xref: /openbmc/linux/fs/btrfs/file.c (revision 5104d265)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "compat.h"
43 #include "volumes.h"
44 
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 /*
47  * when auto defrag is enabled we
48  * queue up these defrag structs to remember which
49  * inodes need defragging passes
50  */
51 struct inode_defrag {
52 	struct rb_node rb_node;
53 	/* objectid */
54 	u64 ino;
55 	/*
56 	 * transid where the defrag was added, we search for
57 	 * extents newer than this
58 	 */
59 	u64 transid;
60 
61 	/* root objectid */
62 	u64 root;
63 
64 	/* last offset we were able to defrag */
65 	u64 last_offset;
66 
67 	/* if we've wrapped around back to zero once already */
68 	int cycled;
69 };
70 
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 				  struct inode_defrag *defrag2)
73 {
74 	if (defrag1->root > defrag2->root)
75 		return 1;
76 	else if (defrag1->root < defrag2->root)
77 		return -1;
78 	else if (defrag1->ino > defrag2->ino)
79 		return 1;
80 	else if (defrag1->ino < defrag2->ino)
81 		return -1;
82 	else
83 		return 0;
84 }
85 
86 /* pop a record for an inode into the defrag tree.  The lock
87  * must be held already
88  *
89  * If you're inserting a record for an older transid than an
90  * existing record, the transid already in the tree is lowered
91  *
92  * If an existing record is found the defrag item you
93  * pass in is freed
94  */
95 static int __btrfs_add_inode_defrag(struct inode *inode,
96 				    struct inode_defrag *defrag)
97 {
98 	struct btrfs_root *root = BTRFS_I(inode)->root;
99 	struct inode_defrag *entry;
100 	struct rb_node **p;
101 	struct rb_node *parent = NULL;
102 	int ret;
103 
104 	p = &root->fs_info->defrag_inodes.rb_node;
105 	while (*p) {
106 		parent = *p;
107 		entry = rb_entry(parent, struct inode_defrag, rb_node);
108 
109 		ret = __compare_inode_defrag(defrag, entry);
110 		if (ret < 0)
111 			p = &parent->rb_left;
112 		else if (ret > 0)
113 			p = &parent->rb_right;
114 		else {
115 			/* if we're reinserting an entry for
116 			 * an old defrag run, make sure to
117 			 * lower the transid of our existing record
118 			 */
119 			if (defrag->transid < entry->transid)
120 				entry->transid = defrag->transid;
121 			if (defrag->last_offset > entry->last_offset)
122 				entry->last_offset = defrag->last_offset;
123 			return -EEXIST;
124 		}
125 	}
126 	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
127 	rb_link_node(&defrag->rb_node, parent, p);
128 	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
129 	return 0;
130 }
131 
132 static inline int __need_auto_defrag(struct btrfs_root *root)
133 {
134 	if (!btrfs_test_opt(root, AUTO_DEFRAG))
135 		return 0;
136 
137 	if (btrfs_fs_closing(root->fs_info))
138 		return 0;
139 
140 	return 1;
141 }
142 
143 /*
144  * insert a defrag record for this inode if auto defrag is
145  * enabled
146  */
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 			   struct inode *inode)
149 {
150 	struct btrfs_root *root = BTRFS_I(inode)->root;
151 	struct inode_defrag *defrag;
152 	u64 transid;
153 	int ret;
154 
155 	if (!__need_auto_defrag(root))
156 		return 0;
157 
158 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
159 		return 0;
160 
161 	if (trans)
162 		transid = trans->transid;
163 	else
164 		transid = BTRFS_I(inode)->root->last_trans;
165 
166 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
167 	if (!defrag)
168 		return -ENOMEM;
169 
170 	defrag->ino = btrfs_ino(inode);
171 	defrag->transid = transid;
172 	defrag->root = root->root_key.objectid;
173 
174 	spin_lock(&root->fs_info->defrag_inodes_lock);
175 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
176 		/*
177 		 * If we set IN_DEFRAG flag and evict the inode from memory,
178 		 * and then re-read this inode, this new inode doesn't have
179 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
180 		 */
181 		ret = __btrfs_add_inode_defrag(inode, defrag);
182 		if (ret)
183 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 	} else {
185 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
186 	}
187 	spin_unlock(&root->fs_info->defrag_inodes_lock);
188 	return 0;
189 }
190 
191 /*
192  * Requeue the defrag object. If there is a defrag object that points to
193  * the same inode in the tree, we will merge them together (by
194  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
195  */
196 static void btrfs_requeue_inode_defrag(struct inode *inode,
197 				       struct inode_defrag *defrag)
198 {
199 	struct btrfs_root *root = BTRFS_I(inode)->root;
200 	int ret;
201 
202 	if (!__need_auto_defrag(root))
203 		goto out;
204 
205 	/*
206 	 * Here we don't check the IN_DEFRAG flag, because we need merge
207 	 * them together.
208 	 */
209 	spin_lock(&root->fs_info->defrag_inodes_lock);
210 	ret = __btrfs_add_inode_defrag(inode, defrag);
211 	spin_unlock(&root->fs_info->defrag_inodes_lock);
212 	if (ret)
213 		goto out;
214 	return;
215 out:
216 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
217 }
218 
219 /*
220  * pick the defragable inode that we want, if it doesn't exist, we will get
221  * the next one.
222  */
223 static struct inode_defrag *
224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
225 {
226 	struct inode_defrag *entry = NULL;
227 	struct inode_defrag tmp;
228 	struct rb_node *p;
229 	struct rb_node *parent = NULL;
230 	int ret;
231 
232 	tmp.ino = ino;
233 	tmp.root = root;
234 
235 	spin_lock(&fs_info->defrag_inodes_lock);
236 	p = fs_info->defrag_inodes.rb_node;
237 	while (p) {
238 		parent = p;
239 		entry = rb_entry(parent, struct inode_defrag, rb_node);
240 
241 		ret = __compare_inode_defrag(&tmp, entry);
242 		if (ret < 0)
243 			p = parent->rb_left;
244 		else if (ret > 0)
245 			p = parent->rb_right;
246 		else
247 			goto out;
248 	}
249 
250 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
251 		parent = rb_next(parent);
252 		if (parent)
253 			entry = rb_entry(parent, struct inode_defrag, rb_node);
254 		else
255 			entry = NULL;
256 	}
257 out:
258 	if (entry)
259 		rb_erase(parent, &fs_info->defrag_inodes);
260 	spin_unlock(&fs_info->defrag_inodes_lock);
261 	return entry;
262 }
263 
264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
265 {
266 	struct inode_defrag *defrag;
267 	struct rb_node *node;
268 
269 	spin_lock(&fs_info->defrag_inodes_lock);
270 	node = rb_first(&fs_info->defrag_inodes);
271 	while (node) {
272 		rb_erase(node, &fs_info->defrag_inodes);
273 		defrag = rb_entry(node, struct inode_defrag, rb_node);
274 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
275 
276 		if (need_resched()) {
277 			spin_unlock(&fs_info->defrag_inodes_lock);
278 			cond_resched();
279 			spin_lock(&fs_info->defrag_inodes_lock);
280 		}
281 
282 		node = rb_first(&fs_info->defrag_inodes);
283 	}
284 	spin_unlock(&fs_info->defrag_inodes_lock);
285 }
286 
287 #define BTRFS_DEFRAG_BATCH	1024
288 
289 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
290 				    struct inode_defrag *defrag)
291 {
292 	struct btrfs_root *inode_root;
293 	struct inode *inode;
294 	struct btrfs_key key;
295 	struct btrfs_ioctl_defrag_range_args range;
296 	int num_defrag;
297 	int index;
298 	int ret;
299 
300 	/* get the inode */
301 	key.objectid = defrag->root;
302 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
303 	key.offset = (u64)-1;
304 
305 	index = srcu_read_lock(&fs_info->subvol_srcu);
306 
307 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
308 	if (IS_ERR(inode_root)) {
309 		ret = PTR_ERR(inode_root);
310 		goto cleanup;
311 	}
312 
313 	key.objectid = defrag->ino;
314 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
315 	key.offset = 0;
316 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
317 	if (IS_ERR(inode)) {
318 		ret = PTR_ERR(inode);
319 		goto cleanup;
320 	}
321 	srcu_read_unlock(&fs_info->subvol_srcu, index);
322 
323 	/* do a chunk of defrag */
324 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
325 	memset(&range, 0, sizeof(range));
326 	range.len = (u64)-1;
327 	range.start = defrag->last_offset;
328 
329 	sb_start_write(fs_info->sb);
330 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
331 				       BTRFS_DEFRAG_BATCH);
332 	sb_end_write(fs_info->sb);
333 	/*
334 	 * if we filled the whole defrag batch, there
335 	 * must be more work to do.  Queue this defrag
336 	 * again
337 	 */
338 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
339 		defrag->last_offset = range.start;
340 		btrfs_requeue_inode_defrag(inode, defrag);
341 	} else if (defrag->last_offset && !defrag->cycled) {
342 		/*
343 		 * we didn't fill our defrag batch, but
344 		 * we didn't start at zero.  Make sure we loop
345 		 * around to the start of the file.
346 		 */
347 		defrag->last_offset = 0;
348 		defrag->cycled = 1;
349 		btrfs_requeue_inode_defrag(inode, defrag);
350 	} else {
351 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
352 	}
353 
354 	iput(inode);
355 	return 0;
356 cleanup:
357 	srcu_read_unlock(&fs_info->subvol_srcu, index);
358 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
359 	return ret;
360 }
361 
362 /*
363  * run through the list of inodes in the FS that need
364  * defragging
365  */
366 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
367 {
368 	struct inode_defrag *defrag;
369 	u64 first_ino = 0;
370 	u64 root_objectid = 0;
371 
372 	atomic_inc(&fs_info->defrag_running);
373 	while(1) {
374 		/* Pause the auto defragger. */
375 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
376 			     &fs_info->fs_state))
377 			break;
378 
379 		if (!__need_auto_defrag(fs_info->tree_root))
380 			break;
381 
382 		/* find an inode to defrag */
383 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
384 						 first_ino);
385 		if (!defrag) {
386 			if (root_objectid || first_ino) {
387 				root_objectid = 0;
388 				first_ino = 0;
389 				continue;
390 			} else {
391 				break;
392 			}
393 		}
394 
395 		first_ino = defrag->ino + 1;
396 		root_objectid = defrag->root;
397 
398 		__btrfs_run_defrag_inode(fs_info, defrag);
399 	}
400 	atomic_dec(&fs_info->defrag_running);
401 
402 	/*
403 	 * during unmount, we use the transaction_wait queue to
404 	 * wait for the defragger to stop
405 	 */
406 	wake_up(&fs_info->transaction_wait);
407 	return 0;
408 }
409 
410 /* simple helper to fault in pages and copy.  This should go away
411  * and be replaced with calls into generic code.
