xref: /openbmc/linux/fs/btrfs/file.c (revision 483eb062)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 
44 static struct kmem_cache *btrfs_inode_defrag_cachep;
45 /*
46  * when auto defrag is enabled we
47  * queue up these defrag structs to remember which
48  * inodes need defragging passes
49  */
50 struct inode_defrag {
51 	struct rb_node rb_node;
52 	/* objectid */
53 	u64 ino;
54 	/*
55 	 * transid where the defrag was added, we search for
56 	 * extents newer than this
57 	 */
58 	u64 transid;
59 
60 	/* root objectid */
61 	u64 root;
62 
63 	/* last offset we were able to defrag */
64 	u64 last_offset;
65 
66 	/* if we've wrapped around back to zero once already */
67 	int cycled;
68 };
69 
70 static int __compare_inode_defrag(struct inode_defrag *defrag1,
71 				  struct inode_defrag *defrag2)
72 {
73 	if (defrag1->root > defrag2->root)
74 		return 1;
75 	else if (defrag1->root < defrag2->root)
76 		return -1;
77 	else if (defrag1->ino > defrag2->ino)
78 		return 1;
79 	else if (defrag1->ino < defrag2->ino)
80 		return -1;
81 	else
82 		return 0;
83 }
84 
85 /* pop a record for an inode into the defrag tree.  The lock
86  * must be held already
87  *
88  * If you're inserting a record for an older transid than an
89  * existing record, the transid already in the tree is lowered
90  *
91  * If an existing record is found the defrag item you
92  * pass in is freed
93  */
94 static int __btrfs_add_inode_defrag(struct inode *inode,
95 				    struct inode_defrag *defrag)
96 {
97 	struct btrfs_root *root = BTRFS_I(inode)->root;
98 	struct inode_defrag *entry;
99 	struct rb_node **p;
100 	struct rb_node *parent = NULL;
101 	int ret;
102 
103 	p = &root->fs_info->defrag_inodes.rb_node;
104 	while (*p) {
105 		parent = *p;
106 		entry = rb_entry(parent, struct inode_defrag, rb_node);
107 
108 		ret = __compare_inode_defrag(defrag, entry);
109 		if (ret < 0)
110 			p = &parent->rb_left;
111 		else if (ret > 0)
112 			p = &parent->rb_right;
113 		else {
114 			/* if we're reinserting an entry for
115 			 * an old defrag run, make sure to
116 			 * lower the transid of our existing record
117 			 */
118 			if (defrag->transid < entry->transid)
119 				entry->transid = defrag->transid;
120 			if (defrag->last_offset > entry->last_offset)
121 				entry->last_offset = defrag->last_offset;
122 			return -EEXIST;
123 		}
124 	}
125 	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126 	rb_link_node(&defrag->rb_node, parent, p);
127 	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
128 	return 0;
129 }
130 
131 static inline int __need_auto_defrag(struct btrfs_root *root)
132 {
133 	if (!btrfs_test_opt(root, AUTO_DEFRAG))
134 		return 0;
135 
136 	if (btrfs_fs_closing(root->fs_info))
137 		return 0;
138 
139 	return 1;
140 }
141 
142 /*
143  * insert a defrag record for this inode if auto defrag is
144  * enabled
145  */
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147 			   struct inode *inode)
148 {
149 	struct btrfs_root *root = BTRFS_I(inode)->root;
150 	struct inode_defrag *defrag;
151 	u64 transid;
152 	int ret;
153 
154 	if (!__need_auto_defrag(root))
155 		return 0;
156 
157 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
158 		return 0;
159 
160 	if (trans)
161 		transid = trans->transid;
162 	else
163 		transid = BTRFS_I(inode)->root->last_trans;
164 
165 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
166 	if (!defrag)
167 		return -ENOMEM;
168 
169 	defrag->ino = btrfs_ino(inode);
170 	defrag->transid = transid;
171 	defrag->root = root->root_key.objectid;
172 
173 	spin_lock(&root->fs_info->defrag_inodes_lock);
174 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175 		/*
176 		 * If we set IN_DEFRAG flag and evict the inode from memory,
177 		 * and then re-read this inode, this new inode doesn't have
178 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
179 		 */
180 		ret = __btrfs_add_inode_defrag(inode, defrag);
181 		if (ret)
182 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183 	} else {
184 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 	}
186 	spin_unlock(&root->fs_info->defrag_inodes_lock);
187 	return 0;
188 }
189 
190 /*
191  * Requeue the defrag object. If there is a defrag object that points to
192  * the same inode in the tree, we will merge them together (by
193  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
194  */
195 static void btrfs_requeue_inode_defrag(struct inode *inode,
196 				       struct inode_defrag *defrag)
197 {
198 	struct btrfs_root *root = BTRFS_I(inode)->root;
199 	int ret;
200 
201 	if (!__need_auto_defrag(root))
202 		goto out;
203 
204 	/*
205 	 * Here we don't check the IN_DEFRAG flag, because we need merge
206 	 * them together.
207 	 */
208 	spin_lock(&root->fs_info->defrag_inodes_lock);
209 	ret = __btrfs_add_inode_defrag(inode, defrag);
210 	spin_unlock(&root->fs_info->defrag_inodes_lock);
211 	if (ret)
212 		goto out;
213 	return;
214 out:
215 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216 }
217 
218 /*
219  * pick the defragable inode that we want, if it doesn't exist, we will get
220  * the next one.
221  */
222 static struct inode_defrag *
223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
224 {
225 	struct inode_defrag *entry = NULL;
226 	struct inode_defrag tmp;
227 	struct rb_node *p;
228 	struct rb_node *parent = NULL;
229 	int ret;
230 
231 	tmp.ino = ino;
232 	tmp.root = root;
233 
234 	spin_lock(&fs_info->defrag_inodes_lock);
235 	p = fs_info->defrag_inodes.rb_node;
236 	while (p) {
237 		parent = p;
238 		entry = rb_entry(parent, struct inode_defrag, rb_node);
239 
240 		ret = __compare_inode_defrag(&tmp, entry);
241 		if (ret < 0)
242 			p = parent->rb_left;
243 		else if (ret > 0)
244 			p = parent->rb_right;
245 		else
246 			goto out;
247 	}
248 
249 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250 		parent = rb_next(parent);
251 		if (parent)
252 			entry = rb_entry(parent, struct inode_defrag, rb_node);
253 		else
254 			entry = NULL;
255 	}
256 out:
257 	if (entry)
258 		rb_erase(parent, &fs_info->defrag_inodes);
259 	spin_unlock(&fs_info->defrag_inodes_lock);
260 	return entry;
261 }
262 
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
264 {
265 	struct inode_defrag *defrag;
266 	struct rb_node *node;
267 
268 	spin_lock(&fs_info->defrag_inodes_lock);
269 	node = rb_first(&fs_info->defrag_inodes);
270 	while (node) {
271 		rb_erase(node, &fs_info->defrag_inodes);
272 		defrag = rb_entry(node, struct inode_defrag, rb_node);
273 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274 
275 		if (need_resched()) {
276 			spin_unlock(&fs_info->defrag_inodes_lock);
277 			cond_resched();
278 			spin_lock(&fs_info->defrag_inodes_lock);
279 		}
280 
281 		node = rb_first(&fs_info->defrag_inodes);
282 	}
283 	spin_unlock(&fs_info->defrag_inodes_lock);
284 }
285 
286 #define BTRFS_DEFRAG_BATCH	1024
287 
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289 				    struct inode_defrag *defrag)
290 {
291 	struct btrfs_root *inode_root;
292 	struct inode *inode;
293 	struct btrfs_key key;
294 	struct btrfs_ioctl_defrag_range_args range;
295 	int num_defrag;
296 	int index;
297 	int ret;
298 
299 	/* get the inode */
300 	key.objectid = defrag->root;
301 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302 	key.offset = (u64)-1;
303 
304 	index = srcu_read_lock(&fs_info->subvol_srcu);
305 
306 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307 	if (IS_ERR(inode_root)) {
308 		ret = PTR_ERR(inode_root);
309 		goto cleanup;
310 	}
311 
312 	key.objectid = defrag->ino;
313 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
314 	key.offset = 0;
315 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
316 	if (IS_ERR(inode)) {
317 		ret = PTR_ERR(inode);
318 		goto cleanup;
319 	}
320 	srcu_read_unlock(&fs_info->subvol_srcu, index);
321 
322 	/* do a chunk of defrag */
323 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
324 	memset(&range, 0, sizeof(range));
325 	range.len = (u64)-1;
326 	range.start = defrag->last_offset;
327 
328 	sb_start_write(fs_info->sb);
329 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
330 				       BTRFS_DEFRAG_BATCH);
331 	sb_end_write(fs_info->sb);
332 	/*
333 	 * if we filled the whole defrag batch, there
334 	 * must be more work to do.  Queue this defrag
335 	 * again
336 	 */
337 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
338 		defrag->last_offset = range.start;
339 		btrfs_requeue_inode_defrag(inode, defrag);
340 	} else if (defrag->last_offset && !defrag->cycled) {
341 		/*
342 		 * we didn't fill our defrag batch, but
343 		 * we didn't start at zero.  Make sure we loop
344 		 * around to the start of the file.
345 		 */
346 		defrag->last_offset = 0;
347 		defrag->cycled = 1;
348 		btrfs_requeue_inode_defrag(inode, defrag);
349 	} else {
350 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
351 	}
352 
353 	iput(inode);
354 	return 0;
355 cleanup:
356 	srcu_read_unlock(&fs_info->subvol_srcu, index);
357 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
358 	return ret;
359 }
360 
361 /*
362  * run through the list of inodes in the FS that need
363  * defragging
364  */
365 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
366 {
367 	struct inode_defrag *defrag;
368 	u64 first_ino = 0;
369 	u64 root_objectid = 0;
370 
371 	atomic_inc(&fs_info->defrag_running);
372 	while (1) {
373 		/* Pause the auto defragger. */
374 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
375 			     &fs_info->fs_state))
376 			break;
377 
378 		if (!__need_auto_defrag(fs_info->tree_root))
379 			break;
380 
381 		/* find an inode to defrag */
382 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
383 						 first_ino);
384 		if (!defrag) {
385 			if (root_objectid || first_ino) {
386 				root_objectid = 0;
387 				first_ino = 0;
388 				continue;
389 			} else {
390 				break;
391 			}
392 		}
393 
394 		first_ino = defrag->ino + 1;
395 		root_objectid = defrag->root;
396 
397 		__btrfs_run_defrag_inode(fs_info, defrag);
398 	}
399 	atomic_dec(&fs_info->defrag_running);
400 
401 	/*
402 	 * during unmount, we use the transaction_wait queue to
403 	 * wait for the defragger to stop
404 	 */
405 	wake_up(&fs_info->transaction_wait);
406 	return 0;
407 }
408 
409 /* simple helper to fault in pages and copy.  This should go away
410  * and be replaced with calls into generic code.
