xref: /openbmc/linux/fs/btrfs/file.c (revision 4cfb908054456ad8b6b8cd5108bbdf80faade8cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "print-tree.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "volumes.h"
28 #include "qgroup.h"
29 #include "compression.h"
30 #include "delalloc-space.h"
31 #include "reflink.h"
32 #include "subpage.h"
33 #include "fs.h"
34 #include "accessors.h"
35 #include "extent-tree.h"
36 #include "file-item.h"
37 #include "ioctl.h"
38 #include "file.h"
39 #include "super.h"
40 
41 /* simple helper to fault in pages and copy.  This should go away
42  * and be replaced with calls into generic code.
43  */
44 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
45 					 struct page **prepared_pages,
46 					 struct iov_iter *i)
47 {
48 	size_t copied = 0;
49 	size_t total_copied = 0;
50 	int pg = 0;
51 	int offset = offset_in_page(pos);
52 
53 	while (write_bytes > 0) {
54 		size_t count = min_t(size_t,
55 				     PAGE_SIZE - offset, write_bytes);
56 		struct page *page = prepared_pages[pg];
57 		/*
58 		 * Copy data from userspace to the current page
59 		 */
60 		copied = copy_page_from_iter_atomic(page, offset, count, i);
61 
62 		/* Flush processor's dcache for this page */
63 		flush_dcache_page(page);
64 
65 		/*
66 		 * if we get a partial write, we can end up with
67 		 * partially up to date pages.  These add
68 		 * a lot of complexity, so make sure they don't
69 		 * happen by forcing this copy to be retried.
70 		 *
71 		 * The rest of the btrfs_file_write code will fall
72 		 * back to page at a time copies after we return 0.
73 		 */
74 		if (unlikely(copied < count)) {
75 			if (!PageUptodate(page)) {
76 				iov_iter_revert(i, copied);
77 				copied = 0;
78 			}
79 			if (!copied)
80 				break;
81 		}
82 
83 		write_bytes -= copied;
84 		total_copied += copied;
85 		offset += copied;
86 		if (offset == PAGE_SIZE) {
87 			pg++;
88 			offset = 0;
89 		}
90 	}
91 	return total_copied;
92 }
93 
94 /*
95  * unlocks pages after btrfs_file_write is done with them
96  */
97 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
98 			     struct page **pages, size_t num_pages,
99 			     u64 pos, u64 copied)
100 {
101 	size_t i;
102 	u64 block_start = round_down(pos, fs_info->sectorsize);
103 	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
104 
105 	ASSERT(block_len <= U32_MAX);
106 	for (i = 0; i < num_pages; i++) {
107 		/* page checked is some magic around finding pages that
108 		 * have been modified without going through btrfs_set_page_dirty
109 		 * clear it here. There should be no need to mark the pages
110 		 * accessed as prepare_pages should have marked them accessed
111 		 * in prepare_pages via find_or_create_page()
112 		 */
113 		btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
114 					       block_len);
115 		unlock_page(pages[i]);
116 		put_page(pages[i]);
117 	}
118 }
119 
120 /*
121  * After btrfs_copy_from_user(), update the following things for delalloc:
122  * - Mark newly dirtied pages as DELALLOC in the io tree.
123  *   Used to advise which range is to be written back.
124  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
125  * - Update inode size for past EOF write
126  */
127 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
128 		      size_t num_pages, loff_t pos, size_t write_bytes,
129 		      struct extent_state **cached, bool noreserve)
130 {
131 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
132 	int err = 0;
133 	int i;
134 	u64 num_bytes;
135 	u64 start_pos;
136 	u64 end_of_last_block;
137 	u64 end_pos = pos + write_bytes;
138 	loff_t isize = i_size_read(&inode->vfs_inode);
139 	unsigned int extra_bits = 0;
140 
141 	if (write_bytes == 0)
142 		return 0;
143 
144 	if (noreserve)
145 		extra_bits |= EXTENT_NORESERVE;
146 
147 	start_pos = round_down(pos, fs_info->sectorsize);
148 	num_bytes = round_up(write_bytes + pos - start_pos,
149 			     fs_info->sectorsize);
150 	ASSERT(num_bytes <= U32_MAX);
151 
152 	end_of_last_block = start_pos + num_bytes - 1;
153 
154 	/*
155 	 * The pages may have already been dirty, clear out old accounting so
156 	 * we can set things up properly
157 	 */
158 	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
159 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
160 			 cached);
161 
162 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
163 					extra_bits, cached);
164 	if (err)
165 		return err;
166 
167 	for (i = 0; i < num_pages; i++) {
168 		struct page *p = pages[i];
169 
170 		btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
171 		btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
172 		btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
173 	}
174 
175 	/*
176 	 * we've only changed i_size in ram, and we haven't updated
177 	 * the disk i_size.  There is no need to log the inode
178 	 * at this time.
179 	 */
180 	if (end_pos > isize)
181 		i_size_write(&inode->vfs_inode, end_pos);
182 	return 0;
183 }
184 
185 /*
186  * this is very complex, but the basic idea is to drop all extents
187  * in the range start - end.  hint_block is filled in with a block number
188  * that would be a good hint to the block allocator for this file.
189  *
190  * If an extent intersects the range but is not entirely inside the range
191  * it is either truncated or split.  Anything entirely inside the range
192  * is deleted from the tree.
193  *
194  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
195  * to deal with that. We set the field 'bytes_found' of the arguments structure
196  * with the number of allocated bytes found in the target range, so that the
197  * caller can update the inode's number of bytes in an atomic way when
198  * replacing extents in a range to avoid races with stat(2).
199  */
200 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
201 		       struct btrfs_root *root, struct btrfs_inode *inode,
202 		       struct btrfs_drop_extents_args *args)
203 {
204 	struct btrfs_fs_info *fs_info = root->fs_info;
205 	struct extent_buffer *leaf;
206 	struct btrfs_file_extent_item *fi;
207 	struct btrfs_ref ref = { 0 };
208 	struct btrfs_key key;
209 	struct btrfs_key new_key;
210 	u64 ino = btrfs_ino(inode);
211 	u64 search_start = args->start;
212 	u64 disk_bytenr = 0;
213 	u64 num_bytes = 0;
214 	u64 extent_offset = 0;
215 	u64 extent_end = 0;
216 	u64 last_end = args->start;
217 	int del_nr = 0;
218 	int del_slot = 0;
219 	int extent_type;
220 	int recow;
221 	int ret;
222 	int modify_tree = -1;
223 	int update_refs;
224 	int found = 0;
225 	struct btrfs_path *path = args->path;
226 
227 	args->bytes_found = 0;
228 	args->extent_inserted = false;
229 
230 	/* Must always have a path if ->replace_extent is true */
231 	ASSERT(!(args->replace_extent && !args->path));
232 
233 	if (!path) {
234 		path = btrfs_alloc_path();
235 		if (!path) {
236 			ret = -ENOMEM;
237 			goto out;
238 		}
239 	}
240 
241 	if (args->drop_cache)
242 		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
243 
244 	if (args->start >= inode->disk_i_size && !args->replace_extent)
245 		modify_tree = 0;
246 
247 	update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
248 	while (1) {
249 		recow = 0;
250 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
251 					       search_start, modify_tree);
252 		if (ret < 0)
253 			break;
254 		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
255 			leaf = path->nodes[0];
256 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
257 			if (key.objectid == ino &&
258 			    key.type == BTRFS_EXTENT_DATA_KEY)
259 				path->slots[0]--;
260 		}
261 		ret = 0;
262 next_slot:
263 		leaf = path->nodes[0];
264 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
265 			BUG_ON(del_nr > 0);
266 			ret = btrfs_next_leaf(root, path);
267 			if (ret < 0)
268 				break;
269 			if (ret > 0) {
270 				ret = 0;
271 				break;
272 			}
273 			leaf = path->nodes[0];
274 			recow = 1;
275 		}
276 
277 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
278 
279 		if (key.objectid > ino)
280 			break;
281 		if (WARN_ON_ONCE(key.objectid < ino) ||
282 		    key.type < BTRFS_EXTENT_DATA_KEY) {
283 			ASSERT(del_nr == 0);
284 			path->slots[0]++;
285 			goto next_slot;
286 		}
287 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
288 			break;
289 
290 		fi = btrfs_item_ptr(leaf, path->slots[0],
291 				    struct btrfs_file_extent_item);
292 		extent_type = btrfs_file_extent_type(leaf, fi);
293 
294 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
295 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
296 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
297 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
298 			extent_offset = btrfs_file_extent_offset(leaf, fi);
299 			extent_end = key.offset +
300 				btrfs_file_extent_num_bytes(leaf, fi);
301 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
302 			extent_end = key.offset +
303 				btrfs_file_extent_ram_bytes(leaf, fi);
304 		} else {
305 			/* can't happen */
306 			BUG();
307 		}
308 
309 		/*
310 		 * Don't skip extent items representing 0 byte lengths. They
311 		 * used to be created (bug) if while punching holes we hit
312 		 * -ENOSPC condition. So if we find one here, just ensure we
313 		 * delete it, otherwise we would insert a new file extent item
314 		 * with the same key (offset) as that 0 bytes length file
315 		 * extent item in the call to setup_items_for_insert() later
316 		 * in this function.
317 		 */
318 		if (extent_end == key.offset && extent_end >= search_start) {
319 			last_end = extent_end;
320 			goto delete_extent_item;
321 		}
322 
323 		if (extent_end <= search_start) {
324 			path->slots[0]++;
325 			goto next_slot;
326 		}
327 
328 		found = 1;
329 		search_start = max(key.offset, args->start);
330 		if (recow || !modify_tree) {
331 			modify_tree = -1;
332 			btrfs_release_path(path);
333 			continue;
334 		}
335 
336 		/*
337 		 *     | - range to drop - |
338 		 *  | -------- extent -------- |
339 		 */
340 		if (args->start > key.offset && args->end < extent_end) {
341 			BUG_ON(del_nr > 0);
342 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
343 				ret = -EOPNOTSUPP;
344 				break;
345 			}
346 
347 			memcpy(&new_key, &key, sizeof(new_key));
348 			new_key.offset = args->start;
349 			ret = btrfs_duplicate_item(trans, root, path,
350 						   &new_key);
351 			if (ret == -EAGAIN) {
352 				btrfs_release_path(path);
353 				continue;
354 			}
355 			if (ret < 0)
356 				break;
357 
358 			leaf = path->nodes[0];
359 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
360 					    struct btrfs_file_extent_item);
361 			btrfs_set_file_extent_num_bytes(leaf, fi,
362 							args->start - key.offset);
363 
364 			fi = btrfs_item_ptr(leaf, path->slots[0],
365 					    struct btrfs_file_extent_item);
366 
367 			extent_offset += args->start - key.offset;
368 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
369 			btrfs_set_file_extent_num_bytes(leaf, fi,
370 							extent_end - args->start);
371 			btrfs_mark_buffer_dirty(leaf);
372 
373 			if (update_refs && disk_bytenr > 0) {
374 				btrfs_init_generic_ref(&ref,
375 						BTRFS_ADD_DELAYED_REF,
376 						disk_bytenr, num_bytes, 0);
377 				btrfs_init_data_ref(&ref,
378 						root->root_key.objectid,
379 						new_key.objectid,
380 						args->start - extent_offset,
381 						0, false);
382 				ret = btrfs_inc_extent_ref(trans, &ref);
383 				if (ret) {
384 					btrfs_abort_transaction(trans, ret);
385 					break;
386 				}
387 			}
388 			key.offset = args->start;
389 		}
390 		/*
391 		 * From here on out we will have actually dropped something, so
392 		 * last_end can be updated.
393 		 */
394 		last_end = extent_end;
395 
396 		/*
397 		 *  | ---- range to drop ----- |
398 		 *      | -------- extent -------- |
399 		 */
400 		if (args->start <= key.offset && args->end < extent_end) {
401 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
402 				ret = -EOPNOTSUPP;
403 				break;
404 			}
405 
406 			memcpy(&new_key, &key, sizeof(new_key));
407 			new_key.offset = args->end;
408 			btrfs_set_item_key_safe(fs_info, path, &new_key);
409 
410 			extent_offset += args->end - key.offset;
411 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
412 			btrfs_set_file_extent_num_bytes(leaf, fi,
413 							extent_end - args->end);
414 			btrfs_mark_buffer_dirty(leaf);
415 			if (update_refs && disk_bytenr > 0)
416 				args->bytes_found += args->end - key.offset;
417 			break;
418 		}
419 
420 		search_start = extent_end;
421 		/*
422 		 *       | ---- range to drop ----- |
423 		 *  | -------- extent -------- |
424 		 */
425 		if (args->start > key.offset && args->end >= extent_end) {
426 			BUG_ON(del_nr > 0);
427 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
428 				ret = -EOPNOTSUPP;
429 				break;
430 			}
431 
432 			btrfs_set_file_extent_num_bytes(leaf, fi,
433 							args->start - key.offset);
434 			btrfs_mark_buffer_dirty(leaf);
435 			if (update_refs && disk_bytenr > 0)
436 				args->bytes_found += extent_end - args->start;
437 			if (args->end == extent_end)
438 				break;
439 
440 			path->slots[0]++;
441 			goto next_slot;
442 		}
443 
444 		/*
445 		 *  | ---- range to drop ----- |
446 		 *    | ------ extent ------ |
447 		 */
448 		if (args->start <= key.offset && args->end >= extent_end) {
449 delete_extent_item:
450 			if (del_nr == 0) {
451 				del_slot = path->slots[0];
452 				del_nr = 1;
453 			} else {
454 				BUG_ON(del_slot + del_nr != path->slots[0]);
455 				del_nr++;
456 			}
457 
458 			if (update_refs &&
459 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
460 				args->bytes_found += extent_end - key.offset;
461 				extent_end = ALIGN(extent_end,
462 						   fs_info->sectorsize);
463 			} else if (update_refs && disk_bytenr > 0) {
464 				btrfs_init_generic_ref(&ref,
465 						BTRFS_DROP_DELAYED_REF,
466 						disk_bytenr, num_bytes, 0);
467 				btrfs_init_data_ref(&ref,
468 						root->root_key.objectid,
469 						key.objectid,
470 						key.offset - extent_offset, 0,
471 						false);
472 				ret = btrfs_free_extent(trans, &ref);
473 				if (ret) {
474 					btrfs_abort_transaction(trans, ret);
475 					break;
476 				}
477 				args->bytes_found += extent_end - key.offset;
478 			}
479 
480 			if (args->end == extent_end)
481 				break;
482 
483 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
484 				path->slots[0]++;
485 				goto next_slot;
486 			}
487 
488 			ret = btrfs_del_items(trans, root, path, del_slot,
489 					      del_nr);
490 			if (ret) {
491 				btrfs_abort_transaction(trans, ret);
492 				break;
493 			}
494 
495 			del_nr = 0;
496 			del_slot = 0;
497 
498 			btrfs_release_path(path);
499 			continue;
500 		}
501 
502 		BUG();
503 	}
504 
505 	if (!ret && del_nr > 0) {
506 		/*
507 		 * Set path->slots[0] to first slot, so that after the delete
508 		 * if items are move off from our leaf to its immediate left or
509 		 * right neighbor leafs, we end up with a correct and adjusted
510 		 * path->slots[0] for our insertion (if args->replace_extent).
511 		 */
512 		path->slots[0] = del_slot;
513 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
514 		if (ret)
515 			btrfs_abort_transaction(trans, ret);
516 	}
517 
518 	leaf = path->nodes[0];
519 	/*
520 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
521 	 * which case it unlocked our path, so check path->locks[0] matches a
522 	 * write lock.
