1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "btrfs_inode.h" 24 #include "print-tree.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "volumes.h" 28 #include "qgroup.h" 29 #include "compression.h" 30 #include "delalloc-space.h" 31 #include "reflink.h" 32 #include "subpage.h" 33 34 static struct kmem_cache *btrfs_inode_defrag_cachep; 35 /* 36 * when auto defrag is enabled we 37 * queue up these defrag structs to remember which 38 * inodes need defragging passes 39 */ 40 struct inode_defrag { 41 struct rb_node rb_node; 42 /* objectid */ 43 u64 ino; 44 /* 45 * transid where the defrag was added, we search for 46 * extents newer than this 47 */ 48 u64 transid; 49 50 /* root objectid */ 51 u64 root; 52 53 /* 54 * The extent size threshold for autodefrag. 55 * 56 * This value is different for compressed/non-compressed extents, 57 * thus needs to be passed from higher layer. 58 * (aka, inode_should_defrag()) 59 */ 60 u32 extent_thresh; 61 }; 62 63 static int __compare_inode_defrag(struct inode_defrag *defrag1, 64 struct inode_defrag *defrag2) 65 { 66 if (defrag1->root > defrag2->root) 67 return 1; 68 else if (defrag1->root < defrag2->root) 69 return -1; 70 else if (defrag1->ino > defrag2->ino) 71 return 1; 72 else if (defrag1->ino < defrag2->ino) 73 return -1; 74 else 75 return 0; 76 } 77 78 /* pop a record for an inode into the defrag tree. The lock 79 * must be held already 80 * 81 * If you're inserting a record for an older transid than an 82 * existing record, the transid already in the tree is lowered 83 * 84 * If an existing record is found the defrag item you 85 * pass in is freed 86 */ 87 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 88 struct inode_defrag *defrag) 89 { 90 struct btrfs_fs_info *fs_info = inode->root->fs_info; 91 struct inode_defrag *entry; 92 struct rb_node **p; 93 struct rb_node *parent = NULL; 94 int ret; 95 96 p = &fs_info->defrag_inodes.rb_node; 97 while (*p) { 98 parent = *p; 99 entry = rb_entry(parent, struct inode_defrag, rb_node); 100 101 ret = __compare_inode_defrag(defrag, entry); 102 if (ret < 0) 103 p = &parent->rb_left; 104 else if (ret > 0) 105 p = &parent->rb_right; 106 else { 107 /* if we're reinserting an entry for 108 * an old defrag run, make sure to 109 * lower the transid of our existing record 110 */ 111 if (defrag->transid < entry->transid) 112 entry->transid = defrag->transid; 113 entry->extent_thresh = min(defrag->extent_thresh, 114 entry->extent_thresh); 115 return -EEXIST; 116 } 117 } 118 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 119 rb_link_node(&defrag->rb_node, parent, p); 120 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 121 return 0; 122 } 123 124 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 125 { 126 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 127 return 0; 128 129 if (btrfs_fs_closing(fs_info)) 130 return 0; 131 132 return 1; 133 } 134 135 /* 136 * insert a defrag record for this inode if auto defrag is 137 * enabled 138 */ 139 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 140 struct btrfs_inode *inode, u32 extent_thresh) 141 { 142 struct btrfs_root *root = inode->root; 143 struct btrfs_fs_info *fs_info = root->fs_info; 144 struct inode_defrag *defrag; 145 u64 transid; 146 int ret; 147 148 if (!__need_auto_defrag(fs_info)) 149 return 0; 150 151 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 152 return 0; 153 154 if (trans) 155 transid = trans->transid; 156 else 157 transid = inode->root->last_trans; 158 159 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 160 if (!defrag) 161 return -ENOMEM; 162 163 defrag->ino = btrfs_ino(inode); 164 defrag->transid = transid; 165 defrag->root = root->root_key.objectid; 166 defrag->extent_thresh = extent_thresh; 167 168 spin_lock(&fs_info->defrag_inodes_lock); 169 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 170 /* 171 * If we set IN_DEFRAG flag and evict the inode from memory, 172 * and then re-read this inode, this new inode doesn't have 173 * IN_DEFRAG flag. At the case, we may find the existed defrag. 174 */ 175 ret = __btrfs_add_inode_defrag(inode, defrag); 176 if (ret) 177 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 178 } else { 179 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 180 } 181 spin_unlock(&fs_info->defrag_inodes_lock); 182 return 0; 183 } 184 185 /* 186 * pick the defragable inode that we want, if it doesn't exist, we will get 187 * the next one. 188 */ 189 static struct inode_defrag * 190 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 191 { 192 struct inode_defrag *entry = NULL; 193 struct inode_defrag tmp; 194 struct rb_node *p; 195 struct rb_node *parent = NULL; 196 int ret; 197 198 tmp.ino = ino; 199 tmp.root = root; 200 201 spin_lock(&fs_info->defrag_inodes_lock); 202 p = fs_info->defrag_inodes.rb_node; 203 while (p) { 204 parent = p; 205 entry = rb_entry(parent, struct inode_defrag, rb_node); 206 207 ret = __compare_inode_defrag(&tmp, entry); 208 if (ret < 0) 209 p = parent->rb_left; 210 else if (ret > 0) 211 p = parent->rb_right; 212 else 213 goto out; 214 } 215 216 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 217 parent = rb_next(parent); 218 if (parent) 219 entry = rb_entry(parent, struct inode_defrag, rb_node); 220 else 221 entry = NULL; 222 } 223 out: 224 if (entry) 225 rb_erase(parent, &fs_info->defrag_inodes); 226 spin_unlock(&fs_info->defrag_inodes_lock); 227 return entry; 228 } 229 230 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 231 { 232 struct inode_defrag *defrag; 233 struct rb_node *node; 234 235 spin_lock(&fs_info->defrag_inodes_lock); 236 node = rb_first(&fs_info->defrag_inodes); 237 while (node) { 238 rb_erase(node, &fs_info->defrag_inodes); 239 defrag = rb_entry(node, struct inode_defrag, rb_node); 240 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 241 242 cond_resched_lock(&fs_info->defrag_inodes_lock); 243 244 node = rb_first(&fs_info->defrag_inodes); 245 } 246 spin_unlock(&fs_info->defrag_inodes_lock); 247 } 248 249 #define BTRFS_DEFRAG_BATCH 1024 250 251 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 252 struct inode_defrag *defrag) 253 { 254 struct btrfs_root *inode_root; 255 struct inode *inode; 256 struct btrfs_ioctl_defrag_range_args range; 257 int ret = 0; 258 u64 cur = 0; 259 260 again: 261 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) 262 goto cleanup; 263 if (!__need_auto_defrag(fs_info)) 264 goto cleanup; 265 266 /* get the inode */ 267 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); 268 if (IS_ERR(inode_root)) { 269 ret = PTR_ERR(inode_root); 270 goto cleanup; 271 } 272 273 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root); 274 btrfs_put_root(inode_root); 275 if (IS_ERR(inode)) { 276 ret = PTR_ERR(inode); 277 goto cleanup; 278 } 279 280 if (cur >= i_size_read(inode)) { 281 iput(inode); 282 goto cleanup; 283 } 284 285 /* do a chunk of defrag */ 286 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 287 memset(&range, 0, sizeof(range)); 288 range.len = (u64)-1; 289 range.start = cur; 290 range.extent_thresh = defrag->extent_thresh; 291 292 sb_start_write(fs_info->sb); 293 ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 294 BTRFS_DEFRAG_BATCH); 295 sb_end_write(fs_info->sb); 296 iput(inode); 297 298 if (ret < 0) 299 goto cleanup; 300 301 cur = max(cur + fs_info->sectorsize, range.start); 302 goto again; 303 304 cleanup: 305 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 306 return ret; 307 } 308 309 /* 310 * run through the list of inodes in the FS that need 311 * defragging 312 */ 313 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 314 { 315 struct inode_defrag *defrag; 316 u64 first_ino = 0; 317 u64 root_objectid = 0; 318 319 atomic_inc(&fs_info->defrag_running); 320 while (1) { 321 /* Pause the auto defragger. */ 322 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 323 &fs_info->fs_state)) 324 break; 325 326 if (!__need_auto_defrag(fs_info)) 327 break; 328 329 /* find an inode to defrag */ 330 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 331 first_ino); 332 if (!defrag) { 333 if (root_objectid || first_ino) { 334 root_objectid = 0; 335 first_ino = 0; 336 continue; 337 } else { 338 break; 339 } 340 } 341 342 first_ino = defrag->ino + 1; 343 root_objectid = defrag->root; 344 345 __btrfs_run_defrag_inode(fs_info, defrag); 346 } 347 atomic_dec(&fs_info->defrag_running); 348 349 /* 350 * during unmount, we use the transaction_wait queue to 351 * wait for the defragger to stop 352 */ 353 wake_up(&fs_info->transaction_wait); 354 return 0; 355 } 356 357 /* simple helper to fault in pages and copy. This should go away 358 * and be replaced with calls into generic code. 359 */ 360 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 361 struct page **prepared_pages, 362 struct iov_iter *i) 363 { 364 size_t copied = 0; 365 size_t total_copied = 0; 366 int pg = 0; 367 int offset = offset_in_page(pos); 368 369 while (write_bytes > 0) { 370 size_t count = min_t(size_t, 371 PAGE_SIZE - offset, write_bytes); 372 struct page *page = prepared_pages[pg]; 373 /* 374 * Copy data from userspace to the current page 375 */ 376 copied = copy_page_from_iter_atomic(page, offset, count, i); 377 378 /* Flush processor's dcache for this page */ 379 flush_dcache_page(page); 380 381 /* 382 * if we get a partial write, we can end up with 383 * partially up to date pages. These add 384 * a lot of complexity, so make sure they don't 385 * happen by forcing this copy to be retried. 386 * 387 * The rest of the btrfs_file_write code will fall 388 * back to page at a time copies after we return 0. 389 */ 390 if (unlikely(copied < count)) { 391 if (!PageUptodate(page)) { 392 iov_iter_revert(i, copied); 393 copied = 0; 394 } 395 if (!copied) 396 break; 397 } 398 399 write_bytes -= copied; 400 total_copied += copied; 401 offset += copied; 402 if (offset == PAGE_SIZE) { 403 pg++; 404 offset = 0; 405 } 406 } 407 return total_copied; 408 } 409 410 /* 411 * unlocks pages after btrfs_file_write is done with them 412 */ 413 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, 414 struct page **pages, size_t num_pages, 415 u64 pos, u64 copied) 416 { 417 size_t i; 418 u64 block_start = round_down(pos, fs_info->sectorsize); 419 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 420 421 ASSERT(block_len <= U32_MAX); 422 for (i = 0; i < num_pages; i++) { 423 /* page checked is some magic around finding pages that 424 * have been modified without going through btrfs_set_page_dirty 425 * clear it here. There should be no need to mark the pages 426 * accessed as prepare_pages should have marked them accessed 427 * in prepare_pages via find_or_create_page() 428 */ 429 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start, 430 block_len); 431 unlock_page(pages[i]); 432 put_page(pages[i]); 433 } 434 } 435 436 /* 437 * After btrfs_copy_from_user(), update the following things for delalloc: 438 * - Mark newly dirtied pages as DELALLOC in the io tree. 439 * Used to advise which range is to be written back. 440 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 441 * - Update inode size for past EOF write 442 */ 443 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 444 size_t num_pages, loff_t pos, size_t write_bytes, 445 struct extent_state **cached, bool noreserve) 446 { 447 struct btrfs_fs_info *fs_info = inode->root->fs_info; 448 int err = 0; 449 int i; 450 u64 num_bytes; 451 u64 start_pos; 452 u64 end_of_last_block; 453 u64 end_pos = pos + write_bytes; 454 loff_t isize = i_size_read(&inode->vfs_inode); 455 unsigned int extra_bits = 0; 456 457 if (write_bytes == 0) 458 return 0; 459 460 if (noreserve) 461 extra_bits |= EXTENT_NORESERVE; 462 463 start_pos = round_down(pos, fs_info->sectorsize); 464 num_bytes = round_up(write_bytes + pos - start_pos, 465 fs_info->sectorsize); 466 ASSERT(num_bytes <= U32_MAX); 467 468 end_of_last_block = start_pos + num_bytes - 1; 469 470 /* 471 * The pages may have already been dirty, clear out old accounting so 472 * we can set things up properly 473 */ 474 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 475 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 476 0, 0, cached); 477 478 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 479 extra_bits, cached); 480 if (err) 481 return err; 482 483 for (i = 0; i < num_pages; i++) { 484 struct page *p = pages[i]; 485 486 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes); 487 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes); 488 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes); 489 } 490 491 /* 492 * we've only changed i_size in ram, and we haven't updated 493 * the disk i_size. There is no need to log the inode 494 * at this time. 495 */ 496 if (end_pos > isize) 497 i_size_write(&inode->vfs_inode, end_pos); 498 return 0; 499 } 500 501 /* 502 * this drops all the extents in the cache that intersect the range 503 * [start, end]. Existing extents are split as required. 