1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include "ctree.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "btrfs_inode.h" 23 #include "print-tree.h" 24 #include "tree-log.h" 25 #include "locking.h" 26 #include "volumes.h" 27 #include "qgroup.h" 28 #include "compression.h" 29 #include "delalloc-space.h" 30 31 static struct kmem_cache *btrfs_inode_defrag_cachep; 32 /* 33 * when auto defrag is enabled we 34 * queue up these defrag structs to remember which 35 * inodes need defragging passes 36 */ 37 struct inode_defrag { 38 struct rb_node rb_node; 39 /* objectid */ 40 u64 ino; 41 /* 42 * transid where the defrag was added, we search for 43 * extents newer than this 44 */ 45 u64 transid; 46 47 /* root objectid */ 48 u64 root; 49 50 /* last offset we were able to defrag */ 51 u64 last_offset; 52 53 /* if we've wrapped around back to zero once already */ 54 int cycled; 55 }; 56 57 static int __compare_inode_defrag(struct inode_defrag *defrag1, 58 struct inode_defrag *defrag2) 59 { 60 if (defrag1->root > defrag2->root) 61 return 1; 62 else if (defrag1->root < defrag2->root) 63 return -1; 64 else if (defrag1->ino > defrag2->ino) 65 return 1; 66 else if (defrag1->ino < defrag2->ino) 67 return -1; 68 else 69 return 0; 70 } 71 72 /* pop a record for an inode into the defrag tree. The lock 73 * must be held already 74 * 75 * If you're inserting a record for an older transid than an 76 * existing record, the transid already in the tree is lowered 77 * 78 * If an existing record is found the defrag item you 79 * pass in is freed 80 */ 81 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 82 struct inode_defrag *defrag) 83 { 84 struct btrfs_fs_info *fs_info = inode->root->fs_info; 85 struct inode_defrag *entry; 86 struct rb_node **p; 87 struct rb_node *parent = NULL; 88 int ret; 89 90 p = &fs_info->defrag_inodes.rb_node; 91 while (*p) { 92 parent = *p; 93 entry = rb_entry(parent, struct inode_defrag, rb_node); 94 95 ret = __compare_inode_defrag(defrag, entry); 96 if (ret < 0) 97 p = &parent->rb_left; 98 else if (ret > 0) 99 p = &parent->rb_right; 100 else { 101 /* if we're reinserting an entry for 102 * an old defrag run, make sure to 103 * lower the transid of our existing record 104 */ 105 if (defrag->transid < entry->transid) 106 entry->transid = defrag->transid; 107 if (defrag->last_offset > entry->last_offset) 108 entry->last_offset = defrag->last_offset; 109 return -EEXIST; 110 } 111 } 112 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 113 rb_link_node(&defrag->rb_node, parent, p); 114 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 115 return 0; 116 } 117 118 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 119 { 120 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 121 return 0; 122 123 if (btrfs_fs_closing(fs_info)) 124 return 0; 125 126 return 1; 127 } 128 129 /* 130 * insert a defrag record for this inode if auto defrag is 131 * enabled 132 */ 133 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 134 struct btrfs_inode *inode) 135 { 136 struct btrfs_root *root = inode->root; 137 struct btrfs_fs_info *fs_info = root->fs_info; 138 struct inode_defrag *defrag; 139 u64 transid; 140 int ret; 141 142 if (!__need_auto_defrag(fs_info)) 143 return 0; 144 145 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 146 return 0; 147 148 if (trans) 149 transid = trans->transid; 150 else 151 transid = inode->root->last_trans; 152 153 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 154 if (!defrag) 155 return -ENOMEM; 156 157 defrag->ino = btrfs_ino(inode); 158 defrag->transid = transid; 159 defrag->root = root->root_key.objectid; 160 161 spin_lock(&fs_info->defrag_inodes_lock); 162 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 163 /* 164 * If we set IN_DEFRAG flag and evict the inode from memory, 165 * and then re-read this inode, this new inode doesn't have 166 * IN_DEFRAG flag. At the case, we may find the existed defrag. 167 */ 168 ret = __btrfs_add_inode_defrag(inode, defrag); 169 if (ret) 170 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 171 } else { 172 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 173 } 174 spin_unlock(&fs_info->defrag_inodes_lock); 175 return 0; 176 } 177 178 /* 179 * Requeue the defrag object. If there is a defrag object that points to 180 * the same inode in the tree, we will merge them together (by 181 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 182 */ 183 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode, 184 struct inode_defrag *defrag) 185 { 186 struct btrfs_fs_info *fs_info = inode->root->fs_info; 187 int ret; 188 189 if (!__need_auto_defrag(fs_info)) 190 goto out; 191 192 /* 193 * Here we don't check the IN_DEFRAG flag, because we need merge 194 * them together. 195 */ 196 spin_lock(&fs_info->defrag_inodes_lock); 197 ret = __btrfs_add_inode_defrag(inode, defrag); 198 spin_unlock(&fs_info->defrag_inodes_lock); 199 if (ret) 200 goto out; 201 return; 202 out: 203 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 204 } 205 206 /* 207 * pick the defragable inode that we want, if it doesn't exist, we will get 208 * the next one. 209 */ 210 static struct inode_defrag * 211 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 212 { 213 struct inode_defrag *entry = NULL; 214 struct inode_defrag tmp; 215 struct rb_node *p; 216 struct rb_node *parent = NULL; 217 int ret; 218 219 tmp.ino = ino; 220 tmp.root = root; 221 222 spin_lock(&fs_info->defrag_inodes_lock); 223 p = fs_info->defrag_inodes.rb_node; 224 while (p) { 225 parent = p; 226 entry = rb_entry(parent, struct inode_defrag, rb_node); 227 228 ret = __compare_inode_defrag(&tmp, entry); 229 if (ret < 0) 230 p = parent->rb_left; 231 else if (ret > 0) 232 p = parent->rb_right; 233 else 234 goto out; 235 } 236 237 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 238 parent = rb_next(parent); 239 if (parent) 240 entry = rb_entry(parent, struct inode_defrag, rb_node); 241 else 242 entry = NULL; 243 } 244 out: 245 if (entry) 246 rb_erase(parent, &fs_info->defrag_inodes); 247 spin_unlock(&fs_info->defrag_inodes_lock); 248 return entry; 249 } 250 251 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 252 { 253 struct inode_defrag *defrag; 254 struct rb_node *node; 255 256 spin_lock(&fs_info->defrag_inodes_lock); 257 node = rb_first(&fs_info->defrag_inodes); 258 while (node) { 259 rb_erase(node, &fs_info->defrag_inodes); 260 defrag = rb_entry(node, struct inode_defrag, rb_node); 261 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 262 263 cond_resched_lock(&fs_info->defrag_inodes_lock); 264 265 node = rb_first(&fs_info->defrag_inodes); 266 } 267 spin_unlock(&fs_info->defrag_inodes_lock); 268 } 269 270 #define BTRFS_DEFRAG_BATCH 1024 271 272 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 273 struct inode_defrag *defrag) 274 { 275 struct btrfs_root *inode_root; 276 struct inode *inode; 277 struct btrfs_key key; 278 struct btrfs_ioctl_defrag_range_args range; 279 int num_defrag; 280 int index; 281 int ret; 282 283 /* get the inode */ 284 key.objectid = defrag->root; 285 key.type = BTRFS_ROOT_ITEM_KEY; 286 key.offset = (u64)-1; 287 288 index = srcu_read_lock(&fs_info->subvol_srcu); 289 290 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 291 if (IS_ERR(inode_root)) { 292 ret = PTR_ERR(inode_root); 293 goto cleanup; 294 } 295 296 key.objectid = defrag->ino; 297 key.type = BTRFS_INODE_ITEM_KEY; 298 key.offset = 0; 299 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 300 if (IS_ERR(inode)) { 301 ret = PTR_ERR(inode); 302 goto cleanup; 303 } 304 srcu_read_unlock(&fs_info->subvol_srcu, index); 305 306 /* do a chunk of defrag */ 307 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 308 memset(&range, 0, sizeof(range)); 309 range.len = (u64)-1; 310 range.start = defrag->last_offset; 311 312 sb_start_write(fs_info->sb); 313 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 314 BTRFS_DEFRAG_BATCH); 315 sb_end_write(fs_info->sb); 316 /* 317 * if we filled the whole defrag batch, there 318 * must be more work to do. Queue this defrag 319 * again 320 */ 321 if (num_defrag == BTRFS_DEFRAG_BATCH) { 322 defrag->last_offset = range.start; 323 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 324 } else if (defrag->last_offset && !defrag->cycled) { 325 /* 326 * we didn't fill our defrag batch, but 327 * we didn't start at zero. Make sure we loop 328 * around to the start of the file. 329 */ 330 defrag->last_offset = 0; 331 defrag->cycled = 1; 332 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 333 } else { 334 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 335 } 336 337 iput(inode); 338 return 0; 339 cleanup: 340 srcu_read_unlock(&fs_info->subvol_srcu, index); 341 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 342 return ret; 343 } 344 345 /* 346 * run through the list of inodes in the FS that need 347 * defragging 348 */ 349 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 350 { 351 struct inode_defrag *defrag; 352 u64 first_ino = 0; 353 u64 root_objectid = 0; 354 355 atomic_inc(&fs_info->defrag_running); 356 while (1) { 357 /* Pause the auto defragger. */ 358 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 359 &fs_info->fs_state)) 360 break; 361 362 if (!__need_auto_defrag(fs_info)) 363 break; 364 365 /* find an inode to defrag */ 366 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 367 first_ino); 368 if (!defrag) { 369 if (root_objectid || first_ino) { 370 root_objectid = 0; 371 first_ino = 0; 372 continue; 373 } else { 374 break; 375 } 376 } 377 378 first_ino = defrag->ino + 1; 379 root_objectid = defrag->root; 380 381 __btrfs_run_defrag_inode(fs_info, defrag); 382 } 383 atomic_dec(&fs_info->defrag_running); 384 385 /* 386 * during unmount, we use the transaction_wait queue to 387 * wait for the defragger to stop 388 */ 389 wake_up(&fs_info->transaction_wait); 390 return 0; 391 } 392 393 /* simple helper to fault in pages and copy. This should go away 394 * and be replaced with calls into generic code. 395 */ 396 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 397 struct page **prepared_pages, 398 struct iov_iter *i) 399 { 400 size_t copied = 0; 401 size_t total_copied = 0; 402 int pg = 0; 403 int offset = offset_in_page(pos); 404 405 while (write_bytes > 0) { 406 size_t count = min_t(size_t, 407 PAGE_SIZE - offset, write_bytes); 408 struct page *page = prepared_pages[pg]; 409 /* 410 * Copy data from userspace to the current page 411 */ 412 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 413 414 /* Flush processor's dcache for this page */ 415 flush_dcache_page(page); 416 417 /* 418 * if we get a partial write, we can end up with 419 * partially up to date pages. These add 420 * a lot of complexity, so make sure they don't 421 * happen by forcing this copy to be retried. 422 * 423 * The rest of the btrfs_file_write code will fall 424 * back to page at a time copies after we return 0. 425 */ 426 if (!PageUptodate(page) && copied < count) 427 copied = 0; 428 429 iov_iter_advance(i, copied); 430 write_bytes -= copied; 431 total_copied += copied; 432 433 /* Return to btrfs_file_write_iter to fault page */ 434 if (unlikely(copied == 0)) 435 break; 436 437 if (copied < PAGE_SIZE - offset) { 438 offset += copied; 439 } else { 440 pg++; 441 offset = 0; 442 } 443 } 444 return total_copied; 445 } 446 447 /* 448 * unlocks pages after btrfs_file_write is done with them 449 */ 450 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 451 { 452 size_t i; 453 for (i = 0; i < num_pages; i++) { 454 /* page checked is some magic around finding pages that 455 * have been modified without going through btrfs_set_page_dirty 456 * clear it here. There should be no need to mark the pages 457 * accessed as prepare_pages should have marked them accessed 458 * in prepare_pages via find_or_create_page() 459 */ 460 ClearPageChecked(pages[i]); 461 unlock_page(pages[i]); 462 put_page(pages[i]); 463 } 464 } 465 466 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 467 const u64 start, 468 const u64 len, 469 struct extent_state **cached_state) 470 { 471 u64 search_start = start; 472 const u64 end = start + len - 1; 473 474 while (search_start < end) { 475 const u64 search_len = end - search_start + 1; 476 struct extent_map *em; 477 u64 em_len; 478 int ret = 0; 479 480 em = btrfs_get_extent(inode, NULL, 0, search_start, 481 search_len, 0); 482 if (IS_ERR(em)) 483 return PTR_ERR(em); 484 485 if (em->block_start != EXTENT_MAP_HOLE) 486 goto next; 487 488 em_len = em->len; 489 if (em->start < search_start) 490 em_len -= search_start - em->start; 491 if (em_len > search_len) 492 em_len = search_len; 493 494 ret = set_extent_bit(&inode->io_tree, search_start, 495 search_start + em_len - 1, 496 EXTENT_DELALLOC_NEW, 497 NULL, cached_state, GFP_NOFS); 498 next: 499 search_start = extent_map_end(em); 500 free_extent_map(em); 501 if (ret) 502 return ret; 503 } 504 return 0; 505 } 506 507 /* 508 * after copy_from_user, pages need to be dirtied and we need to make 509 * sure holes are created between the current EOF and the start of 510 * any next extents (if required). 