xref: /openbmc/linux/fs/btrfs/file.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31 
32 static struct kmem_cache *btrfs_inode_defrag_cachep;
33 /*
34  * when auto defrag is enabled we
35  * queue up these defrag structs to remember which
36  * inodes need defragging passes
37  */
38 struct inode_defrag {
39 	struct rb_node rb_node;
40 	/* objectid */
41 	u64 ino;
42 	/*
43 	 * transid where the defrag was added, we search for
44 	 * extents newer than this
45 	 */
46 	u64 transid;
47 
48 	/* root objectid */
49 	u64 root;
50 
51 	/* last offset we were able to defrag */
52 	u64 last_offset;
53 
54 	/* if we've wrapped around back to zero once already */
55 	int cycled;
56 };
57 
58 static int __compare_inode_defrag(struct inode_defrag *defrag1,
59 				  struct inode_defrag *defrag2)
60 {
61 	if (defrag1->root > defrag2->root)
62 		return 1;
63 	else if (defrag1->root < defrag2->root)
64 		return -1;
65 	else if (defrag1->ino > defrag2->ino)
66 		return 1;
67 	else if (defrag1->ino < defrag2->ino)
68 		return -1;
69 	else
70 		return 0;
71 }
72 
73 /* pop a record for an inode into the defrag tree.  The lock
74  * must be held already
75  *
76  * If you're inserting a record for an older transid than an
77  * existing record, the transid already in the tree is lowered
78  *
79  * If an existing record is found the defrag item you
80  * pass in is freed
81  */
82 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
83 				    struct inode_defrag *defrag)
84 {
85 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
86 	struct inode_defrag *entry;
87 	struct rb_node **p;
88 	struct rb_node *parent = NULL;
89 	int ret;
90 
91 	p = &fs_info->defrag_inodes.rb_node;
92 	while (*p) {
93 		parent = *p;
94 		entry = rb_entry(parent, struct inode_defrag, rb_node);
95 
96 		ret = __compare_inode_defrag(defrag, entry);
97 		if (ret < 0)
98 			p = &parent->rb_left;
99 		else if (ret > 0)
100 			p = &parent->rb_right;
101 		else {
102 			/* if we're reinserting an entry for
103 			 * an old defrag run, make sure to
104 			 * lower the transid of our existing record
105 			 */
106 			if (defrag->transid < entry->transid)
107 				entry->transid = defrag->transid;
108 			if (defrag->last_offset > entry->last_offset)
109 				entry->last_offset = defrag->last_offset;
110 			return -EEXIST;
111 		}
112 	}
113 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
114 	rb_link_node(&defrag->rb_node, parent, p);
115 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
116 	return 0;
117 }
118 
119 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
120 {
121 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
122 		return 0;
123 
124 	if (btrfs_fs_closing(fs_info))
125 		return 0;
126 
127 	return 1;
128 }
129 
130 /*
131  * insert a defrag record for this inode if auto defrag is
132  * enabled
133  */
134 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
135 			   struct btrfs_inode *inode)
136 {
137 	struct btrfs_root *root = inode->root;
138 	struct btrfs_fs_info *fs_info = root->fs_info;
139 	struct inode_defrag *defrag;
140 	u64 transid;
141 	int ret;
142 
143 	if (!__need_auto_defrag(fs_info))
144 		return 0;
145 
146 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
147 		return 0;
148 
149 	if (trans)
150 		transid = trans->transid;
151 	else
152 		transid = inode->root->last_trans;
153 
154 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
155 	if (!defrag)
156 		return -ENOMEM;
157 
158 	defrag->ino = btrfs_ino(inode);
159 	defrag->transid = transid;
160 	defrag->root = root->root_key.objectid;
161 
162 	spin_lock(&fs_info->defrag_inodes_lock);
163 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
164 		/*
165 		 * If we set IN_DEFRAG flag and evict the inode from memory,
166 		 * and then re-read this inode, this new inode doesn't have
167 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
168 		 */
169 		ret = __btrfs_add_inode_defrag(inode, defrag);
170 		if (ret)
171 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
172 	} else {
173 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174 	}
175 	spin_unlock(&fs_info->defrag_inodes_lock);
176 	return 0;
177 }
178 
179 /*
180  * Requeue the defrag object. If there is a defrag object that points to
181  * the same inode in the tree, we will merge them together (by
182  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
183  */
184 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
185 				       struct inode_defrag *defrag)
186 {
187 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
188 	int ret;
189 
190 	if (!__need_auto_defrag(fs_info))
191 		goto out;
192 
193 	/*
194 	 * Here we don't check the IN_DEFRAG flag, because we need merge
195 	 * them together.
196 	 */
197 	spin_lock(&fs_info->defrag_inodes_lock);
198 	ret = __btrfs_add_inode_defrag(inode, defrag);
199 	spin_unlock(&fs_info->defrag_inodes_lock);
200 	if (ret)
201 		goto out;
202 	return;
203 out:
204 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
205 }
206 
207 /*
208  * pick the defragable inode that we want, if it doesn't exist, we will get
209  * the next one.
210  */
211 static struct inode_defrag *
212 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
213 {
214 	struct inode_defrag *entry = NULL;
215 	struct inode_defrag tmp;
216 	struct rb_node *p;
217 	struct rb_node *parent = NULL;
218 	int ret;
219 
220 	tmp.ino = ino;
221 	tmp.root = root;
222 
223 	spin_lock(&fs_info->defrag_inodes_lock);
224 	p = fs_info->defrag_inodes.rb_node;
225 	while (p) {
226 		parent = p;
227 		entry = rb_entry(parent, struct inode_defrag, rb_node);
228 
229 		ret = __compare_inode_defrag(&tmp, entry);
230 		if (ret < 0)
231 			p = parent->rb_left;
232 		else if (ret > 0)
233 			p = parent->rb_right;
234 		else
235 			goto out;
236 	}
237 
238 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
239 		parent = rb_next(parent);
240 		if (parent)
241 			entry = rb_entry(parent, struct inode_defrag, rb_node);
242 		else
243 			entry = NULL;
244 	}
245 out:
246 	if (entry)
247 		rb_erase(parent, &fs_info->defrag_inodes);
248 	spin_unlock(&fs_info->defrag_inodes_lock);
249 	return entry;
250 }
251 
252 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
253 {
254 	struct inode_defrag *defrag;
255 	struct rb_node *node;
256 
257 	spin_lock(&fs_info->defrag_inodes_lock);
258 	node = rb_first(&fs_info->defrag_inodes);
259 	while (node) {
260 		rb_erase(node, &fs_info->defrag_inodes);
261 		defrag = rb_entry(node, struct inode_defrag, rb_node);
262 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
263 
264 		cond_resched_lock(&fs_info->defrag_inodes_lock);
265 
266 		node = rb_first(&fs_info->defrag_inodes);
267 	}
268 	spin_unlock(&fs_info->defrag_inodes_lock);
269 }
270 
271 #define BTRFS_DEFRAG_BATCH	1024
272 
273 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
274 				    struct inode_defrag *defrag)
275 {
276 	struct btrfs_root *inode_root;
277 	struct inode *inode;
278 	struct btrfs_ioctl_defrag_range_args range;
279 	int num_defrag;
280 	int ret;
281 
282 	/* get the inode */
283 	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
284 	if (IS_ERR(inode_root)) {
285 		ret = PTR_ERR(inode_root);
286 		goto cleanup;
287 	}
288 
289 	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
290 	btrfs_put_root(inode_root);
291 	if (IS_ERR(inode)) {
292 		ret = PTR_ERR(inode);
293 		goto cleanup;
294 	}
295 
296 	/* do a chunk of defrag */
297 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
298 	memset(&range, 0, sizeof(range));
299 	range.len = (u64)-1;
300 	range.start = defrag->last_offset;
301 
302 	sb_start_write(fs_info->sb);
303 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
304 				       BTRFS_DEFRAG_BATCH);
305 	sb_end_write(fs_info->sb);
306 	/*
307 	 * if we filled the whole defrag batch, there
308 	 * must be more work to do.  Queue this defrag
309 	 * again
310 	 */
311 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
312 		defrag->last_offset = range.start;
313 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
314 	} else if (defrag->last_offset && !defrag->cycled) {
315 		/*
316 		 * we didn't fill our defrag batch, but
317 		 * we didn't start at zero.  Make sure we loop
318 		 * around to the start of the file.
319 		 */
320 		defrag->last_offset = 0;
321 		defrag->cycled = 1;
322 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
323 	} else {
324 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
325 	}
326 
327 	iput(inode);
328 	return 0;
329 cleanup:
330 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
331 	return ret;
332 }
333 
334 /*
335  * run through the list of inodes in the FS that need
336  * defragging
337  */
338 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
339 {
340 	struct inode_defrag *defrag;
341 	u64 first_ino = 0;
342 	u64 root_objectid = 0;
343 
344 	atomic_inc(&fs_info->defrag_running);
345 	while (1) {
346 		/* Pause the auto defragger. */
347 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
348 			     &fs_info->fs_state))
349 			break;
350 
351 		if (!__need_auto_defrag(fs_info))
352 			break;
353 
354 		/* find an inode to defrag */
355 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
356 						 first_ino);
357 		if (!defrag) {
358 			if (root_objectid || first_ino) {
359 				root_objectid = 0;
360 				first_ino = 0;
361 				continue;
362 			} else {
363 				break;
364 			}
365 		}
366 
367 		first_ino = defrag->ino + 1;
368 		root_objectid = defrag->root;
369 
370 		__btrfs_run_defrag_inode(fs_info, defrag);
371 	}
372 	atomic_dec(&fs_info->defrag_running);
373 
374 	/*
375 	 * during unmount, we use the transaction_wait queue to
376 	 * wait for the defragger to stop
377 	 */
378 	wake_up(&fs_info->transaction_wait);
379 	return 0;
380 }
381 
382 /* simple helper to fault in pages and copy.  This should go away
383  * and be replaced with calls into generic code.
384  */
385 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
386 					 struct page **prepared_pages,
387 					 struct iov_iter *i)
388 {
389 	size_t copied = 0;
390 	size_t total_copied = 0;
391 	int pg = 0;
392 	int offset = offset_in_page(pos);
393 
394 	while (write_bytes > 0) {
395 		size_t count = min_t(size_t,
396 				     PAGE_SIZE - offset, write_bytes);
397 		struct page *page = prepared_pages[pg];
398 		/*
399 		 * Copy data from userspace to the current page
400 		 */
401 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
402 
403 		/* Flush processor's dcache for this page */
404 		flush_dcache_page(page);
405 
406 		/*
407 		 * if we get a partial write, we can end up with
408 		 * partially up to date pages.  These add
409 		 * a lot of complexity, so make sure they don't
410 		 * happen by forcing this copy to be retried.
411 		 *
412 		 * The rest of the btrfs_file_write code will fall
413 		 * back to page at a time copies after we return 0.
414 		 */
415 		if (!PageUptodate(page) && copied < count)
416 			copied = 0;
417 
418 		iov_iter_advance(i, copied);
419 		write_bytes -= copied;
420 		total_copied += copied;
421 
422 		/* Return to btrfs_file_write_iter to fault page */
423 		if (unlikely(copied == 0))
424 			break;
425 
426 		if (copied < PAGE_SIZE - offset) {
427 			offset += copied;
428 		} else {
429 			pg++;
430 			offset = 0;
431 		}
432 	}
433 	return total_copied;
434 }
435 
436 /*
437  * unlocks pages after btrfs_file_write is done with them
438  */
439 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
440 {
441 	size_t i;
442 	for (i = 0; i < num_pages; i++) {
443 		/* page checked is some magic around finding pages that
444 		 * have been modified without going through btrfs_set_page_dirty
445 		 * clear it here. There should be no need to mark the pages
446 		 * accessed as prepare_pages should have marked them accessed
447 		 * in prepare_pages via find_or_create_page()
448 		 */
449 		ClearPageChecked(pages[i]);
450 		unlock_page(pages[i]);
451 		put_page(pages[i]);
452 	}
453 }
454 
455 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
456 					 const u64 start,
457 					 const u64 len,
458 					 struct extent_state **cached_state)
459 {
460 	u64 search_start = start;
461 	const u64 end = start + len - 1;
462 
463 	while (search_start < end) {
464 		const u64 search_len = end - search_start + 1;
465 		struct extent_map *em;
466 		u64 em_len;
467 		int ret = 0;
468 
469 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
470 		if (IS_ERR(em))
471 			return PTR_ERR(em);
472 
473 		if (em->block_start != EXTENT_MAP_HOLE)
474 			goto next;
475 
476 		em_len = em->len;
477 		if (em->start < search_start)
478 			em_len -= search_start - em->start;
479 		if (em_len > search_len)
480 			em_len = search_len;
481 
482 		ret = set_extent_bit(&inode->io_tree, search_start,
483 				     search_start + em_len - 1,
484 				     EXTENT_DELALLOC_NEW,
485 				     NULL, cached_state, GFP_NOFS);
486 next:
487 		search_start = extent_map_end(em);
488 		free_extent_map(em);
489 		if (ret)
490 			return ret;
491 	}
492 	return 0;
493 }
494 
495 /*
496  * after copy_from_user, pages need to be dirtied and we need to make
497  * sure holes are created between the current EOF and the start of
498  * any next extents (if required).
499  *
500  * this also makes the decision about creating an inline extent vs
501  * doing real data extents, marking pages dirty and delalloc as required.
502  */
503 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
504 		      size_t num_pages, loff_t pos, size_t write_bytes,
505 		      struct extent_state **cached)
506 {
507 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
508 	int err = 0;
509 	int i;
510 	u64 num_bytes;
511 	u64 start_pos;
512 	u64 end_of_last_block;
513 	u64 end_pos = pos + write_bytes;
514 	loff_t isize = i_size_read(inode);
515 	unsigned int extra_bits = 0;
516 
517 	start_pos = pos & ~((u64) fs_info->sectorsize - 1);
518 	num_bytes = round_up(write_bytes + pos - start_pos,
519 			     fs_info->sectorsize);
520 
521 	end_of_last_block = start_pos + num_bytes - 1;
522 
523 	/*
524 	 * The pages may have already been dirty, clear out old accounting so
525 	 * we can set things up properly
526 	 */
527 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
528 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
529 			 0, 0, cached);
530 
531 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
532 		if (start_pos >= isize &&
533 		    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
534 			/*
535 			 * There can't be any extents following eof in this case
536 			 * so just set the delalloc new bit for the range
537 			 * directly.
