xref: /openbmc/linux/fs/btrfs/file.c (revision 25985edc)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "ioctl.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "compat.h"
42 
43 
44 /* simple helper to fault in pages and copy.  This should go away
45  * and be replaced with calls into generic code.
46  */
47 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
48 					 size_t write_bytes,
49 					 struct page **prepared_pages,
50 					 struct iov_iter *i)
51 {
52 	size_t copied = 0;
53 	size_t total_copied = 0;
54 	int pg = 0;
55 	int offset = pos & (PAGE_CACHE_SIZE - 1);
56 
57 	while (write_bytes > 0) {
58 		size_t count = min_t(size_t,
59 				     PAGE_CACHE_SIZE - offset, write_bytes);
60 		struct page *page = prepared_pages[pg];
61 		/*
62 		 * Copy data from userspace to the current page
63 		 *
64 		 * Disable pagefault to avoid recursive lock since
65 		 * the pages are already locked
66 		 */
67 		pagefault_disable();
68 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
69 		pagefault_enable();
70 
71 		/* Flush processor's dcache for this page */
72 		flush_dcache_page(page);
73 
74 		/*
75 		 * if we get a partial write, we can end up with
76 		 * partially up to date pages.  These add
77 		 * a lot of complexity, so make sure they don't
78 		 * happen by forcing this copy to be retried.
79 		 *
80 		 * The rest of the btrfs_file_write code will fall
81 		 * back to page at a time copies after we return 0.
82 		 */
83 		if (!PageUptodate(page) && copied < count)
84 			copied = 0;
85 
86 		iov_iter_advance(i, copied);
87 		write_bytes -= copied;
88 		total_copied += copied;
89 
90 		/* Return to btrfs_file_aio_write to fault page */
91 		if (unlikely(copied == 0))
92 			break;
93 
94 		if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
95 			offset += copied;
96 		} else {
97 			pg++;
98 			offset = 0;
99 		}
100 	}
101 	return total_copied;
102 }
103 
104 /*
105  * unlocks pages after btrfs_file_write is done with them
106  */
107 static noinline void btrfs_drop_pages(struct page **pages, size_t num_pages)
108 {
109 	size_t i;
110 	for (i = 0; i < num_pages; i++) {
111 		/* page checked is some magic around finding pages that
112 		 * have been modified without going through btrfs_set_page_dirty
113 		 * clear it here
114 		 */
115 		ClearPageChecked(pages[i]);
116 		unlock_page(pages[i]);
117 		mark_page_accessed(pages[i]);
118 		page_cache_release(pages[i]);
119 	}
120 }
121 
122 /*
123  * after copy_from_user, pages need to be dirtied and we need to make
124  * sure holes are created between the current EOF and the start of
125  * any next extents (if required).
126  *
127  * this also makes the decision about creating an inline extent vs
128  * doing real data extents, marking pages dirty and delalloc as required.
129  */
130 static noinline int dirty_and_release_pages(struct btrfs_root *root,
131 					    struct file *file,
132 					    struct page **pages,
133 					    size_t num_pages,
134 					    loff_t pos,
135 					    size_t write_bytes)
136 {
137 	int err = 0;
138 	int i;
139 	struct inode *inode = fdentry(file)->d_inode;
140 	u64 num_bytes;
141 	u64 start_pos;
142 	u64 end_of_last_block;
143 	u64 end_pos = pos + write_bytes;
144 	loff_t isize = i_size_read(inode);
145 
146 	start_pos = pos & ~((u64)root->sectorsize - 1);
147 	num_bytes = (write_bytes + pos - start_pos +
148 		    root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
149 
150 	end_of_last_block = start_pos + num_bytes - 1;
151 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
152 					NULL);
153 	if (err)
154 		return err;
155 
156 	for (i = 0; i < num_pages; i++) {
157 		struct page *p = pages[i];
158 		SetPageUptodate(p);
159 		ClearPageChecked(p);
160 		set_page_dirty(p);
161 	}
162 
163 	/*
164 	 * we've only changed i_size in ram, and we haven't updated
165 	 * the disk i_size.  There is no need to log the inode
166 	 * at this time.
167 	 */
168 	if (end_pos > isize)
169 		i_size_write(inode, end_pos);
170 	return 0;
171 }
172 
173 /*
174  * this drops all the extents in the cache that intersect the range
175  * [start, end].  Existing extents are split as required.
