xref: /openbmc/linux/fs/btrfs/file.c (revision 17b5b576)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "print-tree.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "volumes.h"
28 #include "qgroup.h"
29 #include "compression.h"
30 #include "delalloc-space.h"
31 #include "reflink.h"
32 #include "subpage.h"
33 
34 static struct kmem_cache *btrfs_inode_defrag_cachep;
35 /*
36  * when auto defrag is enabled we
37  * queue up these defrag structs to remember which
38  * inodes need defragging passes
39  */
40 struct inode_defrag {
41 	struct rb_node rb_node;
42 	/* objectid */
43 	u64 ino;
44 	/*
45 	 * transid where the defrag was added, we search for
46 	 * extents newer than this
47 	 */
48 	u64 transid;
49 
50 	/* root objectid */
51 	u64 root;
52 
53 	/* last offset we were able to defrag */
54 	u64 last_offset;
55 
56 	/* if we've wrapped around back to zero once already */
57 	int cycled;
58 };
59 
60 static int __compare_inode_defrag(struct inode_defrag *defrag1,
61 				  struct inode_defrag *defrag2)
62 {
63 	if (defrag1->root > defrag2->root)
64 		return 1;
65 	else if (defrag1->root < defrag2->root)
66 		return -1;
67 	else if (defrag1->ino > defrag2->ino)
68 		return 1;
69 	else if (defrag1->ino < defrag2->ino)
70 		return -1;
71 	else
72 		return 0;
73 }
74 
75 /* pop a record for an inode into the defrag tree.  The lock
76  * must be held already
77  *
78  * If you're inserting a record for an older transid than an
79  * existing record, the transid already in the tree is lowered
80  *
81  * If an existing record is found the defrag item you
82  * pass in is freed
83  */
84 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
85 				    struct inode_defrag *defrag)
86 {
87 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
88 	struct inode_defrag *entry;
89 	struct rb_node **p;
90 	struct rb_node *parent = NULL;
91 	int ret;
92 
93 	p = &fs_info->defrag_inodes.rb_node;
94 	while (*p) {
95 		parent = *p;
96 		entry = rb_entry(parent, struct inode_defrag, rb_node);
97 
98 		ret = __compare_inode_defrag(defrag, entry);
99 		if (ret < 0)
100 			p = &parent->rb_left;
101 		else if (ret > 0)
102 			p = &parent->rb_right;
103 		else {
104 			/* if we're reinserting an entry for
105 			 * an old defrag run, make sure to
106 			 * lower the transid of our existing record
107 			 */
108 			if (defrag->transid < entry->transid)
109 				entry->transid = defrag->transid;
110 			if (defrag->last_offset > entry->last_offset)
111 				entry->last_offset = defrag->last_offset;
112 			return -EEXIST;
113 		}
114 	}
115 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
116 	rb_link_node(&defrag->rb_node, parent, p);
117 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
118 	return 0;
119 }
120 
121 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
122 {
123 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
124 		return 0;
125 
126 	if (btrfs_fs_closing(fs_info))
127 		return 0;
128 
129 	return 1;
130 }
131 
132 /*
133  * insert a defrag record for this inode if auto defrag is
134  * enabled
135  */
136 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
137 			   struct btrfs_inode *inode)
138 {
139 	struct btrfs_root *root = inode->root;
140 	struct btrfs_fs_info *fs_info = root->fs_info;
141 	struct inode_defrag *defrag;
142 	u64 transid;
143 	int ret;
144 
145 	if (!__need_auto_defrag(fs_info))
146 		return 0;
147 
148 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
149 		return 0;
150 
151 	if (trans)
152 		transid = trans->transid;
153 	else
154 		transid = inode->root->last_trans;
155 
156 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
157 	if (!defrag)
158 		return -ENOMEM;
159 
160 	defrag->ino = btrfs_ino(inode);
161 	defrag->transid = transid;
162 	defrag->root = root->root_key.objectid;
163 
164 	spin_lock(&fs_info->defrag_inodes_lock);
165 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
166 		/*
167 		 * If we set IN_DEFRAG flag and evict the inode from memory,
168 		 * and then re-read this inode, this new inode doesn't have
169 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
170 		 */
171 		ret = __btrfs_add_inode_defrag(inode, defrag);
172 		if (ret)
173 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174 	} else {
175 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
176 	}
177 	spin_unlock(&fs_info->defrag_inodes_lock);
178 	return 0;
179 }
180 
181 /*
182  * Requeue the defrag object. If there is a defrag object that points to
183  * the same inode in the tree, we will merge them together (by
184  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
185  */
186 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
187 				       struct inode_defrag *defrag)
188 {
189 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
190 	int ret;
191 
192 	if (!__need_auto_defrag(fs_info))
193 		goto out;
194 
195 	/*
196 	 * Here we don't check the IN_DEFRAG flag, because we need merge
197 	 * them together.
