1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "btrfs_inode.h" 24 #include "print-tree.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "volumes.h" 28 #include "qgroup.h" 29 #include "compression.h" 30 #include "delalloc-space.h" 31 #include "reflink.h" 32 #include "subpage.h" 33 34 static struct kmem_cache *btrfs_inode_defrag_cachep; 35 /* 36 * when auto defrag is enabled we 37 * queue up these defrag structs to remember which 38 * inodes need defragging passes 39 */ 40 struct inode_defrag { 41 struct rb_node rb_node; 42 /* objectid */ 43 u64 ino; 44 /* 45 * transid where the defrag was added, we search for 46 * extents newer than this 47 */ 48 u64 transid; 49 50 /* root objectid */ 51 u64 root; 52 53 /* last offset we were able to defrag */ 54 u64 last_offset; 55 56 /* if we've wrapped around back to zero once already */ 57 int cycled; 58 }; 59 60 static int __compare_inode_defrag(struct inode_defrag *defrag1, 61 struct inode_defrag *defrag2) 62 { 63 if (defrag1->root > defrag2->root) 64 return 1; 65 else if (defrag1->root < defrag2->root) 66 return -1; 67 else if (defrag1->ino > defrag2->ino) 68 return 1; 69 else if (defrag1->ino < defrag2->ino) 70 return -1; 71 else 72 return 0; 73 } 74 75 /* pop a record for an inode into the defrag tree. The lock 76 * must be held already 77 * 78 * If you're inserting a record for an older transid than an 79 * existing record, the transid already in the tree is lowered 80 * 81 * If an existing record is found the defrag item you 82 * pass in is freed 83 */ 84 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 85 struct inode_defrag *defrag) 86 { 87 struct btrfs_fs_info *fs_info = inode->root->fs_info; 88 struct inode_defrag *entry; 89 struct rb_node **p; 90 struct rb_node *parent = NULL; 91 int ret; 92 93 p = &fs_info->defrag_inodes.rb_node; 94 while (*p) { 95 parent = *p; 96 entry = rb_entry(parent, struct inode_defrag, rb_node); 97 98 ret = __compare_inode_defrag(defrag, entry); 99 if (ret < 0) 100 p = &parent->rb_left; 101 else if (ret > 0) 102 p = &parent->rb_right; 103 else { 104 /* if we're reinserting an entry for 105 * an old defrag run, make sure to 106 * lower the transid of our existing record 107 */ 108 if (defrag->transid < entry->transid) 109 entry->transid = defrag->transid; 110 if (defrag->last_offset > entry->last_offset) 111 entry->last_offset = defrag->last_offset; 112 return -EEXIST; 113 } 114 } 115 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 116 rb_link_node(&defrag->rb_node, parent, p); 117 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 118 return 0; 119 } 120 121 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 122 { 123 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 124 return 0; 125 126 if (btrfs_fs_closing(fs_info)) 127 return 0; 128 129 return 1; 130 } 131 132 /* 133 * insert a defrag record for this inode if auto defrag is 134 * enabled 135 */ 136 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 137 struct btrfs_inode *inode) 138 { 139 struct btrfs_root *root = inode->root; 140 struct btrfs_fs_info *fs_info = root->fs_info; 141 struct inode_defrag *defrag; 142 u64 transid; 143 int ret; 144 145 if (!__need_auto_defrag(fs_info)) 146 return 0; 147 148 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 149 return 0; 150 151 if (trans) 152 transid = trans->transid; 153 else 154 transid = inode->root->last_trans; 155 156 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 157 if (!defrag) 158 return -ENOMEM; 159 160 defrag->ino = btrfs_ino(inode); 161 defrag->transid = transid; 162 defrag->root = root->root_key.objectid; 163 164 spin_lock(&fs_info->defrag_inodes_lock); 165 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 166 /* 167 * If we set IN_DEFRAG flag and evict the inode from memory, 168 * and then re-read this inode, this new inode doesn't have 169 * IN_DEFRAG flag. At the case, we may find the existed defrag. 170 */ 171 ret = __btrfs_add_inode_defrag(inode, defrag); 172 if (ret) 173 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 174 } else { 175 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 176 } 177 spin_unlock(&fs_info->defrag_inodes_lock); 178 return 0; 179 } 180 181 /* 182 * Requeue the defrag object. If there is a defrag object that points to 183 * the same inode in the tree, we will merge them together (by 184 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 185 */ 186 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode, 187 struct inode_defrag *defrag) 188 { 189 struct btrfs_fs_info *fs_info = inode->root->fs_info; 190 int ret; 191 192 if (!__need_auto_defrag(fs_info)) 193 goto out; 194 195 /* 196 * Here we don't check the IN_DEFRAG flag, because we need merge 197 * them together. 198 */ 199 spin_lock(&fs_info->defrag_inodes_lock); 200 ret = __btrfs_add_inode_defrag(inode, defrag); 201 spin_unlock(&fs_info->defrag_inodes_lock); 202 if (ret) 203 goto out; 204 return; 205 out: 206 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 207 } 208 209 /* 210 * pick the defragable inode that we want, if it doesn't exist, we will get 211 * the next one. 212 */ 213 static struct inode_defrag * 214 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 215 { 216 struct inode_defrag *entry = NULL; 217 struct inode_defrag tmp; 218 struct rb_node *p; 219 struct rb_node *parent = NULL; 220 int ret; 221 222 tmp.ino = ino; 223 tmp.root = root; 224 225 spin_lock(&fs_info->defrag_inodes_lock); 226 p = fs_info->defrag_inodes.rb_node; 227 while (p) { 228 parent = p; 229 entry = rb_entry(parent, struct inode_defrag, rb_node); 230 231 ret = __compare_inode_defrag(&tmp, entry); 232 if (ret < 0) 233 p = parent->rb_left; 234 else if (ret > 0) 235 p = parent->rb_right; 236 else 237 goto out; 238 } 239 240 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 241 parent = rb_next(parent); 242 if (parent) 243 entry = rb_entry(parent, struct inode_defrag, rb_node); 244 else 245 entry = NULL; 246 } 247 out: 248 if (entry) 249 rb_erase(parent, &fs_info->defrag_inodes); 250 spin_unlock(&fs_info->defrag_inodes_lock); 251 return entry; 252 } 253 254 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 255 { 256 struct inode_defrag *defrag; 257 struct rb_node *node; 258 259 spin_lock(&fs_info->defrag_inodes_lock); 260 node = rb_first(&fs_info->defrag_inodes); 261 while (node) { 262 rb_erase(node, &fs_info->defrag_inodes); 263 defrag = rb_entry(node, struct inode_defrag, rb_node); 264 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 265 266 cond_resched_lock(&fs_info->defrag_inodes_lock); 267 268 node = rb_first(&fs_info->defrag_inodes); 269 } 270 spin_unlock(&fs_info->defrag_inodes_lock); 271 } 272 273 #define BTRFS_DEFRAG_BATCH 1024 274 275 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 276 struct inode_defrag *defrag) 277 { 278 struct btrfs_root *inode_root; 279 struct inode *inode; 280 struct btrfs_ioctl_defrag_range_args range; 281 int num_defrag; 282 int ret; 283 284 /* get the inode */ 285 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); 286 if (IS_ERR(inode_root)) { 287 ret = PTR_ERR(inode_root); 288 goto cleanup; 289 } 290 291 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root); 292 btrfs_put_root(inode_root); 293 if (IS_ERR(inode)) { 294 ret = PTR_ERR(inode); 295 goto cleanup; 296 } 297 298 /* do a chunk of defrag */ 299 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 300 memset(&range, 0, sizeof(range)); 301 range.len = (u64)-1; 302 range.start = defrag->last_offset; 303 304 sb_start_write(fs_info->sb); 305 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 306 BTRFS_DEFRAG_BATCH); 307 sb_end_write(fs_info->sb); 308 /* 309 * if we filled the whole defrag batch, there 310 * must be more work to do. Queue this defrag 311 * again 312 */ 313 if (num_defrag == BTRFS_DEFRAG_BATCH) { 314 defrag->last_offset = range.start; 315 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 316 } else if (defrag->last_offset && !defrag->cycled) { 317 /* 318 * we didn't fill our defrag batch, but 319 * we didn't start at zero. Make sure we loop 320 * around to the start of the file. 321 */ 322 defrag->last_offset = 0; 323 defrag->cycled = 1; 324 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 325 } else { 326 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 327 } 328 329 iput(inode); 330 return 0; 331 cleanup: 332 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 333 return ret; 334 } 335 336 /* 337 * run through the list of inodes in the FS that need 338 * defragging 339 */ 340 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 341 { 342 struct inode_defrag *defrag; 343 u64 first_ino = 0; 344 u64 root_objectid = 0; 345 346 atomic_inc(&fs_info->defrag_running); 347 while (1) { 348 /* Pause the auto defragger. */ 349 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 350 &fs_info->fs_state)) 351 break; 352 353 if (!__need_auto_defrag(fs_info)) 354 break; 355 356 /* find an inode to defrag */ 357 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 358 first_ino); 359 if (!defrag) { 360 if (root_objectid || first_ino) { 361 root_objectid = 0; 362 first_ino = 0; 363 continue; 364 } else { 365 break; 366 } 367 } 368 369 first_ino = defrag->ino + 1; 370 root_objectid = defrag->root; 371 372 __btrfs_run_defrag_inode(fs_info, defrag); 373 } 374 atomic_dec(&fs_info->defrag_running); 375 376 /* 377 * during unmount, we use the transaction_wait queue to 378 * wait for the defragger to stop 379 */ 380 wake_up(&fs_info->transaction_wait); 381 return 0; 382 } 383 384 /* simple helper to fault in pages and copy. This should go away 385 * and be replaced with calls into generic code. 386 */ 387 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 388 struct page **prepared_pages, 389 struct iov_iter *i) 390 { 391 size_t copied = 0; 392 size_t total_copied = 0; 393 int pg = 0; 394 int offset = offset_in_page(pos); 395 396 while (write_bytes > 0) { 397 size_t count = min_t(size_t, 398 PAGE_SIZE - offset, write_bytes); 399 struct page *page = prepared_pages[pg]; 400 /* 401 * Copy data from userspace to the current page 402 */ 403 copied = copy_page_from_iter_atomic(page, offset, count, i); 404 405 /* Flush processor's dcache for this page */ 406 flush_dcache_page(page); 407 408 /* 409 * if we get a partial write, we can end up with 410 * partially up to date pages. These add 411 * a lot of complexity, so make sure they don't 412 * happen by forcing this copy to be retried. 413 * 414 * The rest of the btrfs_file_write code will fall 415 * back to page at a time copies after we return 0. 416 */ 417 if (unlikely(copied < count)) { 418 if (!PageUptodate(page)) { 419 iov_iter_revert(i, copied); 420 copied = 0; 421 } 422 if (!copied) 423 break; 424 } 425 426 write_bytes -= copied; 427 total_copied += copied; 428 offset += copied; 429 if (offset == PAGE_SIZE) { 430 pg++; 431 offset = 0; 432 } 433 } 434 return total_copied; 435 } 436 437 /* 438 * unlocks pages after btrfs_file_write is done with them 439 */ 440 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 441 { 442 size_t i; 443 for (i = 0; i < num_pages; i++) { 444 /* page checked is some magic around finding pages that 445 * have been modified without going through btrfs_set_page_dirty 446 * clear it here. There should be no need to mark the pages 447 * accessed as prepare_pages should have marked them accessed 448 * in prepare_pages via find_or_create_page() 449 */ 450 ClearPageChecked(pages[i]); 451 unlock_page(pages[i]); 452 put_page(pages[i]); 453 } 454 } 455 456 /* 457 * After btrfs_copy_from_user(), update the following things for delalloc: 458 * - Mark newly dirtied pages as DELALLOC in the io tree. 459 * Used to advise which range is to be written back. 460 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 461 * - Update inode size for past EOF write 462 */ 463 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 464 size_t num_pages, loff_t pos, size_t write_bytes, 465 struct extent_state **cached, bool noreserve) 466 { 467 struct btrfs_fs_info *fs_info = inode->root->fs_info; 468 int err = 0; 469 int i; 470 u64 num_bytes; 471 u64 start_pos; 472 u64 end_of_last_block; 473 u64 end_pos = pos + write_bytes; 474 loff_t isize = i_size_read(&inode->vfs_inode); 475 unsigned int extra_bits = 0; 476 477 if (write_bytes == 0) 478 return 0; 479 480 if (noreserve) 481 extra_bits |= EXTENT_NORESERVE; 482 483 start_pos = round_down(pos, fs_info->sectorsize); 484 num_bytes = round_up(write_bytes + pos - start_pos, 485 fs_info->sectorsize); 486 ASSERT(num_bytes <= U32_MAX); 487 488 end_of_last_block = start_pos + num_bytes - 1; 489 490 /* 491 * The pages may have already been dirty, clear out old accounting so 492 * we can set things up properly 493 */ 494 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 495 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 496 0, 0, cached); 497 498 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 499 extra_bits, cached); 500 if (err) 501 return err; 502 503 for (i = 0; i < num_pages; i++) { 504 struct page *p = pages[i]; 505 506 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes); 507 ClearPageChecked(p); 508 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes); 509 } 510 511 /* 512 * we've only changed i_size in ram, and we haven't updated 513 * the disk i_size. There is no need to log the inode 514 * at this time. 515 */ 516 if (end_pos > isize) 517 i_size_write(&inode->vfs_inode, end_pos); 518 return 0; 519 } 520 521 /* 522 * this drops all the extents in the cache that intersect the range 523 * [start, end]. Existing extents are split as required. 