613 			split->generation = gen;
614 			split->bdev = em->bdev;
615 			split->flags = flags;
616 			split->compress_type = em->compress_type;
617 			replace_extent_mapping(em_tree, em, split, modified);
618 			free_extent_map(split);
619 			split = split2;
620 			split2 = NULL;
621 		}
622 		if (testend && em->start + em->len > start + len) {
623 			u64 diff = start + len - em->start;
624 
625 			split->start = start + len;
626 			split->len = em->start + em->len - (start + len);
627 			split->bdev = em->bdev;
628 			split->flags = flags;
629 			split->compress_type = em->compress_type;
630 			split->generation = gen;
631 
632 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
633 				split->orig_block_len = max(em->block_len,
634 						    em->orig_block_len);
635 
636 				split->ram_bytes = em->ram_bytes;
637 				if (compressed) {
638 					split->block_len = em->block_len;
639 					split->block_start = em->block_start;
640 					split->orig_start = em->orig_start;
641 				} else {
642 					split->block_len = split->len;
643 					split->block_start = em->block_start
644 						+ diff;
645 					split->orig_start = em->orig_start;
646 				}
647 			} else {
648 				split->ram_bytes = split->len;
649 				split->orig_start = split->start;
650 				split->block_len = 0;
651 				split->block_start = em->block_start;
652 				split->orig_block_len = 0;
653 			}
654 
655 			if (extent_map_in_tree(em)) {
656 				replace_extent_mapping(em_tree, em, split,
657 						       modified);
658 			} else {
659 				ret = add_extent_mapping(em_tree, split,
660 							 modified);
661 				ASSERT(ret == 0); /* Logic error */
662 			}
663 			free_extent_map(split);
664 			split = NULL;
665 		}
666 next:
667 		if (extent_map_in_tree(em))
668 			remove_extent_mapping(em_tree, em);
669 		write_unlock(&em_tree->lock);
670 
671 		/* once for us */
672 		free_extent_map(em);
673 		/* once for the tree*/
674 		free_extent_map(em);
675 	}
676 	if (split)
677 		free_extent_map(split);
678 	if (split2)
679 		free_extent_map(split2);
680 }
681 
682 /*
683  * this is very complex, but the basic idea is to drop all extents
684  * in the range start - end.  hint_block is filled in with a block number
685  * that would be a good hint to the block allocator for this file.
686  *
687  * If an extent intersects the range but is not entirely inside the range
688  * it is either truncated or split.  Anything entirely inside the range
689  * is deleted from the tree.
690  */
691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
692 			 struct btrfs_root *root, struct inode *inode,
693 			 struct btrfs_path *path, u64 start, u64 end,
694 			 u64 *drop_end, int drop_cache,
695 			 int replace_extent,
696 			 u32 extent_item_size,
697 			 int *key_inserted)
698 {
699 	struct extent_buffer *leaf;
700 	struct btrfs_file_extent_item *fi;
701 	struct btrfs_key key;
702 	struct btrfs_key new_key;
703 	u64 ino = btrfs_ino(inode);
704 	u64 search_start = start;
705 	u64 disk_bytenr = 0;
706 	u64 num_bytes = 0;
707 	u64 extent_offset = 0;
708 	u64 extent_end = 0;
709 	int del_nr = 0;
710 	int del_slot = 0;
711 	int extent_type;
712 	int recow;
713 	int ret;
714 	int modify_tree = -1;
715 	int update_refs;
716 	int found = 0;
717 	int leafs_visited = 0;
718 
719 	if (drop_cache)
720 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
721 
722 	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
723 		modify_tree = 0;
724 
725 	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
726 		       root == root->fs_info->tree_root);
727 	while (1) {
728 		recow = 0;
729 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
730 					       search_start, modify_tree);
731 		if (ret < 0)
732 			break;
733 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
734 			leaf = path->nodes[0];
735 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
736 			if (key.objectid == ino &&
737 			    key.type == BTRFS_EXTENT_DATA_KEY)
738 				path->slots[0]--;
739 		}
740 		ret = 0;
741 		leafs_visited++;
742 next_slot:
743 		leaf = path->nodes[0];
744 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745 			BUG_ON(del_nr > 0);
746 			ret = btrfs_next_leaf(root, path);
747 			if (ret < 0)
748 				break;
749 			if (ret > 0) {
750 				ret = 0;
751 				break;
752 			}
753 			leafs_visited++;
754 			leaf = path->nodes[0];
755 			recow = 1;
756 		}
757 
758 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
759 		if (key.objectid > ino ||
760 		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
761 			break;
762 
763 		fi = btrfs_item_ptr(leaf, path->slots[0],
764 				    struct btrfs_file_extent_item);
765 		extent_type = btrfs_file_extent_type(leaf, fi);
766 
767 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
768 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
769 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
770 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
771 			extent_offset = btrfs_file_extent_offset(leaf, fi);
772 			extent_end = key.offset +
773 				btrfs_file_extent_num_bytes(leaf, fi);
774 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
775 			extent_end = key.offset +
776 				btrfs_file_extent_inline_len(leaf,
777 						     path->slots[0], fi);
778 		} else {
779 			WARN_ON(1);
780 			extent_end = search_start;
781 		}
782 
783 		/*
784 		 * Don't skip extent items representing 0 byte lengths. They
785 		 * used to be created (bug) if while punching holes we hit
786 		 * -ENOSPC condition. So if we find one here, just ensure we
787 		 * delete it, otherwise we would insert a new file extent item
788 		 * with the same key (offset) as that 0 bytes length file
789 		 * extent item in the call to setup_items_for_insert() later
790 		 * in this function.
791 		 */
792 		if (extent_end == key.offset && extent_end >= search_start)
793 			goto delete_extent_item;
794 
795 		if (extent_end <= search_start) {
796 			path->slots[0]++;
797 			goto next_slot;
798 		}
799 
800 		found = 1;
801 		search_start = max(key.offset, start);
802 		if (recow || !modify_tree) {
803 			modify_tree = -1;
804 			btrfs_release_path(path);
805 			continue;
806 		}
807 
808 		/*
809 		 *     | - range to drop - |
810 		 *  | -------- extent -------- |
811 		 */
812 		if (start > key.offset && end < extent_end) {
813 			BUG_ON(del_nr > 0);
814 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
815 				ret = -EOPNOTSUPP;
816 				break;
817 			}
818 
819 			memcpy(&new_key, &key, sizeof(new_key));
820 			new_key.offset = start;
821 			ret = btrfs_duplicate_item(trans, root, path,
822 						   &new_key);
823 			if (ret == -EAGAIN) {
824 				btrfs_release_path(path);
825 				continue;
826 			}
827 			if (ret < 0)
828 				break;
829 
830 			leaf = path->nodes[0];
831 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
832 					    struct btrfs_file_extent_item);
833 			btrfs_set_file_extent_num_bytes(leaf, fi,
834 							start - key.offset);
835 
836 			fi = btrfs_item_ptr(leaf, path->slots[0],
837 					    struct btrfs_file_extent_item);
838 
839 			extent_offset += start - key.offset;
840 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
841 			btrfs_set_file_extent_num_bytes(leaf, fi,
842 							extent_end - start);
843 			btrfs_mark_buffer_dirty(leaf);
844 
845 			if (update_refs && disk_bytenr > 0) {
846 				ret = btrfs_inc_extent_ref(trans, root,
847 						disk_bytenr, num_bytes, 0,
848 						root->root_key.objectid,
849 						new_key.objectid,
850 						start - extent_offset, 1);
851 				BUG_ON(ret); /* -ENOMEM */
852 			}
853 			key.offset = start;
854 		}
855 		/*
856 		 *  | ---- range to drop ----- |
857 		 *      | -------- extent -------- |
858 		 */
859 		if (start <= key.offset && end < extent_end) {
860 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
861 				ret = -EOPNOTSUPP;
862 				break;
863 			}
864 
865 			memcpy(&new_key, &key, sizeof(new_key));
866 			new_key.offset = end;
867 			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
868 
869 			extent_offset += end - key.offset;
870 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
871 			btrfs_set_file_extent_num_bytes(leaf, fi,
872 							extent_end - end);
873 			btrfs_mark_buffer_dirty(leaf);
874 			if (update_refs && disk_bytenr > 0)
875 				inode_sub_bytes(inode, end - key.offset);
876 			break;
877 		}
878 
879 		search_start = extent_end;
880 		/*
881 		 *       | ---- range to drop ----- |
882 		 *  | -------- extent -------- |
883 		 */
884 		if (start > key.offset && end >= extent_end) {
885 			BUG_ON(del_nr > 0);
886 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
887 				ret = -EOPNOTSUPP;
888 				break;
889 			}
890 
891 			btrfs_set_file_extent_num_bytes(leaf, fi,
892 							start - key.offset);
893 			btrfs_mark_buffer_dirty(leaf);
894 			if (update_refs && disk_bytenr > 0)
895 				inode_sub_bytes(inode, extent_end - start);
896 			if (end == extent_end)
897 				break;
898 
899 			path->slots[0]++;
900 			goto next_slot;
901 		}
902 
903 		/*
904 		 *  | ---- range to drop ----- |
905 		 *    | ------ extent ------ |
906 		 */
907 		if (start <= key.offset && end >= extent_end) {
908 delete_extent_item:
909 			if (del_nr == 0) {
910 				del_slot = path->slots[0];
911 				del_nr = 1;
912 			} else {
913 				BUG_ON(del_slot + del_nr != path->slots[0]);
914 				del_nr++;
915 			}
916 
917 			if (update_refs &&
918 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
919 				inode_sub_bytes(inode,
920 						extent_end - key.offset);
921 				extent_end = ALIGN(extent_end,
922 						   root->sectorsize);
923 			} else if (update_refs && disk_bytenr > 0) {
924 				ret = btrfs_free_extent(trans, root,
925 						disk_bytenr, num_bytes, 0,
926 						root->root_key.objectid,
927 						key.objectid, key.offset -
928 						extent_offset, 0);
929 				BUG_ON(ret); /* -ENOMEM */
930 				inode_sub_bytes(inode,
931 						extent_end - key.offset);
932 			}
933 
934 			if (end == extent_end)
935 				break;
936 
937 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
938 				path->slots[0]++;
939 				goto next_slot;
940 			}
941 
942 			ret = btrfs_del_items(trans, root, path, del_slot,
943 					      del_nr);
944 			if (ret) {
945 				btrfs_abort_transaction(trans, root, ret);
946 				break;
947 			}
948 
949 			del_nr = 0;
950 			del_slot = 0;
951 
952 			btrfs_release_path(path);
953 			continue;
954 		}
955 
956 		BUG_ON(1);
957 	}
958 
959 	if (!ret && del_nr > 0) {
960 		/*
961 		 * Set path->slots[0] to first slot, so that after the delete
962 		 * if items are move off from our leaf to its immediate left or
963 		 * right neighbor leafs, we end up with a correct and adjusted
964 		 * path->slots[0] for our insertion (if replace_extent != 0).
