1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include "ctree.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "btrfs_inode.h" 23 #include "print-tree.h" 24 #include "tree-log.h" 25 #include "locking.h" 26 #include "volumes.h" 27 #include "qgroup.h" 28 #include "compression.h" 29 #include "delalloc-space.h" 30 #include "reflink.h" 31 #include "subpage.h" 32 33 static struct kmem_cache *btrfs_inode_defrag_cachep; 34 /* 35 * when auto defrag is enabled we 36 * queue up these defrag structs to remember which 37 * inodes need defragging passes 38 */ 39 struct inode_defrag { 40 struct rb_node rb_node; 41 /* objectid */ 42 u64 ino; 43 /* 44 * transid where the defrag was added, we search for 45 * extents newer than this 46 */ 47 u64 transid; 48 49 /* root objectid */ 50 u64 root; 51 52 /* last offset we were able to defrag */ 53 u64 last_offset; 54 55 /* if we've wrapped around back to zero once already */ 56 int cycled; 57 }; 58 59 static int __compare_inode_defrag(struct inode_defrag *defrag1, 60 struct inode_defrag *defrag2) 61 { 62 if (defrag1->root > defrag2->root) 63 return 1; 64 else if (defrag1->root < defrag2->root) 65 return -1; 66 else if (defrag1->ino > defrag2->ino) 67 return 1; 68 else if (defrag1->ino < defrag2->ino) 69 return -1; 70 else 71 return 0; 72 } 73 74 /* pop a record for an inode into the defrag tree. The lock 75 * must be held already 76 * 77 * If you're inserting a record for an older transid than an 78 * existing record, the transid already in the tree is lowered 79 * 80 * If an existing record is found the defrag item you 81 * pass in is freed 82 */ 83 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 84 struct inode_defrag *defrag) 85 { 86 struct btrfs_fs_info *fs_info = inode->root->fs_info; 87 struct inode_defrag *entry; 88 struct rb_node **p; 89 struct rb_node *parent = NULL; 90 int ret; 91 92 p = &fs_info->defrag_inodes.rb_node; 93 while (*p) { 94 parent = *p; 95 entry = rb_entry(parent, struct inode_defrag, rb_node); 96 97 ret = __compare_inode_defrag(defrag, entry); 98 if (ret < 0) 99 p = &parent->rb_left; 100 else if (ret > 0) 101 p = &parent->rb_right; 102 else { 103 /* if we're reinserting an entry for 104 * an old defrag run, make sure to 105 * lower the transid of our existing record 106 */ 107 if (defrag->transid < entry->transid) 108 entry->transid = defrag->transid; 109 if (defrag->last_offset > entry->last_offset) 110 entry->last_offset = defrag->last_offset; 111 return -EEXIST; 112 } 113 } 114 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 115 rb_link_node(&defrag->rb_node, parent, p); 116 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 117 return 0; 118 } 119 120 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 121 { 122 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 123 return 0; 124 125 if (btrfs_fs_closing(fs_info)) 126 return 0; 127 128 return 1; 129 } 130 131 /* 132 * insert a defrag record for this inode if auto defrag is 133 * enabled 134 */ 135 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 136 struct btrfs_inode *inode) 137 { 138 struct btrfs_root *root = inode->root; 139 struct btrfs_fs_info *fs_info = root->fs_info; 140 struct inode_defrag *defrag; 141 u64 transid; 142 int ret; 143 144 if (!__need_auto_defrag(fs_info)) 145 return 0; 146 147 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 148 return 0; 149 150 if (trans) 151 transid = trans->transid; 152 else 153 transid = inode->root->last_trans; 154 155 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 156 if (!defrag) 157 return -ENOMEM; 158 159 defrag->ino = btrfs_ino(inode); 160 defrag->transid = transid; 161 defrag->root = root->root_key.objectid; 162 163 spin_lock(&fs_info->defrag_inodes_lock); 164 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 165 /* 166 * If we set IN_DEFRAG flag and evict the inode from memory, 167 * and then re-read this inode, this new inode doesn't have 168 * IN_DEFRAG flag. At the case, we may find the existed defrag. 169 */ 170 ret = __btrfs_add_inode_defrag(inode, defrag); 171 if (ret) 172 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 173 } else { 174 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 175 } 176 spin_unlock(&fs_info->defrag_inodes_lock); 177 return 0; 178 } 179 180 /* 181 * Requeue the defrag object. If there is a defrag object that points to 182 * the same inode in the tree, we will merge them together (by 183 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 184 */ 185 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode, 186 struct inode_defrag *defrag) 187 { 188 struct btrfs_fs_info *fs_info = inode->root->fs_info; 189 int ret; 190 191 if (!__need_auto_defrag(fs_info)) 192 goto out; 193 194 /* 195 * Here we don't check the IN_DEFRAG flag, because we need merge 196 * them together. 197 */ 198 spin_lock(&fs_info->defrag_inodes_lock); 199 ret = __btrfs_add_inode_defrag(inode, defrag); 200 spin_unlock(&fs_info->defrag_inodes_lock); 201 if (ret) 202 goto out; 203 return; 204 out: 205 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 206 } 207 208 /* 209 * pick the defragable inode that we want, if it doesn't exist, we will get 210 * the next one. 211 */ 212 static struct inode_defrag * 213 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 214 { 215 struct inode_defrag *entry = NULL; 216 struct inode_defrag tmp; 217 struct rb_node *p; 218 struct rb_node *parent = NULL; 219 int ret; 220 221 tmp.ino = ino; 222 tmp.root = root; 223 224 spin_lock(&fs_info->defrag_inodes_lock); 225 p = fs_info->defrag_inodes.rb_node; 226 while (p) { 227 parent = p; 228 entry = rb_entry(parent, struct inode_defrag, rb_node); 229 230 ret = __compare_inode_defrag(&tmp, entry); 231 if (ret < 0) 232 p = parent->rb_left; 233 else if (ret > 0) 234 p = parent->rb_right; 235 else 236 goto out; 237 } 238 239 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 240 parent = rb_next(parent); 241 if (parent) 242 entry = rb_entry(parent, struct inode_defrag, rb_node); 243 else 244 entry = NULL; 245 } 246 out: 247 if (entry) 248 rb_erase(parent, &fs_info->defrag_inodes); 249 spin_unlock(&fs_info->defrag_inodes_lock); 250 return entry; 251 } 252 253 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 254 { 255 struct inode_defrag *defrag; 256 struct rb_node *node; 257 258 spin_lock(&fs_info->defrag_inodes_lock); 259 node = rb_first(&fs_info->defrag_inodes); 260 while (node) { 261 rb_erase(node, &fs_info->defrag_inodes); 262 defrag = rb_entry(node, struct inode_defrag, rb_node); 263 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 264 265 cond_resched_lock(&fs_info->defrag_inodes_lock); 266 267 node = rb_first(&fs_info->defrag_inodes); 268 } 269 spin_unlock(&fs_info->defrag_inodes_lock); 270 } 271 272 #define BTRFS_DEFRAG_BATCH 1024 273 274 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 275 struct inode_defrag *defrag) 276 { 277 struct btrfs_root *inode_root; 278 struct inode *inode; 279 struct btrfs_ioctl_defrag_range_args range; 280 int num_defrag; 281 int ret; 282 283 /* get the inode */ 284 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); 285 if (IS_ERR(inode_root)) { 286 ret = PTR_ERR(inode_root); 287 goto cleanup; 288 } 289 290 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root); 291 btrfs_put_root(inode_root); 292 if (IS_ERR(inode)) { 293 ret = PTR_ERR(inode); 294 goto cleanup; 295 } 296 297 /* do a chunk of defrag */ 298 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 299 memset(&range, 0, sizeof(range)); 300 range.len = (u64)-1; 301 range.start = defrag->last_offset; 302 303 sb_start_write(fs_info->sb); 304 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 305 BTRFS_DEFRAG_BATCH); 306 sb_end_write(fs_info->sb); 307 /* 308 * if we filled the whole defrag batch, there 309 * must be more work to do. Queue this defrag 310 * again 311 */ 312 if (num_defrag == BTRFS_DEFRAG_BATCH) { 313 defrag->last_offset = range.start; 314 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 315 } else if (defrag->last_offset && !defrag->cycled) { 316 /* 317 * we didn't fill our defrag batch, but 318 * we didn't start at zero. Make sure we loop 319 * around to the start of the file. 320 */ 321 defrag->last_offset = 0; 322 defrag->cycled = 1; 323 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 324 } else { 325 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 326 } 327 328 iput(inode); 329 return 0; 330 cleanup: 331 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 332 return ret; 333 } 334 335 /* 336 * run through the list of inodes in the FS that need 337 * defragging 338 */ 339 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 340 { 341 struct inode_defrag *defrag; 342 u64 first_ino = 0; 343 u64 root_objectid = 0; 344 345 atomic_inc(&fs_info->defrag_running); 346 while (1) { 347 /* Pause the auto defragger. */ 348 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 349 &fs_info->fs_state)) 350 break; 351 352 if (!__need_auto_defrag(fs_info)) 353 break; 354 355 /* find an inode to defrag */ 356 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 357 first_ino); 358 if (!defrag) { 359 if (root_objectid || first_ino) { 360 root_objectid = 0; 361 first_ino = 0; 362 continue; 363 } else { 364 break; 365 } 366 } 367 368 first_ino = defrag->ino + 1; 369 root_objectid = defrag->root; 370 371 __btrfs_run_defrag_inode(fs_info, defrag); 372 } 373 atomic_dec(&fs_info->defrag_running); 374 375 /* 376 * during unmount, we use the transaction_wait queue to 377 * wait for the defragger to stop 378 */ 379 wake_up(&fs_info->transaction_wait); 380 return 0; 381 } 382 383 /* simple helper to fault in pages and copy. This should go away 384 * and be replaced with calls into generic code. 385 */ 386 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 387 struct page **prepared_pages, 388 struct iov_iter *i) 389 { 390 size_t copied = 0; 391 size_t total_copied = 0; 392 int pg = 0; 393 int offset = offset_in_page(pos); 394 395 while (write_bytes > 0) { 396 size_t count = min_t(size_t, 397 PAGE_SIZE - offset, write_bytes); 398 struct page *page = prepared_pages[pg]; 399 /* 400 * Copy data from userspace to the current page 401 */ 402 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 403 404 /* Flush processor's dcache for this page */ 405 flush_dcache_page(page); 406 407 /* 408 * if we get a partial write, we can end up with 409 * partially up to date pages. These add 410 * a lot of complexity, so make sure they don't 411 * happen by forcing this copy to be retried. 412 * 413 * The rest of the btrfs_file_write code will fall 414 * back to page at a time copies after we return 0. 415 */ 416 if (!PageUptodate(page) && copied < count) 417 copied = 0; 418 419 iov_iter_advance(i, copied); 420 write_bytes -= copied; 421 total_copied += copied; 422 423 /* Return to btrfs_file_write_iter to fault page */ 424 if (unlikely(copied == 0)) 425 break; 426 427 if (copied < PAGE_SIZE - offset) { 428 offset += copied; 429 } else { 430 pg++; 431 offset = 0; 432 } 433 } 434 return total_copied; 435 } 436 437 /* 438 * unlocks pages after btrfs_file_write is done with them 439 */ 440 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 441 { 442 size_t i; 443 for (i = 0; i < num_pages; i++) { 444 /* page checked is some magic around finding pages that 445 * have been modified without going through btrfs_set_page_dirty 446 * clear it here. There should be no need to mark the pages 447 * accessed as prepare_pages should have marked them accessed 448 * in prepare_pages via find_or_create_page() 449 */ 450 ClearPageChecked(pages[i]); 451 unlock_page(pages[i]); 452 put_page(pages[i]); 453 } 454 } 455 456 /* 457 * After btrfs_copy_from_user(), update the following things for delalloc: 458 * - Mark newly dirtied pages as DELALLOC in the io tree. 459 * Used to advise which range is to be written back. 460 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 461 * - Update inode size for past EOF write 462 */ 463 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 464 size_t num_pages, loff_t pos, size_t write_bytes, 465 struct extent_state **cached, bool noreserve) 466 { 467 struct btrfs_fs_info *fs_info = inode->root->fs_info; 468 int err = 0; 469 int i; 470 u64 num_bytes; 471 u64 start_pos; 472 u64 end_of_last_block; 473 u64 end_pos = pos + write_bytes; 474 loff_t isize = i_size_read(&inode->vfs_inode); 475 unsigned int extra_bits = 0; 476 477 if (write_bytes == 0) 478 return 0; 479 480 if (noreserve) 481 extra_bits |= EXTENT_NORESERVE; 482 483 start_pos = round_down(pos, fs_info->sectorsize); 484 num_bytes = round_up(write_bytes + pos - start_pos, 485 fs_info->sectorsize); 486 ASSERT(num_bytes <= U32_MAX); 487 488 end_of_last_block = start_pos + num_bytes - 1; 489 490 /* 491 * The pages may have already been dirty, clear out old accounting so 492 * we can set things up properly 493 */ 494 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 495 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 496 0, 0, cached); 497 498 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 499 extra_bits, cached); 500 if (err) 501 return err; 502 503 for (i = 0; i < num_pages; i++) { 504 struct page *p = pages[i]; 505 506 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes); 507 ClearPageChecked(p); 508 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes); 509 } 510 511 /* 512 * we've only changed i_size in ram, and we haven't updated 513 * the disk i_size. There is no need to log the inode 514 * at this time. 515 */ 516 if (end_pos > isize) 517 i_size_write(&inode->vfs_inode, end_pos); 518 return 0; 519 } 520 521 /* 522 * this drops all the extents in the cache that intersect the range 523 * [start, end]. Existing extents are split as required. 