524 */ 525 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 526 int skip_pinned) 527 { 528 struct extent_map *em; 529 struct extent_map *split = NULL; 530 struct extent_map *split2 = NULL; 531 struct extent_map_tree *em_tree = &inode->extent_tree; 532 u64 len = end - start + 1; 533 u64 gen; 534 int ret; 535 int testend = 1; 536 unsigned long flags; 537 int compressed = 0; 538 bool modified; 539 540 WARN_ON(end < start); 541 if (end == (u64)-1) { 542 len = (u64)-1; 543 testend = 0; 544 } 545 while (1) { 546 int no_splits = 0; 547 548 modified = false; 549 if (!split) 550 split = alloc_extent_map(); 551 if (!split2) 552 split2 = alloc_extent_map(); 553 if (!split || !split2) 554 no_splits = 1; 555 556 write_lock(&em_tree->lock); 557 em = lookup_extent_mapping(em_tree, start, len); 558 if (!em) { 559 write_unlock(&em_tree->lock); 560 break; 561 } 562 flags = em->flags; 563 gen = em->generation; 564 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 565 if (testend && em->start + em->len >= start + len) { 566 free_extent_map(em); 567 write_unlock(&em_tree->lock); 568 break; 569 } 570 start = em->start + em->len; 571 if (testend) 572 len = start + len - (em->start + em->len); 573 free_extent_map(em); 574 write_unlock(&em_tree->lock); 575 continue; 576 } 577 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 578 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 579 clear_bit(EXTENT_FLAG_LOGGING, &flags); 580 modified = !list_empty(&em->list); 581 if (no_splits) 582 goto next; 583 584 if (em->start < start) { 585 split->start = em->start; 586 split->len = start - em->start; 587 588 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 589 split->orig_start = em->orig_start; 590 split->block_start = em->block_start; 591 592 if (compressed) 593 split->block_len = em->block_len; 594 else 595 split->block_len = split->len; 596 split->orig_block_len = max(split->block_len, 597 em->orig_block_len); 598 split->ram_bytes = em->ram_bytes; 599 } else { 600 split->orig_start = split->start; 601 split->block_len = 0; 602 split->block_start = em->block_start; 603 split->orig_block_len = 0; 604 split->ram_bytes = split->len; 605 } 606 607 split->generation = gen; 608 split->flags = flags; 609 split->compress_type = em->compress_type; 610 replace_extent_mapping(em_tree, em, split, modified); 611 free_extent_map(split); 612 split = split2; 613 split2 = NULL; 614 } 615 if (testend && em->start + em->len > start + len) { 616 u64 diff = start + len - em->start; 617 618 split->start = start + len; 619 split->len = em->start + em->len - (start + len); 620 split->flags = flags; 621 split->compress_type = em->compress_type; 622 split->generation = gen; 623 624 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 625 split->orig_block_len = max(em->block_len, 626 em->orig_block_len); 627 628 split->ram_bytes = em->ram_bytes; 629 if (compressed) { 630 split->block_len = em->block_len; 631 split->block_start = em->block_start; 632 split->orig_start = em->orig_start; 633 } else { 634 split->block_len = split->len; 635 split->block_start = em->block_start 636 + diff; 637 split->orig_start = em->orig_start; 638 } 639 } else { 640 split->ram_bytes = split->len; 641 split->orig_start = split->start; 642 split->block_len = 0; 643 split->block_start = em->block_start; 644 split->orig_block_len = 0; 645 } 646 647 if (extent_map_in_tree(em)) { 648 replace_extent_mapping(em_tree, em, split, 649 modified); 650 } else { 651 ret = add_extent_mapping(em_tree, split, 652 modified); 653 ASSERT(ret == 0); /* Logic error */ 654 } 655 free_extent_map(split); 656 split = NULL; 657 } 658 next: 659 if (extent_map_in_tree(em)) 660 remove_extent_mapping(em_tree, em); 661 write_unlock(&em_tree->lock); 662 663 /* once for us */ 664 free_extent_map(em); 665 /* once for the tree*/ 666 free_extent_map(em); 667 } 668 if (split) 669 free_extent_map(split); 670 if (split2) 671 free_extent_map(split2); 672 } 673 674 /* 675 * this is very complex, but the basic idea is to drop all extents 676 * in the range start - end. hint_block is filled in with a block number 677 * that would be a good hint to the block allocator for this file. 678 * 679 * If an extent intersects the range but is not entirely inside the range 680 * it is either truncated or split. Anything entirely inside the range 681 * is deleted from the tree. 682 * 683 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 684 * to deal with that. We set the field 'bytes_found' of the arguments structure 685 * with the number of allocated bytes found in the target range, so that the 686 * caller can update the inode's number of bytes in an atomic way when 687 * replacing extents in a range to avoid races with stat(2). 688 */ 689 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 690 struct btrfs_root *root, struct btrfs_inode *inode, 691 struct btrfs_drop_extents_args *args) 692 { 693 struct btrfs_fs_info *fs_info = root->fs_info; 694 struct extent_buffer *leaf; 695 struct btrfs_file_extent_item *fi; 696 struct btrfs_ref ref = { 0 }; 697 struct btrfs_key key; 698 struct btrfs_key new_key; 699 u64 ino = btrfs_ino(inode); 700 u64 search_start = args->start; 701 u64 disk_bytenr = 0; 702 u64 num_bytes = 0; 703 u64 extent_offset = 0; 704 u64 extent_end = 0; 705 u64 last_end = args->start; 706 int del_nr = 0; 707 int del_slot = 0; 708 int extent_type; 709 int recow; 710 int ret; 711 int modify_tree = -1; 712 int update_refs; 713 int found = 0; 714 int leafs_visited = 0; 715 struct btrfs_path *path = args->path; 716 717 args->bytes_found = 0; 718 args->extent_inserted = false; 719 720 /* Must always have a path if ->replace_extent is true */ 721 ASSERT(!(args->replace_extent && !args->path)); 722 723 if (!path) { 724 path = btrfs_alloc_path(); 725 if (!path) { 726 ret = -ENOMEM; 727 goto out; 728 } 729 } 730 731 if (args->drop_cache) 732 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0); 733 734 if (args->start >= inode->disk_i_size && !args->replace_extent) 735 modify_tree = 0; 736 737 update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 738 root == fs_info->tree_root); 739 while (1) { 740 recow = 0; 741 ret = btrfs_lookup_file_extent(trans, root, path, ino, 742 search_start, modify_tree); 743 if (ret < 0) 744 break; 745 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 746 leaf = path->nodes[0]; 747 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 748 if (key.objectid == ino && 749 key.type == BTRFS_EXTENT_DATA_KEY) 750 path->slots[0]--; 751 } 752 ret = 0; 753 leafs_visited++; 754 next_slot: 755 leaf = path->nodes[0]; 756 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 757 BUG_ON(del_nr > 0); 758 ret = btrfs_next_leaf(root, path); 759 if (ret < 0) 760 break; 761 if (ret > 0) { 762 ret = 0; 763 break; 764 } 765 leafs_visited++; 766 leaf = path->nodes[0]; 767 recow = 1; 768 } 769 770 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 771 772 if (key.objectid > ino) 773 break; 774 if (WARN_ON_ONCE(key.objectid < ino) || 775 key.type < BTRFS_EXTENT_DATA_KEY) { 776 ASSERT(del_nr == 0); 777 path->slots[0]++; 778 goto next_slot; 779 } 780 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 781 break; 782 783 fi = btrfs_item_ptr(leaf, path->slots[0], 784 struct btrfs_file_extent_item); 785 extent_type = btrfs_file_extent_type(leaf, fi); 786 787 if (extent_type == BTRFS_FILE_EXTENT_REG || 788 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 789 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 790 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 791 extent_offset = btrfs_file_extent_offset(leaf, fi); 792 extent_end = key.offset + 793 btrfs_file_extent_num_bytes(leaf, fi); 794 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 795 extent_end = key.offset + 796 btrfs_file_extent_ram_bytes(leaf, fi); 797 } else { 798 /* can't happen */ 799 BUG(); 800 } 801 802 /* 803 * Don't skip extent items representing 0 byte lengths. They 804 * used to be created (bug) if while punching holes we hit 805 * -ENOSPC condition. So if we find one here, just ensure we 806 * delete it, otherwise we would insert a new file extent item 807 * with the same key (offset) as that 0 bytes length file 808 * extent item in the call to setup_items_for_insert() later 809 * in this function. 810 */ 811 if (extent_end == key.offset && extent_end >= search_start) { 812 last_end = extent_end; 813 goto delete_extent_item; 814 } 815 816 if (extent_end <= search_start) { 817 path->slots[0]++; 818 goto next_slot; 819 } 820 821 found = 1; 822 search_start = max(key.offset, args->start); 823 if (recow || !modify_tree) { 824 modify_tree = -1; 825 btrfs_release_path(path); 826 continue; 827 } 828 829 /* 830 * | - range to drop - | 831 * | -------- extent -------- | 832 */ 833 if (args->start > key.offset && args->end < extent_end) { 834 BUG_ON(del_nr > 0); 835 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 836 ret = -EOPNOTSUPP; 837 break; 838 } 839 840 memcpy(&new_key, &key, sizeof(new_key)); 841 new_key.offset = args->start; 842 ret = btrfs_duplicate_item(trans, root, path, 843 &new_key); 844 if (ret == -EAGAIN) { 845 btrfs_release_path(path); 846 continue; 847 } 848 if (ret < 0) 849 break; 850 851 leaf = path->nodes[0]; 852 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 853 struct btrfs_file_extent_item); 854 btrfs_set_file_extent_num_bytes(leaf, fi, 855 args->start - key.offset); 856 857 fi = btrfs_item_ptr(leaf, path->slots[0], 858 struct btrfs_file_extent_item); 859 860 extent_offset += args->start - key.offset; 861 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 862 btrfs_set_file_extent_num_bytes(leaf, fi, 863 extent_end - args->start); 864 btrfs_mark_buffer_dirty(leaf); 865 866 if (update_refs && disk_bytenr > 0) { 867 btrfs_init_generic_ref(&ref, 868 BTRFS_ADD_DELAYED_REF, 869 disk_bytenr, num_bytes, 0); 870 btrfs_init_data_ref(&ref, 871 root->root_key.objectid, 872 new_key.objectid, 873 args->start - extent_offset); 874 ret = btrfs_inc_extent_ref(trans, &ref); 875 BUG_ON(ret); /* -ENOMEM */ 876 } 877 key.offset = args->start; 878 } 879 /* 880 * From here on out we will have actually dropped something, so 881 * last_end can be updated. 882 */ 883 last_end = extent_end; 884 885 /* 886 * | ---- range to drop ----- | 887 * | -------- extent -------- | 888 */ 889 if (args->start <= key.offset && args->end < extent_end) { 890 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 891 ret = -EOPNOTSUPP; 892 break; 893 } 894 895 memcpy(&new_key, &key, sizeof(new_key)); 896 new_key.offset = args->end; 897 btrfs_set_item_key_safe(fs_info, path, &new_key); 898 899 extent_offset += args->end - key.offset; 900 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 901 btrfs_set_file_extent_num_bytes(leaf, fi, 902 extent_end - args->end); 903 btrfs_mark_buffer_dirty(leaf); 904 if (update_refs && disk_bytenr > 0) 905 args->bytes_found += args->end - key.offset; 906 break; 907 } 908 909 search_start = extent_end; 910 /* 911 * | ---- range to drop ----- | 912 * | -------- extent -------- | 913 */ 914 if (args->start > key.offset && args->end >= extent_end) { 915 BUG_ON(del_nr > 0); 916 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 917 ret = -EOPNOTSUPP; 918 break; 919 } 920 921 btrfs_set_file_extent_num_bytes(leaf, fi, 922 args->start - key.offset); 923 btrfs_mark_buffer_dirty(leaf); 924 if (update_refs && disk_bytenr > 0) 925 args->bytes_found += extent_end - args->start; 926 if (args->end == extent_end) 927 break; 928 929 path->slots[0]++; 930 goto next_slot; 931 } 932 933 /* 934 * | ---- range to drop ----- | 935 * | ------ extent ------ | 936 */ 937 if (args->start <= key.offset && args->end >= extent_end) { 938 delete_extent_item: 939 if (del_nr == 0) { 940 del_slot = path->slots[0]; 941 del_nr = 1; 942 } else { 943 BUG_ON(del_slot + del_nr != path->slots[0]); 944 del_nr++; 945 } 946 947 if (update_refs && 948 extent_type == BTRFS_FILE_EXTENT_INLINE) { 949 args->bytes_found += extent_end - key.offset; 950 extent_end = ALIGN(extent_end, 951 fs_info->sectorsize); 952 } else if (update_refs && disk_bytenr > 0) { 953 btrfs_init_generic_ref(&ref, 954 BTRFS_DROP_DELAYED_REF, 955 disk_bytenr, num_bytes, 0); 956 btrfs_init_data_ref(&ref, 957 root->root_key.objectid, 958 key.objectid, 959 key.offset - extent_offset); 960 ret = btrfs_free_extent(trans, &ref); 961 BUG_ON(ret); /* -ENOMEM */ 962 args->bytes_found += extent_end - key.offset; 963 } 964 965 if (args->end == extent_end) 966 break; 967 968 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 969 path->slots[0]++; 970 goto next_slot; 971 } 972 973 ret = btrfs_del_items(trans, root, path, del_slot, 974 del_nr); 975 if (ret) { 976 btrfs_abort_transaction(trans, ret); 977 break; 978 } 979 980 del_nr = 0; 981 del_slot = 0; 982 983 btrfs_release_path(path); 984 continue; 985 } 986 987 BUG(); 988 } 989 990 if (!ret && del_nr > 0) { 991 /* 992 * Set path->slots[0] to first slot, so that after the delete 993 * if items are move off from our leaf to its immediate left or 994 * right neighbor leafs, we end up with a correct and adjusted 995 * path->slots[0] for our insertion (if args->replace_extent). 