523 	 */
524 	if (!ret && args->replace_extent &&
525 	    path->locks[0] == BTRFS_WRITE_LOCK &&
526 	    btrfs_leaf_free_space(leaf) >=
527 	    sizeof(struct btrfs_item) + args->extent_item_size) {
528 
529 		key.objectid = ino;
530 		key.type = BTRFS_EXTENT_DATA_KEY;
531 		key.offset = args->start;
532 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
533 			struct btrfs_key slot_key;
534 
535 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
536 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
537 				path->slots[0]++;
538 		}
539 		btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size);
540 		args->extent_inserted = true;
541 	}
542 
543 	if (!args->path)
544 		btrfs_free_path(path);
545 	else if (!args->extent_inserted)
546 		btrfs_release_path(path);
547 out:
548 	args->drop_end = found ? min(args->end, last_end) : args->end;
549 
550 	return ret;
551 }
552 
553 static int extent_mergeable(struct extent_buffer *leaf, int slot,
554 			    u64 objectid, u64 bytenr, u64 orig_offset,
555 			    u64 *start, u64 *end)
556 {
557 	struct btrfs_file_extent_item *fi;
558 	struct btrfs_key key;
559 	u64 extent_end;
560 
561 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
562 		return 0;
563 
564 	btrfs_item_key_to_cpu(leaf, &key, slot);
565 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
566 		return 0;
567 
568 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
569 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
570 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
571 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
572 	    btrfs_file_extent_compression(leaf, fi) ||
573 	    btrfs_file_extent_encryption(leaf, fi) ||
574 	    btrfs_file_extent_other_encoding(leaf, fi))
575 		return 0;
576 
577 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
578 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
579 		return 0;
580 
581 	*start = key.offset;
582 	*end = extent_end;
583 	return 1;
584 }
585 
586 /*
587  * Mark extent in the range start - end as written.
588  *
589  * This changes extent type from 'pre-allocated' to 'regular'. If only
590  * part of extent is marked as written, the extent will be split into
591  * two or three.
592  */
593 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
594 			      struct btrfs_inode *inode, u64 start, u64 end)
595 {
596 	struct btrfs_fs_info *fs_info = trans->fs_info;
597 	struct btrfs_root *root = inode->root;
598 	struct extent_buffer *leaf;
599 	struct btrfs_path *path;
600 	struct btrfs_file_extent_item *fi;
601 	struct btrfs_ref ref = { 0 };
602 	struct btrfs_key key;
603 	struct btrfs_key new_key;
604 	u64 bytenr;
605 	u64 num_bytes;
606 	u64 extent_end;
607 	u64 orig_offset;
608 	u64 other_start;
609 	u64 other_end;
610 	u64 split;
611 	int del_nr = 0;
612 	int del_slot = 0;
613 	int recow;
614 	int ret = 0;
615 	u64 ino = btrfs_ino(inode);
616 
617 	path = btrfs_alloc_path();
618 	if (!path)
619 		return -ENOMEM;
620 again:
621 	recow = 0;
622 	split = start;
623 	key.objectid = ino;
624 	key.type = BTRFS_EXTENT_DATA_KEY;
625 	key.offset = split;
626 
627 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
628 	if (ret < 0)
629 		goto out;
630 	if (ret > 0 && path->slots[0] > 0)
631 		path->slots[0]--;
632 
633 	leaf = path->nodes[0];
634 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
635 	if (key.objectid != ino ||
636 	    key.type != BTRFS_EXTENT_DATA_KEY) {
637 		ret = -EINVAL;
638 		btrfs_abort_transaction(trans, ret);
639 		goto out;
640 	}
641 	fi = btrfs_item_ptr(leaf, path->slots[0],
642 			    struct btrfs_file_extent_item);
643 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
644 		ret = -EINVAL;
645 		btrfs_abort_transaction(trans, ret);
646 		goto out;
647 	}
648 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
649 	if (key.offset > start || extent_end < end) {
650 		ret = -EINVAL;
651 		btrfs_abort_transaction(trans, ret);
652 		goto out;
653 	}
654 
655 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
656 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
657 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
658 	memcpy(&new_key, &key, sizeof(new_key));
659 
660 	if (start == key.offset && end < extent_end) {
661 		other_start = 0;
662 		other_end = start;
663 		if (extent_mergeable(leaf, path->slots[0] - 1,
664 				     ino, bytenr, orig_offset,
665 				     &other_start, &other_end)) {
666 			new_key.offset = end;
667 			btrfs_set_item_key_safe(fs_info, path, &new_key);
668 			fi = btrfs_item_ptr(leaf, path->slots[0],
669 					    struct btrfs_file_extent_item);
670 			btrfs_set_file_extent_generation(leaf, fi,
671 							 trans->transid);
672 			btrfs_set_file_extent_num_bytes(leaf, fi,
673 							extent_end - end);
674 			btrfs_set_file_extent_offset(leaf, fi,
675 						     end - orig_offset);
676 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
677 					    struct btrfs_file_extent_item);
678 			btrfs_set_file_extent_generation(leaf, fi,
679 							 trans->transid);
680 			btrfs_set_file_extent_num_bytes(leaf, fi,
681 							end - other_start);
682 			btrfs_mark_buffer_dirty(leaf);
683 			goto out;
684 		}
685 	}
686 
687 	if (start > key.offset && end == extent_end) {
688 		other_start = end;
689 		other_end = 0;
690 		if (extent_mergeable(leaf, path->slots[0] + 1,
691 				     ino, bytenr, orig_offset,
692 				     &other_start, &other_end)) {
693 			fi = btrfs_item_ptr(leaf, path->slots[0],
694 					    struct btrfs_file_extent_item);
695 			btrfs_set_file_extent_num_bytes(leaf, fi,
696 							start - key.offset);
697 			btrfs_set_file_extent_generation(leaf, fi,
698 							 trans->transid);
699 			path->slots[0]++;
700 			new_key.offset = start;
701 			btrfs_set_item_key_safe(fs_info, path, &new_key);
702 
703 			fi = btrfs_item_ptr(leaf, path->slots[0],
704 					    struct btrfs_file_extent_item);
705 			btrfs_set_file_extent_generation(leaf, fi,
706 							 trans->transid);
707 			btrfs_set_file_extent_num_bytes(leaf, fi,
708 							other_end - start);
709 			btrfs_set_file_extent_offset(leaf, fi,
710 						     start - orig_offset);
711 			btrfs_mark_buffer_dirty(leaf);
712 			goto out;
713 		}
714 	}
715 
716 	while (start > key.offset || end < extent_end) {
717 		if (key.offset == start)
718 			split = end;
719 
720 		new_key.offset = split;
721 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
722 		if (ret == -EAGAIN) {
723 			btrfs_release_path(path);
724 			goto again;
725 		}
726 		if (ret < 0) {
727 			btrfs_abort_transaction(trans, ret);
728 			goto out;
729 		}
730 
731 		leaf = path->nodes[0];
732 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
733 				    struct btrfs_file_extent_item);
734 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
735 		btrfs_set_file_extent_num_bytes(leaf, fi,
736 						split - key.offset);
737 
738 		fi = btrfs_item_ptr(leaf, path->slots[0],
739 				    struct btrfs_file_extent_item);
740 
741 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
742 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
743 		btrfs_set_file_extent_num_bytes(leaf, fi,
744 						extent_end - split);
745 		btrfs_mark_buffer_dirty(leaf);
746 
747 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
748 				       num_bytes, 0);
749 		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
750 				    orig_offset, 0, false);
751 		ret = btrfs_inc_extent_ref(trans, &ref);
752 		if (ret) {
753 			btrfs_abort_transaction(trans, ret);
754 			goto out;
755 		}
756 
757 		if (split == start) {
758 			key.offset = start;
759 		} else {
760 			if (start != key.offset) {
761 				ret = -EINVAL;
762 				btrfs_abort_transaction(trans, ret);
763 				goto out;
764 			}
765 			path->slots[0]--;
766 			extent_end = end;
767 		}
768 		recow = 1;
769 	}
770 
771 	other_start = end;
772 	other_end = 0;
773 	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
774 			       num_bytes, 0);
775 	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
776 			    0, false);
777 	if (extent_mergeable(leaf, path->slots[0] + 1,
778 			     ino, bytenr, orig_offset,
779 			     &other_start, &other_end)) {
780 		if (recow) {
781 			btrfs_release_path(path);
782 			goto again;
783 		}
784 		extent_end = other_end;
785 		del_slot = path->slots[0] + 1;
786 		del_nr++;
787 		ret = btrfs_free_extent(trans, &ref);
788 		if (ret) {
789 			btrfs_abort_transaction(trans, ret);
790 			goto out;
791 		}
792 	}
793 	other_start = 0;
794 	other_end = start;
795 	if (extent_mergeable(leaf, path->slots[0] - 1,
796 			     ino, bytenr, orig_offset,
797 			     &other_start, &other_end)) {
798 		if (recow) {
799 			btrfs_release_path(path);
800 			goto again;
801 		}
802 		key.offset = other_start;
803 		del_slot = path->slots[0];
804 		del_nr++;
805 		ret = btrfs_free_extent(trans, &ref);
806 		if (ret) {
807 			btrfs_abort_transaction(trans, ret);
808 			goto out;
809 		}
810 	}
811 	if (del_nr == 0) {
812 		fi = btrfs_item_ptr(leaf, path->slots[0],
813 			   struct btrfs_file_extent_item);
814 		btrfs_set_file_extent_type(leaf, fi,
815 					   BTRFS_FILE_EXTENT_REG);
816 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
817 		btrfs_mark_buffer_dirty(leaf);
818 	} else {
819 		fi = btrfs_item_ptr(leaf, del_slot - 1,
820 			   struct btrfs_file_extent_item);
821 		btrfs_set_file_extent_type(leaf, fi,
822 					   BTRFS_FILE_EXTENT_REG);
823 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
824 		btrfs_set_file_extent_num_bytes(leaf, fi,
825 						extent_end - key.offset);
826 		btrfs_mark_buffer_dirty(leaf);
827 
828 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
829 		if (ret < 0) {
830 			btrfs_abort_transaction(trans, ret);
831 			goto out;
832 		}
833 	}
834 out:
835 	btrfs_free_path(path);
836 	return ret;
837 }
838 
839 /*
840  * on error we return an unlocked page and the error value
841  * on success we return a locked page and 0
842  */
843 static int prepare_uptodate_page(struct inode *inode,
844 				 struct page *page, u64 pos,
845 				 bool force_uptodate)
846 {
847 	struct folio *folio = page_folio(page);
848 	int ret = 0;
849 
850 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
851 	    !PageUptodate(page)) {
852 		ret = btrfs_read_folio(NULL, folio);
853 		if (ret)
854 			return ret;
855 		lock_page(page);
856 		if (!PageUptodate(page)) {
857 			unlock_page(page);
858 			return -EIO;
859 		}
860 
861 		/*
862 		 * Since btrfs_read_folio() will unlock the folio before it
863 		 * returns, there is a window where btrfs_release_folio() can be
864 		 * called to release the page.  Here we check both inode
865 		 * mapping and PagePrivate() to make sure the page was not
866 		 * released.
867 		 *
868 		 * The private flag check is essential for subpage as we need
869 		 * to store extra bitmap using page->private.
870 		 */
871 		if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
872 			unlock_page(page);
873 			return -EAGAIN;
874 		}
875 	}
876 	return 0;
877 }
878 
879 static unsigned int get_prepare_fgp_flags(bool nowait)
880 {
881 	unsigned int fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
882 
883 	if (nowait)
884 		fgp_flags |= FGP_NOWAIT;
885 
886 	return fgp_flags;
887 }
888 
889 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
890 {
891 	gfp_t gfp;
892 
893 	gfp = btrfs_alloc_write_mask(inode->i_mapping);
894 	if (nowait) {
895 		gfp &= ~__GFP_DIRECT_RECLAIM;
896 		gfp |= GFP_NOWAIT;
897 	}
898 
899 	return gfp;
900 }
901 
902 /*
903  * this just gets pages into the page cache and locks them down.
904  */
905 static noinline int prepare_pages(struct inode *inode, struct page **pages,
906 				  size_t num_pages, loff_t pos,
907 				  size_t write_bytes, bool force_uptodate,
908 				  bool nowait)
909 {
910 	int i;
911 	unsigned long index = pos >> PAGE_SHIFT;
912 	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
913 	unsigned int fgp_flags = get_prepare_fgp_flags(nowait);
914 	int err = 0;
915 	int faili;
916 
917 	for (i = 0; i < num_pages; i++) {
918 again:
919 		pages[i] = pagecache_get_page(inode->i_mapping, index + i,
920 					      fgp_flags, mask | __GFP_WRITE);
921 		if (!pages[i]) {
922 			faili = i - 1;
923 			if (nowait)
924 				err = -EAGAIN;
925 			else
926 				err = -ENOMEM;
927 			goto fail;
928 		}
929 
930 		err = set_page_extent_mapped(pages[i]);
931 		if (err < 0) {
932 			faili = i;
933 			goto fail;
934 		}
935 
936 		if (i == 0)
937 			err = prepare_uptodate_page(inode, pages[i], pos,
938 						    force_uptodate);
939 		if (!err && i == num_pages - 1)
940 			err = prepare_uptodate_page(inode, pages[i],
941 						    pos + write_bytes, false);
942 		if (err) {
943 			put_page(pages[i]);
944 			if (!nowait && err == -EAGAIN) {
945 				err = 0;
946 				goto again;
947 			}
948 			faili = i - 1;
949 			goto fail;
950 		}
951 		wait_on_page_writeback(pages[i]);
952 	}
953 
954 	return 0;
955 fail:
956 	while (faili >= 0) {
957 		unlock_page(pages[faili]);
958 		put_page(pages[faili]);
959 		faili--;
960 	}
961 	return err;
962 
963 }
964 
965 /*
966  * This function locks the extent and properly waits for data=ordered extents
967  * to finish before allowing the pages to be modified if need.
968  *
969  * The return value:
970  * 1 - the extent is locked
971  * 0 - the extent is not locked, and everything is OK
972  * -EAGAIN - need re-prepare the pages
973  * the other < 0 number - Something wrong happens
974  */
975 static noinline int
976 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
977 				size_t num_pages, loff_t pos,
978 				size_t write_bytes,
979 				u64 *lockstart, u64 *lockend, bool nowait,
980 				struct extent_state **cached_state)
981 {
982 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
983 	u64 start_pos;
984 	u64 last_pos;
985 	int i;
986 	int ret = 0;
987 
988 	start_pos = round_down(pos, fs_info->sectorsize);
989 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
990 
991 	if (start_pos < inode->vfs_inode.i_size) {
992 		struct btrfs_ordered_extent *ordered;
993 
994 		if (nowait) {
995 			if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
996 					     cached_state)) {
997 				for (i = 0; i < num_pages; i++) {
998 					unlock_page(pages[i]);
999 					put_page(pages[i]);
1000 					pages[i] = NULL;
1001 				}
1002 
1003 				return -EAGAIN;
1004 			}
1005 		} else {
1006 			lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1007 		}
1008 
1009 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1010 						     last_pos - start_pos + 1);
1011 		if (ordered &&
1012 		    ordered->file_offset + ordered->num_bytes > start_pos &&
1013 		    ordered->file_offset <= last_pos) {
1014 			unlock_extent(&inode->io_tree, start_pos, last_pos,
1015 				      cached_state);
1016 			for (i = 0; i < num_pages; i++) {
1017 				unlock_page(pages[i]);
1018 				put_page(pages[i]);
1019 			}
1020 			btrfs_start_ordered_extent(ordered);
1021 			btrfs_put_ordered_extent(ordered);
1022 			return -EAGAIN;
1023 		}
1024 		if (ordered)
1025 			btrfs_put_ordered_extent(ordered);
1026 
1027 		*lockstart = start_pos;
1028 		*lockend = last_pos;
1029 		ret = 1;
1030 	}
1031 
1032 	/*
1033 	 * We should be called after prepare_pages() which should have locked
1034 	 * all pages in the range.