524 */ 525 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 526 int skip_pinned) 527 { 528 struct extent_map *em; 529 struct extent_map *split = NULL; 530 struct extent_map *split2 = NULL; 531 struct extent_map_tree *em_tree = &inode->extent_tree; 532 u64 len = end - start + 1; 533 u64 gen; 534 int ret; 535 int testend = 1; 536 unsigned long flags; 537 int compressed = 0; 538 bool modified; 539 540 WARN_ON(end < start); 541 if (end == (u64)-1) { 542 len = (u64)-1; 543 testend = 0; 544 } 545 while (1) { 546 int no_splits = 0; 547 548 modified = false; 549 if (!split) 550 split = alloc_extent_map(); 551 if (!split2) 552 split2 = alloc_extent_map(); 553 if (!split || !split2) 554 no_splits = 1; 555 556 write_lock(&em_tree->lock); 557 em = lookup_extent_mapping(em_tree, start, len); 558 if (!em) { 559 write_unlock(&em_tree->lock); 560 break; 561 } 562 flags = em->flags; 563 gen = em->generation; 564 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 565 if (testend && em->start + em->len >= start + len) { 566 free_extent_map(em); 567 write_unlock(&em_tree->lock); 568 break; 569 } 570 start = em->start + em->len; 571 if (testend) 572 len = start + len - (em->start + em->len); 573 free_extent_map(em); 574 write_unlock(&em_tree->lock); 575 continue; 576 } 577 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 578 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 579 clear_bit(EXTENT_FLAG_LOGGING, &flags); 580 modified = !list_empty(&em->list); 581 if (no_splits) 582 goto next; 583 584 if (em->start < start) { 585 split->start = em->start; 586 split->len = start - em->start; 587 588 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 589 split->orig_start = em->orig_start; 590 split->block_start = em->block_start; 591 592 if (compressed) 593 split->block_len = em->block_len; 594 else 595 split->block_len = split->len; 596 split->orig_block_len = max(split->block_len, 597 em->orig_block_len); 598 split->ram_bytes = em->ram_bytes; 599 } else { 600 split->orig_start = split->start; 601 split->block_len = 0; 602 split->block_start = em->block_start; 603 split->orig_block_len = 0; 604 split->ram_bytes = split->len; 605 } 606 607 split->generation = gen; 608 split->flags = flags; 609 split->compress_type = em->compress_type; 610 replace_extent_mapping(em_tree, em, split, modified); 611 free_extent_map(split); 612 split = split2; 613 split2 = NULL; 614 } 615 if (testend && em->start + em->len > start + len) { 616 u64 diff = start + len - em->start; 617 618 split->start = start + len; 619 split->len = em->start + em->len - (start + len); 620 split->flags = flags; 621 split->compress_type = em->compress_type; 622 split->generation = gen; 623 624 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 625 split->orig_block_len = max(em->block_len, 626 em->orig_block_len); 627 628 split->ram_bytes = em->ram_bytes; 629 if (compressed) { 630 split->block_len = em->block_len; 631 split->block_start = em->block_start; 632 split->orig_start = em->orig_start; 633 } else { 634 split->block_len = split->len; 635 split->block_start = em->block_start 636 + diff; 637 split->orig_start = em->orig_start; 638 } 639 } else { 640 split->ram_bytes = split->len; 641 split->orig_start = split->start; 642 split->block_len = 0; 643 split->block_start = em->block_start; 644 split->orig_block_len = 0; 645 } 646 647 if (extent_map_in_tree(em)) { 648 replace_extent_mapping(em_tree, em, split, 649 modified); 650 } else { 651 ret = add_extent_mapping(em_tree, split, 652 modified); 653 ASSERT(ret == 0); /* Logic error */ 654 } 655 free_extent_map(split); 656 split = NULL; 657 } 658 next: 659 if (extent_map_in_tree(em)) 660 remove_extent_mapping(em_tree, em); 661 write_unlock(&em_tree->lock); 662 663 /* once for us */ 664 free_extent_map(em); 665 /* once for the tree*/ 666 free_extent_map(em); 667 } 668 if (split) 669 free_extent_map(split); 670 if (split2) 671 free_extent_map(split2); 672 } 673 674 /* 675 * this is very complex, but the basic idea is to drop all extents 676 * in the range start - end. hint_block is filled in with a block number 677 * that would be a good hint to the block allocator for this file. 678 * 679 * If an extent intersects the range but is not entirely inside the range 680 * it is either truncated or split. Anything entirely inside the range 681 * is deleted from the tree. 682 * 683 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 684 * to deal with that. We set the field 'bytes_found' of the arguments structure 685 * with the number of allocated bytes found in the target range, so that the 686 * caller can update the inode's number of bytes in an atomic way when 687 * replacing extents in a range to avoid races with stat(2). 688 */ 689 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 690 struct btrfs_root *root, struct btrfs_inode *inode, 691 struct btrfs_drop_extents_args *args) 692 { 693 struct btrfs_fs_info *fs_info = root->fs_info; 694 struct extent_buffer *leaf; 695 struct btrfs_file_extent_item *fi; 696 struct btrfs_ref ref = { 0 }; 697 struct btrfs_key key; 698 struct btrfs_key new_key; 699 u64 ino = btrfs_ino(inode); 700 u64 search_start = args->start; 701 u64 disk_bytenr = 0; 702 u64 num_bytes = 0; 703 u64 extent_offset = 0; 704 u64 extent_end = 0; 705 u64 last_end = args->start; 706 int del_nr = 0; 707 int del_slot = 0; 708 int extent_type; 709 int recow; 710 int ret; 711 int modify_tree = -1; 712 int update_refs; 713 int found = 0; 714 int leafs_visited = 0; 715 struct btrfs_path *path = args->path; 716 717 args->bytes_found = 0; 718 args->extent_inserted = false; 719 720 /* Must always have a path if ->replace_extent is true */ 721 ASSERT(!(args->replace_extent && !args->path)); 722 723 if (!path) { 724 path = btrfs_alloc_path(); 725 if (!path) { 726 ret = -ENOMEM; 727 goto out; 728 } 729 } 730 731 if (args->drop_cache) 732 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0); 733 734 if (args->start >= inode->disk_i_size && !args->replace_extent) 735 modify_tree = 0; 736 737 update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 738 root == fs_info->tree_root); 739 while (1) { 740 recow = 0; 741 ret = btrfs_lookup_file_extent(trans, root, path, ino, 742 search_start, modify_tree); 743 if (ret < 0) 744 break; 745 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 746 leaf = path->nodes[0]; 747 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 748 if (key.objectid == ino && 749 key.type == BTRFS_EXTENT_DATA_KEY) 750 path->slots[0]--; 751 } 752 ret = 0; 753 leafs_visited++; 754 next_slot: 755 leaf = path->nodes[0]; 756 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 757 BUG_ON(del_nr > 0); 758 ret = btrfs_next_leaf(root, path); 759 if (ret < 0) 760 break; 761 if (ret > 0) { 762 ret = 0; 763 break; 764 } 765 leafs_visited++; 766 leaf = path->nodes[0]; 767 recow = 1; 768 } 769 770 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 771 772 if (key.objectid > ino) 773 break; 774 if (WARN_ON_ONCE(key.objectid < ino) || 775 key.type < BTRFS_EXTENT_DATA_KEY) { 776 ASSERT(del_nr == 0); 777 path->slots[0]++; 778 goto next_slot; 779 } 780 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 781 break; 782 783 fi = btrfs_item_ptr(leaf, path->slots[0], 784 struct btrfs_file_extent_item); 785 extent_type = btrfs_file_extent_type(leaf, fi); 786 787 if (extent_type == BTRFS_FILE_EXTENT_REG || 788 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 789 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 790 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 791 extent_offset = btrfs_file_extent_offset(leaf, fi); 792 extent_end = key.offset + 793 btrfs_file_extent_num_bytes(leaf, fi); 794 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 795 extent_end = key.offset + 796 btrfs_file_extent_ram_bytes(leaf, fi); 797 } else { 798 /* can't happen */ 799 BUG(); 800 } 801 802 /* 803 * Don't skip extent items representing 0 byte lengths. They 804 * used to be created (bug) if while punching holes we hit 805 * -ENOSPC condition. So if we find one here, just ensure we 806 * delete it, otherwise we would insert a new file extent item 807 * with the same key (offset) as that 0 bytes length file 808 * extent item in the call to setup_items_for_insert() later 809 * in this function. 810 */ 811 if (extent_end == key.offset && extent_end >= search_start) { 812 last_end = extent_end; 813 goto delete_extent_item; 814 } 815 816 if (extent_end <= search_start) { 817 path->slots[0]++; 818 goto next_slot; 819 } 820 821 found = 1; 822 search_start = max(key.offset, args->start); 823 if (recow || !modify_tree) { 824 modify_tree = -1; 825 btrfs_release_path(path); 826 continue; 827 } 828 829 /* 830 * | - range to drop - | 831 * | -------- extent -------- | 832 */ 833 if (args->start > key.offset && args->end < extent_end) { 834 BUG_ON(del_nr > 0); 835 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 836 ret = -EOPNOTSUPP; 837 break; 838 } 839 840 memcpy(&new_key, &key, sizeof(new_key)); 841 new_key.offset = args->start; 842 ret = btrfs_duplicate_item(trans, root, path, 843 &new_key); 844 if (ret == -EAGAIN) { 845 btrfs_release_path(path); 846 continue; 847 } 848 if (ret < 0) 849 break; 850 851 leaf = path->nodes[0]; 852 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 853 struct btrfs_file_extent_item); 854 btrfs_set_file_extent_num_bytes(leaf, fi, 855 args->start - key.offset); 856 857 fi = btrfs_item_ptr(leaf, path->slots[0], 858 struct btrfs_file_extent_item); 859 860 extent_offset += args->start - key.offset; 861 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 862 btrfs_set_file_extent_num_bytes(leaf, fi, 863 extent_end - args->start); 864 btrfs_mark_buffer_dirty(leaf); 865 866 if (update_refs && disk_bytenr > 0) { 867 btrfs_init_generic_ref(&ref, 868 BTRFS_ADD_DELAYED_REF, 869 disk_bytenr, num_bytes, 0); 870 btrfs_init_data_ref(&ref, 871 root->root_key.objectid, 872 new_key.objectid, 873 args->start - extent_offset); 874 ret = btrfs_inc_extent_ref(trans, &ref); 875 BUG_ON(ret); /* -ENOMEM */ 876 } 877 key.offset = args->start; 878 } 879 /* 880 * From here on out we will have actually dropped something, so 881 * last_end can be updated. 882 */ 883 last_end = extent_end; 884 885 /* 886 * | ---- range to drop ----- | 887 * | -------- extent -------- | 888 */ 889 if (args->start <= key.offset && args->end < extent_end) { 890 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 891 ret = -EOPNOTSUPP; 892 break; 893 } 894 895 memcpy(&new_key, &key, sizeof(new_key)); 896 new_key.offset = args->end; 897 btrfs_set_item_key_safe(fs_info, path, &new_key); 898 899 extent_offset += args->end - key.offset; 900 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 901 btrfs_set_file_extent_num_bytes(leaf, fi, 902 extent_end - args->end); 903 btrfs_mark_buffer_dirty(leaf); 904 if (update_refs && disk_bytenr > 0) 905 args->bytes_found += args->end - key.offset; 906 break; 907 } 908 909 search_start = extent_end; 910 /* 911 * | ---- range to drop ----- | 912 * | -------- extent -------- | 913 */ 914 if (args->start > key.offset && args->end >= extent_end) { 915 BUG_ON(del_nr > 0); 916 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 917 ret = -EOPNOTSUPP; 918 break; 919 } 920 921 btrfs_set_file_extent_num_bytes(leaf, fi, 922 args->start - key.offset); 923 btrfs_mark_buffer_dirty(leaf); 924 if (update_refs && disk_bytenr > 0) 925 args->bytes_found += extent_end - args->start; 926 if (args->end == extent_end) 927 break; 928 929 path->slots[0]++; 930 goto next_slot; 931 } 932 933 /* 934 * | ---- range to drop ----- | 935 * | ------ extent ------ | 936 */ 937 if (args->start <= key.offset && args->end >= extent_end) { 938 delete_extent_item: 939 if (del_nr == 0) { 940 del_slot = path->slots[0]; 941 del_nr = 1; 942 } else { 943 BUG_ON(del_slot + del_nr != path->slots[0]); 944 del_nr++; 945 } 946 947 if (update_refs && 948 extent_type == BTRFS_FILE_EXTENT_INLINE) { 949 args->bytes_found += extent_end - key.offset; 950 extent_end = ALIGN(extent_end, 951 fs_info->sectorsize); 952 } else if (update_refs && disk_bytenr > 0) { 953 btrfs_init_generic_ref(&ref, 954 BTRFS_DROP_DELAYED_REF, 955 disk_bytenr, num_bytes, 0); 956 btrfs_init_data_ref(&ref, 957 root->root_key.objectid, 958 key.objectid, 959 key.offset - extent_offset); 960 ret = btrfs_free_extent(trans, &ref); 961 BUG_ON(ret); /* -ENOMEM */ 962 args->bytes_found += extent_end - key.offset; 963 } 964 965 if (args->end == extent_end) 966 break; 967 968 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 969 path->slots[0]++; 970 goto next_slot; 971 } 972 973 ret = btrfs_del_items(trans, root, path, del_slot, 974 del_nr); 975 if (ret) { 976 btrfs_abort_transaction(trans, ret); 977 break; 978 } 979 980 del_nr = 0; 981 del_slot = 0; 982 983 btrfs_release_path(path); 984 continue; 985 } 986 987 BUG(); 988 } 989 990 if (!ret && del_nr > 0) { 991 /* 992 * Set path->slots[0] to first slot, so that after the delete 993 * if items are move off from our leaf to its immediate left or 994 * right neighbor leafs, we end up with a correct and adjusted 995 * path->slots[0] for our insertion (if args->replace_extent). 