xref: /openbmc/linux/fs/btrfs/file.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31 
32 static struct kmem_cache *btrfs_inode_defrag_cachep;
33 /*
34  * when auto defrag is enabled we
35  * queue up these defrag structs to remember which
36  * inodes need defragging passes
37  */
38 struct inode_defrag {
39 	struct rb_node rb_node;
40 	/* objectid */
41 	u64 ino;
42 	/*
43 	 * transid where the defrag was added, we search for
44 	 * extents newer than this
45 	 */
46 	u64 transid;
47 
48 	/* root objectid */
49 	u64 root;
50 
51 	/* last offset we were able to defrag */
52 	u64 last_offset;
53 
54 	/* if we've wrapped around back to zero once already */
55 	int cycled;
56 };
57 
58 static int __compare_inode_defrag(struct inode_defrag *defrag1,
59 				  struct inode_defrag *defrag2)
60 {
61 	if (defrag1->root > defrag2->root)
62 		return 1;
63 	else if (defrag1->root < defrag2->root)
64 		return -1;
65 	else if (defrag1->ino > defrag2->ino)
66 		return 1;
67 	else if (defrag1->ino < defrag2->ino)
68 		return -1;
69 	else
70 		return 0;
71 }
72 
73 /* pop a record for an inode into the defrag tree.  The lock
74  * must be held already
75  *
76  * If you're inserting a record for an older transid than an
77  * existing record, the transid already in the tree is lowered
78  *
79  * If an existing record is found the defrag item you
80  * pass in is freed
81  */
82 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
83 				    struct inode_defrag *defrag)
84 {
85 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
86 	struct inode_defrag *entry;
87 	struct rb_node **p;
88 	struct rb_node *parent = NULL;
89 	int ret;
90 
91 	p = &fs_info->defrag_inodes.rb_node;
92 	while (*p) {
93 		parent = *p;
94 		entry = rb_entry(parent, struct inode_defrag, rb_node);
95 
96 		ret = __compare_inode_defrag(defrag, entry);
97 		if (ret < 0)
98 			p = &parent->rb_left;
99 		else if (ret > 0)
100 			p = &parent->rb_right;
101 		else {
102 			/* if we're reinserting an entry for
103 			 * an old defrag run, make sure to
104 			 * lower the transid of our existing record
105 			 */
106 			if (defrag->transid < entry->transid)
107 				entry->transid = defrag->transid;
108 			if (defrag->last_offset > entry->last_offset)
109 				entry->last_offset = defrag->last_offset;
110 			return -EEXIST;
111 		}
112 	}
113 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
114 	rb_link_node(&defrag->rb_node, parent, p);
115 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
116 	return 0;
117 }
118 
119 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
120 {
121 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
122 		return 0;
123 
124 	if (btrfs_fs_closing(fs_info))
125 		return 0;
126 
127 	return 1;
128 }
129 
130 /*
131  * insert a defrag record for this inode if auto defrag is
132  * enabled
133  */
134 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
135 			   struct btrfs_inode *inode)
136 {
137 	struct btrfs_root *root = inode->root;
138 	struct btrfs_fs_info *fs_info = root->fs_info;
139 	struct inode_defrag *defrag;
140 	u64 transid;
141 	int ret;
142 
143 	if (!__need_auto_defrag(fs_info))
144 		return 0;
145 
146 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
147 		return 0;
148 
149 	if (trans)
150 		transid = trans->transid;
151 	else
152 		transid = inode->root->last_trans;
153 
154 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
155 	if (!defrag)
156 		return -ENOMEM;
157 
158 	defrag->ino = btrfs_ino(inode);
159 	defrag->transid = transid;
160 	defrag->root = root->root_key.objectid;
161 
162 	spin_lock(&fs_info->defrag_inodes_lock);
163 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
164 		/*
165 		 * If we set IN_DEFRAG flag and evict the inode from memory,
166 		 * and then re-read this inode, this new inode doesn't have
167 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
168 		 */
169 		ret = __btrfs_add_inode_defrag(inode, defrag);
170 		if (ret)
171 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
172 	} else {
173 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174 	}
175 	spin_unlock(&fs_info->defrag_inodes_lock);
176 	return 0;
177 }
178 
179 /*
180  * Requeue the defrag object. If there is a defrag object that points to
181  * the same inode in the tree, we will merge them together (by
182  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
183  */
184 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
185 				       struct inode_defrag *defrag)
186 {
187 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
188 	int ret;
189 
190 	if (!__need_auto_defrag(fs_info))
191 		goto out;
192 
193 	/*
194 	 * Here we don't check the IN_DEFRAG flag, because we need merge
195 	 * them together.
196 	 */
197 	spin_lock(&fs_info->defrag_inodes_lock);
198 	ret = __btrfs_add_inode_defrag(inode, defrag);
199 	spin_unlock(&fs_info->defrag_inodes_lock);
200 	if (ret)
201 		goto out;
202 	return;
203 out:
204 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
205 }
206 
207 /*
208  * pick the defragable inode that we want, if it doesn't exist, we will get
209  * the next one.
210  */
211 static struct inode_defrag *
212 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
213 {
214 	struct inode_defrag *entry = NULL;
215 	struct inode_defrag tmp;
216 	struct rb_node *p;
217 	struct rb_node *parent = NULL;
218 	int ret;
219 
220 	tmp.ino = ino;
221 	tmp.root = root;
222 
223 	spin_lock(&fs_info->defrag_inodes_lock);
224 	p = fs_info->defrag_inodes.rb_node;
225 	while (p) {
226 		parent = p;
227 		entry = rb_entry(parent, struct inode_defrag, rb_node);
228 
229 		ret = __compare_inode_defrag(&tmp, entry);
230 		if (ret < 0)
231 			p = parent->rb_left;
232 		else if (ret > 0)
233 			p = parent->rb_right;
234 		else
235 			goto out;
236 	}
237 
238 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
239 		parent = rb_next(parent);
240 		if (parent)
241 			entry = rb_entry(parent, struct inode_defrag, rb_node);
242 		else
243 			entry = NULL;
244 	}
245 out:
246 	if (entry)
247 		rb_erase(parent, &fs_info->defrag_inodes);
248 	spin_unlock(&fs_info->defrag_inodes_lock);
249 	return entry;
250 }
251 
252 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
253 {
254 	struct inode_defrag *defrag;
255 	struct rb_node *node;
256 
257 	spin_lock(&fs_info->defrag_inodes_lock);
258 	node = rb_first(&fs_info->defrag_inodes);
259 	while (node) {
260 		rb_erase(node, &fs_info->defrag_inodes);
261 		defrag = rb_entry(node, struct inode_defrag, rb_node);
262 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
263 
264 		cond_resched_lock(&fs_info->defrag_inodes_lock);
265 
266 		node = rb_first(&fs_info->defrag_inodes);
267 	}
268 	spin_unlock(&fs_info->defrag_inodes_lock);
269 }
270 
271 #define BTRFS_DEFRAG_BATCH	1024
272 
273 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
274 				    struct inode_defrag *defrag)
275 {
276 	struct btrfs_root *inode_root;
277 	struct inode *inode;
278 	struct btrfs_ioctl_defrag_range_args range;
279 	int num_defrag;
280 	int ret;
281 
282 	/* get the inode */
283 	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
284 	if (IS_ERR(inode_root)) {
285 		ret = PTR_ERR(inode_root);
286 		goto cleanup;
287 	}
288 
289 	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
290 	btrfs_put_root(inode_root);
291 	if (IS_ERR(inode)) {
292 		ret = PTR_ERR(inode);
293 		goto cleanup;
294 	}
295 
296 	/* do a chunk of defrag */
297 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
298 	memset(&range, 0, sizeof(range));
299 	range.len = (u64)-1;
300 	range.start = defrag->last_offset;
301 
302 	sb_start_write(fs_info->sb);
303 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
304 				       BTRFS_DEFRAG_BATCH);
305 	sb_end_write(fs_info->sb);
306 	/*
307 	 * if we filled the whole defrag batch, there
308 	 * must be more work to do.  Queue this defrag
309 	 * again
310 	 */
311 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
312 		defrag->last_offset = range.start;
313 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
314 	} else if (defrag->last_offset && !defrag->cycled) {
315 		/*
316 		 * we didn't fill our defrag batch, but
317 		 * we didn't start at zero.  Make sure we loop
318 		 * around to the start of the file.
319 		 */
320 		defrag->last_offset = 0;
321 		defrag->cycled = 1;
322 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
323 	} else {
324 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
325 	}
326 
327 	iput(inode);
328 	return 0;
329 cleanup:
330 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
331 	return ret;
332 }
333 
334 /*
335  * run through the list of inodes in the FS that need
336  * defragging
337  */
338 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
339 {
340 	struct inode_defrag *defrag;
341 	u64 first_ino = 0;
342 	u64 root_objectid = 0;
343 
344 	atomic_inc(&fs_info->defrag_running);
345 	while (1) {
346 		/* Pause the auto defragger. */
347 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
348 			     &fs_info->fs_state))
349 			break;
350 
351 		if (!__need_auto_defrag(fs_info))
352 			break;
353 
354 		/* find an inode to defrag */
355 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
356 						 first_ino);
357 		if (!defrag) {
358 			if (root_objectid || first_ino) {
359 				root_objectid = 0;
360 				first_ino = 0;
361 				continue;
362 			} else {
363 				break;
364 			}
365 		}
366 
367 		first_ino = defrag->ino + 1;
368 		root_objectid = defrag->root;
369 
370 		__btrfs_run_defrag_inode(fs_info, defrag);
371 	}
372 	atomic_dec(&fs_info->defrag_running);
373 
374 	/*
375 	 * during unmount, we use the transaction_wait queue to
376 	 * wait for the defragger to stop
377 	 */
378 	wake_up(&fs_info->transaction_wait);
379 	return 0;
380 }
381 
382 /* simple helper to fault in pages and copy.  This should go away
383  * and be replaced with calls into generic code.
384  */
385 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
386 					 struct page **prepared_pages,
387 					 struct iov_iter *i)
388 {
389 	size_t copied = 0;
390 	size_t total_copied = 0;
391 	int pg = 0;
392 	int offset = offset_in_page(pos);
393 
394 	while (write_bytes > 0) {
395 		size_t count = min_t(size_t,
396 				     PAGE_SIZE - offset, write_bytes);
397 		struct page *page = prepared_pages[pg];
398 		/*
399 		 * Copy data from userspace to the current page
400 		 */
401 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
402 
403 		/* Flush processor's dcache for this page */
404 		flush_dcache_page(page);
405 
406 		/*
407 		 * if we get a partial write, we can end up with
408 		 * partially up to date pages.  These add
409 		 * a lot of complexity, so make sure they don't
410 		 * happen by forcing this copy to be retried.
411 		 *
412 		 * The rest of the btrfs_file_write code will fall
413 		 * back to page at a time copies after we return 0.
414 		 */
415 		if (!PageUptodate(page) && copied < count)
416 			copied = 0;
417 
418 		iov_iter_advance(i, copied);
419 		write_bytes -= copied;
420 		total_copied += copied;
421 
422 		/* Return to btrfs_file_write_iter to fault page */
423 		if (unlikely(copied == 0))
424 			break;
425 
426 		if (copied < PAGE_SIZE - offset) {
427 			offset += copied;
428 		} else {
429 			pg++;
430 			offset = 0;
431 		}
432 	}
433 	return total_copied;
434 }
435 
436 /*
437  * unlocks pages after btrfs_file_write is done with them
438  */
439 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
440 {
441 	size_t i;
442 	for (i = 0; i < num_pages; i++) {
443 		/* page checked is some magic around finding pages that
444 		 * have been modified without going through btrfs_set_page_dirty
445 		 * clear it here. There should be no need to mark the pages
446 		 * accessed as prepare_pages should have marked them accessed
447 		 * in prepare_pages via find_or_create_page()
448 		 */
449 		ClearPageChecked(pages[i]);
450 		unlock_page(pages[i]);
451 		put_page(pages[i]);
452 	}
453 }
454 
455 /*
456  * After btrfs_copy_from_user(), update the following things for delalloc:
457  * - Mark newly dirtied pages as DELALLOC in the io tree.
458  *   Used to advise which range is to be written back.
459  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
460  * - Update inode size for past EOF write
461  */
462 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
463 		      size_t num_pages, loff_t pos, size_t write_bytes,
464 		      struct extent_state **cached, bool noreserve)
465 {
466 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
467 	int err = 0;
468 	int i;
469 	u64 num_bytes;
470 	u64 start_pos;
471 	u64 end_of_last_block;
472 	u64 end_pos = pos + write_bytes;
473 	loff_t isize = i_size_read(&inode->vfs_inode);
474 	unsigned int extra_bits = 0;
475 
476 	if (write_bytes == 0)
477 		return 0;
478 
479 	if (noreserve)
480 		extra_bits |= EXTENT_NORESERVE;
481 
482 	start_pos = round_down(pos, fs_info->sectorsize);
483 	num_bytes = round_up(write_bytes + pos - start_pos,
484 			     fs_info->sectorsize);
485 
486 	end_of_last_block = start_pos + num_bytes - 1;
487 
488 	/*
489 	 * The pages may have already been dirty, clear out old accounting so
490 	 * we can set things up properly
491 	 */
492 	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
493 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
494 			 0, 0, cached);
495 
496 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
497 					extra_bits, cached);
498 	if (err)
499 		return err;
500 
501 	for (i = 0; i < num_pages; i++) {
502 		struct page *p = pages[i];
503 		SetPageUptodate(p);
504 		ClearPageChecked(p);
505 		set_page_dirty(p);
506 	}
507 
508 	/*
509 	 * we've only changed i_size in ram, and we haven't updated
510 	 * the disk i_size.  There is no need to log the inode
511 	 * at this time.
512 	 */
513 	if (end_pos > isize)
514 		i_size_write(&inode->vfs_inode, end_pos);
515 	return 0;
516 }
517 
518 /*
519  * this drops all the extents in the cache that intersect the range
520  * [start, end].  Existing extents are split as required.