996 */ 997 path->slots[0] = del_slot; 998 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 999 if (ret) 1000 btrfs_abort_transaction(trans, ret); 1001 } 1002 1003 leaf = path->nodes[0]; 1004 /* 1005 * If btrfs_del_items() was called, it might have deleted a leaf, in 1006 * which case it unlocked our path, so check path->locks[0] matches a 1007 * write lock. 1008 */ 1009 if (!ret && args->replace_extent && leafs_visited == 1 && 1010 path->locks[0] == BTRFS_WRITE_LOCK && 1011 btrfs_leaf_free_space(leaf) >= 1012 sizeof(struct btrfs_item) + args->extent_item_size) { 1013 1014 key.objectid = ino; 1015 key.type = BTRFS_EXTENT_DATA_KEY; 1016 key.offset = args->start; 1017 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 1018 struct btrfs_key slot_key; 1019 1020 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 1021 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1022 path->slots[0]++; 1023 } 1024 setup_items_for_insert(root, path, &key, 1025 &args->extent_item_size, 1); 1026 args->extent_inserted = true; 1027 } 1028 1029 if (!args->path) 1030 btrfs_free_path(path); 1031 else if (!args->extent_inserted) 1032 btrfs_release_path(path); 1033 out: 1034 args->drop_end = found ? min(args->end, last_end) : args->end; 1035 1036 return ret; 1037 } 1038 1039 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1040 u64 objectid, u64 bytenr, u64 orig_offset, 1041 u64 *start, u64 *end) 1042 { 1043 struct btrfs_file_extent_item *fi; 1044 struct btrfs_key key; 1045 u64 extent_end; 1046 1047 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1048 return 0; 1049 1050 btrfs_item_key_to_cpu(leaf, &key, slot); 1051 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1052 return 0; 1053 1054 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1055 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1056 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1057 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1058 btrfs_file_extent_compression(leaf, fi) || 1059 btrfs_file_extent_encryption(leaf, fi) || 1060 btrfs_file_extent_other_encoding(leaf, fi)) 1061 return 0; 1062 1063 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1064 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1065 return 0; 1066 1067 *start = key.offset; 1068 *end = extent_end; 1069 return 1; 1070 } 1071 1072 /* 1073 * Mark extent in the range start - end as written. 1074 * 1075 * This changes extent type from 'pre-allocated' to 'regular'. If only 1076 * part of extent is marked as written, the extent will be split into 1077 * two or three. 1078 */ 1079 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1080 struct btrfs_inode *inode, u64 start, u64 end) 1081 { 1082 struct btrfs_fs_info *fs_info = trans->fs_info; 1083 struct btrfs_root *root = inode->root; 1084 struct extent_buffer *leaf; 1085 struct btrfs_path *path; 1086 struct btrfs_file_extent_item *fi; 1087 struct btrfs_ref ref = { 0 }; 1088 struct btrfs_key key; 1089 struct btrfs_key new_key; 1090 u64 bytenr; 1091 u64 num_bytes; 1092 u64 extent_end; 1093 u64 orig_offset; 1094 u64 other_start; 1095 u64 other_end; 1096 u64 split; 1097 int del_nr = 0; 1098 int del_slot = 0; 1099 int recow; 1100 int ret = 0; 1101 u64 ino = btrfs_ino(inode); 1102 1103 path = btrfs_alloc_path(); 1104 if (!path) 1105 return -ENOMEM; 1106 again: 1107 recow = 0; 1108 split = start; 1109 key.objectid = ino; 1110 key.type = BTRFS_EXTENT_DATA_KEY; 1111 key.offset = split; 1112 1113 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1114 if (ret < 0) 1115 goto out; 1116 if (ret > 0 && path->slots[0] > 0) 1117 path->slots[0]--; 1118 1119 leaf = path->nodes[0]; 1120 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1121 if (key.objectid != ino || 1122 key.type != BTRFS_EXTENT_DATA_KEY) { 1123 ret = -EINVAL; 1124 btrfs_abort_transaction(trans, ret); 1125 goto out; 1126 } 1127 fi = btrfs_item_ptr(leaf, path->slots[0], 1128 struct btrfs_file_extent_item); 1129 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1130 ret = -EINVAL; 1131 btrfs_abort_transaction(trans, ret); 1132 goto out; 1133 } 1134 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1135 if (key.offset > start || extent_end < end) { 1136 ret = -EINVAL; 1137 btrfs_abort_transaction(trans, ret); 1138 goto out; 1139 } 1140 1141 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1142 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1143 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1144 memcpy(&new_key, &key, sizeof(new_key)); 1145 1146 if (start == key.offset && end < extent_end) { 1147 other_start = 0; 1148 other_end = start; 1149 if (extent_mergeable(leaf, path->slots[0] - 1, 1150 ino, bytenr, orig_offset, 1151 &other_start, &other_end)) { 1152 new_key.offset = end; 1153 btrfs_set_item_key_safe(fs_info, path, &new_key); 1154 fi = btrfs_item_ptr(leaf, path->slots[0], 1155 struct btrfs_file_extent_item); 1156 btrfs_set_file_extent_generation(leaf, fi, 1157 trans->transid); 1158 btrfs_set_file_extent_num_bytes(leaf, fi, 1159 extent_end - end); 1160 btrfs_set_file_extent_offset(leaf, fi, 1161 end - orig_offset); 1162 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1163 struct btrfs_file_extent_item); 1164 btrfs_set_file_extent_generation(leaf, fi, 1165 trans->transid); 1166 btrfs_set_file_extent_num_bytes(leaf, fi, 1167 end - other_start); 1168 btrfs_mark_buffer_dirty(leaf); 1169 goto out; 1170 } 1171 } 1172 1173 if (start > key.offset && end == extent_end) { 1174 other_start = end; 1175 other_end = 0; 1176 if (extent_mergeable(leaf, path->slots[0] + 1, 1177 ino, bytenr, orig_offset, 1178 &other_start, &other_end)) { 1179 fi = btrfs_item_ptr(leaf, path->slots[0], 1180 struct btrfs_file_extent_item); 1181 btrfs_set_file_extent_num_bytes(leaf, fi, 1182 start - key.offset); 1183 btrfs_set_file_extent_generation(leaf, fi, 1184 trans->transid); 1185 path->slots[0]++; 1186 new_key.offset = start; 1187 btrfs_set_item_key_safe(fs_info, path, &new_key); 1188 1189 fi = btrfs_item_ptr(leaf, path->slots[0], 1190 struct btrfs_file_extent_item); 1191 btrfs_set_file_extent_generation(leaf, fi, 1192 trans->transid); 1193 btrfs_set_file_extent_num_bytes(leaf, fi, 1194 other_end - start); 1195 btrfs_set_file_extent_offset(leaf, fi, 1196 start - orig_offset); 1197 btrfs_mark_buffer_dirty(leaf); 1198 goto out; 1199 } 1200 } 1201 1202 while (start > key.offset || end < extent_end) { 1203 if (key.offset == start) 1204 split = end; 1205 1206 new_key.offset = split; 1207 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1208 if (ret == -EAGAIN) { 1209 btrfs_release_path(path); 1210 goto again; 1211 } 1212 if (ret < 0) { 1213 btrfs_abort_transaction(trans, ret); 1214 goto out; 1215 } 1216 1217 leaf = path->nodes[0]; 1218 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1219 struct btrfs_file_extent_item); 1220 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1221 btrfs_set_file_extent_num_bytes(leaf, fi, 1222 split - key.offset); 1223 1224 fi = btrfs_item_ptr(leaf, path->slots[0], 1225 struct btrfs_file_extent_item); 1226 1227 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1228 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1229 btrfs_set_file_extent_num_bytes(leaf, fi, 1230 extent_end - split); 1231 btrfs_mark_buffer_dirty(leaf); 1232 1233 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 1234 num_bytes, 0); 1235 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 1236 orig_offset); 1237 ret = btrfs_inc_extent_ref(trans, &ref); 1238 if (ret) { 1239 btrfs_abort_transaction(trans, ret); 1240 goto out; 1241 } 1242 1243 if (split == start) { 1244 key.offset = start; 1245 } else { 1246 if (start != key.offset) { 1247 ret = -EINVAL; 1248 btrfs_abort_transaction(trans, ret); 1249 goto out; 1250 } 1251 path->slots[0]--; 1252 extent_end = end; 1253 } 1254 recow = 1; 1255 } 1256 1257 other_start = end; 1258 other_end = 0; 1259 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1260 num_bytes, 0); 1261 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset); 1262 if (extent_mergeable(leaf, path->slots[0] + 1, 1263 ino, bytenr, orig_offset, 1264 &other_start, &other_end)) { 1265 if (recow) { 1266 btrfs_release_path(path); 1267 goto again; 1268 } 1269 extent_end = other_end; 1270 del_slot = path->slots[0] + 1; 1271 del_nr++; 1272 ret = btrfs_free_extent(trans, &ref); 1273 if (ret) { 1274 btrfs_abort_transaction(trans, ret); 1275 goto out; 1276 } 1277 } 1278 other_start = 0; 1279 other_end = start; 1280 if (extent_mergeable(leaf, path->slots[0] - 1, 1281 ino, bytenr, orig_offset, 1282 &other_start, &other_end)) { 1283 if (recow) { 1284 btrfs_release_path(path); 1285 goto again; 1286 } 1287 key.offset = other_start; 1288 del_slot = path->slots[0]; 1289 del_nr++; 1290 ret = btrfs_free_extent(trans, &ref); 1291 if (ret) { 1292 btrfs_abort_transaction(trans, ret); 1293 goto out; 1294 } 1295 } 1296 if (del_nr == 0) { 1297 fi = btrfs_item_ptr(leaf, path->slots[0], 1298 struct btrfs_file_extent_item); 1299 btrfs_set_file_extent_type(leaf, fi, 1300 BTRFS_FILE_EXTENT_REG); 1301 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1302 btrfs_mark_buffer_dirty(leaf); 1303 } else { 1304 fi = btrfs_item_ptr(leaf, del_slot - 1, 1305 struct btrfs_file_extent_item); 1306 btrfs_set_file_extent_type(leaf, fi, 1307 BTRFS_FILE_EXTENT_REG); 1308 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1309 btrfs_set_file_extent_num_bytes(leaf, fi, 1310 extent_end - key.offset); 1311 btrfs_mark_buffer_dirty(leaf); 1312 1313 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1314 if (ret < 0) { 1315 btrfs_abort_transaction(trans, ret); 1316 goto out; 1317 } 1318 } 1319 out: 1320 btrfs_free_path(path); 1321 return ret; 1322 } 1323 1324 /* 1325 * on error we return an unlocked page and the error value 1326 * on success we return a locked page and 0 1327 */ 1328 static int prepare_uptodate_page(struct inode *inode, 1329 struct page *page, u64 pos, 1330 bool force_uptodate) 1331 { 1332 int ret = 0; 1333 1334 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1335 !PageUptodate(page)) { 1336 ret = btrfs_readpage(NULL, page); 1337 if (ret) 1338 return ret; 1339 lock_page(page); 1340 if (!PageUptodate(page)) { 1341 unlock_page(page); 1342 return -EIO; 1343 } 1344 1345 /* 1346 * Since btrfs_readpage() will unlock the page before it 1347 * returns, there is a window where btrfs_releasepage() can be 1348 * called to release the page. Here we check both inode 1349 * mapping and PagePrivate() to make sure the page was not 1350 * released. 1351 * 1352 * The private flag check is essential for subpage as we need 1353 * to store extra bitmap using page->private. 1354 */ 1355 if (page->mapping != inode->i_mapping || !PagePrivate(page)) { 1356 unlock_page(page); 1357 return -EAGAIN; 1358 } 1359 } 1360 return 0; 1361 } 1362 1363 /* 1364 * this just gets pages into the page cache and locks them down. 1365 */ 1366 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1367 size_t num_pages, loff_t pos, 1368 size_t write_bytes, bool force_uptodate) 1369 { 1370 int i; 1371 unsigned long index = pos >> PAGE_SHIFT; 1372 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1373 int err = 0; 1374 int faili; 1375 1376 for (i = 0; i < num_pages; i++) { 1377 again: 1378 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1379 mask | __GFP_WRITE); 1380 if (!pages[i]) { 1381 faili = i - 1; 1382 err = -ENOMEM; 1383 goto fail; 1384 } 1385 1386 err = set_page_extent_mapped(pages[i]); 1387 if (err < 0) { 1388 faili = i; 1389 goto fail; 1390 } 1391 1392 if (i == 0) 1393 err = prepare_uptodate_page(inode, pages[i], pos, 1394 force_uptodate); 1395 if (!err && i == num_pages - 1) 1396 err = prepare_uptodate_page(inode, pages[i], 1397 pos + write_bytes, false); 1398 if (err) { 1399 put_page(pages[i]); 1400 if (err == -EAGAIN) { 1401 err = 0; 1402 goto again; 1403 } 1404 faili = i - 1; 1405 goto fail; 1406 } 1407 wait_on_page_writeback(pages[i]); 1408 } 1409 1410 return 0; 1411 fail: 1412 while (faili >= 0) { 1413 unlock_page(pages[faili]); 1414 put_page(pages[faili]); 1415 faili--; 1416 } 1417 return err; 1418 1419 } 1420 1421 /* 1422 * This function locks the extent and properly waits for data=ordered extents 1423 * to finish before allowing the pages to be modified if need. 1424 * 1425 * The return value: 1426 * 1 - the extent is locked 1427 * 0 - the extent is not locked, and everything is OK 1428 * -EAGAIN - need re-prepare the pages 1429 * the other < 0 number - Something wrong happens 1430 */ 1431 static noinline int 1432 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1433 size_t num_pages, loff_t pos, 1434 size_t write_bytes, 1435 u64 *lockstart, u64 *lockend, 1436 struct extent_state **cached_state) 1437 { 1438 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1439 u64 start_pos; 1440 u64 last_pos; 1441 int i; 1442 int ret = 0; 1443 1444 start_pos = round_down(pos, fs_info->sectorsize); 1445 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 1446 1447 if (start_pos < inode->vfs_inode.i_size) { 1448 struct btrfs_ordered_extent *ordered; 1449 1450 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1451 cached_state); 1452 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1453 last_pos - start_pos + 1); 1454 if (ordered && 1455 ordered->file_offset + ordered->num_bytes > start_pos && 1456 ordered->file_offset <= last_pos) { 1457 unlock_extent_cached(&inode->io_tree, start_pos, 1458 last_pos, cached_state); 1459 for (i = 0; i < num_pages; i++) { 1460 unlock_page(pages[i]); 1461 put_page(pages[i]); 1462 } 1463 btrfs_start_ordered_extent(ordered, 1); 1464 btrfs_put_ordered_extent(ordered); 1465 return -EAGAIN; 1466 } 1467 if (ordered) 1468 btrfs_put_ordered_extent(ordered); 1469 1470 *lockstart = start_pos; 1471 *lockend = last_pos; 1472 ret = 1; 1473 } 1474 1475 /* 1476 * We should be called after prepare_pages() which should have locked 1477 * all pages in the range. 