176  */
177 int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
178 			    int skip_pinned)
179 {
180 	struct extent_map *em;
181 	struct extent_map *split = NULL;
182 	struct extent_map *split2 = NULL;
183 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
184 	u64 len = end - start + 1;
185 	int ret;
186 	int testend = 1;
187 	unsigned long flags;
188 	int compressed = 0;
189 
190 	WARN_ON(end < start);
191 	if (end == (u64)-1) {
192 		len = (u64)-1;
193 		testend = 0;
194 	}
195 	while (1) {
196 		if (!split)
197 			split = alloc_extent_map(GFP_NOFS);
198 		if (!split2)
199 			split2 = alloc_extent_map(GFP_NOFS);
200 		BUG_ON(!split || !split2);
201 
202 		write_lock(&em_tree->lock);
203 		em = lookup_extent_mapping(em_tree, start, len);
204 		if (!em) {
205 			write_unlock(&em_tree->lock);
206 			break;
207 		}
208 		flags = em->flags;
209 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
210 			if (testend && em->start + em->len >= start + len) {
211 				free_extent_map(em);
212 				write_unlock(&em_tree->lock);
213 				break;
214 			}
215 			start = em->start + em->len;
216 			if (testend)
217 				len = start + len - (em->start + em->len);
218 			free_extent_map(em);
219 			write_unlock(&em_tree->lock);
220 			continue;
221 		}
222 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
223 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
224 		remove_extent_mapping(em_tree, em);
225 
226 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
227 		    em->start < start) {
228 			split->start = em->start;
229 			split->len = start - em->start;
230 			split->orig_start = em->orig_start;
231 			split->block_start = em->block_start;
232 
233 			if (compressed)
234 				split->block_len = em->block_len;
235 			else
236 				split->block_len = split->len;
237 
238 			split->bdev = em->bdev;
239 			split->flags = flags;
240 			split->compress_type = em->compress_type;
241 			ret = add_extent_mapping(em_tree, split);
242 			BUG_ON(ret);
243 			free_extent_map(split);
244 			split = split2;
245 			split2 = NULL;
246 		}
247 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
248 		    testend && em->start + em->len > start + len) {
249 			u64 diff = start + len - em->start;
250 
251 			split->start = start + len;
252 			split->len = em->start + em->len - (start + len);
253 			split->bdev = em->bdev;
254 			split->flags = flags;
255 			split->compress_type = em->compress_type;
256 
257 			if (compressed) {
258 				split->block_len = em->block_len;
259 				split->block_start = em->block_start;
260 				split->orig_start = em->orig_start;
261 			} else {
262 				split->block_len = split->len;
263 				split->block_start = em->block_start + diff;
264 				split->orig_start = split->start;
265 			}
266 
267 			ret = add_extent_mapping(em_tree, split);
268 			BUG_ON(ret);
269 			free_extent_map(split);
270 			split = NULL;
271 		}
272 		write_unlock(&em_tree->lock);
273 
274 		/* once for us */
275 		free_extent_map(em);
276 		/* once for the tree*/
277 		free_extent_map(em);
278 	}
279 	if (split)
280 		free_extent_map(split);
281 	if (split2)
282 		free_extent_map(split2);
283 	return 0;
284 }
285 
286 /*
287  * this is very complex, but the basic idea is to drop all extents
288  * in the range start - end.  hint_block is filled in with a block number
289  * that would be a good hint to the block allocator for this file.
290  *
291  * If an extent intersects the range but is not entirely inside the range
292  * it is either truncated or split.  Anything entirely inside the range
293  * is deleted from the tree.
294  */
295 int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
296 		       u64 start, u64 end, u64 *hint_byte, int drop_cache)
297 {
298 	struct btrfs_root *root = BTRFS_I(inode)->root;
299 	struct extent_buffer *leaf;
300 	struct btrfs_file_extent_item *fi;
301 	struct btrfs_path *path;
302 	struct btrfs_key key;
303 	struct btrfs_key new_key;
304 	u64 search_start = start;
305 	u64 disk_bytenr = 0;
306 	u64 num_bytes = 0;
307 	u64 extent_offset = 0;
308 	u64 extent_end = 0;
309 	int del_nr = 0;
310 	int del_slot = 0;
311 	int extent_type;
312 	int recow;
313 	int ret;
314 
315 	if (drop_cache)
316 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
317 
318 	path = btrfs_alloc_path();
319 	if (!path)
320 		return -ENOMEM;
321 
322 	while (1) {
323 		recow = 0;
324 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
325 					       search_start, -1);
326 		if (ret < 0)
327 			break;
328 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
329 			leaf = path->nodes[0];
330 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
331 			if (key.objectid == inode->i_ino &&
332 			    key.type == BTRFS_EXTENT_DATA_KEY)
333 				path->slots[0]--;
334 		}
335 		ret = 0;
336 next_slot:
337 		leaf = path->nodes[0];
338 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
339 			BUG_ON(del_nr > 0);
340 			ret = btrfs_next_leaf(root, path);
341 			if (ret < 0)
342 				break;
343 			if (ret > 0) {
344 				ret = 0;
345 				break;
346 			}
347 			leaf = path->nodes[0];
348 			recow = 1;
349 		}
350 
351 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
352 		if (key.objectid > inode->i_ino ||
353 		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
354 			break;
355 
356 		fi = btrfs_item_ptr(leaf, path->slots[0],
357 				    struct btrfs_file_extent_item);
358 		extent_type = btrfs_file_extent_type(leaf, fi);
359 
360 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
361 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
362 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
363 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
364 			extent_offset = btrfs_file_extent_offset(leaf, fi);
365 			extent_end = key.offset +
366 				btrfs_file_extent_num_bytes(leaf, fi);
367 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
368 			extent_end = key.offset +