521  */
522 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
523 			     int skip_pinned)
524 {
525 	struct extent_map *em;
526 	struct extent_map *split = NULL;
527 	struct extent_map *split2 = NULL;
528 	struct extent_map_tree *em_tree = &inode->extent_tree;
529 	u64 len = end - start + 1;
530 	u64 gen;
531 	int ret;
532 	int testend = 1;
533 	unsigned long flags;
534 	int compressed = 0;
535 	bool modified;
536 
537 	WARN_ON(end < start);
538 	if (end == (u64)-1) {
539 		len = (u64)-1;
540 		testend = 0;
541 	}
542 	while (1) {
543 		int no_splits = 0;
544 
545 		modified = false;
546 		if (!split)
547 			split = alloc_extent_map();
548 		if (!split2)
549 			split2 = alloc_extent_map();
550 		if (!split || !split2)
551 			no_splits = 1;
552 
553 		write_lock(&em_tree->lock);
554 		em = lookup_extent_mapping(em_tree, start, len);
555 		if (!em) {
556 			write_unlock(&em_tree->lock);
557 			break;
558 		}
559 		flags = em->flags;
560 		gen = em->generation;
561 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
562 			if (testend && em->start + em->len >= start + len) {
563 				free_extent_map(em);
564 				write_unlock(&em_tree->lock);
565 				break;
566 			}
567 			start = em->start + em->len;
568 			if (testend)
569 				len = start + len - (em->start + em->len);
570 			free_extent_map(em);
571 			write_unlock(&em_tree->lock);
572 			continue;
573 		}
574 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
575 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
576 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
577 		modified = !list_empty(&em->list);
578 		if (no_splits)
579 			goto next;
580 
581 		if (em->start < start) {
582 			split->start = em->start;
583 			split->len = start - em->start;
584 
585 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
586 				split->orig_start = em->orig_start;
587 				split->block_start = em->block_start;
588 
589 				if (compressed)
590 					split->block_len = em->block_len;
591 				else
592 					split->block_len = split->len;
593 				split->orig_block_len = max(split->block_len,
594 						em->orig_block_len);
595 				split->ram_bytes = em->ram_bytes;
596 			} else {
597 				split->orig_start = split->start;
598 				split->block_len = 0;
599 				split->block_start = em->block_start;
600 				split->orig_block_len = 0;
601 				split->ram_bytes = split->len;
602 			}
603 
604 			split->generation = gen;
605 			split->flags = flags;
606 			split->compress_type = em->compress_type;
607 			replace_extent_mapping(em_tree, em, split, modified);
608 			free_extent_map(split);
609 			split = split2;
610 			split2 = NULL;
611 		}
612 		if (testend && em->start + em->len > start + len) {
613 			u64 diff = start + len - em->start;
614 
615 			split->start = start + len;
616 			split->len = em->start + em->len - (start + len);
617 			split->flags = flags;
618 			split->compress_type = em->compress_type;
619 			split->generation = gen;
620 
621 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
622 				split->orig_block_len = max(em->block_len,
623 						    em->orig_block_len);
624 
625 				split->ram_bytes = em->ram_bytes;
626 				if (compressed) {
627 					split->block_len = em->block_len;
628 					split->block_start = em->block_start;
629 					split->orig_start = em->orig_start;
630 				} else {
631 					split->block_len = split->len;
632 					split->block_start = em->block_start
633 						+ diff;
634 					split->orig_start = em->orig_start;
635 				}
636 			} else {
637 				split->ram_bytes = split->len;
638 				split->orig_start = split->start;
639 				split->block_len = 0;
640 				split->block_start = em->block_start;
641 				split->orig_block_len = 0;
642 			}
643 
644 			if (extent_map_in_tree(em)) {
645 				replace_extent_mapping(em_tree, em, split,
646 						       modified);
647 			} else {
648 				ret = add_extent_mapping(em_tree, split,
649 							 modified);
650 				ASSERT(ret == 0); /* Logic error */
651 			}
652 			free_extent_map(split);
653 			split = NULL;
654 		}
655 next:
656 		if (extent_map_in_tree(em))
657 			remove_extent_mapping(em_tree, em);
658 		write_unlock(&em_tree->lock);
659 
660 		/* once for us */
661 		free_extent_map(em);
662 		/* once for the tree*/
663 		free_extent_map(em);
664 	}
665 	if (split)
666 		free_extent_map(split);
667 	if (split2)
668 		free_extent_map(split2);
669 }
670 
671 /*
672  * this is very complex, but the basic idea is to drop all extents
673  * in the range start - end.  hint_block is filled in with a block number
674  * that would be a good hint to the block allocator for this file.
675  *
676  * If an extent intersects the range but is not entirely inside the range
677  * it is either truncated or split.  Anything entirely inside the range
678  * is deleted from the tree.
679  *
680  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
681  * to deal with that. We set the field 'bytes_found' of the arguments structure
682  * with the number of allocated bytes found in the target range, so that the
683  * caller can update the inode's number of bytes in an atomic way when
684  * replacing extents in a range to avoid races with stat(2).
685  */
686 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
687 		       struct btrfs_root *root, struct btrfs_inode *inode,
688 		       struct btrfs_drop_extents_args *args)
689 {
690 	struct btrfs_fs_info *fs_info = root->fs_info;
691 	struct extent_buffer *leaf;
692 	struct btrfs_file_extent_item *fi;
693 	struct btrfs_ref ref = { 0 };
694 	struct btrfs_key key;
695 	struct btrfs_key new_key;
696 	u64 ino = btrfs_ino(inode);
697 	u64 search_start = args->start;
698 	u64 disk_bytenr = 0;
699 	u64 num_bytes = 0;
700 	u64 extent_offset = 0;
701 	u64 extent_end = 0;
702 	u64 last_end = args->start;
703 	int del_nr = 0;
704 	int del_slot = 0;
705 	int extent_type;
706 	int recow;
707 	int ret;
708 	int modify_tree = -1;
709 	int update_refs;
710 	int found = 0;
711 	int leafs_visited = 0;
712 	struct btrfs_path *path = args->path;
713 
714 	args->bytes_found = 0;
715 	args->extent_inserted = false;
716 
717 	/* Must always have a path if ->replace_extent is true */
718 	ASSERT(!(args->replace_extent && !args->path));
719 
720 	if (!path) {
721 		path = btrfs_alloc_path();
722 		if (!path) {
723 			ret = -ENOMEM;
724 			goto out;
725 		}
726 	}
727 
728 	if (args->drop_cache)
729 		btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
730 
731 	if (args->start >= inode->disk_i_size && !args->replace_extent)
732 		modify_tree = 0;
733 
734 	update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
735 		       root == fs_info->tree_root);
736 	while (1) {
737 		recow = 0;
738 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
739 					       search_start, modify_tree);
740 		if (ret < 0)
741 			break;
742 		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
743 			leaf = path->nodes[0];
744 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
745 			if (key.objectid == ino &&
746 			    key.type == BTRFS_EXTENT_DATA_KEY)
747 				path->slots[0]--;
748 		}
749 		ret = 0;
750 		leafs_visited++;
751 next_slot:
752 		leaf = path->nodes[0];
753 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
754 			BUG_ON(del_nr > 0);
755 			ret = btrfs_next_leaf(root, path);
756 			if (ret < 0)
757 				break;
758 			if (ret > 0) {
759 				ret = 0;
760 				break;
761 			}
762 			leafs_visited++;
763 			leaf = path->nodes[0];
764 			recow = 1;
765 		}
766 
767 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
768 
769 		if (key.objectid > ino)
770 			break;
771 		if (WARN_ON_ONCE(key.objectid < ino) ||
772 		    key.type < BTRFS_EXTENT_DATA_KEY) {
773 			ASSERT(del_nr == 0);
774 			path->slots[0]++;
775 			goto next_slot;
776 		}
777 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
778 			break;
779 
780 		fi = btrfs_item_ptr(leaf, path->slots[0],
781 				    struct btrfs_file_extent_item);
782 		extent_type = btrfs_file_extent_type(leaf, fi);
783 
784 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
785 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
786 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
787 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
788 			extent_offset = btrfs_file_extent_offset(leaf, fi);
789 			extent_end = key.offset +
790 				btrfs_file_extent_num_bytes(leaf, fi);
791 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
792 			extent_end = key.offset +
793 				btrfs_file_extent_ram_bytes(leaf, fi);
794 		} else {
795 			/* can't happen */
796 			BUG();
797 		}
798 
799 		/*
800 		 * Don't skip extent items representing 0 byte lengths. They
801 		 * used to be created (bug) if while punching holes we hit
802 		 * -ENOSPC condition. So if we find one here, just ensure we
803 		 * delete it, otherwise we would insert a new file extent item
804 		 * with the same key (offset) as that 0 bytes length file
805 		 * extent item in the call to setup_items_for_insert() later
806 		 * in this function.
807 		 */
808 		if (extent_end == key.offset && extent_end >= search_start) {
809 			last_end = extent_end;
810 			goto delete_extent_item;
811 		}
812 
813 		if (extent_end <= search_start) {
814 			path->slots[0]++;
815 			goto next_slot;
816 		}
817 
818 		found = 1;
819 		search_start = max(key.offset, args->start);
820 		if (recow || !modify_tree) {
821 			modify_tree = -1;
822 			btrfs_release_path(path);
823 			continue;
824 		}
825 
826 		/*
827 		 *     | - range to drop - |
828 		 *  | -------- extent -------- |
829 		 */
830 		if (args->start > key.offset && args->end < extent_end) {
831 			BUG_ON(del_nr > 0);
832 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
833 				ret = -EOPNOTSUPP;
834 				break;
835 			}
836 
837 			memcpy(&new_key, &key, sizeof(new_key));
838 			new_key.offset = args->start;
839 			ret = btrfs_duplicate_item(trans, root, path,
840 						   &new_key);
841 			if (ret == -EAGAIN) {
842 				btrfs_release_path(path);
843 				continue;
844 			}
845 			if (ret < 0)
846 				break;
847 
848 			leaf = path->nodes[0];
849 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
850 					    struct btrfs_file_extent_item);
851 			btrfs_set_file_extent_num_bytes(leaf, fi,
852 							args->start - key.offset);
853 
854 			fi = btrfs_item_ptr(leaf, path->slots[0],
855 					    struct btrfs_file_extent_item);
856 
857 			extent_offset += args->start - key.offset;
858 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
859 			btrfs_set_file_extent_num_bytes(leaf, fi,
860 							extent_end - args->start);
861 			btrfs_mark_buffer_dirty(leaf);
862 
863 			if (update_refs && disk_bytenr > 0) {
864 				btrfs_init_generic_ref(&ref,
865 						BTRFS_ADD_DELAYED_REF,
866 						disk_bytenr, num_bytes, 0);
867 				btrfs_init_data_ref(&ref,
868 						root->root_key.objectid,
869 						new_key.objectid,
870 						args->start - extent_offset);
871 				ret = btrfs_inc_extent_ref(trans, &ref);
872 				BUG_ON(ret); /* -ENOMEM */
873 			}
874 			key.offset = args->start;
875 		}
876 		/*
877 		 * From here on out we will have actually dropped something, so
878 		 * last_end can be updated.
879 		 */
880 		last_end = extent_end;
881 
882 		/*
883 		 *  | ---- range to drop ----- |
884 		 *      | -------- extent -------- |
885 		 */
886 		if (args->start <= key.offset && args->end < extent_end) {
887 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
888 				ret = -EOPNOTSUPP;
889 				break;
890 			}
891 
892 			memcpy(&new_key, &key, sizeof(new_key));
893 			new_key.offset = args->end;
894 			btrfs_set_item_key_safe(fs_info, path, &new_key);
895 
896 			extent_offset += args->end - key.offset;
897 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
898 			btrfs_set_file_extent_num_bytes(leaf, fi,
899 							extent_end - args->end);
900 			btrfs_mark_buffer_dirty(leaf);
901 			if (update_refs && disk_bytenr > 0)
902 				args->bytes_found += args->end - key.offset;
903 			break;
904 		}
905 
906 		search_start = extent_end;
907 		/*
908 		 *       | ---- range to drop ----- |
909 		 *  | -------- extent -------- |
910 		 */
911 		if (args->start > key.offset && args->end >= extent_end) {
912 			BUG_ON(del_nr > 0);
913 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
914 				ret = -EOPNOTSUPP;
915 				break;
916 			}
917 
918 			btrfs_set_file_extent_num_bytes(leaf, fi,
919 							args->start - key.offset);
920 			btrfs_mark_buffer_dirty(leaf);
921 			if (update_refs && disk_bytenr > 0)
922 				args->bytes_found += extent_end - args->start;
923 			if (args->end == extent_end)
924 				break;
925 
926 			path->slots[0]++;
927 			goto next_slot;
928 		}
929 
930 		/*
931 		 *  | ---- range to drop ----- |
932 		 *    | ------ extent ------ |
933 		 */
934 		if (args->start <= key.offset && args->end >= extent_end) {
935 delete_extent_item:
936 			if (del_nr == 0) {
937 				del_slot = path->slots[0];
938 				del_nr = 1;
939 			} else {
940 				BUG_ON(del_slot + del_nr != path->slots[0]);
941 				del_nr++;
942 			}
943 
944 			if (update_refs &&
945 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
946 				args->bytes_found += extent_end - key.offset;
947 				extent_end = ALIGN(extent_end,
948 						   fs_info->sectorsize);
949 			} else if (update_refs && disk_bytenr > 0) {
950 				btrfs_init_generic_ref(&ref,
951 						BTRFS_DROP_DELAYED_REF,
952 						disk_bytenr, num_bytes, 0);
953 				btrfs_init_data_ref(&ref,
954 						root->root_key.objectid,
955 						key.objectid,
956 						key.offset - extent_offset);
957 				ret = btrfs_free_extent(trans, &ref);
958 				BUG_ON(ret); /* -ENOMEM */
959 				args->bytes_found += extent_end - key.offset;
960 			}
961 
962 			if (args->end == extent_end)
963 				break;
964 
965 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
966 				path->slots[0]++;
967 				goto next_slot;
968 			}
969 
970 			ret = btrfs_del_items(trans, root, path, del_slot,
971 					      del_nr);
972 			if (ret) {
973 				btrfs_abort_transaction(trans, ret);
974 				break;
975 			}
976 
977 			del_nr = 0;
978 			del_slot = 0;
979 
980 			btrfs_release_path(path);
981 			continue;
982 		}
983 
984 		BUG();
985 	}
986 
987 	if (!ret && del_nr > 0) {
988 		/*
989 		 * Set path->slots[0] to first slot, so that after the delete
990 		 * if items are move off from our leaf to its immediate left or
991 		 * right neighbor leafs, we end up with a correct and adjusted
992 		 * path->slots[0] for our insertion (if args->replace_extent).
993 		 */
994 		path->slots[0] = del_slot;
995 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
996 		if (ret)
997 			btrfs_abort_transaction(trans, ret);
998 	}
999 
1000 	leaf = path->nodes[0];
1001 	/*
1002 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
1003 	 * which case it unlocked our path, so check path->locks[0] matches a
1004 	 * write lock.