1478 */ 1479 for (i = 0; i < num_pages; i++) 1480 WARN_ON(!PageLocked(pages[i])); 1481 1482 return ret; 1483 } 1484 1485 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1486 size_t *write_bytes, bool nowait) 1487 { 1488 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1489 struct btrfs_root *root = inode->root; 1490 u64 lockstart, lockend; 1491 u64 num_bytes; 1492 int ret; 1493 1494 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1495 return 0; 1496 1497 if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock)) 1498 return -EAGAIN; 1499 1500 lockstart = round_down(pos, fs_info->sectorsize); 1501 lockend = round_up(pos + *write_bytes, 1502 fs_info->sectorsize) - 1; 1503 num_bytes = lockend - lockstart + 1; 1504 1505 if (nowait) { 1506 struct btrfs_ordered_extent *ordered; 1507 1508 if (!try_lock_extent(&inode->io_tree, lockstart, lockend)) 1509 return -EAGAIN; 1510 1511 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1512 num_bytes); 1513 if (ordered) { 1514 btrfs_put_ordered_extent(ordered); 1515 ret = -EAGAIN; 1516 goto out_unlock; 1517 } 1518 } else { 1519 btrfs_lock_and_flush_ordered_range(inode, lockstart, 1520 lockend, NULL); 1521 } 1522 1523 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1524 NULL, NULL, NULL, false); 1525 if (ret <= 0) { 1526 ret = 0; 1527 if (!nowait) 1528 btrfs_drew_write_unlock(&root->snapshot_lock); 1529 } else { 1530 *write_bytes = min_t(size_t, *write_bytes , 1531 num_bytes - pos + lockstart); 1532 } 1533 out_unlock: 1534 unlock_extent(&inode->io_tree, lockstart, lockend); 1535 1536 return ret; 1537 } 1538 1539 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos, 1540 size_t *write_bytes) 1541 { 1542 return check_can_nocow(inode, pos, write_bytes, true); 1543 } 1544 1545 /* 1546 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1547 * 1548 * @pos: File offset 1549 * @write_bytes: The length to write, will be updated to the nocow writeable 1550 * range 1551 * 1552 * This function will flush ordered extents in the range to ensure proper 1553 * nocow checks. 1554 * 1555 * Return: 1556 * >0 and update @write_bytes if we can do nocow write 1557 * 0 if we can't do nocow write 1558 * -EAGAIN if we can't get the needed lock or there are ordered extents 1559 * for * (nowait == true) case 1560 * <0 if other error happened 1561 * 1562 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock(). 1563 */ 1564 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1565 size_t *write_bytes) 1566 { 1567 return check_can_nocow(inode, pos, write_bytes, false); 1568 } 1569 1570 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1571 { 1572 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1573 } 1574 1575 static void update_time_for_write(struct inode *inode) 1576 { 1577 struct timespec64 now; 1578 1579 if (IS_NOCMTIME(inode)) 1580 return; 1581 1582 now = current_time(inode); 1583 if (!timespec64_equal(&inode->i_mtime, &now)) 1584 inode->i_mtime = now; 1585 1586 if (!timespec64_equal(&inode->i_ctime, &now)) 1587 inode->i_ctime = now; 1588 1589 if (IS_I_VERSION(inode)) 1590 inode_inc_iversion(inode); 1591 } 1592 1593 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1594 size_t count) 1595 { 1596 struct file *file = iocb->ki_filp; 1597 struct inode *inode = file_inode(file); 1598 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1599 loff_t pos = iocb->ki_pos; 1600 int ret; 1601 loff_t oldsize; 1602 loff_t start_pos; 1603 1604 if (iocb->ki_flags & IOCB_NOWAIT) { 1605 size_t nocow_bytes = count; 1606 1607 /* We will allocate space in case nodatacow is not set, so bail */ 1608 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0) 1609 return -EAGAIN; 1610 /* 1611 * There are holes in the range or parts of the range that must 1612 * be COWed (shared extents, RO block groups, etc), so just bail 1613 * out. 1614 */ 1615 if (nocow_bytes < count) 1616 return -EAGAIN; 1617 } 1618 1619 current->backing_dev_info = inode_to_bdi(inode); 1620 ret = file_remove_privs(file); 1621 if (ret) 1622 return ret; 1623 1624 /* 1625 * We reserve space for updating the inode when we reserve space for the 1626 * extent we are going to write, so we will enospc out there. We don't 1627 * need to start yet another transaction to update the inode as we will 1628 * update the inode when we finish writing whatever data we write. 1629 */ 1630 update_time_for_write(inode); 1631 1632 start_pos = round_down(pos, fs_info->sectorsize); 1633 oldsize = i_size_read(inode); 1634 if (start_pos > oldsize) { 1635 /* Expand hole size to cover write data, preventing empty gap */ 1636 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1637 1638 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1639 if (ret) { 1640 current->backing_dev_info = NULL; 1641 return ret; 1642 } 1643 } 1644 1645 return 0; 1646 } 1647 1648 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1649 struct iov_iter *i) 1650 { 1651 struct file *file = iocb->ki_filp; 1652 loff_t pos; 1653 struct inode *inode = file_inode(file); 1654 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1655 struct page **pages = NULL; 1656 struct extent_changeset *data_reserved = NULL; 1657 u64 release_bytes = 0; 1658 u64 lockstart; 1659 u64 lockend; 1660 size_t num_written = 0; 1661 int nrptrs; 1662 ssize_t ret; 1663 bool only_release_metadata = false; 1664 bool force_page_uptodate = false; 1665 loff_t old_isize = i_size_read(inode); 1666 unsigned int ilock_flags = 0; 1667 1668 if (iocb->ki_flags & IOCB_NOWAIT) 1669 ilock_flags |= BTRFS_ILOCK_TRY; 1670 1671 ret = btrfs_inode_lock(inode, ilock_flags); 1672 if (ret < 0) 1673 return ret; 1674 1675 ret = generic_write_checks(iocb, i); 1676 if (ret <= 0) 1677 goto out; 1678 1679 ret = btrfs_write_check(iocb, i, ret); 1680 if (ret < 0) 1681 goto out; 1682 1683 pos = iocb->ki_pos; 1684 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1685 PAGE_SIZE / (sizeof(struct page *))); 1686 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1687 nrptrs = max(nrptrs, 8); 1688 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1689 if (!pages) { 1690 ret = -ENOMEM; 1691 goto out; 1692 } 1693 1694 while (iov_iter_count(i) > 0) { 1695 struct extent_state *cached_state = NULL; 1696 size_t offset = offset_in_page(pos); 1697 size_t sector_offset; 1698 size_t write_bytes = min(iov_iter_count(i), 1699 nrptrs * (size_t)PAGE_SIZE - 1700 offset); 1701 size_t num_pages; 1702 size_t reserve_bytes; 1703 size_t dirty_pages; 1704 size_t copied; 1705 size_t dirty_sectors; 1706 size_t num_sectors; 1707 int extents_locked; 1708 1709 /* 1710 * Fault pages before locking them in prepare_pages 1711 * to avoid recursive lock 1712 */ 1713 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1714 ret = -EFAULT; 1715 break; 1716 } 1717 1718 only_release_metadata = false; 1719 sector_offset = pos & (fs_info->sectorsize - 1); 1720 1721 extent_changeset_release(data_reserved); 1722 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1723 &data_reserved, pos, 1724 write_bytes); 1725 if (ret < 0) { 1726 /* 1727 * If we don't have to COW at the offset, reserve 1728 * metadata only. write_bytes may get smaller than 1729 * requested here. 1730 */ 1731 if (btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1732 &write_bytes) > 0) 1733 only_release_metadata = true; 1734 else 1735 break; 1736 } 1737 1738 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1739 WARN_ON(num_pages > nrptrs); 1740 reserve_bytes = round_up(write_bytes + sector_offset, 1741 fs_info->sectorsize); 1742 WARN_ON(reserve_bytes == 0); 1743 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1744 reserve_bytes); 1745 if (ret) { 1746 if (!only_release_metadata) 1747 btrfs_free_reserved_data_space(BTRFS_I(inode), 1748 data_reserved, pos, 1749 write_bytes); 1750 else 1751 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1752 break; 1753 } 1754 1755 release_bytes = reserve_bytes; 1756 again: 1757 /* 1758 * This is going to setup the pages array with the number of 1759 * pages we want, so we don't really need to worry about the 1760 * contents of pages from loop to loop 1761 */ 1762 ret = prepare_pages(inode, pages, num_pages, 1763 pos, write_bytes, 1764 force_page_uptodate); 1765 if (ret) { 1766 btrfs_delalloc_release_extents(BTRFS_I(inode), 1767 reserve_bytes); 1768 break; 1769 } 1770 1771 extents_locked = lock_and_cleanup_extent_if_need( 1772 BTRFS_I(inode), pages, 1773 num_pages, pos, write_bytes, &lockstart, 1774 &lockend, &cached_state); 1775 if (extents_locked < 0) { 1776 if (extents_locked == -EAGAIN) 1777 goto again; 1778 btrfs_delalloc_release_extents(BTRFS_I(inode), 1779 reserve_bytes); 1780 ret = extents_locked; 1781 break; 1782 } 1783 1784 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1785 1786 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1787 dirty_sectors = round_up(copied + sector_offset, 1788 fs_info->sectorsize); 1789 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1790 1791 /* 1792 * if we have trouble faulting in the pages, fall 1793 * back to one page at a time 1794 */ 1795 if (copied < write_bytes) 1796 nrptrs = 1; 1797 1798 if (copied == 0) { 1799 force_page_uptodate = true; 1800 dirty_sectors = 0; 1801 dirty_pages = 0; 1802 } else { 1803 force_page_uptodate = false; 1804 dirty_pages = DIV_ROUND_UP(copied + offset, 1805 PAGE_SIZE); 1806 } 1807 1808 if (num_sectors > dirty_sectors) { 1809 /* release everything except the sectors we dirtied */ 1810 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1811 if (only_release_metadata) { 1812 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1813 release_bytes, true); 1814 } else { 1815 u64 __pos; 1816 1817 __pos = round_down(pos, 1818 fs_info->sectorsize) + 1819 (dirty_pages << PAGE_SHIFT); 1820 btrfs_delalloc_release_space(BTRFS_I(inode), 1821 data_reserved, __pos, 1822 release_bytes, true); 1823 } 1824 } 1825 1826 release_bytes = round_up(copied + sector_offset, 1827 fs_info->sectorsize); 1828 1829 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1830 dirty_pages, pos, copied, 1831 &cached_state, only_release_metadata); 1832 1833 /* 1834 * If we have not locked the extent range, because the range's 1835 * start offset is >= i_size, we might still have a non-NULL 1836 * cached extent state, acquired while marking the extent range 1837 * as delalloc through btrfs_dirty_pages(). Therefore free any 1838 * possible cached extent state to avoid a memory leak. 1839 */ 1840 if (extents_locked) 1841 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1842 lockstart, lockend, &cached_state); 1843 else 1844 free_extent_state(cached_state); 1845 1846 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1847 if (ret) { 1848 btrfs_drop_pages(pages, num_pages); 1849 break; 1850 } 1851 1852 release_bytes = 0; 1853 if (only_release_metadata) 1854 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1855 1856 btrfs_drop_pages(pages, num_pages); 1857 1858 cond_resched(); 1859 1860 balance_dirty_pages_ratelimited(inode->i_mapping); 1861 1862 pos += copied; 1863 num_written += copied; 1864 } 1865 1866 kfree(pages); 1867 1868 if (release_bytes) { 1869 if (only_release_metadata) { 1870 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1871 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1872 release_bytes, true); 1873 } else { 1874 btrfs_delalloc_release_space(BTRFS_I(inode), 1875 data_reserved, 1876 round_down(pos, fs_info->sectorsize), 1877 release_bytes, true); 1878 } 1879 } 1880 1881 extent_changeset_free(data_reserved); 1882 if (num_written > 0) { 1883 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1884 iocb->ki_pos += num_written; 1885 } 1886 out: 1887 btrfs_inode_unlock(inode, ilock_flags); 1888 return num_written ? num_written : ret; 1889 } 1890 1891 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1892 const struct iov_iter *iter, loff_t offset) 1893 { 1894 const u32 blocksize_mask = fs_info->sectorsize - 1; 1895 1896 if (offset & blocksize_mask) 1897 return -EINVAL; 1898 1899 if (iov_iter_alignment(iter) & blocksize_mask) 1900 return -EINVAL; 1901 1902 return 0; 1903 } 1904 1905 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1906 { 1907 struct file *file = iocb->ki_filp; 1908 struct inode *inode = file_inode(file); 1909 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1910 loff_t pos; 1911 ssize_t written = 0; 1912 ssize_t written_buffered; 1913 loff_t endbyte; 1914 ssize_t err; 1915 unsigned int ilock_flags = 0; 1916 struct iomap_dio *dio = NULL; 1917 1918 if (iocb->ki_flags & IOCB_NOWAIT) 1919 ilock_flags |= BTRFS_ILOCK_TRY; 1920 1921 /* If the write DIO is within EOF, use a shared lock */ 1922 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode)) 1923 ilock_flags |= BTRFS_ILOCK_SHARED; 1924 1925 relock: 1926 err = btrfs_inode_lock(inode, ilock_flags); 1927 if (err < 0) 1928 return err; 1929 1930 err = generic_write_checks(iocb, from); 1931 if (err <= 0) { 1932 btrfs_inode_unlock(inode, ilock_flags); 1933 return err; 1934 } 1935 1936 err = btrfs_write_check(iocb, from, err); 1937 if (err < 0) { 1938 btrfs_inode_unlock(inode, ilock_flags); 1939 goto out; 1940 } 1941 1942 pos = iocb->ki_pos; 1943 /* 1944 * Re-check since file size may have changed just before taking the 1945 * lock or pos may have changed because of O_APPEND in generic_write_check() 1946 */ 1947 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1948 pos + iov_iter_count(from) > i_size_read(inode)) { 1949 btrfs_inode_unlock(inode, ilock_flags); 1950 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1951 goto relock; 1952 } 1953 1954 if (check_direct_IO(fs_info, from, pos)) { 1955 btrfs_inode_unlock(inode, ilock_flags); 1956 goto buffered; 1957 } 1958 1959 dio = __iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 1960 0); 1961 1962 btrfs_inode_unlock(inode, ilock_flags); 1963 1964 if (IS_ERR_OR_NULL(dio)) { 1965 err = PTR_ERR_OR_ZERO(dio); 1966 if (err < 0 && err != -ENOTBLK) 1967 goto out; 1968 } else { 1969 written = iomap_dio_complete(dio); 1970 } 1971 1972 if (written < 0 || !iov_iter_count(from)) { 1973 err = written; 1974 goto out; 1975 } 1976 1977 buffered: 1978 pos = iocb->ki_pos; 1979 written_buffered = btrfs_buffered_write(iocb, from); 1980 if (written_buffered < 0) { 1981 err = written_buffered; 1982 goto out; 1983 } 1984 /* 1985 * Ensure all data is persisted. We want the next direct IO read to be 1986 * able to read what was just written. 