369 				btrfs_file_extent_inline_len(leaf, fi);
370 		} else {
371 			WARN_ON(1);
372 			extent_end = search_start;
373 		}
374 
375 		if (extent_end <= search_start) {
376 			path->slots[0]++;
377 			goto next_slot;
378 		}
379 
380 		search_start = max(key.offset, start);
381 		if (recow) {
382 			btrfs_release_path(root, path);
383 			continue;
384 		}
385 
386 		/*
387 		 *     | - range to drop - |
388 		 *  | -------- extent -------- |
389 		 */
390 		if (start > key.offset && end < extent_end) {
391 			BUG_ON(del_nr > 0);
392 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
393 
394 			memcpy(&new_key, &key, sizeof(new_key));
395 			new_key.offset = start;
396 			ret = btrfs_duplicate_item(trans, root, path,
397 						   &new_key);
398 			if (ret == -EAGAIN) {
399 				btrfs_release_path(root, path);
400 				continue;
401 			}
402 			if (ret < 0)
403 				break;
404 
405 			leaf = path->nodes[0];
406 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
407 					    struct btrfs_file_extent_item);
408 			btrfs_set_file_extent_num_bytes(leaf, fi,
409 							start - key.offset);
410 
411 			fi = btrfs_item_ptr(leaf, path->slots[0],
412 					    struct btrfs_file_extent_item);
413 
414 			extent_offset += start - key.offset;
415 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
416 			btrfs_set_file_extent_num_bytes(leaf, fi,
417 							extent_end - start);
418 			btrfs_mark_buffer_dirty(leaf);
419 
420 			if (disk_bytenr > 0) {
421 				ret = btrfs_inc_extent_ref(trans, root,
422 						disk_bytenr, num_bytes, 0,
423 						root->root_key.objectid,
424 						new_key.objectid,
425 						start - extent_offset);
426 				BUG_ON(ret);
427 				*hint_byte = disk_bytenr;
428 			}
429 			key.offset = start;
430 		}
431 		/*
432 		 *  | ---- range to drop ----- |
433 		 *      | -------- extent -------- |
434 		 */
435 		if (start <= key.offset && end < extent_end) {
436 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
437 
438 			memcpy(&new_key, &key, sizeof(new_key));
439 			new_key.offset = end;
440 			btrfs_set_item_key_safe(trans, root, path, &new_key);
441 
442 			extent_offset += end - key.offset;
443 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
444 			btrfs_set_file_extent_num_bytes(leaf, fi,
445 							extent_end - end);
446 			btrfs_mark_buffer_dirty(leaf);
447 			if (disk_bytenr > 0) {
448 				inode_sub_bytes(inode, end - key.offset);
449 				*hint_byte = disk_bytenr;
450 			}
451 			break;
452 		}
453 
454 		search_start = extent_end;
455 		/*
456 		 *       | ---- range to drop ----- |
457 		 *  | -------- extent -------- |
458 		 */
459 		if (start > key.offset && end >= extent_end) {
460 			BUG_ON(del_nr > 0);
461 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
462 
463 			btrfs_set_file_extent_num_bytes(leaf, fi,
464 							start - key.offset);
465 			btrfs_mark_buffer_dirty(leaf);
466 			if (disk_bytenr > 0) {
467 				inode_sub_bytes(inode, extent_end - start);
468 				*hint_byte = disk_bytenr;
469 			}
470 			if (end == extent_end)
471 				break;
472 
473 			path->slots[0]++;
474 			goto next_slot;
475 		}
476 
477 		/*
478 		 *  | ---- range to drop ----- |
479 		 *    | ------ extent ------ |
480 		 */
481 		if (start <= key.offset && end >= extent_end) {
482 			if (del_nr == 0) {
483 				del_slot = path->slots[0];
484 				del_nr = 1;
485 			} else {
486 				BUG_ON(del_slot + del_nr != path->slots[0]);
487 				del_nr++;
488 			}
489 
490 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
491 				inode_sub_bytes(inode,
492 						extent_end - key.offset);
493 				extent_end = ALIGN(extent_end,
494 						   root->sectorsize);
495 			} else if (disk_bytenr > 0) {
496 				ret = btrfs_free_extent(trans, root,
497 						disk_bytenr, num_bytes, 0,
498 						root->root_key.objectid,
499 						key.objectid, key.offset -
500 						extent_offset);
501 				BUG_ON(ret);
502 				inode_sub_bytes(inode,
503 						extent_end - key.offset);
504 				*hint_byte = disk_bytenr;
505 			}
506 
507 			if (end == extent_end)
508 				break;
509 
510 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
511 				path->slots[0]++;
512 				goto next_slot;
513 			}
514 
515 			ret = btrfs_del_items(trans, root, path, del_slot,
516 					      del_nr);
517 			BUG_ON(ret);
518 
519 			del_nr = 0;
520 			del_slot = 0;
521 
522 			btrfs_release_path(root, path);
523 			continue;
524 		}
525 
526 		BUG_ON(1);
527 	}
528 
529 	if (del_nr > 0) {
530 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
531 		BUG_ON(ret);
532 	}
533 
534 	btrfs_free_path(path);
535 	return ret;
536 }
537 
538 static int extent_mergeable(struct extent_buffer *leaf, int slot,
539 			    u64 objectid, u64 bytenr, u64 orig_offset,
540 			    u64 *start, u64 *end)
541 {
542 	struct btrfs_file_extent_item *fi;
543 	struct btrfs_key key;
544 	u64 extent_end;
545 
546 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
547 		return 0;
548 
549 	btrfs_item_key_to_cpu(leaf, &key, slot);
550 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
551 		return 0;
552 
553 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
554 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
555 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
556 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
557 	    btrfs_file_extent_compression(leaf, fi) ||
558 	    btrfs_file_extent_encryption(leaf, fi) ||
559 	    btrfs_file_extent_other_encoding(leaf, fi))
560 		return 0;
561 
562 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
563 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
564 		return 0;
565 
566 	*start = key.offset;
567 	*end = extent_end;
568 	return 1;
569 }
570 
571 /*
572  * Mark extent in the range start - end as written.
573  *
574  * This changes extent type from 'pre-allocated' to 'regular'. If only
575  * part of extent is marked as written, the extent will be split into
576  * two or three.