538 			 */
539 			extra_bits |= EXTENT_DELALLOC_NEW;
540 		} else {
541 			err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
542 							    start_pos,
543 							    num_bytes, cached);
544 			if (err)
545 				return err;
546 		}
547 	}
548 
549 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
550 					extra_bits, cached);
551 	if (err)
552 		return err;
553 
554 	for (i = 0; i < num_pages; i++) {
555 		struct page *p = pages[i];
556 		SetPageUptodate(p);
557 		ClearPageChecked(p);
558 		set_page_dirty(p);
559 	}
560 
561 	/*
562 	 * we've only changed i_size in ram, and we haven't updated
563 	 * the disk i_size.  There is no need to log the inode
564 	 * at this time.
565 	 */
566 	if (end_pos > isize)
567 		i_size_write(inode, end_pos);
568 	return 0;
569 }
570 
571 /*
572  * this drops all the extents in the cache that intersect the range
573  * [start, end].  Existing extents are split as required.
574  */
575 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
576 			     int skip_pinned)
577 {
578 	struct extent_map *em;
579 	struct extent_map *split = NULL;
580 	struct extent_map *split2 = NULL;
581 	struct extent_map_tree *em_tree = &inode->extent_tree;
582 	u64 len = end - start + 1;
583 	u64 gen;
584 	int ret;
585 	int testend = 1;
586 	unsigned long flags;
587 	int compressed = 0;
588 	bool modified;
589 
590 	WARN_ON(end < start);
591 	if (end == (u64)-1) {
592 		len = (u64)-1;
593 		testend = 0;
594 	}
595 	while (1) {
596 		int no_splits = 0;
597 
598 		modified = false;
599 		if (!split)
600 			split = alloc_extent_map();
601 		if (!split2)
602 			split2 = alloc_extent_map();
603 		if (!split || !split2)
604 			no_splits = 1;
605 
606 		write_lock(&em_tree->lock);
607 		em = lookup_extent_mapping(em_tree, start, len);
608 		if (!em) {
609 			write_unlock(&em_tree->lock);
610 			break;
611 		}
612 		flags = em->flags;
613 		gen = em->generation;
614 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
615 			if (testend && em->start + em->len >= start + len) {
616 				free_extent_map(em);
617 				write_unlock(&em_tree->lock);
618 				break;
619 			}
620 			start = em->start + em->len;
621 			if (testend)
622 				len = start + len - (em->start + em->len);
623 			free_extent_map(em);
624 			write_unlock(&em_tree->lock);
625 			continue;
626 		}
627 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
628 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
629 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
630 		modified = !list_empty(&em->list);
631 		if (no_splits)
632 			goto next;
633 
634 		if (em->start < start) {
635 			split->start = em->start;
636 			split->len = start - em->start;
637 
638 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
639 				split->orig_start = em->orig_start;
640 				split->block_start = em->block_start;
641 
642 				if (compressed)
643 					split->block_len = em->block_len;
644 				else
645 					split->block_len = split->len;
646 				split->orig_block_len = max(split->block_len,
647 						em->orig_block_len);
648 				split->ram_bytes = em->ram_bytes;
649 			} else {
650 				split->orig_start = split->start;
651 				split->block_len = 0;
652 				split->block_start = em->block_start;
653 				split->orig_block_len = 0;
654 				split->ram_bytes = split->len;
655 			}
656 
657 			split->generation = gen;
658 			split->flags = flags;
659 			split->compress_type = em->compress_type;
660 			replace_extent_mapping(em_tree, em, split, modified);
661 			free_extent_map(split);
662 			split = split2;
663 			split2 = NULL;
664 		}
665 		if (testend && em->start + em->len > start + len) {
666 			u64 diff = start + len - em->start;
667 
668 			split->start = start + len;
669 			split->len = em->start + em->len - (start + len);
670 			split->flags = flags;
671 			split->compress_type = em->compress_type;
672 			split->generation = gen;
673 
674 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
675 				split->orig_block_len = max(em->block_len,
676 						    em->orig_block_len);
677 
678 				split->ram_bytes = em->ram_bytes;
679 				if (compressed) {
680 					split->block_len = em->block_len;
681 					split->block_start = em->block_start;
682 					split->orig_start = em->orig_start;
683 				} else {
684 					split->block_len = split->len;
685 					split->block_start = em->block_start
686 						+ diff;
687 					split->orig_start = em->orig_start;
688 				}
689 			} else {
690 				split->ram_bytes = split->len;
691 				split->orig_start = split->start;
692 				split->block_len = 0;
693 				split->block_start = em->block_start;
694 				split->orig_block_len = 0;
695 			}
696 
697 			if (extent_map_in_tree(em)) {
698 				replace_extent_mapping(em_tree, em, split,
699 						       modified);
700 			} else {
701 				ret = add_extent_mapping(em_tree, split,
702 							 modified);
703 				ASSERT(ret == 0); /* Logic error */
704 			}
705 			free_extent_map(split);
706 			split = NULL;
707 		}
708 next:
709 		if (extent_map_in_tree(em))
710 			remove_extent_mapping(em_tree, em);
711 		write_unlock(&em_tree->lock);
712 
713 		/* once for us */
714 		free_extent_map(em);
715 		/* once for the tree*/
716 		free_extent_map(em);
717 	}
718 	if (split)
719 		free_extent_map(split);
720 	if (split2)
721 		free_extent_map(split2);
722 }
723 
724 /*
725  * this is very complex, but the basic idea is to drop all extents
726  * in the range start - end.  hint_block is filled in with a block number
727  * that would be a good hint to the block allocator for this file.
728  *
729  * If an extent intersects the range but is not entirely inside the range
730  * it is either truncated or split.  Anything entirely inside the range
731  * is deleted from the tree.
732  */
733 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
734 			 struct btrfs_root *root, struct inode *inode,
735 			 struct btrfs_path *path, u64 start, u64 end,
736 			 u64 *drop_end, int drop_cache,
737 			 int replace_extent,
738 			 u32 extent_item_size,
739 			 int *key_inserted)
740 {
741 	struct btrfs_fs_info *fs_info = root->fs_info;
742 	struct extent_buffer *leaf;
743 	struct btrfs_file_extent_item *fi;
744 	struct btrfs_ref ref = { 0 };
745 	struct btrfs_key key;
746 	struct btrfs_key new_key;
747 	u64 ino = btrfs_ino(BTRFS_I(inode));
748 	u64 search_start = start;
749 	u64 disk_bytenr = 0;
750 	u64 num_bytes = 0;
751 	u64 extent_offset = 0;
752 	u64 extent_end = 0;
753 	u64 last_end = start;
754 	int del_nr = 0;
755 	int del_slot = 0;
756 	int extent_type;
757 	int recow;
758 	int ret;
759 	int modify_tree = -1;
760 	int update_refs;
761 	int found = 0;
762 	int leafs_visited = 0;
763 
764 	if (drop_cache)
765 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
766 
767 	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
768 		modify_tree = 0;
769 
770 	update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
771 		       root == fs_info->tree_root);
772 	while (1) {
773 		recow = 0;
774 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
775 					       search_start, modify_tree);
776 		if (ret < 0)
777 			break;
778 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
779 			leaf = path->nodes[0];
780 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
781 			if (key.objectid == ino &&
782 			    key.type == BTRFS_EXTENT_DATA_KEY)
783 				path->slots[0]--;
784 		}
785 		ret = 0;
786 		leafs_visited++;
787 next_slot:
788 		leaf = path->nodes[0];
789 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
790 			BUG_ON(del_nr > 0);
791 			ret = btrfs_next_leaf(root, path);
792 			if (ret < 0)
793 				break;
794 			if (ret > 0) {
795 				ret = 0;
796 				break;
797 			}
798 			leafs_visited++;
799 			leaf = path->nodes[0];
800 			recow = 1;
801 		}
802 
803 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
804 
805 		if (key.objectid > ino)
806 			break;
807 		if (WARN_ON_ONCE(key.objectid < ino) ||
808 		    key.type < BTRFS_EXTENT_DATA_KEY) {
809 			ASSERT(del_nr == 0);
810 			path->slots[0]++;
811 			goto next_slot;
812 		}
813 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
814 			break;
815 
816 		fi = btrfs_item_ptr(leaf, path->slots[0],
817 				    struct btrfs_file_extent_item);
818 		extent_type = btrfs_file_extent_type(leaf, fi);
819 
820 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
821 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
822 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
823 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
824 			extent_offset = btrfs_file_extent_offset(leaf, fi);
825 			extent_end = key.offset +
826 				btrfs_file_extent_num_bytes(leaf, fi);
827 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
828 			extent_end = key.offset +
829 				btrfs_file_extent_ram_bytes(leaf, fi);
830 		} else {
831 			/* can't happen */
832 			BUG();
833 		}
834 
835 		/*
836 		 * Don't skip extent items representing 0 byte lengths. They
837 		 * used to be created (bug) if while punching holes we hit
838 		 * -ENOSPC condition. So if we find one here, just ensure we
839 		 * delete it, otherwise we would insert a new file extent item
840 		 * with the same key (offset) as that 0 bytes length file
841 		 * extent item in the call to setup_items_for_insert() later
842 		 * in this function.
843 		 */
844 		if (extent_end == key.offset && extent_end >= search_start) {
845 			last_end = extent_end;
846 			goto delete_extent_item;
847 		}
848 
849 		if (extent_end <= search_start) {
850 			path->slots[0]++;
851 			goto next_slot;
852 		}
853 
854 		found = 1;
855 		search_start = max(key.offset, start);
856 		if (recow || !modify_tree) {
857 			modify_tree = -1;
858 			btrfs_release_path(path);
859 			continue;
860 		}
861 
862 		/*
863 		 *     | - range to drop - |
864 		 *  | -------- extent -------- |
865 		 */
866 		if (start > key.offset && end < extent_end) {
867 			BUG_ON(del_nr > 0);
868 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
869 				ret = -EOPNOTSUPP;
870 				break;
871 			}
872 
873 			memcpy(&new_key, &key, sizeof(new_key));
874 			new_key.offset = start;
875 			ret = btrfs_duplicate_item(trans, root, path,
876 						   &new_key);
877 			if (ret == -EAGAIN) {
878 				btrfs_release_path(path);
879 				continue;
880 			}
881 			if (ret < 0)
882 				break;
883 
884 			leaf = path->nodes[0];
885 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
886 					    struct btrfs_file_extent_item);
887 			btrfs_set_file_extent_num_bytes(leaf, fi,
888 							start - key.offset);
889 
890 			fi = btrfs_item_ptr(leaf, path->slots[0],
891 					    struct btrfs_file_extent_item);
892 
893 			extent_offset += start - key.offset;
894 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
895 			btrfs_set_file_extent_num_bytes(leaf, fi,
896 							extent_end - start);
897 			btrfs_mark_buffer_dirty(leaf);
898 
899 			if (update_refs && disk_bytenr > 0) {
900 				btrfs_init_generic_ref(&ref,
901 						BTRFS_ADD_DELAYED_REF,
902 						disk_bytenr, num_bytes, 0);
903 				btrfs_init_data_ref(&ref,
904 						root->root_key.objectid,
905 						new_key.objectid,
906 						start - extent_offset);
907 				ret = btrfs_inc_extent_ref(trans, &ref);
908 				BUG_ON(ret); /* -ENOMEM */
909 			}
910 			key.offset = start;
911 		}
912 		/*
913 		 * From here on out we will have actually dropped something, so
914 		 * last_end can be updated.
915 		 */
916 		last_end = extent_end;
917 
918 		/*
919 		 *  | ---- range to drop ----- |
920 		 *      | -------- extent -------- |
921 		 */
922 		if (start <= key.offset && end < extent_end) {
923 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
924 				ret = -EOPNOTSUPP;
925 				break;
926 			}
927 
928 			memcpy(&new_key, &key, sizeof(new_key));
929 			new_key.offset = end;
930 			btrfs_set_item_key_safe(fs_info, path, &new_key);
931 
932 			extent_offset += end - key.offset;
933 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
934 			btrfs_set_file_extent_num_bytes(leaf, fi,
935 							extent_end - end);
936 			btrfs_mark_buffer_dirty(leaf);
937 			if (update_refs && disk_bytenr > 0)
938 				inode_sub_bytes(inode, end - key.offset);
939 			break;
940 		}
941 
942 		search_start = extent_end;
943 		/*
944 		 *       | ---- range to drop ----- |
945 		 *  | -------- extent -------- |
946 		 */
947 		if (start > key.offset && end >= extent_end) {
948 			BUG_ON(del_nr > 0);
949 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
950 				ret = -EOPNOTSUPP;
951 				break;
952 			}
953 
954 			btrfs_set_file_extent_num_bytes(leaf, fi,
955 							start - key.offset);
956 			btrfs_mark_buffer_dirty(leaf);
957 			if (update_refs && disk_bytenr > 0)
958 				inode_sub_bytes(inode, extent_end - start);
959 			if (end == extent_end)
960 				break;
961 
962 			path->slots[0]++;
963 			goto next_slot;
964 		}
965 
966 		/*
967 		 *  | ---- range to drop ----- |
968 		 *    | ------ extent ------ |
969 		 */
970 		if (start <= key.offset && end >= extent_end) {
971 delete_extent_item:
972 			if (del_nr == 0) {
973 				del_slot = path->slots[0];
974 				del_nr = 1;
975 			} else {
976 				BUG_ON(del_slot + del_nr != path->slots[0]);
977 				del_nr++;
978 			}
979 
980 			if (update_refs &&
981 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
982 				inode_sub_bytes(inode,
983 						extent_end - key.offset);
984 				extent_end = ALIGN(extent_end,
985 						   fs_info->sectorsize);
986 			} else if (update_refs && disk_bytenr > 0) {
987 				btrfs_init_generic_ref(&ref,
988 						BTRFS_DROP_DELAYED_REF,
989 						disk_bytenr, num_bytes, 0);
990 				btrfs_init_data_ref(&ref,
991 						root->root_key.objectid,
992 						key.objectid,
993 						key.offset - extent_offset);
994 				ret = btrfs_free_extent(trans, &ref);
995 				BUG_ON(ret); /* -ENOMEM */
996 				inode_sub_bytes(inode,
997 						extent_end - key.offset);
998 			}
999 
1000 			if (end == extent_end)
1001 				break;
1002 
1003 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1004 				path->slots[0]++;
1005 				goto next_slot;
1006 			}
1007 
1008 			ret = btrfs_del_items(trans, root, path, del_slot,
1009 					      del_nr);
1010 			if (ret) {
1011 				btrfs_abort_transaction(trans, ret);
1012 				break;
1013 			}
1014 
1015 			del_nr = 0;
1016 			del_slot = 0;
1017 
1018 			btrfs_release_path(path);
1019 			continue;
1020 		}
1021 
1022 		BUG();
1023 	}
1024 
1025 	if (!ret && del_nr > 0) {
1026 		/*
1027 		 * Set path->slots[0] to first slot, so that after the delete
1028 		 * if items are move off from our leaf to its immediate left or
1029 		 * right neighbor leafs, we end up with a correct and adjusted
1030 		 * path->slots[0] for our insertion (if replace_extent != 0).