996 */ 997 path->slots[0] = del_slot; 998 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 999 if (ret) 1000 btrfs_abort_transaction(trans, ret); 1001 } 1002 1003 leaf = path->nodes[0]; 1004 /* 1005 * If btrfs_del_items() was called, it might have deleted a leaf, in 1006 * which case it unlocked our path, so check path->locks[0] matches a 1007 * write lock. 1008 */ 1009 if (!ret && args->replace_extent && leafs_visited == 1 && 1010 path->locks[0] == BTRFS_WRITE_LOCK && 1011 btrfs_leaf_free_space(leaf) >= 1012 sizeof(struct btrfs_item) + args->extent_item_size) { 1013 1014 key.objectid = ino; 1015 key.type = BTRFS_EXTENT_DATA_KEY; 1016 key.offset = args->start; 1017 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 1018 struct btrfs_key slot_key; 1019 1020 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 1021 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1022 path->slots[0]++; 1023 } 1024 setup_items_for_insert(root, path, &key, 1025 &args->extent_item_size, 1); 1026 args->extent_inserted = true; 1027 } 1028 1029 if (!args->path) 1030 btrfs_free_path(path); 1031 else if (!args->extent_inserted) 1032 btrfs_release_path(path); 1033 out: 1034 args->drop_end = found ? min(args->end, last_end) : args->end; 1035 1036 return ret; 1037 } 1038 1039 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1040 u64 objectid, u64 bytenr, u64 orig_offset, 1041 u64 *start, u64 *end) 1042 { 1043 struct btrfs_file_extent_item *fi; 1044 struct btrfs_key key; 1045 u64 extent_end; 1046 1047 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1048 return 0; 1049 1050 btrfs_item_key_to_cpu(leaf, &key, slot); 1051 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1052 return 0; 1053 1054 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1055 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1056 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1057 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1058 btrfs_file_extent_compression(leaf, fi) || 1059 btrfs_file_extent_encryption(leaf, fi) || 1060 btrfs_file_extent_other_encoding(leaf, fi)) 1061 return 0; 1062 1063 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1064 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1065 return 0; 1066 1067 *start = key.offset; 1068 *end = extent_end; 1069 return 1; 1070 } 1071 1072 /* 1073 * Mark extent in the range start - end as written. 1074 * 1075 * This changes extent type from 'pre-allocated' to 'regular'. If only 1076 * part of extent is marked as written, the extent will be split into 1077 * two or three. 1078 */ 1079 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1080 struct btrfs_inode *inode, u64 start, u64 end) 1081 { 1082 struct btrfs_fs_info *fs_info = trans->fs_info; 1083 struct btrfs_root *root = inode->root; 1084 struct extent_buffer *leaf; 1085 struct btrfs_path *path; 1086 struct btrfs_file_extent_item *fi; 1087 struct btrfs_ref ref = { 0 }; 1088 struct btrfs_key key; 1089 struct btrfs_key new_key; 1090 u64 bytenr; 1091 u64 num_bytes; 1092 u64 extent_end; 1093 u64 orig_offset; 1094 u64 other_start; 1095 u64 other_end; 1096 u64 split; 1097 int del_nr = 0; 1098 int del_slot = 0; 1099 int recow; 1100 int ret = 0; 1101 u64 ino = btrfs_ino(inode); 1102 1103 path = btrfs_alloc_path(); 1104 if (!path) 1105 return -ENOMEM; 1106 again: 1107 recow = 0; 1108 split = start; 1109 key.objectid = ino; 1110 key.type = BTRFS_EXTENT_DATA_KEY; 1111 key.offset = split; 1112 1113 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1114 if (ret < 0) 1115 goto out; 1116 if (ret > 0 && path->slots[0] > 0) 1117 path->slots[0]--; 1118 1119 leaf = path->nodes[0]; 1120 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1121 if (key.objectid != ino || 1122 key.type != BTRFS_EXTENT_DATA_KEY) { 1123 ret = -EINVAL; 1124 btrfs_abort_transaction(trans, ret); 1125 goto out; 1126 } 1127 fi = btrfs_item_ptr(leaf, path->slots[0], 1128 struct btrfs_file_extent_item); 1129 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1130 ret = -EINVAL; 1131 btrfs_abort_transaction(trans, ret); 1132 goto out; 1133 } 1134 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1135 if (key.offset > start || extent_end < end) { 1136 ret = -EINVAL; 1137 btrfs_abort_transaction(trans, ret); 1138 goto out; 1139 } 1140 1141 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1142 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1143 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1144 memcpy(&new_key, &key, sizeof(new_key)); 1145 1146 if (start == key.offset && end < extent_end) { 1147 other_start = 0; 1148 other_end = start; 1149 if (extent_mergeable(leaf, path->slots[0] - 1, 1150 ino, bytenr, orig_offset, 1151 &other_start, &other_end)) { 1152 new_key.offset = end; 1153 btrfs_set_item_key_safe(fs_info, path, &new_key); 1154 fi = btrfs_item_ptr(leaf, path->slots[0], 1155 struct btrfs_file_extent_item); 1156 btrfs_set_file_extent_generation(leaf, fi, 1157 trans->transid); 1158 btrfs_set_file_extent_num_bytes(leaf, fi, 1159 extent_end - end); 1160 btrfs_set_file_extent_offset(leaf, fi, 1161 end - orig_offset); 1162 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1163 struct btrfs_file_extent_item); 1164 btrfs_set_file_extent_generation(leaf, fi, 1165 trans->transid); 1166 btrfs_set_file_extent_num_bytes(leaf, fi, 1167 end - other_start); 1168 btrfs_mark_buffer_dirty(leaf); 1169 goto out; 1170 } 1171 } 1172 1173 if (start > key.offset && end == extent_end) { 1174 other_start = end; 1175 other_end = 0; 1176 if (extent_mergeable(leaf, path->slots[0] + 1, 1177 ino, bytenr, orig_offset, 1178 &other_start, &other_end)) { 1179 fi = btrfs_item_ptr(leaf, path->slots[0], 1180 struct btrfs_file_extent_item); 1181 btrfs_set_file_extent_num_bytes(leaf, fi, 1182 start - key.offset); 1183 btrfs_set_file_extent_generation(leaf, fi, 1184 trans->transid); 1185 path->slots[0]++; 1186 new_key.offset = start; 1187 btrfs_set_item_key_safe(fs_info, path, &new_key); 1188 1189 fi = btrfs_item_ptr(leaf, path->slots[0], 1190 struct btrfs_file_extent_item); 1191 btrfs_set_file_extent_generation(leaf, fi, 1192 trans->transid); 1193 btrfs_set_file_extent_num_bytes(leaf, fi, 1194 other_end - start); 1195 btrfs_set_file_extent_offset(leaf, fi, 1196 start - orig_offset); 1197 btrfs_mark_buffer_dirty(leaf); 1198 goto out; 1199 } 1200 } 1201 1202 while (start > key.offset || end < extent_end) { 1203 if (key.offset == start) 1204 split = end; 1205 1206 new_key.offset = split; 1207 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1208 if (ret == -EAGAIN) { 1209 btrfs_release_path(path); 1210 goto again; 1211 } 1212 if (ret < 0) { 1213 btrfs_abort_transaction(trans, ret); 1214 goto out; 1215 } 1216 1217 leaf = path->nodes[0]; 1218 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1219 struct btrfs_file_extent_item); 1220 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1221 btrfs_set_file_extent_num_bytes(leaf, fi, 1222 split - key.offset); 1223 1224 fi = btrfs_item_ptr(leaf, path->slots[0], 1225 struct btrfs_file_extent_item); 1226 1227 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1228 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1229 btrfs_set_file_extent_num_bytes(leaf, fi, 1230 extent_end - split); 1231 btrfs_mark_buffer_dirty(leaf); 1232 1233 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 1234 num_bytes, 0); 1235 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 1236 orig_offset); 1237 ret = btrfs_inc_extent_ref(trans, &ref); 1238 if (ret) { 1239 btrfs_abort_transaction(trans, ret); 1240 goto out; 1241 } 1242 1243 if (split == start) { 1244 key.offset = start; 1245 } else { 1246 if (start != key.offset) { 1247 ret = -EINVAL; 1248 btrfs_abort_transaction(trans, ret); 1249 goto out; 1250 } 1251 path->slots[0]--; 1252 extent_end = end; 1253 } 1254 recow = 1; 1255 } 1256 1257 other_start = end; 1258 other_end = 0; 1259 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1260 num_bytes, 0); 1261 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset); 1262 if (extent_mergeable(leaf, path->slots[0] + 1, 1263 ino, bytenr, orig_offset, 1264 &other_start, &other_end)) { 1265 if (recow) { 1266 btrfs_release_path(path); 1267 goto again; 1268 } 1269 extent_end = other_end; 1270 del_slot = path->slots[0] + 1; 1271 del_nr++; 1272 ret = btrfs_free_extent(trans, &ref); 1273 if (ret) { 1274 btrfs_abort_transaction(trans, ret); 1275 goto out; 1276 } 1277 } 1278 other_start = 0; 1279 other_end = start; 1280 if (extent_mergeable(leaf, path->slots[0] - 1, 1281 ino, bytenr, orig_offset, 1282 &other_start, &other_end)) { 1283 if (recow) { 1284 btrfs_release_path(path); 1285 goto again; 1286 } 1287 key.offset = other_start; 1288 del_slot = path->slots[0]; 1289 del_nr++; 1290 ret = btrfs_free_extent(trans, &ref); 1291 if (ret) { 1292 btrfs_abort_transaction(trans, ret); 1293 goto out; 1294 } 1295 } 1296 if (del_nr == 0) { 1297 fi = btrfs_item_ptr(leaf, path->slots[0], 1298 struct btrfs_file_extent_item); 1299 btrfs_set_file_extent_type(leaf, fi, 1300 BTRFS_FILE_EXTENT_REG); 1301 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1302 btrfs_mark_buffer_dirty(leaf); 1303 } else { 1304 fi = btrfs_item_ptr(leaf, del_slot - 1, 1305 struct btrfs_file_extent_item); 1306 btrfs_set_file_extent_type(leaf, fi, 1307 BTRFS_FILE_EXTENT_REG); 1308 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1309 btrfs_set_file_extent_num_bytes(leaf, fi, 1310 extent_end - key.offset); 1311 btrfs_mark_buffer_dirty(leaf); 1312 1313 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1314 if (ret < 0) { 1315 btrfs_abort_transaction(trans, ret); 1316 goto out; 1317 } 1318 } 1319 out: 1320 btrfs_free_path(path); 1321 return ret; 1322 } 1323 1324 /* 1325 * on error we return an unlocked page and the error value 1326 * on success we return a locked page and 0 1327 */ 1328 static int prepare_uptodate_page(struct inode *inode, 1329 struct page *page, u64 pos, 1330 bool force_uptodate) 1331 { 1332 int ret = 0; 1333 1334 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1335 !PageUptodate(page)) { 1336 ret = btrfs_readpage(NULL, page); 1337 if (ret) 1338 return ret; 1339 lock_page(page); 1340 if (!PageUptodate(page)) { 1341 unlock_page(page); 1342 return -EIO; 1343 } 1344 if (page->mapping != inode->i_mapping) { 1345 unlock_page(page); 1346 return -EAGAIN; 1347 } 1348 } 1349 return 0; 1350 } 1351 1352 /* 1353 * this just gets pages into the page cache and locks them down. 1354 */ 1355 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1356 size_t num_pages, loff_t pos, 1357 size_t write_bytes, bool force_uptodate) 1358 { 1359 int i; 1360 unsigned long index = pos >> PAGE_SHIFT; 1361 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1362 int err = 0; 1363 int faili; 1364 1365 for (i = 0; i < num_pages; i++) { 1366 again: 1367 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1368 mask | __GFP_WRITE); 1369 if (!pages[i]) { 1370 faili = i - 1; 1371 err = -ENOMEM; 1372 goto fail; 1373 } 1374 1375 err = set_page_extent_mapped(pages[i]); 1376 if (err < 0) { 1377 faili = i; 1378 goto fail; 1379 } 1380 1381 if (i == 0) 1382 err = prepare_uptodate_page(inode, pages[i], pos, 1383 force_uptodate); 1384 if (!err && i == num_pages - 1) 1385 err = prepare_uptodate_page(inode, pages[i], 1386 pos + write_bytes, false); 1387 if (err) { 1388 put_page(pages[i]); 1389 if (err == -EAGAIN) { 1390 err = 0; 1391 goto again; 1392 } 1393 faili = i - 1; 1394 goto fail; 1395 } 1396 wait_on_page_writeback(pages[i]); 1397 } 1398 1399 return 0; 1400 fail: 1401 while (faili >= 0) { 1402 unlock_page(pages[faili]); 1403 put_page(pages[faili]); 1404 faili--; 1405 } 1406 return err; 1407 1408 } 1409 1410 /* 1411 * This function locks the extent and properly waits for data=ordered extents 1412 * to finish before allowing the pages to be modified if need. 1413 * 1414 * The return value: 1415 * 1 - the extent is locked 1416 * 0 - the extent is not locked, and everything is OK 1417 * -EAGAIN - need re-prepare the pages 1418 * the other < 0 number - Something wrong happens 1419 */ 1420 static noinline int 1421 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1422 size_t num_pages, loff_t pos, 1423 size_t write_bytes, 1424 u64 *lockstart, u64 *lockend, 1425 struct extent_state **cached_state) 1426 { 1427 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1428 u64 start_pos; 1429 u64 last_pos; 1430 int i; 1431 int ret = 0; 1432 1433 start_pos = round_down(pos, fs_info->sectorsize); 1434 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 1435 1436 if (start_pos < inode->vfs_inode.i_size) { 1437 struct btrfs_ordered_extent *ordered; 1438 1439 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1440 cached_state); 1441 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1442 last_pos - start_pos + 1); 1443 if (ordered && 1444 ordered->file_offset + ordered->num_bytes > start_pos && 1445 ordered->file_offset <= last_pos) { 1446 unlock_extent_cached(&inode->io_tree, start_pos, 1447 last_pos, cached_state); 1448 for (i = 0; i < num_pages; i++) { 1449 unlock_page(pages[i]); 1450 put_page(pages[i]); 1451 } 1452 btrfs_start_ordered_extent(ordered, 1); 1453 btrfs_put_ordered_extent(ordered); 1454 return -EAGAIN; 1455 } 1456 if (ordered) 1457 btrfs_put_ordered_extent(ordered); 1458 1459 *lockstart = start_pos; 1460 *lockend = last_pos; 1461 ret = 1; 1462 } 1463 1464 /* 1465 * We should be called after prepare_pages() which should have locked 1466 * all pages in the range. 