411  */
412 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
413 					 size_t write_bytes,
414 					 struct page **prepared_pages,
415 					 struct iov_iter *i)
416 {
417 	size_t copied = 0;
418 	size_t total_copied = 0;
419 	int pg = 0;
420 	int offset = pos & (PAGE_CACHE_SIZE - 1);
421 
422 	while (write_bytes > 0) {
423 		size_t count = min_t(size_t,
424 				     PAGE_CACHE_SIZE - offset, write_bytes);
425 		struct page *page = prepared_pages[pg];
426 		/*
427 		 * Copy data from userspace to the current page
428 		 *
429 		 * Disable pagefault to avoid recursive lock since
430 		 * the pages are already locked
431 		 */
432 		pagefault_disable();
433 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
434 		pagefault_enable();
435 
436 		/* Flush processor's dcache for this page */
437 		flush_dcache_page(page);
438 
439 		/*
440 		 * if we get a partial write, we can end up with
441 		 * partially up to date pages.  These add
442 		 * a lot of complexity, so make sure they don't
443 		 * happen by forcing this copy to be retried.
444 		 *
445 		 * The rest of the btrfs_file_write code will fall
446 		 * back to page at a time copies after we return 0.
447 		 */
448 		if (!PageUptodate(page) && copied < count)
449 			copied = 0;
450 
451 		iov_iter_advance(i, copied);
452 		write_bytes -= copied;
453 		total_copied += copied;
454 
455 		/* Return to btrfs_file_aio_write to fault page */
456 		if (unlikely(copied == 0))
457 			break;
458 
459 		if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
460 			offset += copied;
461 		} else {
462 			pg++;
463 			offset = 0;
464 		}
465 	}
466 	return total_copied;
467 }
468 
469 /*
470  * unlocks pages after btrfs_file_write is done with them
471  */
472 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
473 {
474 	size_t i;
475 	for (i = 0; i < num_pages; i++) {
476 		/* page checked is some magic around finding pages that
477 		 * have been modified without going through btrfs_set_page_dirty
478 		 * clear it here
479 		 */
480 		ClearPageChecked(pages[i]);
481 		unlock_page(pages[i]);
482 		mark_page_accessed(pages[i]);
483 		page_cache_release(pages[i]);
484 	}
485 }
486 
487 /*
488  * after copy_from_user, pages need to be dirtied and we need to make
489  * sure holes are created between the current EOF and the start of
490  * any next extents (if required).
491  *
492  * this also makes the decision about creating an inline extent vs
493  * doing real data extents, marking pages dirty and delalloc as required.
494  */
495 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
496 			     struct page **pages, size_t num_pages,
497 			     loff_t pos, size_t write_bytes,
498 			     struct extent_state **cached)
499 {
500 	int err = 0;
501 	int i;
502 	u64 num_bytes;
503 	u64 start_pos;
504 	u64 end_of_last_block;
505 	u64 end_pos = pos + write_bytes;
506 	loff_t isize = i_size_read(inode);
507 
508 	start_pos = pos & ~((u64)root->sectorsize - 1);
509 	num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
510 
511 	end_of_last_block = start_pos + num_bytes - 1;
512 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
513 					cached);
514 	if (err)
515 		return err;
516 
517 	for (i = 0; i < num_pages; i++) {
518 		struct page *p = pages[i];
519 		SetPageUptodate(p);
520 		ClearPageChecked(p);
521 		set_page_dirty(p);
522 	}
523 
524 	/*
525 	 * we've only changed i_size in ram, and we haven't updated
526 	 * the disk i_size.  There is no need to log the inode
527 	 * at this time.
528 	 */
529 	if (end_pos > isize)
530 		i_size_write(inode, end_pos);
531 	return 0;
532 }
533 
534 /*
535  * this drops all the extents in the cache that intersect the range
536  * [start, end].  Existing extents are split as required.
537  */
538 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
539 			     int skip_pinned)
540 {
541 	struct extent_map *em;
542 	struct extent_map *split = NULL;
543 	struct extent_map *split2 = NULL;
544 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
545 	u64 len = end - start + 1;
546 	u64 gen;
547 	int ret;
548 	int testend = 1;
549 	unsigned long flags;
550 	int compressed = 0;
551 	bool modified;
552 
553 	WARN_ON(end < start);
554 	if (end == (u64)-1) {
555 		len = (u64)-1;
556 		testend = 0;
557 	}
558 	while (1) {
559 		int no_splits = 0;
560 
561 		modified = false;
562 		if (!split)
563 			split = alloc_extent_map();
564 		if (!split2)
565 			split2 = alloc_extent_map();
566 		if (!split || !split2)
567 			no_splits = 1;
568 
569 		write_lock(&em_tree->lock);
570 		em = lookup_extent_mapping(em_tree, start, len);
571 		if (!em) {
572 			write_unlock(&em_tree->lock);
573 			break;
574 		}
575 		flags = em->flags;
576 		gen = em->generation;
577 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
578 			if (testend && em->start + em->len >= start + len) {
579 				free_extent_map(em);
580 				write_unlock(&em_tree->lock);
581 				break;
582 			}
583 			start = em->start + em->len;
584 			if (testend)
585 				len = start + len - (em->start + em->len);
586 			free_extent_map(em);
587 			write_unlock(&em_tree->lock);
588 			continue;
589 		}
590 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
591 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
592 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
593 		modified = !list_empty(&em->list);
594 		remove_extent_mapping(em_tree, em);
595 		if (no_splits)
596 			goto next;
597 
598 		if (em->start < start) {
599 			split->start = em->start;
600 			split->len = start - em->start;
601 
602 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
603 				split->orig_start = em->orig_start;
604 				split->block_start = em->block_start;
605 
606 				if (compressed)
607 					split->block_len = em->block_len;
608 				else
609 					split->block_len = split->len;
610 				split->orig_block_len = max(split->block_len,
611 						em->orig_block_len);
612 				split->ram_bytes = em->ram_bytes;
613 			} else {
614 				split->orig_start = split->start;
615 				split->block_len = 0;
616 				split->block_start = em->block_start;
617 				split->orig_block_len = 0;
618 				split->ram_bytes = split->len;
619 			}
620 
621 			split->generation = gen;
622 			split->bdev = em->bdev;
623 			split->flags = flags;
624 			split->compress_type = em->compress_type;
625 			ret = add_extent_mapping(em_tree, split, modified);
626 			BUG_ON(ret); /* Logic error */
627 			free_extent_map(split);
628 			split = split2;
629 			split2 = NULL;
630 		}
631 		if (testend && em->start + em->len > start + len) {
632 			u64 diff = start + len - em->start;
633 
634 			split->start = start + len;
635 			split->len = em->start + em->len - (start + len);
636 			split->bdev = em->bdev;
637 			split->flags = flags;
638 			split->compress_type = em->compress_type;
639 			split->generation = gen;
640 
641 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
642 				split->orig_block_len = max(em->block_len,
643 						    em->orig_block_len);
644 
645 				split->ram_bytes = em->ram_bytes;
646 				if (compressed) {
647 					split->block_len = em->block_len;
648 					split->block_start = em->block_start;
649 					split->orig_start = em->orig_start;
650 				} else {
651 					split->block_len = split->len;
652 					split->block_start = em->block_start
653 						+ diff;
654 					split->orig_start = em->orig_start;
655 				}
656 			} else {
657 				split->ram_bytes = split->len;
658 				split->orig_start = split->start;
659 				split->block_len = 0;
660 				split->block_start = em->block_start;
661 				split->orig_block_len = 0;
662 			}
663 
664 			ret = add_extent_mapping(em_tree, split, modified);
665 			BUG_ON(ret); /* Logic error */
666 			free_extent_map(split);
667 			split = NULL;
668 		}
669 next:
670 		write_unlock(&em_tree->lock);
671 
672 		/* once for us */
673 		free_extent_map(em);
674 		/* once for the tree*/
675 		free_extent_map(em);
676 	}
677 	if (split)
678 		free_extent_map(split);
679 	if (split2)
680 		free_extent_map(split2);
681 }
682 
683 /*
684  * this is very complex, but the basic idea is to drop all extents
685  * in the range start - end.  hint_block is filled in with a block number
686  * that would be a good hint to the block allocator for this file.
687  *
688  * If an extent intersects the range but is not entirely inside the range
689  * it is either truncated or split.  Anything entirely inside the range
690  * is deleted from the tree.