1031 		 */
1032 		path->slots[0] = del_slot;
1033 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1034 		if (ret)
1035 			btrfs_abort_transaction(trans, ret);
1036 	}
1037 
1038 	leaf = path->nodes[0];
1039 	/*
1040 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
1041 	 * which case it unlocked our path, so check path->locks[0] matches a
1042 	 * write lock.
1043 	 */
1044 	if (!ret && replace_extent && leafs_visited == 1 &&
1045 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1046 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
1047 	    btrfs_leaf_free_space(leaf) >=
1048 	    sizeof(struct btrfs_item) + extent_item_size) {
1049 
1050 		key.objectid = ino;
1051 		key.type = BTRFS_EXTENT_DATA_KEY;
1052 		key.offset = start;
1053 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1054 			struct btrfs_key slot_key;
1055 
1056 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1057 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1058 				path->slots[0]++;
1059 		}
1060 		setup_items_for_insert(root, path, &key,
1061 				       &extent_item_size,
1062 				       extent_item_size,
1063 				       sizeof(struct btrfs_item) +
1064 				       extent_item_size, 1);
1065 		*key_inserted = 1;
1066 	}
1067 
1068 	if (!replace_extent || !(*key_inserted))
1069 		btrfs_release_path(path);
1070 	if (drop_end)
1071 		*drop_end = found ? min(end, last_end) : end;
1072 	return ret;
1073 }
1074 
1075 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1076 		       struct btrfs_root *root, struct inode *inode, u64 start,
1077 		       u64 end, int drop_cache)
1078 {
1079 	struct btrfs_path *path;
1080 	int ret;
1081 
1082 	path = btrfs_alloc_path();
1083 	if (!path)
1084 		return -ENOMEM;
1085 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1086 				   drop_cache, 0, 0, NULL);
1087 	btrfs_free_path(path);
1088 	return ret;
1089 }
1090 
1091 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1092 			    u64 objectid, u64 bytenr, u64 orig_offset,
1093 			    u64 *start, u64 *end)
1094 {
1095 	struct btrfs_file_extent_item *fi;
1096 	struct btrfs_key key;
1097 	u64 extent_end;
1098 
1099 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1100 		return 0;
1101 
1102 	btrfs_item_key_to_cpu(leaf, &key, slot);
1103 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1104 		return 0;
1105 
1106 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1107 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1108 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1109 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1110 	    btrfs_file_extent_compression(leaf, fi) ||
1111 	    btrfs_file_extent_encryption(leaf, fi) ||
1112 	    btrfs_file_extent_other_encoding(leaf, fi))
1113 		return 0;
1114 
1115 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1116 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1117 		return 0;
1118 
1119 	*start = key.offset;
1120 	*end = extent_end;
1121 	return 1;
1122 }
1123 
1124 /*
1125  * Mark extent in the range start - end as written.
1126  *
1127  * This changes extent type from 'pre-allocated' to 'regular'. If only
1128  * part of extent is marked as written, the extent will be split into
1129  * two or three.
1130  */
1131 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1132 			      struct btrfs_inode *inode, u64 start, u64 end)
1133 {
1134 	struct btrfs_fs_info *fs_info = trans->fs_info;
1135 	struct btrfs_root *root = inode->root;
1136 	struct extent_buffer *leaf;
1137 	struct btrfs_path *path;
1138 	struct btrfs_file_extent_item *fi;
1139 	struct btrfs_ref ref = { 0 };
1140 	struct btrfs_key key;
1141 	struct btrfs_key new_key;
1142 	u64 bytenr;
1143 	u64 num_bytes;
1144 	u64 extent_end;
1145 	u64 orig_offset;
1146 	u64 other_start;
1147 	u64 other_end;
1148 	u64 split;
1149 	int del_nr = 0;
1150 	int del_slot = 0;
1151 	int recow;
1152 	int ret;
1153 	u64 ino = btrfs_ino(inode);
1154 
1155 	path = btrfs_alloc_path();
1156 	if (!path)
1157 		return -ENOMEM;
1158 again:
1159 	recow = 0;
1160 	split = start;
1161 	key.objectid = ino;
1162 	key.type = BTRFS_EXTENT_DATA_KEY;
1163 	key.offset = split;
1164 
1165 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1166 	if (ret < 0)
1167 		goto out;
1168 	if (ret > 0 && path->slots[0] > 0)
1169 		path->slots[0]--;
1170 
1171 	leaf = path->nodes[0];
1172 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1173 	if (key.objectid != ino ||
1174 	    key.type != BTRFS_EXTENT_DATA_KEY) {
1175 		ret = -EINVAL;
1176 		btrfs_abort_transaction(trans, ret);
1177 		goto out;
1178 	}
1179 	fi = btrfs_item_ptr(leaf, path->slots[0],
1180 			    struct btrfs_file_extent_item);
1181 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1182 		ret = -EINVAL;
1183 		btrfs_abort_transaction(trans, ret);
1184 		goto out;
1185 	}
1186 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1187 	if (key.offset > start || extent_end < end) {
1188 		ret = -EINVAL;
1189 		btrfs_abort_transaction(trans, ret);
1190 		goto out;
1191 	}
1192 
1193 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1194 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1195 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1196 	memcpy(&new_key, &key, sizeof(new_key));
1197 
1198 	if (start == key.offset && end < extent_end) {
1199 		other_start = 0;
1200 		other_end = start;
1201 		if (extent_mergeable(leaf, path->slots[0] - 1,
1202 				     ino, bytenr, orig_offset,
1203 				     &other_start, &other_end)) {
1204 			new_key.offset = end;
1205 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1206 			fi = btrfs_item_ptr(leaf, path->slots[0],
1207 					    struct btrfs_file_extent_item);
1208 			btrfs_set_file_extent_generation(leaf, fi,
1209 							 trans->transid);
1210 			btrfs_set_file_extent_num_bytes(leaf, fi,
1211 							extent_end - end);
1212 			btrfs_set_file_extent_offset(leaf, fi,
1213 						     end - orig_offset);
1214 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1215 					    struct btrfs_file_extent_item);
1216 			btrfs_set_file_extent_generation(leaf, fi,
1217 							 trans->transid);
1218 			btrfs_set_file_extent_num_bytes(leaf, fi,
1219 							end - other_start);
1220 			btrfs_mark_buffer_dirty(leaf);
1221 			goto out;
1222 		}
1223 	}
1224 
1225 	if (start > key.offset && end == extent_end) {
1226 		other_start = end;
1227 		other_end = 0;
1228 		if (extent_mergeable(leaf, path->slots[0] + 1,
1229 				     ino, bytenr, orig_offset,
1230 				     &other_start, &other_end)) {
1231 			fi = btrfs_item_ptr(leaf, path->slots[0],
1232 					    struct btrfs_file_extent_item);
1233 			btrfs_set_file_extent_num_bytes(leaf, fi,
1234 							start - key.offset);
1235 			btrfs_set_file_extent_generation(leaf, fi,
1236 							 trans->transid);
1237 			path->slots[0]++;
1238 			new_key.offset = start;
1239 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1240 
1241 			fi = btrfs_item_ptr(leaf, path->slots[0],
1242 					    struct btrfs_file_extent_item);
1243 			btrfs_set_file_extent_generation(leaf, fi,
1244 							 trans->transid);
1245 			btrfs_set_file_extent_num_bytes(leaf, fi,
1246 							other_end - start);
1247 			btrfs_set_file_extent_offset(leaf, fi,
1248 						     start - orig_offset);
1249 			btrfs_mark_buffer_dirty(leaf);
1250 			goto out;
1251 		}
1252 	}
1253 
1254 	while (start > key.offset || end < extent_end) {
1255 		if (key.offset == start)
1256 			split = end;
1257 
1258 		new_key.offset = split;
1259 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1260 		if (ret == -EAGAIN) {
1261 			btrfs_release_path(path);
1262 			goto again;
1263 		}
1264 		if (ret < 0) {
1265 			btrfs_abort_transaction(trans, ret);
1266 			goto out;
1267 		}
1268 
1269 		leaf = path->nodes[0];
1270 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1271 				    struct btrfs_file_extent_item);
1272 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1273 		btrfs_set_file_extent_num_bytes(leaf, fi,
1274 						split - key.offset);
1275 
1276 		fi = btrfs_item_ptr(leaf, path->slots[0],
1277 				    struct btrfs_file_extent_item);
1278 
1279 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1280 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1281 		btrfs_set_file_extent_num_bytes(leaf, fi,
1282 						extent_end - split);
1283 		btrfs_mark_buffer_dirty(leaf);
1284 
1285 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1286 				       num_bytes, 0);
1287 		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1288 				    orig_offset);
1289 		ret = btrfs_inc_extent_ref(trans, &ref);
1290 		if (ret) {
1291 			btrfs_abort_transaction(trans, ret);
1292 			goto out;
1293 		}
1294 
1295 		if (split == start) {
1296 			key.offset = start;
1297 		} else {
1298 			if (start != key.offset) {
1299 				ret = -EINVAL;
1300 				btrfs_abort_transaction(trans, ret);
1301 				goto out;
1302 			}
1303 			path->slots[0]--;
1304 			extent_end = end;
1305 		}
1306 		recow = 1;
1307 	}
1308 
1309 	other_start = end;
1310 	other_end = 0;
1311 	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1312 			       num_bytes, 0);
1313 	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1314 	if (extent_mergeable(leaf, path->slots[0] + 1,
1315 			     ino, bytenr, orig_offset,
1316 			     &other_start, &other_end)) {
1317 		if (recow) {
1318 			btrfs_release_path(path);
1319 			goto again;
1320 		}
1321 		extent_end = other_end;
1322 		del_slot = path->slots[0] + 1;
1323 		del_nr++;
1324 		ret = btrfs_free_extent(trans, &ref);
1325 		if (ret) {
1326 			btrfs_abort_transaction(trans, ret);
1327 			goto out;
1328 		}
1329 	}
1330 	other_start = 0;
1331 	other_end = start;
1332 	if (extent_mergeable(leaf, path->slots[0] - 1,
1333 			     ino, bytenr, orig_offset,
1334 			     &other_start, &other_end)) {
1335 		if (recow) {
1336 			btrfs_release_path(path);
1337 			goto again;
1338 		}
1339 		key.offset = other_start;
1340 		del_slot = path->slots[0];
1341 		del_nr++;
1342 		ret = btrfs_free_extent(trans, &ref);
1343 		if (ret) {
1344 			btrfs_abort_transaction(trans, ret);
1345 			goto out;
1346 		}
1347 	}
1348 	if (del_nr == 0) {
1349 		fi = btrfs_item_ptr(leaf, path->slots[0],
1350 			   struct btrfs_file_extent_item);
1351 		btrfs_set_file_extent_type(leaf, fi,
1352 					   BTRFS_FILE_EXTENT_REG);
1353 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1354 		btrfs_mark_buffer_dirty(leaf);
1355 	} else {
1356 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1357 			   struct btrfs_file_extent_item);
1358 		btrfs_set_file_extent_type(leaf, fi,
1359 					   BTRFS_FILE_EXTENT_REG);
1360 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1361 		btrfs_set_file_extent_num_bytes(leaf, fi,
1362 						extent_end - key.offset);
1363 		btrfs_mark_buffer_dirty(leaf);
1364 
1365 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1366 		if (ret < 0) {
1367 			btrfs_abort_transaction(trans, ret);
1368 			goto out;
1369 		}
1370 	}
1371 out:
1372 	btrfs_free_path(path);
1373 	return 0;
1374 }
1375 
1376 /*
1377  * on error we return an unlocked page and the error value
1378  * on success we return a locked page and 0
1379  */
1380 static int prepare_uptodate_page(struct inode *inode,
1381 				 struct page *page, u64 pos,
1382 				 bool force_uptodate)
1383 {
1384 	int ret = 0;
1385 
1386 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1387 	    !PageUptodate(page)) {
1388 		ret = btrfs_readpage(NULL, page);
1389 		if (ret)
1390 			return ret;
1391 		lock_page(page);
1392 		if (!PageUptodate(page)) {
1393 			unlock_page(page);
1394 			return -EIO;
1395 		}
1396 		if (page->mapping != inode->i_mapping) {
1397 			unlock_page(page);
1398 			return -EAGAIN;
1399 		}
1400 	}
1401 	return 0;
1402 }
1403 
1404 /*
1405  * this just gets pages into the page cache and locks them down.
