1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include "ctree.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "btrfs_inode.h" 23 #include "print-tree.h" 24 #include "tree-log.h" 25 #include "locking.h" 26 #include "volumes.h" 27 #include "qgroup.h" 28 #include "compression.h" 29 #include "delalloc-space.h" 30 31 static struct kmem_cache *btrfs_inode_defrag_cachep; 32 /* 33 * when auto defrag is enabled we 34 * queue up these defrag structs to remember which 35 * inodes need defragging passes 36 */ 37 struct inode_defrag { 38 struct rb_node rb_node; 39 /* objectid */ 40 u64 ino; 41 /* 42 * transid where the defrag was added, we search for 43 * extents newer than this 44 */ 45 u64 transid; 46 47 /* root objectid */ 48 u64 root; 49 50 /* last offset we were able to defrag */ 51 u64 last_offset; 52 53 /* if we've wrapped around back to zero once already */ 54 int cycled; 55 }; 56 57 static int __compare_inode_defrag(struct inode_defrag *defrag1, 58 struct inode_defrag *defrag2) 59 { 60 if (defrag1->root > defrag2->root) 61 return 1; 62 else if (defrag1->root < defrag2->root) 63 return -1; 64 else if (defrag1->ino > defrag2->ino) 65 return 1; 66 else if (defrag1->ino < defrag2->ino) 67 return -1; 68 else 69 return 0; 70 } 71 72 /* pop a record for an inode into the defrag tree. The lock 73 * must be held already 74 * 75 * If you're inserting a record for an older transid than an 76 * existing record, the transid already in the tree is lowered 77 * 78 * If an existing record is found the defrag item you 79 * pass in is freed 80 */ 81 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 82 struct inode_defrag *defrag) 83 { 84 struct btrfs_fs_info *fs_info = inode->root->fs_info; 85 struct inode_defrag *entry; 86 struct rb_node **p; 87 struct rb_node *parent = NULL; 88 int ret; 89 90 p = &fs_info->defrag_inodes.rb_node; 91 while (*p) { 92 parent = *p; 93 entry = rb_entry(parent, struct inode_defrag, rb_node); 94 95 ret = __compare_inode_defrag(defrag, entry); 96 if (ret < 0) 97 p = &parent->rb_left; 98 else if (ret > 0) 99 p = &parent->rb_right; 100 else { 101 /* if we're reinserting an entry for 102 * an old defrag run, make sure to 103 * lower the transid of our existing record 104 */ 105 if (defrag->transid < entry->transid) 106 entry->transid = defrag->transid; 107 if (defrag->last_offset > entry->last_offset) 108 entry->last_offset = defrag->last_offset; 109 return -EEXIST; 110 } 111 } 112 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 113 rb_link_node(&defrag->rb_node, parent, p); 114 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 115 return 0; 116 } 117 118 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 119 { 120 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 121 return 0; 122 123 if (btrfs_fs_closing(fs_info)) 124 return 0; 125 126 return 1; 127 } 128 129 /* 130 * insert a defrag record for this inode if auto defrag is 131 * enabled 132 */ 133 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 134 struct btrfs_inode *inode) 135 { 136 struct btrfs_root *root = inode->root; 137 struct btrfs_fs_info *fs_info = root->fs_info; 138 struct inode_defrag *defrag; 139 u64 transid; 140 int ret; 141 142 if (!__need_auto_defrag(fs_info)) 143 return 0; 144 145 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 146 return 0; 147 148 if (trans) 149 transid = trans->transid; 150 else 151 transid = inode->root->last_trans; 152 153 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 154 if (!defrag) 155 return -ENOMEM; 156 157 defrag->ino = btrfs_ino(inode); 158 defrag->transid = transid; 159 defrag->root = root->root_key.objectid; 160 161 spin_lock(&fs_info->defrag_inodes_lock); 162 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 163 /* 164 * If we set IN_DEFRAG flag and evict the inode from memory, 165 * and then re-read this inode, this new inode doesn't have 166 * IN_DEFRAG flag. At the case, we may find the existed defrag. 167 */ 168 ret = __btrfs_add_inode_defrag(inode, defrag); 169 if (ret) 170 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 171 } else { 172 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 173 } 174 spin_unlock(&fs_info->defrag_inodes_lock); 175 return 0; 176 } 177 178 /* 179 * Requeue the defrag object. If there is a defrag object that points to 180 * the same inode in the tree, we will merge them together (by 181 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 182 */ 183 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode, 184 struct inode_defrag *defrag) 185 { 186 struct btrfs_fs_info *fs_info = inode->root->fs_info; 187 int ret; 188 189 if (!__need_auto_defrag(fs_info)) 190 goto out; 191 192 /* 193 * Here we don't check the IN_DEFRAG flag, because we need merge 194 * them together. 195 */ 196 spin_lock(&fs_info->defrag_inodes_lock); 197 ret = __btrfs_add_inode_defrag(inode, defrag); 198 spin_unlock(&fs_info->defrag_inodes_lock); 199 if (ret) 200 goto out; 201 return; 202 out: 203 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 204 } 205 206 /* 207 * pick the defragable inode that we want, if it doesn't exist, we will get 208 * the next one. 209 */ 210 static struct inode_defrag * 211 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 212 { 213 struct inode_defrag *entry = NULL; 214 struct inode_defrag tmp; 215 struct rb_node *p; 216 struct rb_node *parent = NULL; 217 int ret; 218 219 tmp.ino = ino; 220 tmp.root = root; 221 222 spin_lock(&fs_info->defrag_inodes_lock); 223 p = fs_info->defrag_inodes.rb_node; 224 while (p) { 225 parent = p; 226 entry = rb_entry(parent, struct inode_defrag, rb_node); 227 228 ret = __compare_inode_defrag(&tmp, entry); 229 if (ret < 0) 230 p = parent->rb_left; 231 else if (ret > 0) 232 p = parent->rb_right; 233 else 234 goto out; 235 } 236 237 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 238 parent = rb_next(parent); 239 if (parent) 240 entry = rb_entry(parent, struct inode_defrag, rb_node); 241 else 242 entry = NULL; 243 } 244 out: 245 if (entry) 246 rb_erase(parent, &fs_info->defrag_inodes); 247 spin_unlock(&fs_info->defrag_inodes_lock); 248 return entry; 249 } 250 251 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 252 { 253 struct inode_defrag *defrag; 254 struct rb_node *node; 255 256 spin_lock(&fs_info->defrag_inodes_lock); 257 node = rb_first(&fs_info->defrag_inodes); 258 while (node) { 259 rb_erase(node, &fs_info->defrag_inodes); 260 defrag = rb_entry(node, struct inode_defrag, rb_node); 261 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 262 263 cond_resched_lock(&fs_info->defrag_inodes_lock); 264 265 node = rb_first(&fs_info->defrag_inodes); 266 } 267 spin_unlock(&fs_info->defrag_inodes_lock); 268 } 269 270 #define BTRFS_DEFRAG_BATCH 1024 271 272 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 273 struct inode_defrag *defrag) 274 { 275 struct btrfs_root *inode_root; 276 struct inode *inode; 277 struct btrfs_key key; 278 struct btrfs_ioctl_defrag_range_args range; 279 int num_defrag; 280 int index; 281 int ret; 282 283 /* get the inode */ 284 key.objectid = defrag->root; 285 key.type = BTRFS_ROOT_ITEM_KEY; 286 key.offset = (u64)-1; 287 288 index = srcu_read_lock(&fs_info->subvol_srcu); 289 290 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 291 if (IS_ERR(inode_root)) { 292 ret = PTR_ERR(inode_root); 293 goto cleanup; 294 } 295 296 key.objectid = defrag->ino; 297 key.type = BTRFS_INODE_ITEM_KEY; 298 key.offset = 0; 299 inode = btrfs_iget(fs_info->sb, &key, inode_root); 300 if (IS_ERR(inode)) { 301 ret = PTR_ERR(inode); 302 goto cleanup; 303 } 304 srcu_read_unlock(&fs_info->subvol_srcu, index); 305 306 /* do a chunk of defrag */ 307 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 308 memset(&range, 0, sizeof(range)); 309 range.len = (u64)-1; 310 range.start = defrag->last_offset; 311 312 sb_start_write(fs_info->sb); 313 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 314 BTRFS_DEFRAG_BATCH); 315 sb_end_write(fs_info->sb); 316 /* 317 * if we filled the whole defrag batch, there 318 * must be more work to do. Queue this defrag 319 * again 320 */ 321 if (num_defrag == BTRFS_DEFRAG_BATCH) { 322 defrag->last_offset = range.start; 323 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 324 } else if (defrag->last_offset && !defrag->cycled) { 325 /* 326 * we didn't fill our defrag batch, but 327 * we didn't start at zero. Make sure we loop 328 * around to the start of the file. 329 */ 330 defrag->last_offset = 0; 331 defrag->cycled = 1; 332 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 333 } else { 334 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 335 } 336 337 iput(inode); 338 return 0; 339 cleanup: 340 srcu_read_unlock(&fs_info->subvol_srcu, index); 341 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 342 return ret; 343 } 344 345 /* 346 * run through the list of inodes in the FS that need 347 * defragging 348 */ 349 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 350 { 351 struct inode_defrag *defrag; 352 u64 first_ino = 0; 353 u64 root_objectid = 0; 354 355 atomic_inc(&fs_info->defrag_running); 356 while (1) { 357 /* Pause the auto defragger. */ 358 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 359 &fs_info->fs_state)) 360 break; 361 362 if (!__need_auto_defrag(fs_info)) 363 break; 364 365 /* find an inode to defrag */ 366 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 367 first_ino); 368 if (!defrag) { 369 if (root_objectid || first_ino) { 370 root_objectid = 0; 371 first_ino = 0; 372 continue; 373 } else { 374 break; 375 } 376 } 377 378 first_ino = defrag->ino + 1; 379 root_objectid = defrag->root; 380 381 __btrfs_run_defrag_inode(fs_info, defrag); 382 } 383 atomic_dec(&fs_info->defrag_running); 384 385 /* 386 * during unmount, we use the transaction_wait queue to 387 * wait for the defragger to stop 388 */ 389 wake_up(&fs_info->transaction_wait); 390 return 0; 391 } 392 393 /* simple helper to fault in pages and copy. This should go away 394 * and be replaced with calls into generic code. 395 */ 396 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 397 struct page **prepared_pages, 398 struct iov_iter *i) 399 { 400 size_t copied = 0; 401 size_t total_copied = 0; 402 int pg = 0; 403 int offset = offset_in_page(pos); 404 405 while (write_bytes > 0) { 406 size_t count = min_t(size_t, 407 PAGE_SIZE - offset, write_bytes); 408 struct page *page = prepared_pages[pg]; 409 /* 410 * Copy data from userspace to the current page 411 */ 412 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 413 414 /* Flush processor's dcache for this page */ 415 flush_dcache_page(page); 416 417 /* 418 * if we get a partial write, we can end up with 419 * partially up to date pages. These add 420 * a lot of complexity, so make sure they don't 421 * happen by forcing this copy to be retried. 422 * 423 * The rest of the btrfs_file_write code will fall 424 * back to page at a time copies after we return 0. 425 */ 426 if (!PageUptodate(page) && copied < count) 427 copied = 0; 428 429 iov_iter_advance(i, copied); 430 write_bytes -= copied; 431 total_copied += copied; 432 433 /* Return to btrfs_file_write_iter to fault page */ 434 if (unlikely(copied == 0)) 435 break; 436 437 if (copied < PAGE_SIZE - offset) { 438 offset += copied; 439 } else { 440 pg++; 441 offset = 0; 442 } 443 } 444 return total_copied; 445 } 446 447 /* 448 * unlocks pages after btrfs_file_write is done with them 449 */ 450 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 451 { 452 size_t i; 453 for (i = 0; i < num_pages; i++) { 454 /* page checked is some magic around finding pages that 455 * have been modified without going through btrfs_set_page_dirty 456 * clear it here. There should be no need to mark the pages 457 * accessed as prepare_pages should have marked them accessed 458 * in prepare_pages via find_or_create_page() 459 */ 460 ClearPageChecked(pages[i]); 461 unlock_page(pages[i]); 462 put_page(pages[i]); 463 } 464 } 465 466 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 467 const u64 start, 468 const u64 len, 469 struct extent_state **cached_state) 470 { 471 u64 search_start = start; 472 const u64 end = start + len - 1; 473 474 while (search_start < end) { 475 const u64 search_len = end - search_start + 1; 476 struct extent_map *em; 477 u64 em_len; 478 int ret = 0; 479 480 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 481 if (IS_ERR(em)) 482 return PTR_ERR(em); 483 484 if (em->block_start != EXTENT_MAP_HOLE) 485 goto next; 486 487 em_len = em->len; 488 if (em->start < search_start) 489 em_len -= search_start - em->start; 490 if (em_len > search_len) 491 em_len = search_len; 492 493 ret = set_extent_bit(&inode->io_tree, search_start, 494 search_start + em_len - 1, 495 EXTENT_DELALLOC_NEW, 496 NULL, cached_state, GFP_NOFS); 497 next: 498 search_start = extent_map_end(em); 499 free_extent_map(em); 500 if (ret) 501 return ret; 502 } 503 return 0; 504 } 505 506 /* 507 * after copy_from_user, pages need to be dirtied and we need to make 508 * sure holes are created between the current EOF and the start of 509 * any next extents (if required). 