965 		 */
966 		path->slots[0] = del_slot;
967 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
968 		if (ret)
969 			btrfs_abort_transaction(trans, root, ret);
970 	}
971 
972 	leaf = path->nodes[0];
973 	/*
974 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
975 	 * which case it unlocked our path, so check path->locks[0] matches a
976 	 * write lock.
977 	 */
978 	if (!ret && replace_extent && leafs_visited == 1 &&
979 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
980 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
981 	    btrfs_leaf_free_space(root, leaf) >=
982 	    sizeof(struct btrfs_item) + extent_item_size) {
983 
984 		key.objectid = ino;
985 		key.type = BTRFS_EXTENT_DATA_KEY;
986 		key.offset = start;
987 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
988 			struct btrfs_key slot_key;
989 
990 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
991 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
992 				path->slots[0]++;
993 		}
994 		setup_items_for_insert(root, path, &key,
995 				       &extent_item_size,
996 				       extent_item_size,
997 				       sizeof(struct btrfs_item) +
998 				       extent_item_size, 1);
999 		*key_inserted = 1;
1000 	}
1001 
1002 	if (!replace_extent || !(*key_inserted))
1003 		btrfs_release_path(path);
1004 	if (drop_end)
1005 		*drop_end = found ? min(end, extent_end) : end;
1006 	return ret;
1007 }
1008 
1009 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1010 		       struct btrfs_root *root, struct inode *inode, u64 start,
1011 		       u64 end, int drop_cache)
1012 {
1013 	struct btrfs_path *path;
1014 	int ret;
1015 
1016 	path = btrfs_alloc_path();
1017 	if (!path)
1018 		return -ENOMEM;
1019 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1020 				   drop_cache, 0, 0, NULL);
1021 	btrfs_free_path(path);
1022 	return ret;
1023 }
1024 
1025 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1026 			    u64 objectid, u64 bytenr, u64 orig_offset,
1027 			    u64 *start, u64 *end)
1028 {
1029 	struct btrfs_file_extent_item *fi;
1030 	struct btrfs_key key;
1031 	u64 extent_end;
1032 
1033 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1034 		return 0;
1035 
1036 	btrfs_item_key_to_cpu(leaf, &key, slot);
1037 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1038 		return 0;
1039 
1040 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1041 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1042 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1043 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1044 	    btrfs_file_extent_compression(leaf, fi) ||
1045 	    btrfs_file_extent_encryption(leaf, fi) ||
1046 	    btrfs_file_extent_other_encoding(leaf, fi))
1047 		return 0;
1048 
1049 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1050 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1051 		return 0;
1052 
1053 	*start = key.offset;
1054 	*end = extent_end;
1055 	return 1;
1056 }
1057 
1058 /*
1059  * Mark extent in the range start - end as written.
1060  *
1061  * This changes extent type from 'pre-allocated' to 'regular'. If only
1062  * part of extent is marked as written, the extent will be split into
1063  * two or three.
1064  */
1065 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1066 			      struct inode *inode, u64 start, u64 end)
1067 {
1068 	struct btrfs_root *root = BTRFS_I(inode)->root;
1069 	struct extent_buffer *leaf;
1070 	struct btrfs_path *path;
1071 	struct btrfs_file_extent_item *fi;
1072 	struct btrfs_key key;
1073 	struct btrfs_key new_key;
1074 	u64 bytenr;
1075 	u64 num_bytes;
1076 	u64 extent_end;
1077 	u64 orig_offset;
1078 	u64 other_start;
1079 	u64 other_end;
1080 	u64 split;
1081 	int del_nr = 0;
1082 	int del_slot = 0;
1083 	int recow;
1084 	int ret;
1085 	u64 ino = btrfs_ino(inode);
1086 
1087 	path = btrfs_alloc_path();
1088 	if (!path)
1089 		return -ENOMEM;
1090 again:
1091 	recow = 0;
1092 	split = start;
1093 	key.objectid = ino;
1094 	key.type = BTRFS_EXTENT_DATA_KEY;
1095 	key.offset = split;
1096 
1097 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1098 	if (ret < 0)
1099 		goto out;
1100 	if (ret > 0 && path->slots[0] > 0)
1101 		path->slots[0]--;
1102 
1103 	leaf = path->nodes[0];
1104 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1105 	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1106 	fi = btrfs_item_ptr(leaf, path->slots[0],
1107 			    struct btrfs_file_extent_item);
1108 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1109 	       BTRFS_FILE_EXTENT_PREALLOC);
1110 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1111 	BUG_ON(key.offset > start || extent_end < end);
1112 
1113 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1114 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1115 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1116 	memcpy(&new_key, &key, sizeof(new_key));
1117 
1118 	if (start == key.offset && end < extent_end) {
1119 		other_start = 0;
1120 		other_end = start;
1121 		if (extent_mergeable(leaf, path->slots[0] - 1,
1122 				     ino, bytenr, orig_offset,
1123 				     &other_start, &other_end)) {
1124 			new_key.offset = end;
1125 			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1126 			fi = btrfs_item_ptr(leaf, path->slots[0],
1127 					    struct btrfs_file_extent_item);
1128 			btrfs_set_file_extent_generation(leaf, fi,
1129 							 trans->transid);
1130 			btrfs_set_file_extent_num_bytes(leaf, fi,
1131 							extent_end - end);
1132 			btrfs_set_file_extent_offset(leaf, fi,
1133 						     end - orig_offset);
1134 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1135 					    struct btrfs_file_extent_item);
1136 			btrfs_set_file_extent_generation(leaf, fi,
1137 							 trans->transid);
1138 			btrfs_set_file_extent_num_bytes(leaf, fi,
1139 							end - other_start);
1140 			btrfs_mark_buffer_dirty(leaf);
1141 			goto out;
1142 		}
1143 	}
1144 
1145 	if (start > key.offset && end == extent_end) {
1146 		other_start = end;
1147 		other_end = 0;
1148 		if (extent_mergeable(leaf, path->slots[0] + 1,
1149 				     ino, bytenr, orig_offset,
1150 				     &other_start, &other_end)) {
1151 			fi = btrfs_item_ptr(leaf, path->slots[0],
1152 					    struct btrfs_file_extent_item);
1153 			btrfs_set_file_extent_num_bytes(leaf, fi,
1154 							start - key.offset);
1155 			btrfs_set_file_extent_generation(leaf, fi,
1156 							 trans->transid);
1157 			path->slots[0]++;
1158 			new_key.offset = start;
1159 			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1160 
1161 			fi = btrfs_item_ptr(leaf, path->slots[0],
1162 					    struct btrfs_file_extent_item);
1163 			btrfs_set_file_extent_generation(leaf, fi,
1164 							 trans->transid);
1165 			btrfs_set_file_extent_num_bytes(leaf, fi,
1166 							other_end - start);
1167 			btrfs_set_file_extent_offset(leaf, fi,
1168 						     start - orig_offset);
1169 			btrfs_mark_buffer_dirty(leaf);
1170 			goto out;
1171 		}
1172 	}
1173 
1174 	while (start > key.offset || end < extent_end) {
1175 		if (key.offset == start)
1176 			split = end;
1177 
1178 		new_key.offset = split;
1179 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1180 		if (ret == -EAGAIN) {
1181 			btrfs_release_path(path);
1182 			goto again;
1183 		}
1184 		if (ret < 0) {
1185 			btrfs_abort_transaction(trans, root, ret);
1186 			goto out;
1187 		}
1188 
1189 		leaf = path->nodes[0];
1190 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1191 				    struct btrfs_file_extent_item);
1192 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1193 		btrfs_set_file_extent_num_bytes(leaf, fi,
1194 						split - key.offset);
1195 
1196 		fi = btrfs_item_ptr(leaf, path->slots[0],
1197 				    struct btrfs_file_extent_item);
1198 
1199 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1200 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1201 		btrfs_set_file_extent_num_bytes(leaf, fi,
1202 						extent_end - split);
1203 		btrfs_mark_buffer_dirty(leaf);
1204 
1205 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1206 					   root->root_key.objectid,
1207 					   ino, orig_offset, 1);
1208 		BUG_ON(ret); /* -ENOMEM */
1209 
1210 		if (split == start) {
1211 			key.offset = start;
1212 		} else {
1213 			BUG_ON(start != key.offset);
1214 			path->slots[0]--;
1215 			extent_end = end;
1216 		}
1217 		recow = 1;
1218 	}
1219 
1220 	other_start = end;
1221 	other_end = 0;
1222 	if (extent_mergeable(leaf, path->slots[0] + 1,
1223 			     ino, bytenr, orig_offset,
1224 			     &other_start, &other_end)) {
1225 		if (recow) {
1226 			btrfs_release_path(path);
1227 			goto again;
1228 		}
1229 		extent_end = other_end;
1230 		del_slot = path->slots[0] + 1;
1231 		del_nr++;
1232 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1233 					0, root->root_key.objectid,
1234 					ino, orig_offset, 0);
1235 		BUG_ON(ret); /* -ENOMEM */
1236 	}
1237 	other_start = 0;