412  */
413 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
414 					 size_t write_bytes,
415 					 struct page **prepared_pages,
416 					 struct iov_iter *i)
417 {
418 	size_t copied = 0;
419 	size_t total_copied = 0;
420 	int pg = 0;
421 	int offset = pos & (PAGE_CACHE_SIZE - 1);
422 
423 	while (write_bytes > 0) {
424 		size_t count = min_t(size_t,
425 				     PAGE_CACHE_SIZE - offset, write_bytes);
426 		struct page *page = prepared_pages[pg];
427 		/*
428 		 * Copy data from userspace to the current page
429 		 *
430 		 * Disable pagefault to avoid recursive lock since
431 		 * the pages are already locked
432 		 */
433 		pagefault_disable();
434 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
435 		pagefault_enable();
436 
437 		/* Flush processor's dcache for this page */
438 		flush_dcache_page(page);
439 
440 		/*
441 		 * if we get a partial write, we can end up with
442 		 * partially up to date pages.  These add
443 		 * a lot of complexity, so make sure they don't
444 		 * happen by forcing this copy to be retried.
445 		 *
446 		 * The rest of the btrfs_file_write code will fall
447 		 * back to page at a time copies after we return 0.
448 		 */
449 		if (!PageUptodate(page) && copied < count)
450 			copied = 0;
451 
452 		iov_iter_advance(i, copied);
453 		write_bytes -= copied;
454 		total_copied += copied;
455 
456 		/* Return to btrfs_file_aio_write to fault page */
457 		if (unlikely(copied == 0))
458 			break;
459 
460 		if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
461 			offset += copied;
462 		} else {
463 			pg++;
464 			offset = 0;
465 		}
466 	}
467 	return total_copied;
468 }
469 
470 /*
471  * unlocks pages after btrfs_file_write is done with them
472  */
473 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
474 {
475 	size_t i;
476 	for (i = 0; i < num_pages; i++) {
477 		/* page checked is some magic around finding pages that
478 		 * have been modified without going through btrfs_set_page_dirty
479 		 * clear it here
480 		 */
481 		ClearPageChecked(pages[i]);
482 		unlock_page(pages[i]);
483 		mark_page_accessed(pages[i]);
484 		page_cache_release(pages[i]);
485 	}
486 }
487 
488 /*
489  * after copy_from_user, pages need to be dirtied and we need to make
490  * sure holes are created between the current EOF and the start of
491  * any next extents (if required).
492  *
493  * this also makes the decision about creating an inline extent vs
494  * doing real data extents, marking pages dirty and delalloc as required.
495  */
496 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
497 			     struct page **pages, size_t num_pages,
498 			     loff_t pos, size_t write_bytes,
499 			     struct extent_state **cached)
500 {
501 	int err = 0;
502 	int i;
503 	u64 num_bytes;
504 	u64 start_pos;
505 	u64 end_of_last_block;
506 	u64 end_pos = pos + write_bytes;
507 	loff_t isize = i_size_read(inode);
508 
509 	start_pos = pos & ~((u64)root->sectorsize - 1);
510 	num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
511 
512 	end_of_last_block = start_pos + num_bytes - 1;
513 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
514 					cached);
515 	if (err)
516 		return err;
517 
518 	for (i = 0; i < num_pages; i++) {
519 		struct page *p = pages[i];
520 		SetPageUptodate(p);
521 		ClearPageChecked(p);
522 		set_page_dirty(p);
523 	}
524 
525 	/*
526 	 * we've only changed i_size in ram, and we haven't updated
527 	 * the disk i_size.  There is no need to log the inode
528 	 * at this time.
529 	 */
530 	if (end_pos > isize)
531 		i_size_write(inode, end_pos);
532 	return 0;
533 }
534 
535 /*
536  * this drops all the extents in the cache that intersect the range
537  * [start, end].  Existing extents are split as required.
538  */
539 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
540 			     int skip_pinned)
541 {
542 	struct extent_map *em;
543 	struct extent_map *split = NULL;
544 	struct extent_map *split2 = NULL;
545 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
546 	u64 len = end - start + 1;
547 	u64 gen;
548 	int ret;
549 	int testend = 1;
550 	unsigned long flags;
551 	int compressed = 0;
552 	bool modified;
553 
554 	WARN_ON(end < start);
555 	if (end == (u64)-1) {
556 		len = (u64)-1;
557 		testend = 0;
558 	}
559 	while (1) {
560 		int no_splits = 0;
561 
562 		modified = false;
563 		if (!split)
564 			split = alloc_extent_map();
565 		if (!split2)
566 			split2 = alloc_extent_map();
567 		if (!split || !split2)
568 			no_splits = 1;
569 
570 		write_lock(&em_tree->lock);
571 		em = lookup_extent_mapping(em_tree, start, len);
572 		if (!em) {
573 			write_unlock(&em_tree->lock);
574 			break;
575 		}
576 		flags = em->flags;
577 		gen = em->generation;
578 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
579 			if (testend && em->start + em->len >= start + len) {
580 				free_extent_map(em);
581 				write_unlock(&em_tree->lock);
582 				break;
583 			}
584 			start = em->start + em->len;
585 			if (testend)
586 				len = start + len - (em->start + em->len);
587 			free_extent_map(em);
588 			write_unlock(&em_tree->lock);
589 			continue;
590 		}
591 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
592 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
593 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
594 		modified = !list_empty(&em->list);
595 		remove_extent_mapping(em_tree, em);
596 		if (no_splits)
597 			goto next;
598 
599 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
600 		    em->start < start) {
601 			split->start = em->start;
602 			split->len = start - em->start;
603 			split->orig_start = em->orig_start;
604 			split->block_start = em->block_start;
605 
606 			if (compressed)
607 				split->block_len = em->block_len;
608 			else
609 				split->block_len = split->len;
610 			split->ram_bytes = em->ram_bytes;
611 			split->orig_block_len = max(split->block_len,
612 						    em->orig_block_len);
613 			split->generation = gen;
614 			split->bdev = em->bdev;
615 			split->flags = flags;
616 			split->compress_type = em->compress_type;
617 			ret = add_extent_mapping(em_tree, split, modified);
618 			BUG_ON(ret); /* Logic error */
619 			free_extent_map(split);
620 			split = split2;
621 			split2 = NULL;
622 		}
623 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
624 		    testend && em->start + em->len > start + len) {
625 			u64 diff = start + len - em->start;
626 
627 			split->start = start + len;
628 			split->len = em->start + em->len - (start + len);
629 			split->bdev = em->bdev;
630 			split->flags = flags;
631 			split->compress_type = em->compress_type;
632 			split->generation = gen;
633 			split->orig_block_len = max(em->block_len,
634 						    em->orig_block_len);
635 			split->ram_bytes = em->ram_bytes;
636 
637 			if (compressed) {
638 				split->block_len = em->block_len;
639 				split->block_start = em->block_start;
640 				split->orig_start = em->orig_start;
641 			} else {
642 				split->block_len = split->len;
643 				split->block_start = em->block_start + diff;
644 				split->orig_start = em->orig_start;
645 			}
646 
647 			ret = add_extent_mapping(em_tree, split, modified);
648 			BUG_ON(ret); /* Logic error */
649 			free_extent_map(split);
650 			split = NULL;
651 		}
652 next:
653 		write_unlock(&em_tree->lock);
654 
655 		/* once for us */
656 		free_extent_map(em);
657 		/* once for the tree*/
658 		free_extent_map(em);
659 	}
660 	if (split)
661 		free_extent_map(split);
662 	if (split2)
663 		free_extent_map(split2);
664 }
665 
666 /*
667  * this is very complex, but the basic idea is to drop all extents
668  * in the range start - end.  hint_block is filled in with a block number
669  * that would be a good hint to the block allocator for this file.
670  *
671  * If an extent intersects the range but is not entirely inside the range
672  * it is either truncated or split.  Anything entirely inside the range
673  * is deleted from the tree.