511 * 512 * this also makes the decision about creating an inline extent vs 513 * doing real data extents, marking pages dirty and delalloc as required. 514 */ 515 int btrfs_dirty_pages(struct inode *inode, struct page **pages, 516 size_t num_pages, loff_t pos, size_t write_bytes, 517 struct extent_state **cached) 518 { 519 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 520 int err = 0; 521 int i; 522 u64 num_bytes; 523 u64 start_pos; 524 u64 end_of_last_block; 525 u64 end_pos = pos + write_bytes; 526 loff_t isize = i_size_read(inode); 527 unsigned int extra_bits = 0; 528 529 start_pos = pos & ~((u64) fs_info->sectorsize - 1); 530 num_bytes = round_up(write_bytes + pos - start_pos, 531 fs_info->sectorsize); 532 533 end_of_last_block = start_pos + num_bytes - 1; 534 535 /* 536 * The pages may have already been dirty, clear out old accounting so 537 * we can set things up properly 538 */ 539 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block, 540 EXTENT_DIRTY | EXTENT_DELALLOC | 541 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, cached); 542 543 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) { 544 if (start_pos >= isize && 545 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) { 546 /* 547 * There can't be any extents following eof in this case 548 * so just set the delalloc new bit for the range 549 * directly. 550 */ 551 extra_bits |= EXTENT_DELALLOC_NEW; 552 } else { 553 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode), 554 start_pos, 555 num_bytes, cached); 556 if (err) 557 return err; 558 } 559 } 560 561 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 562 extra_bits, cached, 0); 563 if (err) 564 return err; 565 566 for (i = 0; i < num_pages; i++) { 567 struct page *p = pages[i]; 568 SetPageUptodate(p); 569 ClearPageChecked(p); 570 set_page_dirty(p); 571 } 572 573 /* 574 * we've only changed i_size in ram, and we haven't updated 575 * the disk i_size. There is no need to log the inode 576 * at this time. 577 */ 578 if (end_pos > isize) 579 i_size_write(inode, end_pos); 580 return 0; 581 } 582 583 /* 584 * this drops all the extents in the cache that intersect the range 585 * [start, end]. Existing extents are split as required. 586 */ 587 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 588 int skip_pinned) 589 { 590 struct extent_map *em; 591 struct extent_map *split = NULL; 592 struct extent_map *split2 = NULL; 593 struct extent_map_tree *em_tree = &inode->extent_tree; 594 u64 len = end - start + 1; 595 u64 gen; 596 int ret; 597 int testend = 1; 598 unsigned long flags; 599 int compressed = 0; 600 bool modified; 601 602 WARN_ON(end < start); 603 if (end == (u64)-1) { 604 len = (u64)-1; 605 testend = 0; 606 } 607 while (1) { 608 int no_splits = 0; 609 610 modified = false; 611 if (!split) 612 split = alloc_extent_map(); 613 if (!split2) 614 split2 = alloc_extent_map(); 615 if (!split || !split2) 616 no_splits = 1; 617 618 write_lock(&em_tree->lock); 619 em = lookup_extent_mapping(em_tree, start, len); 620 if (!em) { 621 write_unlock(&em_tree->lock); 622 break; 623 } 624 flags = em->flags; 625 gen = em->generation; 626 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 627 if (testend && em->start + em->len >= start + len) { 628 free_extent_map(em); 629 write_unlock(&em_tree->lock); 630 break; 631 } 632 start = em->start + em->len; 633 if (testend) 634 len = start + len - (em->start + em->len); 635 free_extent_map(em); 636 write_unlock(&em_tree->lock); 637 continue; 638 } 639 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 640 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 641 clear_bit(EXTENT_FLAG_LOGGING, &flags); 642 modified = !list_empty(&em->list); 643 if (no_splits) 644 goto next; 645 646 if (em->start < start) { 647 split->start = em->start; 648 split->len = start - em->start; 649 650 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 651 split->orig_start = em->orig_start; 652 split->block_start = em->block_start; 653 654 if (compressed) 655 split->block_len = em->block_len; 656 else 657 split->block_len = split->len; 658 split->orig_block_len = max(split->block_len, 659 em->orig_block_len); 660 split->ram_bytes = em->ram_bytes; 661 } else { 662 split->orig_start = split->start; 663 split->block_len = 0; 664 split->block_start = em->block_start; 665 split->orig_block_len = 0; 666 split->ram_bytes = split->len; 667 } 668 669 split->generation = gen; 670 split->bdev = em->bdev; 671 split->flags = flags; 672 split->compress_type = em->compress_type; 673 replace_extent_mapping(em_tree, em, split, modified); 674 free_extent_map(split); 675 split = split2; 676 split2 = NULL; 677 } 678 if (testend && em->start + em->len > start + len) { 679 u64 diff = start + len - em->start; 680 681 split->start = start + len; 682 split->len = em->start + em->len - (start + len); 683 split->bdev = em->bdev; 684 split->flags = flags; 685 split->compress_type = em->compress_type; 686 split->generation = gen; 687 688 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 689 split->orig_block_len = max(em->block_len, 690 em->orig_block_len); 691 692 split->ram_bytes = em->ram_bytes; 693 if (compressed) { 694 split->block_len = em->block_len; 695 split->block_start = em->block_start; 696 split->orig_start = em->orig_start; 697 } else { 698 split->block_len = split->len; 699 split->block_start = em->block_start 700 + diff; 701 split->orig_start = em->orig_start; 702 } 703 } else { 704 split->ram_bytes = split->len; 705 split->orig_start = split->start; 706 split->block_len = 0; 707 split->block_start = em->block_start; 708 split->orig_block_len = 0; 709 } 710 711 if (extent_map_in_tree(em)) { 712 replace_extent_mapping(em_tree, em, split, 713 modified); 714 } else { 715 ret = add_extent_mapping(em_tree, split, 716 modified); 717 ASSERT(ret == 0); /* Logic error */ 718 } 719 free_extent_map(split); 720 split = NULL; 721 } 722 next: 723 if (extent_map_in_tree(em)) 724 remove_extent_mapping(em_tree, em); 725 write_unlock(&em_tree->lock); 726 727 /* once for us */ 728 free_extent_map(em); 729 /* once for the tree*/ 730 free_extent_map(em); 731 } 732 if (split) 733 free_extent_map(split); 734 if (split2) 735 free_extent_map(split2); 736 } 737 738 /* 739 * this is very complex, but the basic idea is to drop all extents 740 * in the range start - end. hint_block is filled in with a block number 741 * that would be a good hint to the block allocator for this file. 742 * 743 * If an extent intersects the range but is not entirely inside the range 744 * it is either truncated or split. Anything entirely inside the range 745 * is deleted from the tree. 746 */ 747 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 748 struct btrfs_root *root, struct inode *inode, 749 struct btrfs_path *path, u64 start, u64 end, 750 u64 *drop_end, int drop_cache, 751 int replace_extent, 752 u32 extent_item_size, 753 int *key_inserted) 754 { 755 struct btrfs_fs_info *fs_info = root->fs_info; 756 struct extent_buffer *leaf; 757 struct btrfs_file_extent_item *fi; 758 struct btrfs_ref ref = { 0 }; 759 struct btrfs_key key; 760 struct btrfs_key new_key; 761 u64 ino = btrfs_ino(BTRFS_I(inode)); 762 u64 search_start = start; 763 u64 disk_bytenr = 0; 764 u64 num_bytes = 0; 765 u64 extent_offset = 0; 766 u64 extent_end = 0; 767 u64 last_end = start; 768 int del_nr = 0; 769 int del_slot = 0; 770 int extent_type; 771 int recow; 772 int ret; 773 int modify_tree = -1; 774 int update_refs; 775 int found = 0; 776 int leafs_visited = 0; 777 778 if (drop_cache) 779 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0); 780 781 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 782 modify_tree = 0; 783 784 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 785 root == fs_info->tree_root); 786 while (1) { 787 recow = 0; 788 ret = btrfs_lookup_file_extent(trans, root, path, ino, 789 search_start, modify_tree); 790 if (ret < 0) 791 break; 792 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 793 leaf = path->nodes[0]; 794 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 795 if (key.objectid == ino && 796 key.type == BTRFS_EXTENT_DATA_KEY) 797 path->slots[0]--; 798 } 799 ret = 0; 800 leafs_visited++; 801 next_slot: 802 leaf = path->nodes[0]; 803 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 804 BUG_ON(del_nr > 0); 805 ret = btrfs_next_leaf(root, path); 806 if (ret < 0) 807 break; 808 if (ret > 0) { 809 ret = 0; 810 break; 811 } 812 leafs_visited++; 813 leaf = path->nodes[0]; 814 recow = 1; 815 } 816 817 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 818 819 if (key.objectid > ino) 820 break; 821 if (WARN_ON_ONCE(key.objectid < ino) || 822 key.type < BTRFS_EXTENT_DATA_KEY) { 823 ASSERT(del_nr == 0); 824 path->slots[0]++; 825 goto next_slot; 826 } 827 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 828 break; 829 830 fi = btrfs_item_ptr(leaf, path->slots[0], 831 struct btrfs_file_extent_item); 832 extent_type = btrfs_file_extent_type(leaf, fi); 833 834 if (extent_type == BTRFS_FILE_EXTENT_REG || 835 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 836 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 837 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 838 extent_offset = btrfs_file_extent_offset(leaf, fi); 839 extent_end = key.offset + 840 btrfs_file_extent_num_bytes(leaf, fi); 841 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 842 extent_end = key.offset + 843 btrfs_file_extent_ram_bytes(leaf, fi); 844 } else { 845 /* can't happen */ 846 BUG(); 847 } 848 849 /* 850 * Don't skip extent items representing 0 byte lengths. They 851 * used to be created (bug) if while punching holes we hit 852 * -ENOSPC condition. So if we find one here, just ensure we 853 * delete it, otherwise we would insert a new file extent item 854 * with the same key (offset) as that 0 bytes length file 855 * extent item in the call to setup_items_for_insert() later 856 * in this function. 857 */ 858 if (extent_end == key.offset && extent_end >= search_start) { 859 last_end = extent_end; 860 goto delete_extent_item; 861 } 862 863 if (extent_end <= search_start) { 864 path->slots[0]++; 865 goto next_slot; 866 } 867 868 found = 1; 869 search_start = max(key.offset, start); 870 if (recow || !modify_tree) { 871 modify_tree = -1; 872 btrfs_release_path(path); 873 continue; 874 } 875 876 /* 877 * | - range to drop - | 878 * | -------- extent -------- | 879 */ 880 if (start > key.offset && end < extent_end) { 881 BUG_ON(del_nr > 0); 882 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 883 ret = -EOPNOTSUPP; 884 break; 885 } 886 887 memcpy(&new_key, &key, sizeof(new_key)); 888 new_key.offset = start; 889 ret = btrfs_duplicate_item(trans, root, path, 890 &new_key); 891 if (ret == -EAGAIN) { 892 btrfs_release_path(path); 893 continue; 894 } 895 if (ret < 0) 896 break; 897 898 leaf = path->nodes[0]; 899 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 900 struct btrfs_file_extent_item); 901 btrfs_set_file_extent_num_bytes(leaf, fi, 902 start - key.offset); 903 904 fi = btrfs_item_ptr(leaf, path->slots[0], 905 struct btrfs_file_extent_item); 906 907 extent_offset += start - key.offset; 908 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 909 btrfs_set_file_extent_num_bytes(leaf, fi, 910 extent_end - start); 911 btrfs_mark_buffer_dirty(leaf); 912 913 if (update_refs && disk_bytenr > 0) { 914 btrfs_init_generic_ref(&ref, 915 BTRFS_ADD_DELAYED_REF, 916 disk_bytenr, num_bytes, 0); 917 btrfs_init_data_ref(&ref, 918 root->root_key.objectid, 919 new_key.objectid, 920 start - extent_offset); 921 ret = btrfs_inc_extent_ref(trans, &ref); 922 BUG_ON(ret); /* -ENOMEM */ 923 } 924 key.offset = start; 925 } 926 /* 927 * From here on out we will have actually dropped something, so 928 * last_end can be updated. 