577  */
578 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
579 			      struct inode *inode, u64 start, u64 end)
580 {
581 	struct btrfs_root *root = BTRFS_I(inode)->root;
582 	struct extent_buffer *leaf;
583 	struct btrfs_path *path;
584 	struct btrfs_file_extent_item *fi;
585 	struct btrfs_key key;
586 	struct btrfs_key new_key;
587 	u64 bytenr;
588 	u64 num_bytes;
589 	u64 extent_end;
590 	u64 orig_offset;
591 	u64 other_start;
592 	u64 other_end;
593 	u64 split;
594 	int del_nr = 0;
595 	int del_slot = 0;
596 	int recow;
597 	int ret;
598 
599 	btrfs_drop_extent_cache(inode, start, end - 1, 0);
600 
601 	path = btrfs_alloc_path();
602 	BUG_ON(!path);
603 again:
604 	recow = 0;
605 	split = start;
606 	key.objectid = inode->i_ino;
607 	key.type = BTRFS_EXTENT_DATA_KEY;
608 	key.offset = split;
609 
610 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
611 	if (ret < 0)
612 		goto out;
613 	if (ret > 0 && path->slots[0] > 0)
614 		path->slots[0]--;
615 
616 	leaf = path->nodes[0];
617 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
618 	BUG_ON(key.objectid != inode->i_ino ||
619 	       key.type != BTRFS_EXTENT_DATA_KEY);
620 	fi = btrfs_item_ptr(leaf, path->slots[0],
621 			    struct btrfs_file_extent_item);
622 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
623 	       BTRFS_FILE_EXTENT_PREALLOC);
624 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
625 	BUG_ON(key.offset > start || extent_end < end);
626 
627 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
628 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
629 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
630 	memcpy(&new_key, &key, sizeof(new_key));
631 
632 	if (start == key.offset && end < extent_end) {
633 		other_start = 0;
634 		other_end = start;
635 		if (extent_mergeable(leaf, path->slots[0] - 1,
636 				     inode->i_ino, bytenr, orig_offset,
637 				     &other_start, &other_end)) {
638 			new_key.offset = end;
639 			btrfs_set_item_key_safe(trans, root, path, &new_key);
640 			fi = btrfs_item_ptr(leaf, path->slots[0],
641 					    struct btrfs_file_extent_item);
642 			btrfs_set_file_extent_num_bytes(leaf, fi,
643 							extent_end - end);
644 			btrfs_set_file_extent_offset(leaf, fi,
645 						     end - orig_offset);
646 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
647 					    struct btrfs_file_extent_item);
648 			btrfs_set_file_extent_num_bytes(leaf, fi,
649 							end - other_start);
650 			btrfs_mark_buffer_dirty(leaf);
651 			goto out;
652 		}
653 	}
654 
655 	if (start > key.offset && end == extent_end) {
656 		other_start = end;
657 		other_end = 0;
658 		if (extent_mergeable(leaf, path->slots[0] + 1,
659 				     inode->i_ino, bytenr, orig_offset,
660 				     &other_start, &other_end)) {
661 			fi = btrfs_item_ptr(leaf, path->slots[0],
662 					    struct btrfs_file_extent_item);
663 			btrfs_set_file_extent_num_bytes(leaf, fi,
664 							start - key.offset);
665 			path->slots[0]++;
666 			new_key.offset = start;
667 			btrfs_set_item_key_safe(trans, root, path, &new_key);
668 
669 			fi = btrfs_item_ptr(leaf, path->slots[0],
670 					    struct btrfs_file_extent_item);
671 			btrfs_set_file_extent_num_bytes(leaf, fi,
672 							other_end - start);
673 			btrfs_set_file_extent_offset(leaf, fi,
674 						     start - orig_offset);
675 			btrfs_mark_buffer_dirty(leaf);
676 			goto out;
677 		}
678 	}
679 
680 	while (start > key.offset || end < extent_end) {
681 		if (key.offset == start)
682 			split = end;
683 
684 		new_key.offset = split;
685 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
686 		if (ret == -EAGAIN) {
687 			btrfs_release_path(root, path);
688 			goto again;
689 		}
690 		BUG_ON(ret < 0);
691 
692 		leaf = path->nodes[0];
693 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
694 				    struct btrfs_file_extent_item);
695 		btrfs_set_file_extent_num_bytes(leaf, fi,
696 						split - key.offset);
697 
698 		fi = btrfs_item_ptr(leaf, path->slots[0],
699 				    struct btrfs_file_extent_item);
700 
701 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
702 		btrfs_set_file_extent_num_bytes(leaf, fi,
703 						extent_end - split);
704 		btrfs_mark_buffer_dirty(leaf);
705 
706 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
707 					   root->root_key.objectid,
708 					   inode->i_ino, orig_offset);
709 		BUG_ON(ret);
710 
711 		if (split == start) {
712 			key.offset = start;
713 		} else {
714 			BUG_ON(start != key.offset);
715 			path->slots[0]--;
716 			extent_end = end;
717 		}
718 		recow = 1;
719 	}
720 
721 	other_start = end;
722 	other_end = 0;
723 	if (extent_mergeable(leaf, path->slots[0] + 1,
724 			     inode->i_ino, bytenr, orig_offset,
725 			     &other_start, &other_end)) {
726 		if (recow) {
727 			btrfs_release_path(root, path);
728 			goto again;
729 		}
730 		extent_end = other_end;
731 		del_slot = path->slots[0] + 1;
732 		del_nr++;
733 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
734 					0, root->root_key.objectid,
735 					inode->i_ino, orig_offset);
736 		BUG_ON(ret);
737 	}
738 	other_start = 0;
739 	other_end = start;
740 	if (extent_mergeable(leaf, path->slots[0] - 1,
741 			     inode->i_ino, bytenr, orig_offset,
742 			     &other_start, &other_end)) {
743 		if (recow) {
744 			btrfs_release_path(root, path);
745 			goto again;
746 		}
747 		key.offset = other_start;
748 		del_slot = path->slots[0];
749 		del_nr++;
750 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
751 					0, root->root_key.objectid,
752 					inode->i_ino, orig_offset);
753 		BUG_ON(ret);
754 	}
755 	if (del_nr == 0) {
756 		fi = btrfs_item_ptr(leaf, path->slots[0],
757 			   struct btrfs_file_extent_item);
758 		btrfs_set_file_extent_type(leaf, fi,
759 					   BTRFS_FILE_EXTENT_REG);
760 		btrfs_mark_buffer_dirty(leaf);
761 	} else {
762 		fi = btrfs_item_ptr(leaf, del_slot - 1,
763 			   struct btrfs_file_extent_item);
764 		btrfs_set_file_extent_type(leaf, fi,
765 					   BTRFS_FILE_EXTENT_REG);
766 		btrfs_set_file_extent_num_bytes(leaf, fi,
767 						extent_end - key.offset);
768 		btrfs_mark_buffer_dirty(leaf);
769 
770 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
771 		BUG_ON(ret);
772 	}
773 out:
774 	btrfs_free_path(path);
775 	return 0;
776 }
777 
778 /*
779  * on error we return an unlocked page and the error value
780  * on success we return a locked page and 0
781  */
782 static int prepare_uptodate_page(struct page *page, u64 pos)
783 {
784 	int ret = 0;
785 
786 	if ((pos & (PAGE_CACHE_SIZE - 1)) && !PageUptodate(page)) {
787 		ret = btrfs_readpage(NULL, page);
788 		if (ret)
789 			return ret;
790 		lock_page(page);
791 		if (!PageUptodate(page)) {
792 			unlock_page(page);
793 			return -EIO;
794 		}
795 	}
796 	return 0;
797 }
798 
799 /*
800  * this gets pages into the page cache and locks them down, it also properly
801  * waits for data=ordered extents to finish before allowing the pages to be
802  * modified.