691  */
692 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
693 			 struct btrfs_root *root, struct inode *inode,
694 			 struct btrfs_path *path, u64 start, u64 end,
695 			 u64 *drop_end, int drop_cache,
696 			 int replace_extent,
697 			 u32 extent_item_size,
698 			 int *key_inserted)
699 {
700 	struct extent_buffer *leaf;
701 	struct btrfs_file_extent_item *fi;
702 	struct btrfs_key key;
703 	struct btrfs_key new_key;
704 	u64 ino = btrfs_ino(inode);
705 	u64 search_start = start;
706 	u64 disk_bytenr = 0;
707 	u64 num_bytes = 0;
708 	u64 extent_offset = 0;
709 	u64 extent_end = 0;
710 	int del_nr = 0;
711 	int del_slot = 0;
712 	int extent_type;
713 	int recow;
714 	int ret;
715 	int modify_tree = -1;
716 	int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
717 	int found = 0;
718 	int leafs_visited = 0;
719 
720 	if (drop_cache)
721 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
722 
723 	if (start >= BTRFS_I(inode)->disk_i_size)
724 		modify_tree = 0;
725 
726 	while (1) {
727 		recow = 0;
728 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
729 					       search_start, modify_tree);
730 		if (ret < 0)
731 			break;
732 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
733 			leaf = path->nodes[0];
734 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
735 			if (key.objectid == ino &&
736 			    key.type == BTRFS_EXTENT_DATA_KEY)
737 				path->slots[0]--;
738 		}
739 		ret = 0;
740 		leafs_visited++;
741 next_slot:
742 		leaf = path->nodes[0];
743 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
744 			BUG_ON(del_nr > 0);
745 			ret = btrfs_next_leaf(root, path);
746 			if (ret < 0)
747 				break;
748 			if (ret > 0) {
749 				ret = 0;
750 				break;
751 			}
752 			leafs_visited++;
753 			leaf = path->nodes[0];
754 			recow = 1;
755 		}
756 
757 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
758 		if (key.objectid > ino ||
759 		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
760 			break;
761 
762 		fi = btrfs_item_ptr(leaf, path->slots[0],
763 				    struct btrfs_file_extent_item);
764 		extent_type = btrfs_file_extent_type(leaf, fi);
765 
766 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
767 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
768 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
769 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
770 			extent_offset = btrfs_file_extent_offset(leaf, fi);
771 			extent_end = key.offset +
772 				btrfs_file_extent_num_bytes(leaf, fi);
773 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
774 			extent_end = key.offset +
775 				btrfs_file_extent_inline_len(leaf,
776 						     path->slots[0], fi);
777 		} else {
778 			WARN_ON(1);
779 			extent_end = search_start;
780 		}
781 
782 		if (extent_end <= search_start) {
783 			path->slots[0]++;
784 			goto next_slot;
785 		}
786 
787 		found = 1;
788 		search_start = max(key.offset, start);
789 		if (recow || !modify_tree) {
790 			modify_tree = -1;
791 			btrfs_release_path(path);
792 			continue;
793 		}
794 
795 		/*
796 		 *     | - range to drop - |
797 		 *  | -------- extent -------- |
798 		 */
799 		if (start > key.offset && end < extent_end) {
800 			BUG_ON(del_nr > 0);
801 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
802 
803 			memcpy(&new_key, &key, sizeof(new_key));
804 			new_key.offset = start;
805 			ret = btrfs_duplicate_item(trans, root, path,
806 						   &new_key);
807 			if (ret == -EAGAIN) {
808 				btrfs_release_path(path);
809 				continue;
810 			}
811 			if (ret < 0)
812 				break;
813 
814 			leaf = path->nodes[0];
815 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
816 					    struct btrfs_file_extent_item);
817 			btrfs_set_file_extent_num_bytes(leaf, fi,
818 							start - key.offset);
819 
820 			fi = btrfs_item_ptr(leaf, path->slots[0],
821 					    struct btrfs_file_extent_item);
822 
823 			extent_offset += start - key.offset;
824 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
825 			btrfs_set_file_extent_num_bytes(leaf, fi,
826 							extent_end - start);
827 			btrfs_mark_buffer_dirty(leaf);
828 
829 			if (update_refs && disk_bytenr > 0) {
830 				ret = btrfs_inc_extent_ref(trans, root,
831 						disk_bytenr, num_bytes, 0,
832 						root->root_key.objectid,
833 						new_key.objectid,
834 						start - extent_offset, 0);
835 				BUG_ON(ret); /* -ENOMEM */
836 			}
837 			key.offset = start;
838 		}
839 		/*
840 		 *  | ---- range to drop ----- |
841 		 *      | -------- extent -------- |
842 		 */
843 		if (start <= key.offset && end < extent_end) {
844 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
845 
846 			memcpy(&new_key, &key, sizeof(new_key));
847 			new_key.offset = end;
848 			btrfs_set_item_key_safe(root, path, &new_key);
849 
850 			extent_offset += end - key.offset;
851 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
852 			btrfs_set_file_extent_num_bytes(leaf, fi,
853 							extent_end - end);
854 			btrfs_mark_buffer_dirty(leaf);
855 			if (update_refs && disk_bytenr > 0)
856 				inode_sub_bytes(inode, end - key.offset);
857 			break;
858 		}
859 
860 		search_start = extent_end;
861 		/*
862 		 *       | ---- range to drop ----- |
863 		 *  | -------- extent -------- |
864 		 */
865 		if (start > key.offset && end >= extent_end) {
866 			BUG_ON(del_nr > 0);
867 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
868 
869 			btrfs_set_file_extent_num_bytes(leaf, fi,
870 							start - key.offset);
871 			btrfs_mark_buffer_dirty(leaf);
872 			if (update_refs && disk_bytenr > 0)
873 				inode_sub_bytes(inode, extent_end - start);
874 			if (end == extent_end)
875 				break;
876 
877 			path->slots[0]++;
878 			goto next_slot;
879 		}
880 
881 		/*
882 		 *  | ---- range to drop ----- |
883 		 *    | ------ extent ------ |
884 		 */
885 		if (start <= key.offset && end >= extent_end) {
886 			if (del_nr == 0) {
887 				del_slot = path->slots[0];
888 				del_nr = 1;
889 			} else {
890 				BUG_ON(del_slot + del_nr != path->slots[0]);
891 				del_nr++;
892 			}
893 
894 			if (update_refs &&
895 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
896 				inode_sub_bytes(inode,
897 						extent_end - key.offset);
898 				extent_end = ALIGN(extent_end,
899 						   root->sectorsize);
900 			} else if (update_refs && disk_bytenr > 0) {
901 				ret = btrfs_free_extent(trans, root,
902 						disk_bytenr, num_bytes, 0,
903 						root->root_key.objectid,
904 						key.objectid, key.offset -
905 						extent_offset, 0);
906 				BUG_ON(ret); /* -ENOMEM */
907 				inode_sub_bytes(inode,
908 						extent_end - key.offset);
909 			}
910 
911 			if (end == extent_end)
912 				break;
913 
914 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
915 				path->slots[0]++;
916 				goto next_slot;
917 			}
918 
919 			ret = btrfs_del_items(trans, root, path, del_slot,
920 					      del_nr);
921 			if (ret) {
922 				btrfs_abort_transaction(trans, root, ret);
923 				break;
924 			}
925 
926 			del_nr = 0;
927 			del_slot = 0;
928 
929 			btrfs_release_path(path);
930 			continue;
931 		}
932 
933 		BUG_ON(1);
934 	}
935 
936 	if (!ret && del_nr > 0) {
937 		/*
938 		 * Set path->slots[0] to first slot, so that after the delete
939 		 * if items are move off from our leaf to its immediate left or
940 		 * right neighbor leafs, we end up with a correct and adjusted
941 		 * path->slots[0] for our insertion.
942 		 */
943 		path->slots[0] = del_slot;
944 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
945 		if (ret)
946 			btrfs_abort_transaction(trans, root, ret);
947 
948 		leaf = path->nodes[0];
949 		/*
950 		 * leaf eb has flag EXTENT_BUFFER_STALE if it was deleted (that
951 		 * is, its contents got pushed to its neighbors), in which case
952 		 * it means path->locks[0] == 0
953 		 */
954 		if (!ret && replace_extent && leafs_visited == 1 &&
955 		    path->locks[0] &&
956 		    btrfs_leaf_free_space(root, leaf) >=
957 		    sizeof(struct btrfs_item) + extent_item_size) {
958 
959 			key.objectid = ino;
960 			key.type = BTRFS_EXTENT_DATA_KEY;
961 			key.offset = start;
962 			setup_items_for_insert(root, path, &key,
963 					       &extent_item_size,
964 					       extent_item_size,
965 					       sizeof(struct btrfs_item) +
966 					       extent_item_size, 1);
967 			*key_inserted = 1;
968 		}
969 	}
970 
971 	if (!replace_extent || !(*key_inserted))
972 		btrfs_release_path(path);
973 	if (drop_end)
974 		*drop_end = found ? min(end, extent_end) : end;
975 	return ret;
976 }
977 
978 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
979 		       struct btrfs_root *root, struct inode *inode, u64 start,
980 		       u64 end, int drop_cache)
981 {
982 	struct btrfs_path *path;
983 	int ret;
984 
985 	path = btrfs_alloc_path();
986 	if (!path)
987 		return -ENOMEM;
988 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
989 				   drop_cache, 0, 0, NULL);
990 	btrfs_free_path(path);
991 	return ret;
992 }
993 
994 static int extent_mergeable(struct extent_buffer *leaf, int slot,
995 			    u64 objectid, u64 bytenr, u64 orig_offset,
996 			    u64 *start, u64 *end)
997 {
998 	struct btrfs_file_extent_item *fi;
999 	struct btrfs_key key;
1000 	u64 extent_end;
1001 
1002 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1003 		return 0;
1004 
1005 	btrfs_item_key_to_cpu(leaf, &key, slot);
1006 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1007 		return 0;
1008 
1009 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1010 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1011 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1012 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1013 	    btrfs_file_extent_compression(leaf, fi) ||
1014 	    btrfs_file_extent_encryption(leaf, fi) ||
1015 	    btrfs_file_extent_other_encoding(leaf, fi))
1016 		return 0;
1017 
1018 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1019 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1020 		return 0;
1021 
1022 	*start = key.offset;
1023 	*end = extent_end;
1024 	return 1;
1025 }
1026 
1027 /*
1028  * Mark extent in the range start - end as written.
1029  *
1030  * This changes extent type from 'pre-allocated' to 'regular'. If only
1031  * part of extent is marked as written, the extent will be split into
1032  * two or three.