1035 	 */
1036 	for (i = 0; i < num_pages; i++)
1037 		WARN_ON(!PageLocked(pages[i]));
1038 
1039 	return ret;
1040 }
1041 
1042 /*
1043  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1044  *
1045  * @pos:         File offset.
1046  * @write_bytes: The length to write, will be updated to the nocow writeable
1047  *               range.
1048  *
1049  * This function will flush ordered extents in the range to ensure proper
1050  * nocow checks.
1051  *
1052  * Return:
1053  * > 0          If we can nocow, and updates @write_bytes.
1054  *  0           If we can't do a nocow write.
1055  * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
1056  *              root is in progress.
1057  * < 0          If an error happened.
1058  *
1059  * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1060  */
1061 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1062 			   size_t *write_bytes, bool nowait)
1063 {
1064 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1065 	struct btrfs_root *root = inode->root;
1066 	struct extent_state *cached_state = NULL;
1067 	u64 lockstart, lockend;
1068 	u64 num_bytes;
1069 	int ret;
1070 
1071 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1072 		return 0;
1073 
1074 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1075 		return -EAGAIN;
1076 
1077 	lockstart = round_down(pos, fs_info->sectorsize);
1078 	lockend = round_up(pos + *write_bytes,
1079 			   fs_info->sectorsize) - 1;
1080 	num_bytes = lockend - lockstart + 1;
1081 
1082 	if (nowait) {
1083 		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1084 						  &cached_state)) {
1085 			btrfs_drew_write_unlock(&root->snapshot_lock);
1086 			return -EAGAIN;
1087 		}
1088 	} else {
1089 		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1090 						   &cached_state);
1091 	}
1092 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1093 			NULL, NULL, NULL, nowait, false);
1094 	if (ret <= 0)
1095 		btrfs_drew_write_unlock(&root->snapshot_lock);
1096 	else
1097 		*write_bytes = min_t(size_t, *write_bytes ,
1098 				     num_bytes - pos + lockstart);
1099 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1100 
1101 	return ret;
1102 }
1103 
1104 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1105 {
1106 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1107 }
1108 
1109 static void update_time_for_write(struct inode *inode)
1110 {
1111 	struct timespec64 now;
1112 
1113 	if (IS_NOCMTIME(inode))
1114 		return;
1115 
1116 	now = current_time(inode);
1117 	if (!timespec64_equal(&inode->i_mtime, &now))
1118 		inode->i_mtime = now;
1119 
1120 	if (!timespec64_equal(&inode->i_ctime, &now))
1121 		inode->i_ctime = now;
1122 
1123 	if (IS_I_VERSION(inode))
1124 		inode_inc_iversion(inode);
1125 }
1126 
1127 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1128 			     size_t count)
1129 {
1130 	struct file *file = iocb->ki_filp;
1131 	struct inode *inode = file_inode(file);
1132 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1133 	loff_t pos = iocb->ki_pos;
1134 	int ret;
1135 	loff_t oldsize;
1136 	loff_t start_pos;
1137 
1138 	/*
1139 	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1140 	 * prealloc flags, as without those flags we always have to COW. We will
1141 	 * later check if we can really COW into the target range (using
1142 	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1143 	 */
1144 	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1145 	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1146 		return -EAGAIN;
1147 
1148 	ret = file_remove_privs(file);
1149 	if (ret)
1150 		return ret;
1151 
1152 	/*
1153 	 * We reserve space for updating the inode when we reserve space for the
1154 	 * extent we are going to write, so we will enospc out there.  We don't
1155 	 * need to start yet another transaction to update the inode as we will
1156 	 * update the inode when we finish writing whatever data we write.
1157 	 */
1158 	update_time_for_write(inode);
1159 
1160 	start_pos = round_down(pos, fs_info->sectorsize);
1161 	oldsize = i_size_read(inode);
1162 	if (start_pos > oldsize) {
1163 		/* Expand hole size to cover write data, preventing empty gap */
1164 		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1165 
1166 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1167 		if (ret)
1168 			return ret;
1169 	}
1170 
1171 	return 0;
1172 }
1173 
1174 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1175 					       struct iov_iter *i)
1176 {
1177 	struct file *file = iocb->ki_filp;
1178 	loff_t pos;
1179 	struct inode *inode = file_inode(file);
1180 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1181 	struct page **pages = NULL;
1182 	struct extent_changeset *data_reserved = NULL;
1183 	u64 release_bytes = 0;
1184 	u64 lockstart;
1185 	u64 lockend;
1186 	size_t num_written = 0;
1187 	int nrptrs;
1188 	ssize_t ret;
1189 	bool only_release_metadata = false;
1190 	bool force_page_uptodate = false;
1191 	loff_t old_isize = i_size_read(inode);
1192 	unsigned int ilock_flags = 0;
1193 	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1194 	unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1195 
1196 	if (nowait)
1197 		ilock_flags |= BTRFS_ILOCK_TRY;
1198 
1199 	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1200 	if (ret < 0)
1201 		return ret;
1202 
1203 	ret = generic_write_checks(iocb, i);
1204 	if (ret <= 0)
1205 		goto out;
1206 
1207 	ret = btrfs_write_check(iocb, i, ret);
1208 	if (ret < 0)
1209 		goto out;
1210 
1211 	pos = iocb->ki_pos;
1212 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1213 			PAGE_SIZE / (sizeof(struct page *)));
1214 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1215 	nrptrs = max(nrptrs, 8);
1216 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1217 	if (!pages) {
1218 		ret = -ENOMEM;
1219 		goto out;
1220 	}
1221 
1222 	while (iov_iter_count(i) > 0) {
1223 		struct extent_state *cached_state = NULL;
1224 		size_t offset = offset_in_page(pos);
1225 		size_t sector_offset;
1226 		size_t write_bytes = min(iov_iter_count(i),
1227 					 nrptrs * (size_t)PAGE_SIZE -
1228 					 offset);
1229 		size_t num_pages;
1230 		size_t reserve_bytes;
1231 		size_t dirty_pages;
1232 		size_t copied;
1233 		size_t dirty_sectors;
1234 		size_t num_sectors;
1235 		int extents_locked;
1236 
1237 		/*
1238 		 * Fault pages before locking them in prepare_pages
1239 		 * to avoid recursive lock
1240 		 */
1241 		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1242 			ret = -EFAULT;
1243 			break;
1244 		}
1245 
1246 		only_release_metadata = false;
1247 		sector_offset = pos & (fs_info->sectorsize - 1);
1248 
1249 		extent_changeset_release(data_reserved);
1250 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1251 						  &data_reserved, pos,
1252 						  write_bytes, nowait);
1253 		if (ret < 0) {
1254 			int can_nocow;
1255 
1256 			if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1257 				ret = -EAGAIN;
1258 				break;
1259 			}
1260 
1261 			/*
1262 			 * If we don't have to COW at the offset, reserve
1263 			 * metadata only. write_bytes may get smaller than
1264 			 * requested here.
1265 			 */
1266 			can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1267 							   &write_bytes, nowait);
1268 			if (can_nocow < 0)
1269 				ret = can_nocow;
1270 			if (can_nocow > 0)
1271 				ret = 0;
1272 			if (ret)
1273 				break;
1274 			only_release_metadata = true;
1275 		}
1276 
1277 		num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1278 		WARN_ON(num_pages > nrptrs);
1279 		reserve_bytes = round_up(write_bytes + sector_offset,
1280 					 fs_info->sectorsize);
1281 		WARN_ON(reserve_bytes == 0);
1282 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1283 						      reserve_bytes,
1284 						      reserve_bytes, nowait);
1285 		if (ret) {
1286 			if (!only_release_metadata)
1287 				btrfs_free_reserved_data_space(BTRFS_I(inode),
1288 						data_reserved, pos,
1289 						write_bytes);
1290 			else
1291 				btrfs_check_nocow_unlock(BTRFS_I(inode));
1292 
1293 			if (nowait && ret == -ENOSPC)
1294 				ret = -EAGAIN;
1295 			break;
1296 		}
1297 
1298 		release_bytes = reserve_bytes;
1299 again:
1300 		ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1301 		if (ret) {
1302 			btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1303 			break;
1304 		}
1305 
1306 		/*
1307 		 * This is going to setup the pages array with the number of
1308 		 * pages we want, so we don't really need to worry about the
1309 		 * contents of pages from loop to loop
1310 		 */
1311 		ret = prepare_pages(inode, pages, num_pages,
1312 				    pos, write_bytes, force_page_uptodate, false);
1313 		if (ret) {
1314 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1315 						       reserve_bytes);
1316 			break;
1317 		}
1318 
1319 		extents_locked = lock_and_cleanup_extent_if_need(
1320 				BTRFS_I(inode), pages,
1321 				num_pages, pos, write_bytes, &lockstart,
1322 				&lockend, nowait, &cached_state);
1323 		if (extents_locked < 0) {
1324 			if (!nowait && extents_locked == -EAGAIN)
1325 				goto again;
1326 
1327 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1328 						       reserve_bytes);
1329 			ret = extents_locked;
1330 			break;
1331 		}
1332 
1333 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1334 
1335 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1336 		dirty_sectors = round_up(copied + sector_offset,
1337 					fs_info->sectorsize);
1338 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1339 
1340 		/*
1341 		 * if we have trouble faulting in the pages, fall
1342 		 * back to one page at a time
1343 		 */
1344 		if (copied < write_bytes)
1345 			nrptrs = 1;
1346 
1347 		if (copied == 0) {
1348 			force_page_uptodate = true;
1349 			dirty_sectors = 0;
1350 			dirty_pages = 0;
1351 		} else {
1352 			force_page_uptodate = false;
1353 			dirty_pages = DIV_ROUND_UP(copied + offset,
1354 						   PAGE_SIZE);
1355 		}
1356 
1357 		if (num_sectors > dirty_sectors) {
1358 			/* release everything except the sectors we dirtied */
1359 			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1360 			if (only_release_metadata) {
1361 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1362 							release_bytes, true);
1363 			} else {
1364 				u64 __pos;
1365 
1366 				__pos = round_down(pos,
1367 						   fs_info->sectorsize) +
1368 					(dirty_pages << PAGE_SHIFT);
1369 				btrfs_delalloc_release_space(BTRFS_I(inode),
1370 						data_reserved, __pos,
1371 						release_bytes, true);
1372 			}
1373 		}
1374 
1375 		release_bytes = round_up(copied + sector_offset,
1376 					fs_info->sectorsize);
1377 
1378 		ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1379 					dirty_pages, pos, copied,
1380 					&cached_state, only_release_metadata);
1381 
1382 		/*
1383 		 * If we have not locked the extent range, because the range's
1384 		 * start offset is >= i_size, we might still have a non-NULL
1385 		 * cached extent state, acquired while marking the extent range
1386 		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1387 		 * possible cached extent state to avoid a memory leak.
1388 		 */
1389 		if (extents_locked)
1390 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1391 				      lockend, &cached_state);
1392 		else
1393 			free_extent_state(cached_state);
1394 
1395 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1396 		if (ret) {
1397 			btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1398 			break;
1399 		}
1400 
1401 		release_bytes = 0;
1402 		if (only_release_metadata)
1403 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1404 
1405 		btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1406 
1407 		cond_resched();
1408 
1409 		pos += copied;
1410 		num_written += copied;
1411 	}
1412 
1413 	kfree(pages);
1414 
1415 	if (release_bytes) {
1416 		if (only_release_metadata) {
1417 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1418 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1419 					release_bytes, true);
1420 		} else {
1421 			btrfs_delalloc_release_space(BTRFS_I(inode),
1422 					data_reserved,
1423 					round_down(pos, fs_info->sectorsize),
1424 					release_bytes, true);
1425 		}
1426 	}
1427 
1428 	extent_changeset_free(data_reserved);
1429 	if (num_written > 0) {
1430 		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1431 		iocb->ki_pos += num_written;
1432 	}
1433 out:
1434 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1435 	return num_written ? num_written : ret;
1436 }
1437 
1438 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1439 			       const struct iov_iter *iter, loff_t offset)
1440 {
1441 	const u32 blocksize_mask = fs_info->sectorsize - 1;
1442 
1443 	if (offset & blocksize_mask)
1444 		return -EINVAL;
1445 
1446 	if (iov_iter_alignment(iter) & blocksize_mask)
1447 		return -EINVAL;
1448 
1449 	return 0;
1450 }
1451 
1452 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1453 {
1454 	struct file *file = iocb->ki_filp;
1455 	struct inode *inode = file_inode(file);
1456 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1457 	loff_t pos;
1458 	ssize_t written = 0;
1459 	ssize_t written_buffered;
1460 	size_t prev_left = 0;
1461 	loff_t endbyte;
1462 	ssize_t err;
1463 	unsigned int ilock_flags = 0;
1464 	struct iomap_dio *dio;
1465 
1466 	if (iocb->ki_flags & IOCB_NOWAIT)
1467 		ilock_flags |= BTRFS_ILOCK_TRY;
1468 
1469 	/* If the write DIO is within EOF, use a shared lock */
1470 	if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1471 		ilock_flags |= BTRFS_ILOCK_SHARED;
1472 
1473 relock:
1474 	err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1475 	if (err < 0)
1476 		return err;
1477 
1478 	err = generic_write_checks(iocb, from);
1479 	if (err <= 0) {
1480 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1481 		return err;
1482 	}
1483 
1484 	err = btrfs_write_check(iocb, from, err);
1485 	if (err < 0) {
1486 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1487 		goto out;
1488 	}
1489 
1490 	pos = iocb->ki_pos;
1491 	/*
1492 	 * Re-check since file size may have changed just before taking the
1493 	 * lock or pos may have changed because of O_APPEND in generic_write_check()
1494 	 */
1495 	if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1496 	    pos + iov_iter_count(from) > i_size_read(inode)) {
1497 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1498 		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1499 		goto relock;
1500 	}
1501 
1502 	if (check_direct_IO(fs_info, from, pos)) {
1503 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1504 		goto buffered;
1505 	}
1506 
1507 	/*
1508 	 * The iov_iter can be mapped to the same file range we are writing to.
1509 	 * If that's the case, then we will deadlock in the iomap code, because
1510 	 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1511 	 * an ordered extent, and after that it will fault in the pages that the
1512 	 * iov_iter refers to. During the fault in we end up in the readahead
1513 	 * pages code (starting at btrfs_readahead()), which will lock the range,
1514 	 * find that ordered extent and then wait for it to complete (at
1515 	 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1516 	 * obviously the ordered extent can never complete as we didn't submit
1517 	 * yet the respective bio(s). This always happens when the buffer is
1518 	 * memory mapped to the same file range, since the iomap DIO code always
1519 	 * invalidates pages in the target file range (after starting and waiting
1520 	 * for any writeback).
1521 	 *
1522 	 * So here we disable page faults in the iov_iter and then retry if we
1523 	 * got -EFAULT, faulting in the pages before the retry.
1524 	 */
1525 	from->nofault = true;
1526 	dio = btrfs_dio_write(iocb, from, written);
1527 	from->nofault = false;
1528 
1529 	/*
1530 	 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1531 	 * iocb, and that needs to lock the inode. So unlock it before calling
1532 	 * iomap_dio_complete() to avoid a deadlock.