504 */ 505 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 506 int skip_pinned) 507 { 508 struct extent_map *em; 509 struct extent_map *split = NULL; 510 struct extent_map *split2 = NULL; 511 struct extent_map_tree *em_tree = &inode->extent_tree; 512 u64 len = end - start + 1; 513 u64 gen; 514 int ret; 515 int testend = 1; 516 unsigned long flags; 517 int compressed = 0; 518 bool modified; 519 520 WARN_ON(end < start); 521 if (end == (u64)-1) { 522 len = (u64)-1; 523 testend = 0; 524 } 525 while (1) { 526 int no_splits = 0; 527 528 modified = false; 529 if (!split) 530 split = alloc_extent_map(); 531 if (!split2) 532 split2 = alloc_extent_map(); 533 if (!split || !split2) 534 no_splits = 1; 535 536 write_lock(&em_tree->lock); 537 em = lookup_extent_mapping(em_tree, start, len); 538 if (!em) { 539 write_unlock(&em_tree->lock); 540 break; 541 } 542 flags = em->flags; 543 gen = em->generation; 544 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 545 if (testend && em->start + em->len >= start + len) { 546 free_extent_map(em); 547 write_unlock(&em_tree->lock); 548 break; 549 } 550 start = em->start + em->len; 551 if (testend) 552 len = start + len - (em->start + em->len); 553 free_extent_map(em); 554 write_unlock(&em_tree->lock); 555 continue; 556 } 557 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 558 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 559 clear_bit(EXTENT_FLAG_LOGGING, &flags); 560 modified = !list_empty(&em->list); 561 if (no_splits) 562 goto next; 563 564 if (em->start < start) { 565 split->start = em->start; 566 split->len = start - em->start; 567 568 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 569 split->orig_start = em->orig_start; 570 split->block_start = em->block_start; 571 572 if (compressed) 573 split->block_len = em->block_len; 574 else 575 split->block_len = split->len; 576 split->orig_block_len = max(split->block_len, 577 em->orig_block_len); 578 split->ram_bytes = em->ram_bytes; 579 } else { 580 split->orig_start = split->start; 581 split->block_len = 0; 582 split->block_start = em->block_start; 583 split->orig_block_len = 0; 584 split->ram_bytes = split->len; 585 } 586 587 split->generation = gen; 588 split->flags = flags; 589 split->compress_type = em->compress_type; 590 replace_extent_mapping(em_tree, em, split, modified); 591 free_extent_map(split); 592 split = split2; 593 split2 = NULL; 594 } 595 if (testend && em->start + em->len > start + len) { 596 u64 diff = start + len - em->start; 597 598 split->start = start + len; 599 split->len = em->start + em->len - (start + len); 600 split->flags = flags; 601 split->compress_type = em->compress_type; 602 split->generation = gen; 603 604 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 605 split->orig_block_len = max(em->block_len, 606 em->orig_block_len); 607 608 split->ram_bytes = em->ram_bytes; 609 if (compressed) { 610 split->block_len = em->block_len; 611 split->block_start = em->block_start; 612 split->orig_start = em->orig_start; 613 } else { 614 split->block_len = split->len; 615 split->block_start = em->block_start 616 + diff; 617 split->orig_start = em->orig_start; 618 } 619 } else { 620 split->ram_bytes = split->len; 621 split->orig_start = split->start; 622 split->block_len = 0; 623 split->block_start = em->block_start; 624 split->orig_block_len = 0; 625 } 626 627 if (extent_map_in_tree(em)) { 628 replace_extent_mapping(em_tree, em, split, 629 modified); 630 } else { 631 ret = add_extent_mapping(em_tree, split, 632 modified); 633 ASSERT(ret == 0); /* Logic error */ 634 } 635 free_extent_map(split); 636 split = NULL; 637 } 638 next: 639 if (extent_map_in_tree(em)) 640 remove_extent_mapping(em_tree, em); 641 write_unlock(&em_tree->lock); 642 643 /* once for us */ 644 free_extent_map(em); 645 /* once for the tree*/ 646 free_extent_map(em); 647 } 648 if (split) 649 free_extent_map(split); 650 if (split2) 651 free_extent_map(split2); 652 } 653 654 /* 655 * this is very complex, but the basic idea is to drop all extents 656 * in the range start - end. hint_block is filled in with a block number 657 * that would be a good hint to the block allocator for this file. 658 * 659 * If an extent intersects the range but is not entirely inside the range 660 * it is either truncated or split. Anything entirely inside the range 661 * is deleted from the tree. 662 * 663 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 664 * to deal with that. We set the field 'bytes_found' of the arguments structure 665 * with the number of allocated bytes found in the target range, so that the 666 * caller can update the inode's number of bytes in an atomic way when 667 * replacing extents in a range to avoid races with stat(2). 668 */ 669 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 670 struct btrfs_root *root, struct btrfs_inode *inode, 671 struct btrfs_drop_extents_args *args) 672 { 673 struct btrfs_fs_info *fs_info = root->fs_info; 674 struct extent_buffer *leaf; 675 struct btrfs_file_extent_item *fi; 676 struct btrfs_ref ref = { 0 }; 677 struct btrfs_key key; 678 struct btrfs_key new_key; 679 u64 ino = btrfs_ino(inode); 680 u64 search_start = args->start; 681 u64 disk_bytenr = 0; 682 u64 num_bytes = 0; 683 u64 extent_offset = 0; 684 u64 extent_end = 0; 685 u64 last_end = args->start; 686 int del_nr = 0; 687 int del_slot = 0; 688 int extent_type; 689 int recow; 690 int ret; 691 int modify_tree = -1; 692 int update_refs; 693 int found = 0; 694 struct btrfs_path *path = args->path; 695 696 args->bytes_found = 0; 697 args->extent_inserted = false; 698 699 /* Must always have a path if ->replace_extent is true */ 700 ASSERT(!(args->replace_extent && !args->path)); 701 702 if (!path) { 703 path = btrfs_alloc_path(); 704 if (!path) { 705 ret = -ENOMEM; 706 goto out; 707 } 708 } 709 710 if (args->drop_cache) 711 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0); 712 713 if (args->start >= inode->disk_i_size && !args->replace_extent) 714 modify_tree = 0; 715 716 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); 717 while (1) { 718 recow = 0; 719 ret = btrfs_lookup_file_extent(trans, root, path, ino, 720 search_start, modify_tree); 721 if (ret < 0) 722 break; 723 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 724 leaf = path->nodes[0]; 725 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 726 if (key.objectid == ino && 727 key.type == BTRFS_EXTENT_DATA_KEY) 728 path->slots[0]--; 729 } 730 ret = 0; 731 next_slot: 732 leaf = path->nodes[0]; 733 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 734 BUG_ON(del_nr > 0); 735 ret = btrfs_next_leaf(root, path); 736 if (ret < 0) 737 break; 738 if (ret > 0) { 739 ret = 0; 740 break; 741 } 742 leaf = path->nodes[0]; 743 recow = 1; 744 } 745 746 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 747 748 if (key.objectid > ino) 749 break; 750 if (WARN_ON_ONCE(key.objectid < ino) || 751 key.type < BTRFS_EXTENT_DATA_KEY) { 752 ASSERT(del_nr == 0); 753 path->slots[0]++; 754 goto next_slot; 755 } 756 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 757 break; 758 759 fi = btrfs_item_ptr(leaf, path->slots[0], 760 struct btrfs_file_extent_item); 761 extent_type = btrfs_file_extent_type(leaf, fi); 762 763 if (extent_type == BTRFS_FILE_EXTENT_REG || 764 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 765 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 766 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 767 extent_offset = btrfs_file_extent_offset(leaf, fi); 768 extent_end = key.offset + 769 btrfs_file_extent_num_bytes(leaf, fi); 770 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 771 extent_end = key.offset + 772 btrfs_file_extent_ram_bytes(leaf, fi); 773 } else { 774 /* can't happen */ 775 BUG(); 776 } 777 778 /* 779 * Don't skip extent items representing 0 byte lengths. They 780 * used to be created (bug) if while punching holes we hit 781 * -ENOSPC condition. So if we find one here, just ensure we 782 * delete it, otherwise we would insert a new file extent item 783 * with the same key (offset) as that 0 bytes length file 784 * extent item in the call to setup_items_for_insert() later 785 * in this function. 786 */ 787 if (extent_end == key.offset && extent_end >= search_start) { 788 last_end = extent_end; 789 goto delete_extent_item; 790 } 791 792 if (extent_end <= search_start) { 793 path->slots[0]++; 794 goto next_slot; 795 } 796 797 found = 1; 798 search_start = max(key.offset, args->start); 799 if (recow || !modify_tree) { 800 modify_tree = -1; 801 btrfs_release_path(path); 802 continue; 803 } 804 805 /* 806 * | - range to drop - | 807 * | -------- extent -------- | 808 */ 809 if (args->start > key.offset && args->end < extent_end) { 810 BUG_ON(del_nr > 0); 811 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 812 ret = -EOPNOTSUPP; 813 break; 814 } 815 816 memcpy(&new_key, &key, sizeof(new_key)); 817 new_key.offset = args->start; 818 ret = btrfs_duplicate_item(trans, root, path, 819 &new_key); 820 if (ret == -EAGAIN) { 821 btrfs_release_path(path); 822 continue; 823 } 824 if (ret < 0) 825 break; 826 827 leaf = path->nodes[0]; 828 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 829 struct btrfs_file_extent_item); 830 btrfs_set_file_extent_num_bytes(leaf, fi, 831 args->start - key.offset); 832 833 fi = btrfs_item_ptr(leaf, path->slots[0], 834 struct btrfs_file_extent_item); 835 836 extent_offset += args->start - key.offset; 837 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 838 btrfs_set_file_extent_num_bytes(leaf, fi, 839 extent_end - args->start); 840 btrfs_mark_buffer_dirty(leaf); 841 842 if (update_refs && disk_bytenr > 0) { 843 btrfs_init_generic_ref(&ref, 844 BTRFS_ADD_DELAYED_REF, 845 disk_bytenr, num_bytes, 0); 846 btrfs_init_data_ref(&ref, 847 root->root_key.objectid, 848 new_key.objectid, 849 args->start - extent_offset, 850 0, false); 851 ret = btrfs_inc_extent_ref(trans, &ref); 852 BUG_ON(ret); /* -ENOMEM */ 853 } 854 key.offset = args->start; 855 } 856 /* 857 * From here on out we will have actually dropped something, so 858 * last_end can be updated. 859 */ 860 last_end = extent_end; 861 862 /* 863 * | ---- range to drop ----- | 864 * | -------- extent -------- | 865 */ 866 if (args->start <= key.offset && args->end < extent_end) { 867 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 868 ret = -EOPNOTSUPP; 869 break; 870 } 871 872 memcpy(&new_key, &key, sizeof(new_key)); 873 new_key.offset = args->end; 874 btrfs_set_item_key_safe(fs_info, path, &new_key); 875 876 extent_offset += args->end - key.offset; 877 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 878 btrfs_set_file_extent_num_bytes(leaf, fi, 879 extent_end - args->end); 880 btrfs_mark_buffer_dirty(leaf); 881 if (update_refs && disk_bytenr > 0) 882 args->bytes_found += args->end - key.offset; 883 break; 884 } 885 886 search_start = extent_end; 887 /* 888 * | ---- range to drop ----- | 889 * | -------- extent -------- | 890 */ 891 if (args->start > key.offset && args->end >= extent_end) { 892 BUG_ON(del_nr > 0); 893 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 894 ret = -EOPNOTSUPP; 895 break; 896 } 897 898 btrfs_set_file_extent_num_bytes(leaf, fi, 899 args->start - key.offset); 900 btrfs_mark_buffer_dirty(leaf); 901 if (update_refs && disk_bytenr > 0) 902 args->bytes_found += extent_end - args->start; 903 if (args->end == extent_end) 904 break; 905 906 path->slots[0]++; 907 goto next_slot; 908 } 909 910 /* 911 * | ---- range to drop ----- | 912 * | ------ extent ------ | 913 */ 914 if (args->start <= key.offset && args->end >= extent_end) { 915 delete_extent_item: 916 if (del_nr == 0) { 917 del_slot = path->slots[0]; 918 del_nr = 1; 919 } else { 920 BUG_ON(del_slot + del_nr != path->slots[0]); 921 del_nr++; 922 } 923 924 if (update_refs && 925 extent_type == BTRFS_FILE_EXTENT_INLINE) { 926 args->bytes_found += extent_end - key.offset; 927 extent_end = ALIGN(extent_end, 928 fs_info->sectorsize); 929 } else if (update_refs && disk_bytenr > 0) { 930 btrfs_init_generic_ref(&ref, 931 BTRFS_DROP_DELAYED_REF, 932 disk_bytenr, num_bytes, 0); 933 btrfs_init_data_ref(&ref, 934 root->root_key.objectid, 935 key.objectid, 936 key.offset - extent_offset, 0, 937 false); 938 ret = btrfs_free_extent(trans, &ref); 939 BUG_ON(ret); /* -ENOMEM */ 940 args->bytes_found += extent_end - key.offset; 941 } 942 943 if (args->end == extent_end) 944 break; 945 946 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 947 path->slots[0]++; 948 goto next_slot; 949 } 950 951 ret = btrfs_del_items(trans, root, path, del_slot, 952 del_nr); 953 if (ret) { 954 btrfs_abort_transaction(trans, ret); 955 break; 956 } 957 958 del_nr = 0; 959 del_slot = 0; 960 961 btrfs_release_path(path); 962 continue; 963 } 964 965 BUG(); 966 } 967 968 if (!ret && del_nr > 0) { 969 /* 970 * Set path->slots[0] to first slot, so that after the delete 971 * if items are move off from our leaf to its immediate left or 972 * right neighbor leafs, we end up with a correct and adjusted 973 * path->slots[0] for our insertion (if args->replace_extent). 974 */ 975 path->slots[0] = del_slot; 976 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 977 if (ret) 978 btrfs_abort_transaction(trans, ret); 979 } 980 981 leaf = path->nodes[0]; 982 /* 983 * If btrfs_del_items() was called, it might have deleted a leaf, in 984 * which case it unlocked our path, so check path->locks[0] matches a 985 * write lock. 986 */ 987 if (!ret && args->replace_extent && 988 path->locks[0] == BTRFS_WRITE_LOCK && 989 btrfs_leaf_free_space(leaf) >= 990 sizeof(struct btrfs_item) + args->extent_item_size) { 991 992 key.objectid = ino; 993 key.type = BTRFS_EXTENT_DATA_KEY; 994 key.offset = args->start; 995 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 996 struct btrfs_key slot_key; 997 998 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 999 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1000 path->slots[0]++; 1001 } 1002 btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size); 1003 args->extent_inserted = true; 1004 } 1005 1006 if (!args->path) 1007 btrfs_free_path(path); 1008 else if (!args->extent_inserted) 1009 btrfs_release_path(path); 1010 out: 1011 args->drop_end = found ? min(args->end, last_end) : args->end; 1012 1013 return ret; 1014 } 1015 1016 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1017 u64 objectid, u64 bytenr, u64 orig_offset, 1018 u64 *start, u64 *end) 1019 { 1020 struct btrfs_file_extent_item *fi; 1021 struct btrfs_key key; 1022 u64 extent_end; 1023 1024 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1025 return 0; 1026 1027 btrfs_item_key_to_cpu(leaf, &key, slot); 1028 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1029 return 0; 1030 1031 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1032 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1033 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1034 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1035 btrfs_file_extent_compression(leaf, fi) || 1036 btrfs_file_extent_encryption(leaf, fi) || 1037 btrfs_file_extent_other_encoding(leaf, fi)) 1038 return 0; 1039 1040 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1041 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1042 return 0; 1043 1044 *start = key.offset; 1045 *end = extent_end; 1046 return 1; 1047 } 1048 1049 /* 1050 * Mark extent in the range start - end as written. 1051 * 1052 * This changes extent type from 'pre-allocated' to 'regular'. If only 1053 * part of extent is marked as written, the extent will be split into 1054 * two or three. 