1033  */
1034 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1035 			      struct inode *inode, u64 start, u64 end)
1036 {
1037 	struct btrfs_root *root = BTRFS_I(inode)->root;
1038 	struct extent_buffer *leaf;
1039 	struct btrfs_path *path;
1040 	struct btrfs_file_extent_item *fi;
1041 	struct btrfs_key key;
1042 	struct btrfs_key new_key;
1043 	u64 bytenr;
1044 	u64 num_bytes;
1045 	u64 extent_end;
1046 	u64 orig_offset;
1047 	u64 other_start;
1048 	u64 other_end;
1049 	u64 split;
1050 	int del_nr = 0;
1051 	int del_slot = 0;
1052 	int recow;
1053 	int ret;
1054 	u64 ino = btrfs_ino(inode);
1055 
1056 	path = btrfs_alloc_path();
1057 	if (!path)
1058 		return -ENOMEM;
1059 again:
1060 	recow = 0;
1061 	split = start;
1062 	key.objectid = ino;
1063 	key.type = BTRFS_EXTENT_DATA_KEY;
1064 	key.offset = split;
1065 
1066 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1067 	if (ret < 0)
1068 		goto out;
1069 	if (ret > 0 && path->slots[0] > 0)
1070 		path->slots[0]--;
1071 
1072 	leaf = path->nodes[0];
1073 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1074 	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1075 	fi = btrfs_item_ptr(leaf, path->slots[0],
1076 			    struct btrfs_file_extent_item);
1077 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1078 	       BTRFS_FILE_EXTENT_PREALLOC);
1079 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1080 	BUG_ON(key.offset > start || extent_end < end);
1081 
1082 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1083 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1084 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1085 	memcpy(&new_key, &key, sizeof(new_key));
1086 
1087 	if (start == key.offset && end < extent_end) {
1088 		other_start = 0;
1089 		other_end = start;
1090 		if (extent_mergeable(leaf, path->slots[0] - 1,
1091 				     ino, bytenr, orig_offset,
1092 				     &other_start, &other_end)) {
1093 			new_key.offset = end;
1094 			btrfs_set_item_key_safe(root, path, &new_key);
1095 			fi = btrfs_item_ptr(leaf, path->slots[0],
1096 					    struct btrfs_file_extent_item);
1097 			btrfs_set_file_extent_generation(leaf, fi,
1098 							 trans->transid);
1099 			btrfs_set_file_extent_num_bytes(leaf, fi,
1100 							extent_end - end);
1101 			btrfs_set_file_extent_offset(leaf, fi,
1102 						     end - orig_offset);
1103 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1104 					    struct btrfs_file_extent_item);
1105 			btrfs_set_file_extent_generation(leaf, fi,
1106 							 trans->transid);
1107 			btrfs_set_file_extent_num_bytes(leaf, fi,
1108 							end - other_start);
1109 			btrfs_mark_buffer_dirty(leaf);
1110 			goto out;
1111 		}
1112 	}
1113 
1114 	if (start > key.offset && end == extent_end) {
1115 		other_start = end;
1116 		other_end = 0;
1117 		if (extent_mergeable(leaf, path->slots[0] + 1,
1118 				     ino, bytenr, orig_offset,
1119 				     &other_start, &other_end)) {
1120 			fi = btrfs_item_ptr(leaf, path->slots[0],
1121 					    struct btrfs_file_extent_item);
1122 			btrfs_set_file_extent_num_bytes(leaf, fi,
1123 							start - key.offset);
1124 			btrfs_set_file_extent_generation(leaf, fi,
1125 							 trans->transid);
1126 			path->slots[0]++;
1127 			new_key.offset = start;
1128 			btrfs_set_item_key_safe(root, path, &new_key);
1129 
1130 			fi = btrfs_item_ptr(leaf, path->slots[0],
1131 					    struct btrfs_file_extent_item);
1132 			btrfs_set_file_extent_generation(leaf, fi,
1133 							 trans->transid);
1134 			btrfs_set_file_extent_num_bytes(leaf, fi,
1135 							other_end - start);
1136 			btrfs_set_file_extent_offset(leaf, fi,
1137 						     start - orig_offset);
1138 			btrfs_mark_buffer_dirty(leaf);
1139 			goto out;
1140 		}
1141 	}
1142 
1143 	while (start > key.offset || end < extent_end) {
1144 		if (key.offset == start)
1145 			split = end;
1146 
1147 		new_key.offset = split;
1148 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1149 		if (ret == -EAGAIN) {
1150 			btrfs_release_path(path);
1151 			goto again;
1152 		}
1153 		if (ret < 0) {
1154 			btrfs_abort_transaction(trans, root, ret);
1155 			goto out;
1156 		}
1157 
1158 		leaf = path->nodes[0];
1159 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1160 				    struct btrfs_file_extent_item);
1161 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1162 		btrfs_set_file_extent_num_bytes(leaf, fi,
1163 						split - key.offset);
1164 
1165 		fi = btrfs_item_ptr(leaf, path->slots[0],
1166 				    struct btrfs_file_extent_item);
1167 
1168 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1169 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1170 		btrfs_set_file_extent_num_bytes(leaf, fi,
1171 						extent_end - split);
1172 		btrfs_mark_buffer_dirty(leaf);
1173 
1174 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1175 					   root->root_key.objectid,
1176 					   ino, orig_offset, 0);
1177 		BUG_ON(ret); /* -ENOMEM */
1178 
1179 		if (split == start) {
1180 			key.offset = start;
1181 		} else {
1182 			BUG_ON(start != key.offset);
1183 			path->slots[0]--;
1184 			extent_end = end;
1185 		}
1186 		recow = 1;
1187 	}
1188 
1189 	other_start = end;
1190 	other_end = 0;
1191 	if (extent_mergeable(leaf, path->slots[0] + 1,
1192 			     ino, bytenr, orig_offset,
1193 			     &other_start, &other_end)) {
1194 		if (recow) {
1195 			btrfs_release_path(path);
1196 			goto again;
1197 		}
1198 		extent_end = other_end;
1199 		del_slot = path->slots[0] + 1;
1200 		del_nr++;
1201 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1202 					0, root->root_key.objectid,
1203 					ino, orig_offset, 0);
1204 		BUG_ON(ret); /* -ENOMEM */
1205 	}
1206 	other_start = 0;
1207 	other_end = start;
1208 	if (extent_mergeable(leaf, path->slots[0] - 1,
1209 			     ino, bytenr, orig_offset,
1210 			     &other_start, &other_end)) {
1211 		if (recow) {
1212 			btrfs_release_path(path);
1213 			goto again;
1214 		}
1215 		key.offset = other_start;
1216 		del_slot = path->slots[0];
1217 		del_nr++;
1218 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1219 					0, root->root_key.objectid,
1220 					ino, orig_offset, 0);
1221 		BUG_ON(ret); /* -ENOMEM */
1222 	}
1223 	if (del_nr == 0) {
1224 		fi = btrfs_item_ptr(leaf, path->slots[0],
1225 			   struct btrfs_file_extent_item);
1226 		btrfs_set_file_extent_type(leaf, fi,
1227 					   BTRFS_FILE_EXTENT_REG);
1228 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1229 		btrfs_mark_buffer_dirty(leaf);
1230 	} else {
1231 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1232 			   struct btrfs_file_extent_item);
1233 		btrfs_set_file_extent_type(leaf, fi,
1234 					   BTRFS_FILE_EXTENT_REG);
1235 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1236 		btrfs_set_file_extent_num_bytes(leaf, fi,
1237 						extent_end - key.offset);
1238 		btrfs_mark_buffer_dirty(leaf);
1239 
1240 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1241 		if (ret < 0) {
1242 			btrfs_abort_transaction(trans, root, ret);
1243 			goto out;
1244 		}
1245 	}
1246 out:
1247 	btrfs_free_path(path);
1248 	return 0;
1249 }
1250 
1251 /*
1252  * on error we return an unlocked page and the error value
1253  * on success we return a locked page and 0
1254  */
1255 static int prepare_uptodate_page(struct page *page, u64 pos,
1256 				 bool force_uptodate)
1257 {
1258 	int ret = 0;
1259 
1260 	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1261 	    !PageUptodate(page)) {
1262 		ret = btrfs_readpage(NULL, page);
1263 		if (ret)
1264 			return ret;
1265 		lock_page(page);
1266 		if (!PageUptodate(page)) {
1267 			unlock_page(page);
1268 			return -EIO;
1269 		}
1270 	}
1271 	return 0;
1272 }
1273 
1274 /*
1275  * this just gets pages into the page cache and locks them down.
1276  */
1277 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1278 				  size_t num_pages, loff_t pos,
1279 				  size_t write_bytes, bool force_uptodate)
1280 {
1281 	int i;
1282 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
1283 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1284 	int err = 0;
1285 	int faili;
1286 
1287 	for (i = 0; i < num_pages; i++) {
1288 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1289 					       mask | __GFP_WRITE);
1290 		if (!pages[i]) {
1291 			faili = i - 1;
1292 			err = -ENOMEM;
1293 			goto fail;
1294 		}
1295 
1296 		if (i == 0)
1297 			err = prepare_uptodate_page(pages[i], pos,
1298 						    force_uptodate);
1299 		if (i == num_pages - 1)
1300 			err = prepare_uptodate_page(pages[i],
1301 						    pos + write_bytes, false);
1302 		if (err) {
1303 			page_cache_release(pages[i]);
1304 			faili = i - 1;
1305 			goto fail;
1306 		}
1307 		wait_on_page_writeback(pages[i]);
1308 	}
1309 
1310 	return 0;
1311 fail:
1312 	while (faili >= 0) {
1313 		unlock_page(pages[faili]);
1314 		page_cache_release(pages[faili]);
1315 		faili--;
1316 	}
1317 	return err;
1318 
1319 }
1320 
1321 /*
1322  * This function locks the extent and properly waits for data=ordered extents
1323  * to finish before allowing the pages to be modified if need.