1467 */ 1468 for (i = 0; i < num_pages; i++) 1469 WARN_ON(!PageLocked(pages[i])); 1470 1471 return ret; 1472 } 1473 1474 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1475 size_t *write_bytes, bool nowait) 1476 { 1477 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1478 struct btrfs_root *root = inode->root; 1479 u64 lockstart, lockend; 1480 u64 num_bytes; 1481 int ret; 1482 1483 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1484 return 0; 1485 1486 if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock)) 1487 return -EAGAIN; 1488 1489 lockstart = round_down(pos, fs_info->sectorsize); 1490 lockend = round_up(pos + *write_bytes, 1491 fs_info->sectorsize) - 1; 1492 num_bytes = lockend - lockstart + 1; 1493 1494 if (nowait) { 1495 struct btrfs_ordered_extent *ordered; 1496 1497 if (!try_lock_extent(&inode->io_tree, lockstart, lockend)) 1498 return -EAGAIN; 1499 1500 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1501 num_bytes); 1502 if (ordered) { 1503 btrfs_put_ordered_extent(ordered); 1504 ret = -EAGAIN; 1505 goto out_unlock; 1506 } 1507 } else { 1508 btrfs_lock_and_flush_ordered_range(inode, lockstart, 1509 lockend, NULL); 1510 } 1511 1512 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1513 NULL, NULL, NULL, false); 1514 if (ret <= 0) { 1515 ret = 0; 1516 if (!nowait) 1517 btrfs_drew_write_unlock(&root->snapshot_lock); 1518 } else { 1519 *write_bytes = min_t(size_t, *write_bytes , 1520 num_bytes - pos + lockstart); 1521 } 1522 out_unlock: 1523 unlock_extent(&inode->io_tree, lockstart, lockend); 1524 1525 return ret; 1526 } 1527 1528 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos, 1529 size_t *write_bytes) 1530 { 1531 return check_can_nocow(inode, pos, write_bytes, true); 1532 } 1533 1534 /* 1535 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1536 * 1537 * @pos: File offset 1538 * @write_bytes: The length to write, will be updated to the nocow writeable 1539 * range 1540 * 1541 * This function will flush ordered extents in the range to ensure proper 1542 * nocow checks. 1543 * 1544 * Return: 1545 * >0 and update @write_bytes if we can do nocow write 1546 * 0 if we can't do nocow write 1547 * -EAGAIN if we can't get the needed lock or there are ordered extents 1548 * for * (nowait == true) case 1549 * <0 if other error happened 1550 * 1551 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock(). 1552 */ 1553 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1554 size_t *write_bytes) 1555 { 1556 return check_can_nocow(inode, pos, write_bytes, false); 1557 } 1558 1559 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1560 { 1561 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1562 } 1563 1564 static void update_time_for_write(struct inode *inode) 1565 { 1566 struct timespec64 now; 1567 1568 if (IS_NOCMTIME(inode)) 1569 return; 1570 1571 now = current_time(inode); 1572 if (!timespec64_equal(&inode->i_mtime, &now)) 1573 inode->i_mtime = now; 1574 1575 if (!timespec64_equal(&inode->i_ctime, &now)) 1576 inode->i_ctime = now; 1577 1578 if (IS_I_VERSION(inode)) 1579 inode_inc_iversion(inode); 1580 } 1581 1582 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1583 size_t count) 1584 { 1585 struct file *file = iocb->ki_filp; 1586 struct inode *inode = file_inode(file); 1587 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1588 loff_t pos = iocb->ki_pos; 1589 int ret; 1590 loff_t oldsize; 1591 loff_t start_pos; 1592 1593 if (iocb->ki_flags & IOCB_NOWAIT) { 1594 size_t nocow_bytes = count; 1595 1596 /* We will allocate space in case nodatacow is not set, so bail */ 1597 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0) 1598 return -EAGAIN; 1599 /* 1600 * There are holes in the range or parts of the range that must 1601 * be COWed (shared extents, RO block groups, etc), so just bail 1602 * out. 1603 */ 1604 if (nocow_bytes < count) 1605 return -EAGAIN; 1606 } 1607 1608 current->backing_dev_info = inode_to_bdi(inode); 1609 ret = file_remove_privs(file); 1610 if (ret) 1611 return ret; 1612 1613 /* 1614 * We reserve space for updating the inode when we reserve space for the 1615 * extent we are going to write, so we will enospc out there. We don't 1616 * need to start yet another transaction to update the inode as we will 1617 * update the inode when we finish writing whatever data we write. 1618 */ 1619 update_time_for_write(inode); 1620 1621 start_pos = round_down(pos, fs_info->sectorsize); 1622 oldsize = i_size_read(inode); 1623 if (start_pos > oldsize) { 1624 /* Expand hole size to cover write data, preventing empty gap */ 1625 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1626 1627 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1628 if (ret) { 1629 current->backing_dev_info = NULL; 1630 return ret; 1631 } 1632 } 1633 1634 return 0; 1635 } 1636 1637 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1638 struct iov_iter *i) 1639 { 1640 struct file *file = iocb->ki_filp; 1641 loff_t pos; 1642 struct inode *inode = file_inode(file); 1643 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1644 struct page **pages = NULL; 1645 struct extent_changeset *data_reserved = NULL; 1646 u64 release_bytes = 0; 1647 u64 lockstart; 1648 u64 lockend; 1649 size_t num_written = 0; 1650 int nrptrs; 1651 ssize_t ret; 1652 bool only_release_metadata = false; 1653 bool force_page_uptodate = false; 1654 loff_t old_isize = i_size_read(inode); 1655 unsigned int ilock_flags = 0; 1656 1657 if (iocb->ki_flags & IOCB_NOWAIT) 1658 ilock_flags |= BTRFS_ILOCK_TRY; 1659 1660 ret = btrfs_inode_lock(inode, ilock_flags); 1661 if (ret < 0) 1662 return ret; 1663 1664 ret = generic_write_checks(iocb, i); 1665 if (ret <= 0) 1666 goto out; 1667 1668 ret = btrfs_write_check(iocb, i, ret); 1669 if (ret < 0) 1670 goto out; 1671 1672 pos = iocb->ki_pos; 1673 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1674 PAGE_SIZE / (sizeof(struct page *))); 1675 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1676 nrptrs = max(nrptrs, 8); 1677 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1678 if (!pages) { 1679 ret = -ENOMEM; 1680 goto out; 1681 } 1682 1683 while (iov_iter_count(i) > 0) { 1684 struct extent_state *cached_state = NULL; 1685 size_t offset = offset_in_page(pos); 1686 size_t sector_offset; 1687 size_t write_bytes = min(iov_iter_count(i), 1688 nrptrs * (size_t)PAGE_SIZE - 1689 offset); 1690 size_t num_pages; 1691 size_t reserve_bytes; 1692 size_t dirty_pages; 1693 size_t copied; 1694 size_t dirty_sectors; 1695 size_t num_sectors; 1696 int extents_locked; 1697 1698 /* 1699 * Fault pages before locking them in prepare_pages 1700 * to avoid recursive lock 1701 */ 1702 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1703 ret = -EFAULT; 1704 break; 1705 } 1706 1707 only_release_metadata = false; 1708 sector_offset = pos & (fs_info->sectorsize - 1); 1709 1710 extent_changeset_release(data_reserved); 1711 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1712 &data_reserved, pos, 1713 write_bytes); 1714 if (ret < 0) { 1715 /* 1716 * If we don't have to COW at the offset, reserve 1717 * metadata only. write_bytes may get smaller than 1718 * requested here. 1719 */ 1720 if (btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1721 &write_bytes) > 0) 1722 only_release_metadata = true; 1723 else 1724 break; 1725 } 1726 1727 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1728 WARN_ON(num_pages > nrptrs); 1729 reserve_bytes = round_up(write_bytes + sector_offset, 1730 fs_info->sectorsize); 1731 WARN_ON(reserve_bytes == 0); 1732 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1733 reserve_bytes); 1734 if (ret) { 1735 if (!only_release_metadata) 1736 btrfs_free_reserved_data_space(BTRFS_I(inode), 1737 data_reserved, pos, 1738 write_bytes); 1739 else 1740 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1741 break; 1742 } 1743 1744 release_bytes = reserve_bytes; 1745 again: 1746 /* 1747 * This is going to setup the pages array with the number of 1748 * pages we want, so we don't really need to worry about the 1749 * contents of pages from loop to loop 1750 */ 1751 ret = prepare_pages(inode, pages, num_pages, 1752 pos, write_bytes, 1753 force_page_uptodate); 1754 if (ret) { 1755 btrfs_delalloc_release_extents(BTRFS_I(inode), 1756 reserve_bytes); 1757 break; 1758 } 1759 1760 extents_locked = lock_and_cleanup_extent_if_need( 1761 BTRFS_I(inode), pages, 1762 num_pages, pos, write_bytes, &lockstart, 1763 &lockend, &cached_state); 1764 if (extents_locked < 0) { 1765 if (extents_locked == -EAGAIN) 1766 goto again; 1767 btrfs_delalloc_release_extents(BTRFS_I(inode), 1768 reserve_bytes); 1769 ret = extents_locked; 1770 break; 1771 } 1772 1773 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1774 1775 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1776 dirty_sectors = round_up(copied + sector_offset, 1777 fs_info->sectorsize); 1778 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1779 1780 /* 1781 * if we have trouble faulting in the pages, fall 1782 * back to one page at a time 1783 */ 1784 if (copied < write_bytes) 1785 nrptrs = 1; 1786 1787 if (copied == 0) { 1788 force_page_uptodate = true; 1789 dirty_sectors = 0; 1790 dirty_pages = 0; 1791 } else { 1792 force_page_uptodate = false; 1793 dirty_pages = DIV_ROUND_UP(copied + offset, 1794 PAGE_SIZE); 1795 } 1796 1797 if (num_sectors > dirty_sectors) { 1798 /* release everything except the sectors we dirtied */ 1799 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1800 if (only_release_metadata) { 1801 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1802 release_bytes, true); 1803 } else { 1804 u64 __pos; 1805 1806 __pos = round_down(pos, 1807 fs_info->sectorsize) + 1808 (dirty_pages << PAGE_SHIFT); 1809 btrfs_delalloc_release_space(BTRFS_I(inode), 1810 data_reserved, __pos, 1811 release_bytes, true); 1812 } 1813 } 1814 1815 release_bytes = round_up(copied + sector_offset, 1816 fs_info->sectorsize); 1817 1818 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1819 dirty_pages, pos, copied, 1820 &cached_state, only_release_metadata); 1821 1822 /* 1823 * If we have not locked the extent range, because the range's 1824 * start offset is >= i_size, we might still have a non-NULL 1825 * cached extent state, acquired while marking the extent range 1826 * as delalloc through btrfs_dirty_pages(). Therefore free any 1827 * possible cached extent state to avoid a memory leak. 1828 */ 1829 if (extents_locked) 1830 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1831 lockstart, lockend, &cached_state); 1832 else 1833 free_extent_state(cached_state); 1834 1835 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1836 if (ret) { 1837 btrfs_drop_pages(pages, num_pages); 1838 break; 1839 } 1840 1841 release_bytes = 0; 1842 if (only_release_metadata) 1843 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1844 1845 btrfs_drop_pages(pages, num_pages); 1846 1847 cond_resched(); 1848 1849 balance_dirty_pages_ratelimited(inode->i_mapping); 1850 1851 pos += copied; 1852 num_written += copied; 1853 } 1854 1855 kfree(pages); 1856 1857 if (release_bytes) { 1858 if (only_release_metadata) { 1859 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1860 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1861 release_bytes, true); 1862 } else { 1863 btrfs_delalloc_release_space(BTRFS_I(inode), 1864 data_reserved, 1865 round_down(pos, fs_info->sectorsize), 1866 release_bytes, true); 1867 } 1868 } 1869 1870 extent_changeset_free(data_reserved); 1871 if (num_written > 0) { 1872 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1873 iocb->ki_pos += num_written; 1874 } 1875 out: 1876 btrfs_inode_unlock(inode, ilock_flags); 1877 return num_written ? num_written : ret; 1878 } 1879 1880 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1881 const struct iov_iter *iter, loff_t offset) 1882 { 1883 const u32 blocksize_mask = fs_info->sectorsize - 1; 1884 1885 if (offset & blocksize_mask) 1886 return -EINVAL; 1887 1888 if (iov_iter_alignment(iter) & blocksize_mask) 1889 return -EINVAL; 1890 1891 return 0; 1892 } 1893 1894 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1895 { 1896 struct file *file = iocb->ki_filp; 1897 struct inode *inode = file_inode(file); 1898 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1899 loff_t pos; 1900 ssize_t written = 0; 1901 ssize_t written_buffered; 1902 loff_t endbyte; 1903 ssize_t err; 1904 unsigned int ilock_flags = 0; 1905 struct iomap_dio *dio = NULL; 1906 1907 if (iocb->ki_flags & IOCB_NOWAIT) 1908 ilock_flags |= BTRFS_ILOCK_TRY; 1909 1910 /* If the write DIO is within EOF, use a shared lock */ 1911 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode)) 1912 ilock_flags |= BTRFS_ILOCK_SHARED; 1913 1914 relock: 1915 err = btrfs_inode_lock(inode, ilock_flags); 1916 if (err < 0) 1917 return err; 1918 1919 err = generic_write_checks(iocb, from); 1920 if (err <= 0) { 1921 btrfs_inode_unlock(inode, ilock_flags); 1922 return err; 1923 } 1924 1925 err = btrfs_write_check(iocb, from, err); 1926 if (err < 0) { 1927 btrfs_inode_unlock(inode, ilock_flags); 1928 goto out; 1929 } 1930 1931 pos = iocb->ki_pos; 1932 /* 1933 * Re-check since file size may have changed just before taking the 1934 * lock or pos may have changed because of O_APPEND in generic_write_check() 1935 */ 1936 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1937 pos + iov_iter_count(from) > i_size_read(inode)) { 1938 btrfs_inode_unlock(inode, ilock_flags); 1939 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1940 goto relock; 1941 } 1942 1943 if (check_direct_IO(fs_info, from, pos)) { 1944 btrfs_inode_unlock(inode, ilock_flags); 1945 goto buffered; 1946 } 1947 1948 dio = __iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 1949 0); 1950 1951 btrfs_inode_unlock(inode, ilock_flags); 1952 1953 if (IS_ERR_OR_NULL(dio)) { 1954 err = PTR_ERR_OR_ZERO(dio); 1955 if (err < 0 && err != -ENOTBLK) 1956 goto out; 1957 } else { 1958 written = iomap_dio_complete(dio); 1959 } 1960 1961 if (written < 0 || !iov_iter_count(from)) { 1962 err = written; 1963 goto out; 1964 } 1965 1966 buffered: 1967 pos = iocb->ki_pos; 1968 written_buffered = btrfs_buffered_write(iocb, from); 1969 if (written_buffered < 0) { 1970 err = written_buffered; 1971 goto out; 1972 } 1973 /* 1974 * Ensure all data is persisted. We want the next direct IO read to be 1975 * able to read what was just written. 