1055 */ 1056 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1057 struct btrfs_inode *inode, u64 start, u64 end) 1058 { 1059 struct btrfs_fs_info *fs_info = trans->fs_info; 1060 struct btrfs_root *root = inode->root; 1061 struct extent_buffer *leaf; 1062 struct btrfs_path *path; 1063 struct btrfs_file_extent_item *fi; 1064 struct btrfs_ref ref = { 0 }; 1065 struct btrfs_key key; 1066 struct btrfs_key new_key; 1067 u64 bytenr; 1068 u64 num_bytes; 1069 u64 extent_end; 1070 u64 orig_offset; 1071 u64 other_start; 1072 u64 other_end; 1073 u64 split; 1074 int del_nr = 0; 1075 int del_slot = 0; 1076 int recow; 1077 int ret = 0; 1078 u64 ino = btrfs_ino(inode); 1079 1080 path = btrfs_alloc_path(); 1081 if (!path) 1082 return -ENOMEM; 1083 again: 1084 recow = 0; 1085 split = start; 1086 key.objectid = ino; 1087 key.type = BTRFS_EXTENT_DATA_KEY; 1088 key.offset = split; 1089 1090 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1091 if (ret < 0) 1092 goto out; 1093 if (ret > 0 && path->slots[0] > 0) 1094 path->slots[0]--; 1095 1096 leaf = path->nodes[0]; 1097 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1098 if (key.objectid != ino || 1099 key.type != BTRFS_EXTENT_DATA_KEY) { 1100 ret = -EINVAL; 1101 btrfs_abort_transaction(trans, ret); 1102 goto out; 1103 } 1104 fi = btrfs_item_ptr(leaf, path->slots[0], 1105 struct btrfs_file_extent_item); 1106 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1107 ret = -EINVAL; 1108 btrfs_abort_transaction(trans, ret); 1109 goto out; 1110 } 1111 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1112 if (key.offset > start || extent_end < end) { 1113 ret = -EINVAL; 1114 btrfs_abort_transaction(trans, ret); 1115 goto out; 1116 } 1117 1118 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1119 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1120 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1121 memcpy(&new_key, &key, sizeof(new_key)); 1122 1123 if (start == key.offset && end < extent_end) { 1124 other_start = 0; 1125 other_end = start; 1126 if (extent_mergeable(leaf, path->slots[0] - 1, 1127 ino, bytenr, orig_offset, 1128 &other_start, &other_end)) { 1129 new_key.offset = end; 1130 btrfs_set_item_key_safe(fs_info, path, &new_key); 1131 fi = btrfs_item_ptr(leaf, path->slots[0], 1132 struct btrfs_file_extent_item); 1133 btrfs_set_file_extent_generation(leaf, fi, 1134 trans->transid); 1135 btrfs_set_file_extent_num_bytes(leaf, fi, 1136 extent_end - end); 1137 btrfs_set_file_extent_offset(leaf, fi, 1138 end - orig_offset); 1139 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1140 struct btrfs_file_extent_item); 1141 btrfs_set_file_extent_generation(leaf, fi, 1142 trans->transid); 1143 btrfs_set_file_extent_num_bytes(leaf, fi, 1144 end - other_start); 1145 btrfs_mark_buffer_dirty(leaf); 1146 goto out; 1147 } 1148 } 1149 1150 if (start > key.offset && end == extent_end) { 1151 other_start = end; 1152 other_end = 0; 1153 if (extent_mergeable(leaf, path->slots[0] + 1, 1154 ino, bytenr, orig_offset, 1155 &other_start, &other_end)) { 1156 fi = btrfs_item_ptr(leaf, path->slots[0], 1157 struct btrfs_file_extent_item); 1158 btrfs_set_file_extent_num_bytes(leaf, fi, 1159 start - key.offset); 1160 btrfs_set_file_extent_generation(leaf, fi, 1161 trans->transid); 1162 path->slots[0]++; 1163 new_key.offset = start; 1164 btrfs_set_item_key_safe(fs_info, path, &new_key); 1165 1166 fi = btrfs_item_ptr(leaf, path->slots[0], 1167 struct btrfs_file_extent_item); 1168 btrfs_set_file_extent_generation(leaf, fi, 1169 trans->transid); 1170 btrfs_set_file_extent_num_bytes(leaf, fi, 1171 other_end - start); 1172 btrfs_set_file_extent_offset(leaf, fi, 1173 start - orig_offset); 1174 btrfs_mark_buffer_dirty(leaf); 1175 goto out; 1176 } 1177 } 1178 1179 while (start > key.offset || end < extent_end) { 1180 if (key.offset == start) 1181 split = end; 1182 1183 new_key.offset = split; 1184 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1185 if (ret == -EAGAIN) { 1186 btrfs_release_path(path); 1187 goto again; 1188 } 1189 if (ret < 0) { 1190 btrfs_abort_transaction(trans, ret); 1191 goto out; 1192 } 1193 1194 leaf = path->nodes[0]; 1195 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1196 struct btrfs_file_extent_item); 1197 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1198 btrfs_set_file_extent_num_bytes(leaf, fi, 1199 split - key.offset); 1200 1201 fi = btrfs_item_ptr(leaf, path->slots[0], 1202 struct btrfs_file_extent_item); 1203 1204 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1205 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1206 btrfs_set_file_extent_num_bytes(leaf, fi, 1207 extent_end - split); 1208 btrfs_mark_buffer_dirty(leaf); 1209 1210 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 1211 num_bytes, 0); 1212 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 1213 orig_offset, 0, false); 1214 ret = btrfs_inc_extent_ref(trans, &ref); 1215 if (ret) { 1216 btrfs_abort_transaction(trans, ret); 1217 goto out; 1218 } 1219 1220 if (split == start) { 1221 key.offset = start; 1222 } else { 1223 if (start != key.offset) { 1224 ret = -EINVAL; 1225 btrfs_abort_transaction(trans, ret); 1226 goto out; 1227 } 1228 path->slots[0]--; 1229 extent_end = end; 1230 } 1231 recow = 1; 1232 } 1233 1234 other_start = end; 1235 other_end = 0; 1236 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1237 num_bytes, 0); 1238 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset, 1239 0, false); 1240 if (extent_mergeable(leaf, path->slots[0] + 1, 1241 ino, bytenr, orig_offset, 1242 &other_start, &other_end)) { 1243 if (recow) { 1244 btrfs_release_path(path); 1245 goto again; 1246 } 1247 extent_end = other_end; 1248 del_slot = path->slots[0] + 1; 1249 del_nr++; 1250 ret = btrfs_free_extent(trans, &ref); 1251 if (ret) { 1252 btrfs_abort_transaction(trans, ret); 1253 goto out; 1254 } 1255 } 1256 other_start = 0; 1257 other_end = start; 1258 if (extent_mergeable(leaf, path->slots[0] - 1, 1259 ino, bytenr, orig_offset, 1260 &other_start, &other_end)) { 1261 if (recow) { 1262 btrfs_release_path(path); 1263 goto again; 1264 } 1265 key.offset = other_start; 1266 del_slot = path->slots[0]; 1267 del_nr++; 1268 ret = btrfs_free_extent(trans, &ref); 1269 if (ret) { 1270 btrfs_abort_transaction(trans, ret); 1271 goto out; 1272 } 1273 } 1274 if (del_nr == 0) { 1275 fi = btrfs_item_ptr(leaf, path->slots[0], 1276 struct btrfs_file_extent_item); 1277 btrfs_set_file_extent_type(leaf, fi, 1278 BTRFS_FILE_EXTENT_REG); 1279 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1280 btrfs_mark_buffer_dirty(leaf); 1281 } else { 1282 fi = btrfs_item_ptr(leaf, del_slot - 1, 1283 struct btrfs_file_extent_item); 1284 btrfs_set_file_extent_type(leaf, fi, 1285 BTRFS_FILE_EXTENT_REG); 1286 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1287 btrfs_set_file_extent_num_bytes(leaf, fi, 1288 extent_end - key.offset); 1289 btrfs_mark_buffer_dirty(leaf); 1290 1291 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1292 if (ret < 0) { 1293 btrfs_abort_transaction(trans, ret); 1294 goto out; 1295 } 1296 } 1297 out: 1298 btrfs_free_path(path); 1299 return ret; 1300 } 1301 1302 /* 1303 * on error we return an unlocked page and the error value 1304 * on success we return a locked page and 0 1305 */ 1306 static int prepare_uptodate_page(struct inode *inode, 1307 struct page *page, u64 pos, 1308 bool force_uptodate) 1309 { 1310 struct folio *folio = page_folio(page); 1311 int ret = 0; 1312 1313 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1314 !PageUptodate(page)) { 1315 ret = btrfs_read_folio(NULL, folio); 1316 if (ret) 1317 return ret; 1318 lock_page(page); 1319 if (!PageUptodate(page)) { 1320 unlock_page(page); 1321 return -EIO; 1322 } 1323 1324 /* 1325 * Since btrfs_read_folio() will unlock the folio before it 1326 * returns, there is a window where btrfs_release_folio() can be 1327 * called to release the page. Here we check both inode 1328 * mapping and PagePrivate() to make sure the page was not 1329 * released. 1330 * 1331 * The private flag check is essential for subpage as we need 1332 * to store extra bitmap using page->private. 1333 */ 1334 if (page->mapping != inode->i_mapping || !PagePrivate(page)) { 1335 unlock_page(page); 1336 return -EAGAIN; 1337 } 1338 } 1339 return 0; 1340 } 1341 1342 /* 1343 * this just gets pages into the page cache and locks them down. 1344 */ 1345 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1346 size_t num_pages, loff_t pos, 1347 size_t write_bytes, bool force_uptodate) 1348 { 1349 int i; 1350 unsigned long index = pos >> PAGE_SHIFT; 1351 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1352 int err = 0; 1353 int faili; 1354 1355 for (i = 0; i < num_pages; i++) { 1356 again: 1357 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1358 mask | __GFP_WRITE); 1359 if (!pages[i]) { 1360 faili = i - 1; 1361 err = -ENOMEM; 1362 goto fail; 1363 } 1364 1365 err = set_page_extent_mapped(pages[i]); 1366 if (err < 0) { 1367 faili = i; 1368 goto fail; 1369 } 1370 1371 if (i == 0) 1372 err = prepare_uptodate_page(inode, pages[i], pos, 1373 force_uptodate); 1374 if (!err && i == num_pages - 1) 1375 err = prepare_uptodate_page(inode, pages[i], 1376 pos + write_bytes, false); 1377 if (err) { 1378 put_page(pages[i]); 1379 if (err == -EAGAIN) { 1380 err = 0; 1381 goto again; 1382 } 1383 faili = i - 1; 1384 goto fail; 1385 } 1386 wait_on_page_writeback(pages[i]); 1387 } 1388 1389 return 0; 1390 fail: 1391 while (faili >= 0) { 1392 unlock_page(pages[faili]); 1393 put_page(pages[faili]); 1394 faili--; 1395 } 1396 return err; 1397 1398 } 1399 1400 /* 1401 * This function locks the extent and properly waits for data=ordered extents 1402 * to finish before allowing the pages to be modified if need. 1403 * 1404 * The return value: 1405 * 1 - the extent is locked 1406 * 0 - the extent is not locked, and everything is OK 1407 * -EAGAIN - need re-prepare the pages 1408 * the other < 0 number - Something wrong happens 1409 */ 1410 static noinline int 1411 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1412 size_t num_pages, loff_t pos, 1413 size_t write_bytes, 1414 u64 *lockstart, u64 *lockend, 1415 struct extent_state **cached_state) 1416 { 1417 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1418 u64 start_pos; 1419 u64 last_pos; 1420 int i; 1421 int ret = 0; 1422 1423 start_pos = round_down(pos, fs_info->sectorsize); 1424 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 1425 1426 if (start_pos < inode->vfs_inode.i_size) { 1427 struct btrfs_ordered_extent *ordered; 1428 1429 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1430 cached_state); 1431 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1432 last_pos - start_pos + 1); 1433 if (ordered && 1434 ordered->file_offset + ordered->num_bytes > start_pos && 1435 ordered->file_offset <= last_pos) { 1436 unlock_extent_cached(&inode->io_tree, start_pos, 1437 last_pos, cached_state); 1438 for (i = 0; i < num_pages; i++) { 1439 unlock_page(pages[i]); 1440 put_page(pages[i]); 1441 } 1442 btrfs_start_ordered_extent(ordered, 1); 1443 btrfs_put_ordered_extent(ordered); 1444 return -EAGAIN; 1445 } 1446 if (ordered) 1447 btrfs_put_ordered_extent(ordered); 1448 1449 *lockstart = start_pos; 1450 *lockend = last_pos; 1451 ret = 1; 1452 } 1453 1454 /* 1455 * We should be called after prepare_pages() which should have locked 1456 * all pages in the range. 1457 */ 1458 for (i = 0; i < num_pages; i++) 1459 WARN_ON(!PageLocked(pages[i])); 1460 1461 return ret; 1462 } 1463 1464 /* 1465 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1466 * 1467 * @pos: File offset. 1468 * @write_bytes: The length to write, will be updated to the nocow writeable 1469 * range. 1470 * 1471 * This function will flush ordered extents in the range to ensure proper 1472 * nocow checks. 1473 * 1474 * Return: 1475 * > 0 If we can nocow, and updates @write_bytes. 1476 * 0 If we can't do a nocow write. 1477 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's 1478 * root is in progress. 1479 * < 0 If an error happened. 1480 * 1481 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 1482 */ 1483 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1484 size_t *write_bytes) 1485 { 1486 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1487 struct btrfs_root *root = inode->root; 1488 u64 lockstart, lockend; 1489 u64 num_bytes; 1490 int ret; 1491 1492 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1493 return 0; 1494 1495 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1496 return -EAGAIN; 1497 1498 lockstart = round_down(pos, fs_info->sectorsize); 1499 lockend = round_up(pos + *write_bytes, 1500 fs_info->sectorsize) - 1; 1501 num_bytes = lockend - lockstart + 1; 1502 1503 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, NULL); 1504 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1505 NULL, NULL, NULL, false); 1506 if (ret <= 0) { 1507 ret = 0; 1508 btrfs_drew_write_unlock(&root->snapshot_lock); 1509 } else { 1510 *write_bytes = min_t(size_t, *write_bytes , 1511 num_bytes - pos + lockstart); 1512 } 1513 unlock_extent(&inode->io_tree, lockstart, lockend); 1514 1515 return ret; 1516 } 1517 1518 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1519 { 1520 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1521 } 1522 1523 static void update_time_for_write(struct inode *inode) 1524 { 1525 struct timespec64 now; 1526 1527 if (IS_NOCMTIME(inode)) 1528 return; 1529 1530 now = current_time(inode); 1531 if (!timespec64_equal(&inode->i_mtime, &now)) 1532 inode->i_mtime = now; 1533 1534 if (!timespec64_equal(&inode->i_ctime, &now)) 1535 inode->i_ctime = now; 1536 1537 if (IS_I_VERSION(inode)) 1538 inode_inc_iversion(inode); 1539 } 1540 1541 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1542 size_t count) 1543 { 1544 struct file *file = iocb->ki_filp; 1545 struct inode *inode = file_inode(file); 1546 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1547 loff_t pos = iocb->ki_pos; 1548 int ret; 1549 loff_t oldsize; 1550 loff_t start_pos; 1551 1552 /* 1553 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1554 * prealloc flags, as without those flags we always have to COW. We will 1555 * later check if we can really COW into the target range (using 1556 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1557 */ 1558 if ((iocb->ki_flags & IOCB_NOWAIT) && 1559 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1560 return -EAGAIN; 1561 1562 current->backing_dev_info = inode_to_bdi(inode); 1563 ret = file_remove_privs(file); 1564 if (ret) 1565 return ret; 1566 1567 /* 1568 * We reserve space for updating the inode when we reserve space for the 1569 * extent we are going to write, so we will enospc out there. We don't 1570 * need to start yet another transaction to update the inode as we will 1571 * update the inode when we finish writing whatever data we write. 