1533 	 */
1534 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1535 
1536 	if (IS_ERR_OR_NULL(dio))
1537 		err = PTR_ERR_OR_ZERO(dio);
1538 	else
1539 		err = iomap_dio_complete(dio);
1540 
1541 	/* No increment (+=) because iomap returns a cumulative value. */
1542 	if (err > 0)
1543 		written = err;
1544 
1545 	if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1546 		const size_t left = iov_iter_count(from);
1547 		/*
1548 		 * We have more data left to write. Try to fault in as many as
1549 		 * possible of the remainder pages and retry. We do this without
1550 		 * releasing and locking again the inode, to prevent races with
1551 		 * truncate.
1552 		 *
1553 		 * Also, in case the iov refers to pages in the file range of the
1554 		 * file we want to write to (due to a mmap), we could enter an
1555 		 * infinite loop if we retry after faulting the pages in, since
1556 		 * iomap will invalidate any pages in the range early on, before
1557 		 * it tries to fault in the pages of the iov. So we keep track of
1558 		 * how much was left of iov in the previous EFAULT and fallback
1559 		 * to buffered IO in case we haven't made any progress.
1560 		 */
1561 		if (left == prev_left) {
1562 			err = -ENOTBLK;
1563 		} else {
1564 			fault_in_iov_iter_readable(from, left);
1565 			prev_left = left;
1566 			goto relock;
1567 		}
1568 	}
1569 
1570 	/*
1571 	 * If 'err' is -ENOTBLK or we have not written all data, then it means
1572 	 * we must fallback to buffered IO.
1573 	 */
1574 	if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
1575 		goto out;
1576 
1577 buffered:
1578 	/*
1579 	 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1580 	 * it must retry the operation in a context where blocking is acceptable,
1581 	 * because even if we end up not blocking during the buffered IO attempt
1582 	 * below, we will block when flushing and waiting for the IO.
1583 	 */
1584 	if (iocb->ki_flags & IOCB_NOWAIT) {
1585 		err = -EAGAIN;
1586 		goto out;
1587 	}
1588 
1589 	pos = iocb->ki_pos;
1590 	written_buffered = btrfs_buffered_write(iocb, from);
1591 	if (written_buffered < 0) {
1592 		err = written_buffered;
1593 		goto out;
1594 	}
1595 	/*
1596 	 * Ensure all data is persisted. We want the next direct IO read to be
1597 	 * able to read what was just written.
1598 	 */
1599 	endbyte = pos + written_buffered - 1;
1600 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1601 	if (err)
1602 		goto out;
1603 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1604 	if (err)
1605 		goto out;
1606 	written += written_buffered;
1607 	iocb->ki_pos = pos + written_buffered;
1608 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1609 				 endbyte >> PAGE_SHIFT);
1610 out:
1611 	return err < 0 ? err : written;
1612 }
1613 
1614 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1615 			const struct btrfs_ioctl_encoded_io_args *encoded)
1616 {
1617 	struct file *file = iocb->ki_filp;
1618 	struct inode *inode = file_inode(file);
1619 	loff_t count;
1620 	ssize_t ret;
1621 
1622 	btrfs_inode_lock(BTRFS_I(inode), 0);
1623 	count = encoded->len;
1624 	ret = generic_write_checks_count(iocb, &count);
1625 	if (ret == 0 && count != encoded->len) {
1626 		/*
1627 		 * The write got truncated by generic_write_checks_count(). We
1628 		 * can't do a partial encoded write.
1629 		 */
1630 		ret = -EFBIG;
1631 	}
1632 	if (ret || encoded->len == 0)
1633 		goto out;
1634 
1635 	ret = btrfs_write_check(iocb, from, encoded->len);
1636 	if (ret < 0)
1637 		goto out;
1638 
1639 	ret = btrfs_do_encoded_write(iocb, from, encoded);
1640 out:
1641 	btrfs_inode_unlock(BTRFS_I(inode), 0);
1642 	return ret;
1643 }
1644 
1645 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1646 			    const struct btrfs_ioctl_encoded_io_args *encoded)
1647 {
1648 	struct file *file = iocb->ki_filp;
1649 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1650 	ssize_t num_written, num_sync;
1651 
1652 	/*
1653 	 * If the fs flips readonly due to some impossible error, although we
1654 	 * have opened a file as writable, we have to stop this write operation
1655 	 * to ensure consistency.
1656 	 */
1657 	if (BTRFS_FS_ERROR(inode->root->fs_info))
1658 		return -EROFS;
1659 
1660 	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1661 		return -EOPNOTSUPP;
1662 
1663 	if (encoded) {
1664 		num_written = btrfs_encoded_write(iocb, from, encoded);
1665 		num_sync = encoded->len;
1666 	} else if (iocb->ki_flags & IOCB_DIRECT) {
1667 		num_written = btrfs_direct_write(iocb, from);
1668 		num_sync = num_written;
1669 	} else {
1670 		num_written = btrfs_buffered_write(iocb, from);
1671 		num_sync = num_written;
1672 	}
1673 
1674 	btrfs_set_inode_last_sub_trans(inode);
1675 
1676 	if (num_sync > 0) {
1677 		num_sync = generic_write_sync(iocb, num_sync);
1678 		if (num_sync < 0)
1679 			num_written = num_sync;
1680 	}
1681 
1682 	return num_written;
1683 }
1684 
1685 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1686 {
1687 	return btrfs_do_write_iter(iocb, from, NULL);
1688 }
1689 
1690 int btrfs_release_file(struct inode *inode, struct file *filp)
1691 {
1692 	struct btrfs_file_private *private = filp->private_data;
1693 
1694 	if (private) {
1695 		kfree(private->filldir_buf);
1696 		free_extent_state(private->llseek_cached_state);
1697 		kfree(private);
1698 		filp->private_data = NULL;
1699 	}
1700 
1701 	/*
1702 	 * Set by setattr when we are about to truncate a file from a non-zero
1703 	 * size to a zero size.  This tries to flush down new bytes that may
1704 	 * have been written if the application were using truncate to replace
1705 	 * a file in place.
1706 	 */
1707 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1708 			       &BTRFS_I(inode)->runtime_flags))
1709 			filemap_flush(inode->i_mapping);
1710 	return 0;
1711 }
1712 
1713 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1714 {
1715 	int ret;
1716 	struct blk_plug plug;
1717 
1718 	/*
1719 	 * This is only called in fsync, which would do synchronous writes, so
1720 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
1721 	 * multiple disks using raid profile, a large IO can be split to
1722 	 * several segments of stripe length (currently 64K).
1723 	 */
1724 	blk_start_plug(&plug);
1725 	ret = btrfs_fdatawrite_range(inode, start, end);
1726 	blk_finish_plug(&plug);
1727 
1728 	return ret;
1729 }
1730 
1731 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1732 {
1733 	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1734 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1735 
1736 	if (btrfs_inode_in_log(inode, fs_info->generation) &&
1737 	    list_empty(&ctx->ordered_extents))
1738 		return true;
1739 
1740 	/*
1741 	 * If we are doing a fast fsync we can not bail out if the inode's
1742 	 * last_trans is <= then the last committed transaction, because we only
1743 	 * update the last_trans of the inode during ordered extent completion,
1744 	 * and for a fast fsync we don't wait for that, we only wait for the
1745 	 * writeback to complete.
1746 	 */
1747 	if (inode->last_trans <= fs_info->last_trans_committed &&
1748 	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1749 	     list_empty(&ctx->ordered_extents)))
1750 		return true;
1751 
1752 	return false;
1753 }
1754 
1755 /*
1756  * fsync call for both files and directories.  This logs the inode into
1757  * the tree log instead of forcing full commits whenever possible.
1758  *
1759  * It needs to call filemap_fdatawait so that all ordered extent updates are
1760  * in the metadata btree are up to date for copying to the log.
1761  *
1762  * It drops the inode mutex before doing the tree log commit.  This is an
1763  * important optimization for directories because holding the mutex prevents
1764  * new operations on the dir while we write to disk.
1765  */
1766 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1767 {
1768 	struct dentry *dentry = file_dentry(file);
1769 	struct inode *inode = d_inode(dentry);
1770 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1771 	struct btrfs_root *root = BTRFS_I(inode)->root;
1772 	struct btrfs_trans_handle *trans;
1773 	struct btrfs_log_ctx ctx;
1774 	int ret = 0, err;
1775 	u64 len;
1776 	bool full_sync;
1777 
1778 	trace_btrfs_sync_file(file, datasync);
1779 
1780 	btrfs_init_log_ctx(&ctx, inode);
1781 
1782 	/*
1783 	 * Always set the range to a full range, otherwise we can get into
1784 	 * several problems, from missing file extent items to represent holes
1785 	 * when not using the NO_HOLES feature, to log tree corruption due to
1786 	 * races between hole detection during logging and completion of ordered
1787 	 * extents outside the range, to missing checksums due to ordered extents
1788 	 * for which we flushed only a subset of their pages.
1789 	 */
1790 	start = 0;
1791 	end = LLONG_MAX;
1792 	len = (u64)LLONG_MAX + 1;
1793 
1794 	/*
1795 	 * We write the dirty pages in the range and wait until they complete
1796 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1797 	 * multi-task, and make the performance up.  See
1798 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1799 	 */
1800 	ret = start_ordered_ops(inode, start, end);
1801 	if (ret)
1802 		goto out;
1803 
1804 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1805 
1806 	atomic_inc(&root->log_batch);
1807 
1808 	/*
1809 	 * Before we acquired the inode's lock and the mmap lock, someone may
1810 	 * have dirtied more pages in the target range. We need to make sure
1811 	 * that writeback for any such pages does not start while we are logging
1812 	 * the inode, because if it does, any of the following might happen when
1813 	 * we are not doing a full inode sync:
1814 	 *
1815 	 * 1) We log an extent after its writeback finishes but before its
1816 	 *    checksums are added to the csum tree, leading to -EIO errors
1817 	 *    when attempting to read the extent after a log replay.
1818 	 *
1819 	 * 2) We can end up logging an extent before its writeback finishes.
1820 	 *    Therefore after the log replay we will have a file extent item
1821 	 *    pointing to an unwritten extent (and no data checksums as well).
1822 	 *
1823 	 * So trigger writeback for any eventual new dirty pages and then we
1824 	 * wait for all ordered extents to complete below.
1825 	 */
1826 	ret = start_ordered_ops(inode, start, end);
1827 	if (ret) {
1828 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1829 		goto out;
1830 	}
1831 
1832 	/*
1833 	 * Always check for the full sync flag while holding the inode's lock,
1834 	 * to avoid races with other tasks. The flag must be either set all the
1835 	 * time during logging or always off all the time while logging.
1836 	 * We check the flag here after starting delalloc above, because when
1837 	 * running delalloc the full sync flag may be set if we need to drop
1838 	 * extra extent map ranges due to temporary memory allocation failures.
1839 	 */
1840 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1841 			     &BTRFS_I(inode)->runtime_flags);
1842 
1843 	/*
1844 	 * We have to do this here to avoid the priority inversion of waiting on
1845 	 * IO of a lower priority task while holding a transaction open.
1846 	 *
1847 	 * For a full fsync we wait for the ordered extents to complete while
1848 	 * for a fast fsync we wait just for writeback to complete, and then
1849 	 * attach the ordered extents to the transaction so that a transaction
1850 	 * commit waits for their completion, to avoid data loss if we fsync,
1851 	 * the current transaction commits before the ordered extents complete
1852 	 * and a power failure happens right after that.
1853 	 *
1854 	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1855 	 * logical address recorded in the ordered extent may change. We need
1856 	 * to wait for the IO to stabilize the logical address.
1857 	 */
1858 	if (full_sync || btrfs_is_zoned(fs_info)) {
1859 		ret = btrfs_wait_ordered_range(inode, start, len);
1860 	} else {
1861 		/*
1862 		 * Get our ordered extents as soon as possible to avoid doing
1863 		 * checksum lookups in the csum tree, and use instead the
1864 		 * checksums attached to the ordered extents.
1865 		 */
1866 		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1867 						      &ctx.ordered_extents);
1868 		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
1869 	}
1870 
1871 	if (ret)
1872 		goto out_release_extents;
1873 
1874 	atomic_inc(&root->log_batch);
1875 
1876 	smp_mb();
1877 	if (skip_inode_logging(&ctx)) {
1878 		/*
1879 		 * We've had everything committed since the last time we were
1880 		 * modified so clear this flag in case it was set for whatever
1881 		 * reason, it's no longer relevant.
1882 		 */
1883 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1884 			  &BTRFS_I(inode)->runtime_flags);
1885 		/*
1886 		 * An ordered extent might have started before and completed
1887 		 * already with io errors, in which case the inode was not
1888 		 * updated and we end up here. So check the inode's mapping
1889 		 * for any errors that might have happened since we last
1890 		 * checked called fsync.
1891 		 */
1892 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
1893 		goto out_release_extents;
1894 	}
1895 
1896 	/*
1897 	 * We use start here because we will need to wait on the IO to complete
1898 	 * in btrfs_sync_log, which could require joining a transaction (for
1899 	 * example checking cross references in the nocow path).  If we use join
1900 	 * here we could get into a situation where we're waiting on IO to
1901 	 * happen that is blocked on a transaction trying to commit.  With start
1902 	 * we inc the extwriter counter, so we wait for all extwriters to exit
1903 	 * before we start blocking joiners.  This comment is to keep somebody
1904 	 * from thinking they are super smart and changing this to
1905 	 * btrfs_join_transaction *cough*Josef*cough*.
1906 	 */
1907 	trans = btrfs_start_transaction(root, 0);
1908 	if (IS_ERR(trans)) {
1909 		ret = PTR_ERR(trans);
1910 		goto out_release_extents;
1911 	}
1912 	trans->in_fsync = true;
1913 
1914 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1915 	btrfs_release_log_ctx_extents(&ctx);
1916 	if (ret < 0) {
1917 		/* Fallthrough and commit/free transaction. */
1918 		ret = BTRFS_LOG_FORCE_COMMIT;
1919 	}
1920 
1921 	/* we've logged all the items and now have a consistent
1922 	 * version of the file in the log.  It is possible that
1923 	 * someone will come in and modify the file, but that's
1924 	 * fine because the log is consistent on disk, and we
1925 	 * have references to all of the file's extents
1926 	 *
1927 	 * It is possible that someone will come in and log the
1928 	 * file again, but that will end up using the synchronization
1929 	 * inside btrfs_sync_log to keep things safe.
1930 	 */
1931 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1932 
1933 	if (ret == BTRFS_NO_LOG_SYNC) {
1934 		ret = btrfs_end_transaction(trans);
1935 		goto out;
1936 	}
1937 
1938 	/* We successfully logged the inode, attempt to sync the log. */
1939 	if (!ret) {
1940 		ret = btrfs_sync_log(trans, root, &ctx);
1941 		if (!ret) {
1942 			ret = btrfs_end_transaction(trans);
1943 			goto out;
1944 		}
1945 	}
1946 
1947 	/*
1948 	 * At this point we need to commit the transaction because we had
1949 	 * btrfs_need_log_full_commit() or some other error.
1950 	 *
1951 	 * If we didn't do a full sync we have to stop the trans handle, wait on
1952 	 * the ordered extents, start it again and commit the transaction.  If
1953 	 * we attempt to wait on the ordered extents here we could deadlock with
1954 	 * something like fallocate() that is holding the extent lock trying to
1955 	 * start a transaction while some other thread is trying to commit the
1956 	 * transaction while we (fsync) are currently holding the transaction
1957 	 * open.