1406  */
1407 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1408 				  size_t num_pages, loff_t pos,
1409 				  size_t write_bytes, bool force_uptodate)
1410 {
1411 	int i;
1412 	unsigned long index = pos >> PAGE_SHIFT;
1413 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1414 	int err = 0;
1415 	int faili;
1416 
1417 	for (i = 0; i < num_pages; i++) {
1418 again:
1419 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1420 					       mask | __GFP_WRITE);
1421 		if (!pages[i]) {
1422 			faili = i - 1;
1423 			err = -ENOMEM;
1424 			goto fail;
1425 		}
1426 
1427 		if (i == 0)
1428 			err = prepare_uptodate_page(inode, pages[i], pos,
1429 						    force_uptodate);
1430 		if (!err && i == num_pages - 1)
1431 			err = prepare_uptodate_page(inode, pages[i],
1432 						    pos + write_bytes, false);
1433 		if (err) {
1434 			put_page(pages[i]);
1435 			if (err == -EAGAIN) {
1436 				err = 0;
1437 				goto again;
1438 			}
1439 			faili = i - 1;
1440 			goto fail;
1441 		}
1442 		wait_on_page_writeback(pages[i]);
1443 	}
1444 
1445 	return 0;
1446 fail:
1447 	while (faili >= 0) {
1448 		unlock_page(pages[faili]);
1449 		put_page(pages[faili]);
1450 		faili--;
1451 	}
1452 	return err;
1453 
1454 }
1455 
1456 /*
1457  * This function locks the extent and properly waits for data=ordered extents
1458  * to finish before allowing the pages to be modified if need.
1459  *
1460  * The return value:
1461  * 1 - the extent is locked
1462  * 0 - the extent is not locked, and everything is OK
1463  * -EAGAIN - need re-prepare the pages
1464  * the other < 0 number - Something wrong happens
1465  */
1466 static noinline int
1467 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1468 				size_t num_pages, loff_t pos,
1469 				size_t write_bytes,
1470 				u64 *lockstart, u64 *lockend,
1471 				struct extent_state **cached_state)
1472 {
1473 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1474 	u64 start_pos;
1475 	u64 last_pos;
1476 	int i;
1477 	int ret = 0;
1478 
1479 	start_pos = round_down(pos, fs_info->sectorsize);
1480 	last_pos = start_pos
1481 		+ round_up(pos + write_bytes - start_pos,
1482 			   fs_info->sectorsize) - 1;
1483 
1484 	if (start_pos < inode->vfs_inode.i_size) {
1485 		struct btrfs_ordered_extent *ordered;
1486 
1487 		lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1488 				cached_state);
1489 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1490 						     last_pos - start_pos + 1);
1491 		if (ordered &&
1492 		    ordered->file_offset + ordered->num_bytes > start_pos &&
1493 		    ordered->file_offset <= last_pos) {
1494 			unlock_extent_cached(&inode->io_tree, start_pos,
1495 					last_pos, cached_state);
1496 			for (i = 0; i < num_pages; i++) {
1497 				unlock_page(pages[i]);
1498 				put_page(pages[i]);
1499 			}
1500 			btrfs_start_ordered_extent(&inode->vfs_inode,
1501 					ordered, 1);
1502 			btrfs_put_ordered_extent(ordered);
1503 			return -EAGAIN;
1504 		}
1505 		if (ordered)
1506 			btrfs_put_ordered_extent(ordered);
1507 
1508 		*lockstart = start_pos;
1509 		*lockend = last_pos;
1510 		ret = 1;
1511 	}
1512 
1513 	/*
1514 	 * It's possible the pages are dirty right now, but we don't want
1515 	 * to clean them yet because copy_from_user may catch a page fault
1516 	 * and we might have to fall back to one page at a time.  If that
1517 	 * happens, we'll unlock these pages and we'd have a window where
1518 	 * reclaim could sneak in and drop the once-dirty page on the floor
1519 	 * without writing it.
1520 	 *
1521 	 * We have the pages locked and the extent range locked, so there's
1522 	 * no way someone can start IO on any dirty pages in this range.
1523 	 *
1524 	 * We'll call btrfs_dirty_pages() later on, and that will flip around
1525 	 * delalloc bits and dirty the pages as required.
1526 	 */
1527 	for (i = 0; i < num_pages; i++) {
1528 		set_page_extent_mapped(pages[i]);
1529 		WARN_ON(!PageLocked(pages[i]));
1530 	}
1531 
1532 	return ret;
1533 }
1534 
1535 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1536 				    size_t *write_bytes)
1537 {
1538 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1539 	struct btrfs_root *root = inode->root;
1540 	u64 lockstart, lockend;
1541 	u64 num_bytes;
1542 	int ret;
1543 
1544 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1545 		return -EAGAIN;
1546 
1547 	lockstart = round_down(pos, fs_info->sectorsize);
1548 	lockend = round_up(pos + *write_bytes,
1549 			   fs_info->sectorsize) - 1;
1550 
1551 	btrfs_lock_and_flush_ordered_range(inode, lockstart,
1552 					   lockend, NULL);
1553 
1554 	num_bytes = lockend - lockstart + 1;
1555 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1556 			NULL, NULL, NULL);
1557 	if (ret <= 0) {
1558 		ret = 0;
1559 		btrfs_drew_write_unlock(&root->snapshot_lock);
1560 	} else {
1561 		*write_bytes = min_t(size_t, *write_bytes ,
1562 				     num_bytes - pos + lockstart);
1563 	}
1564 
1565 	unlock_extent(&inode->io_tree, lockstart, lockend);
1566 
1567 	return ret;
1568 }
1569 
1570 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1571 					       struct iov_iter *i)
1572 {
1573 	struct file *file = iocb->ki_filp;
1574 	loff_t pos = iocb->ki_pos;
1575 	struct inode *inode = file_inode(file);
1576 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1577 	struct btrfs_root *root = BTRFS_I(inode)->root;
1578 	struct page **pages = NULL;
1579 	struct extent_changeset *data_reserved = NULL;
1580 	u64 release_bytes = 0;
1581 	u64 lockstart;
1582 	u64 lockend;
1583 	size_t num_written = 0;
1584 	int nrptrs;
1585 	int ret = 0;
1586 	bool only_release_metadata = false;
1587 	bool force_page_uptodate = false;
1588 
1589 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1590 			PAGE_SIZE / (sizeof(struct page *)));
1591 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1592 	nrptrs = max(nrptrs, 8);
1593 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1594 	if (!pages)
1595 		return -ENOMEM;
1596 
1597 	while (iov_iter_count(i) > 0) {
1598 		struct extent_state *cached_state = NULL;
1599 		size_t offset = offset_in_page(pos);
1600 		size_t sector_offset;
1601 		size_t write_bytes = min(iov_iter_count(i),
1602 					 nrptrs * (size_t)PAGE_SIZE -
1603 					 offset);
1604 		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1605 						PAGE_SIZE);
1606 		size_t reserve_bytes;
1607 		size_t dirty_pages;
1608 		size_t copied;
1609 		size_t dirty_sectors;
1610 		size_t num_sectors;
1611 		int extents_locked;
1612 
1613 		WARN_ON(num_pages > nrptrs);
1614 
1615 		/*
1616 		 * Fault pages before locking them in prepare_pages
1617 		 * to avoid recursive lock
1618 		 */
1619 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1620 			ret = -EFAULT;
1621 			break;
1622 		}
1623 
1624 		only_release_metadata = false;
1625 		sector_offset = pos & (fs_info->sectorsize - 1);
1626 		reserve_bytes = round_up(write_bytes + sector_offset,
1627 				fs_info->sectorsize);
1628 
1629 		extent_changeset_release(data_reserved);
1630 		ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1631 						  write_bytes);
1632 		if (ret < 0) {
1633 			if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1634 						      BTRFS_INODE_PREALLOC)) &&
1635 			    check_can_nocow(BTRFS_I(inode), pos,
1636 					&write_bytes) > 0) {
1637 				/*
1638 				 * For nodata cow case, no need to reserve
1639 				 * data space.
1640 				 */
1641 				only_release_metadata = true;
1642 				/*
1643 				 * our prealloc extent may be smaller than
1644 				 * write_bytes, so scale down.
1645 				 */
1646 				num_pages = DIV_ROUND_UP(write_bytes + offset,
1647 							 PAGE_SIZE);
1648 				reserve_bytes = round_up(write_bytes +
1649 							 sector_offset,
1650 							 fs_info->sectorsize);
1651 			} else {
1652 				break;
1653 			}
1654 		}
1655 
1656 		WARN_ON(reserve_bytes == 0);
1657 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1658 				reserve_bytes);
1659 		if (ret) {
1660 			if (!only_release_metadata)
1661 				btrfs_free_reserved_data_space(inode,
1662 						data_reserved, pos,
1663 						write_bytes);
1664 			else
1665 				btrfs_drew_write_unlock(&root->snapshot_lock);
1666 			break;
1667 		}
1668 
1669 		release_bytes = reserve_bytes;
1670 again:
1671 		/*
1672 		 * This is going to setup the pages array with the number of
1673 		 * pages we want, so we don't really need to worry about the
1674 		 * contents of pages from loop to loop
1675 		 */
1676 		ret = prepare_pages(inode, pages, num_pages,
1677 				    pos, write_bytes,
1678 				    force_page_uptodate);
1679 		if (ret) {
1680 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1681 						       reserve_bytes);
1682 			break;
1683 		}
1684 
1685 		extents_locked = lock_and_cleanup_extent_if_need(
1686 				BTRFS_I(inode), pages,
1687 				num_pages, pos, write_bytes, &lockstart,
1688 				&lockend, &cached_state);
1689 		if (extents_locked < 0) {
1690 			if (extents_locked == -EAGAIN)
1691 				goto again;
1692 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1693 						       reserve_bytes);
1694 			ret = extents_locked;
1695 			break;
1696 		}
1697 
1698 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1699 
1700 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1701 		dirty_sectors = round_up(copied + sector_offset,
1702 					fs_info->sectorsize);
1703 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1704 
1705 		/*
1706 		 * if we have trouble faulting in the pages, fall
1707 		 * back to one page at a time
1708 		 */
1709 		if (copied < write_bytes)
1710 			nrptrs = 1;
1711 
1712 		if (copied == 0) {
1713 			force_page_uptodate = true;
1714 			dirty_sectors = 0;
1715 			dirty_pages = 0;
1716 		} else {
1717 			force_page_uptodate = false;
1718 			dirty_pages = DIV_ROUND_UP(copied + offset,
1719 						   PAGE_SIZE);
1720 		}
1721 
1722 		if (num_sectors > dirty_sectors) {
1723 			/* release everything except the sectors we dirtied */
1724 			release_bytes -= dirty_sectors <<
1725 						fs_info->sb->s_blocksize_bits;
1726 			if (only_release_metadata) {
1727 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1728 							release_bytes, true);
1729 			} else {
1730 				u64 __pos;
1731 
1732 				__pos = round_down(pos,
1733 						   fs_info->sectorsize) +
1734 					(dirty_pages << PAGE_SHIFT);
1735 				btrfs_delalloc_release_space(inode,
1736 						data_reserved, __pos,
1737 						release_bytes, true);
1738 			}
1739 		}
1740 
1741 		release_bytes = round_up(copied + sector_offset,
1742 					fs_info->sectorsize);
1743 
1744 		if (copied > 0)
1745 			ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1746 						pos, copied, &cached_state);
1747 
1748 		/*
1749 		 * If we have not locked the extent range, because the range's
1750 		 * start offset is >= i_size, we might still have a non-NULL
1751 		 * cached extent state, acquired while marking the extent range
1752 		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1753 		 * possible cached extent state to avoid a memory leak.
1754 		 */
1755 		if (extents_locked)
1756 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1757 					     lockstart, lockend, &cached_state);
1758 		else
1759 			free_extent_state(cached_state);
1760 
1761 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1762 		if (ret) {
1763 			btrfs_drop_pages(pages, num_pages);
1764 			break;
1765 		}
1766 
1767 		release_bytes = 0;
1768 		if (only_release_metadata)
1769 			btrfs_drew_write_unlock(&root->snapshot_lock);
1770 
1771 		if (only_release_metadata && copied > 0) {
1772 			lockstart = round_down(pos,
1773 					       fs_info->sectorsize);
1774 			lockend = round_up(pos + copied,
1775 					   fs_info->sectorsize) - 1;
1776 
1777 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1778 				       lockend, EXTENT_NORESERVE, NULL,
1779 				       NULL, GFP_NOFS);
1780 		}
1781 
1782 		btrfs_drop_pages(pages, num_pages);
1783 
1784 		cond_resched();
1785 
1786 		balance_dirty_pages_ratelimited(inode->i_mapping);
1787 		if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1788 			btrfs_btree_balance_dirty(fs_info);
1789 
1790 		pos += copied;
1791 		num_written += copied;
1792 	}
1793 
1794 	kfree(pages);
1795 
1796 	if (release_bytes) {
1797 		if (only_release_metadata) {
1798 			btrfs_drew_write_unlock(&root->snapshot_lock);
1799 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1800 					release_bytes, true);
1801 		} else {
1802 			btrfs_delalloc_release_space(inode, data_reserved,
1803 					round_down(pos, fs_info->sectorsize),
1804 					release_bytes, true);
1805 		}
1806 	}
1807 
1808 	extent_changeset_free(data_reserved);
1809 	return num_written ? num_written : ret;
1810 }
1811 
1812 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1813 {
1814 	struct file *file = iocb->ki_filp;
1815 	struct inode *inode = file_inode(file);
1816 	loff_t pos;
1817 	ssize_t written;
1818 	ssize_t written_buffered;
1819 	loff_t endbyte;
1820 	int err;
1821 
1822 	written = generic_file_direct_write(iocb, from);
1823 
1824 	if (written < 0 || !iov_iter_count(from))
1825 		return written;
1826 
1827 	pos = iocb->ki_pos;
1828 	written_buffered = btrfs_buffered_write(iocb, from);
1829 	if (written_buffered < 0) {
1830 		err = written_buffered;
1831 		goto out;
1832 	}
1833 	/*
1834 	 * Ensure all data is persisted. We want the next direct IO read to be
1835 	 * able to read what was just written.