1572 */ 1573 update_time_for_write(inode); 1574 1575 start_pos = round_down(pos, fs_info->sectorsize); 1576 oldsize = i_size_read(inode); 1577 if (start_pos > oldsize) { 1578 /* Expand hole size to cover write data, preventing empty gap */ 1579 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1580 1581 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1582 if (ret) { 1583 current->backing_dev_info = NULL; 1584 return ret; 1585 } 1586 } 1587 1588 return 0; 1589 } 1590 1591 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1592 struct iov_iter *i) 1593 { 1594 struct file *file = iocb->ki_filp; 1595 loff_t pos; 1596 struct inode *inode = file_inode(file); 1597 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1598 struct page **pages = NULL; 1599 struct extent_changeset *data_reserved = NULL; 1600 u64 release_bytes = 0; 1601 u64 lockstart; 1602 u64 lockend; 1603 size_t num_written = 0; 1604 int nrptrs; 1605 ssize_t ret; 1606 bool only_release_metadata = false; 1607 bool force_page_uptodate = false; 1608 loff_t old_isize = i_size_read(inode); 1609 unsigned int ilock_flags = 0; 1610 1611 if (iocb->ki_flags & IOCB_NOWAIT) 1612 ilock_flags |= BTRFS_ILOCK_TRY; 1613 1614 ret = btrfs_inode_lock(inode, ilock_flags); 1615 if (ret < 0) 1616 return ret; 1617 1618 ret = generic_write_checks(iocb, i); 1619 if (ret <= 0) 1620 goto out; 1621 1622 ret = btrfs_write_check(iocb, i, ret); 1623 if (ret < 0) 1624 goto out; 1625 1626 pos = iocb->ki_pos; 1627 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1628 PAGE_SIZE / (sizeof(struct page *))); 1629 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1630 nrptrs = max(nrptrs, 8); 1631 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1632 if (!pages) { 1633 ret = -ENOMEM; 1634 goto out; 1635 } 1636 1637 while (iov_iter_count(i) > 0) { 1638 struct extent_state *cached_state = NULL; 1639 size_t offset = offset_in_page(pos); 1640 size_t sector_offset; 1641 size_t write_bytes = min(iov_iter_count(i), 1642 nrptrs * (size_t)PAGE_SIZE - 1643 offset); 1644 size_t num_pages; 1645 size_t reserve_bytes; 1646 size_t dirty_pages; 1647 size_t copied; 1648 size_t dirty_sectors; 1649 size_t num_sectors; 1650 int extents_locked; 1651 1652 /* 1653 * Fault pages before locking them in prepare_pages 1654 * to avoid recursive lock 1655 */ 1656 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1657 ret = -EFAULT; 1658 break; 1659 } 1660 1661 only_release_metadata = false; 1662 sector_offset = pos & (fs_info->sectorsize - 1); 1663 1664 extent_changeset_release(data_reserved); 1665 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1666 &data_reserved, pos, 1667 write_bytes); 1668 if (ret < 0) { 1669 /* 1670 * If we don't have to COW at the offset, reserve 1671 * metadata only. write_bytes may get smaller than 1672 * requested here. 1673 */ 1674 if (btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1675 &write_bytes) > 0) 1676 only_release_metadata = true; 1677 else 1678 break; 1679 } 1680 1681 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1682 WARN_ON(num_pages > nrptrs); 1683 reserve_bytes = round_up(write_bytes + sector_offset, 1684 fs_info->sectorsize); 1685 WARN_ON(reserve_bytes == 0); 1686 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1687 reserve_bytes, 1688 reserve_bytes, false); 1689 if (ret) { 1690 if (!only_release_metadata) 1691 btrfs_free_reserved_data_space(BTRFS_I(inode), 1692 data_reserved, pos, 1693 write_bytes); 1694 else 1695 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1696 break; 1697 } 1698 1699 release_bytes = reserve_bytes; 1700 again: 1701 /* 1702 * This is going to setup the pages array with the number of 1703 * pages we want, so we don't really need to worry about the 1704 * contents of pages from loop to loop 1705 */ 1706 ret = prepare_pages(inode, pages, num_pages, 1707 pos, write_bytes, 1708 force_page_uptodate); 1709 if (ret) { 1710 btrfs_delalloc_release_extents(BTRFS_I(inode), 1711 reserve_bytes); 1712 break; 1713 } 1714 1715 extents_locked = lock_and_cleanup_extent_if_need( 1716 BTRFS_I(inode), pages, 1717 num_pages, pos, write_bytes, &lockstart, 1718 &lockend, &cached_state); 1719 if (extents_locked < 0) { 1720 if (extents_locked == -EAGAIN) 1721 goto again; 1722 btrfs_delalloc_release_extents(BTRFS_I(inode), 1723 reserve_bytes); 1724 ret = extents_locked; 1725 break; 1726 } 1727 1728 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1729 1730 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1731 dirty_sectors = round_up(copied + sector_offset, 1732 fs_info->sectorsize); 1733 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1734 1735 /* 1736 * if we have trouble faulting in the pages, fall 1737 * back to one page at a time 1738 */ 1739 if (copied < write_bytes) 1740 nrptrs = 1; 1741 1742 if (copied == 0) { 1743 force_page_uptodate = true; 1744 dirty_sectors = 0; 1745 dirty_pages = 0; 1746 } else { 1747 force_page_uptodate = false; 1748 dirty_pages = DIV_ROUND_UP(copied + offset, 1749 PAGE_SIZE); 1750 } 1751 1752 if (num_sectors > dirty_sectors) { 1753 /* release everything except the sectors we dirtied */ 1754 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1755 if (only_release_metadata) { 1756 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1757 release_bytes, true); 1758 } else { 1759 u64 __pos; 1760 1761 __pos = round_down(pos, 1762 fs_info->sectorsize) + 1763 (dirty_pages << PAGE_SHIFT); 1764 btrfs_delalloc_release_space(BTRFS_I(inode), 1765 data_reserved, __pos, 1766 release_bytes, true); 1767 } 1768 } 1769 1770 release_bytes = round_up(copied + sector_offset, 1771 fs_info->sectorsize); 1772 1773 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1774 dirty_pages, pos, copied, 1775 &cached_state, only_release_metadata); 1776 1777 /* 1778 * If we have not locked the extent range, because the range's 1779 * start offset is >= i_size, we might still have a non-NULL 1780 * cached extent state, acquired while marking the extent range 1781 * as delalloc through btrfs_dirty_pages(). Therefore free any 1782 * possible cached extent state to avoid a memory leak. 1783 */ 1784 if (extents_locked) 1785 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1786 lockstart, lockend, &cached_state); 1787 else 1788 free_extent_state(cached_state); 1789 1790 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1791 if (ret) { 1792 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1793 break; 1794 } 1795 1796 release_bytes = 0; 1797 if (only_release_metadata) 1798 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1799 1800 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1801 1802 cond_resched(); 1803 1804 balance_dirty_pages_ratelimited(inode->i_mapping); 1805 1806 pos += copied; 1807 num_written += copied; 1808 } 1809 1810 kfree(pages); 1811 1812 if (release_bytes) { 1813 if (only_release_metadata) { 1814 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1815 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1816 release_bytes, true); 1817 } else { 1818 btrfs_delalloc_release_space(BTRFS_I(inode), 1819 data_reserved, 1820 round_down(pos, fs_info->sectorsize), 1821 release_bytes, true); 1822 } 1823 } 1824 1825 extent_changeset_free(data_reserved); 1826 if (num_written > 0) { 1827 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1828 iocb->ki_pos += num_written; 1829 } 1830 out: 1831 btrfs_inode_unlock(inode, ilock_flags); 1832 return num_written ? num_written : ret; 1833 } 1834 1835 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1836 const struct iov_iter *iter, loff_t offset) 1837 { 1838 const u32 blocksize_mask = fs_info->sectorsize - 1; 1839 1840 if (offset & blocksize_mask) 1841 return -EINVAL; 1842 1843 if (iov_iter_alignment(iter) & blocksize_mask) 1844 return -EINVAL; 1845 1846 return 0; 1847 } 1848 1849 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1850 { 1851 struct file *file = iocb->ki_filp; 1852 struct inode *inode = file_inode(file); 1853 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1854 loff_t pos; 1855 ssize_t written = 0; 1856 ssize_t written_buffered; 1857 size_t prev_left = 0; 1858 loff_t endbyte; 1859 ssize_t err; 1860 unsigned int ilock_flags = 0; 1861 1862 if (iocb->ki_flags & IOCB_NOWAIT) 1863 ilock_flags |= BTRFS_ILOCK_TRY; 1864 1865 /* If the write DIO is within EOF, use a shared lock */ 1866 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode)) 1867 ilock_flags |= BTRFS_ILOCK_SHARED; 1868 1869 relock: 1870 err = btrfs_inode_lock(inode, ilock_flags); 1871 if (err < 0) 1872 return err; 1873 1874 err = generic_write_checks(iocb, from); 1875 if (err <= 0) { 1876 btrfs_inode_unlock(inode, ilock_flags); 1877 return err; 1878 } 1879 1880 err = btrfs_write_check(iocb, from, err); 1881 if (err < 0) { 1882 btrfs_inode_unlock(inode, ilock_flags); 1883 goto out; 1884 } 1885 1886 pos = iocb->ki_pos; 1887 /* 1888 * Re-check since file size may have changed just before taking the 1889 * lock or pos may have changed because of O_APPEND in generic_write_check() 1890 */ 1891 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1892 pos + iov_iter_count(from) > i_size_read(inode)) { 1893 btrfs_inode_unlock(inode, ilock_flags); 1894 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1895 goto relock; 1896 } 1897 1898 if (check_direct_IO(fs_info, from, pos)) { 1899 btrfs_inode_unlock(inode, ilock_flags); 1900 goto buffered; 1901 } 1902 1903 /* 1904 * The iov_iter can be mapped to the same file range we are writing to. 1905 * If that's the case, then we will deadlock in the iomap code, because 1906 * it first calls our callback btrfs_dio_iomap_begin(), which will create 1907 * an ordered extent, and after that it will fault in the pages that the 1908 * iov_iter refers to. During the fault in we end up in the readahead 1909 * pages code (starting at btrfs_readahead()), which will lock the range, 1910 * find that ordered extent and then wait for it to complete (at 1911 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since 1912 * obviously the ordered extent can never complete as we didn't submit 1913 * yet the respective bio(s). This always happens when the buffer is 1914 * memory mapped to the same file range, since the iomap DIO code always 1915 * invalidates pages in the target file range (after starting and waiting 1916 * for any writeback). 1917 * 1918 * So here we disable page faults in the iov_iter and then retry if we 1919 * got -EFAULT, faulting in the pages before the retry. 1920 */ 1921 again: 1922 from->nofault = true; 1923 err = btrfs_dio_rw(iocb, from, written); 1924 from->nofault = false; 1925 1926 /* No increment (+=) because iomap returns a cumulative value. */ 1927 if (err > 0) 1928 written = err; 1929 1930 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) { 1931 const size_t left = iov_iter_count(from); 1932 /* 1933 * We have more data left to write. Try to fault in as many as 1934 * possible of the remainder pages and retry. We do this without 1935 * releasing and locking again the inode, to prevent races with 1936 * truncate. 1937 * 1938 * Also, in case the iov refers to pages in the file range of the 1939 * file we want to write to (due to a mmap), we could enter an 1940 * infinite loop if we retry after faulting the pages in, since 1941 * iomap will invalidate any pages in the range early on, before 1942 * it tries to fault in the pages of the iov. So we keep track of 1943 * how much was left of iov in the previous EFAULT and fallback 1944 * to buffered IO in case we haven't made any progress. 1945 */ 1946 if (left == prev_left) { 1947 err = -ENOTBLK; 1948 } else { 1949 fault_in_iov_iter_readable(from, left); 1950 prev_left = left; 1951 goto again; 1952 } 1953 } 1954 1955 btrfs_inode_unlock(inode, ilock_flags); 1956 1957 /* 1958 * If 'err' is -ENOTBLK or we have not written all data, then it means 1959 * we must fallback to buffered IO. 1960 */ 1961 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from)) 1962 goto out; 1963 1964 buffered: 1965 /* 1966 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller 1967 * it must retry the operation in a context where blocking is acceptable, 1968 * since we currently don't have NOWAIT semantics support for buffered IO 1969 * and may block there for many reasons (reserving space for example). 1970 */ 1971 if (iocb->ki_flags & IOCB_NOWAIT) { 1972 err = -EAGAIN; 1973 goto out; 1974 } 1975 1976 pos = iocb->ki_pos; 1977 written_buffered = btrfs_buffered_write(iocb, from); 1978 if (written_buffered < 0) { 1979 err = written_buffered; 1980 goto out; 1981 } 1982 /* 1983 * Ensure all data is persisted. We want the next direct IO read to be 1984 * able to read what was just written. 1985 */ 1986 endbyte = pos + written_buffered - 1; 1987 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1988 if (err) 1989 goto out; 1990 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1991 if (err) 1992 goto out; 1993 written += written_buffered; 1994 iocb->ki_pos = pos + written_buffered; 1995 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1996 endbyte >> PAGE_SHIFT); 1997 out: 1998 return err < 0 ? err : written; 1999 } 2000 2001 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 2002 const struct btrfs_ioctl_encoded_io_args *encoded) 2003 { 2004 struct file *file = iocb->ki_filp; 2005 struct inode *inode = file_inode(file); 2006 loff_t count; 2007 ssize_t ret; 2008 2009 btrfs_inode_lock(inode, 0); 2010 count = encoded->len; 2011 ret = generic_write_checks_count(iocb, &count); 2012 if (ret == 0 && count != encoded->len) { 2013 /* 2014 * The write got truncated by generic_write_checks_count(). We 2015 * can't do a partial encoded write. 2016 */ 2017 ret = -EFBIG; 2018 } 2019 if (ret || encoded->len == 0) 2020 goto out; 2021 2022 ret = btrfs_write_check(iocb, from, encoded->len); 2023 if (ret < 0) 2024 goto out; 2025 2026 ret = btrfs_do_encoded_write(iocb, from, encoded); 2027 out: 2028 btrfs_inode_unlock(inode, 0); 2029 return ret; 2030 } 2031 2032 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 2033 const struct btrfs_ioctl_encoded_io_args *encoded) 2034 { 2035 struct file *file = iocb->ki_filp; 2036 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 2037 ssize_t num_written, num_sync; 2038 const bool sync = iocb_is_dsync(iocb); 2039 2040 /* 2041 * If the fs flips readonly due to some impossible error, although we 2042 * have opened a file as writable, we have to stop this write operation 2043 * to ensure consistency. 