674  */
675 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
676 			 struct btrfs_root *root, struct inode *inode,
677 			 struct btrfs_path *path, u64 start, u64 end,
678 			 u64 *drop_end, int drop_cache)
679 {
680 	struct extent_buffer *leaf;
681 	struct btrfs_file_extent_item *fi;
682 	struct btrfs_key key;
683 	struct btrfs_key new_key;
684 	u64 ino = btrfs_ino(inode);
685 	u64 search_start = start;
686 	u64 disk_bytenr = 0;
687 	u64 num_bytes = 0;
688 	u64 extent_offset = 0;
689 	u64 extent_end = 0;
690 	int del_nr = 0;
691 	int del_slot = 0;
692 	int extent_type;
693 	int recow;
694 	int ret;
695 	int modify_tree = -1;
696 	int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
697 	int found = 0;
698 
699 	if (drop_cache)
700 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
701 
702 	if (start >= BTRFS_I(inode)->disk_i_size)
703 		modify_tree = 0;
704 
705 	while (1) {
706 		recow = 0;
707 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
708 					       search_start, modify_tree);
709 		if (ret < 0)
710 			break;
711 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
712 			leaf = path->nodes[0];
713 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
714 			if (key.objectid == ino &&
715 			    key.type == BTRFS_EXTENT_DATA_KEY)
716 				path->slots[0]--;
717 		}
718 		ret = 0;
719 next_slot:
720 		leaf = path->nodes[0];
721 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
722 			BUG_ON(del_nr > 0);
723 			ret = btrfs_next_leaf(root, path);
724 			if (ret < 0)
725 				break;
726 			if (ret > 0) {
727 				ret = 0;
728 				break;
729 			}
730 			leaf = path->nodes[0];
731 			recow = 1;
732 		}
733 
734 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
735 		if (key.objectid > ino ||
736 		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
737 			break;
738 
739 		fi = btrfs_item_ptr(leaf, path->slots[0],
740 				    struct btrfs_file_extent_item);
741 		extent_type = btrfs_file_extent_type(leaf, fi);
742 
743 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
744 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
745 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
746 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
747 			extent_offset = btrfs_file_extent_offset(leaf, fi);
748 			extent_end = key.offset +
749 				btrfs_file_extent_num_bytes(leaf, fi);
750 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
751 			extent_end = key.offset +
752 				btrfs_file_extent_inline_len(leaf, fi);
753 		} else {
754 			WARN_ON(1);
755 			extent_end = search_start;
756 		}
757 
758 		if (extent_end <= search_start) {
759 			path->slots[0]++;
760 			goto next_slot;
761 		}
762 
763 		found = 1;
764 		search_start = max(key.offset, start);
765 		if (recow || !modify_tree) {
766 			modify_tree = -1;
767 			btrfs_release_path(path);
768 			continue;
769 		}
770 
771 		/*
772 		 *     | - range to drop - |
773 		 *  | -------- extent -------- |
774 		 */
775 		if (start > key.offset && end < extent_end) {
776 			BUG_ON(del_nr > 0);
777 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
778 
779 			memcpy(&new_key, &key, sizeof(new_key));
780 			new_key.offset = start;
781 			ret = btrfs_duplicate_item(trans, root, path,
782 						   &new_key);
783 			if (ret == -EAGAIN) {
784 				btrfs_release_path(path);
785 				continue;
786 			}
787 			if (ret < 0)
788 				break;
789 
790 			leaf = path->nodes[0];
791 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
792 					    struct btrfs_file_extent_item);
793 			btrfs_set_file_extent_num_bytes(leaf, fi,
794 							start - key.offset);
795 
796 			fi = btrfs_item_ptr(leaf, path->slots[0],
797 					    struct btrfs_file_extent_item);
798 
799 			extent_offset += start - key.offset;
800 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
801 			btrfs_set_file_extent_num_bytes(leaf, fi,
802 							extent_end - start);
803 			btrfs_mark_buffer_dirty(leaf);
804 
805 			if (update_refs && disk_bytenr > 0) {
806 				ret = btrfs_inc_extent_ref(trans, root,
807 						disk_bytenr, num_bytes, 0,
808 						root->root_key.objectid,
809 						new_key.objectid,
810 						start - extent_offset, 0);
811 				BUG_ON(ret); /* -ENOMEM */
812 			}
813 			key.offset = start;
814 		}
815 		/*
816 		 *  | ---- range to drop ----- |
817 		 *      | -------- extent -------- |
818 		 */
819 		if (start <= key.offset && end < extent_end) {
820 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
821 
822 			memcpy(&new_key, &key, sizeof(new_key));
823 			new_key.offset = end;
824 			btrfs_set_item_key_safe(root, path, &new_key);
825 
826 			extent_offset += end - key.offset;
827 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
828 			btrfs_set_file_extent_num_bytes(leaf, fi,
829 							extent_end - end);
830 			btrfs_mark_buffer_dirty(leaf);
831 			if (update_refs && disk_bytenr > 0)
832 				inode_sub_bytes(inode, end - key.offset);
833 			break;
834 		}
835 
836 		search_start = extent_end;
837 		/*
838 		 *       | ---- range to drop ----- |
839 		 *  | -------- extent -------- |
840 		 */
841 		if (start > key.offset && end >= extent_end) {
842 			BUG_ON(del_nr > 0);
843 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
844 
845 			btrfs_set_file_extent_num_bytes(leaf, fi,
846 							start - key.offset);
847 			btrfs_mark_buffer_dirty(leaf);
848 			if (update_refs && disk_bytenr > 0)
849 				inode_sub_bytes(inode, extent_end - start);
850 			if (end == extent_end)
851 				break;
852 
853 			path->slots[0]++;
854 			goto next_slot;
855 		}
856 
857 		/*
858 		 *  | ---- range to drop ----- |
859 		 *    | ------ extent ------ |
860 		 */
861 		if (start <= key.offset && end >= extent_end) {
862 			if (del_nr == 0) {
863 				del_slot = path->slots[0];
864 				del_nr = 1;
865 			} else {
866 				BUG_ON(del_slot + del_nr != path->slots[0]);
867 				del_nr++;
868 			}
869 
870 			if (update_refs &&
871 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
872 				inode_sub_bytes(inode,
873 						extent_end - key.offset);
874 				extent_end = ALIGN(extent_end,
875 						   root->sectorsize);
876 			} else if (update_refs && disk_bytenr > 0) {
877 				ret = btrfs_free_extent(trans, root,
878 						disk_bytenr, num_bytes, 0,
879 						root->root_key.objectid,
880 						key.objectid, key.offset -
881 						extent_offset, 0);
882 				BUG_ON(ret); /* -ENOMEM */
883 				inode_sub_bytes(inode,
884 						extent_end - key.offset);
885 			}
886 
887 			if (end == extent_end)
888 				break;
889 
890 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
891 				path->slots[0]++;
892 				goto next_slot;
893 			}
894 
895 			ret = btrfs_del_items(trans, root, path, del_slot,
896 					      del_nr);
897 			if (ret) {
898 				btrfs_abort_transaction(trans, root, ret);
899 				break;
900 			}
901 
902 			del_nr = 0;
903 			del_slot = 0;
904 
905 			btrfs_release_path(path);
906 			continue;
907 		}
908 
909 		BUG_ON(1);
910 	}
911 
912 	if (!ret && del_nr > 0) {
913 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
914 		if (ret)
915 			btrfs_abort_transaction(trans, root, ret);
916 	}
917 
918 	if (drop_end)
919 		*drop_end = found ? min(end, extent_end) : end;
920 	btrfs_release_path(path);
921 	return ret;
922 }
923 
924 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
925 		       struct btrfs_root *root, struct inode *inode, u64 start,
926 		       u64 end, int drop_cache)
927 {
928 	struct btrfs_path *path;
929 	int ret;
930 
931 	path = btrfs_alloc_path();
932 	if (!path)
933 		return -ENOMEM;
934 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
935 				   drop_cache);
936 	btrfs_free_path(path);
937 	return ret;
938 }
939 
940 static int extent_mergeable(struct extent_buffer *leaf, int slot,
941 			    u64 objectid, u64 bytenr, u64 orig_offset,
942 			    u64 *start, u64 *end)
943 {
944 	struct btrfs_file_extent_item *fi;
945 	struct btrfs_key key;
946 	u64 extent_end;
947 
948 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
949 		return 0;
950 
951 	btrfs_item_key_to_cpu(leaf, &key, slot);
952 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
953 		return 0;
954 
955 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
956 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
957 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
958 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
959 	    btrfs_file_extent_compression(leaf, fi) ||
960 	    btrfs_file_extent_encryption(leaf, fi) ||
961 	    btrfs_file_extent_other_encoding(leaf, fi))
962 		return 0;
963 
964 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
965 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
966 		return 0;
967 
968 	*start = key.offset;
969 	*end = extent_end;
970 	return 1;
971 }
972 
973 /*
974  * Mark extent in the range start - end as written.
975  *
976  * This changes extent type from 'pre-allocated' to 'regular'. If only
977  * part of extent is marked as written, the extent will be split into
978  * two or three.