1976 */ 1977 endbyte = pos + written_buffered - 1; 1978 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1979 if (err) 1980 goto out; 1981 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1982 if (err) 1983 goto out; 1984 written += written_buffered; 1985 iocb->ki_pos = pos + written_buffered; 1986 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1987 endbyte >> PAGE_SHIFT); 1988 out: 1989 return written ? written : err; 1990 } 1991 1992 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1993 struct iov_iter *from) 1994 { 1995 struct file *file = iocb->ki_filp; 1996 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 1997 ssize_t num_written = 0; 1998 const bool sync = iocb->ki_flags & IOCB_DSYNC; 1999 2000 /* 2001 * If the fs flips readonly due to some impossible error, although we 2002 * have opened a file as writable, we have to stop this write operation 2003 * to ensure consistency. 2004 */ 2005 if (test_bit(BTRFS_FS_STATE_ERROR, &inode->root->fs_info->fs_state)) 2006 return -EROFS; 2007 2008 if (!(iocb->ki_flags & IOCB_DIRECT) && 2009 (iocb->ki_flags & IOCB_NOWAIT)) 2010 return -EOPNOTSUPP; 2011 2012 if (sync) 2013 atomic_inc(&inode->sync_writers); 2014 2015 if (iocb->ki_flags & IOCB_DIRECT) 2016 num_written = btrfs_direct_write(iocb, from); 2017 else 2018 num_written = btrfs_buffered_write(iocb, from); 2019 2020 btrfs_set_inode_last_sub_trans(inode); 2021 2022 if (num_written > 0) 2023 num_written = generic_write_sync(iocb, num_written); 2024 2025 if (sync) 2026 atomic_dec(&inode->sync_writers); 2027 2028 current->backing_dev_info = NULL; 2029 return num_written; 2030 } 2031 2032 int btrfs_release_file(struct inode *inode, struct file *filp) 2033 { 2034 struct btrfs_file_private *private = filp->private_data; 2035 2036 if (private && private->filldir_buf) 2037 kfree(private->filldir_buf); 2038 kfree(private); 2039 filp->private_data = NULL; 2040 2041 /* 2042 * Set by setattr when we are about to truncate a file from a non-zero 2043 * size to a zero size. This tries to flush down new bytes that may 2044 * have been written if the application were using truncate to replace 2045 * a file in place. 2046 */ 2047 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 2048 &BTRFS_I(inode)->runtime_flags)) 2049 filemap_flush(inode->i_mapping); 2050 return 0; 2051 } 2052 2053 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2054 { 2055 int ret; 2056 struct blk_plug plug; 2057 2058 /* 2059 * This is only called in fsync, which would do synchronous writes, so 2060 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2061 * multiple disks using raid profile, a large IO can be split to 2062 * several segments of stripe length (currently 64K). 2063 */ 2064 blk_start_plug(&plug); 2065 atomic_inc(&BTRFS_I(inode)->sync_writers); 2066 ret = btrfs_fdatawrite_range(inode, start, end); 2067 atomic_dec(&BTRFS_I(inode)->sync_writers); 2068 blk_finish_plug(&plug); 2069 2070 return ret; 2071 } 2072 2073 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 2074 { 2075 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 2076 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2077 2078 if (btrfs_inode_in_log(inode, fs_info->generation) && 2079 list_empty(&ctx->ordered_extents)) 2080 return true; 2081 2082 /* 2083 * If we are doing a fast fsync we can not bail out if the inode's 2084 * last_trans is <= then the last committed transaction, because we only 2085 * update the last_trans of the inode during ordered extent completion, 2086 * and for a fast fsync we don't wait for that, we only wait for the 2087 * writeback to complete. 2088 */ 2089 if (inode->last_trans <= fs_info->last_trans_committed && 2090 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 2091 list_empty(&ctx->ordered_extents))) 2092 return true; 2093 2094 return false; 2095 } 2096 2097 /* 2098 * fsync call for both files and directories. This logs the inode into 2099 * the tree log instead of forcing full commits whenever possible. 2100 * 2101 * It needs to call filemap_fdatawait so that all ordered extent updates are 2102 * in the metadata btree are up to date for copying to the log. 2103 * 2104 * It drops the inode mutex before doing the tree log commit. This is an 2105 * important optimization for directories because holding the mutex prevents 2106 * new operations on the dir while we write to disk. 2107 */ 2108 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2109 { 2110 struct dentry *dentry = file_dentry(file); 2111 struct inode *inode = d_inode(dentry); 2112 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2113 struct btrfs_root *root = BTRFS_I(inode)->root; 2114 struct btrfs_trans_handle *trans; 2115 struct btrfs_log_ctx ctx; 2116 int ret = 0, err; 2117 u64 len; 2118 bool full_sync; 2119 2120 trace_btrfs_sync_file(file, datasync); 2121 2122 btrfs_init_log_ctx(&ctx, inode); 2123 2124 /* 2125 * Always set the range to a full range, otherwise we can get into 2126 * several problems, from missing file extent items to represent holes 2127 * when not using the NO_HOLES feature, to log tree corruption due to 2128 * races between hole detection during logging and completion of ordered 2129 * extents outside the range, to missing checksums due to ordered extents 2130 * for which we flushed only a subset of their pages. 2131 */ 2132 start = 0; 2133 end = LLONG_MAX; 2134 len = (u64)LLONG_MAX + 1; 2135 2136 /* 2137 * We write the dirty pages in the range and wait until they complete 2138 * out of the ->i_mutex. If so, we can flush the dirty pages by 2139 * multi-task, and make the performance up. See 2140 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2141 */ 2142 ret = start_ordered_ops(inode, start, end); 2143 if (ret) 2144 goto out; 2145 2146 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 2147 2148 atomic_inc(&root->log_batch); 2149 2150 /* 2151 * Always check for the full sync flag while holding the inode's lock, 2152 * to avoid races with other tasks. The flag must be either set all the 2153 * time during logging or always off all the time while logging. 2154 */ 2155 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2156 &BTRFS_I(inode)->runtime_flags); 2157 2158 /* 2159 * Before we acquired the inode's lock and the mmap lock, someone may 2160 * have dirtied more pages in the target range. We need to make sure 2161 * that writeback for any such pages does not start while we are logging 2162 * the inode, because if it does, any of the following might happen when 2163 * we are not doing a full inode sync: 2164 * 2165 * 1) We log an extent after its writeback finishes but before its 2166 * checksums are added to the csum tree, leading to -EIO errors 2167 * when attempting to read the extent after a log replay. 2168 * 2169 * 2) We can end up logging an extent before its writeback finishes. 2170 * Therefore after the log replay we will have a file extent item 2171 * pointing to an unwritten extent (and no data checksums as well). 2172 * 2173 * So trigger writeback for any eventual new dirty pages and then we 2174 * wait for all ordered extents to complete below. 2175 */ 2176 ret = start_ordered_ops(inode, start, end); 2177 if (ret) { 2178 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2179 goto out; 2180 } 2181 2182 /* 2183 * We have to do this here to avoid the priority inversion of waiting on 2184 * IO of a lower priority task while holding a transaction open. 2185 * 2186 * For a full fsync we wait for the ordered extents to complete while 2187 * for a fast fsync we wait just for writeback to complete, and then 2188 * attach the ordered extents to the transaction so that a transaction 2189 * commit waits for their completion, to avoid data loss if we fsync, 2190 * the current transaction commits before the ordered extents complete 2191 * and a power failure happens right after that. 2192 * 2193 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 2194 * logical address recorded in the ordered extent may change. We need 2195 * to wait for the IO to stabilize the logical address. 2196 */ 2197 if (full_sync || btrfs_is_zoned(fs_info)) { 2198 ret = btrfs_wait_ordered_range(inode, start, len); 2199 } else { 2200 /* 2201 * Get our ordered extents as soon as possible to avoid doing 2202 * checksum lookups in the csum tree, and use instead the 2203 * checksums attached to the ordered extents. 2204 */ 2205 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 2206 &ctx.ordered_extents); 2207 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 2208 } 2209 2210 if (ret) 2211 goto out_release_extents; 2212 2213 atomic_inc(&root->log_batch); 2214 2215 smp_mb(); 2216 if (skip_inode_logging(&ctx)) { 2217 /* 2218 * We've had everything committed since the last time we were 2219 * modified so clear this flag in case it was set for whatever 2220 * reason, it's no longer relevant. 2221 */ 2222 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2223 &BTRFS_I(inode)->runtime_flags); 2224 /* 2225 * An ordered extent might have started before and completed 2226 * already with io errors, in which case the inode was not 2227 * updated and we end up here. So check the inode's mapping 2228 * for any errors that might have happened since we last 2229 * checked called fsync. 2230 */ 2231 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2232 goto out_release_extents; 2233 } 2234 2235 /* 2236 * We use start here because we will need to wait on the IO to complete 2237 * in btrfs_sync_log, which could require joining a transaction (for 2238 * example checking cross references in the nocow path). If we use join 2239 * here we could get into a situation where we're waiting on IO to 2240 * happen that is blocked on a transaction trying to commit. With start 2241 * we inc the extwriter counter, so we wait for all extwriters to exit 2242 * before we start blocking joiners. This comment is to keep somebody 2243 * from thinking they are super smart and changing this to 2244 * btrfs_join_transaction *cough*Josef*cough*. 2245 */ 2246 trans = btrfs_start_transaction(root, 0); 2247 if (IS_ERR(trans)) { 2248 ret = PTR_ERR(trans); 2249 goto out_release_extents; 2250 } 2251 trans->in_fsync = true; 2252 2253 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 2254 btrfs_release_log_ctx_extents(&ctx); 2255 if (ret < 0) { 2256 /* Fallthrough and commit/free transaction. */ 2257 ret = 1; 2258 } 2259 2260 /* we've logged all the items and now have a consistent 2261 * version of the file in the log. It is possible that 2262 * someone will come in and modify the file, but that's 2263 * fine because the log is consistent on disk, and we 2264 * have references to all of the file's extents 2265 * 2266 * It is possible that someone will come in and log the 2267 * file again, but that will end up using the synchronization 2268 * inside btrfs_sync_log to keep things safe. 2269 */ 2270 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2271 2272 if (ret != BTRFS_NO_LOG_SYNC) { 2273 if (!ret) { 2274 ret = btrfs_sync_log(trans, root, &ctx); 2275 if (!ret) { 2276 ret = btrfs_end_transaction(trans); 2277 goto out; 2278 } 2279 } 2280 if (!full_sync) { 2281 ret = btrfs_wait_ordered_range(inode, start, len); 2282 if (ret) { 2283 btrfs_end_transaction(trans); 2284 goto out; 2285 } 2286 } 2287 ret = btrfs_commit_transaction(trans); 2288 } else { 2289 ret = btrfs_end_transaction(trans); 2290 } 2291 out: 2292 ASSERT(list_empty(&ctx.list)); 2293 err = file_check_and_advance_wb_err(file); 2294 if (!ret) 2295 ret = err; 2296 return ret > 0 ? -EIO : ret; 2297 2298 out_release_extents: 2299 btrfs_release_log_ctx_extents(&ctx); 2300 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2301 goto out; 2302 } 2303 2304 static const struct vm_operations_struct btrfs_file_vm_ops = { 2305 .fault = filemap_fault, 2306 .map_pages = filemap_map_pages, 2307 .page_mkwrite = btrfs_page_mkwrite, 2308 }; 2309 2310 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2311 { 2312 struct address_space *mapping = filp->f_mapping; 2313 2314 if (!mapping->a_ops->readpage) 2315 return -ENOEXEC; 2316 2317 file_accessed(filp); 2318 vma->vm_ops = &btrfs_file_vm_ops; 2319 2320 return 0; 2321 } 2322 2323 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2324 int slot, u64 start, u64 end) 2325 { 2326 struct btrfs_file_extent_item *fi; 2327 struct btrfs_key key; 2328 2329 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2330 return 0; 2331 2332 btrfs_item_key_to_cpu(leaf, &key, slot); 2333 if (key.objectid != btrfs_ino(inode) || 2334 key.type != BTRFS_EXTENT_DATA_KEY) 2335 return 0; 2336 2337 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2338 2339 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2340 return 0; 2341 2342 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2343 return 0; 2344 2345 if (key.offset == end) 2346 return 1; 2347 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2348 return 1; 2349 return 0; 2350 } 2351 2352 static int fill_holes(struct btrfs_trans_handle *trans, 2353 struct btrfs_inode *inode, 2354 struct btrfs_path *path, u64 offset, u64 end) 2355 { 2356 struct btrfs_fs_info *fs_info = trans->fs_info; 2357 struct btrfs_root *root = inode->root; 2358 struct extent_buffer *leaf; 2359 struct btrfs_file_extent_item *fi; 2360 struct extent_map *hole_em; 2361 struct extent_map_tree *em_tree = &inode->extent_tree; 2362 struct btrfs_key key; 2363 int ret; 2364 2365 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2366 goto out; 2367 2368 key.objectid = btrfs_ino(inode); 2369 key.type = BTRFS_EXTENT_DATA_KEY; 2370 key.offset = offset; 2371 2372 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2373 if (ret <= 0) { 2374 /* 2375 * We should have dropped this offset, so if we find it then 2376 * something has gone horribly wrong. 