2044 */ 2045 if (BTRFS_FS_ERROR(inode->root->fs_info)) 2046 return -EROFS; 2047 2048 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 2049 return -EOPNOTSUPP; 2050 2051 if (sync) 2052 atomic_inc(&inode->sync_writers); 2053 2054 if (encoded) { 2055 num_written = btrfs_encoded_write(iocb, from, encoded); 2056 num_sync = encoded->len; 2057 } else if (iocb->ki_flags & IOCB_DIRECT) { 2058 num_written = btrfs_direct_write(iocb, from); 2059 num_sync = num_written; 2060 } else { 2061 num_written = btrfs_buffered_write(iocb, from); 2062 num_sync = num_written; 2063 } 2064 2065 btrfs_set_inode_last_sub_trans(inode); 2066 2067 if (num_sync > 0) { 2068 num_sync = generic_write_sync(iocb, num_sync); 2069 if (num_sync < 0) 2070 num_written = num_sync; 2071 } 2072 2073 if (sync) 2074 atomic_dec(&inode->sync_writers); 2075 2076 current->backing_dev_info = NULL; 2077 return num_written; 2078 } 2079 2080 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2081 { 2082 return btrfs_do_write_iter(iocb, from, NULL); 2083 } 2084 2085 int btrfs_release_file(struct inode *inode, struct file *filp) 2086 { 2087 struct btrfs_file_private *private = filp->private_data; 2088 2089 if (private && private->filldir_buf) 2090 kfree(private->filldir_buf); 2091 kfree(private); 2092 filp->private_data = NULL; 2093 2094 /* 2095 * Set by setattr when we are about to truncate a file from a non-zero 2096 * size to a zero size. This tries to flush down new bytes that may 2097 * have been written if the application were using truncate to replace 2098 * a file in place. 2099 */ 2100 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 2101 &BTRFS_I(inode)->runtime_flags)) 2102 filemap_flush(inode->i_mapping); 2103 return 0; 2104 } 2105 2106 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2107 { 2108 int ret; 2109 struct blk_plug plug; 2110 2111 /* 2112 * This is only called in fsync, which would do synchronous writes, so 2113 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2114 * multiple disks using raid profile, a large IO can be split to 2115 * several segments of stripe length (currently 64K). 2116 */ 2117 blk_start_plug(&plug); 2118 atomic_inc(&BTRFS_I(inode)->sync_writers); 2119 ret = btrfs_fdatawrite_range(inode, start, end); 2120 atomic_dec(&BTRFS_I(inode)->sync_writers); 2121 blk_finish_plug(&plug); 2122 2123 return ret; 2124 } 2125 2126 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 2127 { 2128 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 2129 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2130 2131 if (btrfs_inode_in_log(inode, fs_info->generation) && 2132 list_empty(&ctx->ordered_extents)) 2133 return true; 2134 2135 /* 2136 * If we are doing a fast fsync we can not bail out if the inode's 2137 * last_trans is <= then the last committed transaction, because we only 2138 * update the last_trans of the inode during ordered extent completion, 2139 * and for a fast fsync we don't wait for that, we only wait for the 2140 * writeback to complete. 2141 */ 2142 if (inode->last_trans <= fs_info->last_trans_committed && 2143 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 2144 list_empty(&ctx->ordered_extents))) 2145 return true; 2146 2147 return false; 2148 } 2149 2150 /* 2151 * fsync call for both files and directories. This logs the inode into 2152 * the tree log instead of forcing full commits whenever possible. 2153 * 2154 * It needs to call filemap_fdatawait so that all ordered extent updates are 2155 * in the metadata btree are up to date for copying to the log. 2156 * 2157 * It drops the inode mutex before doing the tree log commit. This is an 2158 * important optimization for directories because holding the mutex prevents 2159 * new operations on the dir while we write to disk. 2160 */ 2161 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2162 { 2163 struct dentry *dentry = file_dentry(file); 2164 struct inode *inode = d_inode(dentry); 2165 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2166 struct btrfs_root *root = BTRFS_I(inode)->root; 2167 struct btrfs_trans_handle *trans; 2168 struct btrfs_log_ctx ctx; 2169 int ret = 0, err; 2170 u64 len; 2171 bool full_sync; 2172 2173 trace_btrfs_sync_file(file, datasync); 2174 2175 btrfs_init_log_ctx(&ctx, inode); 2176 2177 /* 2178 * Always set the range to a full range, otherwise we can get into 2179 * several problems, from missing file extent items to represent holes 2180 * when not using the NO_HOLES feature, to log tree corruption due to 2181 * races between hole detection during logging and completion of ordered 2182 * extents outside the range, to missing checksums due to ordered extents 2183 * for which we flushed only a subset of their pages. 2184 */ 2185 start = 0; 2186 end = LLONG_MAX; 2187 len = (u64)LLONG_MAX + 1; 2188 2189 /* 2190 * We write the dirty pages in the range and wait until they complete 2191 * out of the ->i_mutex. If so, we can flush the dirty pages by 2192 * multi-task, and make the performance up. See 2193 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2194 */ 2195 ret = start_ordered_ops(inode, start, end); 2196 if (ret) 2197 goto out; 2198 2199 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 2200 2201 atomic_inc(&root->log_batch); 2202 2203 /* 2204 * Always check for the full sync flag while holding the inode's lock, 2205 * to avoid races with other tasks. The flag must be either set all the 2206 * time during logging or always off all the time while logging. 2207 */ 2208 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2209 &BTRFS_I(inode)->runtime_flags); 2210 2211 /* 2212 * Before we acquired the inode's lock and the mmap lock, someone may 2213 * have dirtied more pages in the target range. We need to make sure 2214 * that writeback for any such pages does not start while we are logging 2215 * the inode, because if it does, any of the following might happen when 2216 * we are not doing a full inode sync: 2217 * 2218 * 1) We log an extent after its writeback finishes but before its 2219 * checksums are added to the csum tree, leading to -EIO errors 2220 * when attempting to read the extent after a log replay. 2221 * 2222 * 2) We can end up logging an extent before its writeback finishes. 2223 * Therefore after the log replay we will have a file extent item 2224 * pointing to an unwritten extent (and no data checksums as well). 2225 * 2226 * So trigger writeback for any eventual new dirty pages and then we 2227 * wait for all ordered extents to complete below. 2228 */ 2229 ret = start_ordered_ops(inode, start, end); 2230 if (ret) { 2231 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2232 goto out; 2233 } 2234 2235 /* 2236 * We have to do this here to avoid the priority inversion of waiting on 2237 * IO of a lower priority task while holding a transaction open. 2238 * 2239 * For a full fsync we wait for the ordered extents to complete while 2240 * for a fast fsync we wait just for writeback to complete, and then 2241 * attach the ordered extents to the transaction so that a transaction 2242 * commit waits for their completion, to avoid data loss if we fsync, 2243 * the current transaction commits before the ordered extents complete 2244 * and a power failure happens right after that. 2245 * 2246 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 2247 * logical address recorded in the ordered extent may change. We need 2248 * to wait for the IO to stabilize the logical address. 2249 */ 2250 if (full_sync || btrfs_is_zoned(fs_info)) { 2251 ret = btrfs_wait_ordered_range(inode, start, len); 2252 } else { 2253 /* 2254 * Get our ordered extents as soon as possible to avoid doing 2255 * checksum lookups in the csum tree, and use instead the 2256 * checksums attached to the ordered extents. 2257 */ 2258 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 2259 &ctx.ordered_extents); 2260 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 2261 } 2262 2263 if (ret) 2264 goto out_release_extents; 2265 2266 atomic_inc(&root->log_batch); 2267 2268 smp_mb(); 2269 if (skip_inode_logging(&ctx)) { 2270 /* 2271 * We've had everything committed since the last time we were 2272 * modified so clear this flag in case it was set for whatever 2273 * reason, it's no longer relevant. 2274 */ 2275 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2276 &BTRFS_I(inode)->runtime_flags); 2277 /* 2278 * An ordered extent might have started before and completed 2279 * already with io errors, in which case the inode was not 2280 * updated and we end up here. So check the inode's mapping 2281 * for any errors that might have happened since we last 2282 * checked called fsync. 2283 */ 2284 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2285 goto out_release_extents; 2286 } 2287 2288 /* 2289 * We use start here because we will need to wait on the IO to complete 2290 * in btrfs_sync_log, which could require joining a transaction (for 2291 * example checking cross references in the nocow path). If we use join 2292 * here we could get into a situation where we're waiting on IO to 2293 * happen that is blocked on a transaction trying to commit. With start 2294 * we inc the extwriter counter, so we wait for all extwriters to exit 2295 * before we start blocking joiners. This comment is to keep somebody 2296 * from thinking they are super smart and changing this to 2297 * btrfs_join_transaction *cough*Josef*cough*. 2298 */ 2299 trans = btrfs_start_transaction(root, 0); 2300 if (IS_ERR(trans)) { 2301 ret = PTR_ERR(trans); 2302 goto out_release_extents; 2303 } 2304 trans->in_fsync = true; 2305 2306 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 2307 btrfs_release_log_ctx_extents(&ctx); 2308 if (ret < 0) { 2309 /* Fallthrough and commit/free transaction. */ 2310 ret = BTRFS_LOG_FORCE_COMMIT; 2311 } 2312 2313 /* we've logged all the items and now have a consistent 2314 * version of the file in the log. It is possible that 2315 * someone will come in and modify the file, but that's 2316 * fine because the log is consistent on disk, and we 2317 * have references to all of the file's extents 2318 * 2319 * It is possible that someone will come in and log the 2320 * file again, but that will end up using the synchronization 2321 * inside btrfs_sync_log to keep things safe. 2322 */ 2323 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2324 2325 if (ret == BTRFS_NO_LOG_SYNC) { 2326 ret = btrfs_end_transaction(trans); 2327 goto out; 2328 } 2329 2330 /* We successfully logged the inode, attempt to sync the log. */ 2331 if (!ret) { 2332 ret = btrfs_sync_log(trans, root, &ctx); 2333 if (!ret) { 2334 ret = btrfs_end_transaction(trans); 2335 goto out; 2336 } 2337 } 2338 2339 /* 2340 * At this point we need to commit the transaction because we had 2341 * btrfs_need_log_full_commit() or some other error. 2342 * 2343 * If we didn't do a full sync we have to stop the trans handle, wait on 2344 * the ordered extents, start it again and commit the transaction. If 2345 * we attempt to wait on the ordered extents here we could deadlock with 2346 * something like fallocate() that is holding the extent lock trying to 2347 * start a transaction while some other thread is trying to commit the 2348 * transaction while we (fsync) are currently holding the transaction 2349 * open. 2350 */ 2351 if (!full_sync) { 2352 ret = btrfs_end_transaction(trans); 2353 if (ret) 2354 goto out; 2355 ret = btrfs_wait_ordered_range(inode, start, len); 2356 if (ret) 2357 goto out; 2358 2359 /* 2360 * This is safe to use here because we're only interested in 2361 * making sure the transaction that had the ordered extents is 2362 * committed. We aren't waiting on anything past this point, 2363 * we're purely getting the transaction and committing it. 2364 */ 2365 trans = btrfs_attach_transaction_barrier(root); 2366 if (IS_ERR(trans)) { 2367 ret = PTR_ERR(trans); 2368 2369 /* 2370 * We committed the transaction and there's no currently 2371 * running transaction, this means everything we care 2372 * about made it to disk and we are done. 2373 */ 2374 if (ret == -ENOENT) 2375 ret = 0; 2376 goto out; 2377 } 2378 } 2379 2380 ret = btrfs_commit_transaction(trans); 2381 out: 2382 ASSERT(list_empty(&ctx.list)); 2383 err = file_check_and_advance_wb_err(file); 2384 if (!ret) 2385 ret = err; 2386 return ret > 0 ? -EIO : ret; 2387 2388 out_release_extents: 2389 btrfs_release_log_ctx_extents(&ctx); 2390 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2391 goto out; 2392 } 2393 2394 static const struct vm_operations_struct btrfs_file_vm_ops = { 2395 .fault = filemap_fault, 2396 .map_pages = filemap_map_pages, 2397 .page_mkwrite = btrfs_page_mkwrite, 2398 }; 2399 2400 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2401 { 2402 struct address_space *mapping = filp->f_mapping; 2403 2404 if (!mapping->a_ops->read_folio) 2405 return -ENOEXEC; 2406 2407 file_accessed(filp); 2408 vma->vm_ops = &btrfs_file_vm_ops; 2409 2410 return 0; 2411 } 2412 2413 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2414 int slot, u64 start, u64 end) 2415 { 2416 struct btrfs_file_extent_item *fi; 2417 struct btrfs_key key; 2418 2419 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2420 return 0; 2421 2422 btrfs_item_key_to_cpu(leaf, &key, slot); 2423 if (key.objectid != btrfs_ino(inode) || 2424 key.type != BTRFS_EXTENT_DATA_KEY) 2425 return 0; 2426 2427 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2428 2429 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2430 return 0; 2431 2432 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2433 return 0; 2434 2435 if (key.offset == end) 2436 return 1; 2437 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2438 return 1; 2439 return 0; 2440 } 2441 2442 static int fill_holes(struct btrfs_trans_handle *trans, 2443 struct btrfs_inode *inode, 2444 struct btrfs_path *path, u64 offset, u64 end) 2445 { 2446 struct btrfs_fs_info *fs_info = trans->fs_info; 2447 struct btrfs_root *root = inode->root; 2448 struct extent_buffer *leaf; 2449 struct btrfs_file_extent_item *fi; 2450 struct extent_map *hole_em; 2451 struct extent_map_tree *em_tree = &inode->extent_tree; 2452 struct btrfs_key key; 2453 int ret; 2454 2455 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2456 goto out; 2457 2458 key.objectid = btrfs_ino(inode); 2459 key.type = BTRFS_EXTENT_DATA_KEY; 2460 key.offset = offset; 2461 2462 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2463 if (ret <= 0) { 2464 /* 2465 * We should have dropped this offset, so if we find it then 2466 * something has gone horribly wrong. 