929 */ 930 last_end = extent_end; 931 932 /* 933 * | ---- range to drop ----- | 934 * | -------- extent -------- | 935 */ 936 if (start <= key.offset && end < extent_end) { 937 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 938 ret = -EOPNOTSUPP; 939 break; 940 } 941 942 memcpy(&new_key, &key, sizeof(new_key)); 943 new_key.offset = end; 944 btrfs_set_item_key_safe(fs_info, path, &new_key); 945 946 extent_offset += end - key.offset; 947 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 948 btrfs_set_file_extent_num_bytes(leaf, fi, 949 extent_end - end); 950 btrfs_mark_buffer_dirty(leaf); 951 if (update_refs && disk_bytenr > 0) 952 inode_sub_bytes(inode, end - key.offset); 953 break; 954 } 955 956 search_start = extent_end; 957 /* 958 * | ---- range to drop ----- | 959 * | -------- extent -------- | 960 */ 961 if (start > key.offset && end >= extent_end) { 962 BUG_ON(del_nr > 0); 963 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 964 ret = -EOPNOTSUPP; 965 break; 966 } 967 968 btrfs_set_file_extent_num_bytes(leaf, fi, 969 start - key.offset); 970 btrfs_mark_buffer_dirty(leaf); 971 if (update_refs && disk_bytenr > 0) 972 inode_sub_bytes(inode, extent_end - start); 973 if (end == extent_end) 974 break; 975 976 path->slots[0]++; 977 goto next_slot; 978 } 979 980 /* 981 * | ---- range to drop ----- | 982 * | ------ extent ------ | 983 */ 984 if (start <= key.offset && end >= extent_end) { 985 delete_extent_item: 986 if (del_nr == 0) { 987 del_slot = path->slots[0]; 988 del_nr = 1; 989 } else { 990 BUG_ON(del_slot + del_nr != path->slots[0]); 991 del_nr++; 992 } 993 994 if (update_refs && 995 extent_type == BTRFS_FILE_EXTENT_INLINE) { 996 inode_sub_bytes(inode, 997 extent_end - key.offset); 998 extent_end = ALIGN(extent_end, 999 fs_info->sectorsize); 1000 } else if (update_refs && disk_bytenr > 0) { 1001 btrfs_init_generic_ref(&ref, 1002 BTRFS_DROP_DELAYED_REF, 1003 disk_bytenr, num_bytes, 0); 1004 btrfs_init_data_ref(&ref, 1005 root->root_key.objectid, 1006 key.objectid, 1007 key.offset - extent_offset); 1008 ret = btrfs_free_extent(trans, &ref); 1009 BUG_ON(ret); /* -ENOMEM */ 1010 inode_sub_bytes(inode, 1011 extent_end - key.offset); 1012 } 1013 1014 if (end == extent_end) 1015 break; 1016 1017 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 1018 path->slots[0]++; 1019 goto next_slot; 1020 } 1021 1022 ret = btrfs_del_items(trans, root, path, del_slot, 1023 del_nr); 1024 if (ret) { 1025 btrfs_abort_transaction(trans, ret); 1026 break; 1027 } 1028 1029 del_nr = 0; 1030 del_slot = 0; 1031 1032 btrfs_release_path(path); 1033 continue; 1034 } 1035 1036 BUG(); 1037 } 1038 1039 if (!ret && del_nr > 0) { 1040 /* 1041 * Set path->slots[0] to first slot, so that after the delete 1042 * if items are move off from our leaf to its immediate left or 1043 * right neighbor leafs, we end up with a correct and adjusted 1044 * path->slots[0] for our insertion (if replace_extent != 0). 1045 */ 1046 path->slots[0] = del_slot; 1047 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1048 if (ret) 1049 btrfs_abort_transaction(trans, ret); 1050 } 1051 1052 leaf = path->nodes[0]; 1053 /* 1054 * If btrfs_del_items() was called, it might have deleted a leaf, in 1055 * which case it unlocked our path, so check path->locks[0] matches a 1056 * write lock. 1057 */ 1058 if (!ret && replace_extent && leafs_visited == 1 && 1059 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 1060 path->locks[0] == BTRFS_WRITE_LOCK) && 1061 btrfs_leaf_free_space(leaf) >= 1062 sizeof(struct btrfs_item) + extent_item_size) { 1063 1064 key.objectid = ino; 1065 key.type = BTRFS_EXTENT_DATA_KEY; 1066 key.offset = start; 1067 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 1068 struct btrfs_key slot_key; 1069 1070 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 1071 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1072 path->slots[0]++; 1073 } 1074 setup_items_for_insert(root, path, &key, 1075 &extent_item_size, 1076 extent_item_size, 1077 sizeof(struct btrfs_item) + 1078 extent_item_size, 1); 1079 *key_inserted = 1; 1080 } 1081 1082 if (!replace_extent || !(*key_inserted)) 1083 btrfs_release_path(path); 1084 if (drop_end) 1085 *drop_end = found ? min(end, last_end) : end; 1086 return ret; 1087 } 1088 1089 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1090 struct btrfs_root *root, struct inode *inode, u64 start, 1091 u64 end, int drop_cache) 1092 { 1093 struct btrfs_path *path; 1094 int ret; 1095 1096 path = btrfs_alloc_path(); 1097 if (!path) 1098 return -ENOMEM; 1099 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1100 drop_cache, 0, 0, NULL); 1101 btrfs_free_path(path); 1102 return ret; 1103 } 1104 1105 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1106 u64 objectid, u64 bytenr, u64 orig_offset, 1107 u64 *start, u64 *end) 1108 { 1109 struct btrfs_file_extent_item *fi; 1110 struct btrfs_key key; 1111 u64 extent_end; 1112 1113 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1114 return 0; 1115 1116 btrfs_item_key_to_cpu(leaf, &key, slot); 1117 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1118 return 0; 1119 1120 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1121 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1122 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1123 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1124 btrfs_file_extent_compression(leaf, fi) || 1125 btrfs_file_extent_encryption(leaf, fi) || 1126 btrfs_file_extent_other_encoding(leaf, fi)) 1127 return 0; 1128 1129 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1130 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1131 return 0; 1132 1133 *start = key.offset; 1134 *end = extent_end; 1135 return 1; 1136 } 1137 1138 /* 1139 * Mark extent in the range start - end as written. 1140 * 1141 * This changes extent type from 'pre-allocated' to 'regular'. If only 1142 * part of extent is marked as written, the extent will be split into 1143 * two or three. 1144 */ 1145 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1146 struct btrfs_inode *inode, u64 start, u64 end) 1147 { 1148 struct btrfs_fs_info *fs_info = trans->fs_info; 1149 struct btrfs_root *root = inode->root; 1150 struct extent_buffer *leaf; 1151 struct btrfs_path *path; 1152 struct btrfs_file_extent_item *fi; 1153 struct btrfs_ref ref = { 0 }; 1154 struct btrfs_key key; 1155 struct btrfs_key new_key; 1156 u64 bytenr; 1157 u64 num_bytes; 1158 u64 extent_end; 1159 u64 orig_offset; 1160 u64 other_start; 1161 u64 other_end; 1162 u64 split; 1163 int del_nr = 0; 1164 int del_slot = 0; 1165 int recow; 1166 int ret; 1167 u64 ino = btrfs_ino(inode); 1168 1169 path = btrfs_alloc_path(); 1170 if (!path) 1171 return -ENOMEM; 1172 again: 1173 recow = 0; 1174 split = start; 1175 key.objectid = ino; 1176 key.type = BTRFS_EXTENT_DATA_KEY; 1177 key.offset = split; 1178 1179 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1180 if (ret < 0) 1181 goto out; 1182 if (ret > 0 && path->slots[0] > 0) 1183 path->slots[0]--; 1184 1185 leaf = path->nodes[0]; 1186 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1187 if (key.objectid != ino || 1188 key.type != BTRFS_EXTENT_DATA_KEY) { 1189 ret = -EINVAL; 1190 btrfs_abort_transaction(trans, ret); 1191 goto out; 1192 } 1193 fi = btrfs_item_ptr(leaf, path->slots[0], 1194 struct btrfs_file_extent_item); 1195 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1196 ret = -EINVAL; 1197 btrfs_abort_transaction(trans, ret); 1198 goto out; 1199 } 1200 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1201 if (key.offset > start || extent_end < end) { 1202 ret = -EINVAL; 1203 btrfs_abort_transaction(trans, ret); 1204 goto out; 1205 } 1206 1207 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1208 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1209 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1210 memcpy(&new_key, &key, sizeof(new_key)); 1211 1212 if (start == key.offset && end < extent_end) { 1213 other_start = 0; 1214 other_end = start; 1215 if (extent_mergeable(leaf, path->slots[0] - 1, 1216 ino, bytenr, orig_offset, 1217 &other_start, &other_end)) { 1218 new_key.offset = end; 1219 btrfs_set_item_key_safe(fs_info, path, &new_key); 1220 fi = btrfs_item_ptr(leaf, path->slots[0], 1221 struct btrfs_file_extent_item); 1222 btrfs_set_file_extent_generation(leaf, fi, 1223 trans->transid); 1224 btrfs_set_file_extent_num_bytes(leaf, fi, 1225 extent_end - end); 1226 btrfs_set_file_extent_offset(leaf, fi, 1227 end - orig_offset); 1228 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1229 struct btrfs_file_extent_item); 1230 btrfs_set_file_extent_generation(leaf, fi, 1231 trans->transid); 1232 btrfs_set_file_extent_num_bytes(leaf, fi, 1233 end - other_start); 1234 btrfs_mark_buffer_dirty(leaf); 1235 goto out; 1236 } 1237 } 1238 1239 if (start > key.offset && end == extent_end) { 1240 other_start = end; 1241 other_end = 0; 1242 if (extent_mergeable(leaf, path->slots[0] + 1, 1243 ino, bytenr, orig_offset, 1244 &other_start, &other_end)) { 1245 fi = btrfs_item_ptr(leaf, path->slots[0], 1246 struct btrfs_file_extent_item); 1247 btrfs_set_file_extent_num_bytes(leaf, fi, 1248 start - key.offset); 1249 btrfs_set_file_extent_generation(leaf, fi, 1250 trans->transid); 1251 path->slots[0]++; 1252 new_key.offset = start; 1253 btrfs_set_item_key_safe(fs_info, path, &new_key); 1254 1255 fi = btrfs_item_ptr(leaf, path->slots[0], 1256 struct btrfs_file_extent_item); 1257 btrfs_set_file_extent_generation(leaf, fi, 1258 trans->transid); 1259 btrfs_set_file_extent_num_bytes(leaf, fi, 1260 other_end - start); 1261 btrfs_set_file_extent_offset(leaf, fi, 1262 start - orig_offset); 1263 btrfs_mark_buffer_dirty(leaf); 1264 goto out; 1265 } 1266 } 1267 1268 while (start > key.offset || end < extent_end) { 1269 if (key.offset == start) 1270 split = end; 1271 1272 new_key.offset = split; 1273 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1274 if (ret == -EAGAIN) { 1275 btrfs_release_path(path); 1276 goto again; 1277 } 1278 if (ret < 0) { 1279 btrfs_abort_transaction(trans, ret); 1280 goto out; 1281 } 1282 1283 leaf = path->nodes[0]; 1284 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1285 struct btrfs_file_extent_item); 1286 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1287 btrfs_set_file_extent_num_bytes(leaf, fi, 1288 split - key.offset); 1289 1290 fi = btrfs_item_ptr(leaf, path->slots[0], 1291 struct btrfs_file_extent_item); 1292 1293 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1294 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1295 btrfs_set_file_extent_num_bytes(leaf, fi, 1296 extent_end - split); 1297 btrfs_mark_buffer_dirty(leaf); 1298 1299 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 1300 num_bytes, 0); 1301 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 1302 orig_offset); 1303 ret = btrfs_inc_extent_ref(trans, &ref); 1304 if (ret) { 1305 btrfs_abort_transaction(trans, ret); 1306 goto out; 1307 } 1308 1309 if (split == start) { 1310 key.offset = start; 1311 } else { 1312 if (start != key.offset) { 1313 ret = -EINVAL; 1314 btrfs_abort_transaction(trans, ret); 1315 goto out; 1316 } 1317 path->slots[0]--; 1318 extent_end = end; 1319 } 1320 recow = 1; 1321 } 1322 1323 other_start = end; 1324 other_end = 0; 1325 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1326 num_bytes, 0); 1327 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset); 1328 if (extent_mergeable(leaf, path->slots[0] + 1, 1329 ino, bytenr, orig_offset, 1330 &other_start, &other_end)) { 1331 if (recow) { 1332 btrfs_release_path(path); 1333 goto again; 1334 } 1335 extent_end = other_end; 1336 del_slot = path->slots[0] + 1; 1337 del_nr++; 1338 ret = btrfs_free_extent(trans, &ref); 1339 if (ret) { 1340 btrfs_abort_transaction(trans, ret); 1341 goto out; 1342 } 1343 } 1344 other_start = 0; 1345 other_end = start; 1346 if (extent_mergeable(leaf, path->slots[0] - 1, 1347 ino, bytenr, orig_offset, 1348 &other_start, &other_end)) { 1349 if (recow) { 1350 btrfs_release_path(path); 1351 goto again; 1352 } 1353 key.offset = other_start; 1354 del_slot = path->slots[0]; 1355 del_nr++; 1356 ret = btrfs_free_extent(trans, &ref); 1357 if (ret) { 1358 btrfs_abort_transaction(trans, ret); 1359 goto out; 1360 } 1361 } 1362 if (del_nr == 0) { 1363 fi = btrfs_item_ptr(leaf, path->slots[0], 1364 struct btrfs_file_extent_item); 1365 btrfs_set_file_extent_type(leaf, fi, 1366 BTRFS_FILE_EXTENT_REG); 1367 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1368 btrfs_mark_buffer_dirty(leaf); 1369 } else { 1370 fi = btrfs_item_ptr(leaf, del_slot - 1, 1371 struct btrfs_file_extent_item); 1372 btrfs_set_file_extent_type(leaf, fi, 1373 BTRFS_FILE_EXTENT_REG); 1374 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1375 btrfs_set_file_extent_num_bytes(leaf, fi, 1376 extent_end - key.offset); 1377 btrfs_mark_buffer_dirty(leaf); 1378 1379 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1380 if (ret < 0) { 1381 btrfs_abort_transaction(trans, ret); 1382 goto out; 1383 } 1384 } 1385 out: 1386 btrfs_free_path(path); 1387 return 0; 1388 } 1389 1390 /* 1391 * on error we return an unlocked page and the error value 1392 * on success we return a locked page and 0 1393 */ 1394 static int prepare_uptodate_page(struct inode *inode, 1395 struct page *page, u64 pos, 1396 bool force_uptodate) 1397 { 1398 int ret = 0; 1399 1400 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1401 !PageUptodate(page)) { 1402 ret = btrfs_readpage(NULL, page); 1403 if (ret) 1404 return ret; 1405 lock_page(page); 1406 if (!PageUptodate(page)) { 1407 unlock_page(page); 1408 return -EIO; 1409 } 1410 if (page->mapping != inode->i_mapping) { 1411 unlock_page(page); 1412 return -EAGAIN; 1413 } 1414 } 1415 return 0; 1416 } 1417 1418 /* 1419 * this just gets pages into the page cache and locks them down. 1420 */ 1421 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1422 size_t num_pages, loff_t pos, 1423 size_t write_bytes, bool force_uptodate) 1424 { 1425 int i; 1426 unsigned long index = pos >> PAGE_SHIFT; 1427 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1428 int err = 0; 1429 int faili; 1430 1431 for (i = 0; i < num_pages; i++) { 1432 again: 1433 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1434 mask | __GFP_WRITE); 1435 if (!pages[i]) { 1436 faili = i - 1; 1437 err = -ENOMEM; 1438 goto fail; 1439 } 1440 1441 if (i == 0) 1442 err = prepare_uptodate_page(inode, pages[i], pos, 1443 force_uptodate); 1444 if (!err && i == num_pages - 1) 1445 err = prepare_uptodate_page(inode, pages[i], 1446 pos + write_bytes, false); 1447 if (err) { 1448 put_page(pages[i]); 1449 if (err == -EAGAIN) { 1450 err = 0; 1451 goto again; 1452 } 1453 faili = i - 1; 1454 goto fail; 1455 } 1456 wait_on_page_writeback(pages[i]); 1457 } 1458 1459 return 0; 1460 fail: 1461 while (faili >= 0) { 1462 unlock_page(pages[faili]); 1463 put_page(pages[faili]); 1464 faili--; 1465 } 1466 return err; 1467 1468 } 1469 1470 /* 1471 * This function locks the extent and properly waits for data=ordered extents 1472 * to finish before allowing the pages to be modified if need. 1473 * 1474 * The return value: 1475 * 1 - the extent is locked 1476 * 0 - the extent is not locked, and everything is OK 1477 * -EAGAIN - need re-prepare the pages 1478 * the other < 0 number - Something wrong happens 1479 */ 1480 static noinline int 1481 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1482 size_t num_pages, loff_t pos, 1483 size_t write_bytes, 1484 u64 *lockstart, u64 *lockend, 1485 struct extent_state **cached_state) 1486 { 1487 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1488 u64 start_pos; 1489 u64 last_pos; 1490 int i; 1491 int ret = 0; 1492 1493 start_pos = round_down(pos, fs_info->sectorsize); 1494 last_pos = start_pos 1495 + round_up(pos + write_bytes - start_pos, 1496 fs_info->sectorsize) - 1; 1497 1498 if (start_pos < inode->vfs_inode.i_size) { 1499 struct btrfs_ordered_extent *ordered; 1500 1501 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1502 cached_state); 1503 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1504 last_pos - start_pos + 1); 1505 if (ordered && 1506 ordered->file_offset + ordered->len > start_pos && 1507 ordered->file_offset <= last_pos) { 1508 unlock_extent_cached(&inode->io_tree, start_pos, 1509 last_pos, cached_state); 1510 for (i = 0; i < num_pages; i++) { 1511 unlock_page(pages[i]); 1512 put_page(pages[i]); 1513 } 1514 btrfs_start_ordered_extent(&inode->vfs_inode, 1515 ordered, 1); 1516 btrfs_put_ordered_extent(ordered); 1517 return -EAGAIN; 1518 } 1519 if (ordered) 1520 btrfs_put_ordered_extent(ordered); 1521 1522 *lockstart = start_pos; 1523 *lockend = last_pos; 1524 ret = 1; 1525 } 1526 1527 /* 1528 * It's possible the pages are dirty right now, but we don't want 1529 * to clean them yet because copy_from_user may catch a page fault 1530 * and we might have to fall back to one page at a time. If that 1531 * happens, we'll unlock these pages and we'd have a window where 1532 * reclaim could sneak in and drop the once-dirty page on the floor 1533 * without writing it. 1534 * 1535 * We have the pages locked and the extent range locked, so there's 1536 * no way someone can start IO on any dirty pages in this range. 1537 * 1538 * We'll call btrfs_dirty_pages() later on, and that will flip around 1539 * delalloc bits and dirty the pages as required. 1540 */ 1541 for (i = 0; i < num_pages; i++) { 1542 set_page_extent_mapped(pages[i]); 1543 WARN_ON(!PageLocked(pages[i])); 1544 } 1545 1546 return ret; 1547 } 1548 1549 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1550 size_t *write_bytes) 1551 { 1552 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1553 struct btrfs_root *root = inode->root; 1554 u64 lockstart, lockend; 1555 u64 num_bytes; 1556 int ret; 1557 1558 ret = btrfs_start_write_no_snapshotting(root); 1559 if (!ret) 1560 return -EAGAIN; 1561 1562 lockstart = round_down(pos, fs_info->sectorsize); 1563 lockend = round_up(pos + *write_bytes, 1564 fs_info->sectorsize) - 1; 1565 1566 btrfs_lock_and_flush_ordered_range(&inode->io_tree, inode, lockstart, 1567 lockend, NULL); 1568 1569 num_bytes = lockend - lockstart + 1; 1570 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1571 NULL, NULL, NULL); 1572 if (ret <= 0) { 1573 ret = 0; 1574 btrfs_end_write_no_snapshotting(root); 1575 } else { 1576 *write_bytes = min_t(size_t, *write_bytes , 1577 num_bytes - pos + lockstart); 1578 } 1579 1580 unlock_extent(&inode->io_tree, lockstart, lockend); 1581 1582 return ret; 1583 } 1584 1585 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1586 struct iov_iter *i) 1587 { 1588 struct file *file = iocb->ki_filp; 1589 loff_t pos = iocb->ki_pos; 1590 struct inode *inode = file_inode(file); 1591 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1592 struct btrfs_root *root = BTRFS_I(inode)->root; 1593 struct page **pages = NULL; 1594 struct extent_state *cached_state = NULL; 1595 struct extent_changeset *data_reserved = NULL; 1596 u64 release_bytes = 0; 1597 u64 lockstart; 1598 u64 lockend; 1599 size_t num_written = 0; 1600 int nrptrs; 1601 int ret = 0; 1602 bool only_release_metadata = false; 1603 bool force_page_uptodate = false; 1604 1605 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1606 PAGE_SIZE / (sizeof(struct page *))); 1607 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1608 nrptrs = max(nrptrs, 8); 1609 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1610 if (!pages) 1611 return -ENOMEM; 1612 1613 while (iov_iter_count(i) > 0) { 1614 size_t offset = offset_in_page(pos); 1615 size_t sector_offset; 1616 size_t write_bytes = min(iov_iter_count(i), 1617 nrptrs * (size_t)PAGE_SIZE - 1618 offset); 1619 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1620 PAGE_SIZE); 1621 size_t reserve_bytes; 1622 size_t dirty_pages; 1623 size_t copied; 1624 size_t dirty_sectors; 1625 size_t num_sectors; 1626 int extents_locked; 1627 1628 WARN_ON(num_pages > nrptrs); 1629 1630 /* 1631 * Fault pages before locking them in prepare_pages 1632 * to avoid recursive lock 1633 */ 1634 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1635 ret = -EFAULT; 1636 break; 1637 } 1638 1639 sector_offset = pos & (fs_info->sectorsize - 1); 1640 reserve_bytes = round_up(write_bytes + sector_offset, 1641 fs_info->sectorsize); 1642 1643 extent_changeset_release(data_reserved); 1644 ret = btrfs_check_data_free_space(inode, &data_reserved, pos, 1645 write_bytes); 1646 if (ret < 0) { 1647 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1648 BTRFS_INODE_PREALLOC)) && 1649 check_can_nocow(BTRFS_I(inode), pos, 1650 &write_bytes) > 0) { 1651 /* 1652 * For nodata cow case, no need to reserve 1653 * data space. 1654 */ 1655 only_release_metadata = true; 1656 /* 1657 * our prealloc extent may be smaller than 1658 * write_bytes, so scale down. 1659 */ 1660 num_pages = DIV_ROUND_UP(write_bytes + offset, 1661 PAGE_SIZE); 1662 reserve_bytes = round_up(write_bytes + 1663 sector_offset, 1664 fs_info->sectorsize); 1665 } else { 1666 break; 1667 } 1668 } 1669 1670 WARN_ON(reserve_bytes == 0); 1671 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1672 reserve_bytes); 1673 if (ret) { 1674 if (!only_release_metadata) 1675 btrfs_free_reserved_data_space(inode, 1676 data_reserved, pos, 1677 write_bytes); 1678 else 1679 btrfs_end_write_no_snapshotting(root); 1680 break; 1681 } 1682 1683 release_bytes = reserve_bytes; 1684 again: 1685 /* 1686 * This is going to setup the pages array with the number of 1687 * pages we want, so we don't really need to worry about the 1688 * contents of pages from loop to loop 1689 */ 1690 ret = prepare_pages(inode, pages, num_pages, 1691 pos, write_bytes, 1692 force_page_uptodate); 1693 if (ret) { 1694 btrfs_delalloc_release_extents(BTRFS_I(inode), 1695 reserve_bytes, true); 1696 break; 1697 } 1698 1699 extents_locked = lock_and_cleanup_extent_if_need( 1700 BTRFS_I(inode), pages, 1701 num_pages, pos, write_bytes, &lockstart, 1702 &lockend, &cached_state); 1703 if (extents_locked < 0) { 1704 if (extents_locked == -EAGAIN) 1705 goto again; 1706 btrfs_delalloc_release_extents(BTRFS_I(inode), 1707 reserve_bytes, true); 1708 ret = extents_locked; 1709 break; 1710 } 1711 1712 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1713 1714 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1715 dirty_sectors = round_up(copied + sector_offset, 1716 fs_info->sectorsize); 1717 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1718 1719 /* 1720 * if we have trouble faulting in the pages, fall 1721 * back to one page at a time 1722 */ 1723 if (copied < write_bytes) 1724 nrptrs = 1; 1725 1726 if (copied == 0) { 1727 force_page_uptodate = true; 1728 dirty_sectors = 0; 1729 dirty_pages = 0; 1730 } else { 1731 force_page_uptodate = false; 1732 dirty_pages = DIV_ROUND_UP(copied + offset, 1733 PAGE_SIZE); 1734 } 1735 1736 if (num_sectors > dirty_sectors) { 1737 /* release everything except the sectors we dirtied */ 1738 release_bytes -= dirty_sectors << 1739 fs_info->sb->s_blocksize_bits; 1740 if (only_release_metadata) { 1741 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1742 release_bytes, true); 1743 } else { 1744 u64 __pos; 1745 1746 __pos = round_down(pos, 1747 fs_info->sectorsize) + 1748 (dirty_pages << PAGE_SHIFT); 1749 btrfs_delalloc_release_space(inode, 1750 data_reserved, __pos, 1751 release_bytes, true); 1752 } 1753 } 1754 1755 release_bytes = round_up(copied + sector_offset, 1756 fs_info->sectorsize); 1757 1758 if (copied > 0) 1759 ret = btrfs_dirty_pages(inode, pages, dirty_pages, 