2377 */ 2378 if (ret == 0) 2379 ret = -EINVAL; 2380 return ret; 2381 } 2382 2383 leaf = path->nodes[0]; 2384 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2385 u64 num_bytes; 2386 2387 path->slots[0]--; 2388 fi = btrfs_item_ptr(leaf, path->slots[0], 2389 struct btrfs_file_extent_item); 2390 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2391 end - offset; 2392 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2393 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2394 btrfs_set_file_extent_offset(leaf, fi, 0); 2395 btrfs_mark_buffer_dirty(leaf); 2396 goto out; 2397 } 2398 2399 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2400 u64 num_bytes; 2401 2402 key.offset = offset; 2403 btrfs_set_item_key_safe(fs_info, path, &key); 2404 fi = btrfs_item_ptr(leaf, path->slots[0], 2405 struct btrfs_file_extent_item); 2406 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2407 offset; 2408 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2409 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2410 btrfs_set_file_extent_offset(leaf, fi, 0); 2411 btrfs_mark_buffer_dirty(leaf); 2412 goto out; 2413 } 2414 btrfs_release_path(path); 2415 2416 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2417 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2418 if (ret) 2419 return ret; 2420 2421 out: 2422 btrfs_release_path(path); 2423 2424 hole_em = alloc_extent_map(); 2425 if (!hole_em) { 2426 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2427 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2428 } else { 2429 hole_em->start = offset; 2430 hole_em->len = end - offset; 2431 hole_em->ram_bytes = hole_em->len; 2432 hole_em->orig_start = offset; 2433 2434 hole_em->block_start = EXTENT_MAP_HOLE; 2435 hole_em->block_len = 0; 2436 hole_em->orig_block_len = 0; 2437 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2438 hole_em->generation = trans->transid; 2439 2440 do { 2441 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2442 write_lock(&em_tree->lock); 2443 ret = add_extent_mapping(em_tree, hole_em, 1); 2444 write_unlock(&em_tree->lock); 2445 } while (ret == -EEXIST); 2446 free_extent_map(hole_em); 2447 if (ret) 2448 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2449 &inode->runtime_flags); 2450 } 2451 2452 return 0; 2453 } 2454 2455 /* 2456 * Find a hole extent on given inode and change start/len to the end of hole 2457 * extent.(hole/vacuum extent whose em->start <= start && 2458 * em->start + em->len > start) 2459 * When a hole extent is found, return 1 and modify start/len. 2460 */ 2461 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2462 { 2463 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2464 struct extent_map *em; 2465 int ret = 0; 2466 2467 em = btrfs_get_extent(inode, NULL, 0, 2468 round_down(*start, fs_info->sectorsize), 2469 round_up(*len, fs_info->sectorsize)); 2470 if (IS_ERR(em)) 2471 return PTR_ERR(em); 2472 2473 /* Hole or vacuum extent(only exists in no-hole mode) */ 2474 if (em->block_start == EXTENT_MAP_HOLE) { 2475 ret = 1; 2476 *len = em->start + em->len > *start + *len ? 2477 0 : *start + *len - em->start - em->len; 2478 *start = em->start + em->len; 2479 } 2480 free_extent_map(em); 2481 return ret; 2482 } 2483 2484 static int btrfs_punch_hole_lock_range(struct inode *inode, 2485 const u64 lockstart, 2486 const u64 lockend, 2487 struct extent_state **cached_state) 2488 { 2489 /* 2490 * For subpage case, if the range is not at page boundary, we could 2491 * have pages at the leading/tailing part of the range. 2492 * This could lead to dead loop since filemap_range_has_page() 2493 * will always return true. 2494 * So here we need to do extra page alignment for 2495 * filemap_range_has_page(). 2496 */ 2497 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2498 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2499 2500 while (1) { 2501 struct btrfs_ordered_extent *ordered; 2502 int ret; 2503 2504 truncate_pagecache_range(inode, lockstart, lockend); 2505 2506 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2507 cached_state); 2508 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), 2509 lockend); 2510 2511 /* 2512 * We need to make sure we have no ordered extents in this range 2513 * and nobody raced in and read a page in this range, if we did 2514 * we need to try again. 2515 */ 2516 if ((!ordered || 2517 (ordered->file_offset + ordered->num_bytes <= lockstart || 2518 ordered->file_offset > lockend)) && 2519 !filemap_range_has_page(inode->i_mapping, 2520 page_lockstart, page_lockend)) { 2521 if (ordered) 2522 btrfs_put_ordered_extent(ordered); 2523 break; 2524 } 2525 if (ordered) 2526 btrfs_put_ordered_extent(ordered); 2527 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2528 lockend, cached_state); 2529 ret = btrfs_wait_ordered_range(inode, lockstart, 2530 lockend - lockstart + 1); 2531 if (ret) 2532 return ret; 2533 } 2534 return 0; 2535 } 2536 2537 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2538 struct btrfs_inode *inode, 2539 struct btrfs_path *path, 2540 struct btrfs_replace_extent_info *extent_info, 2541 const u64 replace_len, 2542 const u64 bytes_to_drop) 2543 { 2544 struct btrfs_fs_info *fs_info = trans->fs_info; 2545 struct btrfs_root *root = inode->root; 2546 struct btrfs_file_extent_item *extent; 2547 struct extent_buffer *leaf; 2548 struct btrfs_key key; 2549 int slot; 2550 struct btrfs_ref ref = { 0 }; 2551 int ret; 2552 2553 if (replace_len == 0) 2554 return 0; 2555 2556 if (extent_info->disk_offset == 0 && 2557 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2558 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2559 return 0; 2560 } 2561 2562 key.objectid = btrfs_ino(inode); 2563 key.type = BTRFS_EXTENT_DATA_KEY; 2564 key.offset = extent_info->file_offset; 2565 ret = btrfs_insert_empty_item(trans, root, path, &key, 2566 sizeof(struct btrfs_file_extent_item)); 2567 if (ret) 2568 return ret; 2569 leaf = path->nodes[0]; 2570 slot = path->slots[0]; 2571 write_extent_buffer(leaf, extent_info->extent_buf, 2572 btrfs_item_ptr_offset(leaf, slot), 2573 sizeof(struct btrfs_file_extent_item)); 2574 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2575 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2576 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2577 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2578 if (extent_info->is_new_extent) 2579 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2580 btrfs_mark_buffer_dirty(leaf); 2581 btrfs_release_path(path); 2582 2583 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2584 replace_len); 2585 if (ret) 2586 return ret; 2587 2588 /* If it's a hole, nothing more needs to be done. */ 2589 if (extent_info->disk_offset == 0) { 2590 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2591 return 0; 2592 } 2593 2594 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2595 2596 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2597 key.objectid = extent_info->disk_offset; 2598 key.type = BTRFS_EXTENT_ITEM_KEY; 2599 key.offset = extent_info->disk_len; 2600 ret = btrfs_alloc_reserved_file_extent(trans, root, 2601 btrfs_ino(inode), 2602 extent_info->file_offset, 2603 extent_info->qgroup_reserved, 2604 &key); 2605 } else { 2606 u64 ref_offset; 2607 2608 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2609 extent_info->disk_offset, 2610 extent_info->disk_len, 0); 2611 ref_offset = extent_info->file_offset - extent_info->data_offset; 2612 btrfs_init_data_ref(&ref, root->root_key.objectid, 2613 btrfs_ino(inode), ref_offset); 2614 ret = btrfs_inc_extent_ref(trans, &ref); 2615 } 2616 2617 extent_info->insertions++; 2618 2619 return ret; 2620 } 2621 2622 /* 2623 * The respective range must have been previously locked, as well as the inode. 2624 * The end offset is inclusive (last byte of the range). 2625 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2626 * the file range with an extent. 2627 * When not punching a hole, we don't want to end up in a state where we dropped 2628 * extents without inserting a new one, so we must abort the transaction to avoid 2629 * a corruption. 2630 */ 2631 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2632 struct btrfs_path *path, const u64 start, 2633 const u64 end, 2634 struct btrfs_replace_extent_info *extent_info, 2635 struct btrfs_trans_handle **trans_out) 2636 { 2637 struct btrfs_drop_extents_args drop_args = { 0 }; 2638 struct btrfs_root *root = inode->root; 2639 struct btrfs_fs_info *fs_info = root->fs_info; 2640 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2641 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2642 struct btrfs_trans_handle *trans = NULL; 2643 struct btrfs_block_rsv *rsv; 2644 unsigned int rsv_count; 2645 u64 cur_offset; 2646 u64 len = end - start; 2647 int ret = 0; 2648 2649 if (end <= start) 2650 return -EINVAL; 2651 2652 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2653 if (!rsv) { 2654 ret = -ENOMEM; 2655 goto out; 2656 } 2657 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2658 rsv->failfast = 1; 2659 2660 /* 2661 * 1 - update the inode 2662 * 1 - removing the extents in the range 2663 * 1 - adding the hole extent if no_holes isn't set or if we are 2664 * replacing the range with a new extent 2665 */ 2666 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2667 rsv_count = 3; 2668 else 2669 rsv_count = 2; 2670 2671 trans = btrfs_start_transaction(root, rsv_count); 2672 if (IS_ERR(trans)) { 2673 ret = PTR_ERR(trans); 2674 trans = NULL; 2675 goto out_free; 2676 } 2677 2678 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2679 min_size, false); 2680 BUG_ON(ret); 2681 trans->block_rsv = rsv; 2682 2683 cur_offset = start; 2684 drop_args.path = path; 2685 drop_args.end = end + 1; 2686 drop_args.drop_cache = true; 2687 while (cur_offset < end) { 2688 drop_args.start = cur_offset; 2689 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2690 /* If we are punching a hole decrement the inode's byte count */ 2691 if (!extent_info) 2692 btrfs_update_inode_bytes(inode, 0, 2693 drop_args.bytes_found); 2694 if (ret != -ENOSPC) { 2695 /* 2696 * When cloning we want to avoid transaction aborts when 2697 * nothing was done and we are attempting to clone parts 2698 * of inline extents, in such cases -EOPNOTSUPP is 2699 * returned by __btrfs_drop_extents() without having 2700 * changed anything in the file. 2701 */ 2702 if (extent_info && !extent_info->is_new_extent && 2703 ret && ret != -EOPNOTSUPP) 2704 btrfs_abort_transaction(trans, ret); 2705 break; 2706 } 2707 2708 trans->block_rsv = &fs_info->trans_block_rsv; 2709 2710 if (!extent_info && cur_offset < drop_args.drop_end && 2711 cur_offset < ino_size) { 2712 ret = fill_holes(trans, inode, path, cur_offset, 2713 drop_args.drop_end); 2714 if (ret) { 2715 /* 2716 * If we failed then we didn't insert our hole 2717 * entries for the area we dropped, so now the 2718 * fs is corrupted, so we must abort the 2719 * transaction. 2720 */ 2721 btrfs_abort_transaction(trans, ret); 2722 break; 2723 } 2724 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2725 /* 2726 * We are past the i_size here, but since we didn't 2727 * insert holes we need to clear the mapped area so we 2728 * know to not set disk_i_size in this area until a new 2729 * file extent is inserted here. 2730 */ 2731 ret = btrfs_inode_clear_file_extent_range(inode, 2732 cur_offset, 2733 drop_args.drop_end - cur_offset); 2734 if (ret) { 2735 /* 2736 * We couldn't clear our area, so we could 2737 * presumably adjust up and corrupt the fs, so 2738 * we need to abort. 2739 */ 2740 btrfs_abort_transaction(trans, ret); 2741 break; 2742 } 2743 } 2744 2745 if (extent_info && 2746 drop_args.drop_end > extent_info->file_offset) { 2747 u64 replace_len = drop_args.drop_end - 2748 extent_info->file_offset; 2749 2750 ret = btrfs_insert_replace_extent(trans, inode, path, 2751 extent_info, replace_len, 2752 drop_args.bytes_found); 2753 if (ret) { 2754 btrfs_abort_transaction(trans, ret); 2755 break; 2756 } 2757 extent_info->data_len -= replace_len; 2758 extent_info->data_offset += replace_len; 2759 extent_info->file_offset += replace_len; 2760 } 2761 2762 ret = btrfs_update_inode(trans, root, inode); 2763 if (ret) 2764 break; 2765 2766 btrfs_end_transaction(trans); 2767 btrfs_btree_balance_dirty(fs_info); 2768 2769 trans = btrfs_start_transaction(root, rsv_count); 2770 if (IS_ERR(trans)) { 2771 ret = PTR_ERR(trans); 2772 trans = NULL; 2773 break; 2774 } 2775 2776 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2777 rsv, min_size, false); 2778 BUG_ON(ret); /* shouldn't happen */ 2779 trans->block_rsv = rsv; 2780 2781 cur_offset = drop_args.drop_end; 2782 len = end - cur_offset; 2783 if (!extent_info && len) { 2784 ret = find_first_non_hole(inode, &cur_offset, &len); 2785 if (unlikely(ret < 0)) 2786 break; 2787 if (ret && !len) { 2788 ret = 0; 2789 break; 2790 } 2791 } 2792 } 2793 2794 /* 2795 * If we were cloning, force the next fsync to be a full one since we 2796 * we replaced (or just dropped in the case of cloning holes when 2797 * NO_HOLES is enabled) file extent items and did not setup new extent 2798 * maps for the replacement extents (or holes). 