510 * 511 * this also makes the decision about creating an inline extent vs 512 * doing real data extents, marking pages dirty and delalloc as required. 513 */ 514 int btrfs_dirty_pages(struct inode *inode, struct page **pages, 515 size_t num_pages, loff_t pos, size_t write_bytes, 516 struct extent_state **cached) 517 { 518 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 519 int err = 0; 520 int i; 521 u64 num_bytes; 522 u64 start_pos; 523 u64 end_of_last_block; 524 u64 end_pos = pos + write_bytes; 525 loff_t isize = i_size_read(inode); 526 unsigned int extra_bits = 0; 527 528 start_pos = pos & ~((u64) fs_info->sectorsize - 1); 529 num_bytes = round_up(write_bytes + pos - start_pos, 530 fs_info->sectorsize); 531 532 end_of_last_block = start_pos + num_bytes - 1; 533 534 /* 535 * The pages may have already been dirty, clear out old accounting so 536 * we can set things up properly 537 */ 538 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block, 539 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 540 0, 0, cached); 541 542 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) { 543 if (start_pos >= isize && 544 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) { 545 /* 546 * There can't be any extents following eof in this case 547 * so just set the delalloc new bit for the range 548 * directly. 549 */ 550 extra_bits |= EXTENT_DELALLOC_NEW; 551 } else { 552 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode), 553 start_pos, 554 num_bytes, cached); 555 if (err) 556 return err; 557 } 558 } 559 560 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 561 extra_bits, cached); 562 if (err) 563 return err; 564 565 for (i = 0; i < num_pages; i++) { 566 struct page *p = pages[i]; 567 SetPageUptodate(p); 568 ClearPageChecked(p); 569 set_page_dirty(p); 570 } 571 572 /* 573 * we've only changed i_size in ram, and we haven't updated 574 * the disk i_size. There is no need to log the inode 575 * at this time. 576 */ 577 if (end_pos > isize) 578 i_size_write(inode, end_pos); 579 return 0; 580 } 581 582 /* 583 * this drops all the extents in the cache that intersect the range 584 * [start, end]. Existing extents are split as required. 585 */ 586 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 587 int skip_pinned) 588 { 589 struct extent_map *em; 590 struct extent_map *split = NULL; 591 struct extent_map *split2 = NULL; 592 struct extent_map_tree *em_tree = &inode->extent_tree; 593 u64 len = end - start + 1; 594 u64 gen; 595 int ret; 596 int testend = 1; 597 unsigned long flags; 598 int compressed = 0; 599 bool modified; 600 601 WARN_ON(end < start); 602 if (end == (u64)-1) { 603 len = (u64)-1; 604 testend = 0; 605 } 606 while (1) { 607 int no_splits = 0; 608 609 modified = false; 610 if (!split) 611 split = alloc_extent_map(); 612 if (!split2) 613 split2 = alloc_extent_map(); 614 if (!split || !split2) 615 no_splits = 1; 616 617 write_lock(&em_tree->lock); 618 em = lookup_extent_mapping(em_tree, start, len); 619 if (!em) { 620 write_unlock(&em_tree->lock); 621 break; 622 } 623 flags = em->flags; 624 gen = em->generation; 625 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 626 if (testend && em->start + em->len >= start + len) { 627 free_extent_map(em); 628 write_unlock(&em_tree->lock); 629 break; 630 } 631 start = em->start + em->len; 632 if (testend) 633 len = start + len - (em->start + em->len); 634 free_extent_map(em); 635 write_unlock(&em_tree->lock); 636 continue; 637 } 638 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 639 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 640 clear_bit(EXTENT_FLAG_LOGGING, &flags); 641 modified = !list_empty(&em->list); 642 if (no_splits) 643 goto next; 644 645 if (em->start < start) { 646 split->start = em->start; 647 split->len = start - em->start; 648 649 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 650 split->orig_start = em->orig_start; 651 split->block_start = em->block_start; 652 653 if (compressed) 654 split->block_len = em->block_len; 655 else 656 split->block_len = split->len; 657 split->orig_block_len = max(split->block_len, 658 em->orig_block_len); 659 split->ram_bytes = em->ram_bytes; 660 } else { 661 split->orig_start = split->start; 662 split->block_len = 0; 663 split->block_start = em->block_start; 664 split->orig_block_len = 0; 665 split->ram_bytes = split->len; 666 } 667 668 split->generation = gen; 669 split->flags = flags; 670 split->compress_type = em->compress_type; 671 replace_extent_mapping(em_tree, em, split, modified); 672 free_extent_map(split); 673 split = split2; 674 split2 = NULL; 675 } 676 if (testend && em->start + em->len > start + len) { 677 u64 diff = start + len - em->start; 678 679 split->start = start + len; 680 split->len = em->start + em->len - (start + len); 681 split->flags = flags; 682 split->compress_type = em->compress_type; 683 split->generation = gen; 684 685 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 686 split->orig_block_len = max(em->block_len, 687 em->orig_block_len); 688 689 split->ram_bytes = em->ram_bytes; 690 if (compressed) { 691 split->block_len = em->block_len; 692 split->block_start = em->block_start; 693 split->orig_start = em->orig_start; 694 } else { 695 split->block_len = split->len; 696 split->block_start = em->block_start 697 + diff; 698 split->orig_start = em->orig_start; 699 } 700 } else { 701 split->ram_bytes = split->len; 702 split->orig_start = split->start; 703 split->block_len = 0; 704 split->block_start = em->block_start; 705 split->orig_block_len = 0; 706 } 707 708 if (extent_map_in_tree(em)) { 709 replace_extent_mapping(em_tree, em, split, 710 modified); 711 } else { 712 ret = add_extent_mapping(em_tree, split, 713 modified); 714 ASSERT(ret == 0); /* Logic error */ 715 } 716 free_extent_map(split); 717 split = NULL; 718 } 719 next: 720 if (extent_map_in_tree(em)) 721 remove_extent_mapping(em_tree, em); 722 write_unlock(&em_tree->lock); 723 724 /* once for us */ 725 free_extent_map(em); 726 /* once for the tree*/ 727 free_extent_map(em); 728 } 729 if (split) 730 free_extent_map(split); 731 if (split2) 732 free_extent_map(split2); 733 } 734 735 /* 736 * this is very complex, but the basic idea is to drop all extents 737 * in the range start - end. hint_block is filled in with a block number 738 * that would be a good hint to the block allocator for this file. 739 * 740 * If an extent intersects the range but is not entirely inside the range 741 * it is either truncated or split. Anything entirely inside the range 742 * is deleted from the tree. 743 */ 744 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 745 struct btrfs_root *root, struct inode *inode, 746 struct btrfs_path *path, u64 start, u64 end, 747 u64 *drop_end, int drop_cache, 748 int replace_extent, 749 u32 extent_item_size, 750 int *key_inserted) 751 { 752 struct btrfs_fs_info *fs_info = root->fs_info; 753 struct extent_buffer *leaf; 754 struct btrfs_file_extent_item *fi; 755 struct btrfs_ref ref = { 0 }; 756 struct btrfs_key key; 757 struct btrfs_key new_key; 758 u64 ino = btrfs_ino(BTRFS_I(inode)); 759 u64 search_start = start; 760 u64 disk_bytenr = 0; 761 u64 num_bytes = 0; 762 u64 extent_offset = 0; 763 u64 extent_end = 0; 764 u64 last_end = start; 765 int del_nr = 0; 766 int del_slot = 0; 767 int extent_type; 768 int recow; 769 int ret; 770 int modify_tree = -1; 771 int update_refs; 772 int found = 0; 773 int leafs_visited = 0; 774 775 if (drop_cache) 776 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0); 777 778 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 779 modify_tree = 0; 780 781 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 782 root == fs_info->tree_root); 783 while (1) { 784 recow = 0; 785 ret = btrfs_lookup_file_extent(trans, root, path, ino, 786 search_start, modify_tree); 787 if (ret < 0) 788 break; 789 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 790 leaf = path->nodes[0]; 791 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 792 if (key.objectid == ino && 793 key.type == BTRFS_EXTENT_DATA_KEY) 794 path->slots[0]--; 795 } 796 ret = 0; 797 leafs_visited++; 798 next_slot: 799 leaf = path->nodes[0]; 800 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 801 BUG_ON(del_nr > 0); 802 ret = btrfs_next_leaf(root, path); 803 if (ret < 0) 804 break; 805 if (ret > 0) { 806 ret = 0; 807 break; 808 } 809 leafs_visited++; 810 leaf = path->nodes[0]; 811 recow = 1; 812 } 813 814 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 815 816 if (key.objectid > ino) 817 break; 818 if (WARN_ON_ONCE(key.objectid < ino) || 819 key.type < BTRFS_EXTENT_DATA_KEY) { 820 ASSERT(del_nr == 0); 821 path->slots[0]++; 822 goto next_slot; 823 } 824 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 825 break; 826 827 fi = btrfs_item_ptr(leaf, path->slots[0], 828 struct btrfs_file_extent_item); 829 extent_type = btrfs_file_extent_type(leaf, fi); 830 831 if (extent_type == BTRFS_FILE_EXTENT_REG || 832 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 833 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 834 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 835 extent_offset = btrfs_file_extent_offset(leaf, fi); 836 extent_end = key.offset + 837 btrfs_file_extent_num_bytes(leaf, fi); 838 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 839 extent_end = key.offset + 840 btrfs_file_extent_ram_bytes(leaf, fi); 841 } else { 842 /* can't happen */ 843 BUG(); 844 } 845 846 /* 847 * Don't skip extent items representing 0 byte lengths. They 848 * used to be created (bug) if while punching holes we hit 849 * -ENOSPC condition. So if we find one here, just ensure we 850 * delete it, otherwise we would insert a new file extent item 851 * with the same key (offset) as that 0 bytes length file 852 * extent item in the call to setup_items_for_insert() later 853 * in this function. 854 */ 855 if (extent_end == key.offset && extent_end >= search_start) { 856 last_end = extent_end; 857 goto delete_extent_item; 858 } 859 860 if (extent_end <= search_start) { 861 path->slots[0]++; 862 goto next_slot; 863 } 864 865 found = 1; 866 search_start = max(key.offset, start); 867 if (recow || !modify_tree) { 868 modify_tree = -1; 869 btrfs_release_path(path); 870 continue; 871 } 872 873 /* 874 * | - range to drop - | 875 * | -------- extent -------- | 876 */ 877 if (start > key.offset && end < extent_end) { 878 BUG_ON(del_nr > 0); 879 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 880 ret = -EOPNOTSUPP; 881 break; 882 } 883 884 memcpy(&new_key, &key, sizeof(new_key)); 885 new_key.offset = start; 886 ret = btrfs_duplicate_item(trans, root, path, 887 &new_key); 888 if (ret == -EAGAIN) { 889 btrfs_release_path(path); 890 continue; 891 } 892 if (ret < 0) 893 break; 894 895 leaf = path->nodes[0]; 896 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 897 struct btrfs_file_extent_item); 898 btrfs_set_file_extent_num_bytes(leaf, fi, 899 start - key.offset); 900 901 fi = btrfs_item_ptr(leaf, path->slots[0], 902 struct btrfs_file_extent_item); 903 904 extent_offset += start - key.offset; 905 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 906 btrfs_set_file_extent_num_bytes(leaf, fi, 907 extent_end - start); 908 btrfs_mark_buffer_dirty(leaf); 909 910 if (update_refs && disk_bytenr > 0) { 911 btrfs_init_generic_ref(&ref, 912 BTRFS_ADD_DELAYED_REF, 913 disk_bytenr, num_bytes, 0); 914 btrfs_init_data_ref(&ref, 915 root->root_key.objectid, 916 new_key.objectid, 917 start - extent_offset); 918 ret = btrfs_inc_extent_ref(trans, &ref); 919 BUG_ON(ret); /* -ENOMEM */ 920 } 921 key.offset = start; 922 } 923 /* 924 * From here on out we will have actually dropped something, so 925 * last_end can be updated. 