979  */
980 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
981 			      struct inode *inode, u64 start, u64 end)
982 {
983 	struct btrfs_root *root = BTRFS_I(inode)->root;
984 	struct extent_buffer *leaf;
985 	struct btrfs_path *path;
986 	struct btrfs_file_extent_item *fi;
987 	struct btrfs_key key;
988 	struct btrfs_key new_key;
989 	u64 bytenr;
990 	u64 num_bytes;
991 	u64 extent_end;
992 	u64 orig_offset;
993 	u64 other_start;
994 	u64 other_end;
995 	u64 split;
996 	int del_nr = 0;
997 	int del_slot = 0;
998 	int recow;
999 	int ret;
1000 	u64 ino = btrfs_ino(inode);
1001 
1002 	path = btrfs_alloc_path();
1003 	if (!path)
1004 		return -ENOMEM;
1005 again:
1006 	recow = 0;
1007 	split = start;
1008 	key.objectid = ino;
1009 	key.type = BTRFS_EXTENT_DATA_KEY;
1010 	key.offset = split;
1011 
1012 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1013 	if (ret < 0)
1014 		goto out;
1015 	if (ret > 0 && path->slots[0] > 0)
1016 		path->slots[0]--;
1017 
1018 	leaf = path->nodes[0];
1019 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1020 	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1021 	fi = btrfs_item_ptr(leaf, path->slots[0],
1022 			    struct btrfs_file_extent_item);
1023 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1024 	       BTRFS_FILE_EXTENT_PREALLOC);
1025 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1026 	BUG_ON(key.offset > start || extent_end < end);
1027 
1028 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1029 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1030 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1031 	memcpy(&new_key, &key, sizeof(new_key));
1032 
1033 	if (start == key.offset && end < extent_end) {
1034 		other_start = 0;
1035 		other_end = start;
1036 		if (extent_mergeable(leaf, path->slots[0] - 1,
1037 				     ino, bytenr, orig_offset,
1038 				     &other_start, &other_end)) {
1039 			new_key.offset = end;
1040 			btrfs_set_item_key_safe(root, path, &new_key);
1041 			fi = btrfs_item_ptr(leaf, path->slots[0],
1042 					    struct btrfs_file_extent_item);
1043 			btrfs_set_file_extent_generation(leaf, fi,
1044 							 trans->transid);
1045 			btrfs_set_file_extent_num_bytes(leaf, fi,
1046 							extent_end - end);
1047 			btrfs_set_file_extent_offset(leaf, fi,
1048 						     end - orig_offset);
1049 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1050 					    struct btrfs_file_extent_item);
1051 			btrfs_set_file_extent_generation(leaf, fi,
1052 							 trans->transid);
1053 			btrfs_set_file_extent_num_bytes(leaf, fi,
1054 							end - other_start);
1055 			btrfs_mark_buffer_dirty(leaf);
1056 			goto out;
1057 		}
1058 	}
1059 
1060 	if (start > key.offset && end == extent_end) {
1061 		other_start = end;
1062 		other_end = 0;
1063 		if (extent_mergeable(leaf, path->slots[0] + 1,
1064 				     ino, bytenr, orig_offset,
1065 				     &other_start, &other_end)) {
1066 			fi = btrfs_item_ptr(leaf, path->slots[0],
1067 					    struct btrfs_file_extent_item);
1068 			btrfs_set_file_extent_num_bytes(leaf, fi,
1069 							start - key.offset);
1070 			btrfs_set_file_extent_generation(leaf, fi,
1071 							 trans->transid);
1072 			path->slots[0]++;
1073 			new_key.offset = start;
1074 			btrfs_set_item_key_safe(root, path, &new_key);
1075 
1076 			fi = btrfs_item_ptr(leaf, path->slots[0],
1077 					    struct btrfs_file_extent_item);
1078 			btrfs_set_file_extent_generation(leaf, fi,
1079 							 trans->transid);
1080 			btrfs_set_file_extent_num_bytes(leaf, fi,
1081 							other_end - start);
1082 			btrfs_set_file_extent_offset(leaf, fi,
1083 						     start - orig_offset);
1084 			btrfs_mark_buffer_dirty(leaf);
1085 			goto out;
1086 		}
1087 	}
1088 
1089 	while (start > key.offset || end < extent_end) {
1090 		if (key.offset == start)
1091 			split = end;
1092 
1093 		new_key.offset = split;
1094 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1095 		if (ret == -EAGAIN) {
1096 			btrfs_release_path(path);
1097 			goto again;
1098 		}
1099 		if (ret < 0) {
1100 			btrfs_abort_transaction(trans, root, ret);
1101 			goto out;
1102 		}
1103 
1104 		leaf = path->nodes[0];
1105 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1106 				    struct btrfs_file_extent_item);
1107 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1108 		btrfs_set_file_extent_num_bytes(leaf, fi,
1109 						split - key.offset);
1110 
1111 		fi = btrfs_item_ptr(leaf, path->slots[0],
1112 				    struct btrfs_file_extent_item);
1113 
1114 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1115 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1116 		btrfs_set_file_extent_num_bytes(leaf, fi,
1117 						extent_end - split);
1118 		btrfs_mark_buffer_dirty(leaf);
1119 
1120 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1121 					   root->root_key.objectid,
1122 					   ino, orig_offset, 0);
1123 		BUG_ON(ret); /* -ENOMEM */
1124 
1125 		if (split == start) {
1126 			key.offset = start;
1127 		} else {
1128 			BUG_ON(start != key.offset);
1129 			path->slots[0]--;
1130 			extent_end = end;
1131 		}
1132 		recow = 1;
1133 	}
1134 
1135 	other_start = end;
1136 	other_end = 0;
1137 	if (extent_mergeable(leaf, path->slots[0] + 1,
1138 			     ino, bytenr, orig_offset,
1139 			     &other_start, &other_end)) {
1140 		if (recow) {
1141 			btrfs_release_path(path);
1142 			goto again;
1143 		}
1144 		extent_end = other_end;
1145 		del_slot = path->slots[0] + 1;
1146 		del_nr++;
1147 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1148 					0, root->root_key.objectid,
1149 					ino, orig_offset, 0);
1150 		BUG_ON(ret); /* -ENOMEM */
1151 	}
1152 	other_start = 0;
1153 	other_end = start;
1154 	if (extent_mergeable(leaf, path->slots[0] - 1,
1155 			     ino, bytenr, orig_offset,
1156 			     &other_start, &other_end)) {
1157 		if (recow) {
1158 			btrfs_release_path(path);
1159 			goto again;
1160 		}
1161 		key.offset = other_start;
1162 		del_slot = path->slots[0];
1163 		del_nr++;
1164 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1165 					0, root->root_key.objectid,
1166 					ino, orig_offset, 0);
1167 		BUG_ON(ret); /* -ENOMEM */
1168 	}
1169 	if (del_nr == 0) {
1170 		fi = btrfs_item_ptr(leaf, path->slots[0],
1171 			   struct btrfs_file_extent_item);
1172 		btrfs_set_file_extent_type(leaf, fi,
1173 					   BTRFS_FILE_EXTENT_REG);
1174 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1175 		btrfs_mark_buffer_dirty(leaf);
1176 	} else {
1177 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1178 			   struct btrfs_file_extent_item);
1179 		btrfs_set_file_extent_type(leaf, fi,
1180 					   BTRFS_FILE_EXTENT_REG);
1181 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1182 		btrfs_set_file_extent_num_bytes(leaf, fi,
1183 						extent_end - key.offset);
1184 		btrfs_mark_buffer_dirty(leaf);
1185 
1186 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1187 		if (ret < 0) {
1188 			btrfs_abort_transaction(trans, root, ret);
1189 			goto out;
1190 		}
1191 	}
1192 out:
1193 	btrfs_free_path(path);
1194 	return 0;
1195 }
1196 
1197 /*
1198  * on error we return an unlocked page and the error value
1199  * on success we return a locked page and 0
1200  */
1201 static int prepare_uptodate_page(struct page *page, u64 pos,
1202 				 bool force_uptodate)
1203 {
1204 	int ret = 0;
1205 
1206 	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1207 	    !PageUptodate(page)) {
1208 		ret = btrfs_readpage(NULL, page);
1209 		if (ret)
1210 			return ret;
1211 		lock_page(page);
1212 		if (!PageUptodate(page)) {
1213 			unlock_page(page);
1214 			return -EIO;
1215 		}
1216 	}
1217 	return 0;
1218 }
1219 
1220 /*
1221  * this gets pages into the page cache and locks them down, it also properly
1222  * waits for data=ordered extents to finish before allowing the pages to be
1223  * modified.
1224  */
1225 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1226 			 struct page **pages, size_t num_pages,
1227 			 loff_t pos, unsigned long first_index,
1228 			 size_t write_bytes, bool force_uptodate)
1229 {
1230 	struct extent_state *cached_state = NULL;
1231 	int i;
1232 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
1233 	struct inode *inode = file_inode(file);
1234 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1235 	int err = 0;
1236 	int faili = 0;
1237 	u64 start_pos;
1238 	u64 last_pos;
1239 
1240 	start_pos = pos & ~((u64)root->sectorsize - 1);
1241 	last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1242 
1243 again:
1244 	for (i = 0; i < num_pages; i++) {
1245 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1246 					       mask | __GFP_WRITE);
1247 		if (!pages[i]) {
1248 			faili = i - 1;
1249 			err = -ENOMEM;
1250 			goto fail;
1251 		}
1252 
1253 		if (i == 0)
1254 			err = prepare_uptodate_page(pages[i], pos,
1255 						    force_uptodate);
1256 		if (i == num_pages - 1)
1257 			err = prepare_uptodate_page(pages[i],
1258 						    pos + write_bytes, false);
1259 		if (err) {
1260 			page_cache_release(pages[i]);
1261 			faili = i - 1;
1262 			goto fail;
1263 		}
1264 		wait_on_page_writeback(pages[i]);
1265 	}
1266 	err = 0;
1267 	if (start_pos < inode->i_size) {
1268 		struct btrfs_ordered_extent *ordered;
1269 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1270 				 start_pos, last_pos - 1, 0, &cached_state);
1271 		ordered = btrfs_lookup_first_ordered_extent(inode,
1272 							    last_pos - 1);
1273 		if (ordered &&
1274 		    ordered->file_offset + ordered->len > start_pos &&
1275 		    ordered->file_offset < last_pos) {
1276 			btrfs_put_ordered_extent(ordered);
1277 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1278 					     start_pos, last_pos - 1,
1279 					     &cached_state, GFP_NOFS);
1280 			for (i = 0; i < num_pages; i++) {
1281 				unlock_page(pages[i]);
1282 				page_cache_release(pages[i]);
1283 			}
1284 			btrfs_wait_ordered_range(inode, start_pos,
1285 						 last_pos - start_pos);
1286 			goto again;
1287 		}
1288 		if (ordered)
1289 			btrfs_put_ordered_extent(ordered);
1290 
1291 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1292 				  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1293 				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1294 				  0, 0, &cached_state, GFP_NOFS);
1295 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1296 				     start_pos, last_pos - 1, &cached_state,
1297 				     GFP_NOFS);
1298 	}
1299 	for (i = 0; i < num_pages; i++) {
1300 		if (clear_page_dirty_for_io(pages[i]))
1301 			account_page_redirty(pages[i]);
1302 		set_page_extent_mapped(pages[i]);
1303 		WARN_ON(!PageLocked(pages[i]));
1304 	}
1305 	return 0;
1306 fail:
1307 	while (faili >= 0) {
1308 		unlock_page(pages[faili]);
1309 		page_cache_release(pages[faili]);
1310 		faili--;
1311 	}
1312 	return err;
1313 
1314 }
1315 
1316 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1317 				    size_t *write_bytes)
1318 {
1319 	struct btrfs_trans_handle *trans;
1320 	struct btrfs_root *root = BTRFS_I(inode)->root;
1321 	struct btrfs_ordered_extent *ordered;
1322 	u64 lockstart, lockend;
1323 	u64 num_bytes;
1324 	int ret;
1325 
1326 	lockstart = round_down(pos, root->sectorsize);
1327 	lockend = lockstart + round_up(*write_bytes, root->sectorsize) - 1;
1328 
1329 	while (1) {
1330 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1331 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1332 						     lockend - lockstart + 1);
1333 		if (!ordered) {
1334 			break;
1335 		}
1336 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1337 		btrfs_start_ordered_extent(inode, ordered, 1);
1338 		btrfs_put_ordered_extent(ordered);
1339 	}
1340 
1341 	trans = btrfs_join_transaction(root);
1342 	if (IS_ERR(trans)) {
1343 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1344 		return PTR_ERR(trans);
1345 	}
1346 
1347 	num_bytes = lockend - lockstart + 1;
1348 	ret = can_nocow_extent(trans, inode, lockstart, &num_bytes, NULL, NULL,
1349 			       NULL);
1350 	btrfs_end_transaction(trans, root);
1351 	if (ret <= 0) {
1352 		ret = 0;
1353 	} else {
1354 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1355 				 EXTENT_DIRTY | EXTENT_DELALLOC |
1356 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1357 				 NULL, GFP_NOFS);
1358 		*write_bytes = min_t(size_t, *write_bytes, num_bytes);
1359 	}
1360 
1361 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1362 
1363 	return ret;
1364 }
1365 
1366 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1367 					       struct iov_iter *i,
1368 					       loff_t pos)
1369 {
1370 	struct inode *inode = file_inode(file);
1371 	struct btrfs_root *root = BTRFS_I(inode)->root;
1372 	struct page **pages = NULL;
1373 	u64 release_bytes = 0;
1374 	unsigned long first_index;
1375 	size_t num_written = 0;
1376 	int nrptrs;
1377 	int ret = 0;
1378 	bool only_release_metadata = false;
1379 	bool force_page_uptodate = false;
1380 
1381 	nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1382 		     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1383 		     (sizeof(struct page *)));
1384 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1385 	nrptrs = max(nrptrs, 8);
1386 	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1387 	if (!pages)
1388 		return -ENOMEM;
1389 
1390 	first_index = pos >> PAGE_CACHE_SHIFT;
1391 
1392 	while (iov_iter_count(i) > 0) {
1393 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1394 		size_t write_bytes = min(iov_iter_count(i),
1395 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
1396 					 offset);
1397 		size_t num_pages = (write_bytes + offset +
1398 				    PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1399 		size_t reserve_bytes;
1400 		size_t dirty_pages;
1401 		size_t copied;
1402 
1403 		WARN_ON(num_pages > nrptrs);
1404 
1405 		/*
1406 		 * Fault pages before locking them in prepare_pages
1407 		 * to avoid recursive lock
1408 		 */
1409 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1410 			ret = -EFAULT;
1411 			break;
1412 		}
1413 
1414 		reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1415 		ret = btrfs_check_data_free_space(inode, reserve_bytes);
1416 		if (ret == -ENOSPC &&
1417 		    (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1418 					      BTRFS_INODE_PREALLOC))) {
1419 			ret = check_can_nocow(inode, pos, &write_bytes);
1420 			if (ret > 0) {
1421 				only_release_metadata = true;
1422 				/*
1423 				 * our prealloc extent may be smaller than
1424 				 * write_bytes, so scale down.