803  */
804 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
805 			 struct page **pages, size_t num_pages,
806 			 loff_t pos, unsigned long first_index,
807 			 unsigned long last_index, size_t write_bytes)
808 {
809 	struct extent_state *cached_state = NULL;
810 	int i;
811 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
812 	struct inode *inode = fdentry(file)->d_inode;
813 	int err = 0;
814 	int faili = 0;
815 	u64 start_pos;
816 	u64 last_pos;
817 
818 	start_pos = pos & ~((u64)root->sectorsize - 1);
819 	last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
820 
821 	if (start_pos > inode->i_size) {
822 		err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
823 		if (err)
824 			return err;
825 	}
826 
827 again:
828 	for (i = 0; i < num_pages; i++) {
829 		pages[i] = grab_cache_page(inode->i_mapping, index + i);
830 		if (!pages[i]) {
831 			faili = i - 1;
832 			err = -ENOMEM;
833 			goto fail;
834 		}
835 
836 		if (i == 0)
837 			err = prepare_uptodate_page(pages[i], pos);
838 		if (i == num_pages - 1)
839 			err = prepare_uptodate_page(pages[i],
840 						    pos + write_bytes);
841 		if (err) {
842 			page_cache_release(pages[i]);
843 			faili = i - 1;
844 			goto fail;
845 		}
846 		wait_on_page_writeback(pages[i]);
847 	}
848 	err = 0;
849 	if (start_pos < inode->i_size) {
850 		struct btrfs_ordered_extent *ordered;
851 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
852 				 start_pos, last_pos - 1, 0, &cached_state,
853 				 GFP_NOFS);
854 		ordered = btrfs_lookup_first_ordered_extent(inode,
855 							    last_pos - 1);
856 		if (ordered &&
857 		    ordered->file_offset + ordered->len > start_pos &&
858 		    ordered->file_offset < last_pos) {
859 			btrfs_put_ordered_extent(ordered);
860 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
861 					     start_pos, last_pos - 1,
862 					     &cached_state, GFP_NOFS);
863 			for (i = 0; i < num_pages; i++) {
864 				unlock_page(pages[i]);
865 				page_cache_release(pages[i]);
866 			}
867 			btrfs_wait_ordered_range(inode, start_pos,
868 						 last_pos - start_pos);
869 			goto again;
870 		}
871 		if (ordered)
872 			btrfs_put_ordered_extent(ordered);
873 
874 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
875 				  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
876 				  EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
877 				  GFP_NOFS);
878 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
879 				     start_pos, last_pos - 1, &cached_state,
880 				     GFP_NOFS);
881 	}
882 	for (i = 0; i < num_pages; i++) {
883 		clear_page_dirty_for_io(pages[i]);
884 		set_page_extent_mapped(pages[i]);
885 		WARN_ON(!PageLocked(pages[i]));
886 	}
887 	return 0;
888 fail:
889 	while (faili >= 0) {
890 		unlock_page(pages[faili]);
891 		page_cache_release(pages[faili]);
892 		faili--;
893 	}
894 	return err;
895 
896 }
897 
898 static noinline ssize_t __btrfs_buffered_write(struct file *file,
899 					       struct iov_iter *i,
900 					       loff_t pos)
901 {
902 	struct inode *inode = fdentry(file)->d_inode;
903 	struct btrfs_root *root = BTRFS_I(inode)->root;
904 	struct page **pages = NULL;
905 	unsigned long first_index;
906 	unsigned long last_index;
907 	size_t num_written = 0;
908 	int nrptrs;
909 	int ret;
910 
911 	nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
912 		     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
913 		     (sizeof(struct page *)));
914 	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
915 	if (!pages)
916 		return -ENOMEM;
917 
918 	first_index = pos >> PAGE_CACHE_SHIFT;
919 	last_index = (pos + iov_iter_count(i)) >> PAGE_CACHE_SHIFT;
920 
921 	while (iov_iter_count(i) > 0) {
922 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
923 		size_t write_bytes = min(iov_iter_count(i),
924 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
925 					 offset);
926 		size_t num_pages = (write_bytes + offset +
927 				    PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
928 		size_t dirty_pages;
929 		size_t copied;
930 
931 		WARN_ON(num_pages > nrptrs);
932 
933 		/*
934 		 * Fault pages before locking them in prepare_pages
935 		 * to avoid recursive lock
936 		 */
937 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
938 			ret = -EFAULT;
939 			break;
940 		}
941 
942 		ret = btrfs_delalloc_reserve_space(inode,
943 					num_pages << PAGE_CACHE_SHIFT);
944 		if (ret)
945 			break;
946 
947 		/*
948 		 * This is going to setup the pages array with the number of
949 		 * pages we want, so we don't really need to worry about the
950 		 * contents of pages from loop to loop
951 		 */
952 		ret = prepare_pages(root, file, pages, num_pages,
953 				    pos, first_index, last_index,
954 				    write_bytes);
955 		if (ret) {
956 			btrfs_delalloc_release_space(inode,
957 					num_pages << PAGE_CACHE_SHIFT);
958 			break;
959 		}
960 
961 		copied = btrfs_copy_from_user(pos, num_pages,
962 					   write_bytes, pages, i);
963 
964 		/*
965 		 * if we have trouble faulting in the pages, fall
966 		 * back to one page at a time
967 		 */
968 		if (copied < write_bytes)
969 			nrptrs = 1;
970 
971 		if (copied == 0)
972 			dirty_pages = 0;
973 		else
974 			dirty_pages = (copied + offset +
975 				       PAGE_CACHE_SIZE - 1) >>
976 				       PAGE_CACHE_SHIFT;
977 
978 		/*
979 		 * If we had a short copy we need to release the excess delaloc
980 		 * bytes we reserved.  We need to increment outstanding_extents
981 		 * because btrfs_delalloc_release_space will decrement it, but
982 		 * we still have an outstanding extent for the chunk we actually
983 		 * managed to copy.