1324  *
1325  * The return value:
1326  * 1 - the extent is locked
1327  * 0 - the extent is not locked, and everything is OK
1328  * -EAGAIN - need re-prepare the pages
1329  * the other < 0 number - Something wrong happens
1330  */
1331 static noinline int
1332 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1333 				size_t num_pages, loff_t pos,
1334 				u64 *lockstart, u64 *lockend,
1335 				struct extent_state **cached_state)
1336 {
1337 	u64 start_pos;
1338 	u64 last_pos;
1339 	int i;
1340 	int ret = 0;
1341 
1342 	start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1343 	last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1344 
1345 	if (start_pos < inode->i_size) {
1346 		struct btrfs_ordered_extent *ordered;
1347 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1348 				 start_pos, last_pos, 0, cached_state);
1349 		ordered = btrfs_lookup_first_ordered_extent(inode, last_pos);
1350 		if (ordered &&
1351 		    ordered->file_offset + ordered->len > start_pos &&
1352 		    ordered->file_offset <= last_pos) {
1353 			btrfs_put_ordered_extent(ordered);
1354 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1355 					     start_pos, last_pos,
1356 					     cached_state, GFP_NOFS);
1357 			for (i = 0; i < num_pages; i++) {
1358 				unlock_page(pages[i]);
1359 				page_cache_release(pages[i]);
1360 			}
1361 			ret = btrfs_wait_ordered_range(inode, start_pos,
1362 						last_pos - start_pos + 1);
1363 			if (ret)
1364 				return ret;
1365 			else
1366 				return -EAGAIN;
1367 		}
1368 		if (ordered)
1369 			btrfs_put_ordered_extent(ordered);
1370 
1371 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1372 				  last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1373 				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1374 				  0, 0, cached_state, GFP_NOFS);
1375 		*lockstart = start_pos;
1376 		*lockend = last_pos;
1377 		ret = 1;
1378 	}
1379 
1380 	for (i = 0; i < num_pages; i++) {
1381 		if (clear_page_dirty_for_io(pages[i]))
1382 			account_page_redirty(pages[i]);
1383 		set_page_extent_mapped(pages[i]);
1384 		WARN_ON(!PageLocked(pages[i]));
1385 	}
1386 
1387 	return ret;
1388 }
1389 
1390 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1391 				    size_t *write_bytes)
1392 {
1393 	struct btrfs_root *root = BTRFS_I(inode)->root;
1394 	struct btrfs_ordered_extent *ordered;
1395 	u64 lockstart, lockend;
1396 	u64 num_bytes;
1397 	int ret;
1398 
1399 	lockstart = round_down(pos, root->sectorsize);
1400 	lockend = lockstart + round_up(*write_bytes, root->sectorsize) - 1;
1401 
1402 	while (1) {
1403 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1404 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1405 						     lockend - lockstart + 1);
1406 		if (!ordered) {
1407 			break;
1408 		}
1409 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1410 		btrfs_start_ordered_extent(inode, ordered, 1);
1411 		btrfs_put_ordered_extent(ordered);
1412 	}
1413 
1414 	num_bytes = lockend - lockstart + 1;
1415 	ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1416 	if (ret <= 0) {
1417 		ret = 0;
1418 	} else {
1419 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1420 				 EXTENT_DIRTY | EXTENT_DELALLOC |
1421 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1422 				 NULL, GFP_NOFS);
1423 		*write_bytes = min_t(size_t, *write_bytes, num_bytes);
1424 	}
1425 
1426 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1427 
1428 	return ret;
1429 }
1430 
1431 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1432 					       struct iov_iter *i,
1433 					       loff_t pos)
1434 {
1435 	struct inode *inode = file_inode(file);
1436 	struct btrfs_root *root = BTRFS_I(inode)->root;
1437 	struct page **pages = NULL;
1438 	struct extent_state *cached_state = NULL;
1439 	u64 release_bytes = 0;
1440 	u64 lockstart;
1441 	u64 lockend;
1442 	unsigned long first_index;
1443 	size_t num_written = 0;
1444 	int nrptrs;
1445 	int ret = 0;
1446 	bool only_release_metadata = false;
1447 	bool force_page_uptodate = false;
1448 	bool need_unlock;
1449 
1450 	nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1451 		     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1452 		     (sizeof(struct page *)));
1453 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1454 	nrptrs = max(nrptrs, 8);
1455 	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1456 	if (!pages)
1457 		return -ENOMEM;
1458 
1459 	first_index = pos >> PAGE_CACHE_SHIFT;
1460 
1461 	while (iov_iter_count(i) > 0) {
1462 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1463 		size_t write_bytes = min(iov_iter_count(i),
1464 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
1465 					 offset);
1466 		size_t num_pages = (write_bytes + offset +
1467 				    PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1468 		size_t reserve_bytes;
1469 		size_t dirty_pages;
1470 		size_t copied;
1471 
1472 		WARN_ON(num_pages > nrptrs);
1473 
1474 		/*
1475 		 * Fault pages before locking them in prepare_pages
1476 		 * to avoid recursive lock
1477 		 */
1478 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1479 			ret = -EFAULT;
1480 			break;
1481 		}
1482 
1483 		reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1484 		ret = btrfs_check_data_free_space(inode, reserve_bytes);
1485 		if (ret == -ENOSPC &&
1486 		    (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1487 					      BTRFS_INODE_PREALLOC))) {
1488 			ret = check_can_nocow(inode, pos, &write_bytes);
1489 			if (ret > 0) {
1490 				only_release_metadata = true;
1491 				/*
1492 				 * our prealloc extent may be smaller than
1493 				 * write_bytes, so scale down.
1494 				 */
1495 				num_pages = (write_bytes + offset +
1496 					     PAGE_CACHE_SIZE - 1) >>
1497 					PAGE_CACHE_SHIFT;
1498 				reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1499 				ret = 0;
1500 			} else {
1501 				ret = -ENOSPC;
1502 			}
1503 		}
1504 
1505 		if (ret)
1506 			break;
1507 
1508 		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1509 		if (ret) {
1510 			if (!only_release_metadata)
1511 				btrfs_free_reserved_data_space(inode,
1512 							       reserve_bytes);
1513 			break;
1514 		}
1515 
1516 		release_bytes = reserve_bytes;
1517 		need_unlock = false;
1518 again:
1519 		/*
1520 		 * This is going to setup the pages array with the number of
1521 		 * pages we want, so we don't really need to worry about the
1522 		 * contents of pages from loop to loop
1523 		 */
1524 		ret = prepare_pages(inode, pages, num_pages,
1525 				    pos, write_bytes,
1526 				    force_page_uptodate);
1527 		if (ret)
1528 			break;
1529 
1530 		ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1531 						      pos, &lockstart, &lockend,
1532 						      &cached_state);
1533 		if (ret < 0) {
1534 			if (ret == -EAGAIN)
1535 				goto again;
1536 			break;
1537 		} else if (ret > 0) {
1538 			need_unlock = true;
1539 			ret = 0;
1540 		}
1541 
1542 		copied = btrfs_copy_from_user(pos, num_pages,
1543 					   write_bytes, pages, i);
1544 
1545 		/*
1546 		 * if we have trouble faulting in the pages, fall
1547 		 * back to one page at a time
1548 		 */
1549 		if (copied < write_bytes)
1550 			nrptrs = 1;
1551 
1552 		if (copied == 0) {
1553 			force_page_uptodate = true;
1554 			dirty_pages = 0;
1555 		} else {
1556 			force_page_uptodate = false;
1557 			dirty_pages = (copied + offset +
1558 				       PAGE_CACHE_SIZE - 1) >>
1559 				       PAGE_CACHE_SHIFT;
1560 		}
1561 
1562 		/*
1563 		 * If we had a short copy we need to release the excess delaloc
1564 		 * bytes we reserved.  We need to increment outstanding_extents
1565 		 * because btrfs_delalloc_release_space will decrement it, but
1566 		 * we still have an outstanding extent for the chunk we actually
1567 		 * managed to copy.
1568 		 */
1569 		if (num_pages > dirty_pages) {
1570 			release_bytes = (num_pages - dirty_pages) <<
1571 				PAGE_CACHE_SHIFT;
1572 			if (copied > 0) {
1573 				spin_lock(&BTRFS_I(inode)->lock);
1574 				BTRFS_I(inode)->outstanding_extents++;
1575 				spin_unlock(&BTRFS_I(inode)->lock);
1576 			}
1577 			if (only_release_metadata)
1578 				btrfs_delalloc_release_metadata(inode,
1579 								release_bytes);
1580 			else
1581 				btrfs_delalloc_release_space(inode,
1582 							     release_bytes);
1583 		}
1584 
1585 		release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1586 
1587 		if (copied > 0)
1588 			ret = btrfs_dirty_pages(root, inode, pages,
1589 						dirty_pages, pos, copied,
1590 						NULL);
1591 		if (need_unlock)
1592 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1593 					     lockstart, lockend, &cached_state,
1594 					     GFP_NOFS);
1595 		if (ret) {
1596 			btrfs_drop_pages(pages, num_pages);
1597 			break;
1598 		}
1599 
1600 		release_bytes = 0;
1601 		if (only_release_metadata && copied > 0) {
1602 			u64 lockstart = round_down(pos, root->sectorsize);
1603 			u64 lockend = lockstart +
1604 				(dirty_pages << PAGE_CACHE_SHIFT) - 1;
1605 
1606 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1607 				       lockend, EXTENT_NORESERVE, NULL,
1608 				       NULL, GFP_NOFS);
1609 			only_release_metadata = false;
1610 		}
1611 
1612 		btrfs_drop_pages(pages, num_pages);
1613 
1614 		cond_resched();
1615 
1616 		balance_dirty_pages_ratelimited(inode->i_mapping);
1617 		if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1618 			btrfs_btree_balance_dirty(root);
1619 
1620 		pos += copied;
1621 		num_written += copied;
1622 	}
1623 
1624 	kfree(pages);
1625 
1626 	if (release_bytes) {
1627 		if (only_release_metadata)
1628 			btrfs_delalloc_release_metadata(inode, release_bytes);
1629 		else
1630 			btrfs_delalloc_release_space(inode, release_bytes);
1631 	}
1632 
1633 	return num_written ? num_written : ret;
1634 }
1635 
1636 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1637 				    const struct iovec *iov,
1638 				    unsigned long nr_segs, loff_t pos,
1639 				    loff_t *ppos, size_t count, size_t ocount)
1640 {
1641 	struct file *file = iocb->ki_filp;
1642 	struct iov_iter i;
1643 	ssize_t written;
1644 	ssize_t written_buffered;
1645 	loff_t endbyte;
1646 	int err;
1647 
1648 	written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1649 					    count, ocount);
1650 
1651 	if (written < 0 || written == count)
1652 		return written;
1653 
1654 	pos += written;
1655 	count -= written;
1656 	iov_iter_init(&i, iov, nr_segs, count, written);
1657 	written_buffered = __btrfs_buffered_write(file, &i, pos);
1658 	if (written_buffered < 0) {
1659 		err = written_buffered;
1660 		goto out;
1661 	}
1662 	endbyte = pos + written_buffered - 1;
1663 	err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1664 	if (err)
1665 		goto out;
1666 	written += written_buffered;
1667 	*ppos = pos + written_buffered;
1668 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1669 				 endbyte >> PAGE_CACHE_SHIFT);
1670 out:
1671 	return written ? written : err;
1672 }
1673 
1674 static void update_time_for_write(struct inode *inode)
1675 {
1676 	struct timespec now;
1677 
1678 	if (IS_NOCMTIME(inode))
1679 		return;
1680 
1681 	now = current_fs_time(inode->i_sb);
1682 	if (!timespec_equal(&inode->i_mtime, &now))
1683 		inode->i_mtime = now;
1684 
1685 	if (!timespec_equal(&inode->i_ctime, &now))
1686 		inode->i_ctime = now;
1687 
1688 	if (IS_I_VERSION(inode))
1689 		inode_inc_iversion(inode);
1690 }
1691 
1692 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1693 				    const struct iovec *iov,
1694 				    unsigned long nr_segs, loff_t pos)
1695 {
1696 	struct file *file = iocb->ki_filp;
1697 	struct inode *inode = file_inode(file);
1698 	struct btrfs_root *root = BTRFS_I(inode)->root;
1699 	loff_t *ppos = &iocb->ki_pos;
1700 	u64 start_pos;
1701 	ssize_t num_written = 0;
1702 	ssize_t err = 0;
1703 	size_t count, ocount;
1704 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1705 
1706 	mutex_lock(&inode->i_mutex);
1707 
1708 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1709 	if (err) {
1710 		mutex_unlock(&inode->i_mutex);
1711 		goto out;
1712 	}
1713 	count = ocount;
1714 
1715 	current->backing_dev_info = inode->i_mapping->backing_dev_info;
1716 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1717 	if (err) {
1718 		mutex_unlock(&inode->i_mutex);
1719 		goto out;
1720 	}
1721 
1722 	if (count == 0) {
1723 		mutex_unlock(&inode->i_mutex);
1724 		goto out;
1725 	}
1726 
1727 	err = file_remove_suid(file);
1728 	if (err) {
1729 		mutex_unlock(&inode->i_mutex);
1730 		goto out;
1731 	}
1732 
1733 	/*
1734 	 * If BTRFS flips readonly due to some impossible error
1735 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1736 	 * although we have opened a file as writable, we have
1737 	 * to stop this write operation to ensure FS consistency.