1005 	 */
1006 	if (!ret && args->replace_extent && leafs_visited == 1 &&
1007 	    path->locks[0] == BTRFS_WRITE_LOCK &&
1008 	    btrfs_leaf_free_space(leaf) >=
1009 	    sizeof(struct btrfs_item) + args->extent_item_size) {
1010 
1011 		key.objectid = ino;
1012 		key.type = BTRFS_EXTENT_DATA_KEY;
1013 		key.offset = args->start;
1014 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1015 			struct btrfs_key slot_key;
1016 
1017 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1018 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1019 				path->slots[0]++;
1020 		}
1021 		setup_items_for_insert(root, path, &key,
1022 				       &args->extent_item_size, 1);
1023 		args->extent_inserted = true;
1024 	}
1025 
1026 	if (!args->path)
1027 		btrfs_free_path(path);
1028 	else if (!args->extent_inserted)
1029 		btrfs_release_path(path);
1030 out:
1031 	args->drop_end = found ? min(args->end, last_end) : args->end;
1032 
1033 	return ret;
1034 }
1035 
1036 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1037 			    u64 objectid, u64 bytenr, u64 orig_offset,
1038 			    u64 *start, u64 *end)
1039 {
1040 	struct btrfs_file_extent_item *fi;
1041 	struct btrfs_key key;
1042 	u64 extent_end;
1043 
1044 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1045 		return 0;
1046 
1047 	btrfs_item_key_to_cpu(leaf, &key, slot);
1048 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1049 		return 0;
1050 
1051 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1052 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1053 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1054 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1055 	    btrfs_file_extent_compression(leaf, fi) ||
1056 	    btrfs_file_extent_encryption(leaf, fi) ||
1057 	    btrfs_file_extent_other_encoding(leaf, fi))
1058 		return 0;
1059 
1060 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1061 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1062 		return 0;
1063 
1064 	*start = key.offset;
1065 	*end = extent_end;
1066 	return 1;
1067 }
1068 
1069 /*
1070  * Mark extent in the range start - end as written.
1071  *
1072  * This changes extent type from 'pre-allocated' to 'regular'. If only
1073  * part of extent is marked as written, the extent will be split into
1074  * two or three.
1075  */
1076 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1077 			      struct btrfs_inode *inode, u64 start, u64 end)
1078 {
1079 	struct btrfs_fs_info *fs_info = trans->fs_info;
1080 	struct btrfs_root *root = inode->root;
1081 	struct extent_buffer *leaf;
1082 	struct btrfs_path *path;
1083 	struct btrfs_file_extent_item *fi;
1084 	struct btrfs_ref ref = { 0 };
1085 	struct btrfs_key key;
1086 	struct btrfs_key new_key;
1087 	u64 bytenr;
1088 	u64 num_bytes;
1089 	u64 extent_end;
1090 	u64 orig_offset;
1091 	u64 other_start;
1092 	u64 other_end;
1093 	u64 split;
1094 	int del_nr = 0;
1095 	int del_slot = 0;
1096 	int recow;
1097 	int ret;
1098 	u64 ino = btrfs_ino(inode);
1099 
1100 	path = btrfs_alloc_path();
1101 	if (!path)
1102 		return -ENOMEM;
1103 again:
1104 	recow = 0;
1105 	split = start;
1106 	key.objectid = ino;
1107 	key.type = BTRFS_EXTENT_DATA_KEY;
1108 	key.offset = split;
1109 
1110 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1111 	if (ret < 0)
1112 		goto out;
1113 	if (ret > 0 && path->slots[0] > 0)
1114 		path->slots[0]--;
1115 
1116 	leaf = path->nodes[0];
1117 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1118 	if (key.objectid != ino ||
1119 	    key.type != BTRFS_EXTENT_DATA_KEY) {
1120 		ret = -EINVAL;
1121 		btrfs_abort_transaction(trans, ret);
1122 		goto out;
1123 	}
1124 	fi = btrfs_item_ptr(leaf, path->slots[0],
1125 			    struct btrfs_file_extent_item);
1126 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1127 		ret = -EINVAL;
1128 		btrfs_abort_transaction(trans, ret);
1129 		goto out;
1130 	}
1131 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1132 	if (key.offset > start || extent_end < end) {
1133 		ret = -EINVAL;
1134 		btrfs_abort_transaction(trans, ret);
1135 		goto out;
1136 	}
1137 
1138 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1139 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1140 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1141 	memcpy(&new_key, &key, sizeof(new_key));
1142 
1143 	if (start == key.offset && end < extent_end) {
1144 		other_start = 0;
1145 		other_end = start;
1146 		if (extent_mergeable(leaf, path->slots[0] - 1,
1147 				     ino, bytenr, orig_offset,
1148 				     &other_start, &other_end)) {
1149 			new_key.offset = end;
1150 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1151 			fi = btrfs_item_ptr(leaf, path->slots[0],
1152 					    struct btrfs_file_extent_item);
1153 			btrfs_set_file_extent_generation(leaf, fi,
1154 							 trans->transid);
1155 			btrfs_set_file_extent_num_bytes(leaf, fi,
1156 							extent_end - end);
1157 			btrfs_set_file_extent_offset(leaf, fi,
1158 						     end - orig_offset);
1159 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1160 					    struct btrfs_file_extent_item);
1161 			btrfs_set_file_extent_generation(leaf, fi,
1162 							 trans->transid);
1163 			btrfs_set_file_extent_num_bytes(leaf, fi,
1164 							end - other_start);
1165 			btrfs_mark_buffer_dirty(leaf);
1166 			goto out;
1167 		}
1168 	}
1169 
1170 	if (start > key.offset && end == extent_end) {
1171 		other_start = end;
1172 		other_end = 0;
1173 		if (extent_mergeable(leaf, path->slots[0] + 1,
1174 				     ino, bytenr, orig_offset,
1175 				     &other_start, &other_end)) {
1176 			fi = btrfs_item_ptr(leaf, path->slots[0],
1177 					    struct btrfs_file_extent_item);
1178 			btrfs_set_file_extent_num_bytes(leaf, fi,
1179 							start - key.offset);
1180 			btrfs_set_file_extent_generation(leaf, fi,
1181 							 trans->transid);
1182 			path->slots[0]++;
1183 			new_key.offset = start;
1184 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1185 
1186 			fi = btrfs_item_ptr(leaf, path->slots[0],
1187 					    struct btrfs_file_extent_item);
1188 			btrfs_set_file_extent_generation(leaf, fi,
1189 							 trans->transid);
1190 			btrfs_set_file_extent_num_bytes(leaf, fi,
1191 							other_end - start);
1192 			btrfs_set_file_extent_offset(leaf, fi,
1193 						     start - orig_offset);
1194 			btrfs_mark_buffer_dirty(leaf);
1195 			goto out;
1196 		}
1197 	}
1198 
1199 	while (start > key.offset || end < extent_end) {
1200 		if (key.offset == start)
1201 			split = end;
1202 
1203 		new_key.offset = split;
1204 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1205 		if (ret == -EAGAIN) {
1206 			btrfs_release_path(path);
1207 			goto again;
1208 		}
1209 		if (ret < 0) {
1210 			btrfs_abort_transaction(trans, ret);
1211 			goto out;
1212 		}
1213 
1214 		leaf = path->nodes[0];
1215 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1216 				    struct btrfs_file_extent_item);
1217 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1218 		btrfs_set_file_extent_num_bytes(leaf, fi,
1219 						split - key.offset);
1220 
1221 		fi = btrfs_item_ptr(leaf, path->slots[0],
1222 				    struct btrfs_file_extent_item);
1223 
1224 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1225 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1226 		btrfs_set_file_extent_num_bytes(leaf, fi,
1227 						extent_end - split);
1228 		btrfs_mark_buffer_dirty(leaf);
1229 
1230 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1231 				       num_bytes, 0);
1232 		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1233 				    orig_offset);
1234 		ret = btrfs_inc_extent_ref(trans, &ref);
1235 		if (ret) {
1236 			btrfs_abort_transaction(trans, ret);
1237 			goto out;
1238 		}
1239 
1240 		if (split == start) {
1241 			key.offset = start;
1242 		} else {
1243 			if (start != key.offset) {
1244 				ret = -EINVAL;
1245 				btrfs_abort_transaction(trans, ret);
1246 				goto out;
1247 			}
1248 			path->slots[0]--;
1249 			extent_end = end;
1250 		}
1251 		recow = 1;
1252 	}
1253 
1254 	other_start = end;
1255 	other_end = 0;
1256 	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1257 			       num_bytes, 0);
1258 	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1259 	if (extent_mergeable(leaf, path->slots[0] + 1,
1260 			     ino, bytenr, orig_offset,
1261 			     &other_start, &other_end)) {
1262 		if (recow) {
1263 			btrfs_release_path(path);
1264 			goto again;
1265 		}
1266 		extent_end = other_end;
1267 		del_slot = path->slots[0] + 1;
1268 		del_nr++;
1269 		ret = btrfs_free_extent(trans, &ref);
1270 		if (ret) {
1271 			btrfs_abort_transaction(trans, ret);
1272 			goto out;
1273 		}
1274 	}
1275 	other_start = 0;
1276 	other_end = start;
1277 	if (extent_mergeable(leaf, path->slots[0] - 1,
1278 			     ino, bytenr, orig_offset,
1279 			     &other_start, &other_end)) {
1280 		if (recow) {
1281 			btrfs_release_path(path);
1282 			goto again;
1283 		}
1284 		key.offset = other_start;
1285 		del_slot = path->slots[0];
1286 		del_nr++;
1287 		ret = btrfs_free_extent(trans, &ref);
1288 		if (ret) {
1289 			btrfs_abort_transaction(trans, ret);
1290 			goto out;
1291 		}
1292 	}
1293 	if (del_nr == 0) {
1294 		fi = btrfs_item_ptr(leaf, path->slots[0],
1295 			   struct btrfs_file_extent_item);
1296 		btrfs_set_file_extent_type(leaf, fi,
1297 					   BTRFS_FILE_EXTENT_REG);
1298 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1299 		btrfs_mark_buffer_dirty(leaf);
1300 	} else {
1301 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1302 			   struct btrfs_file_extent_item);
1303 		btrfs_set_file_extent_type(leaf, fi,
1304 					   BTRFS_FILE_EXTENT_REG);
1305 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1306 		btrfs_set_file_extent_num_bytes(leaf, fi,
1307 						extent_end - key.offset);
1308 		btrfs_mark_buffer_dirty(leaf);
1309 
1310 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1311 		if (ret < 0) {
1312 			btrfs_abort_transaction(trans, ret);
1313 			goto out;
1314 		}
1315 	}
1316 out:
1317 	btrfs_free_path(path);
1318 	return 0;
1319 }
1320 
1321 /*
1322  * on error we return an unlocked page and the error value
1323  * on success we return a locked page and 0
1324  */
1325 static int prepare_uptodate_page(struct inode *inode,
1326 				 struct page *page, u64 pos,
1327 				 bool force_uptodate)
1328 {
1329 	int ret = 0;
1330 
1331 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1332 	    !PageUptodate(page)) {
1333 		ret = btrfs_readpage(NULL, page);
1334 		if (ret)
1335 			return ret;
1336 		lock_page(page);
1337 		if (!PageUptodate(page)) {
1338 			unlock_page(page);
1339 			return -EIO;
1340 		}
1341 		if (page->mapping != inode->i_mapping) {
1342 			unlock_page(page);
1343 			return -EAGAIN;
1344 		}
1345 	}
1346 	return 0;
1347 }
1348 
1349 /*
1350  * this just gets pages into the page cache and locks them down.
1351  */
1352 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1353 				  size_t num_pages, loff_t pos,
1354 				  size_t write_bytes, bool force_uptodate)
1355 {
1356 	int i;
1357 	unsigned long index = pos >> PAGE_SHIFT;
1358 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1359 	int err = 0;
1360 	int faili;
1361 
1362 	for (i = 0; i < num_pages; i++) {
1363 again:
1364 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1365 					       mask | __GFP_WRITE);
1366 		if (!pages[i]) {
1367 			faili = i - 1;
1368 			err = -ENOMEM;
1369 			goto fail;
1370 		}
1371 
1372 		err = set_page_extent_mapped(pages[i]);
1373 		if (err < 0) {
1374 			faili = i;
1375 			goto fail;
1376 		}
1377 
1378 		if (i == 0)
1379 			err = prepare_uptodate_page(inode, pages[i], pos,
1380 						    force_uptodate);
1381 		if (!err && i == num_pages - 1)
1382 			err = prepare_uptodate_page(inode, pages[i],
1383 						    pos + write_bytes, false);
1384 		if (err) {
1385 			put_page(pages[i]);
1386 			if (err == -EAGAIN) {
1387 				err = 0;
1388 				goto again;
1389 			}
1390 			faili = i - 1;
1391 			goto fail;
1392 		}
1393 		wait_on_page_writeback(pages[i]);
1394 	}
1395 
1396 	return 0;
1397 fail:
1398 	while (faili >= 0) {
1399 		unlock_page(pages[faili]);
1400 		put_page(pages[faili]);
1401 		faili--;
1402 	}
1403 	return err;
1404 
1405 }
1406 
1407 /*
1408  * This function locks the extent and properly waits for data=ordered extents
1409  * to finish before allowing the pages to be modified if need.
1410  *
1411  * The return value:
1412  * 1 - the extent is locked
1413  * 0 - the extent is not locked, and everything is OK
1414  * -EAGAIN - need re-prepare the pages
1415  * the other < 0 number - Something wrong happens
1416  */
1417 static noinline int
1418 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1419 				size_t num_pages, loff_t pos,
1420 				size_t write_bytes,
1421 				u64 *lockstart, u64 *lockend,
1422 				struct extent_state **cached_state)
1423 {
1424 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1425 	u64 start_pos;
1426 	u64 last_pos;
1427 	int i;
1428 	int ret = 0;
1429 
1430 	start_pos = round_down(pos, fs_info->sectorsize);
1431 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1432 
1433 	if (start_pos < inode->vfs_inode.i_size) {
1434 		struct btrfs_ordered_extent *ordered;
1435 
1436 		lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1437 				cached_state);
1438 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1439 						     last_pos - start_pos + 1);
1440 		if (ordered &&
1441 		    ordered->file_offset + ordered->num_bytes > start_pos &&
1442 		    ordered->file_offset <= last_pos) {
1443 			unlock_extent_cached(&inode->io_tree, start_pos,
1444 					last_pos, cached_state);
1445 			for (i = 0; i < num_pages; i++) {
1446 				unlock_page(pages[i]);
1447 				put_page(pages[i]);
1448 			}
1449 			btrfs_start_ordered_extent(ordered, 1);
1450 			btrfs_put_ordered_extent(ordered);
1451 			return -EAGAIN;
1452 		}
1453 		if (ordered)
1454 			btrfs_put_ordered_extent(ordered);
1455 
1456 		*lockstart = start_pos;
1457 		*lockend = last_pos;
1458 		ret = 1;
1459 	}
1460 
1461 	/*
1462 	 * We should be called after prepare_pages() which should have locked
1463 	 * all pages in the range.