1836 	 */
1837 	endbyte = pos + written_buffered - 1;
1838 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1839 	if (err)
1840 		goto out;
1841 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1842 	if (err)
1843 		goto out;
1844 	written += written_buffered;
1845 	iocb->ki_pos = pos + written_buffered;
1846 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1847 				 endbyte >> PAGE_SHIFT);
1848 out:
1849 	return written ? written : err;
1850 }
1851 
1852 static void update_time_for_write(struct inode *inode)
1853 {
1854 	struct timespec64 now;
1855 
1856 	if (IS_NOCMTIME(inode))
1857 		return;
1858 
1859 	now = current_time(inode);
1860 	if (!timespec64_equal(&inode->i_mtime, &now))
1861 		inode->i_mtime = now;
1862 
1863 	if (!timespec64_equal(&inode->i_ctime, &now))
1864 		inode->i_ctime = now;
1865 
1866 	if (IS_I_VERSION(inode))
1867 		inode_inc_iversion(inode);
1868 }
1869 
1870 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1871 				    struct iov_iter *from)
1872 {
1873 	struct file *file = iocb->ki_filp;
1874 	struct inode *inode = file_inode(file);
1875 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1876 	struct btrfs_root *root = BTRFS_I(inode)->root;
1877 	u64 start_pos;
1878 	u64 end_pos;
1879 	ssize_t num_written = 0;
1880 	const bool sync = iocb->ki_flags & IOCB_DSYNC;
1881 	ssize_t err;
1882 	loff_t pos;
1883 	size_t count;
1884 	loff_t oldsize;
1885 	int clean_page = 0;
1886 
1887 	if (!(iocb->ki_flags & IOCB_DIRECT) &&
1888 	    (iocb->ki_flags & IOCB_NOWAIT))
1889 		return -EOPNOTSUPP;
1890 
1891 	if (iocb->ki_flags & IOCB_NOWAIT) {
1892 		if (!inode_trylock(inode))
1893 			return -EAGAIN;
1894 	} else {
1895 		inode_lock(inode);
1896 	}
1897 
1898 	err = generic_write_checks(iocb, from);
1899 	if (err <= 0) {
1900 		inode_unlock(inode);
1901 		return err;
1902 	}
1903 
1904 	pos = iocb->ki_pos;
1905 	count = iov_iter_count(from);
1906 	if (iocb->ki_flags & IOCB_NOWAIT) {
1907 		/*
1908 		 * We will allocate space in case nodatacow is not set,
1909 		 * so bail
1910 		 */
1911 		if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1912 					      BTRFS_INODE_PREALLOC)) ||
1913 		    check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1914 			inode_unlock(inode);
1915 			return -EAGAIN;
1916 		}
1917 	}
1918 
1919 	current->backing_dev_info = inode_to_bdi(inode);
1920 	err = file_remove_privs(file);
1921 	if (err) {
1922 		inode_unlock(inode);
1923 		goto out;
1924 	}
1925 
1926 	/*
1927 	 * If BTRFS flips readonly due to some impossible error
1928 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1929 	 * although we have opened a file as writable, we have
1930 	 * to stop this write operation to ensure FS consistency.
1931 	 */
1932 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1933 		inode_unlock(inode);
1934 		err = -EROFS;
1935 		goto out;
1936 	}
1937 
1938 	/*
1939 	 * We reserve space for updating the inode when we reserve space for the
1940 	 * extent we are going to write, so we will enospc out there.  We don't
1941 	 * need to start yet another transaction to update the inode as we will
1942 	 * update the inode when we finish writing whatever data we write.
1943 	 */
1944 	update_time_for_write(inode);
1945 
1946 	start_pos = round_down(pos, fs_info->sectorsize);
1947 	oldsize = i_size_read(inode);
1948 	if (start_pos > oldsize) {
1949 		/* Expand hole size to cover write data, preventing empty gap */
1950 		end_pos = round_up(pos + count,
1951 				   fs_info->sectorsize);
1952 		err = btrfs_cont_expand(inode, oldsize, end_pos);
1953 		if (err) {
1954 			inode_unlock(inode);
1955 			goto out;
1956 		}
1957 		if (start_pos > round_up(oldsize, fs_info->sectorsize))
1958 			clean_page = 1;
1959 	}
1960 
1961 	if (sync)
1962 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1963 
1964 	if (iocb->ki_flags & IOCB_DIRECT) {
1965 		num_written = __btrfs_direct_write(iocb, from);
1966 	} else {
1967 		num_written = btrfs_buffered_write(iocb, from);
1968 		if (num_written > 0)
1969 			iocb->ki_pos = pos + num_written;
1970 		if (clean_page)
1971 			pagecache_isize_extended(inode, oldsize,
1972 						i_size_read(inode));
1973 	}
1974 
1975 	inode_unlock(inode);
1976 
1977 	/*
1978 	 * We also have to set last_sub_trans to the current log transid,
1979 	 * otherwise subsequent syncs to a file that's been synced in this
1980 	 * transaction will appear to have already occurred.
1981 	 */
1982 	spin_lock(&BTRFS_I(inode)->lock);
1983 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1984 	spin_unlock(&BTRFS_I(inode)->lock);
1985 	if (num_written > 0)
1986 		num_written = generic_write_sync(iocb, num_written);
1987 
1988 	if (sync)
1989 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1990 out:
1991 	current->backing_dev_info = NULL;
1992 	return num_written ? num_written : err;
1993 }
1994 
1995 int btrfs_release_file(struct inode *inode, struct file *filp)
1996 {
1997 	struct btrfs_file_private *private = filp->private_data;
1998 
1999 	if (private && private->filldir_buf)
2000 		kfree(private->filldir_buf);
2001 	kfree(private);
2002 	filp->private_data = NULL;
2003 
2004 	/*
2005 	 * ordered_data_close is set by setattr when we are about to truncate
2006 	 * a file from a non-zero size to a zero size.  This tries to
2007 	 * flush down new bytes that may have been written if the
2008 	 * application were using truncate to replace a file in place.
2009 	 */
2010 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2011 			       &BTRFS_I(inode)->runtime_flags))
2012 			filemap_flush(inode->i_mapping);
2013 	return 0;
2014 }
2015 
2016 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2017 {
2018 	int ret;
2019 	struct blk_plug plug;
2020 
2021 	/*
2022 	 * This is only called in fsync, which would do synchronous writes, so
2023 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2024 	 * multiple disks using raid profile, a large IO can be split to
2025 	 * several segments of stripe length (currently 64K).
2026 	 */
2027 	blk_start_plug(&plug);
2028 	atomic_inc(&BTRFS_I(inode)->sync_writers);
2029 	ret = btrfs_fdatawrite_range(inode, start, end);
2030 	atomic_dec(&BTRFS_I(inode)->sync_writers);
2031 	blk_finish_plug(&plug);
2032 
2033 	return ret;
2034 }
2035 
2036 /*
2037  * fsync call for both files and directories.  This logs the inode into
2038  * the tree log instead of forcing full commits whenever possible.
2039  *
2040  * It needs to call filemap_fdatawait so that all ordered extent updates are
2041  * in the metadata btree are up to date for copying to the log.
2042  *
2043  * It drops the inode mutex before doing the tree log commit.  This is an
2044  * important optimization for directories because holding the mutex prevents
2045  * new operations on the dir while we write to disk.
2046  */
2047 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2048 {
2049 	struct dentry *dentry = file_dentry(file);
2050 	struct inode *inode = d_inode(dentry);
2051 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2052 	struct btrfs_root *root = BTRFS_I(inode)->root;
2053 	struct btrfs_trans_handle *trans;
2054 	struct btrfs_log_ctx ctx;
2055 	int ret = 0, err;
2056 
2057 	trace_btrfs_sync_file(file, datasync);
2058 
2059 	btrfs_init_log_ctx(&ctx, inode);
2060 
2061 	/*
2062 	 * Set the range to full if the NO_HOLES feature is not enabled.
2063 	 * This is to avoid missing file extent items representing holes after
2064 	 * replaying the log.
2065 	 */
2066 	if (!btrfs_fs_incompat(fs_info, NO_HOLES)) {
2067 		start = 0;
2068 		end = LLONG_MAX;
2069 	}
2070 
2071 	/*
2072 	 * We write the dirty pages in the range and wait until they complete
2073 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
2074 	 * multi-task, and make the performance up.  See
2075 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2076 	 */
2077 	ret = start_ordered_ops(inode, start, end);
2078 	if (ret)
2079 		goto out;
2080 
2081 	inode_lock(inode);
2082 
2083 	/*
2084 	 * We take the dio_sem here because the tree log stuff can race with
2085 	 * lockless dio writes and get an extent map logged for an extent we
2086 	 * never waited on.  We need it this high up for lockdep reasons.
2087 	 */
2088 	down_write(&BTRFS_I(inode)->dio_sem);
2089 
2090 	atomic_inc(&root->log_batch);
2091 
2092 	/*
2093 	 * If the inode needs a full sync, make sure we use a full range to
2094 	 * avoid log tree corruption, due to hole detection racing with ordered
2095 	 * extent completion for adjacent ranges and races between logging and
2096 	 * completion of ordered extents for adjancent ranges - both races
2097 	 * could lead to file extent items in the log with overlapping ranges.
2098 	 * Do this while holding the inode lock, to avoid races with other
2099 	 * tasks.
2100 	 */
2101 	if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2102 		     &BTRFS_I(inode)->runtime_flags)) {
2103 		start = 0;
2104 		end = LLONG_MAX;
2105 	}
2106 
2107 	/*
2108 	 * Before we acquired the inode's lock, someone may have dirtied more
2109 	 * pages in the target range. We need to make sure that writeback for
2110 	 * any such pages does not start while we are logging the inode, because
2111 	 * if it does, any of the following might happen when we are not doing a
2112 	 * full inode sync:
2113 	 *
2114 	 * 1) We log an extent after its writeback finishes but before its
2115 	 *    checksums are added to the csum tree, leading to -EIO errors
2116 	 *    when attempting to read the extent after a log replay.
2117 	 *
2118 	 * 2) We can end up logging an extent before its writeback finishes.
2119 	 *    Therefore after the log replay we will have a file extent item
2120 	 *    pointing to an unwritten extent (and no data checksums as well).
2121 	 *
2122 	 * So trigger writeback for any eventual new dirty pages and then we
2123 	 * wait for all ordered extents to complete below.
2124 	 */
2125 	ret = start_ordered_ops(inode, start, end);
2126 	if (ret) {
2127 		up_write(&BTRFS_I(inode)->dio_sem);
2128 		inode_unlock(inode);
2129 		goto out;
2130 	}
2131 
2132 	/*
2133 	 * We have to do this here to avoid the priority inversion of waiting on
2134 	 * IO of a lower priority task while holding a transaction open.
2135 	 *
2136 	 * Also, the range length can be represented by u64, we have to do the
2137 	 * typecasts to avoid signed overflow if it's [0, LLONG_MAX].
2138 	 */
2139 	ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1);
2140 	if (ret) {
2141 		up_write(&BTRFS_I(inode)->dio_sem);
2142 		inode_unlock(inode);
2143 		goto out;
2144 	}
2145 	atomic_inc(&root->log_batch);
2146 
2147 	smp_mb();
2148 	if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2149 	    BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
2150 		/*
2151 		 * We've had everything committed since the last time we were
2152 		 * modified so clear this flag in case it was set for whatever
2153 		 * reason, it's no longer relevant.
2154 		 */
2155 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2156 			  &BTRFS_I(inode)->runtime_flags);
2157 		/*
2158 		 * An ordered extent might have started before and completed
2159 		 * already with io errors, in which case the inode was not
2160 		 * updated and we end up here. So check the inode's mapping
2161 		 * for any errors that might have happened since we last
2162 		 * checked called fsync.
2163 		 */
2164 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2165 		up_write(&BTRFS_I(inode)->dio_sem);
2166 		inode_unlock(inode);
2167 		goto out;
2168 	}
2169 
2170 	/*
2171 	 * We use start here because we will need to wait on the IO to complete
2172 	 * in btrfs_sync_log, which could require joining a transaction (for
2173 	 * example checking cross references in the nocow path).  If we use join
2174 	 * here we could get into a situation where we're waiting on IO to
2175 	 * happen that is blocked on a transaction trying to commit.  With start
2176 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2177 	 * before we start blocking joiners.  This comment is to keep somebody
2178 	 * from thinking they are super smart and changing this to
2179 	 * btrfs_join_transaction *cough*Josef*cough*.
2180 	 */
2181 	trans = btrfs_start_transaction(root, 0);
2182 	if (IS_ERR(trans)) {
2183 		ret = PTR_ERR(trans);
2184 		up_write(&BTRFS_I(inode)->dio_sem);
2185 		inode_unlock(inode);
2186 		goto out;
2187 	}
2188 
2189 	ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2190 	if (ret < 0) {
2191 		/* Fallthrough and commit/free transaction. */
2192 		ret = 1;
2193 	}
2194 
2195 	/* we've logged all the items and now have a consistent
2196 	 * version of the file in the log.  It is possible that
2197 	 * someone will come in and modify the file, but that's
2198 	 * fine because the log is consistent on disk, and we
2199 	 * have references to all of the file's extents
2200 	 *
2201 	 * It is possible that someone will come in and log the
2202 	 * file again, but that will end up using the synchronization
2203 	 * inside btrfs_sync_log to keep things safe.
2204 	 */
2205 	up_write(&BTRFS_I(inode)->dio_sem);
2206 	inode_unlock(inode);
2207 
2208 	if (ret != BTRFS_NO_LOG_SYNC) {
2209 		if (!ret) {
2210 			ret = btrfs_sync_log(trans, root, &ctx);
2211 			if (!ret) {
2212 				ret = btrfs_end_transaction(trans);
2213 				goto out;
2214 			}
2215 		}
2216 		ret = btrfs_commit_transaction(trans);
2217 	} else {
2218 		ret = btrfs_end_transaction(trans);
2219 	}
2220 out:
2221 	ASSERT(list_empty(&ctx.list));
2222 	err = file_check_and_advance_wb_err(file);
2223 	if (!ret)
2224 		ret = err;
2225 	return ret > 0 ? -EIO : ret;
2226 }
2227 
2228 static const struct vm_operations_struct btrfs_file_vm_ops = {
2229 	.fault		= filemap_fault,
2230 	.map_pages	= filemap_map_pages,
2231 	.page_mkwrite	= btrfs_page_mkwrite,
2232 };
2233 
2234 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2235 {
2236 	struct address_space *mapping = filp->f_mapping;
2237 
2238 	if (!mapping->a_ops->readpage)
2239 		return -ENOEXEC;
2240 
2241 	file_accessed(filp);
2242 	vma->vm_ops = &btrfs_file_vm_ops;
2243 
2244 	return 0;
2245 }
2246 
2247 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2248 			  int slot, u64 start, u64 end)
2249 {
2250 	struct btrfs_file_extent_item *fi;
2251 	struct btrfs_key key;
2252 
2253 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2254 		return 0;
2255 
2256 	btrfs_item_key_to_cpu(leaf, &key, slot);
2257 	if (key.objectid != btrfs_ino(inode) ||
2258 	    key.type != BTRFS_EXTENT_DATA_KEY)
2259 		return 0;
2260 
2261 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2262 
2263 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2264 		return 0;
2265 
2266 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2267 		return 0;
2268 
2269 	if (key.offset == end)
2270 		return 1;
2271 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2272 		return 1;
2273 	return 0;
2274 }
2275 
2276 static int fill_holes(struct btrfs_trans_handle *trans,
2277 		struct btrfs_inode *inode,
2278 		struct btrfs_path *path, u64 offset, u64 end)
2279 {
2280 	struct btrfs_fs_info *fs_info = trans->fs_info;
2281 	struct btrfs_root *root = inode->root;
2282 	struct extent_buffer *leaf;
2283 	struct btrfs_file_extent_item *fi;
2284 	struct extent_map *hole_em;
2285 	struct extent_map_tree *em_tree = &inode->extent_tree;
2286 	struct btrfs_key key;
2287 	int ret;
2288 
2289 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2290 		goto out;
2291 
2292 	key.objectid = btrfs_ino(inode);
2293 	key.type = BTRFS_EXTENT_DATA_KEY;
2294 	key.offset = offset;
2295 
2296 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2297 	if (ret <= 0) {
2298 		/*
2299 		 * We should have dropped this offset, so if we find it then
2300 		 * something has gone horribly wrong.