2799 */ 2800 if (extent_info && !extent_info->is_new_extent) 2801 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2802 2803 if (ret) 2804 goto out_trans; 2805 2806 trans->block_rsv = &fs_info->trans_block_rsv; 2807 /* 2808 * If we are using the NO_HOLES feature we might have had already an 2809 * hole that overlaps a part of the region [lockstart, lockend] and 2810 * ends at (or beyond) lockend. Since we have no file extent items to 2811 * represent holes, drop_end can be less than lockend and so we must 2812 * make sure we have an extent map representing the existing hole (the 2813 * call to __btrfs_drop_extents() might have dropped the existing extent 2814 * map representing the existing hole), otherwise the fast fsync path 2815 * will not record the existence of the hole region 2816 * [existing_hole_start, lockend]. 2817 */ 2818 if (drop_args.drop_end <= end) 2819 drop_args.drop_end = end + 1; 2820 /* 2821 * Don't insert file hole extent item if it's for a range beyond eof 2822 * (because it's useless) or if it represents a 0 bytes range (when 2823 * cur_offset == drop_end). 2824 */ 2825 if (!extent_info && cur_offset < ino_size && 2826 cur_offset < drop_args.drop_end) { 2827 ret = fill_holes(trans, inode, path, cur_offset, 2828 drop_args.drop_end); 2829 if (ret) { 2830 /* Same comment as above. */ 2831 btrfs_abort_transaction(trans, ret); 2832 goto out_trans; 2833 } 2834 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2835 /* See the comment in the loop above for the reasoning here. */ 2836 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2837 drop_args.drop_end - cur_offset); 2838 if (ret) { 2839 btrfs_abort_transaction(trans, ret); 2840 goto out_trans; 2841 } 2842 2843 } 2844 if (extent_info) { 2845 ret = btrfs_insert_replace_extent(trans, inode, path, 2846 extent_info, extent_info->data_len, 2847 drop_args.bytes_found); 2848 if (ret) { 2849 btrfs_abort_transaction(trans, ret); 2850 goto out_trans; 2851 } 2852 } 2853 2854 out_trans: 2855 if (!trans) 2856 goto out_free; 2857 2858 trans->block_rsv = &fs_info->trans_block_rsv; 2859 if (ret) 2860 btrfs_end_transaction(trans); 2861 else 2862 *trans_out = trans; 2863 out_free: 2864 btrfs_free_block_rsv(fs_info, rsv); 2865 out: 2866 return ret; 2867 } 2868 2869 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2870 { 2871 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2872 struct btrfs_root *root = BTRFS_I(inode)->root; 2873 struct extent_state *cached_state = NULL; 2874 struct btrfs_path *path; 2875 struct btrfs_trans_handle *trans = NULL; 2876 u64 lockstart; 2877 u64 lockend; 2878 u64 tail_start; 2879 u64 tail_len; 2880 u64 orig_start = offset; 2881 int ret = 0; 2882 bool same_block; 2883 u64 ino_size; 2884 bool truncated_block = false; 2885 bool updated_inode = false; 2886 2887 ret = btrfs_wait_ordered_range(inode, offset, len); 2888 if (ret) 2889 return ret; 2890 2891 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 2892 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2893 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2894 if (ret < 0) 2895 goto out_only_mutex; 2896 if (ret && !len) { 2897 /* Already in a large hole */ 2898 ret = 0; 2899 goto out_only_mutex; 2900 } 2901 2902 lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode))); 2903 lockend = round_down(offset + len, 2904 btrfs_inode_sectorsize(BTRFS_I(inode))) - 1; 2905 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2906 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2907 /* 2908 * We needn't truncate any block which is beyond the end of the file 2909 * because we are sure there is no data there. 2910 */ 2911 /* 2912 * Only do this if we are in the same block and we aren't doing the 2913 * entire block. 2914 */ 2915 if (same_block && len < fs_info->sectorsize) { 2916 if (offset < ino_size) { 2917 truncated_block = true; 2918 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2919 0); 2920 } else { 2921 ret = 0; 2922 } 2923 goto out_only_mutex; 2924 } 2925 2926 /* zero back part of the first block */ 2927 if (offset < ino_size) { 2928 truncated_block = true; 2929 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2930 if (ret) { 2931 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2932 return ret; 2933 } 2934 } 2935 2936 /* Check the aligned pages after the first unaligned page, 2937 * if offset != orig_start, which means the first unaligned page 2938 * including several following pages are already in holes, 2939 * the extra check can be skipped */ 2940 if (offset == orig_start) { 2941 /* after truncate page, check hole again */ 2942 len = offset + len - lockstart; 2943 offset = lockstart; 2944 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2945 if (ret < 0) 2946 goto out_only_mutex; 2947 if (ret && !len) { 2948 ret = 0; 2949 goto out_only_mutex; 2950 } 2951 lockstart = offset; 2952 } 2953 2954 /* Check the tail unaligned part is in a hole */ 2955 tail_start = lockend + 1; 2956 tail_len = offset + len - tail_start; 2957 if (tail_len) { 2958 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2959 if (unlikely(ret < 0)) 2960 goto out_only_mutex; 2961 if (!ret) { 2962 /* zero the front end of the last page */ 2963 if (tail_start + tail_len < ino_size) { 2964 truncated_block = true; 2965 ret = btrfs_truncate_block(BTRFS_I(inode), 2966 tail_start + tail_len, 2967 0, 1); 2968 if (ret) 2969 goto out_only_mutex; 2970 } 2971 } 2972 } 2973 2974 if (lockend < lockstart) { 2975 ret = 0; 2976 goto out_only_mutex; 2977 } 2978 2979 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2980 &cached_state); 2981 if (ret) 2982 goto out_only_mutex; 2983 2984 path = btrfs_alloc_path(); 2985 if (!path) { 2986 ret = -ENOMEM; 2987 goto out; 2988 } 2989 2990 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 2991 lockend, NULL, &trans); 2992 btrfs_free_path(path); 2993 if (ret) 2994 goto out; 2995 2996 ASSERT(trans != NULL); 2997 inode_inc_iversion(inode); 2998 inode->i_mtime = inode->i_ctime = current_time(inode); 2999 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3000 updated_inode = true; 3001 btrfs_end_transaction(trans); 3002 btrfs_btree_balance_dirty(fs_info); 3003 out: 3004 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3005 &cached_state); 3006 out_only_mutex: 3007 if (!updated_inode && truncated_block && !ret) { 3008 /* 3009 * If we only end up zeroing part of a page, we still need to 3010 * update the inode item, so that all the time fields are 3011 * updated as well as the necessary btrfs inode in memory fields 3012 * for detecting, at fsync time, if the inode isn't yet in the 3013 * log tree or it's there but not up to date. 3014 */ 3015 struct timespec64 now = current_time(inode); 3016 3017 inode_inc_iversion(inode); 3018 inode->i_mtime = now; 3019 inode->i_ctime = now; 3020 trans = btrfs_start_transaction(root, 1); 3021 if (IS_ERR(trans)) { 3022 ret = PTR_ERR(trans); 3023 } else { 3024 int ret2; 3025 3026 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3027 ret2 = btrfs_end_transaction(trans); 3028 if (!ret) 3029 ret = ret2; 3030 } 3031 } 3032 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3033 return ret; 3034 } 3035 3036 /* Helper structure to record which range is already reserved */ 3037 struct falloc_range { 3038 struct list_head list; 3039 u64 start; 3040 u64 len; 3041 }; 3042 3043 /* 3044 * Helper function to add falloc range 3045 * 3046 * Caller should have locked the larger range of extent containing 3047 * [start, len) 3048 */ 3049 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 3050 { 3051 struct falloc_range *range = NULL; 3052 3053 if (!list_empty(head)) { 3054 /* 3055 * As fallocate iterates by bytenr order, we only need to check 3056 * the last range. 3057 */ 3058 range = list_last_entry(head, struct falloc_range, list); 3059 if (range->start + range->len == start) { 3060 range->len += len; 3061 return 0; 3062 } 3063 } 3064 3065 range = kmalloc(sizeof(*range), GFP_KERNEL); 3066 if (!range) 3067 return -ENOMEM; 3068 range->start = start; 3069 range->len = len; 3070 list_add_tail(&range->list, head); 3071 return 0; 3072 } 3073 3074 static int btrfs_fallocate_update_isize(struct inode *inode, 3075 const u64 end, 3076 const int mode) 3077 { 3078 struct btrfs_trans_handle *trans; 3079 struct btrfs_root *root = BTRFS_I(inode)->root; 3080 int ret; 3081 int ret2; 3082 3083 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 3084 return 0; 3085 3086 trans = btrfs_start_transaction(root, 1); 3087 if (IS_ERR(trans)) 3088 return PTR_ERR(trans); 3089 3090 inode->i_ctime = current_time(inode); 3091 i_size_write(inode, end); 3092 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 3093 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3094 ret2 = btrfs_end_transaction(trans); 3095 3096 return ret ? ret : ret2; 3097 } 3098 3099 enum { 3100 RANGE_BOUNDARY_WRITTEN_EXTENT, 3101 RANGE_BOUNDARY_PREALLOC_EXTENT, 3102 RANGE_BOUNDARY_HOLE, 3103 }; 3104 3105 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 3106 u64 offset) 3107 { 3108 const u64 sectorsize = btrfs_inode_sectorsize(inode); 3109 struct extent_map *em; 3110 int ret; 3111 3112 offset = round_down(offset, sectorsize); 3113 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize); 3114 if (IS_ERR(em)) 3115 return PTR_ERR(em); 3116 3117 if (em->block_start == EXTENT_MAP_HOLE) 3118 ret = RANGE_BOUNDARY_HOLE; 3119 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3120 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 3121 else 3122 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 3123 3124 free_extent_map(em); 3125 return ret; 3126 } 3127 3128 static int btrfs_zero_range(struct inode *inode, 3129 loff_t offset, 3130 loff_t len, 3131 const int mode) 3132 { 3133 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3134 struct extent_map *em; 3135 struct extent_changeset *data_reserved = NULL; 3136 int ret; 3137 u64 alloc_hint = 0; 3138 const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode)); 3139 u64 alloc_start = round_down(offset, sectorsize); 3140 u64 alloc_end = round_up(offset + len, sectorsize); 3141 u64 bytes_to_reserve = 0; 3142 bool space_reserved = false; 3143 3144 inode_dio_wait(inode); 3145 3146 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3147 alloc_end - alloc_start); 3148 if (IS_ERR(em)) { 3149 ret = PTR_ERR(em); 3150 goto out; 3151 } 3152 3153 /* 3154 * Avoid hole punching and extent allocation for some cases. More cases 3155 * could be considered, but these are unlikely common and we keep things 3156 * as simple as possible for now. Also, intentionally, if the target 3157 * range contains one or more prealloc extents together with regular 3158 * extents and holes, we drop all the existing extents and allocate a 3159 * new prealloc extent, so that we get a larger contiguous disk extent. 3160 */ 3161 if (em->start <= alloc_start && 3162 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3163 const u64 em_end = em->start + em->len; 3164 3165 if (em_end >= offset + len) { 3166 /* 3167 * The whole range is already a prealloc extent, 3168 * do nothing except updating the inode's i_size if 3169 * needed. 3170 */ 3171 free_extent_map(em); 3172 ret = btrfs_fallocate_update_isize(inode, offset + len, 3173 mode); 3174 goto out; 3175 } 3176 /* 3177 * Part of the range is already a prealloc extent, so operate 3178 * only on the remaining part of the range. 3179 */ 3180 alloc_start = em_end; 3181 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 3182 len = offset + len - alloc_start; 3183 offset = alloc_start; 3184 alloc_hint = em->block_start + em->len; 3185 } 3186 free_extent_map(em); 3187 3188 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 3189 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 3190 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3191 sectorsize); 3192 if (IS_ERR(em)) { 3193 ret = PTR_ERR(em); 3194 goto out; 3195 } 3196 3197 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3198 free_extent_map(em); 3199 ret = btrfs_fallocate_update_isize(inode, offset + len, 3200 mode); 3201 goto out; 3202 } 3203 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 3204 free_extent_map(em); 3205 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 3206 0); 3207 if (!ret) 3208 ret = btrfs_fallocate_update_isize(inode, 3209 offset + len, 3210 mode); 3211 return ret; 3212 } 3213 free_extent_map(em); 3214 alloc_start = round_down(offset, sectorsize); 3215 alloc_end = alloc_start + sectorsize; 3216 goto reserve_space; 3217 } 3218 3219 alloc_start = round_up(offset, sectorsize); 3220 alloc_end = round_down(offset + len, sectorsize); 3221 3222 /* 3223 * For unaligned ranges, check the pages at the boundaries, they might 3224 * map to an extent, in which case we need to partially zero them, or 3225 * they might map to a hole, in which case we need our allocation range 3226 * to cover them. 3227 */ 3228 if (!IS_ALIGNED(offset, sectorsize)) { 3229 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3230 offset); 3231 if (ret < 0) 3232 goto out; 3233 if (ret == RANGE_BOUNDARY_HOLE) { 3234 alloc_start = round_down(offset, sectorsize); 3235 ret = 0; 3236 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3237 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 3238 if (ret) 3239 goto out; 3240 } else { 3241 ret = 0; 3242 } 3243 } 3244 3245 if (!IS_ALIGNED(offset + len, sectorsize)) { 3246 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3247 offset + len); 3248 if (ret < 0) 3249 goto out; 3250 if (ret == RANGE_BOUNDARY_HOLE) { 3251 alloc_end = round_up(offset + len, sectorsize); 3252 ret = 0; 3253 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3254 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 3255 0, 1); 3256 if (ret) 3257 goto out; 3258 } else { 3259 ret = 0; 3260 } 3261 } 3262 3263 reserve_space: 3264 if (alloc_start < alloc_end) { 3265 struct extent_state *cached_state = NULL; 