1738 	 */
1739 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1740 		mutex_unlock(&inode->i_mutex);
1741 		err = -EROFS;
1742 		goto out;
1743 	}
1744 
1745 	/*
1746 	 * We reserve space for updating the inode when we reserve space for the
1747 	 * extent we are going to write, so we will enospc out there.  We don't
1748 	 * need to start yet another transaction to update the inode as we will
1749 	 * update the inode when we finish writing whatever data we write.
1750 	 */
1751 	update_time_for_write(inode);
1752 
1753 	start_pos = round_down(pos, root->sectorsize);
1754 	if (start_pos > i_size_read(inode)) {
1755 		err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1756 		if (err) {
1757 			mutex_unlock(&inode->i_mutex);
1758 			goto out;
1759 		}
1760 	}
1761 
1762 	if (sync)
1763 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1764 
1765 	if (unlikely(file->f_flags & O_DIRECT)) {
1766 		num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1767 						   pos, ppos, count, ocount);
1768 	} else {
1769 		struct iov_iter i;
1770 
1771 		iov_iter_init(&i, iov, nr_segs, count, num_written);
1772 
1773 		num_written = __btrfs_buffered_write(file, &i, pos);
1774 		if (num_written > 0)
1775 			*ppos = pos + num_written;
1776 	}
1777 
1778 	mutex_unlock(&inode->i_mutex);
1779 
1780 	/*
1781 	 * we want to make sure fsync finds this change
1782 	 * but we haven't joined a transaction running right now.
1783 	 *
1784 	 * Later on, someone is sure to update the inode and get the
1785 	 * real transid recorded.
1786 	 *
1787 	 * We set last_trans now to the fs_info generation + 1,
1788 	 * this will either be one more than the running transaction
1789 	 * or the generation used for the next transaction if there isn't
1790 	 * one running right now.
1791 	 *
1792 	 * We also have to set last_sub_trans to the current log transid,
1793 	 * otherwise subsequent syncs to a file that's been synced in this
1794 	 * transaction will appear to have already occured.
1795 	 */
1796 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1797 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1798 	if (num_written > 0) {
1799 		err = generic_write_sync(file, pos, num_written);
1800 		if (err < 0 && num_written > 0)
1801 			num_written = err;
1802 	}
1803 
1804 	if (sync)
1805 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1806 out:
1807 	current->backing_dev_info = NULL;
1808 	return num_written ? num_written : err;
1809 }
1810 
1811 int btrfs_release_file(struct inode *inode, struct file *filp)
1812 {
1813 	/*
1814 	 * ordered_data_close is set by settattr when we are about to truncate
1815 	 * a file from a non-zero size to a zero size.  This tries to
1816 	 * flush down new bytes that may have been written if the
1817 	 * application were using truncate to replace a file in place.
1818 	 */
1819 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1820 			       &BTRFS_I(inode)->runtime_flags)) {
1821 		struct btrfs_trans_handle *trans;
1822 		struct btrfs_root *root = BTRFS_I(inode)->root;
1823 
1824 		/*
1825 		 * We need to block on a committing transaction to keep us from
1826 		 * throwing a ordered operation on to the list and causing
1827 		 * something like sync to deadlock trying to flush out this
1828 		 * inode.
1829 		 */
1830 		trans = btrfs_start_transaction(root, 0);
1831 		if (IS_ERR(trans))
1832 			return PTR_ERR(trans);
1833 		btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1834 		btrfs_end_transaction(trans, root);
1835 		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1836 			filemap_flush(inode->i_mapping);
1837 	}
1838 	if (filp->private_data)
1839 		btrfs_ioctl_trans_end(filp);
1840 	return 0;
1841 }
1842 
1843 /*
1844  * fsync call for both files and directories.  This logs the inode into
1845  * the tree log instead of forcing full commits whenever possible.
1846  *
1847  * It needs to call filemap_fdatawait so that all ordered extent updates are
1848  * in the metadata btree are up to date for copying to the log.
1849  *
1850  * It drops the inode mutex before doing the tree log commit.  This is an
1851  * important optimization for directories because holding the mutex prevents
1852  * new operations on the dir while we write to disk.
1853  */
1854 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1855 {
1856 	struct dentry *dentry = file->f_path.dentry;
1857 	struct inode *inode = dentry->d_inode;
1858 	struct btrfs_root *root = BTRFS_I(inode)->root;
1859 	int ret = 0;
1860 	struct btrfs_trans_handle *trans;
1861 	bool full_sync = 0;
1862 
1863 	trace_btrfs_sync_file(file, datasync);
1864 
1865 	/*
1866 	 * We write the dirty pages in the range and wait until they complete
1867 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1868 	 * multi-task, and make the performance up.  See
1869 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1870 	 */
1871 	atomic_inc(&BTRFS_I(inode)->sync_writers);
1872 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1873 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1874 			     &BTRFS_I(inode)->runtime_flags))
1875 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1876 	atomic_dec(&BTRFS_I(inode)->sync_writers);
1877 	if (ret)
1878 		return ret;
1879 
1880 	mutex_lock(&inode->i_mutex);
1881 
1882 	/*
1883 	 * We flush the dirty pages again to avoid some dirty pages in the
1884 	 * range being left.
1885 	 */
1886 	atomic_inc(&root->log_batch);
1887 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1888 			     &BTRFS_I(inode)->runtime_flags);
1889 	if (full_sync) {
1890 		ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1891 		if (ret) {
1892 			mutex_unlock(&inode->i_mutex);
1893 			goto out;
1894 		}
1895 	}
1896 	atomic_inc(&root->log_batch);
1897 
1898 	/*
1899 	 * check the transaction that last modified this inode
1900 	 * and see if its already been committed
1901 	 */
1902 	if (!BTRFS_I(inode)->last_trans) {
1903 		mutex_unlock(&inode->i_mutex);
1904 		goto out;
1905 	}
1906 
1907 	/*
1908 	 * if the last transaction that changed this file was before
1909 	 * the current transaction, we can bail out now without any
1910 	 * syncing
1911 	 */
1912 	smp_mb();
1913 	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1914 	    BTRFS_I(inode)->last_trans <=
1915 	    root->fs_info->last_trans_committed) {
1916 		BTRFS_I(inode)->last_trans = 0;
1917 
1918 		/*
1919 		 * We'v had everything committed since the last time we were
1920 		 * modified so clear this flag in case it was set for whatever
1921 		 * reason, it's no longer relevant.
1922 		 */
1923 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1924 			  &BTRFS_I(inode)->runtime_flags);
1925 		mutex_unlock(&inode->i_mutex);
1926 		goto out;
1927 	}
1928 
1929 	/*
1930 	 * ok we haven't committed the transaction yet, lets do a commit
1931 	 */
1932 	if (file->private_data)
1933 		btrfs_ioctl_trans_end(file);
1934 
1935 	/*
1936 	 * We use start here because we will need to wait on the IO to complete
1937 	 * in btrfs_sync_log, which could require joining a transaction (for
1938 	 * example checking cross references in the nocow path).  If we use join
1939 	 * here we could get into a situation where we're waiting on IO to
1940 	 * happen that is blocked on a transaction trying to commit.  With start
1941 	 * we inc the extwriter counter, so we wait for all extwriters to exit
1942 	 * before we start blocking join'ers.  This comment is to keep somebody
1943 	 * from thinking they are super smart and changing this to
1944 	 * btrfs_join_transaction *cough*Josef*cough*.
1945 	 */
1946 	trans = btrfs_start_transaction(root, 0);
1947 	if (IS_ERR(trans)) {
1948 		ret = PTR_ERR(trans);
1949 		mutex_unlock(&inode->i_mutex);
1950 		goto out;
1951 	}
1952 	trans->sync = true;
1953 
1954 	ret = btrfs_log_dentry_safe(trans, root, dentry);
1955 	if (ret < 0) {
1956 		/* Fallthrough and commit/free transaction. */
1957 		ret = 1;
1958 	}
1959 
1960 	/* we've logged all the items and now have a consistent
1961 	 * version of the file in the log.  It is possible that
1962 	 * someone will come in and modify the file, but that's
1963 	 * fine because the log is consistent on disk, and we
1964 	 * have references to all of the file's extents
1965 	 *
1966 	 * It is possible that someone will come in and log the
1967 	 * file again, but that will end up using the synchronization
1968 	 * inside btrfs_sync_log to keep things safe.