926 */ 927 last_end = extent_end; 928 929 /* 930 * | ---- range to drop ----- | 931 * | -------- extent -------- | 932 */ 933 if (start <= key.offset && end < extent_end) { 934 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 935 ret = -EOPNOTSUPP; 936 break; 937 } 938 939 memcpy(&new_key, &key, sizeof(new_key)); 940 new_key.offset = end; 941 btrfs_set_item_key_safe(fs_info, path, &new_key); 942 943 extent_offset += end - key.offset; 944 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 945 btrfs_set_file_extent_num_bytes(leaf, fi, 946 extent_end - end); 947 btrfs_mark_buffer_dirty(leaf); 948 if (update_refs && disk_bytenr > 0) 949 inode_sub_bytes(inode, end - key.offset); 950 break; 951 } 952 953 search_start = extent_end; 954 /* 955 * | ---- range to drop ----- | 956 * | -------- extent -------- | 957 */ 958 if (start > key.offset && end >= extent_end) { 959 BUG_ON(del_nr > 0); 960 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 961 ret = -EOPNOTSUPP; 962 break; 963 } 964 965 btrfs_set_file_extent_num_bytes(leaf, fi, 966 start - key.offset); 967 btrfs_mark_buffer_dirty(leaf); 968 if (update_refs && disk_bytenr > 0) 969 inode_sub_bytes(inode, extent_end - start); 970 if (end == extent_end) 971 break; 972 973 path->slots[0]++; 974 goto next_slot; 975 } 976 977 /* 978 * | ---- range to drop ----- | 979 * | ------ extent ------ | 980 */ 981 if (start <= key.offset && end >= extent_end) { 982 delete_extent_item: 983 if (del_nr == 0) { 984 del_slot = path->slots[0]; 985 del_nr = 1; 986 } else { 987 BUG_ON(del_slot + del_nr != path->slots[0]); 988 del_nr++; 989 } 990 991 if (update_refs && 992 extent_type == BTRFS_FILE_EXTENT_INLINE) { 993 inode_sub_bytes(inode, 994 extent_end - key.offset); 995 extent_end = ALIGN(extent_end, 996 fs_info->sectorsize); 997 } else if (update_refs && disk_bytenr > 0) { 998 btrfs_init_generic_ref(&ref, 999 BTRFS_DROP_DELAYED_REF, 1000 disk_bytenr, num_bytes, 0); 1001 btrfs_init_data_ref(&ref, 1002 root->root_key.objectid, 1003 key.objectid, 1004 key.offset - extent_offset); 1005 ret = btrfs_free_extent(trans, &ref); 1006 BUG_ON(ret); /* -ENOMEM */ 1007 inode_sub_bytes(inode, 1008 extent_end - key.offset); 1009 } 1010 1011 if (end == extent_end) 1012 break; 1013 1014 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 1015 path->slots[0]++; 1016 goto next_slot; 1017 } 1018 1019 ret = btrfs_del_items(trans, root, path, del_slot, 1020 del_nr); 1021 if (ret) { 1022 btrfs_abort_transaction(trans, ret); 1023 break; 1024 } 1025 1026 del_nr = 0; 1027 del_slot = 0; 1028 1029 btrfs_release_path(path); 1030 continue; 1031 } 1032 1033 BUG(); 1034 } 1035 1036 if (!ret && del_nr > 0) { 1037 /* 1038 * Set path->slots[0] to first slot, so that after the delete 1039 * if items are move off from our leaf to its immediate left or 1040 * right neighbor leafs, we end up with a correct and adjusted 1041 * path->slots[0] for our insertion (if replace_extent != 0). 1042 */ 1043 path->slots[0] = del_slot; 1044 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1045 if (ret) 1046 btrfs_abort_transaction(trans, ret); 1047 } 1048 1049 leaf = path->nodes[0]; 1050 /* 1051 * If btrfs_del_items() was called, it might have deleted a leaf, in 1052 * which case it unlocked our path, so check path->locks[0] matches a 1053 * write lock. 1054 */ 1055 if (!ret && replace_extent && leafs_visited == 1 && 1056 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 1057 path->locks[0] == BTRFS_WRITE_LOCK) && 1058 btrfs_leaf_free_space(leaf) >= 1059 sizeof(struct btrfs_item) + extent_item_size) { 1060 1061 key.objectid = ino; 1062 key.type = BTRFS_EXTENT_DATA_KEY; 1063 key.offset = start; 1064 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 1065 struct btrfs_key slot_key; 1066 1067 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 1068 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1069 path->slots[0]++; 1070 } 1071 setup_items_for_insert(root, path, &key, 1072 &extent_item_size, 1073 extent_item_size, 1074 sizeof(struct btrfs_item) + 1075 extent_item_size, 1); 1076 *key_inserted = 1; 1077 } 1078 1079 if (!replace_extent || !(*key_inserted)) 1080 btrfs_release_path(path); 1081 if (drop_end) 1082 *drop_end = found ? min(end, last_end) : end; 1083 return ret; 1084 } 1085 1086 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1087 struct btrfs_root *root, struct inode *inode, u64 start, 1088 u64 end, int drop_cache) 1089 { 1090 struct btrfs_path *path; 1091 int ret; 1092 1093 path = btrfs_alloc_path(); 1094 if (!path) 1095 return -ENOMEM; 1096 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1097 drop_cache, 0, 0, NULL); 1098 btrfs_free_path(path); 1099 return ret; 1100 } 1101 1102 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1103 u64 objectid, u64 bytenr, u64 orig_offset, 1104 u64 *start, u64 *end) 1105 { 1106 struct btrfs_file_extent_item *fi; 1107 struct btrfs_key key; 1108 u64 extent_end; 1109 1110 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1111 return 0; 1112 1113 btrfs_item_key_to_cpu(leaf, &key, slot); 1114 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1115 return 0; 1116 1117 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1118 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1119 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1120 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1121 btrfs_file_extent_compression(leaf, fi) || 1122 btrfs_file_extent_encryption(leaf, fi) || 1123 btrfs_file_extent_other_encoding(leaf, fi)) 1124 return 0; 1125 1126 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1127 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1128 return 0; 1129 1130 *start = key.offset; 1131 *end = extent_end; 1132 return 1; 1133 } 1134 1135 /* 1136 * Mark extent in the range start - end as written. 1137 * 1138 * This changes extent type from 'pre-allocated' to 'regular'. If only 1139 * part of extent is marked as written, the extent will be split into 1140 * two or three. 1141 */ 1142 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1143 struct btrfs_inode *inode, u64 start, u64 end) 1144 { 1145 struct btrfs_fs_info *fs_info = trans->fs_info; 1146 struct btrfs_root *root = inode->root; 1147 struct extent_buffer *leaf; 1148 struct btrfs_path *path; 1149 struct btrfs_file_extent_item *fi; 1150 struct btrfs_ref ref = { 0 }; 1151 struct btrfs_key key; 1152 struct btrfs_key new_key; 1153 u64 bytenr; 1154 u64 num_bytes; 1155 u64 extent_end; 1156 u64 orig_offset; 1157 u64 other_start; 1158 u64 other_end; 1159 u64 split; 1160 int del_nr = 0; 1161 int del_slot = 0; 1162 int recow; 1163 int ret; 1164 u64 ino = btrfs_ino(inode); 1165 1166 path = btrfs_alloc_path(); 1167 if (!path) 1168 return -ENOMEM; 1169 again: 1170 recow = 0; 1171 split = start; 1172 key.objectid = ino; 1173 key.type = BTRFS_EXTENT_DATA_KEY; 1174 key.offset = split; 1175 1176 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1177 if (ret < 0) 1178 goto out; 1179 if (ret > 0 && path->slots[0] > 0) 1180 path->slots[0]--; 1181 1182 leaf = path->nodes[0]; 1183 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1184 if (key.objectid != ino || 1185 key.type != BTRFS_EXTENT_DATA_KEY) { 1186 ret = -EINVAL; 1187 btrfs_abort_transaction(trans, ret); 1188 goto out; 1189 } 1190 fi = btrfs_item_ptr(leaf, path->slots[0], 1191 struct btrfs_file_extent_item); 1192 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1193 ret = -EINVAL; 1194 btrfs_abort_transaction(trans, ret); 1195 goto out; 1196 } 1197 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1198 if (key.offset > start || extent_end < end) { 1199 ret = -EINVAL; 1200 btrfs_abort_transaction(trans, ret); 1201 goto out; 1202 } 1203 1204 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1205 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1206 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1207 memcpy(&new_key, &key, sizeof(new_key)); 1208 1209 if (start == key.offset && end < extent_end) { 1210 other_start = 0; 1211 other_end = start; 1212 if (extent_mergeable(leaf, path->slots[0] - 1, 1213 ino, bytenr, orig_offset, 1214 &other_start, &other_end)) { 1215 new_key.offset = end; 1216 btrfs_set_item_key_safe(fs_info, path, &new_key); 1217 fi = btrfs_item_ptr(leaf, path->slots[0], 1218 struct btrfs_file_extent_item); 1219 btrfs_set_file_extent_generation(leaf, fi, 1220 trans->transid); 1221 btrfs_set_file_extent_num_bytes(leaf, fi, 1222 extent_end - end); 1223 btrfs_set_file_extent_offset(leaf, fi, 1224 end - orig_offset); 1225 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1226 struct btrfs_file_extent_item); 1227 btrfs_set_file_extent_generation(leaf, fi, 1228 trans->transid); 1229 btrfs_set_file_extent_num_bytes(leaf, fi, 1230 end - other_start); 1231 btrfs_mark_buffer_dirty(leaf); 1232 goto out; 1233 } 1234 } 1235 1236 if (start > key.offset && end == extent_end) { 1237 other_start = end; 1238 other_end = 0; 1239 if (extent_mergeable(leaf, path->slots[0] + 1, 1240 ino, bytenr, orig_offset, 1241 &other_start, &other_end)) { 1242 fi = btrfs_item_ptr(leaf, path->slots[0], 1243 struct btrfs_file_extent_item); 1244 btrfs_set_file_extent_num_bytes(leaf, fi, 1245 start - key.offset); 1246 btrfs_set_file_extent_generation(leaf, fi, 1247 trans->transid); 1248 path->slots[0]++; 1249 new_key.offset = start; 1250 btrfs_set_item_key_safe(fs_info, path, &new_key); 1251 1252 fi = btrfs_item_ptr(leaf, path->slots[0], 1253 struct btrfs_file_extent_item); 1254 btrfs_set_file_extent_generation(leaf, fi, 1255 trans->transid); 1256 btrfs_set_file_extent_num_bytes(leaf, fi, 1257 other_end - start); 1258 btrfs_set_file_extent_offset(leaf, fi, 1259 start - orig_offset); 1260 btrfs_mark_buffer_dirty(leaf); 1261 goto out; 1262 } 1263 } 1264 1265 while (start > key.offset || end < extent_end) { 1266 if (key.offset == start) 1267 split = end; 1268 1269 new_key.offset = split; 1270 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1271 if (ret == -EAGAIN) { 1272 btrfs_release_path(path); 1273 goto again; 1274 } 1275 if (ret < 0) { 1276 btrfs_abort_transaction(trans, ret); 1277 goto out; 1278 } 1279 1280 leaf = path->nodes[0]; 1281 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1282 struct btrfs_file_extent_item); 1283 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1284 btrfs_set_file_extent_num_bytes(leaf, fi, 1285 split - key.offset); 1286 1287 fi = btrfs_item_ptr(leaf, path->slots[0], 1288 struct btrfs_file_extent_item); 1289 1290 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1291 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1292 btrfs_set_file_extent_num_bytes(leaf, fi, 1293 extent_end - split); 1294 btrfs_mark_buffer_dirty(leaf); 1295 1296 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 1297 num_bytes, 0); 1298 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 1299 orig_offset); 1300 ret = btrfs_inc_extent_ref(trans, &ref); 1301 if (ret) { 1302 btrfs_abort_transaction(trans, ret); 1303 goto out; 1304 } 1305 1306 if (split == start) { 1307 key.offset = start; 1308 } else { 1309 if (start != key.offset) { 1310 ret = -EINVAL; 1311 btrfs_abort_transaction(trans, ret); 1312 goto out; 1313 } 1314 path->slots[0]--; 1315 extent_end = end; 1316 } 1317 recow = 1; 1318 } 1319 1320 other_start = end; 1321 other_end = 0; 1322 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1323 num_bytes, 0); 1324 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset); 1325 if (extent_mergeable(leaf, path->slots[0] + 1, 1326 ino, bytenr, orig_offset, 1327 &other_start, &other_end)) { 1328 if (recow) { 1329 btrfs_release_path(path); 1330 goto again; 1331 } 1332 extent_end = other_end; 1333 del_slot = path->slots[0] + 1; 1334 del_nr++; 1335 ret = btrfs_free_extent(trans, &ref); 1336 if (ret) { 1337 btrfs_abort_transaction(trans, ret); 1338 goto out; 1339 } 1340 } 1341 other_start = 0; 1342 other_end = start; 1343 if (extent_mergeable(leaf, path->slots[0] - 1, 1344 ino, bytenr, orig_offset, 1345 &other_start, &other_end)) { 1346 if (recow) { 1347 btrfs_release_path(path); 1348 goto again; 1349 } 1350 key.offset = other_start; 1351 del_slot = path->slots[0]; 1352 del_nr++; 1353 ret = btrfs_free_extent(trans, &ref); 1354 if (ret) { 1355 btrfs_abort_transaction(trans, ret); 1356 goto out; 1357 } 1358 } 1359 if (del_nr == 0) { 1360 fi = btrfs_item_ptr(leaf, path->slots[0], 1361 struct btrfs_file_extent_item); 1362 btrfs_set_file_extent_type(leaf, fi, 1363 BTRFS_FILE_EXTENT_REG); 1364 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1365 btrfs_mark_buffer_dirty(leaf); 1366 } else { 1367 fi = btrfs_item_ptr(leaf, del_slot - 1, 1368 struct btrfs_file_extent_item); 1369 btrfs_set_file_extent_type(leaf, fi, 1370 BTRFS_FILE_EXTENT_REG); 1371 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1372 btrfs_set_file_extent_num_bytes(leaf, fi, 1373 extent_end - key.offset); 1374 btrfs_mark_buffer_dirty(leaf); 1375 1376 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1377 if (ret < 0) { 1378 btrfs_abort_transaction(trans, ret); 1379 goto out; 1380 } 1381 } 1382 out: 1383 btrfs_free_path(path); 1384 return 0; 1385 } 1386 1387 /* 1388 * on error we return an unlocked page and the error value 1389 * on success we return a locked page and 0 1390 */ 1391 static int prepare_uptodate_page(struct inode *inode, 1392 struct page *page, u64 pos, 1393 bool force_uptodate) 1394 { 