1958 	 */
1959 	if (!full_sync) {
1960 		ret = btrfs_end_transaction(trans);
1961 		if (ret)
1962 			goto out;
1963 		ret = btrfs_wait_ordered_range(inode, start, len);
1964 		if (ret)
1965 			goto out;
1966 
1967 		/*
1968 		 * This is safe to use here because we're only interested in
1969 		 * making sure the transaction that had the ordered extents is
1970 		 * committed.  We aren't waiting on anything past this point,
1971 		 * we're purely getting the transaction and committing it.
1972 		 */
1973 		trans = btrfs_attach_transaction_barrier(root);
1974 		if (IS_ERR(trans)) {
1975 			ret = PTR_ERR(trans);
1976 
1977 			/*
1978 			 * We committed the transaction and there's no currently
1979 			 * running transaction, this means everything we care
1980 			 * about made it to disk and we are done.
1981 			 */
1982 			if (ret == -ENOENT)
1983 				ret = 0;
1984 			goto out;
1985 		}
1986 	}
1987 
1988 	ret = btrfs_commit_transaction(trans);
1989 out:
1990 	ASSERT(list_empty(&ctx.list));
1991 	ASSERT(list_empty(&ctx.conflict_inodes));
1992 	err = file_check_and_advance_wb_err(file);
1993 	if (!ret)
1994 		ret = err;
1995 	return ret > 0 ? -EIO : ret;
1996 
1997 out_release_extents:
1998 	btrfs_release_log_ctx_extents(&ctx);
1999 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2000 	goto out;
2001 }
2002 
2003 static const struct vm_operations_struct btrfs_file_vm_ops = {
2004 	.fault		= filemap_fault,
2005 	.map_pages	= filemap_map_pages,
2006 	.page_mkwrite	= btrfs_page_mkwrite,
2007 };
2008 
2009 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2010 {
2011 	struct address_space *mapping = filp->f_mapping;
2012 
2013 	if (!mapping->a_ops->read_folio)
2014 		return -ENOEXEC;
2015 
2016 	file_accessed(filp);
2017 	vma->vm_ops = &btrfs_file_vm_ops;
2018 
2019 	return 0;
2020 }
2021 
2022 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2023 			  int slot, u64 start, u64 end)
2024 {
2025 	struct btrfs_file_extent_item *fi;
2026 	struct btrfs_key key;
2027 
2028 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2029 		return 0;
2030 
2031 	btrfs_item_key_to_cpu(leaf, &key, slot);
2032 	if (key.objectid != btrfs_ino(inode) ||
2033 	    key.type != BTRFS_EXTENT_DATA_KEY)
2034 		return 0;
2035 
2036 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2037 
2038 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2039 		return 0;
2040 
2041 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2042 		return 0;
2043 
2044 	if (key.offset == end)
2045 		return 1;
2046 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2047 		return 1;
2048 	return 0;
2049 }
2050 
2051 static int fill_holes(struct btrfs_trans_handle *trans,
2052 		struct btrfs_inode *inode,
2053 		struct btrfs_path *path, u64 offset, u64 end)
2054 {
2055 	struct btrfs_fs_info *fs_info = trans->fs_info;
2056 	struct btrfs_root *root = inode->root;
2057 	struct extent_buffer *leaf;
2058 	struct btrfs_file_extent_item *fi;
2059 	struct extent_map *hole_em;
2060 	struct btrfs_key key;
2061 	int ret;
2062 
2063 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2064 		goto out;
2065 
2066 	key.objectid = btrfs_ino(inode);
2067 	key.type = BTRFS_EXTENT_DATA_KEY;
2068 	key.offset = offset;
2069 
2070 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2071 	if (ret <= 0) {
2072 		/*
2073 		 * We should have dropped this offset, so if we find it then
2074 		 * something has gone horribly wrong.
2075 		 */
2076 		if (ret == 0)
2077 			ret = -EINVAL;
2078 		return ret;
2079 	}
2080 
2081 	leaf = path->nodes[0];
2082 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2083 		u64 num_bytes;
2084 
2085 		path->slots[0]--;
2086 		fi = btrfs_item_ptr(leaf, path->slots[0],
2087 				    struct btrfs_file_extent_item);
2088 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2089 			end - offset;
2090 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2091 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2092 		btrfs_set_file_extent_offset(leaf, fi, 0);
2093 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2094 		btrfs_mark_buffer_dirty(leaf);
2095 		goto out;
2096 	}
2097 
2098 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2099 		u64 num_bytes;
2100 
2101 		key.offset = offset;
2102 		btrfs_set_item_key_safe(fs_info, path, &key);
2103 		fi = btrfs_item_ptr(leaf, path->slots[0],
2104 				    struct btrfs_file_extent_item);
2105 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2106 			offset;
2107 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2108 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2109 		btrfs_set_file_extent_offset(leaf, fi, 0);
2110 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2111 		btrfs_mark_buffer_dirty(leaf);
2112 		goto out;
2113 	}
2114 	btrfs_release_path(path);
2115 
2116 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2117 				       end - offset);
2118 	if (ret)
2119 		return ret;
2120 
2121 out:
2122 	btrfs_release_path(path);
2123 
2124 	hole_em = alloc_extent_map();
2125 	if (!hole_em) {
2126 		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2127 		btrfs_set_inode_full_sync(inode);
2128 	} else {
2129 		hole_em->start = offset;
2130 		hole_em->len = end - offset;
2131 		hole_em->ram_bytes = hole_em->len;
2132 		hole_em->orig_start = offset;
2133 
2134 		hole_em->block_start = EXTENT_MAP_HOLE;
2135 		hole_em->block_len = 0;
2136 		hole_em->orig_block_len = 0;
2137 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2138 		hole_em->generation = trans->transid;
2139 
2140 		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2141 		free_extent_map(hole_em);
2142 		if (ret)
2143 			btrfs_set_inode_full_sync(inode);
2144 	}
2145 
2146 	return 0;
2147 }
2148 
2149 /*
2150  * Find a hole extent on given inode and change start/len to the end of hole
2151  * extent.(hole/vacuum extent whose em->start <= start &&
2152  *	   em->start + em->len > start)
2153  * When a hole extent is found, return 1 and modify start/len.
2154  */
2155 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2156 {
2157 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2158 	struct extent_map *em;
2159 	int ret = 0;
2160 
2161 	em = btrfs_get_extent(inode, NULL, 0,
2162 			      round_down(*start, fs_info->sectorsize),
2163 			      round_up(*len, fs_info->sectorsize));
2164 	if (IS_ERR(em))
2165 		return PTR_ERR(em);
2166 
2167 	/* Hole or vacuum extent(only exists in no-hole mode) */
2168 	if (em->block_start == EXTENT_MAP_HOLE) {
2169 		ret = 1;
2170 		*len = em->start + em->len > *start + *len ?
2171 		       0 : *start + *len - em->start - em->len;
2172 		*start = em->start + em->len;
2173 	}
2174 	free_extent_map(em);
2175 	return ret;
2176 }
2177 
2178 static void btrfs_punch_hole_lock_range(struct inode *inode,
2179 					const u64 lockstart,
2180 					const u64 lockend,
2181 					struct extent_state **cached_state)
2182 {
2183 	/*
2184 	 * For subpage case, if the range is not at page boundary, we could
2185 	 * have pages at the leading/tailing part of the range.
2186 	 * This could lead to dead loop since filemap_range_has_page()
2187 	 * will always return true.
2188 	 * So here we need to do extra page alignment for
2189 	 * filemap_range_has_page().
2190 	 */
2191 	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2192 	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2193 
2194 	while (1) {
2195 		truncate_pagecache_range(inode, lockstart, lockend);
2196 
2197 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2198 			    cached_state);
2199 		/*
2200 		 * We can't have ordered extents in the range, nor dirty/writeback
2201 		 * pages, because we have locked the inode's VFS lock in exclusive
2202 		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2203 		 * we have flushed all delalloc in the range and we have waited
2204 		 * for any ordered extents in the range to complete.
2205 		 * We can race with anyone reading pages from this range, so after
2206 		 * locking the range check if we have pages in the range, and if
2207 		 * we do, unlock the range and retry.
2208 		 */
2209 		if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2210 					    page_lockend))
2211 			break;
2212 
2213 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2214 			      cached_state);
2215 	}
2216 
2217 	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2218 }
2219 
2220 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2221 				     struct btrfs_inode *inode,
2222 				     struct btrfs_path *path,
2223 				     struct btrfs_replace_extent_info *extent_info,
2224 				     const u64 replace_len,
2225 				     const u64 bytes_to_drop)
2226 {
2227 	struct btrfs_fs_info *fs_info = trans->fs_info;
2228 	struct btrfs_root *root = inode->root;
2229 	struct btrfs_file_extent_item *extent;
2230 	struct extent_buffer *leaf;
2231 	struct btrfs_key key;
2232 	int slot;
2233 	struct btrfs_ref ref = { 0 };
2234 	int ret;
2235 
2236 	if (replace_len == 0)
2237 		return 0;
2238 
2239 	if (extent_info->disk_offset == 0 &&
2240 	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2241 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2242 		return 0;
2243 	}
2244 
2245 	key.objectid = btrfs_ino(inode);
2246 	key.type = BTRFS_EXTENT_DATA_KEY;
2247 	key.offset = extent_info->file_offset;
2248 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2249 				      sizeof(struct btrfs_file_extent_item));
2250 	if (ret)
2251 		return ret;
2252 	leaf = path->nodes[0];
2253 	slot = path->slots[0];
2254 	write_extent_buffer(leaf, extent_info->extent_buf,
2255 			    btrfs_item_ptr_offset(leaf, slot),
2256 			    sizeof(struct btrfs_file_extent_item));
2257 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2258 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2259 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2260 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2261 	if (extent_info->is_new_extent)
2262 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2263 	btrfs_mark_buffer_dirty(leaf);
2264 	btrfs_release_path(path);
2265 
2266 	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2267 						replace_len);
2268 	if (ret)
2269 		return ret;
2270 
2271 	/* If it's a hole, nothing more needs to be done. */
2272 	if (extent_info->disk_offset == 0) {
2273 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2274 		return 0;
2275 	}
2276 
2277 	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2278 
2279 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2280 		key.objectid = extent_info->disk_offset;
2281 		key.type = BTRFS_EXTENT_ITEM_KEY;
2282 		key.offset = extent_info->disk_len;
2283 		ret = btrfs_alloc_reserved_file_extent(trans, root,
2284 						       btrfs_ino(inode),
2285 						       extent_info->file_offset,
2286 						       extent_info->qgroup_reserved,
2287 						       &key);
2288 	} else {
2289 		u64 ref_offset;
2290 
2291 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2292 				       extent_info->disk_offset,
2293 				       extent_info->disk_len, 0);
2294 		ref_offset = extent_info->file_offset - extent_info->data_offset;
2295 		btrfs_init_data_ref(&ref, root->root_key.objectid,
2296 				    btrfs_ino(inode), ref_offset, 0, false);
2297 		ret = btrfs_inc_extent_ref(trans, &ref);
2298 	}
2299 
2300 	extent_info->insertions++;
2301 
2302 	return ret;
2303 }
2304 
2305 /*
2306  * The respective range must have been previously locked, as well as the inode.
2307  * The end offset is inclusive (last byte of the range).
2308  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2309  * the file range with an extent.
2310  * When not punching a hole, we don't want to end up in a state where we dropped
2311  * extents without inserting a new one, so we must abort the transaction to avoid
2312  * a corruption.
2313  */
2314 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2315 			       struct btrfs_path *path, const u64 start,
2316 			       const u64 end,
2317 			       struct btrfs_replace_extent_info *extent_info,
2318 			       struct btrfs_trans_handle **trans_out)
2319 {
2320 	struct btrfs_drop_extents_args drop_args = { 0 };
2321 	struct btrfs_root *root = inode->root;
2322 	struct btrfs_fs_info *fs_info = root->fs_info;
2323 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2324 	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2325 	struct btrfs_trans_handle *trans = NULL;
2326 	struct btrfs_block_rsv *rsv;
2327 	unsigned int rsv_count;
2328 	u64 cur_offset;
2329 	u64 len = end - start;
2330 	int ret = 0;
2331 
2332 	if (end <= start)
2333 		return -EINVAL;
2334 
2335 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2336 	if (!rsv) {
2337 		ret = -ENOMEM;
2338 		goto out;
2339 	}
2340 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2341 	rsv->failfast = true;
2342 
2343 	/*
2344 	 * 1 - update the inode
2345 	 * 1 - removing the extents in the range
2346 	 * 1 - adding the hole extent if no_holes isn't set or if we are
2347 	 *     replacing the range with a new extent
2348 	 */
2349 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2350 		rsv_count = 3;
2351 	else
2352 		rsv_count = 2;
2353 
2354 	trans = btrfs_start_transaction(root, rsv_count);
2355 	if (IS_ERR(trans)) {
2356 		ret = PTR_ERR(trans);
2357 		trans = NULL;
2358 		goto out_free;
2359 	}
2360 
2361 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2362 				      min_size, false);
2363 	if (WARN_ON(ret))
2364 		goto out_trans;
2365 	trans->block_rsv = rsv;
2366 
2367 	cur_offset = start;
2368 	drop_args.path = path;
2369 	drop_args.end = end + 1;
2370 	drop_args.drop_cache = true;
2371 	while (cur_offset < end) {
2372 		drop_args.start = cur_offset;
2373 		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2374 		/* If we are punching a hole decrement the inode's byte count */
2375 		if (!extent_info)
2376 			btrfs_update_inode_bytes(inode, 0,
2377 						 drop_args.bytes_found);
2378 		if (ret != -ENOSPC) {
2379 			/*
2380 			 * The only time we don't want to abort is if we are
2381 			 * attempting to clone a partial inline extent, in which
2382 			 * case we'll get EOPNOTSUPP.  However if we aren't
2383 			 * clone we need to abort no matter what, because if we
2384 			 * got EOPNOTSUPP via prealloc then we messed up and
2385 			 * need to abort.
2386 			 */
2387 			if (ret &&
2388 			    (ret != -EOPNOTSUPP ||
2389 			     (extent_info && extent_info->is_new_extent)))
2390 				btrfs_abort_transaction(trans, ret);
2391 			break;
2392 		}
2393 
2394 		trans->block_rsv = &fs_info->trans_block_rsv;
2395 
2396 		if (!extent_info && cur_offset < drop_args.drop_end &&
2397 		    cur_offset < ino_size) {
2398 			ret = fill_holes(trans, inode, path, cur_offset,
2399 					 drop_args.drop_end);
2400 			if (ret) {
2401 				/*
2402 				 * If we failed then we didn't insert our hole
2403 				 * entries for the area we dropped, so now the
2404 				 * fs is corrupted, so we must abort the
2405 				 * transaction.
2406 				 */
2407 				btrfs_abort_transaction(trans, ret);
2408 				break;
2409 			}
2410 		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2411 			/*
2412 			 * We are past the i_size here, but since we didn't
2413 			 * insert holes we need to clear the mapped area so we
2414 			 * know to not set disk_i_size in this area until a new
2415 			 * file extent is inserted here.
2416 			 */
2417 			ret = btrfs_inode_clear_file_extent_range(inode,
2418 					cur_offset,
2419 					drop_args.drop_end - cur_offset);
2420 			if (ret) {
2421 				/*
2422 				 * We couldn't clear our area, so we could
2423 				 * presumably adjust up and corrupt the fs, so
2424 				 * we need to abort.