1238 	other_end = start;
1239 	if (extent_mergeable(leaf, path->slots[0] - 1,
1240 			     ino, bytenr, orig_offset,
1241 			     &other_start, &other_end)) {
1242 		if (recow) {
1243 			btrfs_release_path(path);
1244 			goto again;
1245 		}
1246 		key.offset = other_start;
1247 		del_slot = path->slots[0];
1248 		del_nr++;
1249 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1250 					0, root->root_key.objectid,
1251 					ino, orig_offset, 0);
1252 		BUG_ON(ret); /* -ENOMEM */
1253 	}
1254 	if (del_nr == 0) {
1255 		fi = btrfs_item_ptr(leaf, path->slots[0],
1256 			   struct btrfs_file_extent_item);
1257 		btrfs_set_file_extent_type(leaf, fi,
1258 					   BTRFS_FILE_EXTENT_REG);
1259 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1260 		btrfs_mark_buffer_dirty(leaf);
1261 	} else {
1262 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1263 			   struct btrfs_file_extent_item);
1264 		btrfs_set_file_extent_type(leaf, fi,
1265 					   BTRFS_FILE_EXTENT_REG);
1266 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1267 		btrfs_set_file_extent_num_bytes(leaf, fi,
1268 						extent_end - key.offset);
1269 		btrfs_mark_buffer_dirty(leaf);
1270 
1271 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1272 		if (ret < 0) {
1273 			btrfs_abort_transaction(trans, root, ret);
1274 			goto out;
1275 		}
1276 	}
1277 out:
1278 	btrfs_free_path(path);
1279 	return 0;
1280 }
1281 
1282 /*
1283  * on error we return an unlocked page and the error value
1284  * on success we return a locked page and 0
1285  */
1286 static int prepare_uptodate_page(struct page *page, u64 pos,
1287 				 bool force_uptodate)
1288 {
1289 	int ret = 0;
1290 
1291 	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1292 	    !PageUptodate(page)) {
1293 		ret = btrfs_readpage(NULL, page);
1294 		if (ret)
1295 			return ret;
1296 		lock_page(page);
1297 		if (!PageUptodate(page)) {
1298 			unlock_page(page);
1299 			return -EIO;
1300 		}
1301 	}
1302 	return 0;
1303 }
1304 
1305 /*
1306  * this just gets pages into the page cache and locks them down.
1307  */
1308 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1309 				  size_t num_pages, loff_t pos,
1310 				  size_t write_bytes, bool force_uptodate)
1311 {
1312 	int i;
1313 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
1314 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1315 	int err = 0;
1316 	int faili;
1317 
1318 	for (i = 0; i < num_pages; i++) {
1319 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1320 					       mask | __GFP_WRITE);
1321 		if (!pages[i]) {
1322 			faili = i - 1;
1323 			err = -ENOMEM;
1324 			goto fail;
1325 		}
1326 
1327 		if (i == 0)
1328 			err = prepare_uptodate_page(pages[i], pos,
1329 						    force_uptodate);
1330 		if (i == num_pages - 1)
1331 			err = prepare_uptodate_page(pages[i],
1332 						    pos + write_bytes, false);
1333 		if (err) {
1334 			page_cache_release(pages[i]);
1335 			faili = i - 1;
1336 			goto fail;
1337 		}
1338 		wait_on_page_writeback(pages[i]);
1339 	}
1340 
1341 	return 0;
1342 fail:
1343 	while (faili >= 0) {
1344 		unlock_page(pages[faili]);
1345 		page_cache_release(pages[faili]);
1346 		faili--;
1347 	}
1348 	return err;
1349 
1350 }
1351 
1352 /*
1353  * This function locks the extent and properly waits for data=ordered extents
1354  * to finish before allowing the pages to be modified if need.
1355  *
1356  * The return value:
1357  * 1 - the extent is locked
1358  * 0 - the extent is not locked, and everything is OK
1359  * -EAGAIN - need re-prepare the pages
1360  * the other < 0 number - Something wrong happens
1361  */
1362 static noinline int
1363 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1364 				size_t num_pages, loff_t pos,
1365 				u64 *lockstart, u64 *lockend,
1366 				struct extent_state **cached_state)
1367 {
1368 	u64 start_pos;
1369 	u64 last_pos;
1370 	int i;
1371 	int ret = 0;
1372 
1373 	start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1374 	last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1375 
1376 	if (start_pos < inode->i_size) {
1377 		struct btrfs_ordered_extent *ordered;
1378 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1379 				 start_pos, last_pos, 0, cached_state);
1380 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1381 						     last_pos - start_pos + 1);
1382 		if (ordered &&
1383 		    ordered->file_offset + ordered->len > start_pos &&
1384 		    ordered->file_offset <= last_pos) {
1385 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1386 					     start_pos, last_pos,
1387 					     cached_state, GFP_NOFS);
1388 			for (i = 0; i < num_pages; i++) {
1389 				unlock_page(pages[i]);
1390 				page_cache_release(pages[i]);
1391 			}
1392 			btrfs_start_ordered_extent(inode, ordered, 1);
1393 			btrfs_put_ordered_extent(ordered);
1394 			return -EAGAIN;
1395 		}
1396 		if (ordered)
1397 			btrfs_put_ordered_extent(ordered);
1398 
1399 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1400 				  last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1401 				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1402 				  0, 0, cached_state, GFP_NOFS);
1403 		*lockstart = start_pos;
1404 		*lockend = last_pos;
1405 		ret = 1;
1406 	}
1407 
1408 	for (i = 0; i < num_pages; i++) {
1409 		if (clear_page_dirty_for_io(pages[i]))
1410 			account_page_redirty(pages[i]);
1411 		set_page_extent_mapped(pages[i]);
1412 		WARN_ON(!PageLocked(pages[i]));
1413 	}
1414 
1415 	return ret;
1416 }
1417 
1418 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1419 				    size_t *write_bytes)
1420 {
1421 	struct btrfs_root *root = BTRFS_I(inode)->root;
1422 	struct btrfs_ordered_extent *ordered;
1423 	u64 lockstart, lockend;
1424 	u64 num_bytes;
1425 	int ret;
1426 
1427 	ret = btrfs_start_write_no_snapshoting(root);
1428 	if (!ret)
1429 		return -ENOSPC;
1430 
1431 	lockstart = round_down(pos, root->sectorsize);
1432 	lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1433 
1434 	while (1) {
1435 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1436 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1437 						     lockend - lockstart + 1);
1438 		if (!ordered) {
1439 			break;
1440 		}
1441 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1442 		btrfs_start_ordered_extent(inode, ordered, 1);
1443 		btrfs_put_ordered_extent(ordered);
1444 	}
1445 
1446 	num_bytes = lockend - lockstart + 1;
1447 	ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1448 	if (ret <= 0) {
1449 		ret = 0;
1450 		btrfs_end_write_no_snapshoting(root);
1451 	} else {
1452 		*write_bytes = min_t(size_t, *write_bytes ,
1453 				     num_bytes - pos + lockstart);
1454 	}
1455 
1456 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1457 
1458 	return ret;
1459 }
1460 
1461 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1462 					       struct iov_iter *i,
1463 					       loff_t pos)
1464 {
1465 	struct inode *inode = file_inode(file);
1466 	struct btrfs_root *root = BTRFS_I(inode)->root;
1467 	struct page **pages = NULL;
1468 	struct extent_state *cached_state = NULL;
1469 	u64 release_bytes = 0;
1470 	u64 lockstart;
1471 	u64 lockend;
1472 	unsigned long first_index;
1473 	size_t num_written = 0;
1474 	int nrptrs;
1475 	int ret = 0;
1476 	bool only_release_metadata = false;
1477 	bool force_page_uptodate = false;
1478 	bool need_unlock;
1479 
1480 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_CACHE_SIZE),
1481 			PAGE_CACHE_SIZE / (sizeof(struct page *)));
1482 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1483 	nrptrs = max(nrptrs, 8);
1484 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1485 	if (!pages)
1486 		return -ENOMEM;
1487 
1488 	first_index = pos >> PAGE_CACHE_SHIFT;
1489 
1490 	while (iov_iter_count(i) > 0) {
1491 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1492 		size_t write_bytes = min(iov_iter_count(i),
1493 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
1494 					 offset);
1495 		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1496 						PAGE_CACHE_SIZE);
1497 		size_t reserve_bytes;
1498 		size_t dirty_pages;
1499 		size_t copied;
1500 
1501 		WARN_ON(num_pages > nrptrs);
1502 
1503 		/*
1504 		 * Fault pages before locking them in prepare_pages
1505 		 * to avoid recursive lock
1506 		 */
1507 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1508 			ret = -EFAULT;
1509 			break;
1510 		}
1511 
1512 		reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1513 		ret = btrfs_check_data_free_space(inode, reserve_bytes, write_bytes);
1514 		if (ret == -ENOSPC &&
1515 		    (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1516 					      BTRFS_INODE_PREALLOC))) {
1517 			ret = check_can_nocow(inode, pos, &write_bytes);
1518 			if (ret > 0) {
1519 				only_release_metadata = true;
1520 				/*
1521 				 * our prealloc extent may be smaller than
1522 				 * write_bytes, so scale down.