2301 		 */
2302 		if (ret == 0)
2303 			ret = -EINVAL;
2304 		return ret;
2305 	}
2306 
2307 	leaf = path->nodes[0];
2308 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2309 		u64 num_bytes;
2310 
2311 		path->slots[0]--;
2312 		fi = btrfs_item_ptr(leaf, path->slots[0],
2313 				    struct btrfs_file_extent_item);
2314 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2315 			end - offset;
2316 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2317 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2318 		btrfs_set_file_extent_offset(leaf, fi, 0);
2319 		btrfs_mark_buffer_dirty(leaf);
2320 		goto out;
2321 	}
2322 
2323 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2324 		u64 num_bytes;
2325 
2326 		key.offset = offset;
2327 		btrfs_set_item_key_safe(fs_info, path, &key);
2328 		fi = btrfs_item_ptr(leaf, path->slots[0],
2329 				    struct btrfs_file_extent_item);
2330 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2331 			offset;
2332 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2333 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2334 		btrfs_set_file_extent_offset(leaf, fi, 0);
2335 		btrfs_mark_buffer_dirty(leaf);
2336 		goto out;
2337 	}
2338 	btrfs_release_path(path);
2339 
2340 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2341 			offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2342 	if (ret)
2343 		return ret;
2344 
2345 out:
2346 	btrfs_release_path(path);
2347 
2348 	hole_em = alloc_extent_map();
2349 	if (!hole_em) {
2350 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2351 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2352 	} else {
2353 		hole_em->start = offset;
2354 		hole_em->len = end - offset;
2355 		hole_em->ram_bytes = hole_em->len;
2356 		hole_em->orig_start = offset;
2357 
2358 		hole_em->block_start = EXTENT_MAP_HOLE;
2359 		hole_em->block_len = 0;
2360 		hole_em->orig_block_len = 0;
2361 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2362 		hole_em->generation = trans->transid;
2363 
2364 		do {
2365 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2366 			write_lock(&em_tree->lock);
2367 			ret = add_extent_mapping(em_tree, hole_em, 1);
2368 			write_unlock(&em_tree->lock);
2369 		} while (ret == -EEXIST);
2370 		free_extent_map(hole_em);
2371 		if (ret)
2372 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2373 					&inode->runtime_flags);
2374 	}
2375 
2376 	return 0;
2377 }
2378 
2379 /*
2380  * Find a hole extent on given inode and change start/len to the end of hole
2381  * extent.(hole/vacuum extent whose em->start <= start &&
2382  *	   em->start + em->len > start)
2383  * When a hole extent is found, return 1 and modify start/len.
2384  */
2385 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2386 {
2387 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2388 	struct extent_map *em;
2389 	int ret = 0;
2390 
2391 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2392 			      round_down(*start, fs_info->sectorsize),
2393 			      round_up(*len, fs_info->sectorsize));
2394 	if (IS_ERR(em))
2395 		return PTR_ERR(em);
2396 
2397 	/* Hole or vacuum extent(only exists in no-hole mode) */
2398 	if (em->block_start == EXTENT_MAP_HOLE) {
2399 		ret = 1;
2400 		*len = em->start + em->len > *start + *len ?
2401 		       0 : *start + *len - em->start - em->len;
2402 		*start = em->start + em->len;
2403 	}
2404 	free_extent_map(em);
2405 	return ret;
2406 }
2407 
2408 static int btrfs_punch_hole_lock_range(struct inode *inode,
2409 				       const u64 lockstart,
2410 				       const u64 lockend,
2411 				       struct extent_state **cached_state)
2412 {
2413 	while (1) {
2414 		struct btrfs_ordered_extent *ordered;
2415 		int ret;
2416 
2417 		truncate_pagecache_range(inode, lockstart, lockend);
2418 
2419 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2420 				 cached_state);
2421 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2422 
2423 		/*
2424 		 * We need to make sure we have no ordered extents in this range
2425 		 * and nobody raced in and read a page in this range, if we did
2426 		 * we need to try again.
2427 		 */
2428 		if ((!ordered ||
2429 		    (ordered->file_offset + ordered->num_bytes <= lockstart ||
2430 		     ordered->file_offset > lockend)) &&
2431 		     !filemap_range_has_page(inode->i_mapping,
2432 					     lockstart, lockend)) {
2433 			if (ordered)
2434 				btrfs_put_ordered_extent(ordered);
2435 			break;
2436 		}
2437 		if (ordered)
2438 			btrfs_put_ordered_extent(ordered);
2439 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2440 				     lockend, cached_state);
2441 		ret = btrfs_wait_ordered_range(inode, lockstart,
2442 					       lockend - lockstart + 1);
2443 		if (ret)
2444 			return ret;
2445 	}
2446 	return 0;
2447 }
2448 
2449 static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans,
2450 				     struct inode *inode,
2451 				     struct btrfs_path *path,
2452 				     struct btrfs_clone_extent_info *clone_info,
2453 				     const u64 clone_len)
2454 {
2455 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2456 	struct btrfs_root *root = BTRFS_I(inode)->root;
2457 	struct btrfs_file_extent_item *extent;
2458 	struct extent_buffer *leaf;
2459 	struct btrfs_key key;
2460 	int slot;
2461 	struct btrfs_ref ref = { 0 };
2462 	u64 ref_offset;
2463 	int ret;
2464 
2465 	if (clone_len == 0)
2466 		return 0;
2467 
2468 	if (clone_info->disk_offset == 0 &&
2469 	    btrfs_fs_incompat(fs_info, NO_HOLES))
2470 		return 0;
2471 
2472 	key.objectid = btrfs_ino(BTRFS_I(inode));
2473 	key.type = BTRFS_EXTENT_DATA_KEY;
2474 	key.offset = clone_info->file_offset;
2475 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2476 				      clone_info->item_size);
2477 	if (ret)
2478 		return ret;
2479 	leaf = path->nodes[0];
2480 	slot = path->slots[0];
2481 	write_extent_buffer(leaf, clone_info->extent_buf,
2482 			    btrfs_item_ptr_offset(leaf, slot),
2483 			    clone_info->item_size);
2484 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2485 	btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset);
2486 	btrfs_set_file_extent_num_bytes(leaf, extent, clone_len);
2487 	btrfs_mark_buffer_dirty(leaf);
2488 	btrfs_release_path(path);
2489 
2490 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
2491 			clone_info->file_offset, clone_len);
2492 	if (ret)
2493 		return ret;
2494 
2495 	/* If it's a hole, nothing more needs to be done. */
2496 	if (clone_info->disk_offset == 0)
2497 		return 0;
2498 
2499 	inode_add_bytes(inode, clone_len);
2500 	btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2501 			       clone_info->disk_offset,
2502 			       clone_info->disk_len, 0);
2503 	ref_offset = clone_info->file_offset - clone_info->data_offset;
2504 	btrfs_init_data_ref(&ref, root->root_key.objectid,
2505 			    btrfs_ino(BTRFS_I(inode)), ref_offset);
2506 	ret = btrfs_inc_extent_ref(trans, &ref);
2507 
2508 	return ret;
2509 }
2510 
2511 /*
2512  * The respective range must have been previously locked, as well as the inode.
2513  * The end offset is inclusive (last byte of the range).
2514  * @clone_info is NULL for fallocate's hole punching and non-NULL for extent
2515  * cloning.
2516  * When cloning, we don't want to end up in a state where we dropped extents
2517  * without inserting a new one, so we must abort the transaction to avoid a
2518  * corruption.
2519  */
2520 int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path,
2521 			   const u64 start, const u64 end,
2522 			   struct btrfs_clone_extent_info *clone_info,
2523 			   struct btrfs_trans_handle **trans_out)
2524 {
2525 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2526 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2527 	u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2528 	struct btrfs_root *root = BTRFS_I(inode)->root;
2529 	struct btrfs_trans_handle *trans = NULL;
2530 	struct btrfs_block_rsv *rsv;
2531 	unsigned int rsv_count;
2532 	u64 cur_offset;
2533 	u64 drop_end;
2534 	u64 len = end - start;
2535 	int ret = 0;
2536 
2537 	if (end <= start)
2538 		return -EINVAL;
2539 
2540 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2541 	if (!rsv) {
2542 		ret = -ENOMEM;
2543 		goto out;
2544 	}
2545 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2546 	rsv->failfast = 1;
2547 
2548 	/*
2549 	 * 1 - update the inode
2550 	 * 1 - removing the extents in the range
2551 	 * 1 - adding the hole extent if no_holes isn't set or if we are cloning
2552 	 *     an extent
2553 	 */
2554 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info)
2555 		rsv_count = 3;
2556 	else
2557 		rsv_count = 2;
2558 
2559 	trans = btrfs_start_transaction(root, rsv_count);
2560 	if (IS_ERR(trans)) {
2561 		ret = PTR_ERR(trans);
2562 		trans = NULL;
2563 		goto out_free;
2564 	}
2565 
2566 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2567 				      min_size, false);
2568 	BUG_ON(ret);
2569 	trans->block_rsv = rsv;
2570 
2571 	cur_offset = start;
2572 	while (cur_offset < end) {
2573 		ret = __btrfs_drop_extents(trans, root, inode, path,
2574 					   cur_offset, end + 1, &drop_end,
2575 					   1, 0, 0, NULL);
2576 		if (ret != -ENOSPC) {
2577 			/*
2578 			 * When cloning we want to avoid transaction aborts when
2579 			 * nothing was done and we are attempting to clone parts
2580 			 * of inline extents, in such cases -EOPNOTSUPP is
2581 			 * returned by __btrfs_drop_extents() without having
2582 			 * changed anything in the file.
2583 			 */
2584 			if (clone_info && ret && ret != -EOPNOTSUPP)
2585 				btrfs_abort_transaction(trans, ret);
2586 			break;
2587 		}
2588 
2589 		trans->block_rsv = &fs_info->trans_block_rsv;
2590 
2591 		if (!clone_info && cur_offset < drop_end &&
2592 		    cur_offset < ino_size) {
2593 			ret = fill_holes(trans, BTRFS_I(inode), path,
2594 					cur_offset, drop_end);
2595 			if (ret) {
2596 				/*
2597 				 * If we failed then we didn't insert our hole
2598 				 * entries for the area we dropped, so now the
2599 				 * fs is corrupted, so we must abort the
2600 				 * transaction.
2601 				 */
2602 				btrfs_abort_transaction(trans, ret);
2603 				break;
2604 			}
2605 		} else if (!clone_info && cur_offset < drop_end) {
2606 			/*
2607 			 * We are past the i_size here, but since we didn't
2608 			 * insert holes we need to clear the mapped area so we
2609 			 * know to not set disk_i_size in this area until a new
2610 			 * file extent is inserted here.
2611 			 */
2612 			ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2613 					cur_offset, drop_end - cur_offset);
2614 			if (ret) {
2615 				/*
2616 				 * We couldn't clear our area, so we could
2617 				 * presumably adjust up and corrupt the fs, so
2618 				 * we need to abort.
2619 				 */
2620 				btrfs_abort_transaction(trans, ret);
2621 				break;
2622 			}
2623 		}
2624 
2625 		if (clone_info && drop_end > clone_info->file_offset) {
2626 			u64 clone_len = drop_end - clone_info->file_offset;
2627 
2628 			ret = btrfs_insert_clone_extent(trans, inode, path,
2629 							clone_info, clone_len);
2630 			if (ret) {
2631 				btrfs_abort_transaction(trans, ret);
2632 				break;
2633 			}
2634 			clone_info->data_len -= clone_len;
2635 			clone_info->data_offset += clone_len;
2636 			clone_info->file_offset += clone_len;
2637 		}
2638 
2639 		cur_offset = drop_end;
2640 
2641 		ret = btrfs_update_inode(trans, root, inode);
2642 		if (ret)
2643 			break;
2644 
2645 		btrfs_end_transaction(trans);
2646 		btrfs_btree_balance_dirty(fs_info);
2647 
2648 		trans = btrfs_start_transaction(root, rsv_count);
2649 		if (IS_ERR(trans)) {
2650 			ret = PTR_ERR(trans);
2651 			trans = NULL;
2652 			break;
2653 		}
2654 
2655 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2656 					      rsv, min_size, false);
2657 		BUG_ON(ret);	/* shouldn't happen */
2658 		trans->block_rsv = rsv;
2659 
2660 		if (!clone_info) {
2661 			ret = find_first_non_hole(inode, &cur_offset, &len);
2662 			if (unlikely(ret < 0))
2663 				break;
2664 			if (ret && !len) {
2665 				ret = 0;
2666 				break;
2667 			}
2668 		}
2669 	}
2670 
2671 	/*
2672 	 * If we were cloning, force the next fsync to be a full one since we
2673 	 * we replaced (or just dropped in the case of cloning holes when
2674 	 * NO_HOLES is enabled) extents and extent maps.