1760 pos, copied, &cached_state); 1761 if (extents_locked) 1762 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1763 lockstart, lockend, &cached_state); 1764 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes, 1765 true); 1766 if (ret) { 1767 btrfs_drop_pages(pages, num_pages); 1768 break; 1769 } 1770 1771 release_bytes = 0; 1772 if (only_release_metadata) 1773 btrfs_end_write_no_snapshotting(root); 1774 1775 if (only_release_metadata && copied > 0) { 1776 lockstart = round_down(pos, 1777 fs_info->sectorsize); 1778 lockend = round_up(pos + copied, 1779 fs_info->sectorsize) - 1; 1780 1781 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1782 lockend, EXTENT_NORESERVE, NULL, 1783 NULL, GFP_NOFS); 1784 only_release_metadata = false; 1785 } 1786 1787 btrfs_drop_pages(pages, num_pages); 1788 1789 cond_resched(); 1790 1791 balance_dirty_pages_ratelimited(inode->i_mapping); 1792 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1) 1793 btrfs_btree_balance_dirty(fs_info); 1794 1795 pos += copied; 1796 num_written += copied; 1797 } 1798 1799 kfree(pages); 1800 1801 if (release_bytes) { 1802 if (only_release_metadata) { 1803 btrfs_end_write_no_snapshotting(root); 1804 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1805 release_bytes, true); 1806 } else { 1807 btrfs_delalloc_release_space(inode, data_reserved, 1808 round_down(pos, fs_info->sectorsize), 1809 release_bytes, true); 1810 } 1811 } 1812 1813 extent_changeset_free(data_reserved); 1814 return num_written ? num_written : ret; 1815 } 1816 1817 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1818 { 1819 struct file *file = iocb->ki_filp; 1820 struct inode *inode = file_inode(file); 1821 loff_t pos; 1822 ssize_t written; 1823 ssize_t written_buffered; 1824 loff_t endbyte; 1825 int err; 1826 1827 written = generic_file_direct_write(iocb, from); 1828 1829 if (written < 0 || !iov_iter_count(from)) 1830 return written; 1831 1832 pos = iocb->ki_pos; 1833 written_buffered = btrfs_buffered_write(iocb, from); 1834 if (written_buffered < 0) { 1835 err = written_buffered; 1836 goto out; 1837 } 1838 /* 1839 * Ensure all data is persisted. We want the next direct IO read to be 1840 * able to read what was just written. 1841 */ 1842 endbyte = pos + written_buffered - 1; 1843 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1844 if (err) 1845 goto out; 1846 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1847 if (err) 1848 goto out; 1849 written += written_buffered; 1850 iocb->ki_pos = pos + written_buffered; 1851 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1852 endbyte >> PAGE_SHIFT); 1853 out: 1854 return written ? written : err; 1855 } 1856 1857 static void update_time_for_write(struct inode *inode) 1858 { 1859 struct timespec64 now; 1860 1861 if (IS_NOCMTIME(inode)) 1862 return; 1863 1864 now = current_time(inode); 1865 if (!timespec64_equal(&inode->i_mtime, &now)) 1866 inode->i_mtime = now; 1867 1868 if (!timespec64_equal(&inode->i_ctime, &now)) 1869 inode->i_ctime = now; 1870 1871 if (IS_I_VERSION(inode)) 1872 inode_inc_iversion(inode); 1873 } 1874 1875 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1876 struct iov_iter *from) 1877 { 1878 struct file *file = iocb->ki_filp; 1879 struct inode *inode = file_inode(file); 1880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1881 struct btrfs_root *root = BTRFS_I(inode)->root; 1882 u64 start_pos; 1883 u64 end_pos; 1884 ssize_t num_written = 0; 1885 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1886 ssize_t err; 1887 loff_t pos; 1888 size_t count = iov_iter_count(from); 1889 loff_t oldsize; 1890 int clean_page = 0; 1891 1892 if (!(iocb->ki_flags & IOCB_DIRECT) && 1893 (iocb->ki_flags & IOCB_NOWAIT)) 1894 return -EOPNOTSUPP; 1895 1896 if (!inode_trylock(inode)) { 1897 if (iocb->ki_flags & IOCB_NOWAIT) 1898 return -EAGAIN; 1899 inode_lock(inode); 1900 } 1901 1902 err = generic_write_checks(iocb, from); 1903 if (err <= 0) { 1904 inode_unlock(inode); 1905 return err; 1906 } 1907 1908 pos = iocb->ki_pos; 1909 if (iocb->ki_flags & IOCB_NOWAIT) { 1910 /* 1911 * We will allocate space in case nodatacow is not set, 1912 * so bail 1913 */ 1914 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1915 BTRFS_INODE_PREALLOC)) || 1916 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) { 1917 inode_unlock(inode); 1918 return -EAGAIN; 1919 } 1920 } 1921 1922 current->backing_dev_info = inode_to_bdi(inode); 1923 err = file_remove_privs(file); 1924 if (err) { 1925 inode_unlock(inode); 1926 goto out; 1927 } 1928 1929 /* 1930 * If BTRFS flips readonly due to some impossible error 1931 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1932 * although we have opened a file as writable, we have 1933 * to stop this write operation to ensure FS consistency. 1934 */ 1935 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1936 inode_unlock(inode); 1937 err = -EROFS; 1938 goto out; 1939 } 1940 1941 /* 1942 * We reserve space for updating the inode when we reserve space for the 1943 * extent we are going to write, so we will enospc out there. We don't 1944 * need to start yet another transaction to update the inode as we will 1945 * update the inode when we finish writing whatever data we write. 1946 */ 1947 update_time_for_write(inode); 1948 1949 start_pos = round_down(pos, fs_info->sectorsize); 1950 oldsize = i_size_read(inode); 1951 if (start_pos > oldsize) { 1952 /* Expand hole size to cover write data, preventing empty gap */ 1953 end_pos = round_up(pos + count, 1954 fs_info->sectorsize); 1955 err = btrfs_cont_expand(inode, oldsize, end_pos); 1956 if (err) { 1957 inode_unlock(inode); 1958 goto out; 1959 } 1960 if (start_pos > round_up(oldsize, fs_info->sectorsize)) 1961 clean_page = 1; 1962 } 1963 1964 if (sync) 1965 atomic_inc(&BTRFS_I(inode)->sync_writers); 1966 1967 if (iocb->ki_flags & IOCB_DIRECT) { 1968 num_written = __btrfs_direct_write(iocb, from); 1969 } else { 1970 num_written = btrfs_buffered_write(iocb, from); 1971 if (num_written > 0) 1972 iocb->ki_pos = pos + num_written; 1973 if (clean_page) 1974 pagecache_isize_extended(inode, oldsize, 1975 i_size_read(inode)); 1976 } 1977 1978 inode_unlock(inode); 1979 1980 /* 1981 * We also have to set last_sub_trans to the current log transid, 1982 * otherwise subsequent syncs to a file that's been synced in this 1983 * transaction will appear to have already occurred. 1984 */ 1985 spin_lock(&BTRFS_I(inode)->lock); 1986 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1987 spin_unlock(&BTRFS_I(inode)->lock); 1988 if (num_written > 0) 1989 num_written = generic_write_sync(iocb, num_written); 1990 1991 if (sync) 1992 atomic_dec(&BTRFS_I(inode)->sync_writers); 1993 out: 1994 current->backing_dev_info = NULL; 1995 return num_written ? num_written : err; 1996 } 1997 1998 int btrfs_release_file(struct inode *inode, struct file *filp) 1999 { 2000 struct btrfs_file_private *private = filp->private_data; 2001 2002 if (private && private->filldir_buf) 2003 kfree(private->filldir_buf); 2004 kfree(private); 2005 filp->private_data = NULL; 2006 2007 /* 2008 * ordered_data_close is set by setattr when we are about to truncate 2009 * a file from a non-zero size to a zero size. This tries to 2010 * flush down new bytes that may have been written if the 2011 * application were using truncate to replace a file in place. 2012 */ 2013 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 2014 &BTRFS_I(inode)->runtime_flags)) 2015 filemap_flush(inode->i_mapping); 2016 return 0; 2017 } 2018 2019 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2020 { 2021 int ret; 2022 struct blk_plug plug; 2023 2024 /* 2025 * This is only called in fsync, which would do synchronous writes, so 2026 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2027 * multiple disks using raid profile, a large IO can be split to 2028 * several segments of stripe length (currently 64K). 2029 */ 2030 blk_start_plug(&plug); 2031 atomic_inc(&BTRFS_I(inode)->sync_writers); 2032 ret = btrfs_fdatawrite_range(inode, start, end); 2033 atomic_dec(&BTRFS_I(inode)->sync_writers); 2034 blk_finish_plug(&plug); 2035 2036 return ret; 2037 } 2038 2039 /* 2040 * fsync call for both files and directories. This logs the inode into 2041 * the tree log instead of forcing full commits whenever possible. 2042 * 2043 * It needs to call filemap_fdatawait so that all ordered extent updates are 2044 * in the metadata btree are up to date for copying to the log. 2045 * 2046 * It drops the inode mutex before doing the tree log commit. This is an 2047 * important optimization for directories because holding the mutex prevents 2048 * new operations on the dir while we write to disk. 2049 */ 2050 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2051 { 2052 struct dentry *dentry = file_dentry(file); 2053 struct inode *inode = d_inode(dentry); 2054 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2055 struct btrfs_root *root = BTRFS_I(inode)->root; 2056 struct btrfs_trans_handle *trans; 2057 struct btrfs_log_ctx ctx; 2058 int ret = 0, err; 2059 u64 len; 2060 2061 /* 2062 * If the inode needs a full sync, make sure we use a full range to 2063 * avoid log tree corruption, due to hole detection racing with ordered 2064 * extent completion for adjacent ranges, and assertion failures during 2065 * hole detection. 2066 */ 2067 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2068 &BTRFS_I(inode)->runtime_flags)) { 2069 start = 0; 2070 end = LLONG_MAX; 2071 } 2072 2073 /* 2074 * The range length can be represented by u64, we have to do the typecasts 2075 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync() 2076 */ 2077 len = (u64)end - (u64)start + 1; 2078 trace_btrfs_sync_file(file, datasync); 2079 2080 btrfs_init_log_ctx(&ctx, inode); 2081 2082 /* 2083 * We write the dirty pages in the range and wait until they complete 2084 * out of the ->i_mutex. If so, we can flush the dirty pages by 2085 * multi-task, and make the performance up. See 2086 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2087 */ 2088 ret = start_ordered_ops(inode, start, end); 2089 if (ret) 2090 goto out; 2091 2092 inode_lock(inode); 2093 2094 /* 2095 * We take the dio_sem here because the tree log stuff can race with 2096 * lockless dio writes and get an extent map logged for an extent we 2097 * never waited on. We need it this high up for lockdep reasons. 2098 */ 2099 down_write(&BTRFS_I(inode)->dio_sem); 2100 2101 atomic_inc(&root->log_batch); 2102 2103 /* 2104 * Before we acquired the inode's lock, someone may have dirtied more 2105 * pages in the target range. We need to make sure that writeback for 2106 * any such pages does not start while we are logging the inode, because 2107 * if it does, any of the following might happen when we are not doing a 2108 * full inode sync: 2109 * 2110 * 1) We log an extent after its writeback finishes but before its 2111 * checksums are added to the csum tree, leading to -EIO errors 2112 * when attempting to read the extent after a log replay. 2113 * 2114 * 2) We can end up logging an extent before its writeback finishes. 2115 * Therefore after the log replay we will have a file extent item 2116 * pointing to an unwritten extent (and no data checksums as well). 2117 * 2118 * So trigger writeback for any eventual new dirty pages and then we 2119 * wait for all ordered extents to complete below. 2120 */ 2121 ret = start_ordered_ops(inode, start, end); 2122 if (ret) { 2123 inode_unlock(inode); 2124 goto out; 2125 } 2126 2127 /* 2128 * We have to do this here to avoid the priority inversion of waiting on 2129 * IO of a lower priority task while holding a transaction open. 2130 */ 2131 ret = btrfs_wait_ordered_range(inode, start, len); 2132 if (ret) { 2133 up_write(&BTRFS_I(inode)->dio_sem); 2134 inode_unlock(inode); 2135 goto out; 2136 } 2137 atomic_inc(&root->log_batch); 2138 2139 smp_mb(); 2140 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) || 2141 BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) { 2142 /* 2143 * We've had everything committed since the last time we were 2144 * modified so clear this flag in case it was set for whatever 2145 * reason, it's no longer relevant. 