1987 */ 1988 endbyte = pos + written_buffered - 1; 1989 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1990 if (err) 1991 goto out; 1992 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1993 if (err) 1994 goto out; 1995 written += written_buffered; 1996 iocb->ki_pos = pos + written_buffered; 1997 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1998 endbyte >> PAGE_SHIFT); 1999 out: 2000 return written ? written : err; 2001 } 2002 2003 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 2004 struct iov_iter *from) 2005 { 2006 struct file *file = iocb->ki_filp; 2007 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 2008 ssize_t num_written = 0; 2009 const bool sync = iocb->ki_flags & IOCB_DSYNC; 2010 2011 /* 2012 * If the fs flips readonly due to some impossible error, although we 2013 * have opened a file as writable, we have to stop this write operation 2014 * to ensure consistency. 2015 */ 2016 if (test_bit(BTRFS_FS_STATE_ERROR, &inode->root->fs_info->fs_state)) 2017 return -EROFS; 2018 2019 if (!(iocb->ki_flags & IOCB_DIRECT) && 2020 (iocb->ki_flags & IOCB_NOWAIT)) 2021 return -EOPNOTSUPP; 2022 2023 if (sync) 2024 atomic_inc(&inode->sync_writers); 2025 2026 if (iocb->ki_flags & IOCB_DIRECT) 2027 num_written = btrfs_direct_write(iocb, from); 2028 else 2029 num_written = btrfs_buffered_write(iocb, from); 2030 2031 btrfs_set_inode_last_sub_trans(inode); 2032 2033 if (num_written > 0) 2034 num_written = generic_write_sync(iocb, num_written); 2035 2036 if (sync) 2037 atomic_dec(&inode->sync_writers); 2038 2039 current->backing_dev_info = NULL; 2040 return num_written; 2041 } 2042 2043 int btrfs_release_file(struct inode *inode, struct file *filp) 2044 { 2045 struct btrfs_file_private *private = filp->private_data; 2046 2047 if (private && private->filldir_buf) 2048 kfree(private->filldir_buf); 2049 kfree(private); 2050 filp->private_data = NULL; 2051 2052 /* 2053 * Set by setattr when we are about to truncate a file from a non-zero 2054 * size to a zero size. This tries to flush down new bytes that may 2055 * have been written if the application were using truncate to replace 2056 * a file in place. 2057 */ 2058 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 2059 &BTRFS_I(inode)->runtime_flags)) 2060 filemap_flush(inode->i_mapping); 2061 return 0; 2062 } 2063 2064 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2065 { 2066 int ret; 2067 struct blk_plug plug; 2068 2069 /* 2070 * This is only called in fsync, which would do synchronous writes, so 2071 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2072 * multiple disks using raid profile, a large IO can be split to 2073 * several segments of stripe length (currently 64K). 2074 */ 2075 blk_start_plug(&plug); 2076 atomic_inc(&BTRFS_I(inode)->sync_writers); 2077 ret = btrfs_fdatawrite_range(inode, start, end); 2078 atomic_dec(&BTRFS_I(inode)->sync_writers); 2079 blk_finish_plug(&plug); 2080 2081 return ret; 2082 } 2083 2084 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 2085 { 2086 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 2087 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2088 2089 if (btrfs_inode_in_log(inode, fs_info->generation) && 2090 list_empty(&ctx->ordered_extents)) 2091 return true; 2092 2093 /* 2094 * If we are doing a fast fsync we can not bail out if the inode's 2095 * last_trans is <= then the last committed transaction, because we only 2096 * update the last_trans of the inode during ordered extent completion, 2097 * and for a fast fsync we don't wait for that, we only wait for the 2098 * writeback to complete. 2099 */ 2100 if (inode->last_trans <= fs_info->last_trans_committed && 2101 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 2102 list_empty(&ctx->ordered_extents))) 2103 return true; 2104 2105 return false; 2106 } 2107 2108 /* 2109 * fsync call for both files and directories. This logs the inode into 2110 * the tree log instead of forcing full commits whenever possible. 2111 * 2112 * It needs to call filemap_fdatawait so that all ordered extent updates are 2113 * in the metadata btree are up to date for copying to the log. 2114 * 2115 * It drops the inode mutex before doing the tree log commit. This is an 2116 * important optimization for directories because holding the mutex prevents 2117 * new operations on the dir while we write to disk. 2118 */ 2119 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2120 { 2121 struct dentry *dentry = file_dentry(file); 2122 struct inode *inode = d_inode(dentry); 2123 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2124 struct btrfs_root *root = BTRFS_I(inode)->root; 2125 struct btrfs_trans_handle *trans; 2126 struct btrfs_log_ctx ctx; 2127 int ret = 0, err; 2128 u64 len; 2129 bool full_sync; 2130 2131 trace_btrfs_sync_file(file, datasync); 2132 2133 btrfs_init_log_ctx(&ctx, inode); 2134 2135 /* 2136 * Always set the range to a full range, otherwise we can get into 2137 * several problems, from missing file extent items to represent holes 2138 * when not using the NO_HOLES feature, to log tree corruption due to 2139 * races between hole detection during logging and completion of ordered 2140 * extents outside the range, to missing checksums due to ordered extents 2141 * for which we flushed only a subset of their pages. 2142 */ 2143 start = 0; 2144 end = LLONG_MAX; 2145 len = (u64)LLONG_MAX + 1; 2146 2147 /* 2148 * We write the dirty pages in the range and wait until they complete 2149 * out of the ->i_mutex. If so, we can flush the dirty pages by 2150 * multi-task, and make the performance up. See 2151 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2152 */ 2153 ret = start_ordered_ops(inode, start, end); 2154 if (ret) 2155 goto out; 2156 2157 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 2158 2159 atomic_inc(&root->log_batch); 2160 2161 /* 2162 * Always check for the full sync flag while holding the inode's lock, 2163 * to avoid races with other tasks. The flag must be either set all the 2164 * time during logging or always off all the time while logging. 2165 */ 2166 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2167 &BTRFS_I(inode)->runtime_flags); 2168 2169 /* 2170 * Before we acquired the inode's lock and the mmap lock, someone may 2171 * have dirtied more pages in the target range. We need to make sure 2172 * that writeback for any such pages does not start while we are logging 2173 * the inode, because if it does, any of the following might happen when 2174 * we are not doing a full inode sync: 2175 * 2176 * 1) We log an extent after its writeback finishes but before its 2177 * checksums are added to the csum tree, leading to -EIO errors 2178 * when attempting to read the extent after a log replay. 2179 * 2180 * 2) We can end up logging an extent before its writeback finishes. 2181 * Therefore after the log replay we will have a file extent item 2182 * pointing to an unwritten extent (and no data checksums as well). 2183 * 2184 * So trigger writeback for any eventual new dirty pages and then we 2185 * wait for all ordered extents to complete below. 2186 */ 2187 ret = start_ordered_ops(inode, start, end); 2188 if (ret) { 2189 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2190 goto out; 2191 } 2192 2193 /* 2194 * We have to do this here to avoid the priority inversion of waiting on 2195 * IO of a lower priority task while holding a transaction open. 2196 * 2197 * For a full fsync we wait for the ordered extents to complete while 2198 * for a fast fsync we wait just for writeback to complete, and then 2199 * attach the ordered extents to the transaction so that a transaction 2200 * commit waits for their completion, to avoid data loss if we fsync, 2201 * the current transaction commits before the ordered extents complete 2202 * and a power failure happens right after that. 2203 * 2204 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 2205 * logical address recorded in the ordered extent may change. We need 2206 * to wait for the IO to stabilize the logical address. 2207 */ 2208 if (full_sync || btrfs_is_zoned(fs_info)) { 2209 ret = btrfs_wait_ordered_range(inode, start, len); 2210 } else { 2211 /* 2212 * Get our ordered extents as soon as possible to avoid doing 2213 * checksum lookups in the csum tree, and use instead the 2214 * checksums attached to the ordered extents. 2215 */ 2216 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 2217 &ctx.ordered_extents); 2218 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 2219 } 2220 2221 if (ret) 2222 goto out_release_extents; 2223 2224 atomic_inc(&root->log_batch); 2225 2226 smp_mb(); 2227 if (skip_inode_logging(&ctx)) { 2228 /* 2229 * We've had everything committed since the last time we were 2230 * modified so clear this flag in case it was set for whatever 2231 * reason, it's no longer relevant. 2232 */ 2233 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2234 &BTRFS_I(inode)->runtime_flags); 2235 /* 2236 * An ordered extent might have started before and completed 2237 * already with io errors, in which case the inode was not 2238 * updated and we end up here. So check the inode's mapping 2239 * for any errors that might have happened since we last 2240 * checked called fsync. 2241 */ 2242 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2243 goto out_release_extents; 2244 } 2245 2246 /* 2247 * We use start here because we will need to wait on the IO to complete 2248 * in btrfs_sync_log, which could require joining a transaction (for 2249 * example checking cross references in the nocow path). If we use join 2250 * here we could get into a situation where we're waiting on IO to 2251 * happen that is blocked on a transaction trying to commit. With start 2252 * we inc the extwriter counter, so we wait for all extwriters to exit 2253 * before we start blocking joiners. This comment is to keep somebody 2254 * from thinking they are super smart and changing this to 2255 * btrfs_join_transaction *cough*Josef*cough*. 2256 */ 2257 trans = btrfs_start_transaction(root, 0); 2258 if (IS_ERR(trans)) { 2259 ret = PTR_ERR(trans); 2260 goto out_release_extents; 2261 } 2262 trans->in_fsync = true; 2263 2264 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 2265 btrfs_release_log_ctx_extents(&ctx); 2266 if (ret < 0) { 2267 /* Fallthrough and commit/free transaction. */ 2268 ret = 1; 2269 } 2270 2271 /* we've logged all the items and now have a consistent 2272 * version of the file in the log. It is possible that 2273 * someone will come in and modify the file, but that's 2274 * fine because the log is consistent on disk, and we 2275 * have references to all of the file's extents 2276 * 2277 * It is possible that someone will come in and log the 2278 * file again, but that will end up using the synchronization 2279 * inside btrfs_sync_log to keep things safe. 2280 */ 2281 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2282 2283 if (ret != BTRFS_NO_LOG_SYNC) { 2284 if (!ret) { 2285 ret = btrfs_sync_log(trans, root, &ctx); 2286 if (!ret) { 2287 ret = btrfs_end_transaction(trans); 2288 goto out; 2289 } 2290 } 2291 if (!full_sync) { 2292 ret = btrfs_wait_ordered_range(inode, start, len); 2293 if (ret) { 2294 btrfs_end_transaction(trans); 2295 goto out; 2296 } 2297 } 2298 ret = btrfs_commit_transaction(trans); 2299 } else { 2300 ret = btrfs_end_transaction(trans); 2301 } 2302 out: 2303 ASSERT(list_empty(&ctx.list)); 2304 err = file_check_and_advance_wb_err(file); 2305 if (!ret) 2306 ret = err; 2307 return ret > 0 ? -EIO : ret; 2308 2309 out_release_extents: 2310 btrfs_release_log_ctx_extents(&ctx); 2311 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2312 goto out; 2313 } 2314 2315 static const struct vm_operations_struct btrfs_file_vm_ops = { 2316 .fault = filemap_fault, 2317 .map_pages = filemap_map_pages, 2318 .page_mkwrite = btrfs_page_mkwrite, 2319 }; 2320 2321 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2322 { 2323 struct address_space *mapping = filp->f_mapping; 2324 2325 if (!mapping->a_ops->readpage) 2326 return -ENOEXEC; 2327 2328 file_accessed(filp); 2329 vma->vm_ops = &btrfs_file_vm_ops; 2330 2331 return 0; 2332 } 2333 2334 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2335 int slot, u64 start, u64 end) 2336 { 2337 struct btrfs_file_extent_item *fi; 2338 struct btrfs_key key; 2339 2340 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2341 return 0; 2342 2343 btrfs_item_key_to_cpu(leaf, &key, slot); 2344 if (key.objectid != btrfs_ino(inode) || 2345 key.type != BTRFS_EXTENT_DATA_KEY) 2346 return 0; 2347 2348 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2349 2350 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2351 return 0; 2352 2353 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2354 return 0; 2355 2356 if (key.offset == end) 2357 return 1; 2358 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2359 return 1; 2360 return 0; 2361 } 2362 2363 static int fill_holes(struct btrfs_trans_handle *trans, 2364 struct btrfs_inode *inode, 2365 struct btrfs_path *path, u64 offset, u64 end) 2366 { 2367 struct btrfs_fs_info *fs_info = trans->fs_info; 2368 struct btrfs_root *root = inode->root; 2369 struct extent_buffer *leaf; 2370 struct btrfs_file_extent_item *fi; 2371 struct extent_map *hole_em; 2372 struct extent_map_tree *em_tree = &inode->extent_tree; 2373 struct btrfs_key key; 2374 int ret; 2375 2376 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2377 goto out; 2378 2379 key.objectid = btrfs_ino(inode); 2380 key.type = BTRFS_EXTENT_DATA_KEY; 2381 key.offset = offset; 2382 2383 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2384 if (ret <= 0) { 2385 /* 2386 * We should have dropped this offset, so if we find it then 2387 * something has gone horribly wrong. 