2675 	 * This is for the sake of simplicity, and cloning into files larger
2676 	 * than 16Mb would force the full fsync any way (when
2677 	 * try_release_extent_mapping() is invoked during page cache truncation.
2678 	 */
2679 	if (clone_info)
2680 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2681 			&BTRFS_I(inode)->runtime_flags);
2682 
2683 	if (ret)
2684 		goto out_trans;
2685 
2686 	trans->block_rsv = &fs_info->trans_block_rsv;
2687 	/*
2688 	 * If we are using the NO_HOLES feature we might have had already an
2689 	 * hole that overlaps a part of the region [lockstart, lockend] and
2690 	 * ends at (or beyond) lockend. Since we have no file extent items to
2691 	 * represent holes, drop_end can be less than lockend and so we must
2692 	 * make sure we have an extent map representing the existing hole (the
2693 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2694 	 * map representing the existing hole), otherwise the fast fsync path
2695 	 * will not record the existence of the hole region
2696 	 * [existing_hole_start, lockend].
2697 	 */
2698 	if (drop_end <= end)
2699 		drop_end = end + 1;
2700 	/*
2701 	 * Don't insert file hole extent item if it's for a range beyond eof
2702 	 * (because it's useless) or if it represents a 0 bytes range (when
2703 	 * cur_offset == drop_end).
2704 	 */
2705 	if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) {
2706 		ret = fill_holes(trans, BTRFS_I(inode), path,
2707 				cur_offset, drop_end);
2708 		if (ret) {
2709 			/* Same comment as above. */
2710 			btrfs_abort_transaction(trans, ret);
2711 			goto out_trans;
2712 		}
2713 	} else if (!clone_info && cur_offset < drop_end) {
2714 		/* See the comment in the loop above for the reasoning here. */
2715 		ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2716 					cur_offset, drop_end - cur_offset);
2717 		if (ret) {
2718 			btrfs_abort_transaction(trans, ret);
2719 			goto out_trans;
2720 		}
2721 
2722 	}
2723 	if (clone_info) {
2724 		ret = btrfs_insert_clone_extent(trans, inode, path, clone_info,
2725 						clone_info->data_len);
2726 		if (ret) {
2727 			btrfs_abort_transaction(trans, ret);
2728 			goto out_trans;
2729 		}
2730 	}
2731 
2732 out_trans:
2733 	if (!trans)
2734 		goto out_free;
2735 
2736 	trans->block_rsv = &fs_info->trans_block_rsv;
2737 	if (ret)
2738 		btrfs_end_transaction(trans);
2739 	else
2740 		*trans_out = trans;
2741 out_free:
2742 	btrfs_free_block_rsv(fs_info, rsv);
2743 out:
2744 	return ret;
2745 }
2746 
2747 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2748 {
2749 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2750 	struct btrfs_root *root = BTRFS_I(inode)->root;
2751 	struct extent_state *cached_state = NULL;
2752 	struct btrfs_path *path;
2753 	struct btrfs_trans_handle *trans = NULL;
2754 	u64 lockstart;
2755 	u64 lockend;
2756 	u64 tail_start;
2757 	u64 tail_len;
2758 	u64 orig_start = offset;
2759 	int ret = 0;
2760 	bool same_block;
2761 	u64 ino_size;
2762 	bool truncated_block = false;
2763 	bool updated_inode = false;
2764 
2765 	ret = btrfs_wait_ordered_range(inode, offset, len);
2766 	if (ret)
2767 		return ret;
2768 
2769 	inode_lock(inode);
2770 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2771 	ret = find_first_non_hole(inode, &offset, &len);
2772 	if (ret < 0)
2773 		goto out_only_mutex;
2774 	if (ret && !len) {
2775 		/* Already in a large hole */
2776 		ret = 0;
2777 		goto out_only_mutex;
2778 	}
2779 
2780 	lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2781 	lockend = round_down(offset + len,
2782 			     btrfs_inode_sectorsize(inode)) - 1;
2783 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2784 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2785 	/*
2786 	 * We needn't truncate any block which is beyond the end of the file
2787 	 * because we are sure there is no data there.
2788 	 */
2789 	/*
2790 	 * Only do this if we are in the same block and we aren't doing the
2791 	 * entire block.
2792 	 */
2793 	if (same_block && len < fs_info->sectorsize) {
2794 		if (offset < ino_size) {
2795 			truncated_block = true;
2796 			ret = btrfs_truncate_block(inode, offset, len, 0);
2797 		} else {
2798 			ret = 0;
2799 		}
2800 		goto out_only_mutex;
2801 	}
2802 
2803 	/* zero back part of the first block */
2804 	if (offset < ino_size) {
2805 		truncated_block = true;
2806 		ret = btrfs_truncate_block(inode, offset, 0, 0);
2807 		if (ret) {
2808 			inode_unlock(inode);
2809 			return ret;
2810 		}
2811 	}
2812 
2813 	/* Check the aligned pages after the first unaligned page,
2814 	 * if offset != orig_start, which means the first unaligned page
2815 	 * including several following pages are already in holes,
2816 	 * the extra check can be skipped */
2817 	if (offset == orig_start) {
2818 		/* after truncate page, check hole again */
2819 		len = offset + len - lockstart;
2820 		offset = lockstart;
2821 		ret = find_first_non_hole(inode, &offset, &len);
2822 		if (ret < 0)
2823 			goto out_only_mutex;
2824 		if (ret && !len) {
2825 			ret = 0;
2826 			goto out_only_mutex;
2827 		}
2828 		lockstart = offset;
2829 	}
2830 
2831 	/* Check the tail unaligned part is in a hole */
2832 	tail_start = lockend + 1;
2833 	tail_len = offset + len - tail_start;
2834 	if (tail_len) {
2835 		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2836 		if (unlikely(ret < 0))
2837 			goto out_only_mutex;
2838 		if (!ret) {
2839 			/* zero the front end of the last page */
2840 			if (tail_start + tail_len < ino_size) {
2841 				truncated_block = true;
2842 				ret = btrfs_truncate_block(inode,
2843 							tail_start + tail_len,
2844 							0, 1);
2845 				if (ret)
2846 					goto out_only_mutex;
2847 			}
2848 		}
2849 	}
2850 
2851 	if (lockend < lockstart) {
2852 		ret = 0;
2853 		goto out_only_mutex;
2854 	}
2855 
2856 	ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2857 					  &cached_state);
2858 	if (ret)
2859 		goto out_only_mutex;
2860 
2861 	path = btrfs_alloc_path();
2862 	if (!path) {
2863 		ret = -ENOMEM;
2864 		goto out;
2865 	}
2866 
2867 	ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL,
2868 				     &trans);
2869 	btrfs_free_path(path);
2870 	if (ret)
2871 		goto out;
2872 
2873 	ASSERT(trans != NULL);
2874 	inode_inc_iversion(inode);
2875 	inode->i_mtime = inode->i_ctime = current_time(inode);
2876 	ret = btrfs_update_inode(trans, root, inode);
2877 	updated_inode = true;
2878 	btrfs_end_transaction(trans);
2879 	btrfs_btree_balance_dirty(fs_info);
2880 out:
2881 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2882 			     &cached_state);
2883 out_only_mutex:
2884 	if (!updated_inode && truncated_block && !ret) {
2885 		/*
2886 		 * If we only end up zeroing part of a page, we still need to
2887 		 * update the inode item, so that all the time fields are
2888 		 * updated as well as the necessary btrfs inode in memory fields
2889 		 * for detecting, at fsync time, if the inode isn't yet in the
2890 		 * log tree or it's there but not up to date.
2891 		 */
2892 		struct timespec64 now = current_time(inode);
2893 
2894 		inode_inc_iversion(inode);
2895 		inode->i_mtime = now;
2896 		inode->i_ctime = now;
2897 		trans = btrfs_start_transaction(root, 1);
2898 		if (IS_ERR(trans)) {
2899 			ret = PTR_ERR(trans);
2900 		} else {
2901 			int ret2;
2902 
2903 			ret = btrfs_update_inode(trans, root, inode);
2904 			ret2 = btrfs_end_transaction(trans);
2905 			if (!ret)
2906 				ret = ret2;
2907 		}
2908 	}
2909 	inode_unlock(inode);
2910 	return ret;
2911 }
2912 
2913 /* Helper structure to record which range is already reserved */
2914 struct falloc_range {
2915 	struct list_head list;
2916 	u64 start;
2917 	u64 len;
2918 };
2919 
2920 /*
2921  * Helper function to add falloc range
2922  *
2923  * Caller should have locked the larger range of extent containing
2924  * [start, len)
2925  */
2926 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2927 {
2928 	struct falloc_range *prev = NULL;
2929 	struct falloc_range *range = NULL;
2930 
2931 	if (list_empty(head))
2932 		goto insert;
2933 
2934 	/*
2935 	 * As fallocate iterate by bytenr order, we only need to check
2936 	 * the last range.
2937 	 */
2938 	prev = list_entry(head->prev, struct falloc_range, list);
2939 	if (prev->start + prev->len == start) {
2940 		prev->len += len;
2941 		return 0;
2942 	}
2943 insert:
2944 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2945 	if (!range)
2946 		return -ENOMEM;
2947 	range->start = start;
2948 	range->len = len;
2949 	list_add_tail(&range->list, head);
2950 	return 0;
2951 }
2952 
2953 static int btrfs_fallocate_update_isize(struct inode *inode,
2954 					const u64 end,
2955 					const int mode)
2956 {
2957 	struct btrfs_trans_handle *trans;
2958 	struct btrfs_root *root = BTRFS_I(inode)->root;
2959 	int ret;
2960 	int ret2;
2961 
2962 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2963 		return 0;
2964 
2965 	trans = btrfs_start_transaction(root, 1);
2966 	if (IS_ERR(trans))
2967 		return PTR_ERR(trans);
2968 
2969 	inode->i_ctime = current_time(inode);
2970 	i_size_write(inode, end);
2971 	btrfs_inode_safe_disk_i_size_write(inode, 0);
2972 	ret = btrfs_update_inode(trans, root, inode);
2973 	ret2 = btrfs_end_transaction(trans);
2974 
2975 	return ret ? ret : ret2;
2976 }
2977 
2978 enum {
2979 	RANGE_BOUNDARY_WRITTEN_EXTENT,
2980 	RANGE_BOUNDARY_PREALLOC_EXTENT,
2981 	RANGE_BOUNDARY_HOLE,
2982 };
2983 
2984 static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2985 						 u64 offset)
2986 {
2987 	const u64 sectorsize = btrfs_inode_sectorsize(inode);
2988 	struct extent_map *em;
2989 	int ret;
2990 
2991 	offset = round_down(offset, sectorsize);
2992 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize);
2993 	if (IS_ERR(em))
2994 		return PTR_ERR(em);
2995 
2996 	if (em->block_start == EXTENT_MAP_HOLE)
2997 		ret = RANGE_BOUNDARY_HOLE;
2998 	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2999 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3000 	else
3001 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3002 
3003 	free_extent_map(em);
3004 	return ret;
3005 }
3006 
3007 static int btrfs_zero_range(struct inode *inode,
3008 			    loff_t offset,
3009 			    loff_t len,
3010 			    const int mode)
3011 {
3012 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3013 	struct extent_map *em;
3014 	struct extent_changeset *data_reserved = NULL;
3015 	int ret;
3016 	u64 alloc_hint = 0;
3017 	const u64 sectorsize = btrfs_inode_sectorsize(inode);
3018 	u64 alloc_start = round_down(offset, sectorsize);
3019 	u64 alloc_end = round_up(offset + len, sectorsize);
3020 	u64 bytes_to_reserve = 0;
3021 	bool space_reserved = false;
3022 
3023 	inode_dio_wait(inode);
3024 
3025 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3026 			      alloc_end - alloc_start);
3027 	if (IS_ERR(em)) {
3028 		ret = PTR_ERR(em);
3029 		goto out;
3030 	}
3031 
3032 	/*
3033 	 * Avoid hole punching and extent allocation for some cases. More cases
3034 	 * could be considered, but these are unlikely common and we keep things
3035 	 * as simple as possible for now. Also, intentionally, if the target
3036 	 * range contains one or more prealloc extents together with regular
3037 	 * extents and holes, we drop all the existing extents and allocate a
3038 	 * new prealloc extent, so that we get a larger contiguous disk extent.
3039 	 */
3040 	if (em->start <= alloc_start &&
3041 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3042 		const u64 em_end = em->start + em->len;
3043 
3044 		if (em_end >= offset + len) {
3045 			/*
3046 			 * The whole range is already a prealloc extent,
3047 			 * do nothing except updating the inode's i_size if
3048 			 * needed.
3049 			 */
3050 			free_extent_map(em);
3051 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3052 							   mode);
3053 			goto out;
3054 		}
3055 		/*
3056 		 * Part of the range is already a prealloc extent, so operate
3057 		 * only on the remaining part of the range.
3058 		 */
3059 		alloc_start = em_end;
3060 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3061 		len = offset + len - alloc_start;
3062 		offset = alloc_start;
3063 		alloc_hint = em->block_start + em->len;
3064 	}
3065 	free_extent_map(em);
3066 
3067 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3068 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3069 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3070 				      sectorsize);
3071 		if (IS_ERR(em)) {
3072 			ret = PTR_ERR(em);
3073 			goto out;
3074 		}
3075 
3076 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3077 			free_extent_map(em);
3078 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3079 							   mode);
3080 			goto out;
3081 		}
3082 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3083 			free_extent_map(em);
3084 			ret = btrfs_truncate_block(inode, offset, len, 0);
3085 			if (!ret)
3086 				ret = btrfs_fallocate_update_isize(inode,
3087 								   offset + len,
3088 								   mode);
3089 			return ret;
3090 		}
3091 		free_extent_map(em);
3092 		alloc_start = round_down(offset, sectorsize);
3093 		alloc_end = alloc_start + sectorsize;
3094 		goto reserve_space;
3095 	}
3096 
3097 	alloc_start = round_up(offset, sectorsize);
3098 	alloc_end = round_down(offset + len, sectorsize);
3099 
3100 	/*
3101 	 * For unaligned ranges, check the pages at the boundaries, they might
3102 	 * map to an extent, in which case we need to partially zero them, or
3103 	 * they might map to a hole, in which case we need our allocation range
3104 	 * to cover them.