2146 */ 2147 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2148 &BTRFS_I(inode)->runtime_flags); 2149 /* 2150 * An ordered extent might have started before and completed 2151 * already with io errors, in which case the inode was not 2152 * updated and we end up here. So check the inode's mapping 2153 * for any errors that might have happened since we last 2154 * checked called fsync. 2155 */ 2156 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2157 up_write(&BTRFS_I(inode)->dio_sem); 2158 inode_unlock(inode); 2159 goto out; 2160 } 2161 2162 /* 2163 * We use start here because we will need to wait on the IO to complete 2164 * in btrfs_sync_log, which could require joining a transaction (for 2165 * example checking cross references in the nocow path). If we use join 2166 * here we could get into a situation where we're waiting on IO to 2167 * happen that is blocked on a transaction trying to commit. With start 2168 * we inc the extwriter counter, so we wait for all extwriters to exit 2169 * before we start blocking joiners. This comment is to keep somebody 2170 * from thinking they are super smart and changing this to 2171 * btrfs_join_transaction *cough*Josef*cough*. 2172 */ 2173 trans = btrfs_start_transaction(root, 0); 2174 if (IS_ERR(trans)) { 2175 ret = PTR_ERR(trans); 2176 up_write(&BTRFS_I(inode)->dio_sem); 2177 inode_unlock(inode); 2178 goto out; 2179 } 2180 2181 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx); 2182 if (ret < 0) { 2183 /* Fallthrough and commit/free transaction. */ 2184 ret = 1; 2185 } 2186 2187 /* we've logged all the items and now have a consistent 2188 * version of the file in the log. It is possible that 2189 * someone will come in and modify the file, but that's 2190 * fine because the log is consistent on disk, and we 2191 * have references to all of the file's extents 2192 * 2193 * It is possible that someone will come in and log the 2194 * file again, but that will end up using the synchronization 2195 * inside btrfs_sync_log to keep things safe. 2196 */ 2197 up_write(&BTRFS_I(inode)->dio_sem); 2198 inode_unlock(inode); 2199 2200 if (ret != BTRFS_NO_LOG_SYNC) { 2201 if (!ret) { 2202 ret = btrfs_sync_log(trans, root, &ctx); 2203 if (!ret) { 2204 ret = btrfs_end_transaction(trans); 2205 goto out; 2206 } 2207 } 2208 ret = btrfs_commit_transaction(trans); 2209 } else { 2210 ret = btrfs_end_transaction(trans); 2211 } 2212 out: 2213 ASSERT(list_empty(&ctx.list)); 2214 err = file_check_and_advance_wb_err(file); 2215 if (!ret) 2216 ret = err; 2217 return ret > 0 ? -EIO : ret; 2218 } 2219 2220 static const struct vm_operations_struct btrfs_file_vm_ops = { 2221 .fault = filemap_fault, 2222 .map_pages = filemap_map_pages, 2223 .page_mkwrite = btrfs_page_mkwrite, 2224 }; 2225 2226 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2227 { 2228 struct address_space *mapping = filp->f_mapping; 2229 2230 if (!mapping->a_ops->readpage) 2231 return -ENOEXEC; 2232 2233 file_accessed(filp); 2234 vma->vm_ops = &btrfs_file_vm_ops; 2235 2236 return 0; 2237 } 2238 2239 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2240 int slot, u64 start, u64 end) 2241 { 2242 struct btrfs_file_extent_item *fi; 2243 struct btrfs_key key; 2244 2245 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2246 return 0; 2247 2248 btrfs_item_key_to_cpu(leaf, &key, slot); 2249 if (key.objectid != btrfs_ino(inode) || 2250 key.type != BTRFS_EXTENT_DATA_KEY) 2251 return 0; 2252 2253 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2254 2255 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2256 return 0; 2257 2258 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2259 return 0; 2260 2261 if (key.offset == end) 2262 return 1; 2263 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2264 return 1; 2265 return 0; 2266 } 2267 2268 static int fill_holes(struct btrfs_trans_handle *trans, 2269 struct btrfs_inode *inode, 2270 struct btrfs_path *path, u64 offset, u64 end) 2271 { 2272 struct btrfs_fs_info *fs_info = trans->fs_info; 2273 struct btrfs_root *root = inode->root; 2274 struct extent_buffer *leaf; 2275 struct btrfs_file_extent_item *fi; 2276 struct extent_map *hole_em; 2277 struct extent_map_tree *em_tree = &inode->extent_tree; 2278 struct btrfs_key key; 2279 int ret; 2280 2281 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2282 goto out; 2283 2284 key.objectid = btrfs_ino(inode); 2285 key.type = BTRFS_EXTENT_DATA_KEY; 2286 key.offset = offset; 2287 2288 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2289 if (ret <= 0) { 2290 /* 2291 * We should have dropped this offset, so if we find it then 2292 * something has gone horribly wrong. 2293 */ 2294 if (ret == 0) 2295 ret = -EINVAL; 2296 return ret; 2297 } 2298 2299 leaf = path->nodes[0]; 2300 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2301 u64 num_bytes; 2302 2303 path->slots[0]--; 2304 fi = btrfs_item_ptr(leaf, path->slots[0], 2305 struct btrfs_file_extent_item); 2306 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2307 end - offset; 2308 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2309 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2310 btrfs_set_file_extent_offset(leaf, fi, 0); 2311 btrfs_mark_buffer_dirty(leaf); 2312 goto out; 2313 } 2314 2315 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2316 u64 num_bytes; 2317 2318 key.offset = offset; 2319 btrfs_set_item_key_safe(fs_info, path, &key); 2320 fi = btrfs_item_ptr(leaf, path->slots[0], 2321 struct btrfs_file_extent_item); 2322 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2323 offset; 2324 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2325 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2326 btrfs_set_file_extent_offset(leaf, fi, 0); 2327 btrfs_mark_buffer_dirty(leaf); 2328 goto out; 2329 } 2330 btrfs_release_path(path); 2331 2332 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2333 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2334 if (ret) 2335 return ret; 2336 2337 out: 2338 btrfs_release_path(path); 2339 2340 hole_em = alloc_extent_map(); 2341 if (!hole_em) { 2342 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2343 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2344 } else { 2345 hole_em->start = offset; 2346 hole_em->len = end - offset; 2347 hole_em->ram_bytes = hole_em->len; 2348 hole_em->orig_start = offset; 2349 2350 hole_em->block_start = EXTENT_MAP_HOLE; 2351 hole_em->block_len = 0; 2352 hole_em->orig_block_len = 0; 2353 hole_em->bdev = fs_info->fs_devices->latest_bdev; 2354 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2355 hole_em->generation = trans->transid; 2356 2357 do { 2358 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2359 write_lock(&em_tree->lock); 2360 ret = add_extent_mapping(em_tree, hole_em, 1); 2361 write_unlock(&em_tree->lock); 2362 } while (ret == -EEXIST); 2363 free_extent_map(hole_em); 2364 if (ret) 2365 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2366 &inode->runtime_flags); 2367 } 2368 2369 return 0; 2370 } 2371 2372 /* 2373 * Find a hole extent on given inode and change start/len to the end of hole 2374 * extent.(hole/vacuum extent whose em->start <= start && 2375 * em->start + em->len > start) 2376 * When a hole extent is found, return 1 and modify start/len. 2377 */ 2378 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2379 { 2380 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2381 struct extent_map *em; 2382 int ret = 0; 2383 2384 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2385 round_down(*start, fs_info->sectorsize), 2386 round_up(*len, fs_info->sectorsize), 0); 2387 if (IS_ERR(em)) 2388 return PTR_ERR(em); 2389 2390 /* Hole or vacuum extent(only exists in no-hole mode) */ 2391 if (em->block_start == EXTENT_MAP_HOLE) { 2392 ret = 1; 2393 *len = em->start + em->len > *start + *len ? 2394 0 : *start + *len - em->start - em->len; 2395 *start = em->start + em->len; 2396 } 2397 free_extent_map(em); 2398 return ret; 2399 } 2400 2401 static int btrfs_punch_hole_lock_range(struct inode *inode, 2402 const u64 lockstart, 2403 const u64 lockend, 2404 struct extent_state **cached_state) 2405 { 2406 while (1) { 2407 struct btrfs_ordered_extent *ordered; 2408 int ret; 2409 2410 truncate_pagecache_range(inode, lockstart, lockend); 2411 2412 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2413 cached_state); 2414 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2415 2416 /* 2417 * We need to make sure we have no ordered extents in this range 2418 * and nobody raced in and read a page in this range, if we did 2419 * we need to try again. 2420 */ 2421 if ((!ordered || 2422 (ordered->file_offset + ordered->len <= lockstart || 2423 ordered->file_offset > lockend)) && 2424 !filemap_range_has_page(inode->i_mapping, 2425 lockstart, lockend)) { 2426 if (ordered) 2427 btrfs_put_ordered_extent(ordered); 2428 break; 2429 } 2430 if (ordered) 2431 btrfs_put_ordered_extent(ordered); 2432 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2433 lockend, cached_state); 2434 ret = btrfs_wait_ordered_range(inode, lockstart, 2435 lockend - lockstart + 1); 2436 if (ret) 2437 return ret; 2438 } 2439 return 0; 2440 } 2441 2442 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2443 { 2444 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2445 struct btrfs_root *root = BTRFS_I(inode)->root; 2446 struct extent_state *cached_state = NULL; 2447 struct btrfs_path *path; 2448 struct btrfs_block_rsv *rsv; 2449 struct btrfs_trans_handle *trans; 2450 u64 lockstart; 2451 u64 lockend; 2452 u64 tail_start; 2453 u64 tail_len; 2454 u64 orig_start = offset; 2455 u64 cur_offset; 2456 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1); 2457 u64 drop_end; 2458 int ret = 0; 2459 int err = 0; 2460 unsigned int rsv_count; 2461 bool same_block; 2462 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES); 2463 u64 ino_size; 2464 bool truncated_block = false; 2465 bool updated_inode = false; 2466 2467 ret = btrfs_wait_ordered_range(inode, offset, len); 2468 if (ret) 2469 return ret; 2470 2471 inode_lock(inode); 2472 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2473 ret = find_first_non_hole(inode, &offset, &len); 2474 if (ret < 0) 2475 goto out_only_mutex; 2476 if (ret && !len) { 2477 /* Already in a large hole */ 2478 ret = 0; 2479 goto out_only_mutex; 2480 } 2481 2482 lockstart = round_up(offset, btrfs_inode_sectorsize(inode)); 2483 lockend = round_down(offset + len, 2484 btrfs_inode_sectorsize(inode)) - 1; 2485 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2486 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2487 /* 2488 * We needn't truncate any block which is beyond the end of the file 2489 * because we are sure there is no data there. 2490 */ 2491 /* 2492 * Only do this if we are in the same block and we aren't doing the 2493 * entire block. 2494 */ 2495 if (same_block && len < fs_info->sectorsize) { 2496 if (offset < ino_size) { 2497 truncated_block = true; 2498 ret = btrfs_truncate_block(inode, offset, len, 0); 2499 } else { 2500 ret = 0; 2501 } 2502 goto out_only_mutex; 2503 } 2504 2505 /* zero back part of the first block */ 2506 if (offset < ino_size) { 2507 truncated_block = true; 2508 ret = btrfs_truncate_block(inode, offset, 0, 0); 2509 if (ret) { 2510 inode_unlock(inode); 2511 return ret; 2512 } 2513 } 2514 2515 /* Check the aligned pages after the first unaligned page, 2516 * if offset != orig_start, which means the first unaligned page 2517 * including several following pages are already in holes, 2518 * the extra check can be skipped */ 2519 if (offset == orig_start) { 2520 /* after truncate page, check hole again */ 2521 len = offset + len - lockstart; 2522 offset = lockstart; 2523 ret = find_first_non_hole(inode, &offset, &len); 2524 if (ret < 0) 2525 goto out_only_mutex; 2526 if (ret && !len) { 2527 ret = 0; 2528 goto out_only_mutex; 2529 } 2530 lockstart = offset; 2531 } 2532 2533 /* Check the tail unaligned part is in a hole */ 2534 tail_start = lockend + 1; 2535 tail_len = offset + len - tail_start; 2536 if (tail_len) { 2537 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2538 if (unlikely(ret < 0)) 2539 goto out_only_mutex; 2540 if (!ret) { 2541 /* zero the front end of the last page */ 2542 if (tail_start + tail_len < ino_size) { 2543 truncated_block = true; 2544 ret = btrfs_truncate_block(inode, 2545 tail_start + tail_len, 2546 0, 1); 2547 if (ret) 2548 goto out_only_mutex; 2549 } 2550 } 2551 } 2552 2553 if (lockend < lockstart) { 2554 ret = 0; 2555 goto out_only_mutex; 2556 } 2557 2558 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2559 &cached_state); 2560 if (ret) 2561 goto out_only_mutex; 2562 2563 path = btrfs_alloc_path(); 2564 if (!path) { 2565 ret = -ENOMEM; 2566 goto out; 2567 } 2568 2569 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2570 if (!rsv) { 2571 ret = -ENOMEM; 2572 goto out_free; 2573 } 2574 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1); 2575 rsv->failfast = 1; 2576 2577 /* 2578 * 1 - update the inode 2579 * 1 - removing the extents in the range 2580 * 1 - adding the hole extent if no_holes isn't set 2581 */ 2582 rsv_count = no_holes ? 