2388 */ 2389 if (ret == 0) 2390 ret = -EINVAL; 2391 return ret; 2392 } 2393 2394 leaf = path->nodes[0]; 2395 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2396 u64 num_bytes; 2397 2398 path->slots[0]--; 2399 fi = btrfs_item_ptr(leaf, path->slots[0], 2400 struct btrfs_file_extent_item); 2401 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2402 end - offset; 2403 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2404 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2405 btrfs_set_file_extent_offset(leaf, fi, 0); 2406 btrfs_mark_buffer_dirty(leaf); 2407 goto out; 2408 } 2409 2410 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2411 u64 num_bytes; 2412 2413 key.offset = offset; 2414 btrfs_set_item_key_safe(fs_info, path, &key); 2415 fi = btrfs_item_ptr(leaf, path->slots[0], 2416 struct btrfs_file_extent_item); 2417 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2418 offset; 2419 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2420 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2421 btrfs_set_file_extent_offset(leaf, fi, 0); 2422 btrfs_mark_buffer_dirty(leaf); 2423 goto out; 2424 } 2425 btrfs_release_path(path); 2426 2427 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2428 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2429 if (ret) 2430 return ret; 2431 2432 out: 2433 btrfs_release_path(path); 2434 2435 hole_em = alloc_extent_map(); 2436 if (!hole_em) { 2437 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2438 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2439 } else { 2440 hole_em->start = offset; 2441 hole_em->len = end - offset; 2442 hole_em->ram_bytes = hole_em->len; 2443 hole_em->orig_start = offset; 2444 2445 hole_em->block_start = EXTENT_MAP_HOLE; 2446 hole_em->block_len = 0; 2447 hole_em->orig_block_len = 0; 2448 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2449 hole_em->generation = trans->transid; 2450 2451 do { 2452 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2453 write_lock(&em_tree->lock); 2454 ret = add_extent_mapping(em_tree, hole_em, 1); 2455 write_unlock(&em_tree->lock); 2456 } while (ret == -EEXIST); 2457 free_extent_map(hole_em); 2458 if (ret) 2459 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2460 &inode->runtime_flags); 2461 } 2462 2463 return 0; 2464 } 2465 2466 /* 2467 * Find a hole extent on given inode and change start/len to the end of hole 2468 * extent.(hole/vacuum extent whose em->start <= start && 2469 * em->start + em->len > start) 2470 * When a hole extent is found, return 1 and modify start/len. 2471 */ 2472 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2473 { 2474 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2475 struct extent_map *em; 2476 int ret = 0; 2477 2478 em = btrfs_get_extent(inode, NULL, 0, 2479 round_down(*start, fs_info->sectorsize), 2480 round_up(*len, fs_info->sectorsize)); 2481 if (IS_ERR(em)) 2482 return PTR_ERR(em); 2483 2484 /* Hole or vacuum extent(only exists in no-hole mode) */ 2485 if (em->block_start == EXTENT_MAP_HOLE) { 2486 ret = 1; 2487 *len = em->start + em->len > *start + *len ? 2488 0 : *start + *len - em->start - em->len; 2489 *start = em->start + em->len; 2490 } 2491 free_extent_map(em); 2492 return ret; 2493 } 2494 2495 static int btrfs_punch_hole_lock_range(struct inode *inode, 2496 const u64 lockstart, 2497 const u64 lockend, 2498 struct extent_state **cached_state) 2499 { 2500 /* 2501 * For subpage case, if the range is not at page boundary, we could 2502 * have pages at the leading/tailing part of the range. 2503 * This could lead to dead loop since filemap_range_has_page() 2504 * will always return true. 2505 * So here we need to do extra page alignment for 2506 * filemap_range_has_page(). 2507 */ 2508 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2509 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2510 2511 while (1) { 2512 struct btrfs_ordered_extent *ordered; 2513 int ret; 2514 2515 truncate_pagecache_range(inode, lockstart, lockend); 2516 2517 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2518 cached_state); 2519 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), 2520 lockend); 2521 2522 /* 2523 * We need to make sure we have no ordered extents in this range 2524 * and nobody raced in and read a page in this range, if we did 2525 * we need to try again. 2526 */ 2527 if ((!ordered || 2528 (ordered->file_offset + ordered->num_bytes <= lockstart || 2529 ordered->file_offset > lockend)) && 2530 !filemap_range_has_page(inode->i_mapping, 2531 page_lockstart, page_lockend)) { 2532 if (ordered) 2533 btrfs_put_ordered_extent(ordered); 2534 break; 2535 } 2536 if (ordered) 2537 btrfs_put_ordered_extent(ordered); 2538 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2539 lockend, cached_state); 2540 ret = btrfs_wait_ordered_range(inode, lockstart, 2541 lockend - lockstart + 1); 2542 if (ret) 2543 return ret; 2544 } 2545 return 0; 2546 } 2547 2548 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2549 struct btrfs_inode *inode, 2550 struct btrfs_path *path, 2551 struct btrfs_replace_extent_info *extent_info, 2552 const u64 replace_len, 2553 const u64 bytes_to_drop) 2554 { 2555 struct btrfs_fs_info *fs_info = trans->fs_info; 2556 struct btrfs_root *root = inode->root; 2557 struct btrfs_file_extent_item *extent; 2558 struct extent_buffer *leaf; 2559 struct btrfs_key key; 2560 int slot; 2561 struct btrfs_ref ref = { 0 }; 2562 int ret; 2563 2564 if (replace_len == 0) 2565 return 0; 2566 2567 if (extent_info->disk_offset == 0 && 2568 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2569 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2570 return 0; 2571 } 2572 2573 key.objectid = btrfs_ino(inode); 2574 key.type = BTRFS_EXTENT_DATA_KEY; 2575 key.offset = extent_info->file_offset; 2576 ret = btrfs_insert_empty_item(trans, root, path, &key, 2577 sizeof(struct btrfs_file_extent_item)); 2578 if (ret) 2579 return ret; 2580 leaf = path->nodes[0]; 2581 slot = path->slots[0]; 2582 write_extent_buffer(leaf, extent_info->extent_buf, 2583 btrfs_item_ptr_offset(leaf, slot), 2584 sizeof(struct btrfs_file_extent_item)); 2585 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2586 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2587 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2588 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2589 if (extent_info->is_new_extent) 2590 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2591 btrfs_mark_buffer_dirty(leaf); 2592 btrfs_release_path(path); 2593 2594 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2595 replace_len); 2596 if (ret) 2597 return ret; 2598 2599 /* If it's a hole, nothing more needs to be done. */ 2600 if (extent_info->disk_offset == 0) { 2601 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2602 return 0; 2603 } 2604 2605 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2606 2607 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2608 key.objectid = extent_info->disk_offset; 2609 key.type = BTRFS_EXTENT_ITEM_KEY; 2610 key.offset = extent_info->disk_len; 2611 ret = btrfs_alloc_reserved_file_extent(trans, root, 2612 btrfs_ino(inode), 2613 extent_info->file_offset, 2614 extent_info->qgroup_reserved, 2615 &key); 2616 } else { 2617 u64 ref_offset; 2618 2619 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2620 extent_info->disk_offset, 2621 extent_info->disk_len, 0); 2622 ref_offset = extent_info->file_offset - extent_info->data_offset; 2623 btrfs_init_data_ref(&ref, root->root_key.objectid, 2624 btrfs_ino(inode), ref_offset); 2625 ret = btrfs_inc_extent_ref(trans, &ref); 2626 } 2627 2628 extent_info->insertions++; 2629 2630 return ret; 2631 } 2632 2633 /* 2634 * The respective range must have been previously locked, as well as the inode. 2635 * The end offset is inclusive (last byte of the range). 2636 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2637 * the file range with an extent. 2638 * When not punching a hole, we don't want to end up in a state where we dropped 2639 * extents without inserting a new one, so we must abort the transaction to avoid 2640 * a corruption. 2641 */ 2642 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2643 struct btrfs_path *path, const u64 start, 2644 const u64 end, 2645 struct btrfs_replace_extent_info *extent_info, 2646 struct btrfs_trans_handle **trans_out) 2647 { 2648 struct btrfs_drop_extents_args drop_args = { 0 }; 2649 struct btrfs_root *root = inode->root; 2650 struct btrfs_fs_info *fs_info = root->fs_info; 2651 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2652 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2653 struct btrfs_trans_handle *trans = NULL; 2654 struct btrfs_block_rsv *rsv; 2655 unsigned int rsv_count; 2656 u64 cur_offset; 2657 u64 len = end - start; 2658 int ret = 0; 2659 2660 if (end <= start) 2661 return -EINVAL; 2662 2663 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2664 if (!rsv) { 2665 ret = -ENOMEM; 2666 goto out; 2667 } 2668 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2669 rsv->failfast = 1; 2670 2671 /* 2672 * 1 - update the inode 2673 * 1 - removing the extents in the range 2674 * 1 - adding the hole extent if no_holes isn't set or if we are 2675 * replacing the range with a new extent 2676 */ 2677 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2678 rsv_count = 3; 2679 else 2680 rsv_count = 2; 2681 2682 trans = btrfs_start_transaction(root, rsv_count); 2683 if (IS_ERR(trans)) { 2684 ret = PTR_ERR(trans); 2685 trans = NULL; 2686 goto out_free; 2687 } 2688 2689 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2690 min_size, false); 2691 BUG_ON(ret); 2692 trans->block_rsv = rsv; 2693 2694 cur_offset = start; 2695 drop_args.path = path; 2696 drop_args.end = end + 1; 2697 drop_args.drop_cache = true; 2698 while (cur_offset < end) { 2699 drop_args.start = cur_offset; 2700 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2701 /* If we are punching a hole decrement the inode's byte count */ 2702 if (!extent_info) 2703 btrfs_update_inode_bytes(inode, 0, 2704 drop_args.bytes_found); 2705 if (ret != -ENOSPC) { 2706 /* 2707 * When cloning we want to avoid transaction aborts when 2708 * nothing was done and we are attempting to clone parts 2709 * of inline extents, in such cases -EOPNOTSUPP is 2710 * returned by __btrfs_drop_extents() without having 2711 * changed anything in the file. 2712 */ 2713 if (extent_info && !extent_info->is_new_extent && 2714 ret && ret != -EOPNOTSUPP) 2715 btrfs_abort_transaction(trans, ret); 2716 break; 2717 } 2718 2719 trans->block_rsv = &fs_info->trans_block_rsv; 2720 2721 if (!extent_info && cur_offset < drop_args.drop_end && 2722 cur_offset < ino_size) { 2723 ret = fill_holes(trans, inode, path, cur_offset, 2724 drop_args.drop_end); 2725 if (ret) { 2726 /* 2727 * If we failed then we didn't insert our hole 2728 * entries for the area we dropped, so now the 2729 * fs is corrupted, so we must abort the 2730 * transaction. 2731 */ 2732 btrfs_abort_transaction(trans, ret); 2733 break; 2734 } 2735 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2736 /* 2737 * We are past the i_size here, but since we didn't 2738 * insert holes we need to clear the mapped area so we 2739 * know to not set disk_i_size in this area until a new 2740 * file extent is inserted here. 2741 */ 2742 ret = btrfs_inode_clear_file_extent_range(inode, 2743 cur_offset, 2744 drop_args.drop_end - cur_offset); 2745 if (ret) { 2746 /* 2747 * We couldn't clear our area, so we could 2748 * presumably adjust up and corrupt the fs, so 2749 * we need to abort. 2750 */ 2751 btrfs_abort_transaction(trans, ret); 2752 break; 2753 } 2754 } 2755 2756 if (extent_info && 2757 drop_args.drop_end > extent_info->file_offset) { 2758 u64 replace_len = drop_args.drop_end - 2759 extent_info->file_offset; 2760 2761 ret = btrfs_insert_replace_extent(trans, inode, path, 2762 extent_info, replace_len, 2763 drop_args.bytes_found); 2764 if (ret) { 2765 btrfs_abort_transaction(trans, ret); 2766 break; 2767 } 2768 extent_info->data_len -= replace_len; 2769 extent_info->data_offset += replace_len; 2770 extent_info->file_offset += replace_len; 2771 } 2772 2773 ret = btrfs_update_inode(trans, root, inode); 2774 if (ret) 2775 break; 2776 2777 btrfs_end_transaction(trans); 2778 btrfs_btree_balance_dirty(fs_info); 2779 2780 trans = btrfs_start_transaction(root, rsv_count); 2781 if (IS_ERR(trans)) { 2782 ret = PTR_ERR(trans); 2783 trans = NULL; 2784 break; 2785 } 2786 2787 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2788 rsv, min_size, false); 2789 BUG_ON(ret); /* shouldn't happen */ 2790 trans->block_rsv = rsv; 2791 2792 cur_offset = drop_args.drop_end; 2793 len = end - cur_offset; 2794 if (!extent_info && len) { 2795 ret = find_first_non_hole(inode, &cur_offset, &len); 2796 if (unlikely(ret < 0)) 2797 break; 2798 if (ret && !len) { 2799 ret = 0; 2800 break; 2801 } 2802 } 2803 } 2804 2805 /* 2806 * If we were cloning, force the next fsync to be a full one since we 2807 * we replaced (or just dropped in the case of cloning holes when 2808 * NO_HOLES is enabled) file extent items and did not setup new extent 2809 * maps for the replacement extents (or holes). 