1969 	 */
1970 	mutex_unlock(&inode->i_mutex);
1971 
1972 	if (ret != BTRFS_NO_LOG_SYNC) {
1973 		if (!ret) {
1974 			ret = btrfs_sync_log(trans, root);
1975 			if (!ret) {
1976 				ret = btrfs_end_transaction(trans, root);
1977 				goto out;
1978 			}
1979 		}
1980 		if (!full_sync) {
1981 			ret = btrfs_wait_ordered_range(inode, start,
1982 						       end - start + 1);
1983 			if (ret)
1984 				goto out;
1985 		}
1986 		ret = btrfs_commit_transaction(trans, root);
1987 	} else {
1988 		ret = btrfs_end_transaction(trans, root);
1989 	}
1990 out:
1991 	return ret > 0 ? -EIO : ret;
1992 }
1993 
1994 static const struct vm_operations_struct btrfs_file_vm_ops = {
1995 	.fault		= filemap_fault,
1996 	.page_mkwrite	= btrfs_page_mkwrite,
1997 	.remap_pages	= generic_file_remap_pages,
1998 };
1999 
2000 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2001 {
2002 	struct address_space *mapping = filp->f_mapping;
2003 
2004 	if (!mapping->a_ops->readpage)
2005 		return -ENOEXEC;
2006 
2007 	file_accessed(filp);
2008 	vma->vm_ops = &btrfs_file_vm_ops;
2009 
2010 	return 0;
2011 }
2012 
2013 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2014 			  int slot, u64 start, u64 end)
2015 {
2016 	struct btrfs_file_extent_item *fi;
2017 	struct btrfs_key key;
2018 
2019 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2020 		return 0;
2021 
2022 	btrfs_item_key_to_cpu(leaf, &key, slot);
2023 	if (key.objectid != btrfs_ino(inode) ||
2024 	    key.type != BTRFS_EXTENT_DATA_KEY)
2025 		return 0;
2026 
2027 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2028 
2029 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2030 		return 0;
2031 
2032 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2033 		return 0;
2034 
2035 	if (key.offset == end)
2036 		return 1;
2037 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2038 		return 1;
2039 	return 0;
2040 }
2041 
2042 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2043 		      struct btrfs_path *path, u64 offset, u64 end)
2044 {
2045 	struct btrfs_root *root = BTRFS_I(inode)->root;
2046 	struct extent_buffer *leaf;
2047 	struct btrfs_file_extent_item *fi;
2048 	struct extent_map *hole_em;
2049 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2050 	struct btrfs_key key;
2051 	int ret;
2052 
2053 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2054 		goto out;
2055 
2056 	key.objectid = btrfs_ino(inode);
2057 	key.type = BTRFS_EXTENT_DATA_KEY;
2058 	key.offset = offset;
2059 
2060 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2061 	if (ret < 0)
2062 		return ret;
2063 	BUG_ON(!ret);
2064 
2065 	leaf = path->nodes[0];
2066 	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2067 		u64 num_bytes;
2068 
2069 		path->slots[0]--;
2070 		fi = btrfs_item_ptr(leaf, path->slots[0],
2071 				    struct btrfs_file_extent_item);
2072 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2073 			end - offset;
2074 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2075 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2076 		btrfs_set_file_extent_offset(leaf, fi, 0);
2077 		btrfs_mark_buffer_dirty(leaf);
2078 		goto out;
2079 	}
2080 
2081 	if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
2082 		u64 num_bytes;
2083 
2084 		path->slots[0]++;
2085 		key.offset = offset;
2086 		btrfs_set_item_key_safe(root, path, &key);
2087 		fi = btrfs_item_ptr(leaf, path->slots[0],
2088 				    struct btrfs_file_extent_item);
2089 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2090 			offset;
2091 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2092 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2093 		btrfs_set_file_extent_offset(leaf, fi, 0);
2094 		btrfs_mark_buffer_dirty(leaf);
2095 		goto out;
2096 	}
2097 	btrfs_release_path(path);
2098 
2099 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2100 				       0, 0, end - offset, 0, end - offset,
2101 				       0, 0, 0);
2102 	if (ret)
2103 		return ret;
2104 
2105 out:
2106 	btrfs_release_path(path);
2107 
2108 	hole_em = alloc_extent_map();
2109 	if (!hole_em) {
2110 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2111 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2112 			&BTRFS_I(inode)->runtime_flags);
2113 	} else {
2114 		hole_em->start = offset;
2115 		hole_em->len = end - offset;
2116 		hole_em->ram_bytes = hole_em->len;
2117 		hole_em->orig_start = offset;
2118 
2119 		hole_em->block_start = EXTENT_MAP_HOLE;
2120 		hole_em->block_len = 0;
2121 		hole_em->orig_block_len = 0;
2122 		hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2123 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2124 		hole_em->generation = trans->transid;
2125 
2126 		do {
2127 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2128 			write_lock(&em_tree->lock);
2129 			ret = add_extent_mapping(em_tree, hole_em, 1);
2130 			write_unlock(&em_tree->lock);
2131 		} while (ret == -EEXIST);
2132 		free_extent_map(hole_em);
2133 		if (ret)
2134 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2135 				&BTRFS_I(inode)->runtime_flags);
2136 	}
2137 
2138 	return 0;
2139 }
2140 
2141 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2142 {
2143 	struct btrfs_root *root = BTRFS_I(inode)->root;
2144 	struct extent_state *cached_state = NULL;
2145 	struct btrfs_path *path;
2146 	struct btrfs_block_rsv *rsv;
2147 	struct btrfs_trans_handle *trans;
2148 	u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2149 	u64 lockend = round_down(offset + len,
2150 				 BTRFS_I(inode)->root->sectorsize) - 1;
2151 	u64 cur_offset = lockstart;
2152 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2153 	u64 drop_end;
2154 	int ret = 0;
2155 	int err = 0;
2156 	int rsv_count;
2157 	bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2158 			  ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2159 	bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2160 
2161 	ret = btrfs_wait_ordered_range(inode, offset, len);
2162 	if (ret)
2163 		return ret;
2164 
2165 	mutex_lock(&inode->i_mutex);
2166 	/*
2167 	 * We needn't truncate any page which is beyond the end of the file
2168 	 * because we are sure there is no data there.
2169 	 */
2170 	/*
2171 	 * Only do this if we are in the same page and we aren't doing the
2172 	 * entire page.
2173 	 */
2174 	if (same_page && len < PAGE_CACHE_SIZE) {
2175 		if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
2176 			ret = btrfs_truncate_page(inode, offset, len, 0);
2177 		mutex_unlock(&inode->i_mutex);
2178 		return ret;
2179 	}
2180 
2181 	/* zero back part of the first page */
2182 	if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2183 		ret = btrfs_truncate_page(inode, offset, 0, 0);
2184 		if (ret) {
2185 			mutex_unlock(&inode->i_mutex);
2186 			return ret;
2187 		}
2188 	}
2189 
2190 	/* zero the front end of the last page */
2191 	if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2192 		ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2193 		if (ret) {
2194 			mutex_unlock(&inode->i_mutex);
2195 			return ret;
2196 		}
2197 	}
2198 
2199 	if (lockend < lockstart) {
2200 		mutex_unlock(&inode->i_mutex);
2201 		return 0;
2202 	}
2203 
2204 	while (1) {
2205 		struct btrfs_ordered_extent *ordered;
2206 
2207 		truncate_pagecache_range(inode, lockstart, lockend);
2208 
2209 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2210 				 0, &cached_state);
2211 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2212 
2213 		/*
2214 		 * We need to make sure we have no ordered extents in this range
2215 		 * and nobody raced in and read a page in this range, if we did
2216 		 * we need to try again.
2217 		 */
2218 		if ((!ordered ||
2219 		    (ordered->file_offset + ordered->len <= lockstart ||
2220 		     ordered->file_offset > lockend)) &&
2221 		     !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2222 				     lockend, EXTENT_UPTODATE, 0,
2223 				     cached_state)) {
2224 			if (ordered)
2225 				btrfs_put_ordered_extent(ordered);
2226 			break;
2227 		}
2228 		if (ordered)
2229 			btrfs_put_ordered_extent(ordered);
2230 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2231 				     lockend, &cached_state, GFP_NOFS);
2232 		ret = btrfs_wait_ordered_range(inode, lockstart,
2233 					       lockend - lockstart + 1);
2234 		if (ret) {
2235 			mutex_unlock(&inode->i_mutex);
2236 			return ret;
2237 		}
2238 	}
2239 
2240 	path = btrfs_alloc_path();
2241 	if (!path) {
2242 		ret = -ENOMEM;
2243 		goto out;
2244 	}
2245 
2246 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2247 	if (!rsv) {
2248 		ret = -ENOMEM;
2249 		goto out_free;
2250 	}
2251 	rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2252 	rsv->failfast = 1;
2253 
2254 	/*
2255 	 * 1 - update the inode
2256 	 * 1 - removing the extents in the range
2257 	 * 1 - adding the hole extent if no_holes isn't set
2258 	 */
2259 	rsv_count = no_holes ? 2 : 3;
2260 	trans = btrfs_start_transaction(root, rsv_count);
2261 	if (IS_ERR(trans)) {
2262 		err = PTR_ERR(trans);
2263 		goto out_free;
2264 	}
2265 
2266 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2267 				      min_size);
2268 	BUG_ON(ret);
2269 	trans->block_rsv = rsv;
2270 
2271 	while (cur_offset < lockend) {
2272 		ret = __btrfs_drop_extents(trans, root, inode, path,
2273 					   cur_offset, lockend + 1,
2274 					   &drop_end, 1, 0, 0, NULL);
2275 		if (ret != -ENOSPC)
2276 			break;
2277 
2278 		trans->block_rsv = &root->fs_info->trans_block_rsv;
2279 
2280 		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2281 		if (ret) {
2282 			err = ret;
2283 			break;
2284 		}
2285 
2286 		cur_offset = drop_end;
2287 
2288 		ret = btrfs_update_inode(trans, root, inode);
2289 		if (ret) {
2290 			err = ret;
2291 			break;
2292 		}
2293 
2294 		btrfs_end_transaction(trans, root);
2295 		btrfs_btree_balance_dirty(root);
2296 
2297 		trans = btrfs_start_transaction(root, rsv_count);
2298 		if (IS_ERR(trans)) {
2299 			ret = PTR_ERR(trans);
2300 			trans = NULL;
2301 			break;
2302 		}
2303 
2304 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2305 					      rsv, min_size);
2306 		BUG_ON(ret);	/* shouldn't happen */
2307 		trans->block_rsv = rsv;
2308 	}
2309 
2310 	if (ret) {
2311 		err = ret;
2312 		goto out_trans;
2313 	}
2314 
2315 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2316 	ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2317 	if (ret) {
2318 		err = ret;
2319 		goto out_trans;
2320 	}
2321 
2322 out_trans:
2323 	if (!trans)
2324 		goto out_free;
2325 
2326 	inode_inc_iversion(inode);
2327 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2328 
2329 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2330 	ret = btrfs_update_inode(trans, root, inode);
2331 	btrfs_end_transaction(trans, root);
2332 	btrfs_btree_balance_dirty(root);
2333 out_free:
2334 	btrfs_free_path(path);
2335 	btrfs_free_block_rsv(root, rsv);
2336 out:
2337 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2338 			     &cached_state, GFP_NOFS);
2339 	mutex_unlock(&inode->i_mutex);
2340 	if (ret && !err)
2341 		err = ret;
2342 	return err;
2343 }
2344 
2345 static long btrfs_fallocate(struct file *file, int mode,
2346 			    loff_t offset, loff_t len)
2347 {
2348 	struct inode *inode = file_inode(file);
2349 	struct extent_state *cached_state = NULL;
2350 	struct btrfs_root *root = BTRFS_I(inode)->root;
2351 	u64 cur_offset;
2352 	u64 last_byte;
2353 	u64 alloc_start;
2354 	u64 alloc_end;
2355 	u64 alloc_hint = 0;
2356 	u64 locked_end;
2357 	struct extent_map *em;
2358 	int blocksize = BTRFS_I(inode)->root->sectorsize;
2359 	int ret;
2360 
2361 	alloc_start = round_down(offset, blocksize);
2362 	alloc_end = round_up(offset + len, blocksize);
2363 
2364 	/* Make sure we aren't being give some crap mode */
2365 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2366 		return -EOPNOTSUPP;
2367 
2368 	if (mode & FALLOC_FL_PUNCH_HOLE)
2369 		return btrfs_punch_hole(inode, offset, len);
2370 
2371 	/*
2372 	 * Make sure we have enough space before we do the
2373 	 * allocation.