1523 				 */
1524 				num_pages = DIV_ROUND_UP(write_bytes + offset,
1525 							 PAGE_CACHE_SIZE);
1526 				reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1527 				ret = 0;
1528 			} else {
1529 				ret = -ENOSPC;
1530 			}
1531 		}
1532 
1533 		if (ret)
1534 			break;
1535 
1536 		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1537 		if (ret) {
1538 			if (!only_release_metadata)
1539 				btrfs_free_reserved_data_space(inode,
1540 							       reserve_bytes);
1541 			else
1542 				btrfs_end_write_no_snapshoting(root);
1543 			break;
1544 		}
1545 
1546 		release_bytes = reserve_bytes;
1547 		need_unlock = false;
1548 again:
1549 		/*
1550 		 * This is going to setup the pages array with the number of
1551 		 * pages we want, so we don't really need to worry about the
1552 		 * contents of pages from loop to loop
1553 		 */
1554 		ret = prepare_pages(inode, pages, num_pages,
1555 				    pos, write_bytes,
1556 				    force_page_uptodate);
1557 		if (ret)
1558 			break;
1559 
1560 		ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1561 						      pos, &lockstart, &lockend,
1562 						      &cached_state);
1563 		if (ret < 0) {
1564 			if (ret == -EAGAIN)
1565 				goto again;
1566 			break;
1567 		} else if (ret > 0) {
1568 			need_unlock = true;
1569 			ret = 0;
1570 		}
1571 
1572 		copied = btrfs_copy_from_user(pos, num_pages,
1573 					   write_bytes, pages, i);
1574 
1575 		/*
1576 		 * if we have trouble faulting in the pages, fall
1577 		 * back to one page at a time
1578 		 */
1579 		if (copied < write_bytes)
1580 			nrptrs = 1;
1581 
1582 		if (copied == 0) {
1583 			force_page_uptodate = true;
1584 			dirty_pages = 0;
1585 		} else {
1586 			force_page_uptodate = false;
1587 			dirty_pages = DIV_ROUND_UP(copied + offset,
1588 						   PAGE_CACHE_SIZE);
1589 		}
1590 
1591 		/*
1592 		 * If we had a short copy we need to release the excess delaloc
1593 		 * bytes we reserved.  We need to increment outstanding_extents
1594 		 * because btrfs_delalloc_release_space will decrement it, but
1595 		 * we still have an outstanding extent for the chunk we actually
1596 		 * managed to copy.
1597 		 */
1598 		if (num_pages > dirty_pages) {
1599 			release_bytes = (num_pages - dirty_pages) <<
1600 				PAGE_CACHE_SHIFT;
1601 			if (copied > 0) {
1602 				spin_lock(&BTRFS_I(inode)->lock);
1603 				BTRFS_I(inode)->outstanding_extents++;
1604 				spin_unlock(&BTRFS_I(inode)->lock);
1605 			}
1606 			if (only_release_metadata)
1607 				btrfs_delalloc_release_metadata(inode,
1608 								release_bytes);
1609 			else
1610 				btrfs_delalloc_release_space(inode,
1611 							     release_bytes);
1612 		}
1613 
1614 		release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1615 
1616 		if (copied > 0)
1617 			ret = btrfs_dirty_pages(root, inode, pages,
1618 						dirty_pages, pos, copied,
1619 						NULL);
1620 		if (need_unlock)
1621 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1622 					     lockstart, lockend, &cached_state,
1623 					     GFP_NOFS);
1624 		if (ret) {
1625 			btrfs_drop_pages(pages, num_pages);
1626 			break;
1627 		}
1628 
1629 		release_bytes = 0;
1630 		if (only_release_metadata)
1631 			btrfs_end_write_no_snapshoting(root);
1632 
1633 		if (only_release_metadata && copied > 0) {
1634 			lockstart = round_down(pos, root->sectorsize);
1635 			lockend = lockstart +
1636 				(dirty_pages << PAGE_CACHE_SHIFT) - 1;
1637 
1638 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1639 				       lockend, EXTENT_NORESERVE, NULL,
1640 				       NULL, GFP_NOFS);
1641 			only_release_metadata = false;
1642 		}
1643 
1644 		btrfs_drop_pages(pages, num_pages);
1645 
1646 		cond_resched();
1647 
1648 		balance_dirty_pages_ratelimited(inode->i_mapping);
1649 		if (dirty_pages < (root->nodesize >> PAGE_CACHE_SHIFT) + 1)
1650 			btrfs_btree_balance_dirty(root);
1651 
1652 		pos += copied;
1653 		num_written += copied;
1654 	}
1655 
1656 	kfree(pages);
1657 
1658 	if (release_bytes) {
1659 		if (only_release_metadata) {
1660 			btrfs_end_write_no_snapshoting(root);
1661 			btrfs_delalloc_release_metadata(inode, release_bytes);
1662 		} else {
1663 			btrfs_delalloc_release_space(inode, release_bytes);
1664 		}
1665 	}
1666 
1667 	return num_written ? num_written : ret;
1668 }
1669 
1670 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1671 				    struct iov_iter *from,
1672 				    loff_t pos)
1673 {
1674 	struct file *file = iocb->ki_filp;
1675 	struct inode *inode = file_inode(file);
1676 	ssize_t written;
1677 	ssize_t written_buffered;
1678 	loff_t endbyte;
1679 	int err;
1680 
1681 	written = generic_file_direct_write(iocb, from, pos);
1682 
1683 	if (written < 0 || !iov_iter_count(from))
1684 		return written;
1685 
1686 	pos += written;
1687 	written_buffered = __btrfs_buffered_write(file, from, pos);
1688 	if (written_buffered < 0) {
1689 		err = written_buffered;
1690 		goto out;
1691 	}
1692 	/*
1693 	 * Ensure all data is persisted. We want the next direct IO read to be
1694 	 * able to read what was just written.
1695 	 */
1696 	endbyte = pos + written_buffered - 1;
1697 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1698 	if (err)
1699 		goto out;
1700 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1701 	if (err)
1702 		goto out;
1703 	written += written_buffered;
1704 	iocb->ki_pos = pos + written_buffered;
1705 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1706 				 endbyte >> PAGE_CACHE_SHIFT);
1707 out:
1708 	return written ? written : err;
1709 }
1710 
1711 static void update_time_for_write(struct inode *inode)
1712 {
1713 	struct timespec now;
1714 
1715 	if (IS_NOCMTIME(inode))
1716 		return;
1717 
1718 	now = current_fs_time(inode->i_sb);
1719 	if (!timespec_equal(&inode->i_mtime, &now))
1720 		inode->i_mtime = now;
1721 
1722 	if (!timespec_equal(&inode->i_ctime, &now))
1723 		inode->i_ctime = now;
1724 
1725 	if (IS_I_VERSION(inode))
1726 		inode_inc_iversion(inode);
1727 }
1728 
1729 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1730 				    struct iov_iter *from)
1731 {
1732 	struct file *file = iocb->ki_filp;
1733 	struct inode *inode = file_inode(file);
1734 	struct btrfs_root *root = BTRFS_I(inode)->root;
1735 	u64 start_pos;
1736 	u64 end_pos;
1737 	ssize_t num_written = 0;
1738 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1739 	ssize_t err;
1740 	loff_t pos;
1741 	size_t count;
1742 
1743 	mutex_lock(&inode->i_mutex);
1744 	err = generic_write_checks(iocb, from);
1745 	if (err <= 0) {
1746 		mutex_unlock(&inode->i_mutex);
1747 		return err;
1748 	}
1749 
1750 	current->backing_dev_info = inode_to_bdi(inode);
1751 	err = file_remove_privs(file);
1752 	if (err) {
1753 		mutex_unlock(&inode->i_mutex);
1754 		goto out;
1755 	}
1756 
1757 	/*
1758 	 * If BTRFS flips readonly due to some impossible error
1759 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1760 	 * although we have opened a file as writable, we have
1761 	 * to stop this write operation to ensure FS consistency.
1762 	 */
1763 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1764 		mutex_unlock(&inode->i_mutex);
1765 		err = -EROFS;
1766 		goto out;
1767 	}
1768 
1769 	/*
1770 	 * We reserve space for updating the inode when we reserve space for the
1771 	 * extent we are going to write, so we will enospc out there.  We don't
1772 	 * need to start yet another transaction to update the inode as we will
1773 	 * update the inode when we finish writing whatever data we write.