3105 	 */
3106 	if (!IS_ALIGNED(offset, sectorsize)) {
3107 		ret = btrfs_zero_range_check_range_boundary(inode, offset);
3108 		if (ret < 0)
3109 			goto out;
3110 		if (ret == RANGE_BOUNDARY_HOLE) {
3111 			alloc_start = round_down(offset, sectorsize);
3112 			ret = 0;
3113 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3114 			ret = btrfs_truncate_block(inode, offset, 0, 0);
3115 			if (ret)
3116 				goto out;
3117 		} else {
3118 			ret = 0;
3119 		}
3120 	}
3121 
3122 	if (!IS_ALIGNED(offset + len, sectorsize)) {
3123 		ret = btrfs_zero_range_check_range_boundary(inode,
3124 							    offset + len);
3125 		if (ret < 0)
3126 			goto out;
3127 		if (ret == RANGE_BOUNDARY_HOLE) {
3128 			alloc_end = round_up(offset + len, sectorsize);
3129 			ret = 0;
3130 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3131 			ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3132 			if (ret)
3133 				goto out;
3134 		} else {
3135 			ret = 0;
3136 		}
3137 	}
3138 
3139 reserve_space:
3140 	if (alloc_start < alloc_end) {
3141 		struct extent_state *cached_state = NULL;
3142 		const u64 lockstart = alloc_start;
3143 		const u64 lockend = alloc_end - 1;
3144 
3145 		bytes_to_reserve = alloc_end - alloc_start;
3146 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3147 						      bytes_to_reserve);
3148 		if (ret < 0)
3149 			goto out;
3150 		space_reserved = true;
3151 		ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3152 						alloc_start, bytes_to_reserve);
3153 		if (ret)
3154 			goto out;
3155 		ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3156 						  &cached_state);
3157 		if (ret)
3158 			goto out;
3159 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3160 						alloc_end - alloc_start,
3161 						i_blocksize(inode),
3162 						offset + len, &alloc_hint);
3163 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3164 				     lockend, &cached_state);
3165 		/* btrfs_prealloc_file_range releases reserved space on error */
3166 		if (ret) {
3167 			space_reserved = false;
3168 			goto out;
3169 		}
3170 	}
3171 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3172  out:
3173 	if (ret && space_reserved)
3174 		btrfs_free_reserved_data_space(inode, data_reserved,
3175 					       alloc_start, bytes_to_reserve);
3176 	extent_changeset_free(data_reserved);
3177 
3178 	return ret;
3179 }
3180 
3181 static long btrfs_fallocate(struct file *file, int mode,
3182 			    loff_t offset, loff_t len)
3183 {
3184 	struct inode *inode = file_inode(file);
3185 	struct extent_state *cached_state = NULL;
3186 	struct extent_changeset *data_reserved = NULL;
3187 	struct falloc_range *range;
3188 	struct falloc_range *tmp;
3189 	struct list_head reserve_list;
3190 	u64 cur_offset;
3191 	u64 last_byte;
3192 	u64 alloc_start;
3193 	u64 alloc_end;
3194 	u64 alloc_hint = 0;
3195 	u64 locked_end;
3196 	u64 actual_end = 0;
3197 	struct extent_map *em;
3198 	int blocksize = btrfs_inode_sectorsize(inode);
3199 	int ret;
3200 
3201 	alloc_start = round_down(offset, blocksize);
3202 	alloc_end = round_up(offset + len, blocksize);
3203 	cur_offset = alloc_start;
3204 
3205 	/* Make sure we aren't being give some crap mode */
3206 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3207 		     FALLOC_FL_ZERO_RANGE))
3208 		return -EOPNOTSUPP;
3209 
3210 	if (mode & FALLOC_FL_PUNCH_HOLE)
3211 		return btrfs_punch_hole(inode, offset, len);
3212 
3213 	/*
3214 	 * Only trigger disk allocation, don't trigger qgroup reserve
3215 	 *
3216 	 * For qgroup space, it will be checked later.
3217 	 */
3218 	if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3219 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3220 						      alloc_end - alloc_start);
3221 		if (ret < 0)
3222 			return ret;
3223 	}
3224 
3225 	inode_lock(inode);
3226 
3227 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3228 		ret = inode_newsize_ok(inode, offset + len);
3229 		if (ret)
3230 			goto out;
3231 	}
3232 
3233 	/*
3234 	 * TODO: Move these two operations after we have checked
3235 	 * accurate reserved space, or fallocate can still fail but
3236 	 * with page truncated or size expanded.
3237 	 *
3238 	 * But that's a minor problem and won't do much harm BTW.
3239 	 */
3240 	if (alloc_start > inode->i_size) {
3241 		ret = btrfs_cont_expand(inode, i_size_read(inode),
3242 					alloc_start);
3243 		if (ret)
3244 			goto out;
3245 	} else if (offset + len > inode->i_size) {
3246 		/*
3247 		 * If we are fallocating from the end of the file onward we
3248 		 * need to zero out the end of the block if i_size lands in the
3249 		 * middle of a block.
3250 		 */
3251 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3252 		if (ret)
3253 			goto out;
3254 	}
3255 
3256 	/*
3257 	 * wait for ordered IO before we have any locks.  We'll loop again
3258 	 * below with the locks held.
3259 	 */
3260 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3261 				       alloc_end - alloc_start);
3262 	if (ret)
3263 		goto out;
3264 
3265 	if (mode & FALLOC_FL_ZERO_RANGE) {
3266 		ret = btrfs_zero_range(inode, offset, len, mode);
3267 		inode_unlock(inode);
3268 		return ret;
3269 	}
3270 
3271 	locked_end = alloc_end - 1;
3272 	while (1) {
3273 		struct btrfs_ordered_extent *ordered;
3274 
3275 		/* the extent lock is ordered inside the running
3276 		 * transaction
3277 		 */
3278 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3279 				 locked_end, &cached_state);
3280 		ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3281 
3282 		if (ordered &&
3283 		    ordered->file_offset + ordered->num_bytes > alloc_start &&
3284 		    ordered->file_offset < alloc_end) {
3285 			btrfs_put_ordered_extent(ordered);
3286 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3287 					     alloc_start, locked_end,
3288 					     &cached_state);
3289 			/*
3290 			 * we can't wait on the range with the transaction
3291 			 * running or with the extent lock held
3292 			 */
3293 			ret = btrfs_wait_ordered_range(inode, alloc_start,
3294 						       alloc_end - alloc_start);
3295 			if (ret)
3296 				goto out;
3297 		} else {
3298 			if (ordered)
3299 				btrfs_put_ordered_extent(ordered);
3300 			break;
3301 		}
3302 	}
3303 
3304 	/* First, check if we exceed the qgroup limit */
3305 	INIT_LIST_HEAD(&reserve_list);
3306 	while (cur_offset < alloc_end) {
3307 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3308 				      alloc_end - cur_offset);
3309 		if (IS_ERR(em)) {
3310 			ret = PTR_ERR(em);
3311 			break;
3312 		}
3313 		last_byte = min(extent_map_end(em), alloc_end);
3314 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3315 		last_byte = ALIGN(last_byte, blocksize);
3316 		if (em->block_start == EXTENT_MAP_HOLE ||
3317 		    (cur_offset >= inode->i_size &&
3318 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3319 			ret = add_falloc_range(&reserve_list, cur_offset,
3320 					       last_byte - cur_offset);
3321 			if (ret < 0) {
3322 				free_extent_map(em);
3323 				break;
3324 			}
3325 			ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3326 					cur_offset, last_byte - cur_offset);
3327 			if (ret < 0) {
3328 				cur_offset = last_byte;
3329 				free_extent_map(em);
3330 				break;
3331 			}
3332 		} else {
3333 			/*
3334 			 * Do not need to reserve unwritten extent for this
3335 			 * range, free reserved data space first, otherwise
3336 			 * it'll result in false ENOSPC error.
3337 			 */
3338 			btrfs_free_reserved_data_space(inode, data_reserved,
3339 					cur_offset, last_byte - cur_offset);
3340 		}
3341 		free_extent_map(em);
3342 		cur_offset = last_byte;
3343 	}
3344 
3345 	/*
3346 	 * If ret is still 0, means we're OK to fallocate.
3347 	 * Or just cleanup the list and exit.
3348 	 */
3349 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3350 		if (!ret)
3351 			ret = btrfs_prealloc_file_range(inode, mode,
3352 					range->start,
3353 					range->len, i_blocksize(inode),
3354 					offset + len, &alloc_hint);
3355 		else
3356 			btrfs_free_reserved_data_space(inode,
3357 					data_reserved, range->start,
3358 					range->len);
3359 		list_del(&range->list);
3360 		kfree(range);
3361 	}
3362 	if (ret < 0)
3363 		goto out_unlock;
3364 
3365 	/*
3366 	 * We didn't need to allocate any more space, but we still extended the
3367 	 * size of the file so we need to update i_size and the inode item.
3368 	 */
3369 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3370 out_unlock:
3371 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3372 			     &cached_state);
3373 out:
3374 	inode_unlock(inode);
3375 	/* Let go of our reservation. */
3376 	if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3377 		btrfs_free_reserved_data_space(inode, data_reserved,
3378 				cur_offset, alloc_end - cur_offset);
3379 	extent_changeset_free(data_reserved);
3380 	return ret;
3381 }
3382 
3383 static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3384 				  int whence)
3385 {
3386 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3387 	struct extent_map *em = NULL;
3388 	struct extent_state *cached_state = NULL;
3389 	loff_t i_size = inode->i_size;
3390 	u64 lockstart;
3391 	u64 lockend;
3392 	u64 start;
3393 	u64 len;
3394 	int ret = 0;
3395 
3396 	if (i_size == 0 || offset >= i_size)
3397 		return -ENXIO;
3398 
3399 	/*
3400 	 * offset can be negative, in this case we start finding DATA/HOLE from
3401 	 * the very start of the file.
3402 	 */
3403 	start = max_t(loff_t, 0, offset);
3404 
3405 	lockstart = round_down(start, fs_info->sectorsize);
3406 	lockend = round_up(i_size, fs_info->sectorsize);
3407 	if (lockend <= lockstart)
3408 		lockend = lockstart + fs_info->sectorsize;
3409 	lockend--;
3410 	len = lockend - lockstart + 1;
3411 
3412 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3413 			 &cached_state);
3414 
3415 	while (start < i_size) {
3416 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3417 		if (IS_ERR(em)) {
3418 			ret = PTR_ERR(em);
3419 			em = NULL;
3420 			break;
3421 		}
3422 
3423 		if (whence == SEEK_HOLE &&
3424 		    (em->block_start == EXTENT_MAP_HOLE ||
3425 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3426 			break;
3427 		else if (whence == SEEK_DATA &&
3428 			   (em->block_start != EXTENT_MAP_HOLE &&
3429 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3430 			break;
3431 
3432 		start = em->start + em->len;
3433 		free_extent_map(em);
3434 		em = NULL;
3435 		cond_resched();
3436 	}
3437 	free_extent_map(em);
3438 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3439 			     &cached_state);
3440 	if (ret) {
3441 		offset = ret;
3442 	} else {
3443 		if (whence == SEEK_DATA && start >= i_size)
3444 			offset = -ENXIO;
3445 		else
3446 			offset = min_t(loff_t, start, i_size);
3447 	}
3448 
3449 	return offset;
3450 }
3451 
3452 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3453 {
3454 	struct inode *inode = file->f_mapping->host;
3455 
3456 	switch (whence) {
3457 	default:
3458 		return generic_file_llseek(file, offset, whence);
3459 	case SEEK_DATA:
3460 	case SEEK_HOLE:
3461 		inode_lock_shared(inode);
3462 		offset = find_desired_extent(inode, offset, whence);
3463 		inode_unlock_shared(inode);
3464 		break;
3465 	}
3466 
3467 	if (offset < 0)
3468 		return offset;
3469 
3470 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3471 }
3472 
3473 static int btrfs_file_open(struct inode *inode, struct file *filp)
3474 {
3475 	filp->f_mode |= FMODE_NOWAIT;
3476 	return generic_file_open(inode, filp);
3477 }
3478 
3479 const struct file_operations btrfs_file_operations = {
3480 	.llseek		= btrfs_file_llseek,
3481 	.read_iter      = generic_file_read_iter,
3482 	.splice_read	= generic_file_splice_read,
3483 	.write_iter	= btrfs_file_write_iter,
3484 	.mmap		= btrfs_file_mmap,
3485 	.open		= btrfs_file_open,
3486 	.release	= btrfs_release_file,
3487 	.fsync		= btrfs_sync_file,
3488 	.fallocate	= btrfs_fallocate,
3489 	.unlocked_ioctl	= btrfs_ioctl,
3490 #ifdef CONFIG_COMPAT
3491 	.compat_ioctl	= btrfs_compat_ioctl,
3492 #endif
3493 	.remap_file_range = btrfs_remap_file_range,
3494 };
3495 
3496 void __cold btrfs_auto_defrag_exit(void)
3497 {
3498 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3499 }
3500 
3501 int __init btrfs_auto_defrag_init(void)
3502 {
3503 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3504 					sizeof(struct inode_defrag), 0,
3505 					SLAB_MEM_SPREAD,
3506 					NULL);
3507 	if (!btrfs_inode_defrag_cachep)
3508 		return -ENOMEM;
3509 
3510 	return 0;
3511 }
3512 
3513 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3514 {
3515 	int ret;
3516 
3517 	/*
3518 	 * So with compression we will find and lock a dirty page and clear the
3519 	 * first one as dirty, setup an async extent, and immediately return
3520 	 * with the entire range locked but with nobody actually marked with
3521 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3522 	 * expect it to work since it will just kick off a thread to do the
3523 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3524 	 * since it will wait on the page lock, which won't be unlocked until
3525 	 * after the pages have been marked as writeback and so we're good to go
3526 	 * from there.  We have to do this otherwise we'll miss the ordered
3527 	 * extents and that results in badness.  Please Josef, do not think you
3528 	 * know better and pull this out at some point in the future, it is
3529 	 * right and you are wrong.
3530 	 */
3531 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3532 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3533 			     &BTRFS_I(inode)->runtime_flags))
3534 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3535 
3536 	return ret;
3537 }
3538