2467 */ 2468 if (ret == 0) 2469 ret = -EINVAL; 2470 return ret; 2471 } 2472 2473 leaf = path->nodes[0]; 2474 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2475 u64 num_bytes; 2476 2477 path->slots[0]--; 2478 fi = btrfs_item_ptr(leaf, path->slots[0], 2479 struct btrfs_file_extent_item); 2480 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2481 end - offset; 2482 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2483 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2484 btrfs_set_file_extent_offset(leaf, fi, 0); 2485 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2486 btrfs_mark_buffer_dirty(leaf); 2487 goto out; 2488 } 2489 2490 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2491 u64 num_bytes; 2492 2493 key.offset = offset; 2494 btrfs_set_item_key_safe(fs_info, path, &key); 2495 fi = btrfs_item_ptr(leaf, path->slots[0], 2496 struct btrfs_file_extent_item); 2497 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2498 offset; 2499 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2500 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2501 btrfs_set_file_extent_offset(leaf, fi, 0); 2502 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2503 btrfs_mark_buffer_dirty(leaf); 2504 goto out; 2505 } 2506 btrfs_release_path(path); 2507 2508 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2509 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2510 if (ret) 2511 return ret; 2512 2513 out: 2514 btrfs_release_path(path); 2515 2516 hole_em = alloc_extent_map(); 2517 if (!hole_em) { 2518 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2519 btrfs_set_inode_full_sync(inode); 2520 } else { 2521 hole_em->start = offset; 2522 hole_em->len = end - offset; 2523 hole_em->ram_bytes = hole_em->len; 2524 hole_em->orig_start = offset; 2525 2526 hole_em->block_start = EXTENT_MAP_HOLE; 2527 hole_em->block_len = 0; 2528 hole_em->orig_block_len = 0; 2529 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2530 hole_em->generation = trans->transid; 2531 2532 do { 2533 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2534 write_lock(&em_tree->lock); 2535 ret = add_extent_mapping(em_tree, hole_em, 1); 2536 write_unlock(&em_tree->lock); 2537 } while (ret == -EEXIST); 2538 free_extent_map(hole_em); 2539 if (ret) 2540 btrfs_set_inode_full_sync(inode); 2541 } 2542 2543 return 0; 2544 } 2545 2546 /* 2547 * Find a hole extent on given inode and change start/len to the end of hole 2548 * extent.(hole/vacuum extent whose em->start <= start && 2549 * em->start + em->len > start) 2550 * When a hole extent is found, return 1 and modify start/len. 2551 */ 2552 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2553 { 2554 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2555 struct extent_map *em; 2556 int ret = 0; 2557 2558 em = btrfs_get_extent(inode, NULL, 0, 2559 round_down(*start, fs_info->sectorsize), 2560 round_up(*len, fs_info->sectorsize)); 2561 if (IS_ERR(em)) 2562 return PTR_ERR(em); 2563 2564 /* Hole or vacuum extent(only exists in no-hole mode) */ 2565 if (em->block_start == EXTENT_MAP_HOLE) { 2566 ret = 1; 2567 *len = em->start + em->len > *start + *len ? 2568 0 : *start + *len - em->start - em->len; 2569 *start = em->start + em->len; 2570 } 2571 free_extent_map(em); 2572 return ret; 2573 } 2574 2575 static void btrfs_punch_hole_lock_range(struct inode *inode, 2576 const u64 lockstart, 2577 const u64 lockend, 2578 struct extent_state **cached_state) 2579 { 2580 /* 2581 * For subpage case, if the range is not at page boundary, we could 2582 * have pages at the leading/tailing part of the range. 2583 * This could lead to dead loop since filemap_range_has_page() 2584 * will always return true. 2585 * So here we need to do extra page alignment for 2586 * filemap_range_has_page(). 2587 */ 2588 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2589 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2590 2591 while (1) { 2592 truncate_pagecache_range(inode, lockstart, lockend); 2593 2594 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2595 cached_state); 2596 /* 2597 * We can't have ordered extents in the range, nor dirty/writeback 2598 * pages, because we have locked the inode's VFS lock in exclusive 2599 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2600 * we have flushed all delalloc in the range and we have waited 2601 * for any ordered extents in the range to complete. 2602 * We can race with anyone reading pages from this range, so after 2603 * locking the range check if we have pages in the range, and if 2604 * we do, unlock the range and retry. 2605 */ 2606 if (!filemap_range_has_page(inode->i_mapping, page_lockstart, 2607 page_lockend)) 2608 break; 2609 2610 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2611 lockend, cached_state); 2612 } 2613 2614 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2615 } 2616 2617 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2618 struct btrfs_inode *inode, 2619 struct btrfs_path *path, 2620 struct btrfs_replace_extent_info *extent_info, 2621 const u64 replace_len, 2622 const u64 bytes_to_drop) 2623 { 2624 struct btrfs_fs_info *fs_info = trans->fs_info; 2625 struct btrfs_root *root = inode->root; 2626 struct btrfs_file_extent_item *extent; 2627 struct extent_buffer *leaf; 2628 struct btrfs_key key; 2629 int slot; 2630 struct btrfs_ref ref = { 0 }; 2631 int ret; 2632 2633 if (replace_len == 0) 2634 return 0; 2635 2636 if (extent_info->disk_offset == 0 && 2637 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2638 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2639 return 0; 2640 } 2641 2642 key.objectid = btrfs_ino(inode); 2643 key.type = BTRFS_EXTENT_DATA_KEY; 2644 key.offset = extent_info->file_offset; 2645 ret = btrfs_insert_empty_item(trans, root, path, &key, 2646 sizeof(struct btrfs_file_extent_item)); 2647 if (ret) 2648 return ret; 2649 leaf = path->nodes[0]; 2650 slot = path->slots[0]; 2651 write_extent_buffer(leaf, extent_info->extent_buf, 2652 btrfs_item_ptr_offset(leaf, slot), 2653 sizeof(struct btrfs_file_extent_item)); 2654 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2655 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2656 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2657 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2658 if (extent_info->is_new_extent) 2659 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2660 btrfs_mark_buffer_dirty(leaf); 2661 btrfs_release_path(path); 2662 2663 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2664 replace_len); 2665 if (ret) 2666 return ret; 2667 2668 /* If it's a hole, nothing more needs to be done. */ 2669 if (extent_info->disk_offset == 0) { 2670 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2671 return 0; 2672 } 2673 2674 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2675 2676 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2677 key.objectid = extent_info->disk_offset; 2678 key.type = BTRFS_EXTENT_ITEM_KEY; 2679 key.offset = extent_info->disk_len; 2680 ret = btrfs_alloc_reserved_file_extent(trans, root, 2681 btrfs_ino(inode), 2682 extent_info->file_offset, 2683 extent_info->qgroup_reserved, 2684 &key); 2685 } else { 2686 u64 ref_offset; 2687 2688 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2689 extent_info->disk_offset, 2690 extent_info->disk_len, 0); 2691 ref_offset = extent_info->file_offset - extent_info->data_offset; 2692 btrfs_init_data_ref(&ref, root->root_key.objectid, 2693 btrfs_ino(inode), ref_offset, 0, false); 2694 ret = btrfs_inc_extent_ref(trans, &ref); 2695 } 2696 2697 extent_info->insertions++; 2698 2699 return ret; 2700 } 2701 2702 /* 2703 * The respective range must have been previously locked, as well as the inode. 2704 * The end offset is inclusive (last byte of the range). 2705 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2706 * the file range with an extent. 2707 * When not punching a hole, we don't want to end up in a state where we dropped 2708 * extents without inserting a new one, so we must abort the transaction to avoid 2709 * a corruption. 2710 */ 2711 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2712 struct btrfs_path *path, const u64 start, 2713 const u64 end, 2714 struct btrfs_replace_extent_info *extent_info, 2715 struct btrfs_trans_handle **trans_out) 2716 { 2717 struct btrfs_drop_extents_args drop_args = { 0 }; 2718 struct btrfs_root *root = inode->root; 2719 struct btrfs_fs_info *fs_info = root->fs_info; 2720 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2721 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2722 struct btrfs_trans_handle *trans = NULL; 2723 struct btrfs_block_rsv *rsv; 2724 unsigned int rsv_count; 2725 u64 cur_offset; 2726 u64 len = end - start; 2727 int ret = 0; 2728 2729 if (end <= start) 2730 return -EINVAL; 2731 2732 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2733 if (!rsv) { 2734 ret = -ENOMEM; 2735 goto out; 2736 } 2737 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2738 rsv->failfast = true; 2739 2740 /* 2741 * 1 - update the inode 2742 * 1 - removing the extents in the range 2743 * 1 - adding the hole extent if no_holes isn't set or if we are 2744 * replacing the range with a new extent 2745 */ 2746 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2747 rsv_count = 3; 2748 else 2749 rsv_count = 2; 2750 2751 trans = btrfs_start_transaction(root, rsv_count); 2752 if (IS_ERR(trans)) { 2753 ret = PTR_ERR(trans); 2754 trans = NULL; 2755 goto out_free; 2756 } 2757 2758 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2759 min_size, false); 2760 if (WARN_ON(ret)) 2761 goto out_trans; 2762 trans->block_rsv = rsv; 2763 2764 cur_offset = start; 2765 drop_args.path = path; 2766 drop_args.end = end + 1; 2767 drop_args.drop_cache = true; 2768 while (cur_offset < end) { 2769 drop_args.start = cur_offset; 2770 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2771 /* If we are punching a hole decrement the inode's byte count */ 2772 if (!extent_info) 2773 btrfs_update_inode_bytes(inode, 0, 2774 drop_args.bytes_found); 2775 if (ret != -ENOSPC) { 2776 /* 2777 * The only time we don't want to abort is if we are 2778 * attempting to clone a partial inline extent, in which 2779 * case we'll get EOPNOTSUPP. However if we aren't 2780 * clone we need to abort no matter what, because if we 2781 * got EOPNOTSUPP via prealloc then we messed up and 2782 * need to abort. 2783 */ 2784 if (ret && 2785 (ret != -EOPNOTSUPP || 2786 (extent_info && extent_info->is_new_extent))) 2787 btrfs_abort_transaction(trans, ret); 2788 break; 2789 } 2790 2791 trans->block_rsv = &fs_info->trans_block_rsv; 2792 2793 if (!extent_info && cur_offset < drop_args.drop_end && 2794 cur_offset < ino_size) { 2795 ret = fill_holes(trans, inode, path, cur_offset, 2796 drop_args.drop_end); 2797 if (ret) { 2798 /* 2799 * If we failed then we didn't insert our hole 2800 * entries for the area we dropped, so now the 2801 * fs is corrupted, so we must abort the 2802 * transaction. 2803 */ 2804 btrfs_abort_transaction(trans, ret); 2805 break; 2806 } 2807 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2808 /* 2809 * We are past the i_size here, but since we didn't 2810 * insert holes we need to clear the mapped area so we 2811 * know to not set disk_i_size in this area until a new 2812 * file extent is inserted here. 2813 */ 2814 ret = btrfs_inode_clear_file_extent_range(inode, 2815 cur_offset, 2816 drop_args.drop_end - cur_offset); 2817 if (ret) { 2818 /* 2819 * We couldn't clear our area, so we could 2820 * presumably adjust up and corrupt the fs, so 2821 * we need to abort. 2822 */ 2823 btrfs_abort_transaction(trans, ret); 2824 break; 2825 } 2826 } 2827 2828 if (extent_info && 2829 drop_args.drop_end > extent_info->file_offset) { 2830 u64 replace_len = drop_args.drop_end - 2831 extent_info->file_offset; 2832 2833 ret = btrfs_insert_replace_extent(trans, inode, path, 2834 extent_info, replace_len, 2835 drop_args.bytes_found); 2836 if (ret) { 2837 btrfs_abort_transaction(trans, ret); 2838 break; 2839 } 2840 extent_info->data_len -= replace_len; 2841 extent_info->data_offset += replace_len; 2842 extent_info->file_offset += replace_len; 2843 } 2844 2845 /* 2846 * We are releasing our handle on the transaction, balance the 2847 * dirty pages of the btree inode and flush delayed items, and 2848 * then get a new transaction handle, which may now point to a 2849 * new transaction in case someone else may have committed the 2850 * transaction we used to replace/drop file extent items. So 2851 * bump the inode's iversion and update mtime and ctime except 2852 * if we are called from a dedupe context. This is because a 2853 * power failure/crash may happen after the transaction is 2854 * committed and before we finish replacing/dropping all the 2855 * file extent items we need. 2856 */ 2857 inode_inc_iversion(&inode->vfs_inode); 2858 2859 if (!extent_info || extent_info->update_times) { 2860 inode->vfs_inode.i_mtime = current_time(&inode->vfs_inode); 2861 inode->vfs_inode.i_ctime = inode->vfs_inode.i_mtime; 2862 } 2863 2864 ret = btrfs_update_inode(trans, root, inode); 2865 if (ret) 2866 break; 2867 2868 btrfs_end_transaction(trans); 2869 btrfs_btree_balance_dirty(fs_info); 2870 2871 trans = btrfs_start_transaction(root, rsv_count); 2872 if (IS_ERR(trans)) { 2873 ret = PTR_ERR(trans); 2874 trans = NULL; 2875 break; 2876 } 2877 2878 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2879 rsv, min_size, false); 2880 if (WARN_ON(ret)) 2881 break; 2882 trans->block_rsv = rsv; 2883 2884 cur_offset = drop_args.drop_end; 2885 len = end - cur_offset; 2886 if (!extent_info && len) { 2887 ret = find_first_non_hole(inode, &cur_offset, &len); 2888 if (unlikely(ret < 0)) 2889 break; 2890 if (ret && !len) { 2891 ret = 0; 2892 break; 2893 } 2894 } 2895 } 2896 2897 /* 2898 * If we were cloning, force the next fsync to be a full one since we 2899 * we replaced (or just dropped in the case of cloning holes when 2900 * NO_HOLES is enabled) file extent items and did not setup new extent 2901 * maps for the replacement extents (or holes). 