1395 int ret = 0; 1396 1397 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1398 !PageUptodate(page)) { 1399 ret = btrfs_readpage(NULL, page); 1400 if (ret) 1401 return ret; 1402 lock_page(page); 1403 if (!PageUptodate(page)) { 1404 unlock_page(page); 1405 return -EIO; 1406 } 1407 if (page->mapping != inode->i_mapping) { 1408 unlock_page(page); 1409 return -EAGAIN; 1410 } 1411 } 1412 return 0; 1413 } 1414 1415 /* 1416 * this just gets pages into the page cache and locks them down. 1417 */ 1418 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1419 size_t num_pages, loff_t pos, 1420 size_t write_bytes, bool force_uptodate) 1421 { 1422 int i; 1423 unsigned long index = pos >> PAGE_SHIFT; 1424 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1425 int err = 0; 1426 int faili; 1427 1428 for (i = 0; i < num_pages; i++) { 1429 again: 1430 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1431 mask | __GFP_WRITE); 1432 if (!pages[i]) { 1433 faili = i - 1; 1434 err = -ENOMEM; 1435 goto fail; 1436 } 1437 1438 if (i == 0) 1439 err = prepare_uptodate_page(inode, pages[i], pos, 1440 force_uptodate); 1441 if (!err && i == num_pages - 1) 1442 err = prepare_uptodate_page(inode, pages[i], 1443 pos + write_bytes, false); 1444 if (err) { 1445 put_page(pages[i]); 1446 if (err == -EAGAIN) { 1447 err = 0; 1448 goto again; 1449 } 1450 faili = i - 1; 1451 goto fail; 1452 } 1453 wait_on_page_writeback(pages[i]); 1454 } 1455 1456 return 0; 1457 fail: 1458 while (faili >= 0) { 1459 unlock_page(pages[faili]); 1460 put_page(pages[faili]); 1461 faili--; 1462 } 1463 return err; 1464 1465 } 1466 1467 /* 1468 * This function locks the extent and properly waits for data=ordered extents 1469 * to finish before allowing the pages to be modified if need. 1470 * 1471 * The return value: 1472 * 1 - the extent is locked 1473 * 0 - the extent is not locked, and everything is OK 1474 * -EAGAIN - need re-prepare the pages 1475 * the other < 0 number - Something wrong happens 1476 */ 1477 static noinline int 1478 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1479 size_t num_pages, loff_t pos, 1480 size_t write_bytes, 1481 u64 *lockstart, u64 *lockend, 1482 struct extent_state **cached_state) 1483 { 1484 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1485 u64 start_pos; 1486 u64 last_pos; 1487 int i; 1488 int ret = 0; 1489 1490 start_pos = round_down(pos, fs_info->sectorsize); 1491 last_pos = start_pos 1492 + round_up(pos + write_bytes - start_pos, 1493 fs_info->sectorsize) - 1; 1494 1495 if (start_pos < inode->vfs_inode.i_size) { 1496 struct btrfs_ordered_extent *ordered; 1497 1498 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1499 cached_state); 1500 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1501 last_pos - start_pos + 1); 1502 if (ordered && 1503 ordered->file_offset + ordered->num_bytes > start_pos && 1504 ordered->file_offset <= last_pos) { 1505 unlock_extent_cached(&inode->io_tree, start_pos, 1506 last_pos, cached_state); 1507 for (i = 0; i < num_pages; i++) { 1508 unlock_page(pages[i]); 1509 put_page(pages[i]); 1510 } 1511 btrfs_start_ordered_extent(&inode->vfs_inode, 1512 ordered, 1); 1513 btrfs_put_ordered_extent(ordered); 1514 return -EAGAIN; 1515 } 1516 if (ordered) 1517 btrfs_put_ordered_extent(ordered); 1518 1519 *lockstart = start_pos; 1520 *lockend = last_pos; 1521 ret = 1; 1522 } 1523 1524 /* 1525 * It's possible the pages are dirty right now, but we don't want 1526 * to clean them yet because copy_from_user may catch a page fault 1527 * and we might have to fall back to one page at a time. If that 1528 * happens, we'll unlock these pages and we'd have a window where 1529 * reclaim could sneak in and drop the once-dirty page on the floor 1530 * without writing it. 1531 * 1532 * We have the pages locked and the extent range locked, so there's 1533 * no way someone can start IO on any dirty pages in this range. 1534 * 1535 * We'll call btrfs_dirty_pages() later on, and that will flip around 1536 * delalloc bits and dirty the pages as required. 1537 */ 1538 for (i = 0; i < num_pages; i++) { 1539 set_page_extent_mapped(pages[i]); 1540 WARN_ON(!PageLocked(pages[i])); 1541 } 1542 1543 return ret; 1544 } 1545 1546 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1547 size_t *write_bytes) 1548 { 1549 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1550 struct btrfs_root *root = inode->root; 1551 u64 lockstart, lockend; 1552 u64 num_bytes; 1553 int ret; 1554 1555 ret = btrfs_start_write_no_snapshotting(root); 1556 if (!ret) 1557 return -EAGAIN; 1558 1559 lockstart = round_down(pos, fs_info->sectorsize); 1560 lockend = round_up(pos + *write_bytes, 1561 fs_info->sectorsize) - 1; 1562 1563 btrfs_lock_and_flush_ordered_range(&inode->io_tree, inode, lockstart, 1564 lockend, NULL); 1565 1566 num_bytes = lockend - lockstart + 1; 1567 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1568 NULL, NULL, NULL); 1569 if (ret <= 0) { 1570 ret = 0; 1571 btrfs_end_write_no_snapshotting(root); 1572 } else { 1573 *write_bytes = min_t(size_t, *write_bytes , 1574 num_bytes - pos + lockstart); 1575 } 1576 1577 unlock_extent(&inode->io_tree, lockstart, lockend); 1578 1579 return ret; 1580 } 1581 1582 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1583 struct iov_iter *i) 1584 { 1585 struct file *file = iocb->ki_filp; 1586 loff_t pos = iocb->ki_pos; 1587 struct inode *inode = file_inode(file); 1588 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1589 struct btrfs_root *root = BTRFS_I(inode)->root; 1590 struct page **pages = NULL; 1591 struct extent_changeset *data_reserved = NULL; 1592 u64 release_bytes = 0; 1593 u64 lockstart; 1594 u64 lockend; 1595 size_t num_written = 0; 1596 int nrptrs; 1597 int ret = 0; 1598 bool only_release_metadata = false; 1599 bool force_page_uptodate = false; 1600 1601 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1602 PAGE_SIZE / (sizeof(struct page *))); 1603 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1604 nrptrs = max(nrptrs, 8); 1605 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1606 if (!pages) 1607 return -ENOMEM; 1608 1609 while (iov_iter_count(i) > 0) { 1610 struct extent_state *cached_state = NULL; 1611 size_t offset = offset_in_page(pos); 1612 size_t sector_offset; 1613 size_t write_bytes = min(iov_iter_count(i), 1614 nrptrs * (size_t)PAGE_SIZE - 1615 offset); 1616 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1617 PAGE_SIZE); 1618 size_t reserve_bytes; 1619 size_t dirty_pages; 1620 size_t copied; 1621 size_t dirty_sectors; 1622 size_t num_sectors; 1623 int extents_locked; 1624 1625 WARN_ON(num_pages > nrptrs); 1626 1627 /* 1628 * Fault pages before locking them in prepare_pages 1629 * to avoid recursive lock 1630 */ 1631 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1632 ret = -EFAULT; 1633 break; 1634 } 1635 1636 only_release_metadata = false; 1637 sector_offset = pos & (fs_info->sectorsize - 1); 1638 reserve_bytes = round_up(write_bytes + sector_offset, 1639 fs_info->sectorsize); 1640 1641 extent_changeset_release(data_reserved); 1642 ret = btrfs_check_data_free_space(inode, &data_reserved, pos, 1643 write_bytes); 1644 if (ret < 0) { 1645 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1646 BTRFS_INODE_PREALLOC)) && 1647 check_can_nocow(BTRFS_I(inode), pos, 1648 &write_bytes) > 0) { 1649 /* 1650 * For nodata cow case, no need to reserve 1651 * data space. 1652 */ 1653 only_release_metadata = true; 1654 /* 1655 * our prealloc extent may be smaller than 1656 * write_bytes, so scale down. 1657 */ 1658 num_pages = DIV_ROUND_UP(write_bytes + offset, 1659 PAGE_SIZE); 1660 reserve_bytes = round_up(write_bytes + 1661 sector_offset, 1662 fs_info->sectorsize); 1663 } else { 1664 break; 1665 } 1666 } 1667 1668 WARN_ON(reserve_bytes == 0); 1669 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1670 reserve_bytes); 1671 if (ret) { 1672 if (!only_release_metadata) 1673 btrfs_free_reserved_data_space(inode, 1674 data_reserved, pos, 1675 write_bytes); 1676 else 1677 btrfs_end_write_no_snapshotting(root); 1678 break; 1679 } 1680 1681 release_bytes = reserve_bytes; 1682 again: 1683 /* 1684 * This is going to setup the pages array with the number of 1685 * pages we want, so we don't really need to worry about the 1686 * contents of pages from loop to loop 1687 */ 1688 ret = prepare_pages(inode, pages, num_pages, 1689 pos, write_bytes, 1690 force_page_uptodate); 1691 if (ret) { 1692 btrfs_delalloc_release_extents(BTRFS_I(inode), 1693 reserve_bytes); 1694 break; 1695 } 1696 1697 extents_locked = lock_and_cleanup_extent_if_need( 1698 BTRFS_I(inode), pages, 1699 num_pages, pos, write_bytes, &lockstart, 1700 &lockend, &cached_state); 1701 if (extents_locked < 0) { 1702 if (extents_locked == -EAGAIN) 1703 goto again; 1704 btrfs_delalloc_release_extents(BTRFS_I(inode), 1705 reserve_bytes); 1706 ret = extents_locked; 1707 break; 1708 } 1709 1710 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1711 1712 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1713 dirty_sectors = round_up(copied + sector_offset, 1714 fs_info->sectorsize); 1715 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1716 1717 /* 1718 * if we have trouble faulting in the pages, fall 1719 * back to one page at a time 1720 */ 1721 if (copied < write_bytes) 1722 nrptrs = 1; 1723 1724 if (copied == 0) { 1725 force_page_uptodate = true; 1726 dirty_sectors = 0; 1727 dirty_pages = 0; 1728 } else { 1729 force_page_uptodate = false; 1730 dirty_pages = DIV_ROUND_UP(copied + offset, 1731 PAGE_SIZE); 1732 } 1733 1734 if (num_sectors > dirty_sectors) { 1735 /* release everything except the sectors we dirtied */ 1736 release_bytes -= dirty_sectors << 1737 fs_info->sb->s_blocksize_bits; 1738 if (only_release_metadata) { 1739 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1740 release_bytes, true); 1741 } else { 1742 u64 __pos; 1743 1744 __pos = round_down(pos, 1745 fs_info->sectorsize) + 1746 (dirty_pages << PAGE_SHIFT); 1747 btrfs_delalloc_release_space(inode, 1748 data_reserved, __pos, 1749 release_bytes, true); 1750 } 1751 } 1752 1753 release_bytes = round_up(copied + sector_offset, 1754 fs_info->sectorsize); 1755 1756 if (copied > 0) 1757 ret = btrfs_dirty_pages(inode, pages, dirty_pages, 1758 pos, copied, &cached_state); 1759 1760 /* 1761 * If we have not locked the extent range, because the range's 1762 * start offset is >= i_size, we might still have a non-NULL 1763 * cached extent state, acquired while marking the extent range 1764 * as delalloc through btrfs_dirty_pages(). Therefore free any 1765 * possible cached extent state to avoid a memory leak. 1766 */ 1767 if (extents_locked) 1768 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1769 lockstart, lockend, &cached_state); 1770 else 1771 free_extent_state(cached_state); 1772 1773 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1774 if (ret) { 1775 btrfs_drop_pages(pages, num_pages); 1776 break; 1777 } 1778 1779 release_bytes = 0; 1780 if (only_release_metadata) 1781 btrfs_end_write_no_snapshotting(root); 1782 1783 if (only_release_metadata && copied > 0) { 1784 lockstart = round_down(pos, 1785 fs_info->sectorsize); 1786 lockend = round_up(pos + copied, 1787 fs_info->sectorsize) - 1; 1788 1789 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1790 lockend, EXTENT_NORESERVE, NULL, 1791 NULL, GFP_NOFS); 1792 } 1793 1794 btrfs_drop_pages(pages, num_pages); 1795 1796 cond_resched(); 1797 1798 balance_dirty_pages_ratelimited(inode->i_mapping); 1799 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1) 1800 btrfs_btree_balance_dirty(fs_info); 1801 1802 pos += copied; 1803 num_written += copied; 1804 } 1805 1806 kfree(pages); 1807 1808 if (release_bytes) { 1809 if (only_release_metadata) { 1810 btrfs_end_write_no_snapshotting(root); 1811 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1812 release_bytes, true); 1813 } else { 1814 btrfs_delalloc_release_space(inode, data_reserved, 1815 round_down(pos, fs_info->sectorsize), 1816 release_bytes, true); 1817 } 1818 } 1819 1820 extent_changeset_free(data_reserved); 1821 return num_written ? num_written : ret; 1822 } 1823 1824 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1825 { 1826 struct file *file = iocb->ki_filp; 1827 struct inode *inode = file_inode(file); 1828 loff_t pos; 1829 ssize_t written; 1830 ssize_t written_buffered; 1831 loff_t endbyte; 1832 int err; 1833 1834 written = generic_file_direct_write(iocb, from); 1835 1836 if (written < 0 || !iov_iter_count(from)) 1837 return written; 1838 1839 pos = iocb->ki_pos; 1840 written_buffered = btrfs_buffered_write(iocb, from); 1841 if (written_buffered < 0) { 1842 err = written_buffered; 1843 goto out; 1844 } 1845 /* 1846 * Ensure all data is persisted. We want the next direct IO read to be 1847 * able to read what was just written. 