1464 	 */
1465 	for (i = 0; i < num_pages; i++)
1466 		WARN_ON(!PageLocked(pages[i]));
1467 
1468 	return ret;
1469 }
1470 
1471 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1472 			   size_t *write_bytes, bool nowait)
1473 {
1474 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1475 	struct btrfs_root *root = inode->root;
1476 	u64 lockstart, lockend;
1477 	u64 num_bytes;
1478 	int ret;
1479 
1480 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1481 		return 0;
1482 
1483 	if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1484 		return -EAGAIN;
1485 
1486 	lockstart = round_down(pos, fs_info->sectorsize);
1487 	lockend = round_up(pos + *write_bytes,
1488 			   fs_info->sectorsize) - 1;
1489 	num_bytes = lockend - lockstart + 1;
1490 
1491 	if (nowait) {
1492 		struct btrfs_ordered_extent *ordered;
1493 
1494 		if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1495 			return -EAGAIN;
1496 
1497 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1498 						     num_bytes);
1499 		if (ordered) {
1500 			btrfs_put_ordered_extent(ordered);
1501 			ret = -EAGAIN;
1502 			goto out_unlock;
1503 		}
1504 	} else {
1505 		btrfs_lock_and_flush_ordered_range(inode, lockstart,
1506 						   lockend, NULL);
1507 	}
1508 
1509 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1510 			NULL, NULL, NULL, false);
1511 	if (ret <= 0) {
1512 		ret = 0;
1513 		if (!nowait)
1514 			btrfs_drew_write_unlock(&root->snapshot_lock);
1515 	} else {
1516 		*write_bytes = min_t(size_t, *write_bytes ,
1517 				     num_bytes - pos + lockstart);
1518 	}
1519 out_unlock:
1520 	unlock_extent(&inode->io_tree, lockstart, lockend);
1521 
1522 	return ret;
1523 }
1524 
1525 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1526 			      size_t *write_bytes)
1527 {
1528 	return check_can_nocow(inode, pos, write_bytes, true);
1529 }
1530 
1531 /*
1532  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1533  *
1534  * @pos:	 File offset
1535  * @write_bytes: The length to write, will be updated to the nocow writeable
1536  *		 range
1537  *
1538  * This function will flush ordered extents in the range to ensure proper
1539  * nocow checks.
1540  *
1541  * Return:
1542  * >0		and update @write_bytes if we can do nocow write
1543  *  0		if we can't do nocow write
1544  * -EAGAIN	if we can't get the needed lock or there are ordered extents
1545  * 		for * (nowait == true) case
1546  * <0		if other error happened
1547  *
1548  * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1549  */
1550 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1551 			   size_t *write_bytes)
1552 {
1553 	return check_can_nocow(inode, pos, write_bytes, false);
1554 }
1555 
1556 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1557 {
1558 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1559 }
1560 
1561 static void update_time_for_write(struct inode *inode)
1562 {
1563 	struct timespec64 now;
1564 
1565 	if (IS_NOCMTIME(inode))
1566 		return;
1567 
1568 	now = current_time(inode);
1569 	if (!timespec64_equal(&inode->i_mtime, &now))
1570 		inode->i_mtime = now;
1571 
1572 	if (!timespec64_equal(&inode->i_ctime, &now))
1573 		inode->i_ctime = now;
1574 
1575 	if (IS_I_VERSION(inode))
1576 		inode_inc_iversion(inode);
1577 }
1578 
1579 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1580 			     size_t count)
1581 {
1582 	struct file *file = iocb->ki_filp;
1583 	struct inode *inode = file_inode(file);
1584 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1585 	loff_t pos = iocb->ki_pos;
1586 	int ret;
1587 	loff_t oldsize;
1588 	loff_t start_pos;
1589 
1590 	if (iocb->ki_flags & IOCB_NOWAIT) {
1591 		size_t nocow_bytes = count;
1592 
1593 		/* We will allocate space in case nodatacow is not set, so bail */
1594 		if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0)
1595 			return -EAGAIN;
1596 		/*
1597 		 * There are holes in the range or parts of the range that must
1598 		 * be COWed (shared extents, RO block groups, etc), so just bail
1599 		 * out.
1600 		 */
1601 		if (nocow_bytes < count)
1602 			return -EAGAIN;
1603 	}
1604 
1605 	current->backing_dev_info = inode_to_bdi(inode);
1606 	ret = file_remove_privs(file);
1607 	if (ret)
1608 		return ret;
1609 
1610 	/*
1611 	 * We reserve space for updating the inode when we reserve space for the
1612 	 * extent we are going to write, so we will enospc out there.  We don't
1613 	 * need to start yet another transaction to update the inode as we will
1614 	 * update the inode when we finish writing whatever data we write.
1615 	 */
1616 	update_time_for_write(inode);
1617 
1618 	start_pos = round_down(pos, fs_info->sectorsize);
1619 	oldsize = i_size_read(inode);
1620 	if (start_pos > oldsize) {
1621 		/* Expand hole size to cover write data, preventing empty gap */
1622 		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1623 
1624 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1625 		if (ret) {
1626 			current->backing_dev_info = NULL;
1627 			return ret;
1628 		}
1629 	}
1630 
1631 	return 0;
1632 }
1633 
1634 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1635 					       struct iov_iter *i)
1636 {
1637 	struct file *file = iocb->ki_filp;
1638 	loff_t pos;
1639 	struct inode *inode = file_inode(file);
1640 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1641 	struct page **pages = NULL;
1642 	struct extent_changeset *data_reserved = NULL;
1643 	u64 release_bytes = 0;
1644 	u64 lockstart;
1645 	u64 lockend;
1646 	size_t num_written = 0;
1647 	int nrptrs;
1648 	ssize_t ret;
1649 	bool only_release_metadata = false;
1650 	bool force_page_uptodate = false;
1651 	loff_t old_isize = i_size_read(inode);
1652 	unsigned int ilock_flags = 0;
1653 
1654 	if (iocb->ki_flags & IOCB_NOWAIT)
1655 		ilock_flags |= BTRFS_ILOCK_TRY;
1656 
1657 	ret = btrfs_inode_lock(inode, ilock_flags);
1658 	if (ret < 0)
1659 		return ret;
1660 
1661 	ret = generic_write_checks(iocb, i);
1662 	if (ret <= 0)
1663 		goto out;
1664 
1665 	ret = btrfs_write_check(iocb, i, ret);
1666 	if (ret < 0)
1667 		goto out;
1668 
1669 	pos = iocb->ki_pos;
1670 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1671 			PAGE_SIZE / (sizeof(struct page *)));
1672 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1673 	nrptrs = max(nrptrs, 8);
1674 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1675 	if (!pages) {
1676 		ret = -ENOMEM;
1677 		goto out;
1678 	}
1679 
1680 	while (iov_iter_count(i) > 0) {
1681 		struct extent_state *cached_state = NULL;
1682 		size_t offset = offset_in_page(pos);
1683 		size_t sector_offset;
1684 		size_t write_bytes = min(iov_iter_count(i),
1685 					 nrptrs * (size_t)PAGE_SIZE -
1686 					 offset);
1687 		size_t num_pages;
1688 		size_t reserve_bytes;
1689 		size_t dirty_pages;
1690 		size_t copied;
1691 		size_t dirty_sectors;
1692 		size_t num_sectors;
1693 		int extents_locked;
1694 
1695 		/*
1696 		 * Fault pages before locking them in prepare_pages
1697 		 * to avoid recursive lock
1698 		 */
1699 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1700 			ret = -EFAULT;
1701 			break;
1702 		}
1703 
1704 		only_release_metadata = false;
1705 		sector_offset = pos & (fs_info->sectorsize - 1);
1706 
1707 		extent_changeset_release(data_reserved);
1708 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1709 						  &data_reserved, pos,
1710 						  write_bytes);
1711 		if (ret < 0) {
1712 			/*
1713 			 * If we don't have to COW at the offset, reserve
1714 			 * metadata only. write_bytes may get smaller than
1715 			 * requested here.
1716 			 */
1717 			if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1718 						   &write_bytes) > 0)
1719 				only_release_metadata = true;
1720 			else
1721 				break;
1722 		}
1723 
1724 		num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1725 		WARN_ON(num_pages > nrptrs);
1726 		reserve_bytes = round_up(write_bytes + sector_offset,
1727 					 fs_info->sectorsize);
1728 		WARN_ON(reserve_bytes == 0);
1729 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1730 				reserve_bytes);
1731 		if (ret) {
1732 			if (!only_release_metadata)
1733 				btrfs_free_reserved_data_space(BTRFS_I(inode),
1734 						data_reserved, pos,
1735 						write_bytes);
1736 			else
1737 				btrfs_check_nocow_unlock(BTRFS_I(inode));
1738 			break;
1739 		}
1740 
1741 		release_bytes = reserve_bytes;
1742 again:
1743 		/*
1744 		 * This is going to setup the pages array with the number of
1745 		 * pages we want, so we don't really need to worry about the
1746 		 * contents of pages from loop to loop
1747 		 */
1748 		ret = prepare_pages(inode, pages, num_pages,
1749 				    pos, write_bytes,
1750 				    force_page_uptodate);
1751 		if (ret) {
1752 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1753 						       reserve_bytes);
1754 			break;
1755 		}
1756 
1757 		extents_locked = lock_and_cleanup_extent_if_need(
1758 				BTRFS_I(inode), pages,
1759 				num_pages, pos, write_bytes, &lockstart,
1760 				&lockend, &cached_state);
1761 		if (extents_locked < 0) {
1762 			if (extents_locked == -EAGAIN)
1763 				goto again;
1764 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1765 						       reserve_bytes);
1766 			ret = extents_locked;
1767 			break;
1768 		}
1769 
1770 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1771 
1772 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1773 		dirty_sectors = round_up(copied + sector_offset,
1774 					fs_info->sectorsize);
1775 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1776 
1777 		/*
1778 		 * if we have trouble faulting in the pages, fall
1779 		 * back to one page at a time
1780 		 */
1781 		if (copied < write_bytes)
1782 			nrptrs = 1;
1783 
1784 		if (copied == 0) {
1785 			force_page_uptodate = true;
1786 			dirty_sectors = 0;
1787 			dirty_pages = 0;
1788 		} else {
1789 			force_page_uptodate = false;
1790 			dirty_pages = DIV_ROUND_UP(copied + offset,
1791 						   PAGE_SIZE);
1792 		}
1793 
1794 		if (num_sectors > dirty_sectors) {
1795 			/* release everything except the sectors we dirtied */
1796 			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1797 			if (only_release_metadata) {
1798 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1799 							release_bytes, true);
1800 			} else {
1801 				u64 __pos;
1802 
1803 				__pos = round_down(pos,
1804 						   fs_info->sectorsize) +
1805 					(dirty_pages << PAGE_SHIFT);
1806 				btrfs_delalloc_release_space(BTRFS_I(inode),
1807 						data_reserved, __pos,
1808 						release_bytes, true);
1809 			}
1810 		}
1811 
1812 		release_bytes = round_up(copied + sector_offset,
1813 					fs_info->sectorsize);
1814 
1815 		ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1816 					dirty_pages, pos, copied,
1817 					&cached_state, only_release_metadata);
1818 
1819 		/*
1820 		 * If we have not locked the extent range, because the range's
1821 		 * start offset is >= i_size, we might still have a non-NULL
1822 		 * cached extent state, acquired while marking the extent range
1823 		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1824 		 * possible cached extent state to avoid a memory leak.
1825 		 */
1826 		if (extents_locked)
1827 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1828 					     lockstart, lockend, &cached_state);
1829 		else
1830 			free_extent_state(cached_state);
1831 
1832 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1833 		if (ret) {
1834 			btrfs_drop_pages(pages, num_pages);
1835 			break;
1836 		}
1837 
1838 		release_bytes = 0;
1839 		if (only_release_metadata)
1840 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1841 
1842 		btrfs_drop_pages(pages, num_pages);
1843 
1844 		cond_resched();
1845 
1846 		balance_dirty_pages_ratelimited(inode->i_mapping);
1847 
1848 		pos += copied;
1849 		num_written += copied;
1850 	}
1851 
1852 	kfree(pages);
1853 
1854 	if (release_bytes) {
1855 		if (only_release_metadata) {
1856 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1857 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1858 					release_bytes, true);
1859 		} else {
1860 			btrfs_delalloc_release_space(BTRFS_I(inode),
1861 					data_reserved,
1862 					round_down(pos, fs_info->sectorsize),
1863 					release_bytes, true);
1864 		}
1865 	}
1866 
1867 	extent_changeset_free(data_reserved);
1868 	if (num_written > 0) {
1869 		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1870 		iocb->ki_pos += num_written;
1871 	}
1872 out:
1873 	btrfs_inode_unlock(inode, ilock_flags);
1874 	return num_written ? num_written : ret;
1875 }
1876 
1877 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1878 			       const struct iov_iter *iter, loff_t offset)
1879 {
1880 	const u32 blocksize_mask = fs_info->sectorsize - 1;
1881 
1882 	if (offset & blocksize_mask)
1883 		return -EINVAL;
1884 
1885 	if (iov_iter_alignment(iter) & blocksize_mask)
1886 		return -EINVAL;
1887 
1888 	return 0;
1889 }
1890 
1891 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1892 {
1893 	struct file *file = iocb->ki_filp;
1894 	struct inode *inode = file_inode(file);
1895 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1896 	loff_t pos;
1897 	ssize_t written = 0;
1898 	ssize_t written_buffered;
1899 	loff_t endbyte;
1900 	ssize_t err;
1901 	unsigned int ilock_flags = 0;
1902 	struct iomap_dio *dio = NULL;
1903 
1904 	if (iocb->ki_flags & IOCB_NOWAIT)
1905 		ilock_flags |= BTRFS_ILOCK_TRY;
1906 
1907 	/* If the write DIO is within EOF, use a shared lock */
1908 	if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1909 		ilock_flags |= BTRFS_ILOCK_SHARED;
1910 
1911 relock:
1912 	err = btrfs_inode_lock(inode, ilock_flags);
1913 	if (err < 0)
1914 		return err;
1915 
1916 	err = generic_write_checks(iocb, from);
1917 	if (err <= 0) {
1918 		btrfs_inode_unlock(inode, ilock_flags);
1919 		return err;
1920 	}
1921 
1922 	err = btrfs_write_check(iocb, from, err);
1923 	if (err < 0) {
1924 		btrfs_inode_unlock(inode, ilock_flags);
1925 		goto out;
1926 	}
1927 
1928 	pos = iocb->ki_pos;
1929 	/*
1930 	 * Re-check since file size may have changed just before taking the
1931 	 * lock or pos may have changed because of O_APPEND in generic_write_check()
1932 	 */
1933 	if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1934 	    pos + iov_iter_count(from) > i_size_read(inode)) {
1935 		btrfs_inode_unlock(inode, ilock_flags);
1936 		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1937 		goto relock;
1938 	}
1939 
1940 	if (check_direct_IO(fs_info, from, pos)) {
1941 		btrfs_inode_unlock(inode, ilock_flags);
1942 		goto buffered;
1943 	}
1944 
1945 	dio = __iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
1946 			     0);
1947 
1948 	btrfs_inode_unlock(inode, ilock_flags);
1949 
1950 	if (IS_ERR_OR_NULL(dio)) {
1951 		err = PTR_ERR_OR_ZERO(dio);
1952 		if (err < 0 && err != -ENOTBLK)
1953 			goto out;
1954 	} else {
1955 		written = iomap_dio_complete(dio);
1956 	}
1957 
1958 	if (written < 0 || !iov_iter_count(from)) {
1959 		err = written;
1960 		goto out;
1961 	}
1962 
1963 buffered:
1964 	pos = iocb->ki_pos;
1965 	written_buffered = btrfs_buffered_write(iocb, from);
1966 	if (written_buffered < 0) {
1967 		err = written_buffered;
1968 		goto out;
1969 	}
1970 	/*
1971 	 * Ensure all data is persisted. We want the next direct IO read to be
1972 	 * able to read what was just written.