2810 */ 2811 if (extent_info && !extent_info->is_new_extent) 2812 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2813 2814 if (ret) 2815 goto out_trans; 2816 2817 trans->block_rsv = &fs_info->trans_block_rsv; 2818 /* 2819 * If we are using the NO_HOLES feature we might have had already an 2820 * hole that overlaps a part of the region [lockstart, lockend] and 2821 * ends at (or beyond) lockend. Since we have no file extent items to 2822 * represent holes, drop_end can be less than lockend and so we must 2823 * make sure we have an extent map representing the existing hole (the 2824 * call to __btrfs_drop_extents() might have dropped the existing extent 2825 * map representing the existing hole), otherwise the fast fsync path 2826 * will not record the existence of the hole region 2827 * [existing_hole_start, lockend]. 2828 */ 2829 if (drop_args.drop_end <= end) 2830 drop_args.drop_end = end + 1; 2831 /* 2832 * Don't insert file hole extent item if it's for a range beyond eof 2833 * (because it's useless) or if it represents a 0 bytes range (when 2834 * cur_offset == drop_end). 2835 */ 2836 if (!extent_info && cur_offset < ino_size && 2837 cur_offset < drop_args.drop_end) { 2838 ret = fill_holes(trans, inode, path, cur_offset, 2839 drop_args.drop_end); 2840 if (ret) { 2841 /* Same comment as above. */ 2842 btrfs_abort_transaction(trans, ret); 2843 goto out_trans; 2844 } 2845 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2846 /* See the comment in the loop above for the reasoning here. */ 2847 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2848 drop_args.drop_end - cur_offset); 2849 if (ret) { 2850 btrfs_abort_transaction(trans, ret); 2851 goto out_trans; 2852 } 2853 2854 } 2855 if (extent_info) { 2856 ret = btrfs_insert_replace_extent(trans, inode, path, 2857 extent_info, extent_info->data_len, 2858 drop_args.bytes_found); 2859 if (ret) { 2860 btrfs_abort_transaction(trans, ret); 2861 goto out_trans; 2862 } 2863 } 2864 2865 out_trans: 2866 if (!trans) 2867 goto out_free; 2868 2869 trans->block_rsv = &fs_info->trans_block_rsv; 2870 if (ret) 2871 btrfs_end_transaction(trans); 2872 else 2873 *trans_out = trans; 2874 out_free: 2875 btrfs_free_block_rsv(fs_info, rsv); 2876 out: 2877 return ret; 2878 } 2879 2880 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2881 { 2882 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2883 struct btrfs_root *root = BTRFS_I(inode)->root; 2884 struct extent_state *cached_state = NULL; 2885 struct btrfs_path *path; 2886 struct btrfs_trans_handle *trans = NULL; 2887 u64 lockstart; 2888 u64 lockend; 2889 u64 tail_start; 2890 u64 tail_len; 2891 u64 orig_start = offset; 2892 int ret = 0; 2893 bool same_block; 2894 u64 ino_size; 2895 bool truncated_block = false; 2896 bool updated_inode = false; 2897 2898 ret = btrfs_wait_ordered_range(inode, offset, len); 2899 if (ret) 2900 return ret; 2901 2902 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 2903 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2904 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2905 if (ret < 0) 2906 goto out_only_mutex; 2907 if (ret && !len) { 2908 /* Already in a large hole */ 2909 ret = 0; 2910 goto out_only_mutex; 2911 } 2912 2913 lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode))); 2914 lockend = round_down(offset + len, 2915 btrfs_inode_sectorsize(BTRFS_I(inode))) - 1; 2916 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2917 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2918 /* 2919 * We needn't truncate any block which is beyond the end of the file 2920 * because we are sure there is no data there. 2921 */ 2922 /* 2923 * Only do this if we are in the same block and we aren't doing the 2924 * entire block. 2925 */ 2926 if (same_block && len < fs_info->sectorsize) { 2927 if (offset < ino_size) { 2928 truncated_block = true; 2929 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2930 0); 2931 } else { 2932 ret = 0; 2933 } 2934 goto out_only_mutex; 2935 } 2936 2937 /* zero back part of the first block */ 2938 if (offset < ino_size) { 2939 truncated_block = true; 2940 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2941 if (ret) { 2942 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2943 return ret; 2944 } 2945 } 2946 2947 /* Check the aligned pages after the first unaligned page, 2948 * if offset != orig_start, which means the first unaligned page 2949 * including several following pages are already in holes, 2950 * the extra check can be skipped */ 2951 if (offset == orig_start) { 2952 /* after truncate page, check hole again */ 2953 len = offset + len - lockstart; 2954 offset = lockstart; 2955 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2956 if (ret < 0) 2957 goto out_only_mutex; 2958 if (ret && !len) { 2959 ret = 0; 2960 goto out_only_mutex; 2961 } 2962 lockstart = offset; 2963 } 2964 2965 /* Check the tail unaligned part is in a hole */ 2966 tail_start = lockend + 1; 2967 tail_len = offset + len - tail_start; 2968 if (tail_len) { 2969 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2970 if (unlikely(ret < 0)) 2971 goto out_only_mutex; 2972 if (!ret) { 2973 /* zero the front end of the last page */ 2974 if (tail_start + tail_len < ino_size) { 2975 truncated_block = true; 2976 ret = btrfs_truncate_block(BTRFS_I(inode), 2977 tail_start + tail_len, 2978 0, 1); 2979 if (ret) 2980 goto out_only_mutex; 2981 } 2982 } 2983 } 2984 2985 if (lockend < lockstart) { 2986 ret = 0; 2987 goto out_only_mutex; 2988 } 2989 2990 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2991 &cached_state); 2992 if (ret) 2993 goto out_only_mutex; 2994 2995 path = btrfs_alloc_path(); 2996 if (!path) { 2997 ret = -ENOMEM; 2998 goto out; 2999 } 3000 3001 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 3002 lockend, NULL, &trans); 3003 btrfs_free_path(path); 3004 if (ret) 3005 goto out; 3006 3007 ASSERT(trans != NULL); 3008 inode_inc_iversion(inode); 3009 inode->i_mtime = inode->i_ctime = current_time(inode); 3010 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3011 updated_inode = true; 3012 btrfs_end_transaction(trans); 3013 btrfs_btree_balance_dirty(fs_info); 3014 out: 3015 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3016 &cached_state); 3017 out_only_mutex: 3018 if (!updated_inode && truncated_block && !ret) { 3019 /* 3020 * If we only end up zeroing part of a page, we still need to 3021 * update the inode item, so that all the time fields are 3022 * updated as well as the necessary btrfs inode in memory fields 3023 * for detecting, at fsync time, if the inode isn't yet in the 3024 * log tree or it's there but not up to date. 3025 */ 3026 struct timespec64 now = current_time(inode); 3027 3028 inode_inc_iversion(inode); 3029 inode->i_mtime = now; 3030 inode->i_ctime = now; 3031 trans = btrfs_start_transaction(root, 1); 3032 if (IS_ERR(trans)) { 3033 ret = PTR_ERR(trans); 3034 } else { 3035 int ret2; 3036 3037 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3038 ret2 = btrfs_end_transaction(trans); 3039 if (!ret) 3040 ret = ret2; 3041 } 3042 } 3043 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3044 return ret; 3045 } 3046 3047 /* Helper structure to record which range is already reserved */ 3048 struct falloc_range { 3049 struct list_head list; 3050 u64 start; 3051 u64 len; 3052 }; 3053 3054 /* 3055 * Helper function to add falloc range 3056 * 3057 * Caller should have locked the larger range of extent containing 3058 * [start, len) 3059 */ 3060 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 3061 { 3062 struct falloc_range *range = NULL; 3063 3064 if (!list_empty(head)) { 3065 /* 3066 * As fallocate iterates by bytenr order, we only need to check 3067 * the last range. 3068 */ 3069 range = list_last_entry(head, struct falloc_range, list); 3070 if (range->start + range->len == start) { 3071 range->len += len; 3072 return 0; 3073 } 3074 } 3075 3076 range = kmalloc(sizeof(*range), GFP_KERNEL); 3077 if (!range) 3078 return -ENOMEM; 3079 range->start = start; 3080 range->len = len; 3081 list_add_tail(&range->list, head); 3082 return 0; 3083 } 3084 3085 static int btrfs_fallocate_update_isize(struct inode *inode, 3086 const u64 end, 3087 const int mode) 3088 { 3089 struct btrfs_trans_handle *trans; 3090 struct btrfs_root *root = BTRFS_I(inode)->root; 3091 int ret; 3092 int ret2; 3093 3094 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 3095 return 0; 3096 3097 trans = btrfs_start_transaction(root, 1); 3098 if (IS_ERR(trans)) 3099 return PTR_ERR(trans); 3100 3101 inode->i_ctime = current_time(inode); 3102 i_size_write(inode, end); 3103 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 3104 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3105 ret2 = btrfs_end_transaction(trans); 3106 3107 return ret ? ret : ret2; 3108 } 3109 3110 enum { 3111 RANGE_BOUNDARY_WRITTEN_EXTENT, 3112 RANGE_BOUNDARY_PREALLOC_EXTENT, 3113 RANGE_BOUNDARY_HOLE, 3114 }; 3115 3116 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 3117 u64 offset) 3118 { 3119 const u64 sectorsize = btrfs_inode_sectorsize(inode); 3120 struct extent_map *em; 3121 int ret; 3122 3123 offset = round_down(offset, sectorsize); 3124 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize); 3125 if (IS_ERR(em)) 3126 return PTR_ERR(em); 3127 3128 if (em->block_start == EXTENT_MAP_HOLE) 3129 ret = RANGE_BOUNDARY_HOLE; 3130 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3131 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 3132 else 3133 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 3134 3135 free_extent_map(em); 3136 return ret; 3137 } 3138 3139 static int btrfs_zero_range(struct inode *inode, 3140 loff_t offset, 3141 loff_t len, 3142 const int mode) 3143 { 3144 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3145 struct extent_map *em; 3146 struct extent_changeset *data_reserved = NULL; 3147 int ret; 3148 u64 alloc_hint = 0; 3149 const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode)); 3150 u64 alloc_start = round_down(offset, sectorsize); 3151 u64 alloc_end = round_up(offset + len, sectorsize); 3152 u64 bytes_to_reserve = 0; 3153 bool space_reserved = false; 3154 3155 inode_dio_wait(inode); 3156 3157 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3158 alloc_end - alloc_start); 3159 if (IS_ERR(em)) { 3160 ret = PTR_ERR(em); 3161 goto out; 3162 } 3163 3164 /* 3165 * Avoid hole punching and extent allocation for some cases. More cases 3166 * could be considered, but these are unlikely common and we keep things 3167 * as simple as possible for now. Also, intentionally, if the target 3168 * range contains one or more prealloc extents together with regular 3169 * extents and holes, we drop all the existing extents and allocate a 3170 * new prealloc extent, so that we get a larger contiguous disk extent. 3171 */ 3172 if (em->start <= alloc_start && 3173 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3174 const u64 em_end = em->start + em->len; 3175 3176 if (em_end >= offset + len) { 3177 /* 3178 * The whole range is already a prealloc extent, 3179 * do nothing except updating the inode's i_size if 3180 * needed. 3181 */ 3182 free_extent_map(em); 3183 ret = btrfs_fallocate_update_isize(inode, offset + len, 3184 mode); 3185 goto out; 3186 } 3187 /* 3188 * Part of the range is already a prealloc extent, so operate 3189 * only on the remaining part of the range. 3190 */ 3191 alloc_start = em_end; 3192 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 3193 len = offset + len - alloc_start; 3194 offset = alloc_start; 3195 alloc_hint = em->block_start + em->len; 3196 } 3197 free_extent_map(em); 3198 3199 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 3200 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 3201 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3202 sectorsize); 3203 if (IS_ERR(em)) { 3204 ret = PTR_ERR(em); 3205 goto out; 3206 } 3207 3208 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3209 free_extent_map(em); 3210 ret = btrfs_fallocate_update_isize(inode, offset + len, 3211 mode); 3212 goto out; 3213 } 3214 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 3215 free_extent_map(em); 3216 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 3217 0); 3218 if (!ret) 3219 ret = btrfs_fallocate_update_isize(inode, 3220 offset + len, 3221 mode); 3222 return ret; 3223 } 3224 free_extent_map(em); 3225 alloc_start = round_down(offset, sectorsize); 3226 alloc_end = alloc_start + sectorsize; 3227 goto reserve_space; 3228 } 3229 3230 alloc_start = round_up(offset, sectorsize); 3231 alloc_end = round_down(offset + len, sectorsize); 3232 3233 /* 3234 * For unaligned ranges, check the pages at the boundaries, they might 3235 * map to an extent, in which case we need to partially zero them, or 3236 * they might map to a hole, in which case we need our allocation range 3237 * to cover them. 3238 */ 3239 if (!IS_ALIGNED(offset, sectorsize)) { 3240 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3241 offset); 3242 if (ret < 0) 3243 goto out; 3244 if (ret == RANGE_BOUNDARY_HOLE) { 3245 alloc_start = round_down(offset, sectorsize); 3246 ret = 0; 3247 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3248 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 3249 if (ret) 3250 goto out; 3251 } else { 3252 ret = 0; 3253 } 3254 } 3255 3256 if (!IS_ALIGNED(offset + len, sectorsize)) { 3257 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3258 offset + len); 3259 if (ret < 0) 3260 goto out; 3261 if (ret == RANGE_BOUNDARY_HOLE) { 3262 alloc_end = round_up(offset + len, sectorsize); 3263 ret = 0; 3264 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3265 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 3266 0, 1); 3267 if (ret) 3268 goto out; 3269 } else { 3270 ret = 0; 3271 } 3272 } 3273 3274 reserve_space: 3275 if (alloc_start < alloc_end) { 3276 struct extent_state *cached_state = NULL; 3277 const u64 lockstart = alloc_start; 3278 const u64 lockend = alloc_end - 1; 3279 3280 