2374 	 */
2375 	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2376 	if (ret)
2377 		return ret;
2378 	if (root->fs_info->quota_enabled) {
2379 		ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2380 		if (ret)
2381 			goto out_reserve_fail;
2382 	}
2383 
2384 	mutex_lock(&inode->i_mutex);
2385 	ret = inode_newsize_ok(inode, alloc_end);
2386 	if (ret)
2387 		goto out;
2388 
2389 	if (alloc_start > inode->i_size) {
2390 		ret = btrfs_cont_expand(inode, i_size_read(inode),
2391 					alloc_start);
2392 		if (ret)
2393 			goto out;
2394 	} else {
2395 		/*
2396 		 * If we are fallocating from the end of the file onward we
2397 		 * need to zero out the end of the page if i_size lands in the
2398 		 * middle of a page.
2399 		 */
2400 		ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2401 		if (ret)
2402 			goto out;
2403 	}
2404 
2405 	/*
2406 	 * wait for ordered IO before we have any locks.  We'll loop again
2407 	 * below with the locks held.
2408 	 */
2409 	ret = btrfs_wait_ordered_range(inode, alloc_start,
2410 				       alloc_end - alloc_start);
2411 	if (ret)
2412 		goto out;
2413 
2414 	locked_end = alloc_end - 1;
2415 	while (1) {
2416 		struct btrfs_ordered_extent *ordered;
2417 
2418 		/* the extent lock is ordered inside the running
2419 		 * transaction
2420 		 */
2421 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2422 				 locked_end, 0, &cached_state);
2423 		ordered = btrfs_lookup_first_ordered_extent(inode,
2424 							    alloc_end - 1);
2425 		if (ordered &&
2426 		    ordered->file_offset + ordered->len > alloc_start &&
2427 		    ordered->file_offset < alloc_end) {
2428 			btrfs_put_ordered_extent(ordered);
2429 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2430 					     alloc_start, locked_end,
2431 					     &cached_state, GFP_NOFS);
2432 			/*
2433 			 * we can't wait on the range with the transaction
2434 			 * running or with the extent lock held
2435 			 */
2436 			ret = btrfs_wait_ordered_range(inode, alloc_start,
2437 						       alloc_end - alloc_start);
2438 			if (ret)
2439 				goto out;
2440 		} else {
2441 			if (ordered)
2442 				btrfs_put_ordered_extent(ordered);
2443 			break;
2444 		}
2445 	}
2446 
2447 	cur_offset = alloc_start;
2448 	while (1) {
2449 		u64 actual_end;
2450 
2451 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2452 				      alloc_end - cur_offset, 0);
2453 		if (IS_ERR_OR_NULL(em)) {
2454 			if (!em)
2455 				ret = -ENOMEM;
2456 			else
2457 				ret = PTR_ERR(em);
2458 			break;
2459 		}
2460 		last_byte = min(extent_map_end(em), alloc_end);
2461 		actual_end = min_t(u64, extent_map_end(em), offset + len);
2462 		last_byte = ALIGN(last_byte, blocksize);
2463 
2464 		if (em->block_start == EXTENT_MAP_HOLE ||
2465 		    (cur_offset >= inode->i_size &&
2466 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2467 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2468 							last_byte - cur_offset,
2469 							1 << inode->i_blkbits,
2470 							offset + len,
2471 							&alloc_hint);
2472 
2473 			if (ret < 0) {
2474 				free_extent_map(em);
2475 				break;
2476 			}
2477 		} else if (actual_end > inode->i_size &&
2478 			   !(mode & FALLOC_FL_KEEP_SIZE)) {
2479 			/*
2480 			 * We didn't need to allocate any more space, but we
2481 			 * still extended the size of the file so we need to
2482 			 * update i_size.
2483 			 */
2484 			inode->i_ctime = CURRENT_TIME;
2485 			i_size_write(inode, actual_end);
2486 			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2487 		}
2488 		free_extent_map(em);
2489 
2490 		cur_offset = last_byte;
2491 		if (cur_offset >= alloc_end) {
2492 			ret = 0;
2493 			break;
2494 		}
2495 	}
2496 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2497 			     &cached_state, GFP_NOFS);
2498 out:
2499 	mutex_unlock(&inode->i_mutex);
2500 	if (root->fs_info->quota_enabled)
2501 		btrfs_qgroup_free(root, alloc_end - alloc_start);
2502 out_reserve_fail:
2503 	/* Let go of our reservation. */
2504 	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2505 	return ret;
2506 }
2507 
2508 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2509 {
2510 	struct btrfs_root *root = BTRFS_I(inode)->root;
2511 	struct extent_map *em = NULL;
2512 	struct extent_state *cached_state = NULL;
2513 	u64 lockstart = *offset;
2514 	u64 lockend = i_size_read(inode);
2515 	u64 start = *offset;
2516 	u64 len = i_size_read(inode);
2517 	int ret = 0;
2518 
2519 	lockend = max_t(u64, root->sectorsize, lockend);
2520 	if (lockend <= lockstart)
2521 		lockend = lockstart + root->sectorsize;
2522 
2523 	lockend--;
2524 	len = lockend - lockstart + 1;
2525 
2526 	len = max_t(u64, len, root->sectorsize);
2527 	if (inode->i_size == 0)
2528 		return -ENXIO;
2529 
2530 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2531 			 &cached_state);
2532 
2533 	while (start < inode->i_size) {
2534 		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2535 		if (IS_ERR(em)) {
2536 			ret = PTR_ERR(em);
2537 			em = NULL;
2538 			break;
2539 		}
2540 
2541 		if (whence == SEEK_HOLE &&
2542 		    (em->block_start == EXTENT_MAP_HOLE ||
2543 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2544 			break;
2545 		else if (whence == SEEK_DATA &&
2546 			   (em->block_start != EXTENT_MAP_HOLE &&
2547 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2548 			break;
2549 
2550 		start = em->start + em->len;
2551 		free_extent_map(em);
2552 		em = NULL;
2553 		cond_resched();
2554 	}
2555 	free_extent_map(em);
2556 	if (!ret) {
2557 		if (whence == SEEK_DATA && start >= inode->i_size)
2558 			ret = -ENXIO;
2559 		else
2560 			*offset = min_t(loff_t, start, inode->i_size);
2561 	}
2562 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2563 			     &cached_state, GFP_NOFS);
2564 	return ret;
2565 }
2566 
2567 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2568 {
2569 	struct inode *inode = file->f_mapping->host;
2570 	int ret;
2571 
2572 	mutex_lock(&inode->i_mutex);
2573 	switch (whence) {
2574 	case SEEK_END:
2575 	case SEEK_CUR:
2576 		offset = generic_file_llseek(file, offset, whence);
2577 		goto out;
2578 	case SEEK_DATA:
2579 	case SEEK_HOLE:
2580 		if (offset >= i_size_read(inode)) {
2581 			mutex_unlock(&inode->i_mutex);
2582 			return -ENXIO;
2583 		}
2584 
2585 		ret = find_desired_extent(inode, &offset, whence);
2586 		if (ret) {
2587 			mutex_unlock(&inode->i_mutex);
2588 			return ret;
2589 		}
2590 	}
2591 
2592 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2593 out:
2594 	mutex_unlock(&inode->i_mutex);
2595 	return offset;
2596 }
2597 
2598 const struct file_operations btrfs_file_operations = {
2599 	.llseek		= btrfs_file_llseek,
2600 	.read		= do_sync_read,
2601 	.write		= do_sync_write,
2602 	.aio_read       = generic_file_aio_read,
2603 	.splice_read	= generic_file_splice_read,
2604 	.aio_write	= btrfs_file_aio_write,
2605 	.mmap		= btrfs_file_mmap,
2606 	.open		= generic_file_open,
2607 	.release	= btrfs_release_file,
2608 	.fsync		= btrfs_sync_file,
2609 	.fallocate	= btrfs_fallocate,
2610 	.unlocked_ioctl	= btrfs_ioctl,
2611 #ifdef CONFIG_COMPAT
2612 	.compat_ioctl	= btrfs_ioctl,
2613 #endif
2614 };
2615 
2616 void btrfs_auto_defrag_exit(void)
2617 {
2618 	if (btrfs_inode_defrag_cachep)
2619 		kmem_cache_destroy(btrfs_inode_defrag_cachep);
2620 }
2621 
2622 int btrfs_auto_defrag_init(void)
2623 {
2624 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2625 					sizeof(struct inode_defrag), 0,
2626 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2627 					NULL);
2628 	if (!btrfs_inode_defrag_cachep)
2629 		return -ENOMEM;
2630 
2631 	return 0;
2632 }
2633