1774 	 */
1775 	update_time_for_write(inode);
1776 
1777 	pos = iocb->ki_pos;
1778 	count = iov_iter_count(from);
1779 	start_pos = round_down(pos, root->sectorsize);
1780 	if (start_pos > i_size_read(inode)) {
1781 		/* Expand hole size to cover write data, preventing empty gap */
1782 		end_pos = round_up(pos + count, root->sectorsize);
1783 		err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
1784 		if (err) {
1785 			mutex_unlock(&inode->i_mutex);
1786 			goto out;
1787 		}
1788 	}
1789 
1790 	if (sync)
1791 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1792 
1793 	if (iocb->ki_flags & IOCB_DIRECT) {
1794 		num_written = __btrfs_direct_write(iocb, from, pos);
1795 	} else {
1796 		num_written = __btrfs_buffered_write(file, from, pos);
1797 		if (num_written > 0)
1798 			iocb->ki_pos = pos + num_written;
1799 	}
1800 
1801 	mutex_unlock(&inode->i_mutex);
1802 
1803 	/*
1804 	 * We also have to set last_sub_trans to the current log transid,
1805 	 * otherwise subsequent syncs to a file that's been synced in this
1806 	 * transaction will appear to have already occured.
1807 	 */
1808 	spin_lock(&BTRFS_I(inode)->lock);
1809 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1810 	spin_unlock(&BTRFS_I(inode)->lock);
1811 	if (num_written > 0) {
1812 		err = generic_write_sync(file, pos, num_written);
1813 		if (err < 0)
1814 			num_written = err;
1815 	}
1816 
1817 	if (sync)
1818 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1819 out:
1820 	current->backing_dev_info = NULL;
1821 	return num_written ? num_written : err;
1822 }
1823 
1824 int btrfs_release_file(struct inode *inode, struct file *filp)
1825 {
1826 	if (filp->private_data)
1827 		btrfs_ioctl_trans_end(filp);
1828 	/*
1829 	 * ordered_data_close is set by settattr when we are about to truncate
1830 	 * a file from a non-zero size to a zero size.  This tries to
1831 	 * flush down new bytes that may have been written if the
1832 	 * application were using truncate to replace a file in place.
1833 	 */
1834 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1835 			       &BTRFS_I(inode)->runtime_flags))
1836 			filemap_flush(inode->i_mapping);
1837 	return 0;
1838 }
1839 
1840 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1841 {
1842 	int ret;
1843 
1844 	atomic_inc(&BTRFS_I(inode)->sync_writers);
1845 	ret = btrfs_fdatawrite_range(inode, start, end);
1846 	atomic_dec(&BTRFS_I(inode)->sync_writers);
1847 
1848 	return ret;
1849 }
1850 
1851 /*
1852  * fsync call for both files and directories.  This logs the inode into
1853  * the tree log instead of forcing full commits whenever possible.
1854  *
1855  * It needs to call filemap_fdatawait so that all ordered extent updates are
1856  * in the metadata btree are up to date for copying to the log.
1857  *
1858  * It drops the inode mutex before doing the tree log commit.  This is an
1859  * important optimization for directories because holding the mutex prevents
1860  * new operations on the dir while we write to disk.
1861  */
1862 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1863 {
1864 	struct dentry *dentry = file->f_path.dentry;
1865 	struct inode *inode = d_inode(dentry);
1866 	struct btrfs_root *root = BTRFS_I(inode)->root;
1867 	struct btrfs_trans_handle *trans;
1868 	struct btrfs_log_ctx ctx;
1869 	int ret = 0;
1870 	bool full_sync = 0;
1871 	const u64 len = end - start + 1;
1872 
1873 	trace_btrfs_sync_file(file, datasync);
1874 
1875 	/*
1876 	 * We write the dirty pages in the range and wait until they complete
1877 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1878 	 * multi-task, and make the performance up.  See
1879 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1880 	 */
1881 	ret = start_ordered_ops(inode, start, end);
1882 	if (ret)
1883 		return ret;
1884 
1885 	mutex_lock(&inode->i_mutex);
1886 	atomic_inc(&root->log_batch);
1887 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1888 			     &BTRFS_I(inode)->runtime_flags);
1889 	/*
1890 	 * We might have have had more pages made dirty after calling
1891 	 * start_ordered_ops and before acquiring the inode's i_mutex.
1892 	 */
1893 	if (full_sync) {
1894 		/*
1895 		 * For a full sync, we need to make sure any ordered operations
1896 		 * start and finish before we start logging the inode, so that
1897 		 * all extents are persisted and the respective file extent
1898 		 * items are in the fs/subvol btree.
1899 		 */
1900 		ret = btrfs_wait_ordered_range(inode, start, len);
1901 	} else {
1902 		/*
1903 		 * Start any new ordered operations before starting to log the
1904 		 * inode. We will wait for them to finish in btrfs_sync_log().
1905 		 *
1906 		 * Right before acquiring the inode's mutex, we might have new
1907 		 * writes dirtying pages, which won't immediately start the
1908 		 * respective ordered operations - that is done through the
1909 		 * fill_delalloc callbacks invoked from the writepage and
1910 		 * writepages address space operations. So make sure we start
1911 		 * all ordered operations before starting to log our inode. Not
1912 		 * doing this means that while logging the inode, writeback
1913 		 * could start and invoke writepage/writepages, which would call
1914 		 * the fill_delalloc callbacks (cow_file_range,
1915 		 * submit_compressed_extents). These callbacks add first an
1916 		 * extent map to the modified list of extents and then create
1917 		 * the respective ordered operation, which means in
1918 		 * tree-log.c:btrfs_log_inode() we might capture all existing
1919 		 * ordered operations (with btrfs_get_logged_extents()) before
1920 		 * the fill_delalloc callback adds its ordered operation, and by
1921 		 * the time we visit the modified list of extent maps (with
1922 		 * btrfs_log_changed_extents()), we see and process the extent
1923 		 * map they created. We then use the extent map to construct a
1924 		 * file extent item for logging without waiting for the
1925 		 * respective ordered operation to finish - this file extent
1926 		 * item points to a disk location that might not have yet been
1927 		 * written to, containing random data - so after a crash a log
1928 		 * replay will make our inode have file extent items that point
1929 		 * to disk locations containing invalid data, as we returned
1930 		 * success to userspace without waiting for the respective
1931 		 * ordered operation to finish, because it wasn't captured by
1932 		 * btrfs_get_logged_extents().
1933 		 */
1934 		ret = start_ordered_ops(inode, start, end);
1935 	}
1936 	if (ret) {
1937 		mutex_unlock(&inode->i_mutex);
1938 		goto out;
1939 	}
1940 	atomic_inc(&root->log_batch);
1941 
1942 	/*
1943 	 * If the last transaction that changed this file was before the current
1944 	 * transaction and we have the full sync flag set in our inode, we can
1945 	 * bail out now without any syncing.
1946 	 *
1947 	 * Note that we can't bail out if the full sync flag isn't set. This is
1948 	 * because when the full sync flag is set we start all ordered extents
1949 	 * and wait for them to fully complete - when they complete they update
1950 	 * the inode's last_trans field through:
1951 	 *
1952 	 *     btrfs_finish_ordered_io() ->
1953 	 *         btrfs_update_inode_fallback() ->
1954 	 *             btrfs_update_inode() ->
1955 	 *                 btrfs_set_inode_last_trans()
1956 	 *
1957 	 * So we are sure that last_trans is up to date and can do this check to
1958 	 * bail out safely. For the fast path, when the full sync flag is not
1959 	 * set in our inode, we can not do it because we start only our ordered
1960 	 * extents and don't wait for them to complete (that is when
1961 	 * btrfs_finish_ordered_io runs), so here at this point their last_trans
1962 	 * value might be less than or equals to fs_info->last_trans_committed,
1963 	 * and setting a speculative last_trans for an inode when a buffered
1964 	 * write is made (such as fs_info->generation + 1 for example) would not
1965 	 * be reliable since after setting the value and before fsync is called
1966 	 * any number of transactions can start and commit (transaction kthread
1967 	 * commits the current transaction periodically), and a transaction
1968 	 * commit does not start nor waits for ordered extents to complete.
1969 	 */
1970 	smp_mb();
1971 	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1972 	    (BTRFS_I(inode)->last_trans <=
1973 	     root->fs_info->last_trans_committed &&
1974 	     (full_sync ||
1975 	      !btrfs_have_ordered_extents_in_range(inode, start, len)))) {
1976 		/*
1977 		 * We'v had everything committed since the last time we were
1978 		 * modified so clear this flag in case it was set for whatever
1979 		 * reason, it's no longer relevant.
1980 		 */
1981 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1982 			  &BTRFS_I(inode)->runtime_flags);
1983 		mutex_unlock(&inode->i_mutex);
1984 		goto out;
1985 	}
1986 
1987 	/*
1988 	 * ok we haven't committed the transaction yet, lets do a commit
1989 	 */
1990 	if (file->private_data)
1991 		btrfs_ioctl_trans_end(file);
1992 
1993 	/*
1994 	 * We use start here because we will need to wait on the IO to complete
1995 	 * in btrfs_sync_log, which could require joining a transaction (for
1996 	 * example checking cross references in the nocow path).  If we use join
1997 	 * here we could get into a situation where we're waiting on IO to
1998 	 * happen that is blocked on a transaction trying to commit.  With start
1999 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2000 	 * before we start blocking join'ers.  This comment is to keep somebody
2001 	 * from thinking they are super smart and changing this to
2002 	 * btrfs_join_transaction *cough*Josef*cough*.