198 	 */
199 	spin_lock(&fs_info->defrag_inodes_lock);
200 	ret = __btrfs_add_inode_defrag(inode, defrag);
201 	spin_unlock(&fs_info->defrag_inodes_lock);
202 	if (ret)
203 		goto out;
204 	return;
205 out:
206 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
207 }
208 
209 /*
210  * pick the defragable inode that we want, if it doesn't exist, we will get
211  * the next one.
212  */
213 static struct inode_defrag *
214 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
215 {
216 	struct inode_defrag *entry = NULL;
217 	struct inode_defrag tmp;
218 	struct rb_node *p;
219 	struct rb_node *parent = NULL;
220 	int ret;
221 
222 	tmp.ino = ino;
223 	tmp.root = root;
224 
225 	spin_lock(&fs_info->defrag_inodes_lock);
226 	p = fs_info->defrag_inodes.rb_node;
227 	while (p) {
228 		parent = p;
229 		entry = rb_entry(parent, struct inode_defrag, rb_node);
230 
231 		ret = __compare_inode_defrag(&tmp, entry);
232 		if (ret < 0)
233 			p = parent->rb_left;
234 		else if (ret > 0)
235 			p = parent->rb_right;
236 		else
237 			goto out;
238 	}
239 
240 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
241 		parent = rb_next(parent);
242 		if (parent)
243 			entry = rb_entry(parent, struct inode_defrag, rb_node);
244 		else
245 			entry = NULL;
246 	}
247 out:
248 	if (entry)
249 		rb_erase(parent, &fs_info->defrag_inodes);
250 	spin_unlock(&fs_info->defrag_inodes_lock);
251 	return entry;
252 }
253 
254 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
255 {
256 	struct inode_defrag *defrag;
257 	struct rb_node *node;
258 
259 	spin_lock(&fs_info->defrag_inodes_lock);
260 	node = rb_first(&fs_info->defrag_inodes);
261 	while (node) {
262 		rb_erase(node, &fs_info->defrag_inodes);
263 		defrag = rb_entry(node, struct inode_defrag, rb_node);
264 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
265 
266 		cond_resched_lock(&fs_info->defrag_inodes_lock);
267 
268 		node = rb_first(&fs_info->defrag_inodes);
269 	}
270 	spin_unlock(&fs_info->defrag_inodes_lock);
271 }
272 
273 #define BTRFS_DEFRAG_BATCH	1024
274 
275 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
276 				    struct inode_defrag *defrag)
277 {
278 	struct btrfs_root *inode_root;
279 	struct inode *inode;
280 	struct btrfs_ioctl_defrag_range_args range;
281 	int num_defrag;
282 	int ret;
283 
284 	/* get the inode */
285 	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
286 	if (IS_ERR(inode_root)) {
287 		ret = PTR_ERR(inode_root);
288 		goto cleanup;
289 	}
290 
291 	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
292 	btrfs_put_root(inode_root);
293 	if (IS_ERR(inode)) {
294 		ret = PTR_ERR(inode);
295 		goto cleanup;
296 	}
297 
298 	/* do a chunk of defrag */
299 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
300 	memset(&range, 0, sizeof(range));
301 	range.len = (u64)-1;
302 	range.start = defrag->last_offset;
303 
304 	sb_start_write(fs_info->sb);
305 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
306 				       BTRFS_DEFRAG_BATCH);
307 	sb_end_write(fs_info->sb);
308 	/*
309 	 * if we filled the whole defrag batch, there
310 	 * must be more work to do.  Queue this defrag
311 	 * again
312 	 */
313 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
314 		defrag->last_offset = range.start;
315 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
316 	} else if (defrag->last_offset && !defrag->cycled) {
317 		/*
318 		 * we didn't fill our defrag batch, but
319 		 * we didn't start at zero.  Make sure we loop
320 		 * around to the start of the file.