984 		 */
985 		if (num_pages > dirty_pages) {
986 			if (copied > 0)
987 				atomic_inc(
988 					&BTRFS_I(inode)->outstanding_extents);
989 			btrfs_delalloc_release_space(inode,
990 					(num_pages - dirty_pages) <<
991 					PAGE_CACHE_SHIFT);
992 		}
993 
994 		if (copied > 0) {
995 			ret = dirty_and_release_pages(root, file, pages,
996 						      dirty_pages, pos,
997 						      copied);
998 			if (ret) {
999 				btrfs_delalloc_release_space(inode,
1000 					dirty_pages << PAGE_CACHE_SHIFT);
1001 				btrfs_drop_pages(pages, num_pages);
1002 				break;
1003 			}
1004 		}
1005 
1006 		btrfs_drop_pages(pages, num_pages);
1007 
1008 		cond_resched();
1009 
1010 		balance_dirty_pages_ratelimited_nr(inode->i_mapping,
1011 						   dirty_pages);
1012 		if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1013 			btrfs_btree_balance_dirty(root, 1);
1014 		btrfs_throttle(root);
1015 
1016 		pos += copied;
1017 		num_written += copied;
1018 	}
1019 
1020 	kfree(pages);
1021 
1022 	return num_written ? num_written : ret;
1023 }
1024 
1025 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1026 				    const struct iovec *iov,
1027 				    unsigned long nr_segs, loff_t pos,
1028 				    loff_t *ppos, size_t count, size_t ocount)
1029 {
1030 	struct file *file = iocb->ki_filp;
1031 	struct inode *inode = fdentry(file)->d_inode;
1032 	struct iov_iter i;
1033 	ssize_t written;
1034 	ssize_t written_buffered;
1035 	loff_t endbyte;
1036 	int err;
1037 
1038 	written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1039 					    count, ocount);
1040 
1041 	/*
1042 	 * the generic O_DIRECT will update in-memory i_size after the
1043 	 * DIOs are done.  But our endio handlers that update the on
1044 	 * disk i_size never update past the in memory i_size.  So we
1045 	 * need one more update here to catch any additions to the
1046 	 * file
1047 	 */
1048 	if (inode->i_size != BTRFS_I(inode)->disk_i_size) {
1049 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
1050 		mark_inode_dirty(inode);
1051 	}
1052 
1053 	if (written < 0 || written == count)
1054 		return written;
1055 
1056 	pos += written;
1057 	count -= written;
1058 	iov_iter_init(&i, iov, nr_segs, count, written);
1059 	written_buffered = __btrfs_buffered_write(file, &i, pos);
1060 	if (written_buffered < 0) {
1061 		err = written_buffered;
1062 		goto out;
1063 	}
1064 	endbyte = pos + written_buffered - 1;
1065 	err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1066 	if (err)
1067 		goto out;
1068 	written += written_buffered;
1069 	*ppos = pos + written_buffered;
1070 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1071 				 endbyte >> PAGE_CACHE_SHIFT);
1072 out:
1073 	return written ? written : err;
1074 }
1075 
1076 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1077 				    const struct iovec *iov,
1078 				    unsigned long nr_segs, loff_t pos)
1079 {
1080 	struct file *file = iocb->ki_filp;
1081 	struct inode *inode = fdentry(file)->d_inode;
1082 	struct btrfs_root *root = BTRFS_I(inode)->root;
1083 	loff_t *ppos = &iocb->ki_pos;
1084 	ssize_t num_written = 0;
1085 	ssize_t err = 0;
1086 	size_t count, ocount;
1087 
1088 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
1089 
1090 	mutex_lock(&inode->i_mutex);
1091 
1092 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1093 	if (err) {
1094 		mutex_unlock(&inode->i_mutex);
1095 		goto out;
1096 	}
1097 	count = ocount;
1098 
1099 	current->backing_dev_info = inode->i_mapping->backing_dev_info;
1100 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1101 	if (err) {
1102 		mutex_unlock(&inode->i_mutex);
1103 		goto out;
1104 	}
1105 
1106 	if (count == 0) {
1107 		mutex_unlock(&inode->i_mutex);
1108 		goto out;
1109 	}
1110 
1111 	err = file_remove_suid(file);
1112 	if (err) {
1113 		mutex_unlock(&inode->i_mutex);
1114 		goto out;
1115 	}
1116 
1117 	/*
1118 	 * If BTRFS flips readonly due to some impossible error
1119 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1120 	 * although we have opened a file as writable, we have
1121 	 * to stop this write operation to ensure FS consistency.