2425 				 */
2426 				btrfs_abort_transaction(trans, ret);
2427 				break;
2428 			}
2429 		}
2430 
2431 		if (extent_info &&
2432 		    drop_args.drop_end > extent_info->file_offset) {
2433 			u64 replace_len = drop_args.drop_end -
2434 					  extent_info->file_offset;
2435 
2436 			ret = btrfs_insert_replace_extent(trans, inode,	path,
2437 					extent_info, replace_len,
2438 					drop_args.bytes_found);
2439 			if (ret) {
2440 				btrfs_abort_transaction(trans, ret);
2441 				break;
2442 			}
2443 			extent_info->data_len -= replace_len;
2444 			extent_info->data_offset += replace_len;
2445 			extent_info->file_offset += replace_len;
2446 		}
2447 
2448 		/*
2449 		 * We are releasing our handle on the transaction, balance the
2450 		 * dirty pages of the btree inode and flush delayed items, and
2451 		 * then get a new transaction handle, which may now point to a
2452 		 * new transaction in case someone else may have committed the
2453 		 * transaction we used to replace/drop file extent items. So
2454 		 * bump the inode's iversion and update mtime and ctime except
2455 		 * if we are called from a dedupe context. This is because a
2456 		 * power failure/crash may happen after the transaction is
2457 		 * committed and before we finish replacing/dropping all the
2458 		 * file extent items we need.
2459 		 */
2460 		inode_inc_iversion(&inode->vfs_inode);
2461 
2462 		if (!extent_info || extent_info->update_times) {
2463 			inode->vfs_inode.i_mtime = current_time(&inode->vfs_inode);
2464 			inode->vfs_inode.i_ctime = inode->vfs_inode.i_mtime;
2465 		}
2466 
2467 		ret = btrfs_update_inode(trans, root, inode);
2468 		if (ret)
2469 			break;
2470 
2471 		btrfs_end_transaction(trans);
2472 		btrfs_btree_balance_dirty(fs_info);
2473 
2474 		trans = btrfs_start_transaction(root, rsv_count);
2475 		if (IS_ERR(trans)) {
2476 			ret = PTR_ERR(trans);
2477 			trans = NULL;
2478 			break;
2479 		}
2480 
2481 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2482 					      rsv, min_size, false);
2483 		if (WARN_ON(ret))
2484 			break;
2485 		trans->block_rsv = rsv;
2486 
2487 		cur_offset = drop_args.drop_end;
2488 		len = end - cur_offset;
2489 		if (!extent_info && len) {
2490 			ret = find_first_non_hole(inode, &cur_offset, &len);
2491 			if (unlikely(ret < 0))
2492 				break;
2493 			if (ret && !len) {
2494 				ret = 0;
2495 				break;
2496 			}
2497 		}
2498 	}
2499 
2500 	/*
2501 	 * If we were cloning, force the next fsync to be a full one since we
2502 	 * we replaced (or just dropped in the case of cloning holes when
2503 	 * NO_HOLES is enabled) file extent items and did not setup new extent
2504 	 * maps for the replacement extents (or holes).
2505 	 */
2506 	if (extent_info && !extent_info->is_new_extent)
2507 		btrfs_set_inode_full_sync(inode);
2508 
2509 	if (ret)
2510 		goto out_trans;
2511 
2512 	trans->block_rsv = &fs_info->trans_block_rsv;
2513 	/*
2514 	 * If we are using the NO_HOLES feature we might have had already an
2515 	 * hole that overlaps a part of the region [lockstart, lockend] and
2516 	 * ends at (or beyond) lockend. Since we have no file extent items to
2517 	 * represent holes, drop_end can be less than lockend and so we must
2518 	 * make sure we have an extent map representing the existing hole (the
2519 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2520 	 * map representing the existing hole), otherwise the fast fsync path
2521 	 * will not record the existence of the hole region
2522 	 * [existing_hole_start, lockend].
2523 	 */
2524 	if (drop_args.drop_end <= end)
2525 		drop_args.drop_end = end + 1;
2526 	/*
2527 	 * Don't insert file hole extent item if it's for a range beyond eof
2528 	 * (because it's useless) or if it represents a 0 bytes range (when
2529 	 * cur_offset == drop_end).
2530 	 */
2531 	if (!extent_info && cur_offset < ino_size &&
2532 	    cur_offset < drop_args.drop_end) {
2533 		ret = fill_holes(trans, inode, path, cur_offset,
2534 				 drop_args.drop_end);
2535 		if (ret) {
2536 			/* Same comment as above. */
2537 			btrfs_abort_transaction(trans, ret);
2538 			goto out_trans;
2539 		}
2540 	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2541 		/* See the comment in the loop above for the reasoning here. */
2542 		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2543 					drop_args.drop_end - cur_offset);
2544 		if (ret) {
2545 			btrfs_abort_transaction(trans, ret);
2546 			goto out_trans;
2547 		}
2548 
2549 	}
2550 	if (extent_info) {
2551 		ret = btrfs_insert_replace_extent(trans, inode, path,
2552 				extent_info, extent_info->data_len,
2553 				drop_args.bytes_found);
2554 		if (ret) {
2555 			btrfs_abort_transaction(trans, ret);
2556 			goto out_trans;
2557 		}
2558 	}
2559 
2560 out_trans:
2561 	if (!trans)
2562 		goto out_free;
2563 
2564 	trans->block_rsv = &fs_info->trans_block_rsv;
2565 	if (ret)
2566 		btrfs_end_transaction(trans);
2567 	else
2568 		*trans_out = trans;
2569 out_free:
2570 	btrfs_free_block_rsv(fs_info, rsv);
2571 out:
2572 	return ret;
2573 }
2574 
2575 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2576 {
2577 	struct inode *inode = file_inode(file);
2578 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2579 	struct btrfs_root *root = BTRFS_I(inode)->root;
2580 	struct extent_state *cached_state = NULL;
2581 	struct btrfs_path *path;
2582 	struct btrfs_trans_handle *trans = NULL;
2583 	u64 lockstart;
2584 	u64 lockend;
2585 	u64 tail_start;
2586 	u64 tail_len;
2587 	u64 orig_start = offset;
2588 	int ret = 0;
2589 	bool same_block;
2590 	u64 ino_size;
2591 	bool truncated_block = false;
2592 	bool updated_inode = false;
2593 
2594 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2595 
2596 	ret = btrfs_wait_ordered_range(inode, offset, len);
2597 	if (ret)
2598 		goto out_only_mutex;
2599 
2600 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2601 	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2602 	if (ret < 0)
2603 		goto out_only_mutex;
2604 	if (ret && !len) {
2605 		/* Already in a large hole */
2606 		ret = 0;
2607 		goto out_only_mutex;
2608 	}
2609 
2610 	ret = file_modified(file);
2611 	if (ret)
2612 		goto out_only_mutex;
2613 
2614 	lockstart = round_up(offset, fs_info->sectorsize);
2615 	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2616 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2617 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2618 	/*
2619 	 * We needn't truncate any block which is beyond the end of the file
2620 	 * because we are sure there is no data there.
2621 	 */
2622 	/*
2623 	 * Only do this if we are in the same block and we aren't doing the
2624 	 * entire block.
2625 	 */
2626 	if (same_block && len < fs_info->sectorsize) {
2627 		if (offset < ino_size) {
2628 			truncated_block = true;
2629 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2630 						   0);
2631 		} else {
2632 			ret = 0;
2633 		}
2634 		goto out_only_mutex;
2635 	}
2636 
2637 	/* zero back part of the first block */
2638 	if (offset < ino_size) {
2639 		truncated_block = true;
2640 		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2641 		if (ret) {
2642 			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2643 			return ret;
2644 		}
2645 	}
2646 
2647 	/* Check the aligned pages after the first unaligned page,
2648 	 * if offset != orig_start, which means the first unaligned page
2649 	 * including several following pages are already in holes,
2650 	 * the extra check can be skipped */
2651 	if (offset == orig_start) {
2652 		/* after truncate page, check hole again */
2653 		len = offset + len - lockstart;
2654 		offset = lockstart;
2655 		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2656 		if (ret < 0)
2657 			goto out_only_mutex;
2658 		if (ret && !len) {
2659 			ret = 0;
2660 			goto out_only_mutex;
2661 		}
2662 		lockstart = offset;
2663 	}
2664 
2665 	/* Check the tail unaligned part is in a hole */
2666 	tail_start = lockend + 1;
2667 	tail_len = offset + len - tail_start;
2668 	if (tail_len) {
2669 		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2670 		if (unlikely(ret < 0))
2671 			goto out_only_mutex;
2672 		if (!ret) {
2673 			/* zero the front end of the last page */
2674 			if (tail_start + tail_len < ino_size) {
2675 				truncated_block = true;
2676 				ret = btrfs_truncate_block(BTRFS_I(inode),
2677 							tail_start + tail_len,
2678 							0, 1);
2679 				if (ret)
2680 					goto out_only_mutex;
2681 			}
2682 		}
2683 	}
2684 
2685 	if (lockend < lockstart) {
2686 		ret = 0;
2687 		goto out_only_mutex;
2688 	}
2689 
2690 	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2691 
2692 	path = btrfs_alloc_path();
2693 	if (!path) {
2694 		ret = -ENOMEM;
2695 		goto out;
2696 	}
2697 
2698 	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2699 					 lockend, NULL, &trans);
2700 	btrfs_free_path(path);
2701 	if (ret)
2702 		goto out;
2703 
2704 	ASSERT(trans != NULL);
2705 	inode_inc_iversion(inode);
2706 	inode->i_mtime = current_time(inode);
2707 	inode->i_ctime = inode->i_mtime;
2708 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2709 	updated_inode = true;
2710 	btrfs_end_transaction(trans);
2711 	btrfs_btree_balance_dirty(fs_info);
2712 out:
2713 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2714 		      &cached_state);
2715 out_only_mutex:
2716 	if (!updated_inode && truncated_block && !ret) {
2717 		/*
2718 		 * If we only end up zeroing part of a page, we still need to
2719 		 * update the inode item, so that all the time fields are
2720 		 * updated as well as the necessary btrfs inode in memory fields
2721 		 * for detecting, at fsync time, if the inode isn't yet in the
2722 		 * log tree or it's there but not up to date.
2723 		 */
2724 		struct timespec64 now = current_time(inode);
2725 
2726 		inode_inc_iversion(inode);
2727 		inode->i_mtime = now;
2728 		inode->i_ctime = now;
2729 		trans = btrfs_start_transaction(root, 1);
2730 		if (IS_ERR(trans)) {
2731 			ret = PTR_ERR(trans);
2732 		} else {
2733 			int ret2;
2734 
2735 			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2736 			ret2 = btrfs_end_transaction(trans);
2737 			if (!ret)
2738 				ret = ret2;
2739 		}
2740 	}
2741 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2742 	return ret;
2743 }
2744 
2745 /* Helper structure to record which range is already reserved */
2746 struct falloc_range {
2747 	struct list_head list;
2748 	u64 start;
2749 	u64 len;
2750 };
2751 
2752 /*
2753  * Helper function to add falloc range
2754  *
2755  * Caller should have locked the larger range of extent containing
2756  * [start, len)
2757  */
2758 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2759 {
2760 	struct falloc_range *range = NULL;
2761 
2762 	if (!list_empty(head)) {
2763 		/*
2764 		 * As fallocate iterates by bytenr order, we only need to check
2765 		 * the last range.
2766 		 */
2767 		range = list_last_entry(head, struct falloc_range, list);
2768 		if (range->start + range->len == start) {
2769 			range->len += len;
2770 			return 0;
2771 		}
2772 	}
2773 
2774 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2775 	if (!range)
2776 		return -ENOMEM;
2777 	range->start = start;
2778 	range->len = len;
2779 	list_add_tail(&range->list, head);
2780 	return 0;
2781 }
2782 
2783 static int btrfs_fallocate_update_isize(struct inode *inode,
2784 					const u64 end,
2785 					const int mode)
2786 {
2787 	struct btrfs_trans_handle *trans;
2788 	struct btrfs_root *root = BTRFS_I(inode)->root;
2789 	int ret;
2790 	int ret2;
2791 
2792 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2793 		return 0;
2794 
2795 	trans = btrfs_start_transaction(root, 1);
2796 	if (IS_ERR(trans))
2797 		return PTR_ERR(trans);
2798 
2799 	inode->i_ctime = current_time(inode);
2800 	i_size_write(inode, end);
2801 	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2802 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2803 	ret2 = btrfs_end_transaction(trans);
2804 
2805 	return ret ? ret : ret2;
2806 }
2807 
2808 enum {
2809 	RANGE_BOUNDARY_WRITTEN_EXTENT,
2810 	RANGE_BOUNDARY_PREALLOC_EXTENT,
2811 	RANGE_BOUNDARY_HOLE,
2812 };
2813 
2814 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2815 						 u64 offset)
2816 {
2817 	const u64 sectorsize = inode->root->fs_info->sectorsize;
2818 	struct extent_map *em;
2819 	int ret;
2820 
2821 	offset = round_down(offset, sectorsize);
2822 	em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
2823 	if (IS_ERR(em))
2824 		return PTR_ERR(em);
2825 
2826 	if (em->block_start == EXTENT_MAP_HOLE)
2827 		ret = RANGE_BOUNDARY_HOLE;
2828 	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2829 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2830 	else
2831 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2832 
2833 	free_extent_map(em);
2834 	return ret;
2835 }
2836 
2837 static int btrfs_zero_range(struct inode *inode,
2838 			    loff_t offset,
2839 			    loff_t len,
2840 			    const int mode)
2841 {
2842 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2843 	struct extent_map *em;
2844 	struct extent_changeset *data_reserved = NULL;
2845 	int ret;
2846 	u64 alloc_hint = 0;
2847 	const u64 sectorsize = fs_info->sectorsize;
2848 	u64 alloc_start = round_down(offset, sectorsize);
2849 	u64 alloc_end = round_up(offset + len, sectorsize);
2850 	u64 bytes_to_reserve = 0;
2851 	bool space_reserved = false;
2852 
2853 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2854 			      alloc_end - alloc_start);
2855 	if (IS_ERR(em)) {
2856 		ret = PTR_ERR(em);
2857 		goto out;
2858 	}
2859 
2860 	/*
2861 	 * Avoid hole punching and extent allocation for some cases. More cases
2862 	 * could be considered, but these are unlikely common and we keep things
2863 	 * as simple as possible for now. Also, intentionally, if the target
2864 	 * range contains one or more prealloc extents together with regular
2865 	 * extents and holes, we drop all the existing extents and allocate a
2866 	 * new prealloc extent, so that we get a larger contiguous disk extent.
2867 	 */
2868 	if (em->start <= alloc_start &&
2869 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2870 		const u64 em_end = em->start + em->len;
2871 
2872 		if (em_end >= offset + len) {
2873 			/*
2874 			 * The whole range is already a prealloc extent,
2875 			 * do nothing except updating the inode's i_size if
2876 			 * needed.
2877 			 */
2878 			free_extent_map(em);
2879 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2880 							   mode);
2881 			goto out;
2882 		}
2883 		/*
2884 		 * Part of the range is already a prealloc extent, so operate
2885 		 * only on the remaining part of the range.