2902 */ 2903 if (extent_info && !extent_info->is_new_extent) 2904 btrfs_set_inode_full_sync(inode); 2905 2906 if (ret) 2907 goto out_trans; 2908 2909 trans->block_rsv = &fs_info->trans_block_rsv; 2910 /* 2911 * If we are using the NO_HOLES feature we might have had already an 2912 * hole that overlaps a part of the region [lockstart, lockend] and 2913 * ends at (or beyond) lockend. Since we have no file extent items to 2914 * represent holes, drop_end can be less than lockend and so we must 2915 * make sure we have an extent map representing the existing hole (the 2916 * call to __btrfs_drop_extents() might have dropped the existing extent 2917 * map representing the existing hole), otherwise the fast fsync path 2918 * will not record the existence of the hole region 2919 * [existing_hole_start, lockend]. 2920 */ 2921 if (drop_args.drop_end <= end) 2922 drop_args.drop_end = end + 1; 2923 /* 2924 * Don't insert file hole extent item if it's for a range beyond eof 2925 * (because it's useless) or if it represents a 0 bytes range (when 2926 * cur_offset == drop_end). 2927 */ 2928 if (!extent_info && cur_offset < ino_size && 2929 cur_offset < drop_args.drop_end) { 2930 ret = fill_holes(trans, inode, path, cur_offset, 2931 drop_args.drop_end); 2932 if (ret) { 2933 /* Same comment as above. */ 2934 btrfs_abort_transaction(trans, ret); 2935 goto out_trans; 2936 } 2937 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2938 /* See the comment in the loop above for the reasoning here. */ 2939 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2940 drop_args.drop_end - cur_offset); 2941 if (ret) { 2942 btrfs_abort_transaction(trans, ret); 2943 goto out_trans; 2944 } 2945 2946 } 2947 if (extent_info) { 2948 ret = btrfs_insert_replace_extent(trans, inode, path, 2949 extent_info, extent_info->data_len, 2950 drop_args.bytes_found); 2951 if (ret) { 2952 btrfs_abort_transaction(trans, ret); 2953 goto out_trans; 2954 } 2955 } 2956 2957 out_trans: 2958 if (!trans) 2959 goto out_free; 2960 2961 trans->block_rsv = &fs_info->trans_block_rsv; 2962 if (ret) 2963 btrfs_end_transaction(trans); 2964 else 2965 *trans_out = trans; 2966 out_free: 2967 btrfs_free_block_rsv(fs_info, rsv); 2968 out: 2969 return ret; 2970 } 2971 2972 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2973 { 2974 struct inode *inode = file_inode(file); 2975 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2976 struct btrfs_root *root = BTRFS_I(inode)->root; 2977 struct extent_state *cached_state = NULL; 2978 struct btrfs_path *path; 2979 struct btrfs_trans_handle *trans = NULL; 2980 u64 lockstart; 2981 u64 lockend; 2982 u64 tail_start; 2983 u64 tail_len; 2984 u64 orig_start = offset; 2985 int ret = 0; 2986 bool same_block; 2987 u64 ino_size; 2988 bool truncated_block = false; 2989 bool updated_inode = false; 2990 2991 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 2992 2993 ret = btrfs_wait_ordered_range(inode, offset, len); 2994 if (ret) 2995 goto out_only_mutex; 2996 2997 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2998 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2999 if (ret < 0) 3000 goto out_only_mutex; 3001 if (ret && !len) { 3002 /* Already in a large hole */ 3003 ret = 0; 3004 goto out_only_mutex; 3005 } 3006 3007 ret = file_modified(file); 3008 if (ret) 3009 goto out_only_mutex; 3010 3011 lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode))); 3012 lockend = round_down(offset + len, 3013 btrfs_inode_sectorsize(BTRFS_I(inode))) - 1; 3014 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 3015 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 3016 /* 3017 * We needn't truncate any block which is beyond the end of the file 3018 * because we are sure there is no data there. 3019 */ 3020 /* 3021 * Only do this if we are in the same block and we aren't doing the 3022 * entire block. 3023 */ 3024 if (same_block && len < fs_info->sectorsize) { 3025 if (offset < ino_size) { 3026 truncated_block = true; 3027 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 3028 0); 3029 } else { 3030 ret = 0; 3031 } 3032 goto out_only_mutex; 3033 } 3034 3035 /* zero back part of the first block */ 3036 if (offset < ino_size) { 3037 truncated_block = true; 3038 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 3039 if (ret) { 3040 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3041 return ret; 3042 } 3043 } 3044 3045 /* Check the aligned pages after the first unaligned page, 3046 * if offset != orig_start, which means the first unaligned page 3047 * including several following pages are already in holes, 3048 * the extra check can be skipped */ 3049 if (offset == orig_start) { 3050 /* after truncate page, check hole again */ 3051 len = offset + len - lockstart; 3052 offset = lockstart; 3053 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 3054 if (ret < 0) 3055 goto out_only_mutex; 3056 if (ret && !len) { 3057 ret = 0; 3058 goto out_only_mutex; 3059 } 3060 lockstart = offset; 3061 } 3062 3063 /* Check the tail unaligned part is in a hole */ 3064 tail_start = lockend + 1; 3065 tail_len = offset + len - tail_start; 3066 if (tail_len) { 3067 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 3068 if (unlikely(ret < 0)) 3069 goto out_only_mutex; 3070 if (!ret) { 3071 /* zero the front end of the last page */ 3072 if (tail_start + tail_len < ino_size) { 3073 truncated_block = true; 3074 ret = btrfs_truncate_block(BTRFS_I(inode), 3075 tail_start + tail_len, 3076 0, 1); 3077 if (ret) 3078 goto out_only_mutex; 3079 } 3080 } 3081 } 3082 3083 if (lockend < lockstart) { 3084 ret = 0; 3085 goto out_only_mutex; 3086 } 3087 3088 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 3089 3090 path = btrfs_alloc_path(); 3091 if (!path) { 3092 ret = -ENOMEM; 3093 goto out; 3094 } 3095 3096 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 3097 lockend, NULL, &trans); 3098 btrfs_free_path(path); 3099 if (ret) 3100 goto out; 3101 3102 ASSERT(trans != NULL); 3103 inode_inc_iversion(inode); 3104 inode->i_mtime = current_time(inode); 3105 inode->i_ctime = inode->i_mtime; 3106 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3107 updated_inode = true; 3108 btrfs_end_transaction(trans); 3109 btrfs_btree_balance_dirty(fs_info); 3110 out: 3111 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3112 &cached_state); 3113 out_only_mutex: 3114 if (!updated_inode && truncated_block && !ret) { 3115 /* 3116 * If we only end up zeroing part of a page, we still need to 3117 * update the inode item, so that all the time fields are 3118 * updated as well as the necessary btrfs inode in memory fields 3119 * for detecting, at fsync time, if the inode isn't yet in the 3120 * log tree or it's there but not up to date. 3121 */ 3122 struct timespec64 now = current_time(inode); 3123 3124 inode_inc_iversion(inode); 3125 inode->i_mtime = now; 3126 inode->i_ctime = now; 3127 trans = btrfs_start_transaction(root, 1); 3128 if (IS_ERR(trans)) { 3129 ret = PTR_ERR(trans); 3130 } else { 3131 int ret2; 3132 3133 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3134 ret2 = btrfs_end_transaction(trans); 3135 if (!ret) 3136 ret = ret2; 3137 } 3138 } 3139 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3140 return ret; 3141 } 3142 3143 /* Helper structure to record which range is already reserved */ 3144 struct falloc_range { 3145 struct list_head list; 3146 u64 start; 3147 u64 len; 3148 }; 3149 3150 /* 3151 * Helper function to add falloc range 3152 * 3153 * Caller should have locked the larger range of extent containing 3154 * [start, len) 3155 */ 3156 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 3157 { 3158 struct falloc_range *range = NULL; 3159 3160 if (!list_empty(head)) { 3161 /* 3162 * As fallocate iterates by bytenr order, we only need to check 3163 * the last range. 3164 */ 3165 range = list_last_entry(head, struct falloc_range, list); 3166 if (range->start + range->len == start) { 3167 range->len += len; 3168 return 0; 3169 } 3170 } 3171 3172 range = kmalloc(sizeof(*range), GFP_KERNEL); 3173 if (!range) 3174 return -ENOMEM; 3175 range->start = start; 3176 range->len = len; 3177 list_add_tail(&range->list, head); 3178 return 0; 3179 } 3180 3181 static int btrfs_fallocate_update_isize(struct inode *inode, 3182 const u64 end, 3183 const int mode) 3184 { 3185 struct btrfs_trans_handle *trans; 3186 struct btrfs_root *root = BTRFS_I(inode)->root; 3187 int ret; 3188 int ret2; 3189 3190 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 3191 return 0; 3192 3193 trans = btrfs_start_transaction(root, 1); 3194 if (IS_ERR(trans)) 3195 return PTR_ERR(trans); 3196 3197 inode->i_ctime = current_time(inode); 3198 i_size_write(inode, end); 3199 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 3200 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3201 ret2 = btrfs_end_transaction(trans); 3202 3203 return ret ? ret : ret2; 3204 } 3205 3206 enum { 3207 RANGE_BOUNDARY_WRITTEN_EXTENT, 3208 RANGE_BOUNDARY_PREALLOC_EXTENT, 3209 RANGE_BOUNDARY_HOLE, 3210 }; 3211 3212 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 3213 u64 offset) 3214 { 3215 const u64 sectorsize = btrfs_inode_sectorsize(inode); 3216 struct extent_map *em; 3217 int ret; 3218 3219 offset = round_down(offset, sectorsize); 3220 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize); 3221 if (IS_ERR(em)) 3222 return PTR_ERR(em); 3223 3224 if (em->block_start == EXTENT_MAP_HOLE) 3225 ret = RANGE_BOUNDARY_HOLE; 3226 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3227 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 3228 else 3229 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 3230 3231 free_extent_map(em); 3232 return ret; 3233 } 3234 3235 static int btrfs_zero_range(struct inode *inode, 3236 loff_t offset, 3237 loff_t len, 3238 const int mode) 3239 { 3240 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3241 struct extent_map *em; 3242 struct extent_changeset *data_reserved = NULL; 3243 int ret; 3244 u64 alloc_hint = 0; 3245 const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode)); 3246 u64 alloc_start = round_down(offset, sectorsize); 3247 u64 alloc_end = round_up(offset + len, sectorsize); 3248 u64 bytes_to_reserve = 0; 3249 bool space_reserved = false; 3250 3251 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3252 alloc_end - alloc_start); 3253 if (IS_ERR(em)) { 3254 ret = PTR_ERR(em); 3255 goto out; 3256 } 3257 3258 /* 3259 * Avoid hole punching and extent allocation for some cases. More cases 3260 * could be considered, but these are unlikely common and we keep things 3261 * as simple as possible for now. Also, intentionally, if the target 3262 * range contains one or more prealloc extents together with regular 3263 * extents and holes, we drop all the existing extents and allocate a 3264 * new prealloc extent, so that we get a larger contiguous disk extent. 3265 */ 3266 if (em->start <= alloc_start && 3267 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3268 const u64 em_end = em->start + em->len; 3269 3270 if (em_end >= offset + len) { 3271 /* 3272 * The whole range is already a prealloc extent, 3273 * do nothing except updating the inode's i_size if 3274 * needed. 3275 */ 3276 free_extent_map(em); 3277 ret = btrfs_fallocate_update_isize(inode, offset + len, 3278 mode); 3279 goto out; 3280 } 3281 /* 3282 * Part of the range is already a prealloc extent, so operate 3283 * only on the remaining part of the range. 3284 */ 3285 alloc_start = em_end; 3286 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 3287 len = offset + len - alloc_start; 3288 offset = alloc_start; 3289 alloc_hint = em->block_start + em->len; 3290 } 3291 free_extent_map(em); 3292 3293 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 3294 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 3295 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3296 sectorsize); 3297 if (IS_ERR(em)) { 3298 ret = PTR_ERR(em); 3299 goto out; 3300 } 3301 3302 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3303 free_extent_map(em); 3304 ret = btrfs_fallocate_update_isize(inode, offset + len, 3305 mode); 3306 goto out; 3307 } 3308 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 3309 free_extent_map(em); 3310 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 3311 0); 3312 if (!ret) 3313 ret = btrfs_fallocate_update_isize(inode, 3314 offset + len, 3315 mode); 3316 return ret; 3317 } 3318 free_extent_map(em); 3319 alloc_start = round_down(offset, sectorsize); 3320 alloc_end = alloc_start + sectorsize; 3321 goto reserve_space; 3322 } 3323 3324 alloc_start = round_up(offset, sectorsize); 3325 alloc_end = round_down(offset + len, sectorsize); 3326 3327 /* 3328 * For unaligned ranges, check the pages at the boundaries, they might 3329 * map to an extent, in which case we need to partially zero them, or 3330 * they might map to a hole, in which case we need our allocation range 3331 * to cover them. 3332 */ 3333 if (!IS_ALIGNED(offset, sectorsize)) { 3334 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3335 offset); 3336 if (ret < 0) 3337 goto out; 3338 if (ret == RANGE_BOUNDARY_HOLE) { 3339 alloc_start = round_down(offset, sectorsize); 3340 ret = 0; 3341 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3342 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 3343 if (ret) 3344 goto out; 3345 } else { 3346 ret = 0; 3347 } 3348 } 3349 3350 if (!IS_ALIGNED(offset + len, sectorsize)) { 3351 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3352 offset + len); 3353 if (ret < 0) 3354 goto out; 3355 if (ret == RANGE_BOUNDARY_HOLE) { 3356 alloc_end = round_up(offset + len, sectorsize); 3357 ret = 0; 3358 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3359 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 3360 0, 1); 3361 if (ret) 3362 goto out; 3363 } else { 3364 ret = 0; 3365 } 3366 } 3367 3368 reserve_space: 3369 if (alloc_start < alloc_end) { 3370 struct extent_state *cached_state = NULL; 3371 const u64 lockstart = alloc_start; 3372 const u64 lockend = alloc_end - 1; 3373 3374 bytes_to_reserve = alloc_end - alloc_start; 3375 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3376 bytes_to_reserve); 3377 if (ret < 0) 3378 goto out; 3379 space_reserved = true; 3380 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3381 &cached_state); 3382 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3383 alloc_start, bytes_to_reserve); 3384 if (ret) { 3385 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3386 lockend, &cached_state); 3387 goto out; 3388 } 3389 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3390 alloc_end - alloc_start, 3391 i_blocksize(inode), 3392 offset + len, &alloc_hint); 3393 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3394 lockend, &cached_state); 3395 /* btrfs_prealloc_file_range releases reserved space on error */ 3396 if (ret) { 3397 space_reserved = false; 3398 goto out; 3399 } 3400 } 3401 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3402 out: 3403 if (ret && space_reserved) 3404 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3405 alloc_start, bytes_to_reserve); 3406 extent_changeset_free(data_reserved); 3407 3408 return ret; 3409 } 3410 3411 static long btrfs_fallocate(struct file *file, int mode, 3412 loff_t offset, loff_t len) 3413 { 3414 struct inode *inode = file_inode(file); 3415 struct extent_state *cached_state = NULL; 3416 struct extent_changeset *data_reserved = NULL; 3417 struct falloc_range *range; 3418 struct falloc_range *tmp; 3419 struct list_head reserve_list; 3420 u64 cur_offset; 3421 u64 last_byte; 3422 u64 alloc_start; 3423 u64 alloc_end; 3424 u64 alloc_hint = 0; 3425 u64 locked_end; 3426 u64 actual_end = 0; 3427 u64 data_space_needed = 0; 3428 u64 data_space_reserved = 0; 3429 u64 qgroup_reserved = 0; 3430 struct extent_map *em; 3431 int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode)); 3432 int ret; 3433 3434 /* Do not allow fallocate in ZONED mode */ 3435 if (btrfs_is_zoned(btrfs_sb(inode->i_sb))) 3436 return -EOPNOTSUPP; 3437 3438 alloc_start = round_down(offset, blocksize); 3439 alloc_end = round_up(offset + len, blocksize); 3440 cur_offset = alloc_start; 3441 3442 /* Make sure we aren't being give some crap mode */ 3443 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3444 FALLOC_FL_ZERO_RANGE)) 3445 return -EOPNOTSUPP; 3446 3447 if (mode & FALLOC_FL_PUNCH_HOLE) 3448 return btrfs_punch_hole(file, offset, len); 3449 3450 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 3451 3452 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3453 ret = inode_newsize_ok(inode, offset + len); 3454 if (ret) 3455 goto out; 3456 } 3457 3458 ret = file_modified(file); 3459 if (ret) 3460 goto out; 3461 3462 /* 3463 * TODO: Move these two operations after we have checked 3464 * accurate reserved space, or fallocate can still fail but 3465 * with page truncated or size expanded. 