1122 	 */
1123 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
1124 		mutex_unlock(&inode->i_mutex);
1125 		err = -EROFS;
1126 		goto out;
1127 	}
1128 
1129 	file_update_time(file);
1130 	BTRFS_I(inode)->sequence++;
1131 
1132 	if (unlikely(file->f_flags & O_DIRECT)) {
1133 		num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1134 						   pos, ppos, count, ocount);
1135 	} else {
1136 		struct iov_iter i;
1137 
1138 		iov_iter_init(&i, iov, nr_segs, count, num_written);
1139 
1140 		num_written = __btrfs_buffered_write(file, &i, pos);
1141 		if (num_written > 0)
1142 			*ppos = pos + num_written;
1143 	}
1144 
1145 	mutex_unlock(&inode->i_mutex);
1146 
1147 	/*
1148 	 * we want to make sure fsync finds this change
1149 	 * but we haven't joined a transaction running right now.
1150 	 *
1151 	 * Later on, someone is sure to update the inode and get the
1152 	 * real transid recorded.
1153 	 *
1154 	 * We set last_trans now to the fs_info generation + 1,
1155 	 * this will either be one more than the running transaction
1156 	 * or the generation used for the next transaction if there isn't
1157 	 * one running right now.
1158 	 */
1159 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1160 	if (num_written > 0 || num_written == -EIOCBQUEUED) {
1161 		err = generic_write_sync(file, pos, num_written);
1162 		if (err < 0 && num_written > 0)
1163 			num_written = err;
1164 	}
1165 out:
1166 	current->backing_dev_info = NULL;
1167 	return num_written ? num_written : err;
1168 }
1169 
1170 int btrfs_release_file(struct inode *inode, struct file *filp)
1171 {
1172 	/*
1173 	 * ordered_data_close is set by settattr when we are about to truncate
1174 	 * a file from a non-zero size to a zero size.  This tries to
1175 	 * flush down new bytes that may have been written if the
1176 	 * application were using truncate to replace a file in place.
1177 	 */
1178 	if (BTRFS_I(inode)->ordered_data_close) {
1179 		BTRFS_I(inode)->ordered_data_close = 0;
1180 		btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1181 		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1182 			filemap_flush(inode->i_mapping);
1183 	}
1184 	if (filp->private_data)
1185 		btrfs_ioctl_trans_end(filp);
1186 	return 0;
1187 }
1188 
1189 /*
1190  * fsync call for both files and directories.  This logs the inode into
1191  * the tree log instead of forcing full commits whenever possible.
1192  *
1193  * It needs to call filemap_fdatawait so that all ordered extent updates are
1194  * in the metadata btree are up to date for copying to the log.
1195  *
1196  * It drops the inode mutex before doing the tree log commit.  This is an
1197  * important optimization for directories because holding the mutex prevents
1198  * new operations on the dir while we write to disk.
1199  */
1200 int btrfs_sync_file(struct file *file, int datasync)
1201 {
1202 	struct dentry *dentry = file->f_path.dentry;
1203 	struct inode *inode = dentry->d_inode;
1204 	struct btrfs_root *root = BTRFS_I(inode)->root;
1205 	int ret = 0;
1206 	struct btrfs_trans_handle *trans;
1207 
1208 	trace_btrfs_sync_file(file, datasync);
1209 
1210 	/* we wait first, since the writeback may change the inode */
1211 	root->log_batch++;
1212 	/* the VFS called filemap_fdatawrite for us */
1213 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
1214 	root->log_batch++;
1215 
1216 	/*
1217 	 * check the transaction that last modified this inode
1218 	 * and see if its already been committed
1219 	 */
1220 	if (!BTRFS_I(inode)->last_trans)
1221 		goto out;
1222 
1223 	/*
1224 	 * if the last transaction that changed this file was before
1225 	 * the current transaction, we can bail out now without any
1226 	 * syncing
1227 	 */
1228 	mutex_lock(&root->fs_info->trans_mutex);
1229 	if (BTRFS_I(inode)->last_trans <=
1230 	    root->fs_info->last_trans_committed) {
1231 		BTRFS_I(inode)->last_trans = 0;
1232 		mutex_unlock(&root->fs_info->trans_mutex);
1233 		goto out;
1234 	}
1235 	mutex_unlock(&root->fs_info->trans_mutex);
1236 
1237 	/*
1238 	 * ok we haven't committed the transaction yet, lets do a commit
1239 	 */
1240 	if (file->private_data)
1241 		btrfs_ioctl_trans_end(file);
1242 
1243 	trans = btrfs_start_transaction(root, 0);
1244 	if (IS_ERR(trans)) {
1245 		ret = PTR_ERR(trans);
1246 		goto out;
1247 	}
1248 
1249 	ret = btrfs_log_dentry_safe(trans, root, dentry);
1250 	if (ret < 0)
1251 		goto out;
1252 
1253 	/* we've logged all the items and now have a consistent
1254 	 * version of the file in the log.  It is possible that
1255 	 * someone will come in and modify the file, but that's
1256 	 * fine because the log is consistent on disk, and we
1257 	 * have references to all of the file's extents
1258 	 *
1259 	 * It is possible that someone will come in and log the
1260 	 * file again, but that will end up using the synchronization
1261 	 * inside btrfs_sync_log to keep things safe.