1425 				 */
1426 				num_pages = (write_bytes + offset +
1427 					     PAGE_CACHE_SIZE - 1) >>
1428 					PAGE_CACHE_SHIFT;
1429 				reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1430 				ret = 0;
1431 			} else {
1432 				ret = -ENOSPC;
1433 			}
1434 		}
1435 
1436 		if (ret)
1437 			break;
1438 
1439 		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1440 		if (ret) {
1441 			if (!only_release_metadata)
1442 				btrfs_free_reserved_data_space(inode,
1443 							       reserve_bytes);
1444 			break;
1445 		}
1446 
1447 		release_bytes = reserve_bytes;
1448 
1449 		/*
1450 		 * This is going to setup the pages array with the number of
1451 		 * pages we want, so we don't really need to worry about the
1452 		 * contents of pages from loop to loop
1453 		 */
1454 		ret = prepare_pages(root, file, pages, num_pages,
1455 				    pos, first_index, write_bytes,
1456 				    force_page_uptodate);
1457 		if (ret)
1458 			break;
1459 
1460 		copied = btrfs_copy_from_user(pos, num_pages,
1461 					   write_bytes, pages, i);
1462 
1463 		/*
1464 		 * if we have trouble faulting in the pages, fall
1465 		 * back to one page at a time
1466 		 */
1467 		if (copied < write_bytes)
1468 			nrptrs = 1;
1469 
1470 		if (copied == 0) {
1471 			force_page_uptodate = true;
1472 			dirty_pages = 0;
1473 		} else {
1474 			force_page_uptodate = false;
1475 			dirty_pages = (copied + offset +
1476 				       PAGE_CACHE_SIZE - 1) >>
1477 				       PAGE_CACHE_SHIFT;
1478 		}
1479 
1480 		/*
1481 		 * If we had a short copy we need to release the excess delaloc
1482 		 * bytes we reserved.  We need to increment outstanding_extents
1483 		 * because btrfs_delalloc_release_space will decrement it, but
1484 		 * we still have an outstanding extent for the chunk we actually
1485 		 * managed to copy.
1486 		 */
1487 		if (num_pages > dirty_pages) {
1488 			release_bytes = (num_pages - dirty_pages) <<
1489 				PAGE_CACHE_SHIFT;
1490 			if (copied > 0) {
1491 				spin_lock(&BTRFS_I(inode)->lock);
1492 				BTRFS_I(inode)->outstanding_extents++;
1493 				spin_unlock(&BTRFS_I(inode)->lock);
1494 			}
1495 			if (only_release_metadata)
1496 				btrfs_delalloc_release_metadata(inode,
1497 								release_bytes);
1498 			else
1499 				btrfs_delalloc_release_space(inode,
1500 							     release_bytes);
1501 		}
1502 
1503 		release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1504 		if (copied > 0) {
1505 			ret = btrfs_dirty_pages(root, inode, pages,
1506 						dirty_pages, pos, copied,
1507 						NULL);
1508 			if (ret) {
1509 				btrfs_drop_pages(pages, num_pages);
1510 				break;
1511 			}
1512 		}
1513 
1514 		release_bytes = 0;
1515 		btrfs_drop_pages(pages, num_pages);
1516 
1517 		if (only_release_metadata && copied > 0) {
1518 			u64 lockstart = round_down(pos, root->sectorsize);
1519 			u64 lockend = lockstart +
1520 				(dirty_pages << PAGE_CACHE_SHIFT) - 1;
1521 
1522 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1523 				       lockend, EXTENT_NORESERVE, NULL,
1524 				       NULL, GFP_NOFS);
1525 			only_release_metadata = false;
1526 		}
1527 
1528 		cond_resched();
1529 
1530 		balance_dirty_pages_ratelimited(inode->i_mapping);
1531 		if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1532 			btrfs_btree_balance_dirty(root);
1533 
1534 		pos += copied;
1535 		num_written += copied;
1536 	}
1537 
1538 	kfree(pages);
1539 
1540 	if (release_bytes) {
1541 		if (only_release_metadata)
1542 			btrfs_delalloc_release_metadata(inode, release_bytes);
1543 		else
1544 			btrfs_delalloc_release_space(inode, release_bytes);
1545 	}
1546 
1547 	return num_written ? num_written : ret;
1548 }
1549 
1550 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1551 				    const struct iovec *iov,
1552 				    unsigned long nr_segs, loff_t pos,
1553 				    loff_t *ppos, size_t count, size_t ocount)
1554 {
1555 	struct file *file = iocb->ki_filp;
1556 	struct iov_iter i;
1557 	ssize_t written;
1558 	ssize_t written_buffered;
1559 	loff_t endbyte;
1560 	int err;
1561 
1562 	written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1563 					    count, ocount);
1564 
1565 	if (written < 0 || written == count)
1566 		return written;
1567 
1568 	pos += written;
1569 	count -= written;
1570 	iov_iter_init(&i, iov, nr_segs, count, written);
1571 	written_buffered = __btrfs_buffered_write(file, &i, pos);
1572 	if (written_buffered < 0) {
1573 		err = written_buffered;
1574 		goto out;
1575 	}
1576 	endbyte = pos + written_buffered - 1;
1577 	err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1578 	if (err)
1579 		goto out;
1580 	written += written_buffered;
1581 	*ppos = pos + written_buffered;
1582 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1583 				 endbyte >> PAGE_CACHE_SHIFT);
1584 out:
1585 	return written ? written : err;
1586 }
1587 
1588 static void update_time_for_write(struct inode *inode)
1589 {
1590 	struct timespec now;
1591 
1592 	if (IS_NOCMTIME(inode))
1593 		return;
1594 
1595 	now = current_fs_time(inode->i_sb);
1596 	if (!timespec_equal(&inode->i_mtime, &now))
1597 		inode->i_mtime = now;
1598 
1599 	if (!timespec_equal(&inode->i_ctime, &now))
1600 		inode->i_ctime = now;
1601 
1602 	if (IS_I_VERSION(inode))
1603 		inode_inc_iversion(inode);
1604 }
1605 
1606 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1607 				    const struct iovec *iov,
1608 				    unsigned long nr_segs, loff_t pos)
1609 {
1610 	struct file *file = iocb->ki_filp;
1611 	struct inode *inode = file_inode(file);
1612 	struct btrfs_root *root = BTRFS_I(inode)->root;
1613 	loff_t *ppos = &iocb->ki_pos;
1614 	u64 start_pos;
1615 	ssize_t num_written = 0;
1616 	ssize_t err = 0;
1617 	size_t count, ocount;
1618 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1619 
1620 	mutex_lock(&inode->i_mutex);
1621 
1622 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1623 	if (err) {
1624 		mutex_unlock(&inode->i_mutex);
1625 		goto out;
1626 	}
1627 	count = ocount;
1628 
1629 	current->backing_dev_info = inode->i_mapping->backing_dev_info;
1630 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1631 	if (err) {
1632 		mutex_unlock(&inode->i_mutex);
1633 		goto out;
1634 	}
1635 
1636 	if (count == 0) {
1637 		mutex_unlock(&inode->i_mutex);
1638 		goto out;
1639 	}
1640 
1641 	err = file_remove_suid(file);
1642 	if (err) {
1643 		mutex_unlock(&inode->i_mutex);
1644 		goto out;
1645 	}
1646 
1647 	/*
1648 	 * If BTRFS flips readonly due to some impossible error
1649 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1650 	 * although we have opened a file as writable, we have
1651 	 * to stop this write operation to ensure FS consistency.