2 : 3; 2583 trans = btrfs_start_transaction(root, rsv_count); 2584 if (IS_ERR(trans)) { 2585 err = PTR_ERR(trans); 2586 goto out_free; 2587 } 2588 2589 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2590 min_size, false); 2591 BUG_ON(ret); 2592 trans->block_rsv = rsv; 2593 2594 cur_offset = lockstart; 2595 len = lockend - cur_offset; 2596 while (cur_offset < lockend) { 2597 ret = __btrfs_drop_extents(trans, root, inode, path, 2598 cur_offset, lockend + 1, 2599 &drop_end, 1, 0, 0, NULL); 2600 if (ret != -ENOSPC) 2601 break; 2602 2603 trans->block_rsv = &fs_info->trans_block_rsv; 2604 2605 if (cur_offset < drop_end && cur_offset < ino_size) { 2606 ret = fill_holes(trans, BTRFS_I(inode), path, 2607 cur_offset, drop_end); 2608 if (ret) { 2609 /* 2610 * If we failed then we didn't insert our hole 2611 * entries for the area we dropped, so now the 2612 * fs is corrupted, so we must abort the 2613 * transaction. 2614 */ 2615 btrfs_abort_transaction(trans, ret); 2616 err = ret; 2617 break; 2618 } 2619 } 2620 2621 cur_offset = drop_end; 2622 2623 ret = btrfs_update_inode(trans, root, inode); 2624 if (ret) { 2625 err = ret; 2626 break; 2627 } 2628 2629 btrfs_end_transaction(trans); 2630 btrfs_btree_balance_dirty(fs_info); 2631 2632 trans = btrfs_start_transaction(root, rsv_count); 2633 if (IS_ERR(trans)) { 2634 ret = PTR_ERR(trans); 2635 trans = NULL; 2636 break; 2637 } 2638 2639 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2640 rsv, min_size, false); 2641 BUG_ON(ret); /* shouldn't happen */ 2642 trans->block_rsv = rsv; 2643 2644 ret = find_first_non_hole(inode, &cur_offset, &len); 2645 if (unlikely(ret < 0)) 2646 break; 2647 if (ret && !len) { 2648 ret = 0; 2649 break; 2650 } 2651 } 2652 2653 if (ret) { 2654 err = ret; 2655 goto out_trans; 2656 } 2657 2658 trans->block_rsv = &fs_info->trans_block_rsv; 2659 /* 2660 * If we are using the NO_HOLES feature we might have had already an 2661 * hole that overlaps a part of the region [lockstart, lockend] and 2662 * ends at (or beyond) lockend. Since we have no file extent items to 2663 * represent holes, drop_end can be less than lockend and so we must 2664 * make sure we have an extent map representing the existing hole (the 2665 * call to __btrfs_drop_extents() might have dropped the existing extent 2666 * map representing the existing hole), otherwise the fast fsync path 2667 * will not record the existence of the hole region 2668 * [existing_hole_start, lockend]. 2669 */ 2670 if (drop_end <= lockend) 2671 drop_end = lockend + 1; 2672 /* 2673 * Don't insert file hole extent item if it's for a range beyond eof 2674 * (because it's useless) or if it represents a 0 bytes range (when 2675 * cur_offset == drop_end). 2676 */ 2677 if (cur_offset < ino_size && cur_offset < drop_end) { 2678 ret = fill_holes(trans, BTRFS_I(inode), path, 2679 cur_offset, drop_end); 2680 if (ret) { 2681 /* Same comment as above. */ 2682 btrfs_abort_transaction(trans, ret); 2683 err = ret; 2684 goto out_trans; 2685 } 2686 } 2687 2688 out_trans: 2689 if (!trans) 2690 goto out_free; 2691 2692 inode_inc_iversion(inode); 2693 inode->i_mtime = inode->i_ctime = current_time(inode); 2694 2695 trans->block_rsv = &fs_info->trans_block_rsv; 2696 ret = btrfs_update_inode(trans, root, inode); 2697 updated_inode = true; 2698 btrfs_end_transaction(trans); 2699 btrfs_btree_balance_dirty(fs_info); 2700 out_free: 2701 btrfs_free_path(path); 2702 btrfs_free_block_rsv(fs_info, rsv); 2703 out: 2704 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2705 &cached_state); 2706 out_only_mutex: 2707 if (!updated_inode && truncated_block && !ret && !err) { 2708 /* 2709 * If we only end up zeroing part of a page, we still need to 2710 * update the inode item, so that all the time fields are 2711 * updated as well as the necessary btrfs inode in memory fields 2712 * for detecting, at fsync time, if the inode isn't yet in the 2713 * log tree or it's there but not up to date. 2714 */ 2715 struct timespec64 now = current_time(inode); 2716 2717 inode_inc_iversion(inode); 2718 inode->i_mtime = now; 2719 inode->i_ctime = now; 2720 trans = btrfs_start_transaction(root, 1); 2721 if (IS_ERR(trans)) { 2722 err = PTR_ERR(trans); 2723 } else { 2724 err = btrfs_update_inode(trans, root, inode); 2725 ret = btrfs_end_transaction(trans); 2726 } 2727 } 2728 inode_unlock(inode); 2729 if (ret && !err) 2730 err = ret; 2731 return err; 2732 } 2733 2734 /* Helper structure to record which range is already reserved */ 2735 struct falloc_range { 2736 struct list_head list; 2737 u64 start; 2738 u64 len; 2739 }; 2740 2741 /* 2742 * Helper function to add falloc range 2743 * 2744 * Caller should have locked the larger range of extent containing 2745 * [start, len) 2746 */ 2747 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2748 { 2749 struct falloc_range *prev = NULL; 2750 struct falloc_range *range = NULL; 2751 2752 if (list_empty(head)) 2753 goto insert; 2754 2755 /* 2756 * As fallocate iterate by bytenr order, we only need to check 2757 * the last range. 2758 */ 2759 prev = list_entry(head->prev, struct falloc_range, list); 2760 if (prev->start + prev->len == start) { 2761 prev->len += len; 2762 return 0; 2763 } 2764 insert: 2765 range = kmalloc(sizeof(*range), GFP_KERNEL); 2766 if (!range) 2767 return -ENOMEM; 2768 range->start = start; 2769 range->len = len; 2770 list_add_tail(&range->list, head); 2771 return 0; 2772 } 2773 2774 static int btrfs_fallocate_update_isize(struct inode *inode, 2775 const u64 end, 2776 const int mode) 2777 { 2778 struct btrfs_trans_handle *trans; 2779 struct btrfs_root *root = BTRFS_I(inode)->root; 2780 int ret; 2781 int ret2; 2782 2783 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2784 return 0; 2785 2786 trans = btrfs_start_transaction(root, 1); 2787 if (IS_ERR(trans)) 2788 return PTR_ERR(trans); 2789 2790 inode->i_ctime = current_time(inode); 2791 i_size_write(inode, end); 2792 btrfs_ordered_update_i_size(inode, end, NULL); 2793 ret = btrfs_update_inode(trans, root, inode); 2794 ret2 = btrfs_end_transaction(trans); 2795 2796 return ret ? ret : ret2; 2797 } 2798 2799 enum { 2800 RANGE_BOUNDARY_WRITTEN_EXTENT, 2801 RANGE_BOUNDARY_PREALLOC_EXTENT, 2802 RANGE_BOUNDARY_HOLE, 2803 }; 2804 2805 static int btrfs_zero_range_check_range_boundary(struct inode *inode, 2806 u64 offset) 2807 { 2808 const u64 sectorsize = btrfs_inode_sectorsize(inode); 2809 struct extent_map *em; 2810 int ret; 2811 2812 offset = round_down(offset, sectorsize); 2813 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0); 2814 if (IS_ERR(em)) 2815 return PTR_ERR(em); 2816 2817 if (em->block_start == EXTENT_MAP_HOLE) 2818 ret = RANGE_BOUNDARY_HOLE; 2819 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2820 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2821 else 2822 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2823 2824 free_extent_map(em); 2825 return ret; 2826 } 2827 2828 static int btrfs_zero_range(struct inode *inode, 2829 loff_t offset, 2830 loff_t len, 2831 const int mode) 2832 { 2833 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2834 struct extent_map *em; 2835 struct extent_changeset *data_reserved = NULL; 2836 int ret; 2837 u64 alloc_hint = 0; 2838 const u64 sectorsize = btrfs_inode_sectorsize(inode); 2839 u64 alloc_start = round_down(offset, sectorsize); 2840 u64 alloc_end = round_up(offset + len, sectorsize); 2841 u64 bytes_to_reserve = 0; 2842 bool space_reserved = false; 2843 2844 inode_dio_wait(inode); 2845 2846 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2847 alloc_start, alloc_end - alloc_start, 0); 2848 if (IS_ERR(em)) { 2849 ret = PTR_ERR(em); 2850 goto out; 2851 } 2852 2853 /* 2854 * Avoid hole punching and extent allocation for some cases. More cases 2855 * could be considered, but these are unlikely common and we keep things 2856 * as simple as possible for now. Also, intentionally, if the target 2857 * range contains one or more prealloc extents together with regular 2858 * extents and holes, we drop all the existing extents and allocate a 2859 * new prealloc extent, so that we get a larger contiguous disk extent. 2860 */ 2861 if (em->start <= alloc_start && 2862 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2863 const u64 em_end = em->start + em->len; 2864 2865 if (em_end >= offset + len) { 2866 /* 2867 * The whole range is already a prealloc extent, 2868 * do nothing except updating the inode's i_size if 2869 * needed. 2870 */ 2871 free_extent_map(em); 2872 ret = btrfs_fallocate_update_isize(inode, offset + len, 2873 mode); 2874 goto out; 2875 } 2876 /* 2877 * Part of the range is already a prealloc extent, so operate 2878 * only on the remaining part of the range. 2879 */ 2880 alloc_start = em_end; 2881 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2882 len = offset + len - alloc_start; 2883 offset = alloc_start; 2884 alloc_hint = em->block_start + em->len; 2885 } 2886 free_extent_map(em); 2887 2888 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2889 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2890 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2891 alloc_start, sectorsize, 0); 2892 if (IS_ERR(em)) { 2893 ret = PTR_ERR(em); 2894 goto out; 2895 } 2896 2897 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2898 free_extent_map(em); 2899 ret = btrfs_fallocate_update_isize(inode, offset + len, 2900 mode); 2901 goto out; 2902 } 2903 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 2904 free_extent_map(em); 2905 ret = btrfs_truncate_block(inode, offset, len, 0); 2906 if (!ret) 2907 ret = btrfs_fallocate_update_isize(inode, 2908 offset + len, 2909 mode); 2910 return ret; 2911 } 2912 free_extent_map(em); 2913 alloc_start = round_down(offset, sectorsize); 2914 alloc_end = alloc_start + sectorsize; 2915 goto reserve_space; 2916 } 2917 2918 alloc_start = round_up(offset, sectorsize); 2919 alloc_end = round_down(offset + len, sectorsize); 2920 2921 /* 2922 * For unaligned ranges, check the pages at the boundaries, they might 2923 * map to an extent, in which case we need to partially zero them, or 2924 * they might map to a hole, in which case we need our allocation range 2925 * to cover them. 2926 */ 2927 if (!IS_ALIGNED(offset, sectorsize)) { 2928 ret = btrfs_zero_range_check_range_boundary(inode, offset); 2929 if (ret < 0) 2930 goto out; 2931 if (ret == RANGE_BOUNDARY_HOLE) { 2932 alloc_start = round_down(offset, sectorsize); 2933 ret = 0; 2934 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2935 ret = btrfs_truncate_block(inode, offset, 0, 0); 2936 if (ret) 2937 goto out; 2938 } else { 2939 ret = 0; 2940 } 2941 } 2942 2943 if (!IS_ALIGNED(offset + len, sectorsize)) { 2944 ret = btrfs_zero_range_check_range_boundary(inode, 2945 offset + len); 2946 if (ret < 0) 2947 goto out; 2948 if (ret == RANGE_BOUNDARY_HOLE) { 2949 alloc_end = round_up(offset + len, sectorsize); 2950 ret = 0; 2951 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2952 ret = btrfs_truncate_block(inode, offset + len, 0, 1); 2953 if (ret) 