bytes_to_reserve = alloc_end - alloc_start; 3281 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3282 bytes_to_reserve); 3283 if (ret < 0) 3284 goto out; 3285 space_reserved = true; 3286 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3287 &cached_state); 3288 if (ret) 3289 goto out; 3290 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3291 alloc_start, bytes_to_reserve); 3292 if (ret) { 3293 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3294 lockend, &cached_state); 3295 goto out; 3296 } 3297 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3298 alloc_end - alloc_start, 3299 i_blocksize(inode), 3300 offset + len, &alloc_hint); 3301 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3302 lockend, &cached_state); 3303 /* btrfs_prealloc_file_range releases reserved space on error */ 3304 if (ret) { 3305 space_reserved = false; 3306 goto out; 3307 } 3308 } 3309 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3310 out: 3311 if (ret && space_reserved) 3312 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3313 alloc_start, bytes_to_reserve); 3314 extent_changeset_free(data_reserved); 3315 3316 return ret; 3317 } 3318 3319 static long btrfs_fallocate(struct file *file, int mode, 3320 loff_t offset, loff_t len) 3321 { 3322 struct inode *inode = file_inode(file); 3323 struct extent_state *cached_state = NULL; 3324 struct extent_changeset *data_reserved = NULL; 3325 struct falloc_range *range; 3326 struct falloc_range *tmp; 3327 struct list_head reserve_list; 3328 u64 cur_offset; 3329 u64 last_byte; 3330 u64 alloc_start; 3331 u64 alloc_end; 3332 u64 alloc_hint = 0; 3333 u64 locked_end; 3334 u64 actual_end = 0; 3335 struct extent_map *em; 3336 int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode)); 3337 int ret; 3338 3339 /* Do not allow fallocate in ZONED mode */ 3340 if (btrfs_is_zoned(btrfs_sb(inode->i_sb))) 3341 return -EOPNOTSUPP; 3342 3343 alloc_start = round_down(offset, blocksize); 3344 alloc_end = round_up(offset + len, blocksize); 3345 cur_offset = alloc_start; 3346 3347 /* Make sure we aren't being give some crap mode */ 3348 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3349 FALLOC_FL_ZERO_RANGE)) 3350 return -EOPNOTSUPP; 3351 3352 if (mode & FALLOC_FL_PUNCH_HOLE) 3353 return btrfs_punch_hole(inode, offset, len); 3354 3355 /* 3356 * Only trigger disk allocation, don't trigger qgroup reserve 3357 * 3358 * For qgroup space, it will be checked later. 3359 */ 3360 if (!(mode & FALLOC_FL_ZERO_RANGE)) { 3361 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3362 alloc_end - alloc_start); 3363 if (ret < 0) 3364 return ret; 3365 } 3366 3367 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 3368 3369 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3370 ret = inode_newsize_ok(inode, offset + len); 3371 if (ret) 3372 goto out; 3373 } 3374 3375 /* 3376 * TODO: Move these two operations after we have checked 3377 * accurate reserved space, or fallocate can still fail but 3378 * with page truncated or size expanded. 3379 * 3380 * But that's a minor problem and won't do much harm BTW. 3381 */ 3382 if (alloc_start > inode->i_size) { 3383 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3384 alloc_start); 3385 if (ret) 3386 goto out; 3387 } else if (offset + len > inode->i_size) { 3388 /* 3389 * If we are fallocating from the end of the file onward we 3390 * need to zero out the end of the block if i_size lands in the 3391 * middle of a block. 3392 */ 3393 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3394 if (ret) 3395 goto out; 3396 } 3397 3398 /* 3399 * wait for ordered IO before we have any locks. We'll loop again 3400 * below with the locks held. 3401 */ 3402 ret = btrfs_wait_ordered_range(inode, alloc_start, 3403 alloc_end - alloc_start); 3404 if (ret) 3405 goto out; 3406 3407 if (mode & FALLOC_FL_ZERO_RANGE) { 3408 ret = btrfs_zero_range(inode, offset, len, mode); 3409 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3410 return ret; 3411 } 3412 3413 locked_end = alloc_end - 1; 3414 while (1) { 3415 struct btrfs_ordered_extent *ordered; 3416 3417 /* the extent lock is ordered inside the running 3418 * transaction 3419 */ 3420 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 3421 locked_end, &cached_state); 3422 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), 3423 locked_end); 3424 3425 if (ordered && 3426 ordered->file_offset + ordered->num_bytes > alloc_start && 3427 ordered->file_offset < alloc_end) { 3428 btrfs_put_ordered_extent(ordered); 3429 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 3430 alloc_start, locked_end, 3431 &cached_state); 3432 /* 3433 * we can't wait on the range with the transaction 3434 * running or with the extent lock held 3435 */ 3436 ret = btrfs_wait_ordered_range(inode, alloc_start, 3437 alloc_end - alloc_start); 3438 if (ret) 3439 goto out; 3440 } else { 3441 if (ordered) 3442 btrfs_put_ordered_extent(ordered); 3443 break; 3444 } 3445 } 3446 3447 /* First, check if we exceed the qgroup limit */ 3448 INIT_LIST_HEAD(&reserve_list); 3449 while (cur_offset < alloc_end) { 3450 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3451 alloc_end - cur_offset); 3452 if (IS_ERR(em)) { 3453 ret = PTR_ERR(em); 3454 break; 3455 } 3456 last_byte = min(extent_map_end(em), alloc_end); 3457 actual_end = min_t(u64, extent_map_end(em), offset + len); 3458 last_byte = ALIGN(last_byte, blocksize); 3459 if (em->block_start == EXTENT_MAP_HOLE || 3460 (cur_offset >= inode->i_size && 3461 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3462 ret = add_falloc_range(&reserve_list, cur_offset, 3463 last_byte - cur_offset); 3464 if (ret < 0) { 3465 free_extent_map(em); 3466 break; 3467 } 3468 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3469 &data_reserved, cur_offset, 3470 last_byte - cur_offset); 3471 if (ret < 0) { 3472 cur_offset = last_byte; 3473 free_extent_map(em); 3474 break; 3475 } 3476 } else { 3477 /* 3478 * Do not need to reserve unwritten extent for this 3479 * range, free reserved data space first, otherwise 3480 * it'll result in false ENOSPC error. 3481 */ 3482 btrfs_free_reserved_data_space(BTRFS_I(inode), 3483 data_reserved, cur_offset, 3484 last_byte - cur_offset); 3485 } 3486 free_extent_map(em); 3487 cur_offset = last_byte; 3488 } 3489 3490 /* 3491 * If ret is still 0, means we're OK to fallocate. 3492 * Or just cleanup the list and exit. 3493 */ 3494 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3495 if (!ret) 3496 ret = btrfs_prealloc_file_range(inode, mode, 3497 range->start, 3498 range->len, i_blocksize(inode), 3499 offset + len, &alloc_hint); 3500 else 3501 btrfs_free_reserved_data_space(BTRFS_I(inode), 3502 data_reserved, range->start, 3503 range->len); 3504 list_del(&range->list); 3505 kfree(range); 3506 } 3507 if (ret < 0) 3508 goto out_unlock; 3509 3510 /* 3511 * We didn't need to allocate any more space, but we still extended the 3512 * size of the file so we need to update i_size and the inode item. 3513 */ 3514 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3515 out_unlock: 3516 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3517 &cached_state); 3518 out: 3519 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3520 /* Let go of our reservation. */ 3521 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) 3522 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3523 cur_offset, alloc_end - cur_offset); 3524 extent_changeset_free(data_reserved); 3525 return ret; 3526 } 3527 3528 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset, 3529 int whence) 3530 { 3531 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3532 struct extent_map *em = NULL; 3533 struct extent_state *cached_state = NULL; 3534 loff_t i_size = inode->vfs_inode.i_size; 3535 u64 lockstart; 3536 u64 lockend; 3537 u64 start; 3538 u64 len; 3539 int ret = 0; 3540 3541 if (i_size == 0 || offset >= i_size) 3542 return -ENXIO; 3543 3544 /* 3545 * offset can be negative, in this case we start finding DATA/HOLE from 3546 * the very start of the file. 3547 */ 3548 start = max_t(loff_t, 0, offset); 3549 3550 lockstart = round_down(start, fs_info->sectorsize); 3551 lockend = round_up(i_size, fs_info->sectorsize); 3552 if (lockend <= lockstart) 3553 lockend = lockstart + fs_info->sectorsize; 3554 lockend--; 3555 len = lockend - lockstart + 1; 3556 3557 lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state); 3558 3559 while (start < i_size) { 3560 em = btrfs_get_extent_fiemap(inode, start, len); 3561 if (IS_ERR(em)) { 3562 ret = PTR_ERR(em); 3563 em = NULL; 3564 break; 3565 } 3566 3567 if (whence == SEEK_HOLE && 3568 (em->block_start == EXTENT_MAP_HOLE || 3569 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3570 break; 3571 else if (whence == SEEK_DATA && 3572 (em->block_start != EXTENT_MAP_HOLE && 3573 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3574 break; 3575 3576 start = em->start + em->len; 3577 free_extent_map(em); 3578 em = NULL; 3579 cond_resched(); 3580 } 3581 free_extent_map(em); 3582 unlock_extent_cached(&inode->io_tree, lockstart, lockend, 3583 &cached_state); 3584 if (ret) { 3585 offset = ret; 3586 } else { 3587 if (whence == SEEK_DATA && start >= i_size) 3588 offset = -ENXIO; 3589 else 3590 offset = min_t(loff_t, start, i_size); 3591 } 3592 3593 return offset; 3594 } 3595 3596 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3597 { 3598 struct inode *inode = file->f_mapping->host; 3599 3600 switch (whence) { 3601 default: 3602 return generic_file_llseek(file, offset, whence); 3603 case SEEK_DATA: 3604 case SEEK_HOLE: 3605 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3606 offset = find_desired_extent(BTRFS_I(inode), offset, whence); 3607 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3608 break; 3609 } 3610 3611 if (offset < 0) 3612 return offset; 3613 3614 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3615 } 3616 3617 static int btrfs_file_open(struct inode *inode, struct file *filp) 3618 { 3619 int ret; 3620 3621 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; 3622 3623 ret = fsverity_file_open(inode, filp); 3624 if (ret) 3625 return ret; 3626 return generic_file_open(inode, filp); 3627 } 3628 3629 static int check_direct_read(struct btrfs_fs_info *fs_info, 3630 const struct iov_iter *iter, loff_t offset) 3631 { 3632 int ret; 3633 int i, seg; 3634 3635 ret = check_direct_IO(fs_info, iter, offset); 3636 if (ret < 0) 3637 return ret; 3638 3639 if (!iter_is_iovec(iter)) 3640 return 0; 3641 3642 for (seg = 0; seg < iter->nr_segs; seg++) 3643 for (i = seg + 1; i < iter->nr_segs; i++) 3644 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 3645 return -EINVAL; 3646 return 0; 3647 } 3648 3649 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 3650 { 3651 struct inode *inode = file_inode(iocb->ki_filp); 3652 ssize_t ret; 3653 3654 if (fsverity_active(inode)) 3655 return 0; 3656 3657 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos)) 3658 return 0; 3659 3660 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3661 ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 0); 3662 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3663 return ret; 3664 } 3665 3666 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3667 { 3668 ssize_t ret = 0; 3669 3670 if (iocb->ki_flags & IOCB_DIRECT) { 3671 ret = btrfs_direct_read(iocb, to); 3672 if (ret < 0 || !iov_iter_count(to) || 3673 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3674 return ret; 3675 } 3676 3677 return filemap_read(iocb, to, ret); 3678 } 3679 3680 const struct file_operations btrfs_file_operations = { 3681 .llseek = btrfs_file_llseek, 3682 .read_iter = btrfs_file_read_iter, 3683 .splice_read = generic_file_splice_read, 3684 .write_iter = btrfs_file_write_iter, 3685 .splice_write = iter_file_splice_write, 3686 .mmap = btrfs_file_mmap, 3687 .open = btrfs_file_open, 3688 .release = btrfs_release_file, 3689 .fsync = btrfs_sync_file, 3690 .fallocate = btrfs_fallocate, 3691 .unlocked_ioctl = btrfs_ioctl, 3692 #ifdef CONFIG_COMPAT 3693 .compat_ioctl = btrfs_compat_ioctl, 3694 #endif 3695 .remap_file_range = btrfs_remap_file_range, 3696 }; 3697 3698 void __cold btrfs_auto_defrag_exit(void) 3699 { 3700 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3701 } 3702 3703 int __init btrfs_auto_defrag_init(void) 3704 { 3705 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3706 sizeof(struct inode_defrag), 0, 3707 SLAB_MEM_SPREAD, 3708 NULL); 3709 if (!btrfs_inode_defrag_cachep) 3710 return -ENOMEM; 3711 3712 return 0; 3713 } 3714 3715 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3716 { 3717 int ret; 3718 3719 /* 3720 * So with compression we will find and lock a dirty page and clear the 3721 * first one as dirty, setup an async extent, and immediately return 3722 * with the entire range locked but with nobody actually marked with 3723 * writeback. So we can't just filemap_write_and_wait_range() and 3724 * expect it to work since it will just kick off a thread to do the 3725 * actual work. So we need to call filemap_fdatawrite_range _again_ 3726 * since it will wait on the page lock, which won't be unlocked until 3727 * after the pages have been marked as writeback and so we're good to go 3728 * from there. We have to do this otherwise we'll miss the ordered 3729 * extents and that results in badness. Please Josef, do not think you 3730 * know better and pull this out at some point in the future, it is 3731 * right and you are wrong. 3732 */ 3733 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3734 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3735 &BTRFS_I(inode)->runtime_flags)) 3736 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3737 3738 return ret; 3739 } 3740