2003 	 */
2004 	trans = btrfs_start_transaction(root, 0);
2005 	if (IS_ERR(trans)) {
2006 		ret = PTR_ERR(trans);
2007 		mutex_unlock(&inode->i_mutex);
2008 		goto out;
2009 	}
2010 	trans->sync = true;
2011 
2012 	btrfs_init_log_ctx(&ctx);
2013 
2014 	ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2015 	if (ret < 0) {
2016 		/* Fallthrough and commit/free transaction. */
2017 		ret = 1;
2018 	}
2019 
2020 	/* we've logged all the items and now have a consistent
2021 	 * version of the file in the log.  It is possible that
2022 	 * someone will come in and modify the file, but that's
2023 	 * fine because the log is consistent on disk, and we
2024 	 * have references to all of the file's extents
2025 	 *
2026 	 * It is possible that someone will come in and log the
2027 	 * file again, but that will end up using the synchronization
2028 	 * inside btrfs_sync_log to keep things safe.
2029 	 */
2030 	mutex_unlock(&inode->i_mutex);
2031 
2032 	/*
2033 	 * If any of the ordered extents had an error, just return it to user
2034 	 * space, so that the application knows some writes didn't succeed and
2035 	 * can take proper action (retry for e.g.). Blindly committing the
2036 	 * transaction in this case, would fool userspace that everything was
2037 	 * successful. And we also want to make sure our log doesn't contain
2038 	 * file extent items pointing to extents that weren't fully written to -
2039 	 * just like in the non fast fsync path, where we check for the ordered
2040 	 * operation's error flag before writing to the log tree and return -EIO
2041 	 * if any of them had this flag set (btrfs_wait_ordered_range) -
2042 	 * therefore we need to check for errors in the ordered operations,
2043 	 * which are indicated by ctx.io_err.
2044 	 */
2045 	if (ctx.io_err) {
2046 		btrfs_end_transaction(trans, root);
2047 		ret = ctx.io_err;
2048 		goto out;
2049 	}
2050 
2051 	if (ret != BTRFS_NO_LOG_SYNC) {
2052 		if (!ret) {
2053 			ret = btrfs_sync_log(trans, root, &ctx);
2054 			if (!ret) {
2055 				ret = btrfs_end_transaction(trans, root);
2056 				goto out;
2057 			}
2058 		}
2059 		if (!full_sync) {
2060 			ret = btrfs_wait_ordered_range(inode, start,
2061 						       end - start + 1);
2062 			if (ret) {
2063 				btrfs_end_transaction(trans, root);
2064 				goto out;
2065 			}
2066 		}
2067 		ret = btrfs_commit_transaction(trans, root);
2068 	} else {
2069 		ret = btrfs_end_transaction(trans, root);
2070 	}
2071 out:
2072 	return ret > 0 ? -EIO : ret;
2073 }
2074 
2075 static const struct vm_operations_struct btrfs_file_vm_ops = {
2076 	.fault		= filemap_fault,
2077 	.map_pages	= filemap_map_pages,
2078 	.page_mkwrite	= btrfs_page_mkwrite,
2079 };
2080 
2081 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2082 {
2083 	struct address_space *mapping = filp->f_mapping;
2084 
2085 	if (!mapping->a_ops->readpage)
2086 		return -ENOEXEC;
2087 
2088 	file_accessed(filp);
2089 	vma->vm_ops = &btrfs_file_vm_ops;
2090 
2091 	return 0;
2092 }
2093 
2094 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2095 			  int slot, u64 start, u64 end)
2096 {
2097 	struct btrfs_file_extent_item *fi;
2098 	struct btrfs_key key;
2099 
2100 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2101 		return 0;
2102 
2103 	btrfs_item_key_to_cpu(leaf, &key, slot);
2104 	if (key.objectid != btrfs_ino(inode) ||
2105 	    key.type != BTRFS_EXTENT_DATA_KEY)
2106 		return 0;
2107 
2108 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2109 
2110 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2111 		return 0;
2112 
2113 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2114 		return 0;
2115 
2116 	if (key.offset == end)
2117 		return 1;
2118 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2119 		return 1;
2120 	return 0;
2121 }
2122 
2123 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2124 		      struct btrfs_path *path, u64 offset, u64 end)
2125 {
2126 	struct btrfs_root *root = BTRFS_I(inode)->root;
2127 	struct extent_buffer *leaf;
2128 	struct btrfs_file_extent_item *fi;
2129 	struct extent_map *hole_em;
2130 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2131 	struct btrfs_key key;
2132 	int ret;
2133 
2134 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2135 		goto out;
2136 
2137 	key.objectid = btrfs_ino(inode);
2138 	key.type = BTRFS_EXTENT_DATA_KEY;
2139 	key.offset = offset;
2140 
2141 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2142 	if (ret < 0)
2143 		return ret;
2144 	BUG_ON(!ret);
2145 
2146 	leaf = path->nodes[0];
2147 	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2148 		u64 num_bytes;
2149 
2150 		path->slots[0]--;
2151 		fi = btrfs_item_ptr(leaf, path->slots[0],
2152 				    struct btrfs_file_extent_item);
2153 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2154 			end - offset;
2155 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2156 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2157 		btrfs_set_file_extent_offset(leaf, fi, 0);
2158 		btrfs_mark_buffer_dirty(leaf);
2159 		goto out;
2160 	}
2161 
2162 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2163 		u64 num_bytes;
2164 
2165 		key.offset = offset;
2166 		btrfs_set_item_key_safe(root->fs_info, path, &key);
2167 		fi = btrfs_item_ptr(leaf, path->slots[0],
2168 				    struct btrfs_file_extent_item);
2169 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2170 			offset;
2171 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2172 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2173 		btrfs_set_file_extent_offset(leaf, fi, 0);
2174 		btrfs_mark_buffer_dirty(leaf);
2175 		goto out;
2176 	}
2177 	btrfs_release_path(path);
2178 
2179 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2180 				       0, 0, end - offset, 0, end - offset,
2181 				       0, 0, 0);
2182 	if (ret)
2183 		return ret;
2184 
2185 out:
2186 	btrfs_release_path(path);
2187 
2188 	hole_em = alloc_extent_map();
2189 	if (!hole_em) {
2190 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2191 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2192 			&BTRFS_I(inode)->runtime_flags);
2193 	} else {
2194 		hole_em->start = offset;
2195 		hole_em->len = end - offset;
2196 		hole_em->ram_bytes = hole_em->len;
2197 		hole_em->orig_start = offset;
2198 
2199 		hole_em->block_start = EXTENT_MAP_HOLE;
2200 		hole_em->block_len = 0;
2201 		hole_em->orig_block_len = 0;
2202 		hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2203 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2204 		hole_em->generation = trans->transid;
2205 
2206 		do {
2207 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2208 			write_lock(&em_tree->lock);
2209 			ret = add_extent_mapping(em_tree, hole_em, 1);
2210 			write_unlock(&em_tree->lock);
2211 		} while (ret == -EEXIST);
2212 		free_extent_map(hole_em);
2213 		if (ret)
2214 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2215 				&BTRFS_I(inode)->runtime_flags);
2216 	}
2217 
2218 	return 0;
2219 }
2220 
2221 /*
2222  * Find a hole extent on given inode and change start/len to the end of hole
2223  * extent.(hole/vacuum extent whose em->start <= start &&
2224  *	   em->start + em->len > start)
2225  * When a hole extent is found, return 1 and modify start/len.
2226  */
2227 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2228 {
2229 	struct extent_map *em;
2230 	int ret = 0;
2231 
2232 	em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2233 	if (IS_ERR_OR_NULL(em)) {
2234 		if (!em)
2235 			ret = -ENOMEM;
2236 		else
2237 			ret = PTR_ERR(em);
2238 		return ret;
2239 	}
2240 
2241 	/* Hole or vacuum extent(only exists in no-hole mode) */
2242 	if (em->block_start == EXTENT_MAP_HOLE) {
2243 		ret = 1;
2244 		*len = em->start + em->len > *start + *len ?
2245 		       0 : *start + *len - em->start - em->len;
2246 		*start = em->start + em->len;
2247 	}
2248 	free_extent_map(em);
2249 	return ret;
2250 }
2251 
2252 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2253 {
2254 	struct btrfs_root *root = BTRFS_I(inode)->root;
2255 	struct extent_state *cached_state = NULL;
2256 	struct btrfs_path *path;
2257 	struct btrfs_block_rsv *rsv;
2258 	struct btrfs_trans_handle *trans;
2259 	u64 lockstart;
2260 	u64 lockend;
2261 	u64 tail_start;
2262 	u64 tail_len;
2263 	u64 orig_start = offset;
2264 	u64 cur_offset;
2265 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2266 	u64 drop_end;
2267 	int ret = 0;
2268 	int err = 0;
2269 	int rsv_count;
2270 	bool same_page;
2271 	bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2272 	u64 ino_size;
2273 	bool truncated_page = false;
2274 	bool updated_inode = false;
2275 
2276 	ret = btrfs_wait_ordered_range(inode, offset, len);
2277 	if (ret)
2278 		return ret;
2279 
2280 	mutex_lock(&inode->i_mutex);
2281 	ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2282 	ret = find_first_non_hole(inode, &offset, &len);
2283 	if (ret < 0)
2284 		goto out_only_mutex;
2285 	if (ret && !len) {
2286 		/* Already in a large hole */
2287 		ret = 0;
2288 		goto out_only_mutex;
2289 	}
2290 
2291 	lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2292 	lockend = round_down(offset + len,
2293 			     BTRFS_I(inode)->root->sectorsize) - 1;
2294 	same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2295 		    ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2296 
2297 	/*
2298 	 * We needn't truncate any page which is beyond the end of the file
2299 	 * because we are sure there is no data there.