2886 		 */
2887 		alloc_start = em_end;
2888 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2889 		len = offset + len - alloc_start;
2890 		offset = alloc_start;
2891 		alloc_hint = em->block_start + em->len;
2892 	}
2893 	free_extent_map(em);
2894 
2895 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2896 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2897 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2898 				      sectorsize);
2899 		if (IS_ERR(em)) {
2900 			ret = PTR_ERR(em);
2901 			goto out;
2902 		}
2903 
2904 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2905 			free_extent_map(em);
2906 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2907 							   mode);
2908 			goto out;
2909 		}
2910 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2911 			free_extent_map(em);
2912 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2913 						   0);
2914 			if (!ret)
2915 				ret = btrfs_fallocate_update_isize(inode,
2916 								   offset + len,
2917 								   mode);
2918 			return ret;
2919 		}
2920 		free_extent_map(em);
2921 		alloc_start = round_down(offset, sectorsize);
2922 		alloc_end = alloc_start + sectorsize;
2923 		goto reserve_space;
2924 	}
2925 
2926 	alloc_start = round_up(offset, sectorsize);
2927 	alloc_end = round_down(offset + len, sectorsize);
2928 
2929 	/*
2930 	 * For unaligned ranges, check the pages at the boundaries, they might
2931 	 * map to an extent, in which case we need to partially zero them, or
2932 	 * they might map to a hole, in which case we need our allocation range
2933 	 * to cover them.
2934 	 */
2935 	if (!IS_ALIGNED(offset, sectorsize)) {
2936 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2937 							    offset);
2938 		if (ret < 0)
2939 			goto out;
2940 		if (ret == RANGE_BOUNDARY_HOLE) {
2941 			alloc_start = round_down(offset, sectorsize);
2942 			ret = 0;
2943 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2944 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2945 			if (ret)
2946 				goto out;
2947 		} else {
2948 			ret = 0;
2949 		}
2950 	}
2951 
2952 	if (!IS_ALIGNED(offset + len, sectorsize)) {
2953 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2954 							    offset + len);
2955 		if (ret < 0)
2956 			goto out;
2957 		if (ret == RANGE_BOUNDARY_HOLE) {
2958 			alloc_end = round_up(offset + len, sectorsize);
2959 			ret = 0;
2960 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2961 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2962 						   0, 1);
2963 			if (ret)
2964 				goto out;
2965 		} else {
2966 			ret = 0;
2967 		}
2968 	}
2969 
2970 reserve_space:
2971 	if (alloc_start < alloc_end) {
2972 		struct extent_state *cached_state = NULL;
2973 		const u64 lockstart = alloc_start;
2974 		const u64 lockend = alloc_end - 1;
2975 
2976 		bytes_to_reserve = alloc_end - alloc_start;
2977 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2978 						      bytes_to_reserve);
2979 		if (ret < 0)
2980 			goto out;
2981 		space_reserved = true;
2982 		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2983 					    &cached_state);
2984 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
2985 						alloc_start, bytes_to_reserve);
2986 		if (ret) {
2987 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
2988 				      lockend, &cached_state);
2989 			goto out;
2990 		}
2991 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
2992 						alloc_end - alloc_start,
2993 						i_blocksize(inode),
2994 						offset + len, &alloc_hint);
2995 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2996 			      &cached_state);
2997 		/* btrfs_prealloc_file_range releases reserved space on error */
2998 		if (ret) {
2999 			space_reserved = false;
3000 			goto out;
3001 		}
3002 	}
3003 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3004  out:
3005 	if (ret && space_reserved)
3006 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3007 					       alloc_start, bytes_to_reserve);
3008 	extent_changeset_free(data_reserved);
3009 
3010 	return ret;
3011 }
3012 
3013 static long btrfs_fallocate(struct file *file, int mode,
3014 			    loff_t offset, loff_t len)
3015 {
3016 	struct inode *inode = file_inode(file);
3017 	struct extent_state *cached_state = NULL;
3018 	struct extent_changeset *data_reserved = NULL;
3019 	struct falloc_range *range;
3020 	struct falloc_range *tmp;
3021 	struct list_head reserve_list;
3022 	u64 cur_offset;
3023 	u64 last_byte;
3024 	u64 alloc_start;
3025 	u64 alloc_end;
3026 	u64 alloc_hint = 0;
3027 	u64 locked_end;
3028 	u64 actual_end = 0;
3029 	u64 data_space_needed = 0;
3030 	u64 data_space_reserved = 0;
3031 	u64 qgroup_reserved = 0;
3032 	struct extent_map *em;
3033 	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3034 	int ret;
3035 
3036 	/* Do not allow fallocate in ZONED mode */
3037 	if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3038 		return -EOPNOTSUPP;
3039 
3040 	alloc_start = round_down(offset, blocksize);
3041 	alloc_end = round_up(offset + len, blocksize);
3042 	cur_offset = alloc_start;
3043 
3044 	/* Make sure we aren't being give some crap mode */
3045 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3046 		     FALLOC_FL_ZERO_RANGE))
3047 		return -EOPNOTSUPP;
3048 
3049 	if (mode & FALLOC_FL_PUNCH_HOLE)
3050 		return btrfs_punch_hole(file, offset, len);
3051 
3052 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3053 
3054 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3055 		ret = inode_newsize_ok(inode, offset + len);
3056 		if (ret)
3057 			goto out;
3058 	}
3059 
3060 	ret = file_modified(file);
3061 	if (ret)
3062 		goto out;
3063 
3064 	/*
3065 	 * TODO: Move these two operations after we have checked
3066 	 * accurate reserved space, or fallocate can still fail but
3067 	 * with page truncated or size expanded.
3068 	 *
3069 	 * But that's a minor problem and won't do much harm BTW.
3070 	 */
3071 	if (alloc_start > inode->i_size) {
3072 		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3073 					alloc_start);
3074 		if (ret)
3075 			goto out;
3076 	} else if (offset + len > inode->i_size) {
3077 		/*
3078 		 * If we are fallocating from the end of the file onward we
3079 		 * need to zero out the end of the block if i_size lands in the
3080 		 * middle of a block.
3081 		 */
3082 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3083 		if (ret)
3084 			goto out;
3085 	}
3086 
3087 	/*
3088 	 * We have locked the inode at the VFS level (in exclusive mode) and we
3089 	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3090 	 * locking the file range, flush all dealloc in the range and wait for
3091 	 * all ordered extents in the range to complete. After this we can lock
3092 	 * the file range and, due to the previous locking we did, we know there
3093 	 * can't be more delalloc or ordered extents in the range.
3094 	 */
3095 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3096 				       alloc_end - alloc_start);
3097 	if (ret)
3098 		goto out;
3099 
3100 	if (mode & FALLOC_FL_ZERO_RANGE) {
3101 		ret = btrfs_zero_range(inode, offset, len, mode);
3102 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3103 		return ret;
3104 	}
3105 
3106 	locked_end = alloc_end - 1;
3107 	lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3108 		    &cached_state);
3109 
3110 	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3111 
3112 	/* First, check if we exceed the qgroup limit */
3113 	INIT_LIST_HEAD(&reserve_list);
3114 	while (cur_offset < alloc_end) {
3115 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3116 				      alloc_end - cur_offset);
3117 		if (IS_ERR(em)) {
3118 			ret = PTR_ERR(em);
3119 			break;
3120 		}
3121 		last_byte = min(extent_map_end(em), alloc_end);
3122 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3123 		last_byte = ALIGN(last_byte, blocksize);
3124 		if (em->block_start == EXTENT_MAP_HOLE ||
3125 		    (cur_offset >= inode->i_size &&
3126 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3127 			const u64 range_len = last_byte - cur_offset;
3128 
3129 			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3130 			if (ret < 0) {
3131 				free_extent_map(em);
3132 				break;
3133 			}
3134 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3135 					&data_reserved, cur_offset, range_len);
3136 			if (ret < 0) {
3137 				free_extent_map(em);
3138 				break;
3139 			}
3140 			qgroup_reserved += range_len;
3141 			data_space_needed += range_len;
3142 		}
3143 		free_extent_map(em);
3144 		cur_offset = last_byte;
3145 	}
3146 
3147 	if (!ret && data_space_needed > 0) {
3148 		/*
3149 		 * We are safe to reserve space here as we can't have delalloc
3150 		 * in the range, see above.
3151 		 */
3152 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3153 						      data_space_needed);
3154 		if (!ret)
3155 			data_space_reserved = data_space_needed;
3156 	}
3157 
3158 	/*
3159 	 * If ret is still 0, means we're OK to fallocate.
3160 	 * Or just cleanup the list and exit.
3161 	 */
3162 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3163 		if (!ret) {
3164 			ret = btrfs_prealloc_file_range(inode, mode,
3165 					range->start,
3166 					range->len, i_blocksize(inode),
3167 					offset + len, &alloc_hint);
3168 			/*
3169 			 * btrfs_prealloc_file_range() releases space even
3170 			 * if it returns an error.
3171 			 */
3172 			data_space_reserved -= range->len;
3173 			qgroup_reserved -= range->len;
3174 		} else if (data_space_reserved > 0) {
3175 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3176 					       data_reserved, range->start,
3177 					       range->len);
3178 			data_space_reserved -= range->len;
3179 			qgroup_reserved -= range->len;
3180 		} else if (qgroup_reserved > 0) {
3181 			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3182 					       range->start, range->len);
3183 			qgroup_reserved -= range->len;
3184 		}
3185 		list_del(&range->list);
3186 		kfree(range);
3187 	}
3188 	if (ret < 0)
3189 		goto out_unlock;
3190 
3191 	/*
3192 	 * We didn't need to allocate any more space, but we still extended the
3193 	 * size of the file so we need to update i_size and the inode item.
3194 	 */
3195 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3196 out_unlock:
3197 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3198 		      &cached_state);
3199 out:
3200 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3201 	extent_changeset_free(data_reserved);
3202 	return ret;
3203 }
3204 
3205 /*
3206  * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3207  * that has unflushed and/or flushing delalloc. There might be other adjacent
3208  * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3209  * looping while it gets adjacent subranges, and merging them together.
3210  */
3211 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3212 				   struct extent_state **cached_state,
3213 				   bool *search_io_tree,
3214 				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3215 {
3216 	u64 len = end + 1 - start;
3217 	u64 delalloc_len = 0;
3218 	struct btrfs_ordered_extent *oe;
3219 	u64 oe_start;
3220 	u64 oe_end;
3221 
3222 	/*
3223 	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3224 	 * means we have delalloc (dirty pages) for which writeback has not
3225 	 * started yet.
3226 	 */
3227 	if (*search_io_tree) {
3228 		spin_lock(&inode->lock);
3229 		if (inode->delalloc_bytes > 0) {
3230 			spin_unlock(&inode->lock);
3231 			*delalloc_start_ret = start;
3232 			delalloc_len = count_range_bits(&inode->io_tree,
3233 							delalloc_start_ret, end,
3234 							len, EXTENT_DELALLOC, 1,
3235 							cached_state);
3236 		} else {
3237 			spin_unlock(&inode->lock);
3238 		}
3239 	}
3240 
3241 	if (delalloc_len > 0) {
3242 		/*
3243 		 * If delalloc was found then *delalloc_start_ret has a sector size
3244 		 * aligned value (rounded down).
3245 		 */
3246 		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3247 
3248 		if (*delalloc_start_ret == start) {
3249 			/* Delalloc for the whole range, nothing more to do. */
3250 			if (*delalloc_end_ret == end)
3251 				return true;
3252 			/* Else trim our search range for ordered extents. */
3253 			start = *delalloc_end_ret + 1;
3254 			len = end + 1 - start;
3255 		}
3256 	} else {
3257 		/* No delalloc, future calls don't need to search again. */
3258 		*search_io_tree = false;
3259 	}
3260 
3261 	/*
3262 	 * Now also check if there's any ordered extent in the range.
3263 	 * We do this because:
3264 	 *
3265 	 * 1) When delalloc is flushed, the file range is locked, we clear the
3266 	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
3267 	 *    an ordered extent for the write. So we might just have been called
3268 	 *    after delalloc is flushed and before the ordered extent completes
3269 	 *    and inserts the new file extent item in the subvolume's btree;
3270 	 *
3271 	 * 2) We may have an ordered extent created by flushing delalloc for a
3272 	 *    subrange that starts before the subrange we found marked with
3273 	 *    EXTENT_DELALLOC in the io tree.
3274 	 *
3275 	 * We could also use the extent map tree to find such delalloc that is
3276 	 * being flushed, but using the ordered extents tree is more efficient
3277 	 * because it's usually much smaller as ordered extents are removed from
3278 	 * the tree once they complete. With the extent maps, we mau have them
3279 	 * in the extent map tree for a very long time, and they were either
3280 	 * created by previous writes or loaded by read operations.
3281 	 */
3282 	oe = btrfs_lookup_first_ordered_range(inode, start, len);
3283 	if (!oe)
3284 		return (delalloc_len > 0);
3285 
3286 	/* The ordered extent may span beyond our search range. */
3287 	oe_start = max(oe->file_offset, start);
3288 	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3289 
3290 	btrfs_put_ordered_extent(oe);
3291 
3292 	/* Don't have unflushed delalloc, return the ordered extent range. */
3293 	if (delalloc_len == 0) {
3294 		*delalloc_start_ret = oe_start;
3295 		*delalloc_end_ret = oe_end;
3296 		return true;
3297 	}
3298 
3299 	/*
3300 	 * We have both unflushed delalloc (io_tree) and an ordered extent.
3301 	 * If the ranges are adjacent returned a combined range, otherwise
3302 	 * return the leftmost range.
3303 	 */
3304 	if (oe_start < *delalloc_start_ret) {
3305 		if (oe_end < *delalloc_start_ret)
3306 			*delalloc_end_ret = oe_end;
3307 		*delalloc_start_ret = oe_start;
3308 	} else if (*delalloc_end_ret + 1 == oe_start) {
3309 		*delalloc_end_ret = oe_end;
3310 	}
3311 
3312 	return true;
3313 }
3314 
3315 /*
3316  * Check if there's delalloc in a given range.
3317  *
3318  * @inode:               The inode.
3319  * @start:               The start offset of the range. It does not need to be
3320  *                       sector size aligned.
3321  * @end:                 The end offset (inclusive value) of the search range.
3322  *                       It does not need to be sector size aligned.
3323  * @cached_state:        Extent state record used for speeding up delalloc
3324  *                       searches in the inode's io_tree. Can be NULL.
3325  * @delalloc_start_ret:  Output argument, set to the start offset of the
3326  *                       subrange found with delalloc (may not be sector size
3327  *                       aligned).
3328  * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3329  *                       of the subrange found with delalloc.
3330  *
3331  * Returns true if a subrange with delalloc is found within the given range, and
3332  * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3333  * end offsets of the subrange.
3334  */
3335 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3336 				  struct extent_state **cached_state,
3337 				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3338 {
3339 	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3340 	u64 prev_delalloc_end = 0;
3341 	bool search_io_tree = true;
3342 	bool ret = false;
3343 
3344 	while (cur_offset <= end) {
3345 		u64 delalloc_start;
3346 		u64 delalloc_end;
3347 		bool delalloc;
3348 
3349 		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3350 						  cached_state, &search_io_tree,
3351 						  &delalloc_start,
3352 						  &delalloc_end);
3353 		if (!delalloc)
3354 			break;
3355 
3356 		if (prev_delalloc_end == 0) {
3357 			/* First subrange found. */
3358 			*delalloc_start_ret = max(delalloc_start, start);
3359 			*delalloc_end_ret = delalloc_end;
3360 			ret = true;
3361 		} else if (delalloc_start == prev_delalloc_end + 1) {
3362 			/* Subrange adjacent to the previous one, merge them. */
3363 			*delalloc_end_ret = delalloc_end;
3364 		} else {
3365 			/* Subrange not adjacent to the previous one, exit. */
3366 			break;
3367 		}
3368 
3369 		prev_delalloc_end = delalloc_end;
3370 		cur_offset = delalloc_end + 1;
3371 		cond_resched();
3372 	}
3373 
3374 	return ret;
3375 }
3376 
3377 /*
3378  * Check if there's a hole or delalloc range in a range representing a hole (or
3379  * prealloc extent) found in the inode's subvolume btree.