1973 	 */
1974 	endbyte = pos + written_buffered - 1;
1975 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1976 	if (err)
1977 		goto out;
1978 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1979 	if (err)
1980 		goto out;
1981 	written += written_buffered;
1982 	iocb->ki_pos = pos + written_buffered;
1983 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1984 				 endbyte >> PAGE_SHIFT);
1985 out:
1986 	return written ? written : err;
1987 }
1988 
1989 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1990 				    struct iov_iter *from)
1991 {
1992 	struct file *file = iocb->ki_filp;
1993 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1994 	ssize_t num_written = 0;
1995 	const bool sync = iocb->ki_flags & IOCB_DSYNC;
1996 
1997 	/*
1998 	 * If the fs flips readonly due to some impossible error, although we
1999 	 * have opened a file as writable, we have to stop this write operation
2000 	 * to ensure consistency.
2001 	 */
2002 	if (test_bit(BTRFS_FS_STATE_ERROR, &inode->root->fs_info->fs_state))
2003 		return -EROFS;
2004 
2005 	if (!(iocb->ki_flags & IOCB_DIRECT) &&
2006 	    (iocb->ki_flags & IOCB_NOWAIT))
2007 		return -EOPNOTSUPP;
2008 
2009 	if (sync)
2010 		atomic_inc(&inode->sync_writers);
2011 
2012 	if (iocb->ki_flags & IOCB_DIRECT)
2013 		num_written = btrfs_direct_write(iocb, from);
2014 	else
2015 		num_written = btrfs_buffered_write(iocb, from);
2016 
2017 	/*
2018 	 * We also have to set last_sub_trans to the current log transid,
2019 	 * otherwise subsequent syncs to a file that's been synced in this
2020 	 * transaction will appear to have already occurred.
2021 	 */
2022 	spin_lock(&inode->lock);
2023 	inode->last_sub_trans = inode->root->log_transid;
2024 	spin_unlock(&inode->lock);
2025 	if (num_written > 0)
2026 		num_written = generic_write_sync(iocb, num_written);
2027 
2028 	if (sync)
2029 		atomic_dec(&inode->sync_writers);
2030 
2031 	current->backing_dev_info = NULL;
2032 	return num_written;
2033 }
2034 
2035 int btrfs_release_file(struct inode *inode, struct file *filp)
2036 {
2037 	struct btrfs_file_private *private = filp->private_data;
2038 
2039 	if (private && private->filldir_buf)
2040 		kfree(private->filldir_buf);
2041 	kfree(private);
2042 	filp->private_data = NULL;
2043 
2044 	/*
2045 	 * Set by setattr when we are about to truncate a file from a non-zero
2046 	 * size to a zero size.  This tries to flush down new bytes that may
2047 	 * have been written if the application were using truncate to replace
2048 	 * a file in place.
2049 	 */
2050 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2051 			       &BTRFS_I(inode)->runtime_flags))
2052 			filemap_flush(inode->i_mapping);
2053 	return 0;
2054 }
2055 
2056 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2057 {
2058 	int ret;
2059 	struct blk_plug plug;
2060 
2061 	/*
2062 	 * This is only called in fsync, which would do synchronous writes, so
2063 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2064 	 * multiple disks using raid profile, a large IO can be split to
2065 	 * several segments of stripe length (currently 64K).
2066 	 */
2067 	blk_start_plug(&plug);
2068 	atomic_inc(&BTRFS_I(inode)->sync_writers);
2069 	ret = btrfs_fdatawrite_range(inode, start, end);
2070 	atomic_dec(&BTRFS_I(inode)->sync_writers);
2071 	blk_finish_plug(&plug);
2072 
2073 	return ret;
2074 }
2075 
2076 /*
2077  * fsync call for both files and directories.  This logs the inode into
2078  * the tree log instead of forcing full commits whenever possible.
2079  *
2080  * It needs to call filemap_fdatawait so that all ordered extent updates are
2081  * in the metadata btree are up to date for copying to the log.
2082  *
2083  * It drops the inode mutex before doing the tree log commit.  This is an
2084  * important optimization for directories because holding the mutex prevents
2085  * new operations on the dir while we write to disk.
2086  */
2087 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2088 {
2089 	struct dentry *dentry = file_dentry(file);
2090 	struct inode *inode = d_inode(dentry);
2091 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2092 	struct btrfs_root *root = BTRFS_I(inode)->root;
2093 	struct btrfs_trans_handle *trans;
2094 	struct btrfs_log_ctx ctx;
2095 	int ret = 0, err;
2096 	u64 len;
2097 	bool full_sync;
2098 
2099 	trace_btrfs_sync_file(file, datasync);
2100 
2101 	btrfs_init_log_ctx(&ctx, inode);
2102 
2103 	/*
2104 	 * Always set the range to a full range, otherwise we can get into
2105 	 * several problems, from missing file extent items to represent holes
2106 	 * when not using the NO_HOLES feature, to log tree corruption due to
2107 	 * races between hole detection during logging and completion of ordered
2108 	 * extents outside the range, to missing checksums due to ordered extents
2109 	 * for which we flushed only a subset of their pages.
2110 	 */
2111 	start = 0;
2112 	end = LLONG_MAX;
2113 	len = (u64)LLONG_MAX + 1;
2114 
2115 	/*
2116 	 * We write the dirty pages in the range and wait until they complete
2117 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
2118 	 * multi-task, and make the performance up.  See
2119 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2120 	 */
2121 	ret = start_ordered_ops(inode, start, end);
2122 	if (ret)
2123 		goto out;
2124 
2125 	inode_lock(inode);
2126 
2127 	atomic_inc(&root->log_batch);
2128 
2129 	/*
2130 	 * Always check for the full sync flag while holding the inode's lock,
2131 	 * to avoid races with other tasks. The flag must be either set all the
2132 	 * time during logging or always off all the time while logging.
2133 	 */
2134 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2135 			     &BTRFS_I(inode)->runtime_flags);
2136 
2137 	/*
2138 	 * Before we acquired the inode's lock, someone may have dirtied more
2139 	 * pages in the target range. We need to make sure that writeback for
2140 	 * any such pages does not start while we are logging the inode, because
2141 	 * if it does, any of the following might happen when we are not doing a
2142 	 * full inode sync:
2143 	 *
2144 	 * 1) We log an extent after its writeback finishes but before its
2145 	 *    checksums are added to the csum tree, leading to -EIO errors
2146 	 *    when attempting to read the extent after a log replay.
2147 	 *
2148 	 * 2) We can end up logging an extent before its writeback finishes.
2149 	 *    Therefore after the log replay we will have a file extent item
2150 	 *    pointing to an unwritten extent (and no data checksums as well).
2151 	 *
2152 	 * So trigger writeback for any eventual new dirty pages and then we
2153 	 * wait for all ordered extents to complete below.
2154 	 */
2155 	ret = start_ordered_ops(inode, start, end);
2156 	if (ret) {
2157 		inode_unlock(inode);
2158 		goto out;
2159 	}
2160 
2161 	/*
2162 	 * We have to do this here to avoid the priority inversion of waiting on
2163 	 * IO of a lower priority task while holding a transaction open.
2164 	 *
2165 	 * For a full fsync we wait for the ordered extents to complete while
2166 	 * for a fast fsync we wait just for writeback to complete, and then
2167 	 * attach the ordered extents to the transaction so that a transaction
2168 	 * commit waits for their completion, to avoid data loss if we fsync,
2169 	 * the current transaction commits before the ordered extents complete
2170 	 * and a power failure happens right after that.
2171 	 *
2172 	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2173 	 * logical address recorded in the ordered extent may change. We need
2174 	 * to wait for the IO to stabilize the logical address.
2175 	 */
2176 	if (full_sync || btrfs_is_zoned(fs_info)) {
2177 		ret = btrfs_wait_ordered_range(inode, start, len);
2178 	} else {
2179 		/*
2180 		 * Get our ordered extents as soon as possible to avoid doing
2181 		 * checksum lookups in the csum tree, and use instead the
2182 		 * checksums attached to the ordered extents.
2183 		 */
2184 		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2185 						      &ctx.ordered_extents);
2186 		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2187 	}
2188 
2189 	if (ret)
2190 		goto out_release_extents;
2191 
2192 	atomic_inc(&root->log_batch);
2193 
2194 	/*
2195 	 * If we are doing a fast fsync we can not bail out if the inode's
2196 	 * last_trans is <= then the last committed transaction, because we only
2197 	 * update the last_trans of the inode during ordered extent completion,
2198 	 * and for a fast fsync we don't wait for that, we only wait for the
2199 	 * writeback to complete.
2200 	 */
2201 	smp_mb();
2202 	if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2203 	    (BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed &&
2204 	     (full_sync || list_empty(&ctx.ordered_extents)))) {
2205 		/*
2206 		 * We've had everything committed since the last time we were
2207 		 * modified so clear this flag in case it was set for whatever
2208 		 * reason, it's no longer relevant.
2209 		 */
2210 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2211 			  &BTRFS_I(inode)->runtime_flags);
2212 		/*
2213 		 * An ordered extent might have started before and completed
2214 		 * already with io errors, in which case the inode was not
2215 		 * updated and we end up here. So check the inode's mapping
2216 		 * for any errors that might have happened since we last
2217 		 * checked called fsync.
2218 		 */
2219 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2220 		goto out_release_extents;
2221 	}
2222 
2223 	/*
2224 	 * We use start here because we will need to wait on the IO to complete
2225 	 * in btrfs_sync_log, which could require joining a transaction (for
2226 	 * example checking cross references in the nocow path).  If we use join
2227 	 * here we could get into a situation where we're waiting on IO to
2228 	 * happen that is blocked on a transaction trying to commit.  With start
2229 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2230 	 * before we start blocking joiners.  This comment is to keep somebody
2231 	 * from thinking they are super smart and changing this to
2232 	 * btrfs_join_transaction *cough*Josef*cough*.
2233 	 */
2234 	trans = btrfs_start_transaction(root, 0);
2235 	if (IS_ERR(trans)) {
2236 		ret = PTR_ERR(trans);
2237 		goto out_release_extents;
2238 	}
2239 	trans->in_fsync = true;
2240 
2241 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2242 	btrfs_release_log_ctx_extents(&ctx);
2243 	if (ret < 0) {
2244 		/* Fallthrough and commit/free transaction. */
2245 		ret = 1;
2246 	}
2247 
2248 	/* we've logged all the items and now have a consistent
2249 	 * version of the file in the log.  It is possible that
2250 	 * someone will come in and modify the file, but that's
2251 	 * fine because the log is consistent on disk, and we
2252 	 * have references to all of the file's extents
2253 	 *
2254 	 * It is possible that someone will come in and log the
2255 	 * file again, but that will end up using the synchronization
2256 	 * inside btrfs_sync_log to keep things safe.
2257 	 */
2258 	inode_unlock(inode);
2259 
2260 	if (ret != BTRFS_NO_LOG_SYNC) {
2261 		if (!ret) {
2262 			ret = btrfs_sync_log(trans, root, &ctx);
2263 			if (!ret) {
2264 				ret = btrfs_end_transaction(trans);
2265 				goto out;
2266 			}
2267 		}
2268 		if (!full_sync) {
2269 			ret = btrfs_wait_ordered_range(inode, start, len);
2270 			if (ret) {
2271 				btrfs_end_transaction(trans);
2272 				goto out;
2273 			}
2274 		}
2275 		ret = btrfs_commit_transaction(trans);
2276 	} else {
2277 		ret = btrfs_end_transaction(trans);
2278 	}
2279 out:
2280 	ASSERT(list_empty(&ctx.list));
2281 	err = file_check_and_advance_wb_err(file);
2282 	if (!ret)
2283 		ret = err;
2284 	return ret > 0 ? -EIO : ret;
2285 
2286 out_release_extents:
2287 	btrfs_release_log_ctx_extents(&ctx);
2288 	inode_unlock(inode);
2289 	goto out;
2290 }
2291 
2292 static const struct vm_operations_struct btrfs_file_vm_ops = {
2293 	.fault		= filemap_fault,
2294 	.map_pages	= filemap_map_pages,
2295 	.page_mkwrite	= btrfs_page_mkwrite,
2296 };
2297 
2298 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2299 {
2300 	struct address_space *mapping = filp->f_mapping;
2301 
2302 	if (!mapping->a_ops->readpage)
2303 		return -ENOEXEC;
2304 
2305 	file_accessed(filp);
2306 	vma->vm_ops = &btrfs_file_vm_ops;
2307 
2308 	return 0;
2309 }
2310 
2311 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2312 			  int slot, u64 start, u64 end)
2313 {
2314 	struct btrfs_file_extent_item *fi;
2315 	struct btrfs_key key;
2316 
2317 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2318 		return 0;
2319 
2320 	btrfs_item_key_to_cpu(leaf, &key, slot);
2321 	if (key.objectid != btrfs_ino(inode) ||
2322 	    key.type != BTRFS_EXTENT_DATA_KEY)
2323 		return 0;
2324 
2325 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2326 
2327 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2328 		return 0;
2329 
2330 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2331 		return 0;
2332 
2333 	if (key.offset == end)
2334 		return 1;
2335 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2336 		return 1;
2337 	return 0;
2338 }
2339 
2340 static int fill_holes(struct btrfs_trans_handle *trans,
2341 		struct btrfs_inode *inode,
2342 		struct btrfs_path *path, u64 offset, u64 end)
2343 {
2344 	struct btrfs_fs_info *fs_info = trans->fs_info;
2345 	struct btrfs_root *root = inode->root;
2346 	struct extent_buffer *leaf;
2347 	struct btrfs_file_extent_item *fi;
2348 	struct extent_map *hole_em;
2349 	struct extent_map_tree *em_tree = &inode->extent_tree;
2350 	struct btrfs_key key;
2351 	int ret;
2352 
2353 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2354 		goto out;
2355 
2356 	key.objectid = btrfs_ino(inode);
2357 	key.type = BTRFS_EXTENT_DATA_KEY;
2358 	key.offset = offset;
2359 
2360 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2361 	if (ret <= 0) {
2362 		/*
2363 		 * We should have dropped this offset, so if we find it then
2364 		 * something has gone horribly wrong.