2300 	 */
2301 	/*
2302 	 * Only do this if we are in the same page and we aren't doing the
2303 	 * entire page.
2304 	 */
2305 	if (same_page && len < PAGE_CACHE_SIZE) {
2306 		if (offset < ino_size) {
2307 			truncated_page = true;
2308 			ret = btrfs_truncate_page(inode, offset, len, 0);
2309 		} else {
2310 			ret = 0;
2311 		}
2312 		goto out_only_mutex;
2313 	}
2314 
2315 	/* zero back part of the first page */
2316 	if (offset < ino_size) {
2317 		truncated_page = true;
2318 		ret = btrfs_truncate_page(inode, offset, 0, 0);
2319 		if (ret) {
2320 			mutex_unlock(&inode->i_mutex);
2321 			return ret;
2322 		}
2323 	}
2324 
2325 	/* Check the aligned pages after the first unaligned page,
2326 	 * if offset != orig_start, which means the first unaligned page
2327 	 * including serveral following pages are already in holes,
2328 	 * the extra check can be skipped */
2329 	if (offset == orig_start) {
2330 		/* after truncate page, check hole again */
2331 		len = offset + len - lockstart;
2332 		offset = lockstart;
2333 		ret = find_first_non_hole(inode, &offset, &len);
2334 		if (ret < 0)
2335 			goto out_only_mutex;
2336 		if (ret && !len) {
2337 			ret = 0;
2338 			goto out_only_mutex;
2339 		}
2340 		lockstart = offset;
2341 	}
2342 
2343 	/* Check the tail unaligned part is in a hole */
2344 	tail_start = lockend + 1;
2345 	tail_len = offset + len - tail_start;
2346 	if (tail_len) {
2347 		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2348 		if (unlikely(ret < 0))
2349 			goto out_only_mutex;
2350 		if (!ret) {
2351 			/* zero the front end of the last page */
2352 			if (tail_start + tail_len < ino_size) {
2353 				truncated_page = true;
2354 				ret = btrfs_truncate_page(inode,
2355 						tail_start + tail_len, 0, 1);
2356 				if (ret)
2357 					goto out_only_mutex;
2358 			}
2359 		}
2360 	}
2361 
2362 	if (lockend < lockstart) {
2363 		ret = 0;
2364 		goto out_only_mutex;
2365 	}
2366 
2367 	while (1) {
2368 		struct btrfs_ordered_extent *ordered;
2369 
2370 		truncate_pagecache_range(inode, lockstart, lockend);
2371 
2372 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2373 				 0, &cached_state);
2374 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2375 
2376 		/*
2377 		 * We need to make sure we have no ordered extents in this range
2378 		 * and nobody raced in and read a page in this range, if we did
2379 		 * we need to try again.
2380 		 */
2381 		if ((!ordered ||
2382 		    (ordered->file_offset + ordered->len <= lockstart ||
2383 		     ordered->file_offset > lockend)) &&
2384 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2385 			if (ordered)
2386 				btrfs_put_ordered_extent(ordered);
2387 			break;
2388 		}
2389 		if (ordered)
2390 			btrfs_put_ordered_extent(ordered);
2391 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2392 				     lockend, &cached_state, GFP_NOFS);
2393 		ret = btrfs_wait_ordered_range(inode, lockstart,
2394 					       lockend - lockstart + 1);
2395 		if (ret) {
2396 			mutex_unlock(&inode->i_mutex);
2397 			return ret;
2398 		}
2399 	}
2400 
2401 	path = btrfs_alloc_path();
2402 	if (!path) {
2403 		ret = -ENOMEM;
2404 		goto out;
2405 	}
2406 
2407 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2408 	if (!rsv) {
2409 		ret = -ENOMEM;
2410 		goto out_free;
2411 	}
2412 	rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2413 	rsv->failfast = 1;
2414 
2415 	/*
2416 	 * 1 - update the inode
2417 	 * 1 - removing the extents in the range
2418 	 * 1 - adding the hole extent if no_holes isn't set
2419 	 */
2420 	rsv_count = no_holes ? 2 : 3;
2421 	trans = btrfs_start_transaction(root, rsv_count);
2422 	if (IS_ERR(trans)) {
2423 		err = PTR_ERR(trans);
2424 		goto out_free;
2425 	}
2426 
2427 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2428 				      min_size);
2429 	BUG_ON(ret);
2430 	trans->block_rsv = rsv;
2431 
2432 	cur_offset = lockstart;
2433 	len = lockend - cur_offset;
2434 	while (cur_offset < lockend) {
2435 		ret = __btrfs_drop_extents(trans, root, inode, path,
2436 					   cur_offset, lockend + 1,
2437 					   &drop_end, 1, 0, 0, NULL);
2438 		if (ret != -ENOSPC)
2439 			break;
2440 
2441 		trans->block_rsv = &root->fs_info->trans_block_rsv;
2442 
2443 		if (cur_offset < ino_size) {
2444 			ret = fill_holes(trans, inode, path, cur_offset,
2445 					 drop_end);
2446 			if (ret) {
2447 				err = ret;
2448 				break;
2449 			}
2450 		}
2451 
2452 		cur_offset = drop_end;
2453 
2454 		ret = btrfs_update_inode(trans, root, inode);
2455 		if (ret) {
2456 			err = ret;
2457 			break;
2458 		}
2459 
2460 		btrfs_end_transaction(trans, root);
2461 		btrfs_btree_balance_dirty(root);
2462 
2463 		trans = btrfs_start_transaction(root, rsv_count);
2464 		if (IS_ERR(trans)) {
2465 			ret = PTR_ERR(trans);
2466 			trans = NULL;
2467 			break;
2468 		}
2469 
2470 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2471 					      rsv, min_size);
2472 		BUG_ON(ret);	/* shouldn't happen */
2473 		trans->block_rsv = rsv;
2474 
2475 		ret = find_first_non_hole(inode, &cur_offset, &len);
2476 		if (unlikely(ret < 0))
2477 			break;
2478 		if (ret && !len) {
2479 			ret = 0;
2480 			break;
2481 		}
2482 	}
2483 
2484 	if (ret) {
2485 		err = ret;
2486 		goto out_trans;
2487 	}
2488 
2489 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2490 	/*
2491 	 * Don't insert file hole extent item if it's for a range beyond eof
2492 	 * (because it's useless) or if it represents a 0 bytes range (when
2493 	 * cur_offset == drop_end).
2494 	 */
2495 	if (cur_offset < ino_size && cur_offset < drop_end) {
2496 		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2497 		if (ret) {
2498 			err = ret;
2499 			goto out_trans;
2500 		}
2501 	}
2502 
2503 out_trans:
2504 	if (!trans)
2505 		goto out_free;
2506 
2507 	inode_inc_iversion(inode);
2508 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2509 
2510 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2511 	ret = btrfs_update_inode(trans, root, inode);
2512 	updated_inode = true;
2513 	btrfs_end_transaction(trans, root);
2514 	btrfs_btree_balance_dirty(root);
2515 out_free:
2516 	btrfs_free_path(path);
2517 	btrfs_free_block_rsv(root, rsv);
2518 out:
2519 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2520 			     &cached_state, GFP_NOFS);
2521 out_only_mutex:
2522 	if (!updated_inode && truncated_page && !ret && !err) {
2523 		/*
2524 		 * If we only end up zeroing part of a page, we still need to
2525 		 * update the inode item, so that all the time fields are
2526 		 * updated as well as the necessary btrfs inode in memory fields
2527 		 * for detecting, at fsync time, if the inode isn't yet in the
2528 		 * log tree or it's there but not up to date.
2529 		 */
2530 		trans = btrfs_start_transaction(root, 1);
2531 		if (IS_ERR(trans)) {
2532 			err = PTR_ERR(trans);
2533 		} else {
2534 			err = btrfs_update_inode(trans, root, inode);
2535 			ret = btrfs_end_transaction(trans, root);
2536 		}
2537 	}
2538 	mutex_unlock(&inode->i_mutex);
2539 	if (ret && !err)
2540 		err = ret;
2541 	return err;
2542 }
2543 
2544 static long btrfs_fallocate(struct file *file, int mode,
2545 			    loff_t offset, loff_t len)
2546 {
2547 	struct inode *inode = file_inode(file);
2548 	struct extent_state *cached_state = NULL;
2549 	u64 cur_offset;
2550 	u64 last_byte;
2551 	u64 alloc_start;
2552 	u64 alloc_end;
2553 	u64 alloc_hint = 0;
2554 	u64 locked_end;
2555 	struct extent_map *em;
2556 	int blocksize = BTRFS_I(inode)->root->sectorsize;
2557 	int ret;
2558 
2559 	alloc_start = round_down(offset, blocksize);
2560 	alloc_end = round_up(offset + len, blocksize);
2561 
2562 	/* Make sure we aren't being give some crap mode */
2563 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2564 		return -EOPNOTSUPP;
2565 
2566 	if (mode & FALLOC_FL_PUNCH_HOLE)
2567 		return btrfs_punch_hole(inode, offset, len);
2568 
2569 	/*
2570 	 * Make sure we have enough space before we do the
2571 	 * allocation.
2572 	 */
2573 	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start, alloc_end - alloc_start);
2574 	if (ret)
2575 		return ret;
2576 
2577 	mutex_lock(&inode->i_mutex);
2578 	ret = inode_newsize_ok(inode, alloc_end);
2579 	if (ret)
2580 		goto out;
2581 
2582 	if (alloc_start > inode->i_size) {
2583 		ret = btrfs_cont_expand(inode, i_size_read(inode),
2584 					alloc_start);
2585 		if (ret)
2586 			goto out;
2587 	} else {
2588 		/*
2589 		 * If we are fallocating from the end of the file onward we
2590 		 * need to zero out the end of the page if i_size lands in the
2591 		 * middle of a page.