3266 const u64 lockstart = alloc_start; 3267 const u64 lockend = alloc_end - 1; 3268 3269 bytes_to_reserve = alloc_end - alloc_start; 3270 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3271 bytes_to_reserve); 3272 if (ret < 0) 3273 goto out; 3274 space_reserved = true; 3275 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3276 &cached_state); 3277 if (ret) 3278 goto out; 3279 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3280 alloc_start, bytes_to_reserve); 3281 if (ret) { 3282 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3283 lockend, &cached_state); 3284 goto out; 3285 } 3286 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3287 alloc_end - alloc_start, 3288 i_blocksize(inode), 3289 offset + len, &alloc_hint); 3290 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3291 lockend, &cached_state); 3292 /* btrfs_prealloc_file_range releases reserved space on error */ 3293 if (ret) { 3294 space_reserved = false; 3295 goto out; 3296 } 3297 } 3298 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3299 out: 3300 if (ret && space_reserved) 3301 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3302 alloc_start, bytes_to_reserve); 3303 extent_changeset_free(data_reserved); 3304 3305 return ret; 3306 } 3307 3308 static long btrfs_fallocate(struct file *file, int mode, 3309 loff_t offset, loff_t len) 3310 { 3311 struct inode *inode = file_inode(file); 3312 struct extent_state *cached_state = NULL; 3313 struct extent_changeset *data_reserved = NULL; 3314 struct falloc_range *range; 3315 struct falloc_range *tmp; 3316 struct list_head reserve_list; 3317 u64 cur_offset; 3318 u64 last_byte; 3319 u64 alloc_start; 3320 u64 alloc_end; 3321 u64 alloc_hint = 0; 3322 u64 locked_end; 3323 u64 actual_end = 0; 3324 struct extent_map *em; 3325 int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode)); 3326 int ret; 3327 3328 /* Do not allow fallocate in ZONED mode */ 3329 if (btrfs_is_zoned(btrfs_sb(inode->i_sb))) 3330 return -EOPNOTSUPP; 3331 3332 alloc_start = round_down(offset, blocksize); 3333 alloc_end = round_up(offset + len, blocksize); 3334 cur_offset = alloc_start; 3335 3336 /* Make sure we aren't being give some crap mode */ 3337 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3338 FALLOC_FL_ZERO_RANGE)) 3339 return -EOPNOTSUPP; 3340 3341 if (mode & FALLOC_FL_PUNCH_HOLE) 3342 return btrfs_punch_hole(inode, offset, len); 3343 3344 /* 3345 * Only trigger disk allocation, don't trigger qgroup reserve 3346 * 3347 * For qgroup space, it will be checked later. 3348 */ 3349 if (!(mode & FALLOC_FL_ZERO_RANGE)) { 3350 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3351 alloc_end - alloc_start); 3352 if (ret < 0) 3353 return ret; 3354 } 3355 3356 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 3357 3358 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3359 ret = inode_newsize_ok(inode, offset + len); 3360 if (ret) 3361 goto out; 3362 } 3363 3364 /* 3365 * TODO: Move these two operations after we have checked 3366 * accurate reserved space, or fallocate can still fail but 3367 * with page truncated or size expanded. 3368 * 3369 * But that's a minor problem and won't do much harm BTW. 3370 */ 3371 if (alloc_start > inode->i_size) { 3372 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3373 alloc_start); 3374 if (ret) 3375 goto out; 3376 } else if (offset + len > inode->i_size) { 3377 /* 3378 * If we are fallocating from the end of the file onward we 3379 * need to zero out the end of the block if i_size lands in the 3380 * middle of a block. 3381 */ 3382 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3383 if (ret) 3384 goto out; 3385 } 3386 3387 /* 3388 * wait for ordered IO before we have any locks. We'll loop again 3389 * below with the locks held. 3390 */ 3391 ret = btrfs_wait_ordered_range(inode, alloc_start, 3392 alloc_end - alloc_start); 3393 if (ret) 3394 goto out; 3395 3396 if (mode & FALLOC_FL_ZERO_RANGE) { 3397 ret = btrfs_zero_range(inode, offset, len, mode); 3398 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3399 return ret; 3400 } 3401 3402 locked_end = alloc_end - 1; 3403 while (1) { 3404 struct btrfs_ordered_extent *ordered; 3405 3406 /* the extent lock is ordered inside the running 3407 * transaction 3408 */ 3409 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 3410 locked_end, &cached_state); 3411 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), 3412 locked_end); 3413 3414 if (ordered && 3415 ordered->file_offset + ordered->num_bytes > alloc_start && 3416 ordered->file_offset < alloc_end) { 3417 btrfs_put_ordered_extent(ordered); 3418 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 3419 alloc_start, locked_end, 3420 &cached_state); 3421 /* 3422 * we can't wait on the range with the transaction 3423 * running or with the extent lock held 3424 */ 3425 ret = btrfs_wait_ordered_range(inode, alloc_start, 3426 alloc_end - alloc_start); 3427 if (ret) 3428 goto out; 3429 } else { 3430 if (ordered) 3431 btrfs_put_ordered_extent(ordered); 3432 break; 3433 } 3434 } 3435 3436 /* First, check if we exceed the qgroup limit */ 3437 INIT_LIST_HEAD(&reserve_list); 3438 while (cur_offset < alloc_end) { 3439 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3440 alloc_end - cur_offset); 3441 if (IS_ERR(em)) { 3442 ret = PTR_ERR(em); 3443 break; 3444 } 3445 last_byte = min(extent_map_end(em), alloc_end); 3446 actual_end = min_t(u64, extent_map_end(em), offset + len); 3447 last_byte = ALIGN(last_byte, blocksize); 3448 if (em->block_start == EXTENT_MAP_HOLE || 3449 (cur_offset >= inode->i_size && 3450 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3451 ret = add_falloc_range(&reserve_list, cur_offset, 3452 last_byte - cur_offset); 3453 if (ret < 0) { 3454 free_extent_map(em); 3455 break; 3456 } 3457 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3458 &data_reserved, cur_offset, 3459 last_byte - cur_offset); 3460 if (ret < 0) { 3461 cur_offset = last_byte; 3462 free_extent_map(em); 3463 break; 3464 } 3465 } else { 3466 /* 3467 * Do not need to reserve unwritten extent for this 3468 * range, free reserved data space first, otherwise 3469 * it'll result in false ENOSPC error. 3470 */ 3471 btrfs_free_reserved_data_space(BTRFS_I(inode), 3472 data_reserved, cur_offset, 3473 last_byte - cur_offset); 3474 } 3475 free_extent_map(em); 3476 cur_offset = last_byte; 3477 } 3478 3479 /* 3480 * If ret is still 0, means we're OK to fallocate. 3481 * Or just cleanup the list and exit. 3482 */ 3483 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3484 if (!ret) 3485 ret = btrfs_prealloc_file_range(inode, mode, 3486 range->start, 3487 range->len, i_blocksize(inode), 3488 offset + len, &alloc_hint); 3489 else 3490 btrfs_free_reserved_data_space(BTRFS_I(inode), 3491 data_reserved, range->start, 3492 range->len); 3493 list_del(&range->list); 3494 kfree(range); 3495 } 3496 if (ret < 0) 3497 goto out_unlock; 3498 3499 /* 3500 * We didn't need to allocate any more space, but we still extended the 3501 * size of the file so we need to update i_size and the inode item. 3502 */ 3503 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3504 out_unlock: 3505 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3506 &cached_state); 3507 out: 3508 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3509 /* Let go of our reservation. */ 3510 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) 3511 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3512 cur_offset, alloc_end - cur_offset); 3513 extent_changeset_free(data_reserved); 3514 return ret; 3515 } 3516 3517 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset, 3518 int whence) 3519 { 3520 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3521 struct extent_map *em = NULL; 3522 struct extent_state *cached_state = NULL; 3523 loff_t i_size = inode->vfs_inode.i_size; 3524 u64 lockstart; 3525 u64 lockend; 3526 u64 start; 3527 u64 len; 3528 int ret = 0; 3529 3530 if (i_size == 0 || offset >= i_size) 3531 return -ENXIO; 3532 3533 /* 3534 * offset can be negative, in this case we start finding DATA/HOLE from 3535 * the very start of the file. 3536 */ 3537 start = max_t(loff_t, 0, offset); 3538 3539 lockstart = round_down(start, fs_info->sectorsize); 3540 lockend = round_up(i_size, fs_info->sectorsize); 3541 if (lockend <= lockstart) 3542 lockend = lockstart + fs_info->sectorsize; 3543 lockend--; 3544 len = lockend - lockstart + 1; 3545 3546 lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state); 3547 3548 while (start < i_size) { 3549 em = btrfs_get_extent_fiemap(inode, start, len); 3550 if (IS_ERR(em)) { 3551 ret = PTR_ERR(em); 3552 em = NULL; 3553 break; 3554 } 3555 3556 if (whence == SEEK_HOLE && 3557 (em->block_start == EXTENT_MAP_HOLE || 3558 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3559 break; 3560 else if (whence == SEEK_DATA && 3561 (em->block_start != EXTENT_MAP_HOLE && 3562 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3563 break; 3564 3565 start = em->start + em->len; 3566 free_extent_map(em); 3567 em = NULL; 3568 cond_resched(); 3569 } 3570 free_extent_map(em); 3571 unlock_extent_cached(&inode->io_tree, lockstart, lockend, 3572 &cached_state); 3573 if (ret) { 3574 offset = ret; 3575 } else { 3576 if (whence == SEEK_DATA && start >= i_size) 3577 offset = -ENXIO; 3578 else 3579 offset = min_t(loff_t, start, i_size); 3580 } 3581 3582 return offset; 3583 } 3584 3585 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3586 { 3587 struct inode *inode = file->f_mapping->host; 3588 3589 switch (whence) { 3590 default: 3591 return generic_file_llseek(file, offset, whence); 3592 case SEEK_DATA: 3593 case SEEK_HOLE: 3594 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3595 offset = find_desired_extent(BTRFS_I(inode), offset, whence); 3596 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3597 break; 3598 } 3599 3600 if (offset < 0) 3601 return offset; 3602 3603 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3604 } 3605 3606 static int btrfs_file_open(struct inode *inode, struct file *filp) 3607 { 3608 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; 3609 return generic_file_open(inode, filp); 3610 } 3611 3612 static int check_direct_read(struct btrfs_fs_info *fs_info, 3613 const struct iov_iter *iter, loff_t offset) 3614 { 3615 int ret; 3616 int i, seg; 3617 3618 ret = check_direct_IO(fs_info, iter, offset); 3619 if (ret < 0) 3620 return ret; 3621 3622 if (!iter_is_iovec(iter)) 3623 return 0; 3624 3625 for (seg = 0; seg < iter->nr_segs; seg++) 3626 for (i = seg + 1; i < iter->nr_segs; i++) 3627 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 3628 return -EINVAL; 3629 return 0; 3630 } 3631 3632 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 3633 { 3634 struct inode *inode = file_inode(iocb->ki_filp); 3635 ssize_t ret; 3636 3637 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos)) 3638 return 0; 3639 3640 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3641 ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 0); 3642 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3643 return ret; 3644 } 3645 3646 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3647 { 3648 ssize_t ret = 0; 3649 3650 if (iocb->ki_flags & IOCB_DIRECT) { 3651 ret = btrfs_direct_read(iocb, to); 3652 if (ret < 0 || !iov_iter_count(to) || 3653 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3654 return ret; 3655 } 3656 3657 return filemap_read(iocb, to, ret); 3658 } 3659 3660 const struct file_operations btrfs_file_operations = { 3661 .llseek = btrfs_file_llseek, 3662 .read_iter = btrfs_file_read_iter, 3663 .splice_read = generic_file_splice_read, 3664 .write_iter = btrfs_file_write_iter, 3665 .splice_write = iter_file_splice_write, 3666 .mmap = btrfs_file_mmap, 3667 .open = btrfs_file_open, 3668 .release = btrfs_release_file, 3669 .fsync = btrfs_sync_file, 3670 .fallocate = btrfs_fallocate, 3671 .unlocked_ioctl = btrfs_ioctl, 3672 #ifdef CONFIG_COMPAT 3673 .compat_ioctl = btrfs_compat_ioctl, 3674 #endif 3675 .remap_file_range = btrfs_remap_file_range, 3676 }; 3677 3678 void __cold btrfs_auto_defrag_exit(void) 3679 { 3680 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3681 } 3682 3683 int __init btrfs_auto_defrag_init(void) 3684 { 3685 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3686 sizeof(struct inode_defrag), 0, 3687 SLAB_MEM_SPREAD, 3688 NULL); 3689 if (!btrfs_inode_defrag_cachep) 3690 return -ENOMEM; 3691 3692 return 0; 3693 } 3694 3695 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3696 { 3697 int ret; 3698 3699 /* 3700 * So with compression we will find and lock a dirty page and clear the 3701 * first one as dirty, setup an async extent, and immediately return 3702 * with the entire range locked but with nobody actually marked with 3703 * writeback. So we can't just filemap_write_and_wait_range() and 3704 * expect it to work since it will just kick off a thread to do the 3705 * actual work. So we need to call filemap_fdatawrite_range _again_ 3706 * since it will wait on the page lock, which won't be unlocked until 3707 * after the pages have been marked as writeback and so we're good to go 3708 * from there. We have to do this otherwise we'll miss the ordered 3709 * extents and that results in badness. Please Josef, do not think you 3710 * know better and pull this out at some point in the future, it is 3711 * right and you are wrong. 3712 */ 3713 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3714 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3715 &BTRFS_I(inode)->runtime_flags)) 3716 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3717 3718 return ret; 3719 } 3720