2365 		 */
2366 		if (ret == 0)
2367 			ret = -EINVAL;
2368 		return ret;
2369 	}
2370 
2371 	leaf = path->nodes[0];
2372 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2373 		u64 num_bytes;
2374 
2375 		path->slots[0]--;
2376 		fi = btrfs_item_ptr(leaf, path->slots[0],
2377 				    struct btrfs_file_extent_item);
2378 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2379 			end - offset;
2380 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2381 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2382 		btrfs_set_file_extent_offset(leaf, fi, 0);
2383 		btrfs_mark_buffer_dirty(leaf);
2384 		goto out;
2385 	}
2386 
2387 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2388 		u64 num_bytes;
2389 
2390 		key.offset = offset;
2391 		btrfs_set_item_key_safe(fs_info, path, &key);
2392 		fi = btrfs_item_ptr(leaf, path->slots[0],
2393 				    struct btrfs_file_extent_item);
2394 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2395 			offset;
2396 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2397 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2398 		btrfs_set_file_extent_offset(leaf, fi, 0);
2399 		btrfs_mark_buffer_dirty(leaf);
2400 		goto out;
2401 	}
2402 	btrfs_release_path(path);
2403 
2404 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2405 			offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2406 	if (ret)
2407 		return ret;
2408 
2409 out:
2410 	btrfs_release_path(path);
2411 
2412 	hole_em = alloc_extent_map();
2413 	if (!hole_em) {
2414 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2415 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2416 	} else {
2417 		hole_em->start = offset;
2418 		hole_em->len = end - offset;
2419 		hole_em->ram_bytes = hole_em->len;
2420 		hole_em->orig_start = offset;
2421 
2422 		hole_em->block_start = EXTENT_MAP_HOLE;
2423 		hole_em->block_len = 0;
2424 		hole_em->orig_block_len = 0;
2425 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2426 		hole_em->generation = trans->transid;
2427 
2428 		do {
2429 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2430 			write_lock(&em_tree->lock);
2431 			ret = add_extent_mapping(em_tree, hole_em, 1);
2432 			write_unlock(&em_tree->lock);
2433 		} while (ret == -EEXIST);
2434 		free_extent_map(hole_em);
2435 		if (ret)
2436 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2437 					&inode->runtime_flags);
2438 	}
2439 
2440 	return 0;
2441 }
2442 
2443 /*
2444  * Find a hole extent on given inode and change start/len to the end of hole
2445  * extent.(hole/vacuum extent whose em->start <= start &&
2446  *	   em->start + em->len > start)
2447  * When a hole extent is found, return 1 and modify start/len.
2448  */
2449 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2450 {
2451 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2452 	struct extent_map *em;
2453 	int ret = 0;
2454 
2455 	em = btrfs_get_extent(inode, NULL, 0,
2456 			      round_down(*start, fs_info->sectorsize),
2457 			      round_up(*len, fs_info->sectorsize));
2458 	if (IS_ERR(em))
2459 		return PTR_ERR(em);
2460 
2461 	/* Hole or vacuum extent(only exists in no-hole mode) */
2462 	if (em->block_start == EXTENT_MAP_HOLE) {
2463 		ret = 1;
2464 		*len = em->start + em->len > *start + *len ?
2465 		       0 : *start + *len - em->start - em->len;
2466 		*start = em->start + em->len;
2467 	}
2468 	free_extent_map(em);
2469 	return ret;
2470 }
2471 
2472 static int btrfs_punch_hole_lock_range(struct inode *inode,
2473 				       const u64 lockstart,
2474 				       const u64 lockend,
2475 				       struct extent_state **cached_state)
2476 {
2477 	while (1) {
2478 		struct btrfs_ordered_extent *ordered;
2479 		int ret;
2480 
2481 		truncate_pagecache_range(inode, lockstart, lockend);
2482 
2483 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2484 				 cached_state);
2485 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2486 							    lockend);
2487 
2488 		/*
2489 		 * We need to make sure we have no ordered extents in this range
2490 		 * and nobody raced in and read a page in this range, if we did
2491 		 * we need to try again.
2492 		 */
2493 		if ((!ordered ||
2494 		    (ordered->file_offset + ordered->num_bytes <= lockstart ||
2495 		     ordered->file_offset > lockend)) &&
2496 		     !filemap_range_has_page(inode->i_mapping,
2497 					     lockstart, lockend)) {
2498 			if (ordered)
2499 				btrfs_put_ordered_extent(ordered);
2500 			break;
2501 		}
2502 		if (ordered)
2503 			btrfs_put_ordered_extent(ordered);
2504 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2505 				     lockend, cached_state);
2506 		ret = btrfs_wait_ordered_range(inode, lockstart,
2507 					       lockend - lockstart + 1);
2508 		if (ret)
2509 			return ret;
2510 	}
2511 	return 0;
2512 }
2513 
2514 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2515 				     struct btrfs_inode *inode,
2516 				     struct btrfs_path *path,
2517 				     struct btrfs_replace_extent_info *extent_info,
2518 				     const u64 replace_len,
2519 				     const u64 bytes_to_drop)
2520 {
2521 	struct btrfs_fs_info *fs_info = trans->fs_info;
2522 	struct btrfs_root *root = inode->root;
2523 	struct btrfs_file_extent_item *extent;
2524 	struct extent_buffer *leaf;
2525 	struct btrfs_key key;
2526 	int slot;
2527 	struct btrfs_ref ref = { 0 };
2528 	int ret;
2529 
2530 	if (replace_len == 0)
2531 		return 0;
2532 
2533 	if (extent_info->disk_offset == 0 &&
2534 	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2535 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2536 		return 0;
2537 	}
2538 
2539 	key.objectid = btrfs_ino(inode);
2540 	key.type = BTRFS_EXTENT_DATA_KEY;
2541 	key.offset = extent_info->file_offset;
2542 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2543 				      sizeof(struct btrfs_file_extent_item));
2544 	if (ret)
2545 		return ret;
2546 	leaf = path->nodes[0];
2547 	slot = path->slots[0];
2548 	write_extent_buffer(leaf, extent_info->extent_buf,
2549 			    btrfs_item_ptr_offset(leaf, slot),
2550 			    sizeof(struct btrfs_file_extent_item));
2551 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2552 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2553 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2554 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2555 	if (extent_info->is_new_extent)
2556 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2557 	btrfs_mark_buffer_dirty(leaf);
2558 	btrfs_release_path(path);
2559 
2560 	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2561 						replace_len);
2562 	if (ret)
2563 		return ret;
2564 
2565 	/* If it's a hole, nothing more needs to be done. */
2566 	if (extent_info->disk_offset == 0) {
2567 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2568 		return 0;
2569 	}
2570 
2571 	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2572 
2573 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2574 		key.objectid = extent_info->disk_offset;
2575 		key.type = BTRFS_EXTENT_ITEM_KEY;
2576 		key.offset = extent_info->disk_len;
2577 		ret = btrfs_alloc_reserved_file_extent(trans, root,
2578 						       btrfs_ino(inode),
2579 						       extent_info->file_offset,
2580 						       extent_info->qgroup_reserved,
2581 						       &key);
2582 	} else {
2583 		u64 ref_offset;
2584 
2585 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2586 				       extent_info->disk_offset,
2587 				       extent_info->disk_len, 0);
2588 		ref_offset = extent_info->file_offset - extent_info->data_offset;
2589 		btrfs_init_data_ref(&ref, root->root_key.objectid,
2590 				    btrfs_ino(inode), ref_offset);
2591 		ret = btrfs_inc_extent_ref(trans, &ref);
2592 	}
2593 
2594 	extent_info->insertions++;
2595 
2596 	return ret;
2597 }
2598 
2599 /*
2600  * The respective range must have been previously locked, as well as the inode.
2601  * The end offset is inclusive (last byte of the range).
2602  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2603  * the file range with an extent.
2604  * When not punching a hole, we don't want to end up in a state where we dropped
2605  * extents without inserting a new one, so we must abort the transaction to avoid
2606  * a corruption.
2607  */
2608 int btrfs_replace_file_extents(struct inode *inode, struct btrfs_path *path,
2609 			   const u64 start, const u64 end,
2610 			   struct btrfs_replace_extent_info *extent_info,
2611 			   struct btrfs_trans_handle **trans_out)
2612 {
2613 	struct btrfs_drop_extents_args drop_args = { 0 };
2614 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2615 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2616 	u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2617 	struct btrfs_root *root = BTRFS_I(inode)->root;
2618 	struct btrfs_trans_handle *trans = NULL;
2619 	struct btrfs_block_rsv *rsv;
2620 	unsigned int rsv_count;
2621 	u64 cur_offset;
2622 	u64 len = end - start;
2623 	int ret = 0;
2624 
2625 	if (end <= start)
2626 		return -EINVAL;
2627 
2628 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2629 	if (!rsv) {
2630 		ret = -ENOMEM;
2631 		goto out;
2632 	}
2633 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2634 	rsv->failfast = 1;
2635 
2636 	/*
2637 	 * 1 - update the inode
2638 	 * 1 - removing the extents in the range
2639 	 * 1 - adding the hole extent if no_holes isn't set or if we are
2640 	 *     replacing the range with a new extent
2641 	 */
2642 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2643 		rsv_count = 3;
2644 	else
2645 		rsv_count = 2;
2646 
2647 	trans = btrfs_start_transaction(root, rsv_count);
2648 	if (IS_ERR(trans)) {
2649 		ret = PTR_ERR(trans);
2650 		trans = NULL;
2651 		goto out_free;
2652 	}
2653 
2654 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2655 				      min_size, false);
2656 	BUG_ON(ret);
2657 	trans->block_rsv = rsv;
2658 
2659 	cur_offset = start;
2660 	drop_args.path = path;
2661 	drop_args.end = end + 1;
2662 	drop_args.drop_cache = true;
2663 	while (cur_offset < end) {
2664 		drop_args.start = cur_offset;
2665 		ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
2666 		/* If we are punching a hole decrement the inode's byte count */
2667 		if (!extent_info)
2668 			btrfs_update_inode_bytes(BTRFS_I(inode), 0,
2669 						 drop_args.bytes_found);
2670 		if (ret != -ENOSPC) {
2671 			/*
2672 			 * When cloning we want to avoid transaction aborts when
2673 			 * nothing was done and we are attempting to clone parts
2674 			 * of inline extents, in such cases -EOPNOTSUPP is
2675 			 * returned by __btrfs_drop_extents() without having
2676 			 * changed anything in the file.
2677 			 */
2678 			if (extent_info && !extent_info->is_new_extent &&
2679 			    ret && ret != -EOPNOTSUPP)
2680 				btrfs_abort_transaction(trans, ret);
2681 			break;
2682 		}
2683 
2684 		trans->block_rsv = &fs_info->trans_block_rsv;
2685 
2686 		if (!extent_info && cur_offset < drop_args.drop_end &&
2687 		    cur_offset < ino_size) {
2688 			ret = fill_holes(trans, BTRFS_I(inode), path,
2689 					 cur_offset, drop_args.drop_end);
2690 			if (ret) {
2691 				/*
2692 				 * If we failed then we didn't insert our hole
2693 				 * entries for the area we dropped, so now the
2694 				 * fs is corrupted, so we must abort the
2695 				 * transaction.
2696 				 */
2697 				btrfs_abort_transaction(trans, ret);
2698 				break;
2699 			}
2700 		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2701 			/*
2702 			 * We are past the i_size here, but since we didn't
2703 			 * insert holes we need to clear the mapped area so we
2704 			 * know to not set disk_i_size in this area until a new
2705 			 * file extent is inserted here.
2706 			 */
2707 			ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2708 					cur_offset,
2709 					drop_args.drop_end - cur_offset);
2710 			if (ret) {
2711 				/*
2712 				 * We couldn't clear our area, so we could
2713 				 * presumably adjust up and corrupt the fs, so
2714 				 * we need to abort.
2715 				 */
2716 				btrfs_abort_transaction(trans, ret);
2717 				break;
2718 			}
2719 		}
2720 
2721 		if (extent_info &&
2722 		    drop_args.drop_end > extent_info->file_offset) {
2723 			u64 replace_len = drop_args.drop_end -
2724 					  extent_info->file_offset;
2725 
2726 			ret = btrfs_insert_replace_extent(trans, BTRFS_I(inode),
2727 					path, extent_info, replace_len,
2728 					drop_args.bytes_found);
2729 			if (ret) {
2730 				btrfs_abort_transaction(trans, ret);
2731 				break;
2732 			}
2733 			extent_info->data_len -= replace_len;
2734 			extent_info->data_offset += replace_len;
2735 			extent_info->file_offset += replace_len;
2736 		}
2737 
2738 		cur_offset = drop_args.drop_end;
2739 
2740 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2741 		if (ret)
2742 			break;
2743 
2744 		btrfs_end_transaction(trans);
2745 		btrfs_btree_balance_dirty(fs_info);
2746 
2747 		trans = btrfs_start_transaction(root, rsv_count);
2748 		if (IS_ERR(trans)) {
2749 			ret = PTR_ERR(trans);
2750 			trans = NULL;
2751 			break;
2752 		}
2753 
2754 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2755 					      rsv, min_size, false);
2756 		BUG_ON(ret);	/* shouldn't happen */
2757 		trans->block_rsv = rsv;
2758 
2759 		if (!extent_info) {
2760 			ret = find_first_non_hole(BTRFS_I(inode), &cur_offset,
2761 						  &len);
2762 			if (unlikely(ret < 0))
2763 				break;
2764 			if (ret && !len) {
2765 				ret = 0;
2766 				break;
2767 			}
2768 		}
2769 	}
2770 
2771 	/*
2772 	 * If we were cloning, force the next fsync to be a full one since we
2773 	 * we replaced (or just dropped in the case of cloning holes when
2774 	 * NO_HOLES is enabled) extents and extent maps.