1848 */ 1849 endbyte = pos + written_buffered - 1; 1850 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1851 if (err) 1852 goto out; 1853 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1854 if (err) 1855 goto out; 1856 written += written_buffered; 1857 iocb->ki_pos = pos + written_buffered; 1858 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1859 endbyte >> PAGE_SHIFT); 1860 out: 1861 return written ? written : err; 1862 } 1863 1864 static void update_time_for_write(struct inode *inode) 1865 { 1866 struct timespec64 now; 1867 1868 if (IS_NOCMTIME(inode)) 1869 return; 1870 1871 now = current_time(inode); 1872 if (!timespec64_equal(&inode->i_mtime, &now)) 1873 inode->i_mtime = now; 1874 1875 if (!timespec64_equal(&inode->i_ctime, &now)) 1876 inode->i_ctime = now; 1877 1878 if (IS_I_VERSION(inode)) 1879 inode_inc_iversion(inode); 1880 } 1881 1882 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1883 struct iov_iter *from) 1884 { 1885 struct file *file = iocb->ki_filp; 1886 struct inode *inode = file_inode(file); 1887 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1888 struct btrfs_root *root = BTRFS_I(inode)->root; 1889 u64 start_pos; 1890 u64 end_pos; 1891 ssize_t num_written = 0; 1892 const bool sync = iocb->ki_flags & IOCB_DSYNC; 1893 ssize_t err; 1894 loff_t pos; 1895 size_t count; 1896 loff_t oldsize; 1897 int clean_page = 0; 1898 1899 if (!(iocb->ki_flags & IOCB_DIRECT) && 1900 (iocb->ki_flags & IOCB_NOWAIT)) 1901 return -EOPNOTSUPP; 1902 1903 if (iocb->ki_flags & IOCB_NOWAIT) { 1904 if (!inode_trylock(inode)) 1905 return -EAGAIN; 1906 } else { 1907 inode_lock(inode); 1908 } 1909 1910 err = generic_write_checks(iocb, from); 1911 if (err <= 0) { 1912 inode_unlock(inode); 1913 return err; 1914 } 1915 1916 pos = iocb->ki_pos; 1917 count = iov_iter_count(from); 1918 if (iocb->ki_flags & IOCB_NOWAIT) { 1919 /* 1920 * We will allocate space in case nodatacow is not set, 1921 * so bail 1922 */ 1923 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1924 BTRFS_INODE_PREALLOC)) || 1925 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) { 1926 inode_unlock(inode); 1927 return -EAGAIN; 1928 } 1929 } 1930 1931 current->backing_dev_info = inode_to_bdi(inode); 1932 err = file_remove_privs(file); 1933 if (err) { 1934 inode_unlock(inode); 1935 goto out; 1936 } 1937 1938 /* 1939 * If BTRFS flips readonly due to some impossible error 1940 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1941 * although we have opened a file as writable, we have 1942 * to stop this write operation to ensure FS consistency. 1943 */ 1944 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1945 inode_unlock(inode); 1946 err = -EROFS; 1947 goto out; 1948 } 1949 1950 /* 1951 * We reserve space for updating the inode when we reserve space for the 1952 * extent we are going to write, so we will enospc out there. We don't 1953 * need to start yet another transaction to update the inode as we will 1954 * update the inode when we finish writing whatever data we write. 1955 */ 1956 update_time_for_write(inode); 1957 1958 start_pos = round_down(pos, fs_info->sectorsize); 1959 oldsize = i_size_read(inode); 1960 if (start_pos > oldsize) { 1961 /* Expand hole size to cover write data, preventing empty gap */ 1962 end_pos = round_up(pos + count, 1963 fs_info->sectorsize); 1964 err = btrfs_cont_expand(inode, oldsize, end_pos); 1965 if (err) { 1966 inode_unlock(inode); 1967 goto out; 1968 } 1969 if (start_pos > round_up(oldsize, fs_info->sectorsize)) 1970 clean_page = 1; 1971 } 1972 1973 if (sync) 1974 atomic_inc(&BTRFS_I(inode)->sync_writers); 1975 1976 if (iocb->ki_flags & IOCB_DIRECT) { 1977 num_written = __btrfs_direct_write(iocb, from); 1978 } else { 1979 num_written = btrfs_buffered_write(iocb, from); 1980 if (num_written > 0) 1981 iocb->ki_pos = pos + num_written; 1982 if (clean_page) 1983 pagecache_isize_extended(inode, oldsize, 1984 i_size_read(inode)); 1985 } 1986 1987 inode_unlock(inode); 1988 1989 /* 1990 * We also have to set last_sub_trans to the current log transid, 1991 * otherwise subsequent syncs to a file that's been synced in this 1992 * transaction will appear to have already occurred. 1993 */ 1994 spin_lock(&BTRFS_I(inode)->lock); 1995 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1996 spin_unlock(&BTRFS_I(inode)->lock); 1997 if (num_written > 0) 1998 num_written = generic_write_sync(iocb, num_written); 1999 2000 if (sync) 2001 atomic_dec(&BTRFS_I(inode)->sync_writers); 2002 out: 2003 current->backing_dev_info = NULL; 2004 return num_written ? num_written : err; 2005 } 2006 2007 int btrfs_release_file(struct inode *inode, struct file *filp) 2008 { 2009 struct btrfs_file_private *private = filp->private_data; 2010 2011 if (private && private->filldir_buf) 2012 kfree(private->filldir_buf); 2013 kfree(private); 2014 filp->private_data = NULL; 2015 2016 /* 2017 * ordered_data_close is set by setattr when we are about to truncate 2018 * a file from a non-zero size to a zero size. This tries to 2019 * flush down new bytes that may have been written if the 2020 * application were using truncate to replace a file in place. 2021 */ 2022 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 2023 &BTRFS_I(inode)->runtime_flags)) 2024 filemap_flush(inode->i_mapping); 2025 return 0; 2026 } 2027 2028 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2029 { 2030 int ret; 2031 struct blk_plug plug; 2032 2033 /* 2034 * This is only called in fsync, which would do synchronous writes, so 2035 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2036 * multiple disks using raid profile, a large IO can be split to 2037 * several segments of stripe length (currently 64K). 2038 */ 2039 blk_start_plug(&plug); 2040 atomic_inc(&BTRFS_I(inode)->sync_writers); 2041 ret = btrfs_fdatawrite_range(inode, start, end); 2042 atomic_dec(&BTRFS_I(inode)->sync_writers); 2043 blk_finish_plug(&plug); 2044 2045 return ret; 2046 } 2047 2048 /* 2049 * fsync call for both files and directories. This logs the inode into 2050 * the tree log instead of forcing full commits whenever possible. 2051 * 2052 * It needs to call filemap_fdatawait so that all ordered extent updates are 2053 * in the metadata btree are up to date for copying to the log. 2054 * 2055 * It drops the inode mutex before doing the tree log commit. This is an 2056 * important optimization for directories because holding the mutex prevents 2057 * new operations on the dir while we write to disk. 2058 */ 2059 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2060 { 2061 struct dentry *dentry = file_dentry(file); 2062 struct inode *inode = d_inode(dentry); 2063 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2064 struct btrfs_root *root = BTRFS_I(inode)->root; 2065 struct btrfs_trans_handle *trans; 2066 struct btrfs_log_ctx ctx; 2067 int ret = 0, err; 2068 2069 trace_btrfs_sync_file(file, datasync); 2070 2071 btrfs_init_log_ctx(&ctx, inode); 2072 2073 /* 2074 * We write the dirty pages in the range and wait until they complete 2075 * out of the ->i_mutex. If so, we can flush the dirty pages by 2076 * multi-task, and make the performance up. See 2077 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2078 */ 2079 ret = start_ordered_ops(inode, start, end); 2080 if (ret) 2081 goto out; 2082 2083 inode_lock(inode); 2084 2085 /* 2086 * We take the dio_sem here because the tree log stuff can race with 2087 * lockless dio writes and get an extent map logged for an extent we 2088 * never waited on. We need it this high up for lockdep reasons. 2089 */ 2090 down_write(&BTRFS_I(inode)->dio_sem); 2091 2092 atomic_inc(&root->log_batch); 2093 2094 /* 2095 * If the inode needs a full sync, make sure we use a full range to 2096 * avoid log tree corruption, due to hole detection racing with ordered 2097 * extent completion for adjacent ranges, and assertion failures during 2098 * hole detection. Do this while holding the inode lock, to avoid races 2099 * with other tasks. 2100 */ 2101 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2102 &BTRFS_I(inode)->runtime_flags)) { 2103 start = 0; 2104 end = LLONG_MAX; 2105 } 2106 2107 /* 2108 * Before we acquired the inode's lock, someone may have dirtied more 2109 * pages in the target range. We need to make sure that writeback for 2110 * any such pages does not start while we are logging the inode, because 2111 * if it does, any of the following might happen when we are not doing a 2112 * full inode sync: 2113 * 2114 * 1) We log an extent after its writeback finishes but before its 2115 * checksums are added to the csum tree, leading to -EIO errors 2116 * when attempting to read the extent after a log replay. 2117 * 2118 * 2) We can end up logging an extent before its writeback finishes. 2119 * Therefore after the log replay we will have a file extent item 2120 * pointing to an unwritten extent (and no data checksums as well). 2121 * 2122 * So trigger writeback for any eventual new dirty pages and then we 2123 * wait for all ordered extents to complete below. 2124 */ 2125 ret = start_ordered_ops(inode, start, end); 2126 if (ret) { 2127 inode_unlock(inode); 2128 goto out; 2129 } 2130 2131 /* 2132 * We have to do this here to avoid the priority inversion of waiting on 2133 * IO of a lower priority task while holding a transaction open. 2134 * 2135 * Also, the range length can be represented by u64, we have to do the 2136 * typecasts to avoid signed overflow if it's [0, LLONG_MAX]. 2137 */ 2138 ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1); 2139 if (ret) { 2140 up_write(&BTRFS_I(inode)->dio_sem); 2141 inode_unlock(inode); 2142 goto out; 2143 } 2144 atomic_inc(&root->log_batch); 2145 2146 smp_mb(); 2147 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) || 2148 BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) { 2149 /* 2150 * We've had everything committed since the last time we were 2151 * modified so clear this flag in case it was set for whatever 2152 * reason, it's no longer relevant. 2153 */ 2154 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2155 &BTRFS_I(inode)->runtime_flags); 2156 /* 2157 * An ordered extent might have started before and completed 2158 * already with io errors, in which case the inode was not 2159 * updated and we end up here. So check the inode's mapping 2160 * for any errors that might have happened since we last 2161 * checked called fsync. 2162 */ 2163 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2164 up_write(&BTRFS_I(inode)->dio_sem); 2165 inode_unlock(inode); 2166 goto out; 2167 } 2168 2169 /* 2170 * We use start here because we will need to wait on the IO to complete 2171 * in btrfs_sync_log, which could require joining a transaction (for 2172 * example checking cross references in the nocow path). If we use join 2173 * here we could get into a situation where we're waiting on IO to 2174 * happen that is blocked on a transaction trying to commit. With start 2175 * we inc the extwriter counter, so we wait for all extwriters to exit 2176 * before we start blocking joiners. This comment is to keep somebody 2177 * from thinking they are super smart and changing this to 2178 * btrfs_join_transaction *cough*Josef*cough*. 