3466 * 3467 * But that's a minor problem and won't do much harm BTW. 3468 */ 3469 if (alloc_start > inode->i_size) { 3470 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3471 alloc_start); 3472 if (ret) 3473 goto out; 3474 } else if (offset + len > inode->i_size) { 3475 /* 3476 * If we are fallocating from the end of the file onward we 3477 * need to zero out the end of the block if i_size lands in the 3478 * middle of a block. 3479 */ 3480 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3481 if (ret) 3482 goto out; 3483 } 3484 3485 /* 3486 * We have locked the inode at the VFS level (in exclusive mode) and we 3487 * have locked the i_mmap_lock lock (in exclusive mode). Now before 3488 * locking the file range, flush all dealloc in the range and wait for 3489 * all ordered extents in the range to complete. After this we can lock 3490 * the file range and, due to the previous locking we did, we know there 3491 * can't be more delalloc or ordered extents in the range. 3492 */ 3493 ret = btrfs_wait_ordered_range(inode, alloc_start, 3494 alloc_end - alloc_start); 3495 if (ret) 3496 goto out; 3497 3498 if (mode & FALLOC_FL_ZERO_RANGE) { 3499 ret = btrfs_zero_range(inode, offset, len, mode); 3500 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3501 return ret; 3502 } 3503 3504 locked_end = alloc_end - 1; 3505 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3506 &cached_state); 3507 3508 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3509 3510 /* First, check if we exceed the qgroup limit */ 3511 INIT_LIST_HEAD(&reserve_list); 3512 while (cur_offset < alloc_end) { 3513 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3514 alloc_end - cur_offset); 3515 if (IS_ERR(em)) { 3516 ret = PTR_ERR(em); 3517 break; 3518 } 3519 last_byte = min(extent_map_end(em), alloc_end); 3520 actual_end = min_t(u64, extent_map_end(em), offset + len); 3521 last_byte = ALIGN(last_byte, blocksize); 3522 if (em->block_start == EXTENT_MAP_HOLE || 3523 (cur_offset >= inode->i_size && 3524 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3525 const u64 range_len = last_byte - cur_offset; 3526 3527 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3528 if (ret < 0) { 3529 free_extent_map(em); 3530 break; 3531 } 3532 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3533 &data_reserved, cur_offset, range_len); 3534 if (ret < 0) { 3535 free_extent_map(em); 3536 break; 3537 } 3538 qgroup_reserved += range_len; 3539 data_space_needed += range_len; 3540 } 3541 free_extent_map(em); 3542 cur_offset = last_byte; 3543 } 3544 3545 if (!ret && data_space_needed > 0) { 3546 /* 3547 * We are safe to reserve space here as we can't have delalloc 3548 * in the range, see above. 3549 */ 3550 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3551 data_space_needed); 3552 if (!ret) 3553 data_space_reserved = data_space_needed; 3554 } 3555 3556 /* 3557 * If ret is still 0, means we're OK to fallocate. 3558 * Or just cleanup the list and exit. 3559 */ 3560 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3561 if (!ret) { 3562 ret = btrfs_prealloc_file_range(inode, mode, 3563 range->start, 3564 range->len, i_blocksize(inode), 3565 offset + len, &alloc_hint); 3566 /* 3567 * btrfs_prealloc_file_range() releases space even 3568 * if it returns an error. 3569 */ 3570 data_space_reserved -= range->len; 3571 qgroup_reserved -= range->len; 3572 } else if (data_space_reserved > 0) { 3573 btrfs_free_reserved_data_space(BTRFS_I(inode), 3574 data_reserved, range->start, 3575 range->len); 3576 data_space_reserved -= range->len; 3577 qgroup_reserved -= range->len; 3578 } else if (qgroup_reserved > 0) { 3579 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3580 range->start, range->len); 3581 qgroup_reserved -= range->len; 3582 } 3583 list_del(&range->list); 3584 kfree(range); 3585 } 3586 if (ret < 0) 3587 goto out_unlock; 3588 3589 /* 3590 * We didn't need to allocate any more space, but we still extended the 3591 * size of the file so we need to update i_size and the inode item. 3592 */ 3593 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3594 out_unlock: 3595 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3596 &cached_state); 3597 out: 3598 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3599 extent_changeset_free(data_reserved); 3600 return ret; 3601 } 3602 3603 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset, 3604 int whence) 3605 { 3606 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3607 struct extent_map *em = NULL; 3608 struct extent_state *cached_state = NULL; 3609 loff_t i_size = inode->vfs_inode.i_size; 3610 u64 lockstart; 3611 u64 lockend; 3612 u64 start; 3613 u64 len; 3614 int ret = 0; 3615 3616 if (i_size == 0 || offset >= i_size) 3617 return -ENXIO; 3618 3619 /* 3620 * offset can be negative, in this case we start finding DATA/HOLE from 3621 * the very start of the file. 3622 */ 3623 start = max_t(loff_t, 0, offset); 3624 3625 lockstart = round_down(start, fs_info->sectorsize); 3626 lockend = round_up(i_size, fs_info->sectorsize); 3627 if (lockend <= lockstart) 3628 lockend = lockstart + fs_info->sectorsize; 3629 lockend--; 3630 len = lockend - lockstart + 1; 3631 3632 lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state); 3633 3634 while (start < i_size) { 3635 em = btrfs_get_extent_fiemap(inode, start, len); 3636 if (IS_ERR(em)) { 3637 ret = PTR_ERR(em); 3638 em = NULL; 3639 break; 3640 } 3641 3642 if (whence == SEEK_HOLE && 3643 (em->block_start == EXTENT_MAP_HOLE || 3644 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3645 break; 3646 else if (whence == SEEK_DATA && 3647 (em->block_start != EXTENT_MAP_HOLE && 3648 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3649 break; 3650 3651 start = em->start + em->len; 3652 free_extent_map(em); 3653 em = NULL; 3654 cond_resched(); 3655 } 3656 free_extent_map(em); 3657 unlock_extent_cached(&inode->io_tree, lockstart, lockend, 3658 &cached_state); 3659 if (ret) { 3660 offset = ret; 3661 } else { 3662 if (whence == SEEK_DATA && start >= i_size) 3663 offset = -ENXIO; 3664 else 3665 offset = min_t(loff_t, start, i_size); 3666 } 3667 3668 return offset; 3669 } 3670 3671 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3672 { 3673 struct inode *inode = file->f_mapping->host; 3674 3675 switch (whence) { 3676 default: 3677 return generic_file_llseek(file, offset, whence); 3678 case SEEK_DATA: 3679 case SEEK_HOLE: 3680 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3681 offset = find_desired_extent(BTRFS_I(inode), offset, whence); 3682 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3683 break; 3684 } 3685 3686 if (offset < 0) 3687 return offset; 3688 3689 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3690 } 3691 3692 static int btrfs_file_open(struct inode *inode, struct file *filp) 3693 { 3694 int ret; 3695 3696 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; 3697 3698 ret = fsverity_file_open(inode, filp); 3699 if (ret) 3700 return ret; 3701 return generic_file_open(inode, filp); 3702 } 3703 3704 static int check_direct_read(struct btrfs_fs_info *fs_info, 3705 const struct iov_iter *iter, loff_t offset) 3706 { 3707 int ret; 3708 int i, seg; 3709 3710 ret = check_direct_IO(fs_info, iter, offset); 3711 if (ret < 0) 3712 return ret; 3713 3714 if (!iter_is_iovec(iter)) 3715 return 0; 3716 3717 for (seg = 0; seg < iter->nr_segs; seg++) 3718 for (i = seg + 1; i < iter->nr_segs; i++) 3719 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 3720 return -EINVAL; 3721 return 0; 3722 } 3723 3724 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 3725 { 3726 struct inode *inode = file_inode(iocb->ki_filp); 3727 size_t prev_left = 0; 3728 ssize_t read = 0; 3729 ssize_t ret; 3730 3731 if (fsverity_active(inode)) 3732 return 0; 3733 3734 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos)) 3735 return 0; 3736 3737 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3738 again: 3739 /* 3740 * This is similar to what we do for direct IO writes, see the comment 3741 * at btrfs_direct_write(), but we also disable page faults in addition 3742 * to disabling them only at the iov_iter level. This is because when 3743 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(), 3744 * which can still trigger page fault ins despite having set ->nofault 3745 * to true of our 'to' iov_iter. 3746 * 3747 * The difference to direct IO writes is that we deadlock when trying 3748 * to lock the extent range in the inode's tree during he page reads 3749 * triggered by the fault in (while for writes it is due to waiting for 3750 * our own ordered extent). This is because for direct IO reads, 3751 * btrfs_dio_iomap_begin() returns with the extent range locked, which 3752 * is only unlocked in the endio callback (end_bio_extent_readpage()). 3753 */ 3754 pagefault_disable(); 3755 to->nofault = true; 3756 ret = btrfs_dio_rw(iocb, to, read); 3757 to->nofault = false; 3758 pagefault_enable(); 3759 3760 /* No increment (+=) because iomap returns a cumulative value. */ 3761 if (ret > 0) 3762 read = ret; 3763 3764 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) { 3765 const size_t left = iov_iter_count(to); 3766 3767 if (left == prev_left) { 3768 /* 3769 * We didn't make any progress since the last attempt, 3770 * fallback to a buffered read for the remainder of the 3771 * range. This is just to avoid any possibility of looping 3772 * for too long. 3773 */ 3774 ret = read; 3775 } else { 3776 /* 3777 * We made some progress since the last retry or this is 3778 * the first time we are retrying. Fault in as many pages 3779 * as possible and retry. 3780 */ 3781 fault_in_iov_iter_writeable(to, left); 3782 prev_left = left; 3783 goto again; 3784 } 3785 } 3786 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3787 return ret < 0 ? ret : read; 3788 } 3789 3790 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3791 { 3792 ssize_t ret = 0; 3793 3794 if (iocb->ki_flags & IOCB_DIRECT) { 3795 ret = btrfs_direct_read(iocb, to); 3796 if (ret < 0 || !iov_iter_count(to) || 3797 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3798 return ret; 3799 } 3800 3801 return filemap_read(iocb, to, ret); 3802 } 3803 3804 const struct file_operations btrfs_file_operations = { 3805 .llseek = btrfs_file_llseek, 3806 .read_iter = btrfs_file_read_iter, 3807 .splice_read = generic_file_splice_read, 3808 .write_iter = btrfs_file_write_iter, 3809 .splice_write = iter_file_splice_write, 3810 .mmap = btrfs_file_mmap, 3811 .open = btrfs_file_open, 3812 .release = btrfs_release_file, 3813 .fsync = btrfs_sync_file, 3814 .fallocate = btrfs_fallocate, 3815 .unlocked_ioctl = btrfs_ioctl, 3816 #ifdef CONFIG_COMPAT 3817 .compat_ioctl = btrfs_compat_ioctl, 3818 #endif 3819 .remap_file_range = btrfs_remap_file_range, 3820 }; 3821 3822 void __cold btrfs_auto_defrag_exit(void) 3823 { 3824 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3825 } 3826 3827 int __init btrfs_auto_defrag_init(void) 3828 { 3829 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3830 sizeof(struct inode_defrag), 0, 3831 SLAB_MEM_SPREAD, 3832 NULL); 3833 if (!btrfs_inode_defrag_cachep) 3834 return -ENOMEM; 3835 3836 return 0; 3837 } 3838 3839 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3840 { 3841 int ret; 3842 3843 /* 3844 * So with compression we will find and lock a dirty page and clear the 3845 * first one as dirty, setup an async extent, and immediately return 3846 * with the entire range locked but with nobody actually marked with 3847 * writeback. So we can't just filemap_write_and_wait_range() and 3848 * expect it to work since it will just kick off a thread to do the 3849 * actual work. So we need to call filemap_fdatawrite_range _again_ 3850 * since it will wait on the page lock, which won't be unlocked until 3851 * after the pages have been marked as writeback and so we're good to go 3852 * from there. We have to do this otherwise we'll miss the ordered 3853 * extents and that results in badness. Please Josef, do not think you 3854 * know better and pull this out at some point in the future, it is 3855 * right and you are wrong. 3856 */ 3857 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3858 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3859 &BTRFS_I(inode)->runtime_flags)) 3860 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3861 3862 return ret; 3863 } 3864