2775 	 * This is for the sake of simplicity, and cloning into files larger
2776 	 * than 16Mb would force the full fsync any way (when
2777 	 * try_release_extent_mapping() is invoked during page cache truncation.
2778 	 */
2779 	if (extent_info && !extent_info->is_new_extent)
2780 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2781 			&BTRFS_I(inode)->runtime_flags);
2782 
2783 	if (ret)
2784 		goto out_trans;
2785 
2786 	trans->block_rsv = &fs_info->trans_block_rsv;
2787 	/*
2788 	 * If we are using the NO_HOLES feature we might have had already an
2789 	 * hole that overlaps a part of the region [lockstart, lockend] and
2790 	 * ends at (or beyond) lockend. Since we have no file extent items to
2791 	 * represent holes, drop_end can be less than lockend and so we must
2792 	 * make sure we have an extent map representing the existing hole (the
2793 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2794 	 * map representing the existing hole), otherwise the fast fsync path
2795 	 * will not record the existence of the hole region
2796 	 * [existing_hole_start, lockend].
2797 	 */
2798 	if (drop_args.drop_end <= end)
2799 		drop_args.drop_end = end + 1;
2800 	/*
2801 	 * Don't insert file hole extent item if it's for a range beyond eof
2802 	 * (because it's useless) or if it represents a 0 bytes range (when
2803 	 * cur_offset == drop_end).
2804 	 */
2805 	if (!extent_info && cur_offset < ino_size &&
2806 	    cur_offset < drop_args.drop_end) {
2807 		ret = fill_holes(trans, BTRFS_I(inode), path,
2808 				 cur_offset, drop_args.drop_end);
2809 		if (ret) {
2810 			/* Same comment as above. */
2811 			btrfs_abort_transaction(trans, ret);
2812 			goto out_trans;
2813 		}
2814 	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2815 		/* See the comment in the loop above for the reasoning here. */
2816 		ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2817 				cur_offset, drop_args.drop_end - cur_offset);
2818 		if (ret) {
2819 			btrfs_abort_transaction(trans, ret);
2820 			goto out_trans;
2821 		}
2822 
2823 	}
2824 	if (extent_info) {
2825 		ret = btrfs_insert_replace_extent(trans, BTRFS_I(inode), path,
2826 				extent_info, extent_info->data_len,
2827 				drop_args.bytes_found);
2828 		if (ret) {
2829 			btrfs_abort_transaction(trans, ret);
2830 			goto out_trans;
2831 		}
2832 	}
2833 
2834 out_trans:
2835 	if (!trans)
2836 		goto out_free;
2837 
2838 	trans->block_rsv = &fs_info->trans_block_rsv;
2839 	if (ret)
2840 		btrfs_end_transaction(trans);
2841 	else
2842 		*trans_out = trans;
2843 out_free:
2844 	btrfs_free_block_rsv(fs_info, rsv);
2845 out:
2846 	return ret;
2847 }
2848 
2849 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2850 {
2851 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2852 	struct btrfs_root *root = BTRFS_I(inode)->root;
2853 	struct extent_state *cached_state = NULL;
2854 	struct btrfs_path *path;
2855 	struct btrfs_trans_handle *trans = NULL;
2856 	u64 lockstart;
2857 	u64 lockend;
2858 	u64 tail_start;
2859 	u64 tail_len;
2860 	u64 orig_start = offset;
2861 	int ret = 0;
2862 	bool same_block;
2863 	u64 ino_size;
2864 	bool truncated_block = false;
2865 	bool updated_inode = false;
2866 
2867 	ret = btrfs_wait_ordered_range(inode, offset, len);
2868 	if (ret)
2869 		return ret;
2870 
2871 	inode_lock(inode);
2872 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2873 	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2874 	if (ret < 0)
2875 		goto out_only_mutex;
2876 	if (ret && !len) {
2877 		/* Already in a large hole */
2878 		ret = 0;
2879 		goto out_only_mutex;
2880 	}
2881 
2882 	lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2883 	lockend = round_down(offset + len,
2884 			     btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2885 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2886 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2887 	/*
2888 	 * We needn't truncate any block which is beyond the end of the file
2889 	 * because we are sure there is no data there.
2890 	 */
2891 	/*
2892 	 * Only do this if we are in the same block and we aren't doing the
2893 	 * entire block.
2894 	 */
2895 	if (same_block && len < fs_info->sectorsize) {
2896 		if (offset < ino_size) {
2897 			truncated_block = true;
2898 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2899 						   0);
2900 		} else {
2901 			ret = 0;
2902 		}
2903 		goto out_only_mutex;
2904 	}
2905 
2906 	/* zero back part of the first block */
2907 	if (offset < ino_size) {
2908 		truncated_block = true;
2909 		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2910 		if (ret) {
2911 			inode_unlock(inode);
2912 			return ret;
2913 		}
2914 	}
2915 
2916 	/* Check the aligned pages after the first unaligned page,
2917 	 * if offset != orig_start, which means the first unaligned page
2918 	 * including several following pages are already in holes,
2919 	 * the extra check can be skipped */
2920 	if (offset == orig_start) {
2921 		/* after truncate page, check hole again */
2922 		len = offset + len - lockstart;
2923 		offset = lockstart;
2924 		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2925 		if (ret < 0)
2926 			goto out_only_mutex;
2927 		if (ret && !len) {
2928 			ret = 0;
2929 			goto out_only_mutex;
2930 		}
2931 		lockstart = offset;
2932 	}
2933 
2934 	/* Check the tail unaligned part is in a hole */
2935 	tail_start = lockend + 1;
2936 	tail_len = offset + len - tail_start;
2937 	if (tail_len) {
2938 		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2939 		if (unlikely(ret < 0))
2940 			goto out_only_mutex;
2941 		if (!ret) {
2942 			/* zero the front end of the last page */
2943 			if (tail_start + tail_len < ino_size) {
2944 				truncated_block = true;
2945 				ret = btrfs_truncate_block(BTRFS_I(inode),
2946 							tail_start + tail_len,
2947 							0, 1);
2948 				if (ret)
2949 					goto out_only_mutex;
2950 			}
2951 		}
2952 	}
2953 
2954 	if (lockend < lockstart) {
2955 		ret = 0;
2956 		goto out_only_mutex;
2957 	}
2958 
2959 	ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2960 					  &cached_state);
2961 	if (ret)
2962 		goto out_only_mutex;
2963 
2964 	path = btrfs_alloc_path();
2965 	if (!path) {
2966 		ret = -ENOMEM;
2967 		goto out;
2968 	}
2969 
2970 	ret = btrfs_replace_file_extents(inode, path, lockstart, lockend, NULL,
2971 				     &trans);
2972 	btrfs_free_path(path);
2973 	if (ret)
2974 		goto out;
2975 
2976 	ASSERT(trans != NULL);
2977 	inode_inc_iversion(inode);
2978 	inode->i_mtime = inode->i_ctime = current_time(inode);
2979 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2980 	updated_inode = true;
2981 	btrfs_end_transaction(trans);
2982 	btrfs_btree_balance_dirty(fs_info);
2983 out:
2984 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2985 			     &cached_state);
2986 out_only_mutex:
2987 	if (!updated_inode && truncated_block && !ret) {
2988 		/*
2989 		 * If we only end up zeroing part of a page, we still need to
2990 		 * update the inode item, so that all the time fields are
2991 		 * updated as well as the necessary btrfs inode in memory fields
2992 		 * for detecting, at fsync time, if the inode isn't yet in the
2993 		 * log tree or it's there but not up to date.
2994 		 */
2995 		struct timespec64 now = current_time(inode);
2996 
2997 		inode_inc_iversion(inode);
2998 		inode->i_mtime = now;
2999 		inode->i_ctime = now;
3000 		trans = btrfs_start_transaction(root, 1);
3001 		if (IS_ERR(trans)) {
3002 			ret = PTR_ERR(trans);
3003 		} else {
3004 			int ret2;
3005 
3006 			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3007 			ret2 = btrfs_end_transaction(trans);
3008 			if (!ret)
3009 				ret = ret2;
3010 		}
3011 	}
3012 	inode_unlock(inode);
3013 	return ret;
3014 }
3015 
3016 /* Helper structure to record which range is already reserved */
3017 struct falloc_range {
3018 	struct list_head list;
3019 	u64 start;
3020 	u64 len;
3021 };
3022 
3023 /*
3024  * Helper function to add falloc range
3025  *
3026  * Caller should have locked the larger range of extent containing
3027  * [start, len)
3028  */
3029 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3030 {
3031 	struct falloc_range *prev = NULL;
3032 	struct falloc_range *range = NULL;
3033 
3034 	if (list_empty(head))
3035 		goto insert;
3036 
3037 	/*
3038 	 * As fallocate iterate by bytenr order, we only need to check
3039 	 * the last range.
3040 	 */
3041 	prev = list_entry(head->prev, struct falloc_range, list);
3042 	if (prev->start + prev->len == start) {
3043 		prev->len += len;
3044 		return 0;
3045 	}
3046 insert:
3047 	range = kmalloc(sizeof(*range), GFP_KERNEL);
3048 	if (!range)
3049 		return -ENOMEM;
3050 	range->start = start;
3051 	range->len = len;
3052 	list_add_tail(&range->list, head);
3053 	return 0;
3054 }
3055 
3056 static int btrfs_fallocate_update_isize(struct inode *inode,
3057 					const u64 end,
3058 					const int mode)
3059 {
3060 	struct btrfs_trans_handle *trans;
3061 	struct btrfs_root *root = BTRFS_I(inode)->root;
3062 	int ret;
3063 	int ret2;
3064 
3065 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3066 		return 0;
3067 
3068 	trans = btrfs_start_transaction(root, 1);
3069 	if (IS_ERR(trans))
3070 		return PTR_ERR(trans);
3071 
3072 	inode->i_ctime = current_time(inode);
3073 	i_size_write(inode, end);
3074 	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3075 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3076 	ret2 = btrfs_end_transaction(trans);
3077 
3078 	return ret ? ret : ret2;
3079 }
3080 
3081 enum {
3082 	RANGE_BOUNDARY_WRITTEN_EXTENT,
3083 	RANGE_BOUNDARY_PREALLOC_EXTENT,
3084 	RANGE_BOUNDARY_HOLE,
3085 };
3086 
3087 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3088 						 u64 offset)
3089 {
3090 	const u64 sectorsize = btrfs_inode_sectorsize(inode);
3091 	struct extent_map *em;
3092 	int ret;
3093 
3094 	offset = round_down(offset, sectorsize);
3095 	em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3096 	if (IS_ERR(em))
3097 		return PTR_ERR(em);
3098 
3099 	if (em->block_start == EXTENT_MAP_HOLE)
3100 		ret = RANGE_BOUNDARY_HOLE;
3101 	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3102 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3103 	else
3104 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3105 
3106 	free_extent_map(em);
3107 	return ret;
3108 }
3109 
3110 static int btrfs_zero_range(struct inode *inode,
3111 			    loff_t offset,
3112 			    loff_t len,
3113 			    const int mode)
3114 {
3115 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3116 	struct extent_map *em;
3117 	struct extent_changeset *data_reserved = NULL;
3118 	int ret;
3119 	u64 alloc_hint = 0;
3120 	const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3121 	u64 alloc_start = round_down(offset, sectorsize);
3122 	u64 alloc_end = round_up(offset + len, sectorsize);
3123 	u64 bytes_to_reserve = 0;
3124 	bool space_reserved = false;
3125 
3126 	inode_dio_wait(inode);
3127 
3128 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3129 			      alloc_end - alloc_start);
3130 	if (IS_ERR(em)) {
3131 		ret = PTR_ERR(em);
3132 		goto out;
3133 	}
3134 
3135 	/*
3136 	 * Avoid hole punching and extent allocation for some cases. More cases
3137 	 * could be considered, but these are unlikely common and we keep things
3138 	 * as simple as possible for now. Also, intentionally, if the target
3139 	 * range contains one or more prealloc extents together with regular
3140 	 * extents and holes, we drop all the existing extents and allocate a
3141 	 * new prealloc extent, so that we get a larger contiguous disk extent.
3142 	 */
3143 	if (em->start <= alloc_start &&
3144 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3145 		const u64 em_end = em->start + em->len;
3146 
3147 		if (em_end >= offset + len) {
3148 			/*
3149 			 * The whole range is already a prealloc extent,
3150 			 * do nothing except updating the inode's i_size if
3151 			 * needed.
3152 			 */
3153 			free_extent_map(em);
3154 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3155 							   mode);
3156 			goto out;
3157 		}
3158 		/*
3159 		 * Part of the range is already a prealloc extent, so operate
3160 		 * only on the remaining part of the range.
3161 		 */
3162 		alloc_start = em_end;
3163 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3164 		len = offset + len - alloc_start;
3165 		offset = alloc_start;
3166 		alloc_hint = em->block_start + em->len;
3167 	}
3168 	free_extent_map(em);
3169 
3170 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3171 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3172 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3173 				      sectorsize);
3174 		if (IS_ERR(em)) {
3175 			ret = PTR_ERR(em);
3176 			goto out;
3177 		}
3178 
3179 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3180 			free_extent_map(em);
3181 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3182 							   mode);
3183 			goto out;
3184 		}
3185 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3186 			free_extent_map(em);
3187 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3188 						   0);
3189 			if (!ret)
3190 				ret = btrfs_fallocate_update_isize(inode,
3191 								   offset + len,
3192 								   mode);
3193 			return ret;
3194 		}
3195 		free_extent_map(em);
3196 		alloc_start = round_down(offset, sectorsize);
3197 		alloc_end = alloc_start + sectorsize;
3198 		goto reserve_space;
3199 	}
3200 
3201 	alloc_start = round_up(offset, sectorsize);
3202 	alloc_end = round_down(offset + len, sectorsize);
3203 
3204 	/*
3205 	 * For unaligned ranges, check the pages at the boundaries, they might
3206 	 * map to an extent, in which case we need to partially zero them, or
3207 	 * they might map to a hole, in which case we need our allocation range
3208 	 * to cover them.