2179 */ 2180 trans = btrfs_start_transaction(root, 0); 2181 if (IS_ERR(trans)) { 2182 ret = PTR_ERR(trans); 2183 up_write(&BTRFS_I(inode)->dio_sem); 2184 inode_unlock(inode); 2185 goto out; 2186 } 2187 2188 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx); 2189 if (ret < 0) { 2190 /* Fallthrough and commit/free transaction. */ 2191 ret = 1; 2192 } 2193 2194 /* we've logged all the items and now have a consistent 2195 * version of the file in the log. It is possible that 2196 * someone will come in and modify the file, but that's 2197 * fine because the log is consistent on disk, and we 2198 * have references to all of the file's extents 2199 * 2200 * It is possible that someone will come in and log the 2201 * file again, but that will end up using the synchronization 2202 * inside btrfs_sync_log to keep things safe. 2203 */ 2204 up_write(&BTRFS_I(inode)->dio_sem); 2205 inode_unlock(inode); 2206 2207 if (ret != BTRFS_NO_LOG_SYNC) { 2208 if (!ret) { 2209 ret = btrfs_sync_log(trans, root, &ctx); 2210 if (!ret) { 2211 ret = btrfs_end_transaction(trans); 2212 goto out; 2213 } 2214 } 2215 ret = btrfs_commit_transaction(trans); 2216 } else { 2217 ret = btrfs_end_transaction(trans); 2218 } 2219 out: 2220 ASSERT(list_empty(&ctx.list)); 2221 err = file_check_and_advance_wb_err(file); 2222 if (!ret) 2223 ret = err; 2224 return ret > 0 ? -EIO : ret; 2225 } 2226 2227 static const struct vm_operations_struct btrfs_file_vm_ops = { 2228 .fault = filemap_fault, 2229 .map_pages = filemap_map_pages, 2230 .page_mkwrite = btrfs_page_mkwrite, 2231 }; 2232 2233 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2234 { 2235 struct address_space *mapping = filp->f_mapping; 2236 2237 if (!mapping->a_ops->readpage) 2238 return -ENOEXEC; 2239 2240 file_accessed(filp); 2241 vma->vm_ops = &btrfs_file_vm_ops; 2242 2243 return 0; 2244 } 2245 2246 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2247 int slot, u64 start, u64 end) 2248 { 2249 struct btrfs_file_extent_item *fi; 2250 struct btrfs_key key; 2251 2252 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2253 return 0; 2254 2255 btrfs_item_key_to_cpu(leaf, &key, slot); 2256 if (key.objectid != btrfs_ino(inode) || 2257 key.type != BTRFS_EXTENT_DATA_KEY) 2258 return 0; 2259 2260 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2261 2262 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2263 return 0; 2264 2265 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2266 return 0; 2267 2268 if (key.offset == end) 2269 return 1; 2270 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2271 return 1; 2272 return 0; 2273 } 2274 2275 static int fill_holes(struct btrfs_trans_handle *trans, 2276 struct btrfs_inode *inode, 2277 struct btrfs_path *path, u64 offset, u64 end) 2278 { 2279 struct btrfs_fs_info *fs_info = trans->fs_info; 2280 struct btrfs_root *root = inode->root; 2281 struct extent_buffer *leaf; 2282 struct btrfs_file_extent_item *fi; 2283 struct extent_map *hole_em; 2284 struct extent_map_tree *em_tree = &inode->extent_tree; 2285 struct btrfs_key key; 2286 int ret; 2287 2288 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2289 goto out; 2290 2291 key.objectid = btrfs_ino(inode); 2292 key.type = BTRFS_EXTENT_DATA_KEY; 2293 key.offset = offset; 2294 2295 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2296 if (ret <= 0) { 2297 /* 2298 * We should have dropped this offset, so if we find it then 2299 * something has gone horribly wrong. 2300 */ 2301 if (ret == 0) 2302 ret = -EINVAL; 2303 return ret; 2304 } 2305 2306 leaf = path->nodes[0]; 2307 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2308 u64 num_bytes; 2309 2310 path->slots[0]--; 2311 fi = btrfs_item_ptr(leaf, path->slots[0], 2312 struct btrfs_file_extent_item); 2313 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2314 end - offset; 2315 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2316 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2317 btrfs_set_file_extent_offset(leaf, fi, 0); 2318 btrfs_mark_buffer_dirty(leaf); 2319 goto out; 2320 } 2321 2322 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2323 u64 num_bytes; 2324 2325 key.offset = offset; 2326 btrfs_set_item_key_safe(fs_info, path, &key); 2327 fi = btrfs_item_ptr(leaf, path->slots[0], 2328 struct btrfs_file_extent_item); 2329 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2330 offset; 2331 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2332 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2333 btrfs_set_file_extent_offset(leaf, fi, 0); 2334 btrfs_mark_buffer_dirty(leaf); 2335 goto out; 2336 } 2337 btrfs_release_path(path); 2338 2339 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2340 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2341 if (ret) 2342 return ret; 2343 2344 out: 2345 btrfs_release_path(path); 2346 2347 hole_em = alloc_extent_map(); 2348 if (!hole_em) { 2349 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2350 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2351 } else { 2352 hole_em->start = offset; 2353 hole_em->len = end - offset; 2354 hole_em->ram_bytes = hole_em->len; 2355 hole_em->orig_start = offset; 2356 2357 hole_em->block_start = EXTENT_MAP_HOLE; 2358 hole_em->block_len = 0; 2359 hole_em->orig_block_len = 0; 2360 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2361 hole_em->generation = trans->transid; 2362 2363 do { 2364 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2365 write_lock(&em_tree->lock); 2366 ret = add_extent_mapping(em_tree, hole_em, 1); 2367 write_unlock(&em_tree->lock); 2368 } while (ret == -EEXIST); 2369 free_extent_map(hole_em); 2370 if (ret) 2371 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2372 &inode->runtime_flags); 2373 } 2374 2375 return 0; 2376 } 2377 2378 /* 2379 * Find a hole extent on given inode and change start/len to the end of hole 2380 * extent.(hole/vacuum extent whose em->start <= start && 2381 * em->start + em->len > start) 2382 * When a hole extent is found, return 1 and modify start/len. 2383 */ 2384 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2385 { 2386 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2387 struct extent_map *em; 2388 int ret = 0; 2389 2390 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2391 round_down(*start, fs_info->sectorsize), 2392 round_up(*len, fs_info->sectorsize)); 2393 if (IS_ERR(em)) 2394 return PTR_ERR(em); 2395 2396 /* Hole or vacuum extent(only exists in no-hole mode) */ 2397 if (em->block_start == EXTENT_MAP_HOLE) { 2398 ret = 1; 2399 *len = em->start + em->len > *start + *len ? 2400 0 : *start + *len - em->start - em->len; 2401 *start = em->start + em->len; 2402 } 2403 free_extent_map(em); 2404 return ret; 2405 } 2406 2407 static int btrfs_punch_hole_lock_range(struct inode *inode, 2408 const u64 lockstart, 2409 const u64 lockend, 2410 struct extent_state **cached_state) 2411 { 2412 while (1) { 2413 struct btrfs_ordered_extent *ordered; 2414 int ret; 2415 2416 truncate_pagecache_range(inode, lockstart, lockend); 2417 2418 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2419 cached_state); 2420 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2421 2422 /* 2423 * We need to make sure we have no ordered extents in this range 2424 * and nobody raced in and read a page in this range, if we did 2425 * we need to try again. 2426 */ 2427 if ((!ordered || 2428 (ordered->file_offset + ordered->num_bytes <= lockstart || 2429 ordered->file_offset > lockend)) && 2430 !filemap_range_has_page(inode->i_mapping, 2431 lockstart, lockend)) { 2432 if (ordered) 2433 btrfs_put_ordered_extent(ordered); 2434 break; 2435 } 2436 if (ordered) 2437 btrfs_put_ordered_extent(ordered); 2438 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2439 lockend, cached_state); 2440 ret = btrfs_wait_ordered_range(inode, lockstart, 2441 lockend - lockstart + 1); 2442 if (ret) 2443 return ret; 2444 } 2445 return 0; 2446 } 2447 2448 static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans, 2449 struct inode *inode, 2450 struct btrfs_path *path, 2451 struct btrfs_clone_extent_info *clone_info, 2452 const u64 clone_len) 2453 { 2454 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2455 struct btrfs_root *root = BTRFS_I(inode)->root; 2456 struct btrfs_file_extent_item *extent; 2457 struct extent_buffer *leaf; 2458 struct btrfs_key key; 2459 int slot; 2460 struct btrfs_ref ref = { 0 }; 2461 u64 ref_offset; 2462 int ret; 2463 2464 if (clone_len == 0) 2465 return 0; 2466 2467 if (clone_info->disk_offset == 0 && 2468 btrfs_fs_incompat(fs_info, NO_HOLES)) 2469 return 0; 2470 2471 key.objectid = btrfs_ino(BTRFS_I(inode)); 2472 key.type = BTRFS_EXTENT_DATA_KEY; 2473 key.offset = clone_info->file_offset; 2474 ret = btrfs_insert_empty_item(trans, root, path, &key, 2475 clone_info->item_size); 2476 if (ret) 2477 return ret; 2478 leaf = path->nodes[0]; 2479 slot = path->slots[0]; 2480 write_extent_buffer(leaf, clone_info->extent_buf, 2481 btrfs_item_ptr_offset(leaf, slot), 2482 clone_info->item_size); 2483 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2484 btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset); 2485 btrfs_set_file_extent_num_bytes(leaf, extent, clone_len); 2486 btrfs_mark_buffer_dirty(leaf); 2487 btrfs_release_path(path); 2488 2489 /* If it's a hole, nothing more needs to be done. */ 2490 if (clone_info->disk_offset == 0) 2491 return 0; 2492 2493 inode_add_bytes(inode, clone_len); 2494 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2495 clone_info->disk_offset, 2496 clone_info->disk_len, 0); 2497 ref_offset = clone_info->file_offset - clone_info->data_offset; 2498 btrfs_init_data_ref(&ref, root->root_key.objectid, 2499 btrfs_ino(BTRFS_I(inode)), ref_offset); 2500 ret = btrfs_inc_extent_ref(trans, &ref); 2501 2502 return ret; 2503 } 2504 2505 /* 2506 * The respective range must have been previously locked, as well as the inode. 2507 * The end offset is inclusive (last byte of the range). 2508 * @clone_info is NULL for fallocate's hole punching and non-NULL for extent 2509 * cloning. 2510 * When cloning, we don't want to end up in a state where we dropped extents 2511 * without inserting a new one, so we must abort the transaction to avoid a 2512 * corruption. 2513 */ 2514 int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path, 2515 const u64 start, const u64 end, 2516 struct btrfs_clone_extent_info *clone_info, 2517 struct btrfs_trans_handle **trans_out) 2518 { 2519 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2520 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2521 u64 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2522 struct btrfs_root *root = BTRFS_I(inode)->root; 2523 struct btrfs_trans_handle *trans = NULL; 2524 struct btrfs_block_rsv *rsv; 2525 unsigned int rsv_count; 2526 u64 cur_offset; 2527 u64 drop_end; 2528 u64 len = end - start; 2529 int ret = 0; 2530 2531 if (end <= start) 2532 return -EINVAL; 2533 2534 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2535 if (!rsv) { 2536 ret = -ENOMEM; 2537 goto out; 2538 } 2539 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2540 rsv->failfast = 1; 2541 2542 /* 2543 * 1 - update the inode 2544 * 1 - removing the extents in the range 2545 * 1 - adding the hole extent if no_holes isn't set or if we are cloning 2546 * an extent 2547 */ 2548 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info) 2549 rsv_count = 3; 2550 else 2551 rsv_count = 2; 2552 2553 trans = btrfs_start_transaction(root, rsv_count); 2554 if (IS_ERR(trans)) { 2555 ret = PTR_ERR(trans); 2556 trans = NULL; 2557 goto out_free; 2558 } 2559 2560 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2561 min_size, false); 2562 BUG_ON(ret); 2563 trans->block_rsv = rsv; 2564 2565 cur_offset = start; 2566 while (cur_offset < end) { 2567 ret = __btrfs_drop_extents(trans, root, inode, path, 2568 cur_offset, end + 1, &drop_end, 2569 1, 0, 0, NULL); 2570 if (ret != -ENOSPC) { 2571 /* 2572 * When cloning we want to avoid transaction aborts when 2573 * nothing was done and we are attempting to clone parts 2574 * of inline extents, in such cases -EOPNOTSUPP is 2575 * returned by __btrfs_drop_extents() without having 2576 * changed anything in the file. 2577 */ 2578 if (clone_info && ret && ret != -EOPNOTSUPP) 2579 btrfs_abort_transaction(trans, ret); 2580 break; 2581 } 2582 2583 trans->block_rsv = &fs_info->trans_block_rsv; 2584 2585 if (!clone_info && cur_offset < drop_end && 2586 cur_offset < ino_size) { 2587 ret = fill_holes(trans, BTRFS_I(inode), path, 2588 cur_offset, drop_end); 2589 if (ret) { 2590 /* 2591 * If we failed then we didn't insert our hole 2592 * entries for the area we dropped, so now the 2593 * fs is corrupted, so we must abort the 2594 * transaction. 2595 */ 2596 btrfs_abort_transaction(trans, ret); 2597 break; 2598 } 2599 } 2600 2601 if (clone_info && drop_end > clone_info->file_offset) { 2602 u64 clone_len = drop_end - clone_info->file_offset; 2603 2604 ret = btrfs_insert_clone_extent(trans, inode, path, 2605 clone_info, clone_len); 2606 if (ret) { 2607 btrfs_abort_transaction(trans, ret); 2608 break; 2609 } 2610 clone_info->data_len -= clone_len; 2611 clone_info->data_offset += clone_len; 2612 clone_info->file_offset += clone_len; 2613 } 2614 2615 cur_offset = drop_end; 2616 2617 ret = btrfs_update_inode(trans, root, inode); 2618 if (ret) 2619 break; 2620 2621 btrfs_end_transaction(trans); 2622 btrfs_btree_balance_dirty(fs_info); 2623 2624 trans = btrfs_start_transaction(root, rsv_count); 2625 if (IS_ERR(trans)) { 2626 ret = PTR_ERR(trans); 2627 trans = NULL; 2628 break; 2629 } 2630 2631 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2632 rsv, min_size, false); 2633 BUG_ON(ret); /* shouldn't happen */ 2634 trans->block_rsv = rsv; 2635 2636 if (!clone_info) { 2637 ret = find_first_non_hole(inode, &cur_offset, &len); 2638 if (unlikely(ret < 0)) 2639 break; 2640 if (ret && !len) { 2641 ret = 0; 2642 break; 2643 } 2644 } 2645 } 2646 2647 /* 2648 * If we were cloning, force the next fsync to be a full one since we 2649 * we replaced (or just dropped in the case of cloning holes when 2650 * NO_HOLES is enabled) extents and extent maps. 2651 * This is for the sake of simplicity, and cloning into files larger 2652 * than 16Mb would force the full fsync any way (when 2653 * try_release_extent_mapping() is invoked during page cache truncation. 