3380  *
3381  * @inode:      The inode.
3382  * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3383  * @start:      Start offset of the hole region. It does not need to be sector
3384  *              size aligned.
3385  * @end:        End offset (inclusive value) of the hole region. It does not
3386  *              need to be sector size aligned.
3387  * @start_ret:  Return parameter, used to set the start of the subrange in the
3388  *              hole that matches the search criteria (seek mode), if such
3389  *              subrange is found (return value of the function is true).
3390  *              The value returned here may not be sector size aligned.
3391  *
3392  * Returns true if a subrange matching the given seek mode is found, and if one
3393  * is found, it updates @start_ret with the start of the subrange.
3394  */
3395 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3396 					struct extent_state **cached_state,
3397 					u64 start, u64 end, u64 *start_ret)
3398 {
3399 	u64 delalloc_start;
3400 	u64 delalloc_end;
3401 	bool delalloc;
3402 
3403 	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3404 						&delalloc_start, &delalloc_end);
3405 	if (delalloc && whence == SEEK_DATA) {
3406 		*start_ret = delalloc_start;
3407 		return true;
3408 	}
3409 
3410 	if (delalloc && whence == SEEK_HOLE) {
3411 		/*
3412 		 * We found delalloc but it starts after out start offset. So we
3413 		 * have a hole between our start offset and the delalloc start.
3414 		 */
3415 		if (start < delalloc_start) {
3416 			*start_ret = start;
3417 			return true;
3418 		}
3419 		/*
3420 		 * Delalloc range starts at our start offset.
3421 		 * If the delalloc range's length is smaller than our range,
3422 		 * then it means we have a hole that starts where the delalloc
3423 		 * subrange ends.
3424 		 */
3425 		if (delalloc_end < end) {
3426 			*start_ret = delalloc_end + 1;
3427 			return true;
3428 		}
3429 
3430 		/* There's delalloc for the whole range. */
3431 		return false;
3432 	}
3433 
3434 	if (!delalloc && whence == SEEK_HOLE) {
3435 		*start_ret = start;
3436 		return true;
3437 	}
3438 
3439 	/*
3440 	 * No delalloc in the range and we are seeking for data. The caller has
3441 	 * to iterate to the next extent item in the subvolume btree.
3442 	 */
3443 	return false;
3444 }
3445 
3446 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3447 {
3448 	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3449 	struct btrfs_file_private *private = file->private_data;
3450 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3451 	struct extent_state *cached_state = NULL;
3452 	struct extent_state **delalloc_cached_state;
3453 	const loff_t i_size = i_size_read(&inode->vfs_inode);
3454 	const u64 ino = btrfs_ino(inode);
3455 	struct btrfs_root *root = inode->root;
3456 	struct btrfs_path *path;
3457 	struct btrfs_key key;
3458 	u64 last_extent_end;
3459 	u64 lockstart;
3460 	u64 lockend;
3461 	u64 start;
3462 	int ret;
3463 	bool found = false;
3464 
3465 	if (i_size == 0 || offset >= i_size)
3466 		return -ENXIO;
3467 
3468 	/*
3469 	 * Quick path. If the inode has no prealloc extents and its number of
3470 	 * bytes used matches its i_size, then it can not have holes.
3471 	 */
3472 	if (whence == SEEK_HOLE &&
3473 	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3474 	    inode_get_bytes(&inode->vfs_inode) == i_size)
3475 		return i_size;
3476 
3477 	if (!private) {
3478 		private = kzalloc(sizeof(*private), GFP_KERNEL);
3479 		/*
3480 		 * No worries if memory allocation failed.
3481 		 * The private structure is used only for speeding up multiple
3482 		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3483 		 * so everything will still be correct.
3484 		 */
3485 		file->private_data = private;
3486 	}
3487 
3488 	if (private)
3489 		delalloc_cached_state = &private->llseek_cached_state;
3490 	else
3491 		delalloc_cached_state = NULL;
3492 
3493 	/*
3494 	 * offset can be negative, in this case we start finding DATA/HOLE from
3495 	 * the very start of the file.
3496 	 */
3497 	start = max_t(loff_t, 0, offset);
3498 
3499 	lockstart = round_down(start, fs_info->sectorsize);
3500 	lockend = round_up(i_size, fs_info->sectorsize);
3501 	if (lockend <= lockstart)
3502 		lockend = lockstart + fs_info->sectorsize;
3503 	lockend--;
3504 
3505 	path = btrfs_alloc_path();
3506 	if (!path)
3507 		return -ENOMEM;
3508 	path->reada = READA_FORWARD;
3509 
3510 	key.objectid = ino;
3511 	key.type = BTRFS_EXTENT_DATA_KEY;
3512 	key.offset = start;
3513 
3514 	last_extent_end = lockstart;
3515 
3516 	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3517 
3518 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3519 	if (ret < 0) {
3520 		goto out;
3521 	} else if (ret > 0 && path->slots[0] > 0) {
3522 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3523 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3524 			path->slots[0]--;
3525 	}
3526 
3527 	while (start < i_size) {
3528 		struct extent_buffer *leaf = path->nodes[0];
3529 		struct btrfs_file_extent_item *extent;
3530 		u64 extent_end;
3531 		u8 type;
3532 
3533 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3534 			ret = btrfs_next_leaf(root, path);
3535 			if (ret < 0)
3536 				goto out;
3537 			else if (ret > 0)
3538 				break;
3539 
3540 			leaf = path->nodes[0];
3541 		}
3542 
3543 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3544 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3545 			break;
3546 
3547 		extent_end = btrfs_file_extent_end(path);
3548 
3549 		/*
3550 		 * In the first iteration we may have a slot that points to an
3551 		 * extent that ends before our start offset, so skip it.
3552 		 */
3553 		if (extent_end <= start) {
3554 			path->slots[0]++;
3555 			continue;
3556 		}
3557 
3558 		/* We have an implicit hole, NO_HOLES feature is likely set. */
3559 		if (last_extent_end < key.offset) {
3560 			u64 search_start = last_extent_end;
3561 			u64 found_start;
3562 
3563 			/*
3564 			 * First iteration, @start matches @offset and it's
3565 			 * within the hole.
3566 			 */
3567 			if (start == offset)
3568 				search_start = offset;
3569 
3570 			found = find_desired_extent_in_hole(inode, whence,
3571 							    delalloc_cached_state,
3572 							    search_start,
3573 							    key.offset - 1,
3574 							    &found_start);
3575 			if (found) {
3576 				start = found_start;
3577 				break;
3578 			}
3579 			/*
3580 			 * Didn't find data or a hole (due to delalloc) in the
3581 			 * implicit hole range, so need to analyze the extent.
3582 			 */
3583 		}
3584 
3585 		extent = btrfs_item_ptr(leaf, path->slots[0],
3586 					struct btrfs_file_extent_item);
3587 		type = btrfs_file_extent_type(leaf, extent);
3588 
3589 		/*
3590 		 * Can't access the extent's disk_bytenr field if this is an
3591 		 * inline extent, since at that offset, it's where the extent
3592 		 * data starts.
3593 		 */
3594 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3595 		    (type == BTRFS_FILE_EXTENT_REG &&
3596 		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3597 			/*
3598 			 * Explicit hole or prealloc extent, search for delalloc.
3599 			 * A prealloc extent is treated like a hole.
3600 			 */
3601 			u64 search_start = key.offset;
3602 			u64 found_start;
3603 
3604 			/*
3605 			 * First iteration, @start matches @offset and it's
3606 			 * within the hole.
3607 			 */
3608 			if (start == offset)
3609 				search_start = offset;
3610 
3611 			found = find_desired_extent_in_hole(inode, whence,
3612 							    delalloc_cached_state,
3613 							    search_start,
3614 							    extent_end - 1,
3615 							    &found_start);
3616 			if (found) {
3617 				start = found_start;
3618 				break;
3619 			}
3620 			/*
3621 			 * Didn't find data or a hole (due to delalloc) in the
3622 			 * implicit hole range, so need to analyze the next
3623 			 * extent item.
3624 			 */
3625 		} else {
3626 			/*
3627 			 * Found a regular or inline extent.
3628 			 * If we are seeking for data, adjust the start offset
3629 			 * and stop, we're done.
3630 			 */
3631 			if (whence == SEEK_DATA) {
3632 				start = max_t(u64, key.offset, offset);
3633 				found = true;
3634 				break;
3635 			}
3636 			/*
3637 			 * Else, we are seeking for a hole, check the next file
3638 			 * extent item.
3639 			 */
3640 		}
3641 
3642 		start = extent_end;
3643 		last_extent_end = extent_end;
3644 		path->slots[0]++;
3645 		if (fatal_signal_pending(current)) {
3646 			ret = -EINTR;
3647 			goto out;
3648 		}
3649 		cond_resched();
3650 	}
3651 
3652 	/* We have an implicit hole from the last extent found up to i_size. */
3653 	if (!found && start < i_size) {
3654 		found = find_desired_extent_in_hole(inode, whence,
3655 						    delalloc_cached_state, start,
3656 						    i_size - 1, &start);
3657 		if (!found)
3658 			start = i_size;
3659 	}
3660 
3661 out:
3662 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3663 	btrfs_free_path(path);
3664 
3665 	if (ret < 0)
3666 		return ret;
3667 
3668 	if (whence == SEEK_DATA && start >= i_size)
3669 		return -ENXIO;
3670 
3671 	return min_t(loff_t, start, i_size);
3672 }
3673 
3674 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3675 {
3676 	struct inode *inode = file->f_mapping->host;
3677 
3678 	switch (whence) {
3679 	default:
3680 		return generic_file_llseek(file, offset, whence);
3681 	case SEEK_DATA:
3682 	case SEEK_HOLE:
3683 		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3684 		offset = find_desired_extent(file, offset, whence);
3685 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3686 		break;
3687 	}
3688 
3689 	if (offset < 0)
3690 		return offset;
3691 
3692 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3693 }
3694 
3695 static int btrfs_file_open(struct inode *inode, struct file *filp)
3696 {
3697 	int ret;
3698 
3699 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
3700 		        FMODE_CAN_ODIRECT;
3701 
3702 	ret = fsverity_file_open(inode, filp);
3703 	if (ret)
3704 		return ret;
3705 	return generic_file_open(inode, filp);
3706 }
3707 
3708 static int check_direct_read(struct btrfs_fs_info *fs_info,
3709 			     const struct iov_iter *iter, loff_t offset)
3710 {
3711 	int ret;
3712 	int i, seg;
3713 
3714 	ret = check_direct_IO(fs_info, iter, offset);
3715 	if (ret < 0)
3716 		return ret;
3717 
3718 	if (!iter_is_iovec(iter))
3719 		return 0;
3720 
3721 	for (seg = 0; seg < iter->nr_segs; seg++) {
3722 		for (i = seg + 1; i < iter->nr_segs; i++) {
3723 			const struct iovec *iov1 = iter_iov(iter) + seg;
3724 			const struct iovec *iov2 = iter_iov(iter) + i;
3725 
3726 			if (iov1->iov_base == iov2->iov_base)
3727 				return -EINVAL;
3728 		}
3729 	}
3730 	return 0;
3731 }
3732 
3733 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3734 {
3735 	struct inode *inode = file_inode(iocb->ki_filp);
3736 	size_t prev_left = 0;
3737 	ssize_t read = 0;
3738 	ssize_t ret;
3739 
3740 	if (fsverity_active(inode))
3741 		return 0;
3742 
3743 	if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3744 		return 0;
3745 
3746 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3747 again:
3748 	/*
3749 	 * This is similar to what we do for direct IO writes, see the comment
3750 	 * at btrfs_direct_write(), but we also disable page faults in addition
3751 	 * to disabling them only at the iov_iter level. This is because when
3752 	 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3753 	 * which can still trigger page fault ins despite having set ->nofault
3754 	 * to true of our 'to' iov_iter.
3755 	 *
3756 	 * The difference to direct IO writes is that we deadlock when trying
3757 	 * to lock the extent range in the inode's tree during he page reads
3758 	 * triggered by the fault in (while for writes it is due to waiting for
3759 	 * our own ordered extent). This is because for direct IO reads,
3760 	 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3761 	 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3762 	 */
3763 	pagefault_disable();
3764 	to->nofault = true;
3765 	ret = btrfs_dio_read(iocb, to, read);
3766 	to->nofault = false;
3767 	pagefault_enable();
3768 
3769 	/* No increment (+=) because iomap returns a cumulative value. */
3770 	if (ret > 0)
3771 		read = ret;
3772 
3773 	if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3774 		const size_t left = iov_iter_count(to);
3775 
3776 		if (left == prev_left) {
3777 			/*
3778 			 * We didn't make any progress since the last attempt,
3779 			 * fallback to a buffered read for the remainder of the
3780 			 * range. This is just to avoid any possibility of looping
3781 			 * for too long.
3782 			 */
3783 			ret = read;
3784 		} else {
3785 			/*
3786 			 * We made some progress since the last retry or this is
3787 			 * the first time we are retrying. Fault in as many pages
3788 			 * as possible and retry.
3789 			 */
3790 			fault_in_iov_iter_writeable(to, left);
3791 			prev_left = left;
3792 			goto again;
3793 		}
3794 	}
3795 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3796 	return ret < 0 ? ret : read;
3797 }
3798 
3799 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3800 {
3801 	ssize_t ret = 0;
3802 
3803 	if (iocb->ki_flags & IOCB_DIRECT) {
3804 		ret = btrfs_direct_read(iocb, to);
3805 		if (ret < 0 || !iov_iter_count(to) ||
3806 		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3807 			return ret;
3808 	}
3809 
3810 	return filemap_read(iocb, to, ret);
3811 }
3812 
3813 const struct file_operations btrfs_file_operations = {
3814 	.llseek		= btrfs_file_llseek,
3815 	.read_iter      = btrfs_file_read_iter,
3816 	.splice_read	= filemap_splice_read,
3817 	.write_iter	= btrfs_file_write_iter,
3818 	.splice_write	= iter_file_splice_write,
3819 	.mmap		= btrfs_file_mmap,
3820 	.open		= btrfs_file_open,
3821 	.release	= btrfs_release_file,
3822 	.get_unmapped_area = thp_get_unmapped_area,
3823 	.fsync		= btrfs_sync_file,
3824 	.fallocate	= btrfs_fallocate,
3825 	.unlocked_ioctl	= btrfs_ioctl,
3826 #ifdef CONFIG_COMPAT
3827 	.compat_ioctl	= btrfs_compat_ioctl,
3828 #endif
3829 	.remap_file_range = btrfs_remap_file_range,
3830 };
3831 
3832 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3833 {
3834 	int ret;
3835 
3836 	/*
3837 	 * So with compression we will find and lock a dirty page and clear the
3838 	 * first one as dirty, setup an async extent, and immediately return
3839 	 * with the entire range locked but with nobody actually marked with
3840 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3841 	 * expect it to work since it will just kick off a thread to do the
3842 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3843 	 * since it will wait on the page lock, which won't be unlocked until
3844 	 * after the pages have been marked as writeback and so we're good to go
3845 	 * from there.  We have to do this otherwise we'll miss the ordered
3846 	 * extents and that results in badness.  Please Josef, do not think you
3847 	 * know better and pull this out at some point in the future, it is
3848 	 * right and you are wrong.
3849 	 */
3850 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3851 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3852 			     &BTRFS_I(inode)->runtime_flags))
3853 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3854 
3855 	return ret;
3856 }
3857