1262 	 */
1263 	mutex_unlock(&dentry->d_inode->i_mutex);
1264 
1265 	if (ret != BTRFS_NO_LOG_SYNC) {
1266 		if (ret > 0) {
1267 			ret = btrfs_commit_transaction(trans, root);
1268 		} else {
1269 			ret = btrfs_sync_log(trans, root);
1270 			if (ret == 0)
1271 				ret = btrfs_end_transaction(trans, root);
1272 			else
1273 				ret = btrfs_commit_transaction(trans, root);
1274 		}
1275 	} else {
1276 		ret = btrfs_end_transaction(trans, root);
1277 	}
1278 	mutex_lock(&dentry->d_inode->i_mutex);
1279 out:
1280 	return ret > 0 ? -EIO : ret;
1281 }
1282 
1283 static const struct vm_operations_struct btrfs_file_vm_ops = {
1284 	.fault		= filemap_fault,
1285 	.page_mkwrite	= btrfs_page_mkwrite,
1286 };
1287 
1288 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1289 {
1290 	struct address_space *mapping = filp->f_mapping;
1291 
1292 	if (!mapping->a_ops->readpage)
1293 		return -ENOEXEC;
1294 
1295 	file_accessed(filp);
1296 	vma->vm_ops = &btrfs_file_vm_ops;
1297 	vma->vm_flags |= VM_CAN_NONLINEAR;
1298 
1299 	return 0;
1300 }
1301 
1302 static long btrfs_fallocate(struct file *file, int mode,
1303 			    loff_t offset, loff_t len)
1304 {
1305 	struct inode *inode = file->f_path.dentry->d_inode;
1306 	struct extent_state *cached_state = NULL;
1307 	u64 cur_offset;
1308 	u64 last_byte;
1309 	u64 alloc_start;
1310 	u64 alloc_end;
1311 	u64 alloc_hint = 0;
1312 	u64 locked_end;
1313 	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
1314 	struct extent_map *em;
1315 	int ret;
1316 
1317 	alloc_start = offset & ~mask;
1318 	alloc_end =  (offset + len + mask) & ~mask;
1319 
1320 	/* We only support the FALLOC_FL_KEEP_SIZE mode */
1321 	if (mode & ~FALLOC_FL_KEEP_SIZE)
1322 		return -EOPNOTSUPP;
1323 
1324 	/*
1325 	 * wait for ordered IO before we have any locks.  We'll loop again
1326 	 * below with the locks held.
1327 	 */
1328 	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
1329 
1330 	mutex_lock(&inode->i_mutex);
1331 	ret = inode_newsize_ok(inode, alloc_end);
1332 	if (ret)
1333 		goto out;
1334 
1335 	if (alloc_start > inode->i_size) {
1336 		ret = btrfs_cont_expand(inode, i_size_read(inode),
1337 					alloc_start);
1338 		if (ret)
1339 			goto out;
1340 	}
1341 
1342 	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
1343 	if (ret)
1344 		goto out;
1345 
1346 	locked_end = alloc_end - 1;
1347 	while (1) {
1348 		struct btrfs_ordered_extent *ordered;
1349 
1350 		/* the extent lock is ordered inside the running
1351 		 * transaction
1352 		 */
1353 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
1354 				 locked_end, 0, &cached_state, GFP_NOFS);
1355 		ordered = btrfs_lookup_first_ordered_extent(inode,
1356 							    alloc_end - 1);
1357 		if (ordered &&
1358 		    ordered->file_offset + ordered->len > alloc_start &&
1359 		    ordered->file_offset < alloc_end) {
1360 			btrfs_put_ordered_extent(ordered);
1361 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1362 					     alloc_start, locked_end,
1363 					     &cached_state, GFP_NOFS);
1364 			/*
1365 			 * we can't wait on the range with the transaction
1366 			 * running or with the extent lock held
1367 			 */
1368 			btrfs_wait_ordered_range(inode, alloc_start,
1369 						 alloc_end - alloc_start);
1370 		} else {
1371 			if (ordered)
1372 				btrfs_put_ordered_extent(ordered);
1373 			break;
1374 		}
1375 	}
1376 
1377 	cur_offset = alloc_start;
1378 	while (1) {
1379 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
1380 				      alloc_end - cur_offset, 0);
1381 		BUG_ON(IS_ERR(em) || !em);
1382 		last_byte = min(extent_map_end(em), alloc_end);
1383 		last_byte = (last_byte + mask) & ~mask;
1384 		if (em->block_start == EXTENT_MAP_HOLE ||
1385 		    (cur_offset >= inode->i_size &&
1386 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
1387 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
1388 							last_byte - cur_offset,
1389 							1 << inode->i_blkbits,
1390 							offset + len,
1391 							&alloc_hint);
1392 			if (ret < 0) {
1393 				free_extent_map(em);
1394 				break;
1395 			}
1396 		}
1397 		free_extent_map(em);
1398 
1399 		cur_offset = last_byte;
1400 		if (cur_offset >= alloc_end) {
1401 			ret = 0;
1402 			break;
1403 		}
1404 	}
1405 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
1406 			     &cached_state, GFP_NOFS);
1407 
1408 	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
1409 out:
1410 	mutex_unlock(&inode->i_mutex);
1411 	return ret;
1412 }
1413 
1414 const struct file_operations btrfs_file_operations = {
1415 	.llseek		= generic_file_llseek,
1416 	.read		= do_sync_read,
1417 	.write		= do_sync_write,
1418 	.aio_read       = generic_file_aio_read,
1419 	.splice_read	= generic_file_splice_read,
1420 	.aio_write	= btrfs_file_aio_write,
1421 	.mmap		= btrfs_file_mmap,
1422 	.open		= generic_file_open,
1423 	.release	= btrfs_release_file,
1424 	.fsync		= btrfs_sync_file,
1425 	.fallocate	= btrfs_fallocate,
1426 	.unlocked_ioctl	= btrfs_ioctl,
1427 #ifdef CONFIG_COMPAT
1428 	.compat_ioctl	= btrfs_ioctl,
1429 #endif
1430 };
1431