2654 */ 2655 if (clone_info) 2656 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2657 &BTRFS_I(inode)->runtime_flags); 2658 2659 if (ret) 2660 goto out_trans; 2661 2662 trans->block_rsv = &fs_info->trans_block_rsv; 2663 /* 2664 * If we are using the NO_HOLES feature we might have had already an 2665 * hole that overlaps a part of the region [lockstart, lockend] and 2666 * ends at (or beyond) lockend. Since we have no file extent items to 2667 * represent holes, drop_end can be less than lockend and so we must 2668 * make sure we have an extent map representing the existing hole (the 2669 * call to __btrfs_drop_extents() might have dropped the existing extent 2670 * map representing the existing hole), otherwise the fast fsync path 2671 * will not record the existence of the hole region 2672 * [existing_hole_start, lockend]. 2673 */ 2674 if (drop_end <= end) 2675 drop_end = end + 1; 2676 /* 2677 * Don't insert file hole extent item if it's for a range beyond eof 2678 * (because it's useless) or if it represents a 0 bytes range (when 2679 * cur_offset == drop_end). 2680 */ 2681 if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) { 2682 ret = fill_holes(trans, BTRFS_I(inode), path, 2683 cur_offset, drop_end); 2684 if (ret) { 2685 /* Same comment as above. */ 2686 btrfs_abort_transaction(trans, ret); 2687 goto out_trans; 2688 } 2689 } 2690 if (clone_info) { 2691 ret = btrfs_insert_clone_extent(trans, inode, path, clone_info, 2692 clone_info->data_len); 2693 if (ret) { 2694 btrfs_abort_transaction(trans, ret); 2695 goto out_trans; 2696 } 2697 } 2698 2699 out_trans: 2700 if (!trans) 2701 goto out_free; 2702 2703 trans->block_rsv = &fs_info->trans_block_rsv; 2704 if (ret) 2705 btrfs_end_transaction(trans); 2706 else 2707 *trans_out = trans; 2708 out_free: 2709 btrfs_free_block_rsv(fs_info, rsv); 2710 out: 2711 return ret; 2712 } 2713 2714 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2715 { 2716 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2717 struct btrfs_root *root = BTRFS_I(inode)->root; 2718 struct extent_state *cached_state = NULL; 2719 struct btrfs_path *path; 2720 struct btrfs_trans_handle *trans = NULL; 2721 u64 lockstart; 2722 u64 lockend; 2723 u64 tail_start; 2724 u64 tail_len; 2725 u64 orig_start = offset; 2726 int ret = 0; 2727 bool same_block; 2728 u64 ino_size; 2729 bool truncated_block = false; 2730 bool updated_inode = false; 2731 2732 ret = btrfs_wait_ordered_range(inode, offset, len); 2733 if (ret) 2734 return ret; 2735 2736 inode_lock(inode); 2737 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2738 ret = find_first_non_hole(inode, &offset, &len); 2739 if (ret < 0) 2740 goto out_only_mutex; 2741 if (ret && !len) { 2742 /* Already in a large hole */ 2743 ret = 0; 2744 goto out_only_mutex; 2745 } 2746 2747 lockstart = round_up(offset, btrfs_inode_sectorsize(inode)); 2748 lockend = round_down(offset + len, 2749 btrfs_inode_sectorsize(inode)) - 1; 2750 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2751 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2752 /* 2753 * We needn't truncate any block which is beyond the end of the file 2754 * because we are sure there is no data there. 2755 */ 2756 /* 2757 * Only do this if we are in the same block and we aren't doing the 2758 * entire block. 2759 */ 2760 if (same_block && len < fs_info->sectorsize) { 2761 if (offset < ino_size) { 2762 truncated_block = true; 2763 ret = btrfs_truncate_block(inode, offset, len, 0); 2764 } else { 2765 ret = 0; 2766 } 2767 goto out_only_mutex; 2768 } 2769 2770 /* zero back part of the first block */ 2771 if (offset < ino_size) { 2772 truncated_block = true; 2773 ret = btrfs_truncate_block(inode, offset, 0, 0); 2774 if (ret) { 2775 inode_unlock(inode); 2776 return ret; 2777 } 2778 } 2779 2780 /* Check the aligned pages after the first unaligned page, 2781 * if offset != orig_start, which means the first unaligned page 2782 * including several following pages are already in holes, 2783 * the extra check can be skipped */ 2784 if (offset == orig_start) { 2785 /* after truncate page, check hole again */ 2786 len = offset + len - lockstart; 2787 offset = lockstart; 2788 ret = find_first_non_hole(inode, &offset, &len); 2789 if (ret < 0) 2790 goto out_only_mutex; 2791 if (ret && !len) { 2792 ret = 0; 2793 goto out_only_mutex; 2794 } 2795 lockstart = offset; 2796 } 2797 2798 /* Check the tail unaligned part is in a hole */ 2799 tail_start = lockend + 1; 2800 tail_len = offset + len - tail_start; 2801 if (tail_len) { 2802 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2803 if (unlikely(ret < 0)) 2804 goto out_only_mutex; 2805 if (!ret) { 2806 /* zero the front end of the last page */ 2807 if (tail_start + tail_len < ino_size) { 2808 truncated_block = true; 2809 ret = btrfs_truncate_block(inode, 2810 tail_start + tail_len, 2811 0, 1); 2812 if (ret) 2813 goto out_only_mutex; 2814 } 2815 } 2816 } 2817 2818 if (lockend < lockstart) { 2819 ret = 0; 2820 goto out_only_mutex; 2821 } 2822 2823 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2824 &cached_state); 2825 if (ret) 2826 goto out_only_mutex; 2827 2828 path = btrfs_alloc_path(); 2829 if (!path) { 2830 ret = -ENOMEM; 2831 goto out; 2832 } 2833 2834 ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL, 2835 &trans); 2836 btrfs_free_path(path); 2837 if (ret) 2838 goto out; 2839 2840 ASSERT(trans != NULL); 2841 inode_inc_iversion(inode); 2842 inode->i_mtime = inode->i_ctime = current_time(inode); 2843 ret = btrfs_update_inode(trans, root, inode); 2844 updated_inode = true; 2845 btrfs_end_transaction(trans); 2846 btrfs_btree_balance_dirty(fs_info); 2847 out: 2848 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2849 &cached_state); 2850 out_only_mutex: 2851 if (!updated_inode && truncated_block && !ret) { 2852 /* 2853 * If we only end up zeroing part of a page, we still need to 2854 * update the inode item, so that all the time fields are 2855 * updated as well as the necessary btrfs inode in memory fields 2856 * for detecting, at fsync time, if the inode isn't yet in the 2857 * log tree or it's there but not up to date. 2858 */ 2859 struct timespec64 now = current_time(inode); 2860 2861 inode_inc_iversion(inode); 2862 inode->i_mtime = now; 2863 inode->i_ctime = now; 2864 trans = btrfs_start_transaction(root, 1); 2865 if (IS_ERR(trans)) { 2866 ret = PTR_ERR(trans); 2867 } else { 2868 int ret2; 2869 2870 ret = btrfs_update_inode(trans, root, inode); 2871 ret2 = btrfs_end_transaction(trans); 2872 if (!ret) 2873 ret = ret2; 2874 } 2875 } 2876 inode_unlock(inode); 2877 return ret; 2878 } 2879 2880 /* Helper structure to record which range is already reserved */ 2881 struct falloc_range { 2882 struct list_head list; 2883 u64 start; 2884 u64 len; 2885 }; 2886 2887 /* 2888 * Helper function to add falloc range 2889 * 2890 * Caller should have locked the larger range of extent containing 2891 * [start, len) 2892 */ 2893 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2894 { 2895 struct falloc_range *prev = NULL; 2896 struct falloc_range *range = NULL; 2897 2898 if (list_empty(head)) 2899 goto insert; 2900 2901 /* 2902 * As fallocate iterate by bytenr order, we only need to check 2903 * the last range. 2904 */ 2905 prev = list_entry(head->prev, struct falloc_range, list); 2906 if (prev->start + prev->len == start) { 2907 prev->len += len; 2908 return 0; 2909 } 2910 insert: 2911 range = kmalloc(sizeof(*range), GFP_KERNEL); 2912 if (!range) 2913 return -ENOMEM; 2914 range->start = start; 2915 range->len = len; 2916 list_add_tail(&range->list, head); 2917 return 0; 2918 } 2919 2920 static int btrfs_fallocate_update_isize(struct inode *inode, 2921 const u64 end, 2922 const int mode) 2923 { 2924 struct btrfs_trans_handle *trans; 2925 struct btrfs_root *root = BTRFS_I(inode)->root; 2926 int ret; 2927 int ret2; 2928 2929 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2930 return 0; 2931 2932 trans = btrfs_start_transaction(root, 1); 2933 if (IS_ERR(trans)) 2934 return PTR_ERR(trans); 2935 2936 inode->i_ctime = current_time(inode); 2937 i_size_write(inode, end); 2938 btrfs_ordered_update_i_size(inode, end, NULL); 2939 ret = btrfs_update_inode(trans, root, inode); 2940 ret2 = btrfs_end_transaction(trans); 2941 2942 return ret ? ret : ret2; 2943 } 2944 2945 enum { 2946 RANGE_BOUNDARY_WRITTEN_EXTENT, 2947 RANGE_BOUNDARY_PREALLOC_EXTENT, 2948 RANGE_BOUNDARY_HOLE, 2949 }; 2950 2951 static int btrfs_zero_range_check_range_boundary(struct inode *inode, 2952 u64 offset) 2953 { 2954 const u64 sectorsize = btrfs_inode_sectorsize(inode); 2955 struct extent_map *em; 2956 int ret; 2957 2958 offset = round_down(offset, sectorsize); 2959 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize); 2960 if (IS_ERR(em)) 2961 return PTR_ERR(em); 2962 2963 if (em->block_start == EXTENT_MAP_HOLE) 2964 ret = RANGE_BOUNDARY_HOLE; 2965 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2966 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2967 else 2968 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2969 2970 free_extent_map(em); 2971 return ret; 2972 } 2973 2974 static int btrfs_zero_range(struct inode *inode, 2975 loff_t offset, 2976 loff_t len, 2977 const int mode) 2978 { 2979 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2980 struct extent_map *em; 2981 struct extent_changeset *data_reserved = NULL; 2982 int ret; 2983 u64 alloc_hint = 0; 2984 const u64 sectorsize = btrfs_inode_sectorsize(inode); 2985 u64 alloc_start = round_down(offset, sectorsize); 2986 u64 alloc_end = round_up(offset + len, sectorsize); 2987 u64 bytes_to_reserve = 0; 2988 bool space_reserved = false; 2989 2990 inode_dio_wait(inode); 2991 2992 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 2993 alloc_end - alloc_start); 2994 if (IS_ERR(em)) { 2995 ret = PTR_ERR(em); 2996 goto out; 2997 } 2998 2999 /* 3000 * Avoid hole punching and extent allocation for some cases. More cases 3001 * could be considered, but these are unlikely common and we keep things 3002 * as simple as possible for now. Also, intentionally, if the target 3003 * range contains one or more prealloc extents together with regular 3004 * extents and holes, we drop all the existing extents and allocate a 3005 * new prealloc extent, so that we get a larger contiguous disk extent. 3006 */ 3007 if (em->start <= alloc_start && 3008 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3009 const u64 em_end = em->start + em->len; 3010 3011 if (em_end >= offset + len) { 3012 /* 3013 * The whole range is already a prealloc extent, 3014 * do nothing except updating the inode's i_size if 3015 * needed. 3016 */ 3017 free_extent_map(em); 3018 ret = btrfs_fallocate_update_isize(inode, offset + len, 3019 mode); 3020 goto out; 3021 } 3022 /* 3023 * Part of the range is already a prealloc extent, so operate 3024 * only on the remaining part of the range. 