3209 	 */
3210 	if (!IS_ALIGNED(offset, sectorsize)) {
3211 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3212 							    offset);
3213 		if (ret < 0)
3214 			goto out;
3215 		if (ret == RANGE_BOUNDARY_HOLE) {
3216 			alloc_start = round_down(offset, sectorsize);
3217 			ret = 0;
3218 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3219 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3220 			if (ret)
3221 				goto out;
3222 		} else {
3223 			ret = 0;
3224 		}
3225 	}
3226 
3227 	if (!IS_ALIGNED(offset + len, sectorsize)) {
3228 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3229 							    offset + len);
3230 		if (ret < 0)
3231 			goto out;
3232 		if (ret == RANGE_BOUNDARY_HOLE) {
3233 			alloc_end = round_up(offset + len, sectorsize);
3234 			ret = 0;
3235 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3236 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3237 						   0, 1);
3238 			if (ret)
3239 				goto out;
3240 		} else {
3241 			ret = 0;
3242 		}
3243 	}
3244 
3245 reserve_space:
3246 	if (alloc_start < alloc_end) {
3247 		struct extent_state *cached_state = NULL;
3248 		const u64 lockstart = alloc_start;
3249 		const u64 lockend = alloc_end - 1;
3250 
3251 		bytes_to_reserve = alloc_end - alloc_start;
3252 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3253 						      bytes_to_reserve);
3254 		if (ret < 0)
3255 			goto out;
3256 		space_reserved = true;
3257 		ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3258 						  &cached_state);
3259 		if (ret)
3260 			goto out;
3261 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3262 						alloc_start, bytes_to_reserve);
3263 		if (ret) {
3264 			unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3265 					     lockend, &cached_state);
3266 			goto out;
3267 		}
3268 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3269 						alloc_end - alloc_start,
3270 						i_blocksize(inode),
3271 						offset + len, &alloc_hint);
3272 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3273 				     lockend, &cached_state);
3274 		/* btrfs_prealloc_file_range releases reserved space on error */
3275 		if (ret) {
3276 			space_reserved = false;
3277 			goto out;
3278 		}
3279 	}
3280 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3281  out:
3282 	if (ret && space_reserved)
3283 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3284 					       alloc_start, bytes_to_reserve);
3285 	extent_changeset_free(data_reserved);
3286 
3287 	return ret;
3288 }
3289 
3290 static long btrfs_fallocate(struct file *file, int mode,
3291 			    loff_t offset, loff_t len)
3292 {
3293 	struct inode *inode = file_inode(file);
3294 	struct extent_state *cached_state = NULL;
3295 	struct extent_changeset *data_reserved = NULL;
3296 	struct falloc_range *range;
3297 	struct falloc_range *tmp;
3298 	struct list_head reserve_list;
3299 	u64 cur_offset;
3300 	u64 last_byte;
3301 	u64 alloc_start;
3302 	u64 alloc_end;
3303 	u64 alloc_hint = 0;
3304 	u64 locked_end;
3305 	u64 actual_end = 0;
3306 	struct extent_map *em;
3307 	int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3308 	int ret;
3309 
3310 	/* Do not allow fallocate in ZONED mode */
3311 	if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3312 		return -EOPNOTSUPP;
3313 
3314 	alloc_start = round_down(offset, blocksize);
3315 	alloc_end = round_up(offset + len, blocksize);
3316 	cur_offset = alloc_start;
3317 
3318 	/* Make sure we aren't being give some crap mode */
3319 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3320 		     FALLOC_FL_ZERO_RANGE))
3321 		return -EOPNOTSUPP;
3322 
3323 	if (mode & FALLOC_FL_PUNCH_HOLE)
3324 		return btrfs_punch_hole(inode, offset, len);
3325 
3326 	/*
3327 	 * Only trigger disk allocation, don't trigger qgroup reserve
3328 	 *
3329 	 * For qgroup space, it will be checked later.
3330 	 */
3331 	if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3332 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3333 						      alloc_end - alloc_start);
3334 		if (ret < 0)
3335 			return ret;
3336 	}
3337 
3338 	btrfs_inode_lock(inode, 0);
3339 
3340 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3341 		ret = inode_newsize_ok(inode, offset + len);
3342 		if (ret)
3343 			goto out;
3344 	}
3345 
3346 	/*
3347 	 * TODO: Move these two operations after we have checked
3348 	 * accurate reserved space, or fallocate can still fail but
3349 	 * with page truncated or size expanded.
3350 	 *
3351 	 * But that's a minor problem and won't do much harm BTW.
3352 	 */
3353 	if (alloc_start > inode->i_size) {
3354 		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3355 					alloc_start);
3356 		if (ret)
3357 			goto out;
3358 	} else if (offset + len > inode->i_size) {
3359 		/*
3360 		 * If we are fallocating from the end of the file onward we
3361 		 * need to zero out the end of the block if i_size lands in the
3362 		 * middle of a block.
3363 		 */
3364 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3365 		if (ret)
3366 			goto out;
3367 	}
3368 
3369 	/*
3370 	 * wait for ordered IO before we have any locks.  We'll loop again
3371 	 * below with the locks held.
3372 	 */
3373 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3374 				       alloc_end - alloc_start);
3375 	if (ret)
3376 		goto out;
3377 
3378 	if (mode & FALLOC_FL_ZERO_RANGE) {
3379 		ret = btrfs_zero_range(inode, offset, len, mode);
3380 		inode_unlock(inode);
3381 		return ret;
3382 	}
3383 
3384 	locked_end = alloc_end - 1;
3385 	while (1) {
3386 		struct btrfs_ordered_extent *ordered;
3387 
3388 		/* the extent lock is ordered inside the running
3389 		 * transaction
3390 		 */
3391 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3392 				 locked_end, &cached_state);
3393 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3394 							    locked_end);
3395 
3396 		if (ordered &&
3397 		    ordered->file_offset + ordered->num_bytes > alloc_start &&
3398 		    ordered->file_offset < alloc_end) {
3399 			btrfs_put_ordered_extent(ordered);
3400 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3401 					     alloc_start, locked_end,
3402 					     &cached_state);
3403 			/*
3404 			 * we can't wait on the range with the transaction
3405 			 * running or with the extent lock held
3406 			 */
3407 			ret = btrfs_wait_ordered_range(inode, alloc_start,
3408 						       alloc_end - alloc_start);
3409 			if (ret)
3410 				goto out;
3411 		} else {
3412 			if (ordered)
3413 				btrfs_put_ordered_extent(ordered);
3414 			break;
3415 		}
3416 	}
3417 
3418 	/* First, check if we exceed the qgroup limit */
3419 	INIT_LIST_HEAD(&reserve_list);
3420 	while (cur_offset < alloc_end) {
3421 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3422 				      alloc_end - cur_offset);
3423 		if (IS_ERR(em)) {
3424 			ret = PTR_ERR(em);
3425 			break;
3426 		}
3427 		last_byte = min(extent_map_end(em), alloc_end);
3428 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3429 		last_byte = ALIGN(last_byte, blocksize);
3430 		if (em->block_start == EXTENT_MAP_HOLE ||
3431 		    (cur_offset >= inode->i_size &&
3432 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3433 			ret = add_falloc_range(&reserve_list, cur_offset,
3434 					       last_byte - cur_offset);
3435 			if (ret < 0) {
3436 				free_extent_map(em);
3437 				break;
3438 			}
3439 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3440 					&data_reserved, cur_offset,
3441 					last_byte - cur_offset);
3442 			if (ret < 0) {
3443 				cur_offset = last_byte;
3444 				free_extent_map(em);
3445 				break;
3446 			}
3447 		} else {
3448 			/*
3449 			 * Do not need to reserve unwritten extent for this
3450 			 * range, free reserved data space first, otherwise
3451 			 * it'll result in false ENOSPC error.
3452 			 */
3453 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3454 				data_reserved, cur_offset,
3455 				last_byte - cur_offset);
3456 		}
3457 		free_extent_map(em);
3458 		cur_offset = last_byte;
3459 	}
3460 
3461 	/*
3462 	 * If ret is still 0, means we're OK to fallocate.
3463 	 * Or just cleanup the list and exit.
3464 	 */
3465 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3466 		if (!ret)
3467 			ret = btrfs_prealloc_file_range(inode, mode,
3468 					range->start,
3469 					range->len, i_blocksize(inode),
3470 					offset + len, &alloc_hint);
3471 		else
3472 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3473 					data_reserved, range->start,
3474 					range->len);
3475 		list_del(&range->list);
3476 		kfree(range);
3477 	}
3478 	if (ret < 0)
3479 		goto out_unlock;
3480 
3481 	/*
3482 	 * We didn't need to allocate any more space, but we still extended the
3483 	 * size of the file so we need to update i_size and the inode item.
3484 	 */
3485 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3486 out_unlock:
3487 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3488 			     &cached_state);
3489 out:
3490 	inode_unlock(inode);
3491 	/* Let go of our reservation. */
3492 	if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3493 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3494 				cur_offset, alloc_end - cur_offset);
3495 	extent_changeset_free(data_reserved);
3496 	return ret;
3497 }
3498 
3499 static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3500 				  int whence)
3501 {
3502 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3503 	struct extent_map *em = NULL;
3504 	struct extent_state *cached_state = NULL;
3505 	loff_t i_size = inode->i_size;
3506 	u64 lockstart;
3507 	u64 lockend;
3508 	u64 start;
3509 	u64 len;
3510 	int ret = 0;
3511 
3512 	if (i_size == 0 || offset >= i_size)
3513 		return -ENXIO;
3514 
3515 	/*
3516 	 * offset can be negative, in this case we start finding DATA/HOLE from
3517 	 * the very start of the file.
3518 	 */
3519 	start = max_t(loff_t, 0, offset);
3520 
3521 	lockstart = round_down(start, fs_info->sectorsize);
3522 	lockend = round_up(i_size, fs_info->sectorsize);
3523 	if (lockend <= lockstart)
3524 		lockend = lockstart + fs_info->sectorsize;
3525 	lockend--;
3526 	len = lockend - lockstart + 1;
3527 
3528 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3529 			 &cached_state);
3530 
3531 	while (start < i_size) {
3532 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3533 		if (IS_ERR(em)) {
3534 			ret = PTR_ERR(em);
3535 			em = NULL;
3536 			break;
3537 		}
3538 
3539 		if (whence == SEEK_HOLE &&
3540 		    (em->block_start == EXTENT_MAP_HOLE ||
3541 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3542 			break;
3543 		else if (whence == SEEK_DATA &&
3544 			   (em->block_start != EXTENT_MAP_HOLE &&
3545 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3546 			break;
3547 
3548 		start = em->start + em->len;
3549 		free_extent_map(em);
3550 		em = NULL;
3551 		cond_resched();
3552 	}
3553 	free_extent_map(em);
3554 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3555 			     &cached_state);
3556 	if (ret) {
3557 		offset = ret;
3558 	} else {
3559 		if (whence == SEEK_DATA && start >= i_size)
3560 			offset = -ENXIO;
3561 		else
3562 			offset = min_t(loff_t, start, i_size);
3563 	}
3564 
3565 	return offset;
3566 }
3567 
3568 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3569 {
3570 	struct inode *inode = file->f_mapping->host;
3571 
3572 	switch (whence) {
3573 	default:
3574 		return generic_file_llseek(file, offset, whence);
3575 	case SEEK_DATA:
3576 	case SEEK_HOLE:
3577 		btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3578 		offset = find_desired_extent(inode, offset, whence);
3579 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3580 		break;
3581 	}
3582 
3583 	if (offset < 0)
3584 		return offset;
3585 
3586 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3587 }
3588 
3589 static int btrfs_file_open(struct inode *inode, struct file *filp)
3590 {
3591 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3592 	return generic_file_open(inode, filp);
3593 }
3594 
3595 static int check_direct_read(struct btrfs_fs_info *fs_info,
3596 			     const struct iov_iter *iter, loff_t offset)
3597 {
3598 	int ret;
3599 	int i, seg;
3600 
3601 	ret = check_direct_IO(fs_info, iter, offset);
3602 	if (ret < 0)
3603 		return ret;
3604 
3605 	if (!iter_is_iovec(iter))
3606 		return 0;
3607 
3608 	for (seg = 0; seg < iter->nr_segs; seg++)
3609 		for (i = seg + 1; i < iter->nr_segs; i++)
3610 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3611 				return -EINVAL;
3612 	return 0;
3613 }
3614 
3615 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3616 {
3617 	struct inode *inode = file_inode(iocb->ki_filp);
3618 	ssize_t ret;
3619 
3620 	if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3621 		return 0;
3622 
3623 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3624 	ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 0);
3625 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3626 	return ret;
3627 }
3628 
3629 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3630 {
3631 	ssize_t ret = 0;
3632 
3633 	if (iocb->ki_flags & IOCB_DIRECT) {
3634 		ret = btrfs_direct_read(iocb, to);
3635 		if (ret < 0 || !iov_iter_count(to) ||
3636 		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3637 			return ret;
3638 	}
3639 
3640 	return filemap_read(iocb, to, ret);
3641 }
3642 
3643 const struct file_operations btrfs_file_operations = {
3644 	.llseek		= btrfs_file_llseek,
3645 	.read_iter      = btrfs_file_read_iter,
3646 	.splice_read	= generic_file_splice_read,
3647 	.write_iter	= btrfs_file_write_iter,
3648 	.splice_write	= iter_file_splice_write,
3649 	.mmap		= btrfs_file_mmap,
3650 	.open		= btrfs_file_open,
3651 	.release	= btrfs_release_file,
3652 	.fsync		= btrfs_sync_file,
3653 	.fallocate	= btrfs_fallocate,
3654 	.unlocked_ioctl	= btrfs_ioctl,
3655 #ifdef CONFIG_COMPAT
3656 	.compat_ioctl	= btrfs_compat_ioctl,
3657 #endif
3658 	.remap_file_range = btrfs_remap_file_range,
3659 };
3660 
3661 void __cold btrfs_auto_defrag_exit(void)
3662 {
3663 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3664 }
3665 
3666 int __init btrfs_auto_defrag_init(void)
3667 {
3668 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3669 					sizeof(struct inode_defrag), 0,
3670 					SLAB_MEM_SPREAD,
3671 					NULL);
3672 	if (!btrfs_inode_defrag_cachep)
3673 		return -ENOMEM;
3674 
3675 	return 0;
3676 }
3677 
3678 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3679 {
3680 	int ret;
3681 
3682 	/*
3683 	 * So with compression we will find and lock a dirty page and clear the
3684 	 * first one as dirty, setup an async extent, and immediately return
3685 	 * with the entire range locked but with nobody actually marked with
3686 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3687 	 * expect it to work since it will just kick off a thread to do the
3688 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3689 	 * since it will wait on the page lock, which won't be unlocked until
3690 	 * after the pages have been marked as writeback and so we're good to go
3691 	 * from there.  We have to do this otherwise we'll miss the ordered
3692 	 * extents and that results in badness.  Please Josef, do not think you
3693 	 * know better and pull this out at some point in the future, it is
3694 	 * right and you are wrong.
3695 	 */
3696 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3697 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3698 			     &BTRFS_I(inode)->runtime_flags))
3699 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3700 
3701 	return ret;
3702 }
3703