1652 	 */
1653 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1654 		mutex_unlock(&inode->i_mutex);
1655 		err = -EROFS;
1656 		goto out;
1657 	}
1658 
1659 	/*
1660 	 * We reserve space for updating the inode when we reserve space for the
1661 	 * extent we are going to write, so we will enospc out there.  We don't
1662 	 * need to start yet another transaction to update the inode as we will
1663 	 * update the inode when we finish writing whatever data we write.
1664 	 */
1665 	update_time_for_write(inode);
1666 
1667 	start_pos = round_down(pos, root->sectorsize);
1668 	if (start_pos > i_size_read(inode)) {
1669 		err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1670 		if (err) {
1671 			mutex_unlock(&inode->i_mutex);
1672 			goto out;
1673 		}
1674 	}
1675 
1676 	if (sync)
1677 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1678 
1679 	if (unlikely(file->f_flags & O_DIRECT)) {
1680 		num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1681 						   pos, ppos, count, ocount);
1682 	} else {
1683 		struct iov_iter i;
1684 
1685 		iov_iter_init(&i, iov, nr_segs, count, num_written);
1686 
1687 		num_written = __btrfs_buffered_write(file, &i, pos);
1688 		if (num_written > 0)
1689 			*ppos = pos + num_written;
1690 	}
1691 
1692 	mutex_unlock(&inode->i_mutex);
1693 
1694 	/*
1695 	 * we want to make sure fsync finds this change
1696 	 * but we haven't joined a transaction running right now.
1697 	 *
1698 	 * Later on, someone is sure to update the inode and get the
1699 	 * real transid recorded.
1700 	 *
1701 	 * We set last_trans now to the fs_info generation + 1,
1702 	 * this will either be one more than the running transaction
1703 	 * or the generation used for the next transaction if there isn't
1704 	 * one running right now.
1705 	 *
1706 	 * We also have to set last_sub_trans to the current log transid,
1707 	 * otherwise subsequent syncs to a file that's been synced in this
1708 	 * transaction will appear to have already occured.
1709 	 */
1710 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1711 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1712 	if (num_written > 0 || num_written == -EIOCBQUEUED) {
1713 		err = generic_write_sync(file, pos, num_written);
1714 		if (err < 0 && num_written > 0)
1715 			num_written = err;
1716 	}
1717 
1718 	if (sync)
1719 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1720 out:
1721 	current->backing_dev_info = NULL;
1722 	return num_written ? num_written : err;
1723 }
1724 
1725 int btrfs_release_file(struct inode *inode, struct file *filp)
1726 {
1727 	/*
1728 	 * ordered_data_close is set by settattr when we are about to truncate
1729 	 * a file from a non-zero size to a zero size.  This tries to
1730 	 * flush down new bytes that may have been written if the
1731 	 * application were using truncate to replace a file in place.
1732 	 */
1733 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1734 			       &BTRFS_I(inode)->runtime_flags)) {
1735 		struct btrfs_trans_handle *trans;
1736 		struct btrfs_root *root = BTRFS_I(inode)->root;
1737 
1738 		/*
1739 		 * We need to block on a committing transaction to keep us from
1740 		 * throwing a ordered operation on to the list and causing
1741 		 * something like sync to deadlock trying to flush out this
1742 		 * inode.
1743 		 */
1744 		trans = btrfs_start_transaction(root, 0);
1745 		if (IS_ERR(trans))
1746 			return PTR_ERR(trans);
1747 		btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1748 		btrfs_end_transaction(trans, root);
1749 		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1750 			filemap_flush(inode->i_mapping);
1751 	}
1752 	if (filp->private_data)
1753 		btrfs_ioctl_trans_end(filp);
1754 	return 0;
1755 }
1756 
1757 /*
1758  * fsync call for both files and directories.  This logs the inode into
1759  * the tree log instead of forcing full commits whenever possible.
1760  *
1761  * It needs to call filemap_fdatawait so that all ordered extent updates are
1762  * in the metadata btree are up to date for copying to the log.
1763  *
1764  * It drops the inode mutex before doing the tree log commit.  This is an
1765  * important optimization for directories because holding the mutex prevents
1766  * new operations on the dir while we write to disk.
1767  */
1768 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1769 {
1770 	struct dentry *dentry = file->f_path.dentry;
1771 	struct inode *inode = dentry->d_inode;
1772 	struct btrfs_root *root = BTRFS_I(inode)->root;
1773 	int ret = 0;
1774 	struct btrfs_trans_handle *trans;
1775 	bool full_sync = 0;
1776 
1777 	trace_btrfs_sync_file(file, datasync);
1778 
1779 	/*
1780 	 * We write the dirty pages in the range and wait until they complete
1781 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1782 	 * multi-task, and make the performance up.  See
1783 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1784 	 */
1785 	atomic_inc(&BTRFS_I(inode)->sync_writers);
1786 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1787 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1788 			     &BTRFS_I(inode)->runtime_flags))
1789 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1790 	atomic_dec(&BTRFS_I(inode)->sync_writers);
1791 	if (ret)
1792 		return ret;
1793 
1794 	mutex_lock(&inode->i_mutex);
1795 
1796 	/*
1797 	 * We flush the dirty pages again to avoid some dirty pages in the
1798 	 * range being left.
1799 	 */
1800 	atomic_inc(&root->log_batch);
1801 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1802 			     &BTRFS_I(inode)->runtime_flags);
1803 	if (full_sync)
1804 		btrfs_wait_ordered_range(inode, start, end - start + 1);
1805 	atomic_inc(&root->log_batch);
1806 
1807 	/*
1808 	 * check the transaction that last modified this inode
1809 	 * and see if its already been committed
1810 	 */
1811 	if (!BTRFS_I(inode)->last_trans) {
1812 		mutex_unlock(&inode->i_mutex);
1813 		goto out;
1814 	}
1815 
1816 	/*
1817 	 * if the last transaction that changed this file was before
1818 	 * the current transaction, we can bail out now without any
1819 	 * syncing
1820 	 */
1821 	smp_mb();
1822 	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1823 	    BTRFS_I(inode)->last_trans <=
1824 	    root->fs_info->last_trans_committed) {
1825 		BTRFS_I(inode)->last_trans = 0;
1826 
1827 		/*
1828 		 * We'v had everything committed since the last time we were
1829 		 * modified so clear this flag in case it was set for whatever
1830 		 * reason, it's no longer relevant.
1831 		 */
1832 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1833 			  &BTRFS_I(inode)->runtime_flags);
1834 		mutex_unlock(&inode->i_mutex);
1835 		goto out;
1836 	}
1837 
1838 	/*
1839 	 * ok we haven't committed the transaction yet, lets do a commit
1840 	 */
1841 	if (file->private_data)
1842 		btrfs_ioctl_trans_end(file);
1843 
1844 	trans = btrfs_start_transaction(root, 0);
1845 	if (IS_ERR(trans)) {
1846 		ret = PTR_ERR(trans);
1847 		mutex_unlock(&inode->i_mutex);
1848 		goto out;
1849 	}
1850 
1851 	ret = btrfs_log_dentry_safe(trans, root, dentry);
1852 	if (ret < 0) {
1853 		mutex_unlock(&inode->i_mutex);
1854 		goto out;
1855 	}
1856 
1857 	/* we've logged all the items and now have a consistent
1858 	 * version of the file in the log.  It is possible that
1859 	 * someone will come in and modify the file, but that's
1860 	 * fine because the log is consistent on disk, and we
1861 	 * have references to all of the file's extents
1862 	 *
1863 	 * It is possible that someone will come in and log the
1864 	 * file again, but that will end up using the synchronization
1865 	 * inside btrfs_sync_log to keep things safe.
1866 	 */
1867 	mutex_unlock(&inode->i_mutex);
1868 
1869 	if (ret != BTRFS_NO_LOG_SYNC) {
1870 		if (ret > 0) {
1871 			/*
1872 			 * If we didn't already wait for ordered extents we need
1873 			 * to do that now.