3025 */ 3026 alloc_start = em_end; 3027 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 3028 len = offset + len - alloc_start; 3029 offset = alloc_start; 3030 alloc_hint = em->block_start + em->len; 3031 } 3032 free_extent_map(em); 3033 3034 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 3035 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 3036 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3037 sectorsize); 3038 if (IS_ERR(em)) { 3039 ret = PTR_ERR(em); 3040 goto out; 3041 } 3042 3043 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3044 free_extent_map(em); 3045 ret = btrfs_fallocate_update_isize(inode, offset + len, 3046 mode); 3047 goto out; 3048 } 3049 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 3050 free_extent_map(em); 3051 ret = btrfs_truncate_block(inode, offset, len, 0); 3052 if (!ret) 3053 ret = btrfs_fallocate_update_isize(inode, 3054 offset + len, 3055 mode); 3056 return ret; 3057 } 3058 free_extent_map(em); 3059 alloc_start = round_down(offset, sectorsize); 3060 alloc_end = alloc_start + sectorsize; 3061 goto reserve_space; 3062 } 3063 3064 alloc_start = round_up(offset, sectorsize); 3065 alloc_end = round_down(offset + len, sectorsize); 3066 3067 /* 3068 * For unaligned ranges, check the pages at the boundaries, they might 3069 * map to an extent, in which case we need to partially zero them, or 3070 * they might map to a hole, in which case we need our allocation range 3071 * to cover them. 3072 */ 3073 if (!IS_ALIGNED(offset, sectorsize)) { 3074 ret = btrfs_zero_range_check_range_boundary(inode, offset); 3075 if (ret < 0) 3076 goto out; 3077 if (ret == RANGE_BOUNDARY_HOLE) { 3078 alloc_start = round_down(offset, sectorsize); 3079 ret = 0; 3080 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3081 ret = btrfs_truncate_block(inode, offset, 0, 0); 3082 if (ret) 3083 goto out; 3084 } else { 3085 ret = 0; 3086 } 3087 } 3088 3089 if (!IS_ALIGNED(offset + len, sectorsize)) { 3090 ret = btrfs_zero_range_check_range_boundary(inode, 3091 offset + len); 3092 if (ret < 0) 3093 goto out; 3094 if (ret == RANGE_BOUNDARY_HOLE) { 3095 alloc_end = round_up(offset + len, sectorsize); 3096 ret = 0; 3097 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3098 ret = btrfs_truncate_block(inode, offset + len, 0, 1); 3099 if (ret) 3100 goto out; 3101 } else { 3102 ret = 0; 3103 } 3104 } 3105 3106 reserve_space: 3107 if (alloc_start < alloc_end) { 3108 struct extent_state *cached_state = NULL; 3109 const u64 lockstart = alloc_start; 3110 const u64 lockend = alloc_end - 1; 3111 3112 bytes_to_reserve = alloc_end - alloc_start; 3113 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3114 bytes_to_reserve); 3115 if (ret < 0) 3116 goto out; 3117 space_reserved = true; 3118 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 3119 alloc_start, bytes_to_reserve); 3120 if (ret) 3121 goto out; 3122 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3123 &cached_state); 3124 if (ret) 3125 goto out; 3126 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3127 alloc_end - alloc_start, 3128 i_blocksize(inode), 3129 offset + len, &alloc_hint); 3130 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3131 lockend, &cached_state); 3132 /* btrfs_prealloc_file_range releases reserved space on error */ 3133 if (ret) { 3134 space_reserved = false; 3135 goto out; 3136 } 3137 } 3138 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3139 out: 3140 if (ret && space_reserved) 3141 btrfs_free_reserved_data_space(inode, data_reserved, 3142 alloc_start, bytes_to_reserve); 3143 extent_changeset_free(data_reserved); 3144 3145 return ret; 3146 } 3147 3148 static long btrfs_fallocate(struct file *file, int mode, 3149 loff_t offset, loff_t len) 3150 { 3151 struct inode *inode = file_inode(file); 3152 struct extent_state *cached_state = NULL; 3153 struct extent_changeset *data_reserved = NULL; 3154 struct falloc_range *range; 3155 struct falloc_range *tmp; 3156 struct list_head reserve_list; 3157 u64 cur_offset; 3158 u64 last_byte; 3159 u64 alloc_start; 3160 u64 alloc_end; 3161 u64 alloc_hint = 0; 3162 u64 locked_end; 3163 u64 actual_end = 0; 3164 struct extent_map *em; 3165 int blocksize = btrfs_inode_sectorsize(inode); 3166 int ret; 3167 3168 alloc_start = round_down(offset, blocksize); 3169 alloc_end = round_up(offset + len, blocksize); 3170 cur_offset = alloc_start; 3171 3172 /* Make sure we aren't being give some crap mode */ 3173 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3174 FALLOC_FL_ZERO_RANGE)) 3175 return -EOPNOTSUPP; 3176 3177 if (mode & FALLOC_FL_PUNCH_HOLE) 3178 return btrfs_punch_hole(inode, offset, len); 3179 3180 /* 3181 * Only trigger disk allocation, don't trigger qgroup reserve 3182 * 3183 * For qgroup space, it will be checked later. 3184 */ 3185 if (!(mode & FALLOC_FL_ZERO_RANGE)) { 3186 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3187 alloc_end - alloc_start); 3188 if (ret < 0) 3189 return ret; 3190 } 3191 3192 inode_lock(inode); 3193 3194 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3195 ret = inode_newsize_ok(inode, offset + len); 3196 if (ret) 3197 goto out; 3198 } 3199 3200 /* 3201 * TODO: Move these two operations after we have checked 3202 * accurate reserved space, or fallocate can still fail but 3203 * with page truncated or size expanded. 3204 * 3205 * But that's a minor problem and won't do much harm BTW. 3206 */ 3207 if (alloc_start > inode->i_size) { 3208 ret = btrfs_cont_expand(inode, i_size_read(inode), 3209 alloc_start); 3210 if (ret) 3211 goto out; 3212 } else if (offset + len > inode->i_size) { 3213 /* 3214 * If we are fallocating from the end of the file onward we 3215 * need to zero out the end of the block if i_size lands in the 3216 * middle of a block. 3217 */ 3218 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 3219 if (ret) 3220 goto out; 3221 } 3222 3223 /* 3224 * wait for ordered IO before we have any locks. We'll loop again 3225 * below with the locks held. 3226 */ 3227 ret = btrfs_wait_ordered_range(inode, alloc_start, 3228 alloc_end - alloc_start); 3229 if (ret) 3230 goto out; 3231 3232 if (mode & FALLOC_FL_ZERO_RANGE) { 3233 ret = btrfs_zero_range(inode, offset, len, mode); 3234 inode_unlock(inode); 3235 return ret; 3236 } 3237 3238 locked_end = alloc_end - 1; 3239 while (1) { 3240 struct btrfs_ordered_extent *ordered; 3241 3242 /* the extent lock is ordered inside the running 3243 * transaction 3244 */ 3245 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 3246 locked_end, &cached_state); 3247 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end); 3248 3249 if (ordered && 3250 ordered->file_offset + ordered->num_bytes > alloc_start && 3251 ordered->file_offset < alloc_end) { 3252 btrfs_put_ordered_extent(ordered); 3253 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 3254 alloc_start, locked_end, 3255 &cached_state); 3256 /* 3257 * we can't wait on the range with the transaction 3258 * running or with the extent lock held 3259 */ 3260 ret = btrfs_wait_ordered_range(inode, alloc_start, 3261 alloc_end - alloc_start); 3262 if (ret) 3263 goto out; 3264 } else { 3265 if (ordered) 3266 btrfs_put_ordered_extent(ordered); 3267 break; 3268 } 3269 } 3270 3271 /* First, check if we exceed the qgroup limit */ 3272 INIT_LIST_HEAD(&reserve_list); 3273 while (cur_offset < alloc_end) { 3274 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3275 alloc_end - cur_offset); 3276 if (IS_ERR(em)) { 3277 ret = PTR_ERR(em); 3278 break; 3279 } 3280 last_byte = min(extent_map_end(em), alloc_end); 3281 actual_end = min_t(u64, extent_map_end(em), offset + len); 3282 last_byte = ALIGN(last_byte, blocksize); 3283 if (em->block_start == EXTENT_MAP_HOLE || 3284 (cur_offset >= inode->i_size && 3285 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3286 ret = add_falloc_range(&reserve_list, cur_offset, 3287 last_byte - cur_offset); 3288 if (ret < 0) { 3289 free_extent_map(em); 3290 break; 3291 } 3292 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 3293 cur_offset, last_byte - cur_offset); 3294 if (ret < 0) { 3295 cur_offset = last_byte; 3296 free_extent_map(em); 3297 break; 3298 } 3299 } else { 3300 /* 3301 * Do not need to reserve unwritten extent for this 3302 * range, free reserved data space first, otherwise 3303 * it'll result in false ENOSPC error. 3304 */ 3305 btrfs_free_reserved_data_space(inode, data_reserved, 3306 cur_offset, last_byte - cur_offset); 3307 } 3308 free_extent_map(em); 3309 cur_offset = last_byte; 3310 } 3311 3312 /* 3313 * If ret is still 0, means we're OK to fallocate. 3314 * Or just cleanup the list and exit. 3315 */ 3316 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3317 if (!ret) 3318 ret = btrfs_prealloc_file_range(inode, mode, 3319 range->start, 3320 range->len, i_blocksize(inode), 3321 offset + len, &alloc_hint); 3322 else 3323 btrfs_free_reserved_data_space(inode, 3324 data_reserved, range->start, 3325 range->len); 3326 list_del(&range->list); 3327 kfree(range); 3328 } 3329 if (ret < 0) 3330 goto out_unlock; 3331 3332 /* 3333 * We didn't need to allocate any more space, but we still extended the 3334 * size of the file so we need to update i_size and the inode item. 3335 */ 3336 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3337 out_unlock: 3338 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3339 &cached_state); 3340 out: 3341 inode_unlock(inode); 3342 /* Let go of our reservation. */ 3343 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) 3344 btrfs_free_reserved_data_space(inode, data_reserved, 3345 cur_offset, alloc_end - cur_offset); 3346 extent_changeset_free(data_reserved); 3347 return ret; 3348 } 3349 3350 static loff_t find_desired_extent(struct inode *inode, loff_t offset, 3351 int whence) 3352 { 3353 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3354 struct extent_map *em = NULL; 3355 struct extent_state *cached_state = NULL; 3356 loff_t i_size = inode->i_size; 3357 u64 lockstart; 3358 u64 lockend; 3359 u64 start; 3360 u64 len; 3361 int ret = 0; 3362 3363 if (i_size == 0 || offset >= i_size) 3364 return -ENXIO; 3365 3366 /* 3367 * offset can be negative, in this case we start finding DATA/HOLE from 3368 * the very start of the file. 3369 */ 3370 start = max_t(loff_t, 0, offset); 3371 3372 lockstart = round_down(start, fs_info->sectorsize); 3373 lockend = round_up(i_size, fs_info->sectorsize); 3374 if (lockend <= lockstart) 3375 lockend = lockstart + fs_info->sectorsize; 3376 lockend--; 3377 len = lockend - lockstart + 1; 3378 3379 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3380 &cached_state); 3381 3382 while (start < i_size) { 3383 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len); 3384 if (IS_ERR(em)) { 3385 ret = PTR_ERR(em); 3386 em = NULL; 3387 break; 3388 } 3389 3390 if (whence == SEEK_HOLE && 3391 (em->block_start == EXTENT_MAP_HOLE || 3392 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3393 break; 3394 else if (whence == SEEK_DATA && 3395 (em->block_start != EXTENT_MAP_HOLE && 3396 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3397 break; 3398 3399 start = em->start + em->len; 3400 free_extent_map(em); 3401 em = NULL; 3402 cond_resched(); 3403 } 3404 free_extent_map(em); 3405 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3406 &cached_state); 3407 if (ret) { 3408 offset = ret; 3409 } else { 3410 if (whence == SEEK_DATA && start >= i_size) 3411 offset = -ENXIO; 3412 else 3413 offset = min_t(loff_t, start, i_size); 3414 } 3415 3416 return offset; 3417 } 3418 3419 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3420 { 3421 struct inode *inode = file->f_mapping->host; 3422 3423 switch (whence) { 3424 default: 3425 return generic_file_llseek(file, offset, whence); 3426 case SEEK_DATA: 3427 case SEEK_HOLE: 3428 inode_lock_shared(inode); 3429 offset = find_desired_extent(inode, offset, whence); 3430 inode_unlock_shared(inode); 3431 break; 3432 } 3433 3434 if (offset < 0) 3435 return offset; 3436 3437 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3438 } 3439 3440 static int btrfs_file_open(struct inode *inode, struct file *filp) 3441 { 3442 filp->f_mode |= FMODE_NOWAIT; 3443 return generic_file_open(inode, filp); 3444 } 3445 3446 const struct file_operations btrfs_file_operations = { 3447 .llseek = btrfs_file_llseek, 3448 .read_iter = generic_file_read_iter, 3449 .splice_read = generic_file_splice_read, 3450 .write_iter = btrfs_file_write_iter, 3451 .mmap = btrfs_file_mmap, 3452 .open = btrfs_file_open, 3453 .release = btrfs_release_file, 3454 .fsync = btrfs_sync_file, 3455 .fallocate = btrfs_fallocate, 3456 .unlocked_ioctl = btrfs_ioctl, 3457 #ifdef CONFIG_COMPAT 3458 .compat_ioctl = btrfs_compat_ioctl, 3459 #endif 3460 .remap_file_range = btrfs_remap_file_range, 3461 }; 3462 3463 void __cold btrfs_auto_defrag_exit(void) 3464 { 3465 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3466 } 3467 3468 int __init btrfs_auto_defrag_init(void) 3469 { 3470 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3471 sizeof(struct inode_defrag), 0, 3472 SLAB_MEM_SPREAD, 3473 NULL); 3474 if (!btrfs_inode_defrag_cachep) 3475 return -ENOMEM; 3476 3477 return 0; 3478 } 3479 3480 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3481 { 3482 int ret; 3483 3484 /* 3485 * So with compression we will find and lock a dirty page and clear the 3486 * first one as dirty, setup an async extent, and immediately return 3487 * with the entire range locked but with nobody actually marked with 3488 * writeback. So we can't just filemap_write_and_wait_range() and 3489 * expect it to work since it will just kick off a thread to do the 3490 * actual work. So we need to call filemap_fdatawrite_range _again_ 3491 * since it will wait on the page lock, which won't be unlocked until 3492 * after the pages have been marked as writeback and so we're good to go 3493 * from there. We have to do this otherwise we'll miss the ordered 3494 * extents and that results in badness. Please Josef, do not think you 3495 * know better and pull this out at some point in the future, it is 3496 * right and you are wrong. 3497 */ 3498 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3499 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3500 &BTRFS_I(inode)->runtime_flags)) 3501 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3502 3503 return ret; 3504 } 3505