2954 goto out; 2955 } else { 2956 ret = 0; 2957 } 2958 } 2959 2960 reserve_space: 2961 if (alloc_start < alloc_end) { 2962 struct extent_state *cached_state = NULL; 2963 const u64 lockstart = alloc_start; 2964 const u64 lockend = alloc_end - 1; 2965 2966 bytes_to_reserve = alloc_end - alloc_start; 2967 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 2968 bytes_to_reserve); 2969 if (ret < 0) 2970 goto out; 2971 space_reserved = true; 2972 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 2973 alloc_start, bytes_to_reserve); 2974 if (ret) 2975 goto out; 2976 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2977 &cached_state); 2978 if (ret) 2979 goto out; 2980 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 2981 alloc_end - alloc_start, 2982 i_blocksize(inode), 2983 offset + len, &alloc_hint); 2984 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2985 lockend, &cached_state); 2986 /* btrfs_prealloc_file_range releases reserved space on error */ 2987 if (ret) { 2988 space_reserved = false; 2989 goto out; 2990 } 2991 } 2992 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 2993 out: 2994 if (ret && space_reserved) 2995 btrfs_free_reserved_data_space(inode, data_reserved, 2996 alloc_start, bytes_to_reserve); 2997 extent_changeset_free(data_reserved); 2998 2999 return ret; 3000 } 3001 3002 static long btrfs_fallocate(struct file *file, int mode, 3003 loff_t offset, loff_t len) 3004 { 3005 struct inode *inode = file_inode(file); 3006 struct extent_state *cached_state = NULL; 3007 struct extent_changeset *data_reserved = NULL; 3008 struct falloc_range *range; 3009 struct falloc_range *tmp; 3010 struct list_head reserve_list; 3011 u64 cur_offset; 3012 u64 last_byte; 3013 u64 alloc_start; 3014 u64 alloc_end; 3015 u64 alloc_hint = 0; 3016 u64 locked_end; 3017 u64 actual_end = 0; 3018 struct extent_map *em; 3019 int blocksize = btrfs_inode_sectorsize(inode); 3020 int ret; 3021 3022 alloc_start = round_down(offset, blocksize); 3023 alloc_end = round_up(offset + len, blocksize); 3024 cur_offset = alloc_start; 3025 3026 /* Make sure we aren't being give some crap mode */ 3027 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3028 FALLOC_FL_ZERO_RANGE)) 3029 return -EOPNOTSUPP; 3030 3031 if (mode & FALLOC_FL_PUNCH_HOLE) 3032 return btrfs_punch_hole(inode, offset, len); 3033 3034 /* 3035 * Only trigger disk allocation, don't trigger qgroup reserve 3036 * 3037 * For qgroup space, it will be checked later. 3038 */ 3039 if (!(mode & FALLOC_FL_ZERO_RANGE)) { 3040 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3041 alloc_end - alloc_start); 3042 if (ret < 0) 3043 return ret; 3044 } 3045 3046 inode_lock(inode); 3047 3048 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3049 ret = inode_newsize_ok(inode, offset + len); 3050 if (ret) 3051 goto out; 3052 } 3053 3054 /* 3055 * TODO: Move these two operations after we have checked 3056 * accurate reserved space, or fallocate can still fail but 3057 * with page truncated or size expanded. 3058 * 3059 * But that's a minor problem and won't do much harm BTW. 3060 */ 3061 if (alloc_start > inode->i_size) { 3062 ret = btrfs_cont_expand(inode, i_size_read(inode), 3063 alloc_start); 3064 if (ret) 3065 goto out; 3066 } else if (offset + len > inode->i_size) { 3067 /* 3068 * If we are fallocating from the end of the file onward we 3069 * need to zero out the end of the block if i_size lands in the 3070 * middle of a block. 3071 */ 3072 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 3073 if (ret) 3074 goto out; 3075 } 3076 3077 /* 3078 * wait for ordered IO before we have any locks. We'll loop again 3079 * below with the locks held. 3080 */ 3081 ret = btrfs_wait_ordered_range(inode, alloc_start, 3082 alloc_end - alloc_start); 3083 if (ret) 3084 goto out; 3085 3086 if (mode & FALLOC_FL_ZERO_RANGE) { 3087 ret = btrfs_zero_range(inode, offset, len, mode); 3088 inode_unlock(inode); 3089 return ret; 3090 } 3091 3092 locked_end = alloc_end - 1; 3093 while (1) { 3094 struct btrfs_ordered_extent *ordered; 3095 3096 /* the extent lock is ordered inside the running 3097 * transaction 3098 */ 3099 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 3100 locked_end, &cached_state); 3101 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end); 3102 3103 if (ordered && 3104 ordered->file_offset + ordered->len > alloc_start && 3105 ordered->file_offset < alloc_end) { 3106 btrfs_put_ordered_extent(ordered); 3107 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 3108 alloc_start, locked_end, 3109 &cached_state); 3110 /* 3111 * we can't wait on the range with the transaction 3112 * running or with the extent lock held 3113 */ 3114 ret = btrfs_wait_ordered_range(inode, alloc_start, 3115 alloc_end - alloc_start); 3116 if (ret) 3117 goto out; 3118 } else { 3119 if (ordered) 3120 btrfs_put_ordered_extent(ordered); 3121 break; 3122 } 3123 } 3124 3125 /* First, check if we exceed the qgroup limit */ 3126 INIT_LIST_HEAD(&reserve_list); 3127 while (cur_offset < alloc_end) { 3128 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3129 alloc_end - cur_offset, 0); 3130 if (IS_ERR(em)) { 3131 ret = PTR_ERR(em); 3132 break; 3133 } 3134 last_byte = min(extent_map_end(em), alloc_end); 3135 actual_end = min_t(u64, extent_map_end(em), offset + len); 3136 last_byte = ALIGN(last_byte, blocksize); 3137 if (em->block_start == EXTENT_MAP_HOLE || 3138 (cur_offset >= inode->i_size && 3139 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3140 ret = add_falloc_range(&reserve_list, cur_offset, 3141 last_byte - cur_offset); 3142 if (ret < 0) { 3143 free_extent_map(em); 3144 break; 3145 } 3146 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 3147 cur_offset, last_byte - cur_offset); 3148 if (ret < 0) { 3149 cur_offset = last_byte; 3150 free_extent_map(em); 3151 break; 3152 } 3153 } else { 3154 /* 3155 * Do not need to reserve unwritten extent for this 3156 * range, free reserved data space first, otherwise 3157 * it'll result in false ENOSPC error. 3158 */ 3159 btrfs_free_reserved_data_space(inode, data_reserved, 3160 cur_offset, last_byte - cur_offset); 3161 } 3162 free_extent_map(em); 3163 cur_offset = last_byte; 3164 } 3165 3166 /* 3167 * If ret is still 0, means we're OK to fallocate. 3168 * Or just cleanup the list and exit. 3169 */ 3170 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3171 if (!ret) 3172 ret = btrfs_prealloc_file_range(inode, mode, 3173 range->start, 3174 range->len, i_blocksize(inode), 3175 offset + len, &alloc_hint); 3176 else 3177 btrfs_free_reserved_data_space(inode, 3178 data_reserved, range->start, 3179 range->len); 3180 list_del(&range->list); 3181 kfree(range); 3182 } 3183 if (ret < 0) 3184 goto out_unlock; 3185 3186 /* 3187 * We didn't need to allocate any more space, but we still extended the 3188 * size of the file so we need to update i_size and the inode item. 3189 */ 3190 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3191 out_unlock: 3192 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3193 &cached_state); 3194 out: 3195 inode_unlock(inode); 3196 /* Let go of our reservation. */ 3197 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) 3198 btrfs_free_reserved_data_space(inode, data_reserved, 3199 cur_offset, alloc_end - cur_offset); 3200 extent_changeset_free(data_reserved); 3201 return ret; 3202 } 3203 3204 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 3205 { 3206 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3207 struct extent_map *em = NULL; 3208 struct extent_state *cached_state = NULL; 3209 u64 lockstart; 3210 u64 lockend; 3211 u64 start; 3212 u64 len; 3213 int ret = 0; 3214 3215 if (inode->i_size == 0) 3216 return -ENXIO; 3217 3218 /* 3219 * *offset can be negative, in this case we start finding DATA/HOLE from 3220 * the very start of the file. 3221 */ 3222 start = max_t(loff_t, 0, *offset); 3223 3224 lockstart = round_down(start, fs_info->sectorsize); 3225 lockend = round_up(i_size_read(inode), 3226 fs_info->sectorsize); 3227 if (lockend <= lockstart) 3228 lockend = lockstart + fs_info->sectorsize; 3229 lockend--; 3230 len = lockend - lockstart + 1; 3231 3232 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3233 &cached_state); 3234 3235 while (start < inode->i_size) { 3236 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len); 3237 if (IS_ERR(em)) { 3238 ret = PTR_ERR(em); 3239 em = NULL; 3240 break; 3241 } 3242 3243 if (whence == SEEK_HOLE && 3244 (em->block_start == EXTENT_MAP_HOLE || 3245 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3246 break; 3247 else if (whence == SEEK_DATA && 3248 (em->block_start != EXTENT_MAP_HOLE && 3249 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3250 break; 3251 3252 start = em->start + em->len; 3253 free_extent_map(em); 3254 em = NULL; 3255 cond_resched(); 3256 } 3257 free_extent_map(em); 3258 if (!ret) { 3259 if (whence == SEEK_DATA && start >= inode->i_size) 3260 ret = -ENXIO; 3261 else 3262 *offset = min_t(loff_t, start, inode->i_size); 3263 } 3264 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3265 &cached_state); 3266 return ret; 3267 } 3268 3269 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3270 { 3271 struct inode *inode = file->f_mapping->host; 3272 int ret; 3273 3274 inode_lock(inode); 3275 switch (whence) { 3276 case SEEK_END: 3277 case SEEK_CUR: 3278 offset = generic_file_llseek(file, offset, whence); 3279 goto out; 3280 case SEEK_DATA: 3281 case SEEK_HOLE: 3282 if (offset >= i_size_read(inode)) { 3283 inode_unlock(inode); 3284 return -ENXIO; 3285 } 3286 3287 ret = find_desired_extent(inode, &offset, whence); 3288 if (ret) { 3289 inode_unlock(inode); 3290 return ret; 3291 } 3292 } 3293 3294 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3295 out: 3296 inode_unlock(inode); 3297 return offset; 3298 } 3299 3300 static int btrfs_file_open(struct inode *inode, struct file *filp) 3301 { 3302 filp->f_mode |= FMODE_NOWAIT; 3303 return generic_file_open(inode, filp); 3304 } 3305 3306 const struct file_operations btrfs_file_operations = { 3307 .llseek = btrfs_file_llseek, 3308 .read_iter = generic_file_read_iter, 3309 .splice_read = generic_file_splice_read, 3310 .write_iter = btrfs_file_write_iter, 3311 .mmap = btrfs_file_mmap, 3312 .open = btrfs_file_open, 3313 .release = btrfs_release_file, 3314 .fsync = btrfs_sync_file, 3315 .fallocate = btrfs_fallocate, 3316 .unlocked_ioctl = btrfs_ioctl, 3317 #ifdef CONFIG_COMPAT 3318 .compat_ioctl = btrfs_compat_ioctl, 3319 #endif 3320 .remap_file_range = btrfs_remap_file_range, 3321 }; 3322 3323 void __cold btrfs_auto_defrag_exit(void) 3324 { 3325 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3326 } 3327 3328 int __init btrfs_auto_defrag_init(void) 3329 { 3330 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3331 sizeof(struct inode_defrag), 0, 3332 SLAB_MEM_SPREAD, 3333 NULL); 3334 if (!btrfs_inode_defrag_cachep) 3335 return -ENOMEM; 3336 3337 return 0; 3338 } 3339 3340 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3341 { 3342 int ret; 3343 3344 /* 3345 * So with compression we will find and lock a dirty page and clear the 3346 * first one as dirty, setup an async extent, and immediately return 3347 * with the entire range locked but with nobody actually marked with 3348 * writeback. So we can't just filemap_write_and_wait_range() and 3349 * expect it to work since it will just kick off a thread to do the 3350 * actual work. So we need to call filemap_fdatawrite_range _again_ 3351 * since it will wait on the page lock, which won't be unlocked until 3352 * after the pages have been marked as writeback and so we're good to go 3353 * from there. We have to do this otherwise we'll miss the ordered 3354 * extents and that results in badness. Please Josef, do not think you 3355 * know better and pull this out at some point in the future, it is 3356 * right and you are wrong. 3357 */ 3358 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3359 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3360 &BTRFS_I(inode)->runtime_flags)) 3361 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3362 3363 return ret; 3364 } 3365