1874 			 */
1875 			if (!full_sync)
1876 				btrfs_wait_ordered_range(inode, start,
1877 							 end - start + 1);
1878 			ret = btrfs_commit_transaction(trans, root);
1879 		} else {
1880 			ret = btrfs_sync_log(trans, root);
1881 			if (ret == 0) {
1882 				ret = btrfs_end_transaction(trans, root);
1883 			} else {
1884 				if (!full_sync)
1885 					btrfs_wait_ordered_range(inode, start,
1886 								 end -
1887 								 start + 1);
1888 				ret = btrfs_commit_transaction(trans, root);
1889 			}
1890 		}
1891 	} else {
1892 		ret = btrfs_end_transaction(trans, root);
1893 	}
1894 out:
1895 	return ret > 0 ? -EIO : ret;
1896 }
1897 
1898 static const struct vm_operations_struct btrfs_file_vm_ops = {
1899 	.fault		= filemap_fault,
1900 	.page_mkwrite	= btrfs_page_mkwrite,
1901 	.remap_pages	= generic_file_remap_pages,
1902 };
1903 
1904 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1905 {
1906 	struct address_space *mapping = filp->f_mapping;
1907 
1908 	if (!mapping->a_ops->readpage)
1909 		return -ENOEXEC;
1910 
1911 	file_accessed(filp);
1912 	vma->vm_ops = &btrfs_file_vm_ops;
1913 
1914 	return 0;
1915 }
1916 
1917 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
1918 			  int slot, u64 start, u64 end)
1919 {
1920 	struct btrfs_file_extent_item *fi;
1921 	struct btrfs_key key;
1922 
1923 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1924 		return 0;
1925 
1926 	btrfs_item_key_to_cpu(leaf, &key, slot);
1927 	if (key.objectid != btrfs_ino(inode) ||
1928 	    key.type != BTRFS_EXTENT_DATA_KEY)
1929 		return 0;
1930 
1931 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1932 
1933 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1934 		return 0;
1935 
1936 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
1937 		return 0;
1938 
1939 	if (key.offset == end)
1940 		return 1;
1941 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1942 		return 1;
1943 	return 0;
1944 }
1945 
1946 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
1947 		      struct btrfs_path *path, u64 offset, u64 end)
1948 {
1949 	struct btrfs_root *root = BTRFS_I(inode)->root;
1950 	struct extent_buffer *leaf;
1951 	struct btrfs_file_extent_item *fi;
1952 	struct extent_map *hole_em;
1953 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1954 	struct btrfs_key key;
1955 	int ret;
1956 
1957 	key.objectid = btrfs_ino(inode);
1958 	key.type = BTRFS_EXTENT_DATA_KEY;
1959 	key.offset = offset;
1960 
1961 
1962 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1963 	if (ret < 0)
1964 		return ret;
1965 	BUG_ON(!ret);
1966 
1967 	leaf = path->nodes[0];
1968 	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
1969 		u64 num_bytes;
1970 
1971 		path->slots[0]--;
1972 		fi = btrfs_item_ptr(leaf, path->slots[0],
1973 				    struct btrfs_file_extent_item);
1974 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
1975 			end - offset;
1976 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1977 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1978 		btrfs_set_file_extent_offset(leaf, fi, 0);
1979 		btrfs_mark_buffer_dirty(leaf);
1980 		goto out;
1981 	}
1982 
1983 	if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
1984 		u64 num_bytes;
1985 
1986 		path->slots[0]++;
1987 		key.offset = offset;
1988 		btrfs_set_item_key_safe(root, path, &key);
1989 		fi = btrfs_item_ptr(leaf, path->slots[0],
1990 				    struct btrfs_file_extent_item);
1991 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
1992 			offset;
1993 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1994 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1995 		btrfs_set_file_extent_offset(leaf, fi, 0);
1996 		btrfs_mark_buffer_dirty(leaf);
1997 		goto out;
1998 	}
1999 	btrfs_release_path(path);
2000 
2001 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2002 				       0, 0, end - offset, 0, end - offset,
2003 				       0, 0, 0);
2004 	if (ret)
2005 		return ret;
2006 
2007 out:
2008 	btrfs_release_path(path);
2009 
2010 	hole_em = alloc_extent_map();
2011 	if (!hole_em) {
2012 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2013 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2014 			&BTRFS_I(inode)->runtime_flags);
2015 	} else {
2016 		hole_em->start = offset;
2017 		hole_em->len = end - offset;
2018 		hole_em->ram_bytes = hole_em->len;
2019 		hole_em->orig_start = offset;
2020 
2021 		hole_em->block_start = EXTENT_MAP_HOLE;
2022 		hole_em->block_len = 0;
2023 		hole_em->orig_block_len = 0;
2024 		hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2025 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2026 		hole_em->generation = trans->transid;
2027 
2028 		do {
2029 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2030 			write_lock(&em_tree->lock);
2031 			ret = add_extent_mapping(em_tree, hole_em, 1);
2032 			write_unlock(&em_tree->lock);
2033 		} while (ret == -EEXIST);
2034 		free_extent_map(hole_em);
2035 		if (ret)
2036 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2037 				&BTRFS_I(inode)->runtime_flags);
2038 	}
2039 
2040 	return 0;
2041 }
2042 
2043 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2044 {
2045 	struct btrfs_root *root = BTRFS_I(inode)->root;
2046 	struct extent_state *cached_state = NULL;
2047 	struct btrfs_path *path;
2048 	struct btrfs_block_rsv *rsv;
2049 	struct btrfs_trans_handle *trans;
2050 	u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2051 	u64 lockend = round_down(offset + len,
2052 				 BTRFS_I(inode)->root->sectorsize) - 1;
2053 	u64 cur_offset = lockstart;
2054 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2055 	u64 drop_end;
2056 	int ret = 0;
2057 	int err = 0;
2058 	bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2059 			  ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2060 
2061 	btrfs_wait_ordered_range(inode, offset, len);
2062 
2063 	mutex_lock(&inode->i_mutex);
2064 	/*
2065 	 * We needn't truncate any page which is beyond the end of the file
2066 	 * because we are sure there is no data there.
2067 	 */
2068 	/*
2069 	 * Only do this if we are in the same page and we aren't doing the
2070 	 * entire page.
2071 	 */
2072 	if (same_page && len < PAGE_CACHE_SIZE) {
2073 		if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
2074 			ret = btrfs_truncate_page(inode, offset, len, 0);
2075 		mutex_unlock(&inode->i_mutex);
2076 		return ret;
2077 	}
2078 
2079 	/* zero back part of the first page */
2080 	if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2081 		ret = btrfs_truncate_page(inode, offset, 0, 0);
2082 		if (ret) {
2083 			mutex_unlock(&inode->i_mutex);
2084 			return ret;
2085 		}
2086 	}
2087 
2088 	/* zero the front end of the last page */
2089 	if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2090 		ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2091 		if (ret) {
2092 			mutex_unlock(&inode->i_mutex);
2093 			return ret;
2094 		}
2095 	}
2096 
2097 	if (lockend < lockstart) {
2098 		mutex_unlock(&inode->i_mutex);
2099 		return 0;
2100 	}
2101 
2102 	while (1) {
2103 		struct btrfs_ordered_extent *ordered;
2104 
2105 		truncate_pagecache_range(inode, lockstart, lockend);
2106 
2107 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2108 				 0, &cached_state);
2109 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2110 
2111 		/*
2112 		 * We need to make sure we have no ordered extents in this range
2113 		 * and nobody raced in and read a page in this range, if we did
2114 		 * we need to try again.
2115 		 */
2116 		if ((!ordered ||
2117 		    (ordered->file_offset + ordered->len < lockstart ||
2118 		     ordered->file_offset > lockend)) &&
2119 		     !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2120 				     lockend, EXTENT_UPTODATE, 0,
2121 				     cached_state)) {
2122 			if (ordered)
2123 				btrfs_put_ordered_extent(ordered);
2124 			break;
2125 		}
2126 		if (ordered)
2127 			btrfs_put_ordered_extent(ordered);
2128 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2129 				     lockend, &cached_state, GFP_NOFS);
2130 		btrfs_wait_ordered_range(inode, lockstart,
2131 					 lockend - lockstart + 1);
2132 	}
2133 
2134 	path = btrfs_alloc_path();
2135 	if (!path) {
2136 		ret = -ENOMEM;
2137 		goto out;
2138 	}
2139 
2140 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2141 	if (!rsv) {
2142 		ret = -ENOMEM;
2143 		goto out_free;
2144 	}
2145 	rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2146 	rsv->failfast = 1;
2147 
2148 	/*
2149 	 * 1 - update the inode
2150 	 * 1 - removing the extents in the range
2151 	 * 1 - adding the hole extent
2152 	 */
2153 	trans = btrfs_start_transaction(root, 3);
2154 	if (IS_ERR(trans)) {
2155 		err = PTR_ERR(trans);
2156 		goto out_free;
2157 	}
2158 
2159 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2160 				      min_size);
2161 	BUG_ON(ret);
2162 	trans->block_rsv = rsv;
2163 
2164 	while (cur_offset < lockend) {
2165 		ret = __btrfs_drop_extents(trans, root, inode, path,
2166 					   cur_offset, lockend + 1,
2167 					   &drop_end, 1);
2168 		if (ret != -ENOSPC)
2169 			break;
2170 
2171 		trans->block_rsv = &root->fs_info->trans_block_rsv;
2172 
2173 		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2174 		if (ret) {
2175 			err = ret;
2176 			break;
2177 		}
2178 
2179 		cur_offset = drop_end;
2180 
2181 		ret = btrfs_update_inode(trans, root, inode);
2182 		if (ret) {
2183 			err = ret;
2184 			break;
2185 		}
2186 
2187 		btrfs_end_transaction(trans, root);
2188 		btrfs_btree_balance_dirty(root);
2189 
2190 		trans = btrfs_start_transaction(root, 3);
2191 		if (IS_ERR(trans)) {
2192 			ret = PTR_ERR(trans);
2193 			trans = NULL;
2194 			break;
2195 		}
2196 
2197 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2198 					      rsv, min_size);
2199 		BUG_ON(ret);	/* shouldn't happen */
2200 		trans->block_rsv = rsv;
2201 	}
2202 
2203 	if (ret) {
2204 		err = ret;
2205 		goto out_trans;
2206 	}
2207 
2208 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2209 	ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2210 	if (ret) {
2211 		err = ret;
2212 		goto out_trans;
2213 	}
2214 
2215 out_trans:
2216 	if (!trans)
2217 		goto out_free;
2218 
2219 	inode_inc_iversion(inode);
2220 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2221 
2222 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2223 	ret = btrfs_update_inode(trans, root, inode);
2224 	btrfs_end_transaction(trans, root);
2225 	btrfs_btree_balance_dirty(root);
2226 out_free:
2227 	btrfs_free_path(path);
2228 	btrfs_free_block_rsv(root, rsv);
2229 out:
2230 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2231 			     &cached_state, GFP_NOFS);
2232 	mutex_unlock(&inode->i_mutex);
2233 	if (ret && !err)
2234 		err = ret;
2235 	return err;
2236 }
2237 
2238 static long btrfs_fallocate(struct file *file, int mode,
2239 			    loff_t offset, loff_t len)
2240 {
2241 	struct inode *inode = file_inode(file);
2242 	struct extent_state *cached_state = NULL;
2243 	struct btrfs_root *root = BTRFS_I(inode)->root;
2244 	u64 cur_offset;
2245 	u64 last_byte;
2246 	u64 alloc_start;
2247 	u64 alloc_end;
2248 	u64 alloc_hint = 0;
2249 	u64 locked_end;
2250 	struct extent_map *em;
2251 	int blocksize = BTRFS_I(inode)->root->sectorsize;
2252 	int ret;
2253 
2254 	alloc_start = round_down(offset, blocksize);
2255 	alloc_end = round_up(offset + len, blocksize);
2256 
2257 	/* Make sure we aren't being give some crap mode */
2258 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2259 		return -EOPNOTSUPP;
2260 
2261 	if (mode & FALLOC_FL_PUNCH_HOLE)
2262 		return btrfs_punch_hole(inode, offset, len);
2263 
2264 	/*
2265 	 * Make sure we have enough space before we do the
2266 	 * allocation.