2592 		 */
2593 		ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2594 		if (ret)
2595 			goto out;
2596 	}
2597 
2598 	/*
2599 	 * wait for ordered IO before we have any locks.  We'll loop again
2600 	 * below with the locks held.
2601 	 */
2602 	ret = btrfs_wait_ordered_range(inode, alloc_start,
2603 				       alloc_end - alloc_start);
2604 	if (ret)
2605 		goto out;
2606 
2607 	locked_end = alloc_end - 1;
2608 	while (1) {
2609 		struct btrfs_ordered_extent *ordered;
2610 
2611 		/* the extent lock is ordered inside the running
2612 		 * transaction
2613 		 */
2614 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2615 				 locked_end, 0, &cached_state);
2616 		ordered = btrfs_lookup_first_ordered_extent(inode,
2617 							    alloc_end - 1);
2618 		if (ordered &&
2619 		    ordered->file_offset + ordered->len > alloc_start &&
2620 		    ordered->file_offset < alloc_end) {
2621 			btrfs_put_ordered_extent(ordered);
2622 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2623 					     alloc_start, locked_end,
2624 					     &cached_state, GFP_NOFS);
2625 			/*
2626 			 * we can't wait on the range with the transaction
2627 			 * running or with the extent lock held
2628 			 */
2629 			ret = btrfs_wait_ordered_range(inode, alloc_start,
2630 						       alloc_end - alloc_start);
2631 			if (ret)
2632 				goto out;
2633 		} else {
2634 			if (ordered)
2635 				btrfs_put_ordered_extent(ordered);
2636 			break;
2637 		}
2638 	}
2639 
2640 	cur_offset = alloc_start;
2641 	while (1) {
2642 		u64 actual_end;
2643 
2644 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2645 				      alloc_end - cur_offset, 0);
2646 		if (IS_ERR_OR_NULL(em)) {
2647 			if (!em)
2648 				ret = -ENOMEM;
2649 			else
2650 				ret = PTR_ERR(em);
2651 			break;
2652 		}
2653 		last_byte = min(extent_map_end(em), alloc_end);
2654 		actual_end = min_t(u64, extent_map_end(em), offset + len);
2655 		last_byte = ALIGN(last_byte, blocksize);
2656 
2657 		if (em->block_start == EXTENT_MAP_HOLE ||
2658 		    (cur_offset >= inode->i_size &&
2659 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2660 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2661 							last_byte - cur_offset,
2662 							1 << inode->i_blkbits,
2663 							offset + len,
2664 							&alloc_hint);
2665 		} else if (actual_end > inode->i_size &&
2666 			   !(mode & FALLOC_FL_KEEP_SIZE)) {
2667 			struct btrfs_trans_handle *trans;
2668 			struct btrfs_root *root = BTRFS_I(inode)->root;
2669 
2670 			/*
2671 			 * We didn't need to allocate any more space, but we
2672 			 * still extended the size of the file so we need to
2673 			 * update i_size and the inode item.
2674 			 */
2675 			trans = btrfs_start_transaction(root, 1);
2676 			if (IS_ERR(trans)) {
2677 				ret = PTR_ERR(trans);
2678 			} else {
2679 				inode->i_ctime = CURRENT_TIME;
2680 				i_size_write(inode, actual_end);
2681 				btrfs_ordered_update_i_size(inode, actual_end,
2682 							    NULL);
2683 				ret = btrfs_update_inode(trans, root, inode);
2684 				if (ret)
2685 					btrfs_end_transaction(trans, root);
2686 				else
2687 					ret = btrfs_end_transaction(trans,
2688 								    root);
2689 			}
2690 		}
2691 		free_extent_map(em);
2692 		if (ret < 0)
2693 			break;
2694 
2695 		cur_offset = last_byte;
2696 		if (cur_offset >= alloc_end) {
2697 			ret = 0;
2698 			break;
2699 		}
2700 	}
2701 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2702 			     &cached_state, GFP_NOFS);
2703 out:
2704 	mutex_unlock(&inode->i_mutex);
2705 	/* Let go of our reservation. */
2706 	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2707 	return ret;
2708 }
2709 
2710 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2711 {
2712 	struct btrfs_root *root = BTRFS_I(inode)->root;
2713 	struct extent_map *em = NULL;
2714 	struct extent_state *cached_state = NULL;
2715 	u64 lockstart;
2716 	u64 lockend;
2717 	u64 start;
2718 	u64 len;
2719 	int ret = 0;
2720 
2721 	if (inode->i_size == 0)
2722 		return -ENXIO;
2723 
2724 	/*
2725 	 * *offset can be negative, in this case we start finding DATA/HOLE from
2726 	 * the very start of the file.
2727 	 */
2728 	start = max_t(loff_t, 0, *offset);
2729 
2730 	lockstart = round_down(start, root->sectorsize);
2731 	lockend = round_up(i_size_read(inode), root->sectorsize);
2732 	if (lockend <= lockstart)
2733 		lockend = lockstart + root->sectorsize;
2734 	lockend--;
2735 	len = lockend - lockstart + 1;
2736 
2737 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2738 			 &cached_state);
2739 
2740 	while (start < inode->i_size) {
2741 		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2742 		if (IS_ERR(em)) {
2743 			ret = PTR_ERR(em);
2744 			em = NULL;
2745 			break;
2746 		}
2747 
2748 		if (whence == SEEK_HOLE &&
2749 		    (em->block_start == EXTENT_MAP_HOLE ||
2750 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2751 			break;
2752 		else if (whence == SEEK_DATA &&
2753 			   (em->block_start != EXTENT_MAP_HOLE &&
2754 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2755 			break;
2756 
2757 		start = em->start + em->len;
2758 		free_extent_map(em);
2759 		em = NULL;
2760 		cond_resched();
2761 	}
2762 	free_extent_map(em);
2763 	if (!ret) {
2764 		if (whence == SEEK_DATA && start >= inode->i_size)
2765 			ret = -ENXIO;
2766 		else
2767 			*offset = min_t(loff_t, start, inode->i_size);
2768 	}
2769 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2770 			     &cached_state, GFP_NOFS);
2771 	return ret;
2772 }
2773 
2774 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2775 {
2776 	struct inode *inode = file->f_mapping->host;
2777 	int ret;
2778 
2779 	mutex_lock(&inode->i_mutex);
2780 	switch (whence) {
2781 	case SEEK_END:
2782 	case SEEK_CUR:
2783 		offset = generic_file_llseek(file, offset, whence);
2784 		goto out;
2785 	case SEEK_DATA:
2786 	case SEEK_HOLE:
2787 		if (offset >= i_size_read(inode)) {
2788 			mutex_unlock(&inode->i_mutex);
2789 			return -ENXIO;
2790 		}
2791 
2792 		ret = find_desired_extent(inode, &offset, whence);
2793 		if (ret) {
2794 			mutex_unlock(&inode->i_mutex);
2795 			return ret;
2796 		}
2797 	}
2798 
2799 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2800 out:
2801 	mutex_unlock(&inode->i_mutex);
2802 	return offset;
2803 }
2804 
2805 const struct file_operations btrfs_file_operations = {
2806 	.llseek		= btrfs_file_llseek,
2807 	.read_iter      = generic_file_read_iter,
2808 	.splice_read	= generic_file_splice_read,
2809 	.write_iter	= btrfs_file_write_iter,
2810 	.mmap		= btrfs_file_mmap,
2811 	.open		= generic_file_open,
2812 	.release	= btrfs_release_file,
2813 	.fsync		= btrfs_sync_file,
2814 	.fallocate	= btrfs_fallocate,
2815 	.unlocked_ioctl	= btrfs_ioctl,
2816 #ifdef CONFIG_COMPAT
2817 	.compat_ioctl	= btrfs_ioctl,
2818 #endif
2819 };
2820 
2821 void btrfs_auto_defrag_exit(void)
2822 {
2823 	if (btrfs_inode_defrag_cachep)
2824 		kmem_cache_destroy(btrfs_inode_defrag_cachep);
2825 }
2826 
2827 int btrfs_auto_defrag_init(void)
2828 {
2829 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2830 					sizeof(struct inode_defrag), 0,
2831 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2832 					NULL);
2833 	if (!btrfs_inode_defrag_cachep)
2834 		return -ENOMEM;
2835 
2836 	return 0;
2837 }
2838 
2839 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
2840 {
2841 	int ret;
2842 
2843 	/*
2844 	 * So with compression we will find and lock a dirty page and clear the
2845 	 * first one as dirty, setup an async extent, and immediately return
2846 	 * with the entire range locked but with nobody actually marked with
2847 	 * writeback.  So we can't just filemap_write_and_wait_range() and
2848 	 * expect it to work since it will just kick off a thread to do the
2849 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
2850 	 * since it will wait on the page lock, which won't be unlocked until
2851 	 * after the pages have been marked as writeback and so we're good to go
2852 	 * from there.  We have to do this otherwise we'll miss the ordered
2853 	 * extents and that results in badness.  Please Josef, do not think you
2854 	 * know better and pull this out at some point in the future, it is
2855 	 * right and you are wrong.
2856 	 */
2857 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2858 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
2859 			     &BTRFS_I(inode)->runtime_flags))
2860 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2861 
2862 	return ret;
2863 }
2864