2267 	 */
2268 	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2269 	if (ret)
2270 		return ret;
2271 	if (root->fs_info->quota_enabled) {
2272 		ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2273 		if (ret)
2274 			goto out_reserve_fail;
2275 	}
2276 
2277 	mutex_lock(&inode->i_mutex);
2278 	ret = inode_newsize_ok(inode, alloc_end);
2279 	if (ret)
2280 		goto out;
2281 
2282 	if (alloc_start > inode->i_size) {
2283 		ret = btrfs_cont_expand(inode, i_size_read(inode),
2284 					alloc_start);
2285 		if (ret)
2286 			goto out;
2287 	} else {
2288 		/*
2289 		 * If we are fallocating from the end of the file onward we
2290 		 * need to zero out the end of the page if i_size lands in the
2291 		 * middle of a page.
2292 		 */
2293 		ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2294 		if (ret)
2295 			goto out;
2296 	}
2297 
2298 	/*
2299 	 * wait for ordered IO before we have any locks.  We'll loop again
2300 	 * below with the locks held.
2301 	 */
2302 	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
2303 
2304 	locked_end = alloc_end - 1;
2305 	while (1) {
2306 		struct btrfs_ordered_extent *ordered;
2307 
2308 		/* the extent lock is ordered inside the running
2309 		 * transaction
2310 		 */
2311 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2312 				 locked_end, 0, &cached_state);
2313 		ordered = btrfs_lookup_first_ordered_extent(inode,
2314 							    alloc_end - 1);
2315 		if (ordered &&
2316 		    ordered->file_offset + ordered->len > alloc_start &&
2317 		    ordered->file_offset < alloc_end) {
2318 			btrfs_put_ordered_extent(ordered);
2319 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2320 					     alloc_start, locked_end,
2321 					     &cached_state, GFP_NOFS);
2322 			/*
2323 			 * we can't wait on the range with the transaction
2324 			 * running or with the extent lock held
2325 			 */
2326 			btrfs_wait_ordered_range(inode, alloc_start,
2327 						 alloc_end - alloc_start);
2328 		} else {
2329 			if (ordered)
2330 				btrfs_put_ordered_extent(ordered);
2331 			break;
2332 		}
2333 	}
2334 
2335 	cur_offset = alloc_start;
2336 	while (1) {
2337 		u64 actual_end;
2338 
2339 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2340 				      alloc_end - cur_offset, 0);
2341 		if (IS_ERR_OR_NULL(em)) {
2342 			if (!em)
2343 				ret = -ENOMEM;
2344 			else
2345 				ret = PTR_ERR(em);
2346 			break;
2347 		}
2348 		last_byte = min(extent_map_end(em), alloc_end);
2349 		actual_end = min_t(u64, extent_map_end(em), offset + len);
2350 		last_byte = ALIGN(last_byte, blocksize);
2351 
2352 		if (em->block_start == EXTENT_MAP_HOLE ||
2353 		    (cur_offset >= inode->i_size &&
2354 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2355 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2356 							last_byte - cur_offset,
2357 							1 << inode->i_blkbits,
2358 							offset + len,
2359 							&alloc_hint);
2360 
2361 			if (ret < 0) {
2362 				free_extent_map(em);
2363 				break;
2364 			}
2365 		} else if (actual_end > inode->i_size &&
2366 			   !(mode & FALLOC_FL_KEEP_SIZE)) {
2367 			/*
2368 			 * We didn't need to allocate any more space, but we
2369 			 * still extended the size of the file so we need to
2370 			 * update i_size.
2371 			 */
2372 			inode->i_ctime = CURRENT_TIME;
2373 			i_size_write(inode, actual_end);
2374 			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2375 		}
2376 		free_extent_map(em);
2377 
2378 		cur_offset = last_byte;
2379 		if (cur_offset >= alloc_end) {
2380 			ret = 0;
2381 			break;
2382 		}
2383 	}
2384 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2385 			     &cached_state, GFP_NOFS);
2386 out:
2387 	mutex_unlock(&inode->i_mutex);
2388 	if (root->fs_info->quota_enabled)
2389 		btrfs_qgroup_free(root, alloc_end - alloc_start);
2390 out_reserve_fail:
2391 	/* Let go of our reservation. */
2392 	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2393 	return ret;
2394 }
2395 
2396 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2397 {
2398 	struct btrfs_root *root = BTRFS_I(inode)->root;
2399 	struct extent_map *em;
2400 	struct extent_state *cached_state = NULL;
2401 	u64 lockstart = *offset;
2402 	u64 lockend = i_size_read(inode);
2403 	u64 start = *offset;
2404 	u64 orig_start = *offset;
2405 	u64 len = i_size_read(inode);
2406 	u64 last_end = 0;
2407 	int ret = 0;
2408 
2409 	lockend = max_t(u64, root->sectorsize, lockend);
2410 	if (lockend <= lockstart)
2411 		lockend = lockstart + root->sectorsize;
2412 
2413 	lockend--;
2414 	len = lockend - lockstart + 1;
2415 
2416 	len = max_t(u64, len, root->sectorsize);
2417 	if (inode->i_size == 0)
2418 		return -ENXIO;
2419 
2420 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2421 			 &cached_state);
2422 
2423 	/*
2424 	 * Delalloc is such a pain.  If we have a hole and we have pending
2425 	 * delalloc for a portion of the hole we will get back a hole that
2426 	 * exists for the entire range since it hasn't been actually written
2427 	 * yet.  So to take care of this case we need to look for an extent just
2428 	 * before the position we want in case there is outstanding delalloc
2429 	 * going on here.
2430 	 */
2431 	if (whence == SEEK_HOLE && start != 0) {
2432 		if (start <= root->sectorsize)
2433 			em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
2434 						     root->sectorsize, 0);
2435 		else
2436 			em = btrfs_get_extent_fiemap(inode, NULL, 0,
2437 						     start - root->sectorsize,
2438 						     root->sectorsize, 0);
2439 		if (IS_ERR(em)) {
2440 			ret = PTR_ERR(em);
2441 			goto out;
2442 		}
2443 		last_end = em->start + em->len;
2444 		if (em->block_start == EXTENT_MAP_DELALLOC)
2445 			last_end = min_t(u64, last_end, inode->i_size);
2446 		free_extent_map(em);
2447 	}
2448 
2449 	while (1) {
2450 		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2451 		if (IS_ERR(em)) {
2452 			ret = PTR_ERR(em);
2453 			break;
2454 		}
2455 
2456 		if (em->block_start == EXTENT_MAP_HOLE) {
2457 			if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2458 				if (last_end <= orig_start) {
2459 					free_extent_map(em);
2460 					ret = -ENXIO;
2461 					break;
2462 				}
2463 			}
2464 
2465 			if (whence == SEEK_HOLE) {
2466 				*offset = start;
2467 				free_extent_map(em);
2468 				break;
2469 			}
2470 		} else {
2471 			if (whence == SEEK_DATA) {
2472 				if (em->block_start == EXTENT_MAP_DELALLOC) {
2473 					if (start >= inode->i_size) {
2474 						free_extent_map(em);
2475 						ret = -ENXIO;
2476 						break;
2477 					}
2478 				}
2479 
2480 				if (!test_bit(EXTENT_FLAG_PREALLOC,
2481 					      &em->flags)) {
2482 					*offset = start;
2483 					free_extent_map(em);
2484 					break;
2485 				}
2486 			}
2487 		}
2488 
2489 		start = em->start + em->len;
2490 		last_end = em->start + em->len;
2491 
2492 		if (em->block_start == EXTENT_MAP_DELALLOC)
2493 			last_end = min_t(u64, last_end, inode->i_size);
2494 
2495 		if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2496 			free_extent_map(em);
2497 			ret = -ENXIO;
2498 			break;
2499 		}
2500 		free_extent_map(em);
2501 		cond_resched();
2502 	}
2503 	if (!ret)
2504 		*offset = min(*offset, inode->i_size);
2505 out:
2506 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2507 			     &cached_state, GFP_NOFS);
2508 	return ret;
2509 }
2510 
2511 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2512 {
2513 	struct inode *inode = file->f_mapping->host;
2514 	int ret;
2515 
2516 	mutex_lock(&inode->i_mutex);
2517 	switch (whence) {
2518 	case SEEK_END:
2519 	case SEEK_CUR:
2520 		offset = generic_file_llseek(file, offset, whence);
2521 		goto out;
2522 	case SEEK_DATA:
2523 	case SEEK_HOLE:
2524 		if (offset >= i_size_read(inode)) {
2525 			mutex_unlock(&inode->i_mutex);
2526 			return -ENXIO;
2527 		}
2528 
2529 		ret = find_desired_extent(inode, &offset, whence);
2530 		if (ret) {
2531 			mutex_unlock(&inode->i_mutex);
2532 			return ret;
2533 		}
2534 	}
2535 
2536 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2537 out:
2538 	mutex_unlock(&inode->i_mutex);
2539 	return offset;
2540 }
2541 
2542 const struct file_operations btrfs_file_operations = {
2543 	.llseek		= btrfs_file_llseek,
2544 	.read		= do_sync_read,
2545 	.write		= do_sync_write,
2546 	.aio_read       = generic_file_aio_read,
2547 	.splice_read	= generic_file_splice_read,
2548 	.aio_write	= btrfs_file_aio_write,
2549 	.mmap		= btrfs_file_mmap,
2550 	.open		= generic_file_open,
2551 	.release	= btrfs_release_file,
2552 	.fsync		= btrfs_sync_file,
2553 	.fallocate	= btrfs_fallocate,
2554 	.unlocked_ioctl	= btrfs_ioctl,
2555 #ifdef CONFIG_COMPAT
2556 	.compat_ioctl	= btrfs_ioctl,
2557 #endif
2558 };
2559 
2560 void btrfs_auto_defrag_exit(void)
2561 {
2562 	if (btrfs_inode_defrag_cachep)
2563 		kmem_cache_destroy(btrfs_inode_defrag_cachep);
2564 }
2565 
2566 int btrfs_auto_defrag_init(void)
2567 {
2568 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2569 					sizeof(struct inode_defrag), 0,
2570 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2571 					NULL);
2572 	if (!btrfs_inode_defrag_cachep)
2573 		return -ENOMEM;
2574 
2575 	return 0;
2576 }
2577