321 		 */
322 		defrag->last_offset = 0;
323 		defrag->cycled = 1;
324 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
325 	} else {
326 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
327 	}
328 
329 	iput(inode);
330 	return 0;
331 cleanup:
332 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
333 	return ret;
334 }
335 
336 /*
337  * run through the list of inodes in the FS that need
338  * defragging
339  */
340 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
341 {
342 	struct inode_defrag *defrag;
343 	u64 first_ino = 0;
344 	u64 root_objectid = 0;
345 
346 	atomic_inc(&fs_info->defrag_running);
347 	while (1) {
348 		/* Pause the auto defragger. */
349 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
350 			     &fs_info->fs_state))
351 			break;
352 
353 		if (!__need_auto_defrag(fs_info))
354 			break;
355 
356 		/* find an inode to defrag */
357 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
358 						 first_ino);
359 		if (!defrag) {
360 			if (root_objectid || first_ino) {
361 				root_objectid = 0;
362 				first_ino = 0;
363 				continue;
364 			} else {
365 				break;
366 			}
367 		}
368 
369 		first_ino = defrag->ino + 1;
370 		root_objectid = defrag->root;
371 
372 		__btrfs_run_defrag_inode(fs_info, defrag);
373 	}
374 	atomic_dec(&fs_info->defrag_running);
375 
376 	/*
377 	 * during unmount, we use the transaction_wait queue to
378 	 * wait for the defragger to stop
379 	 */
380 	wake_up(&fs_info->transaction_wait);
381 	return 0;
382 }
383 
384 /* simple helper to fault in pages and copy.  This should go away
385  * and be replaced with calls into generic code.
386  */
387 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
388 					 struct page **prepared_pages,
389 					 struct iov_iter *i)
390 {
391 	size_t copied = 0;
392 	size_t total_copied = 0;
393 	int pg = 0;
394 	int offset = offset_in_page(pos);
395 
396 	while (write_bytes > 0) {
397 		size_t count = min_t(size_t,
398 				     PAGE_SIZE - offset, write_bytes);
399 		struct page *page = prepared_pages[pg];
400 		/*
401 		 * Copy data from userspace to the current page
402 		 */
403 		copied = copy_page_from_iter_atomic(page, offset, count, i);
404 
405 		/* Flush processor's dcache for this page */
406 		flush_dcache_page(page);
407 
408 		/*
409 		 * if we get a partial write, we can end up with
410 		 * partially up to date pages.  These add
411 		 * a lot of complexity, so make sure they don't
412 		 * happen by forcing this copy to be retried.
413 		 *
414 		 * The rest of the btrfs_file_write code will fall
415 		 * back to page at a time copies after we return 0.
416 		 */
417 		if (unlikely(copied < count)) {
418 			if (!PageUptodate(page)) {
419 				iov_iter_revert(i, copied);
420 				copied = 0;
421 			}
422 			if (!copied)
423 				break;
424 		}
425 
426 		write_bytes -= copied;
427 		total_copied += copied;
428 		offset += copied;
429 		if (offset == PAGE_SIZE) {
430 			pg++;
431 			offset = 0;
432 		}
433 	}
434 	return total_copied;
435 }
436 
437 /*
438  * unlocks pages after btrfs_file_write is done with them
439  */
440 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
441 {
442 	size_t i;
443 	for (i = 0; i < num_pages; i++) {
444 		/* page checked is some magic around finding pages that
445 		 * have been modified without going through btrfs_set_page_dirty
446 		 * clear it here. There should be no need to mark the pages
447 		 * accessed as prepare_pages should have marked them accessed
448 		 * in prepare_pages via find_or_create_page()
449 		 */
450 		ClearPageChecked(pages[i]);
451 		unlock_page(pages[i]);
452 		put_page(pages[i]);
453 	}
454 }
455 
456 /*
457  * After btrfs_copy_from_user(), update the following things for delalloc:
458  * - Mark newly dirtied pages as DELALLOC in the io tree.
459  *   Used to advise which range is to be written back.
460  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
461  * - Update inode size for past EOF write
462  */
463 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
464 		      size_t num_pages, loff_t pos, size_t write_bytes,
465 		      struct extent_state **cached, bool noreserve)
466 {
467 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
468 	int err = 0;
469 	int i;
470 	u64 num_bytes;
471 	u64 start_pos;
472 	u64 end_of_last_block;
473 	u64 end_pos = pos + write_bytes;
474 	loff_t isize = i_size_read(&inode->vfs_inode);
475 	unsigned int extra_bits = 0;
476 
477 	if (write_bytes == 0)
478 		return 0;
479 
480 	if (noreserve)
481 		extra_bits |= EXTENT_NORESERVE;
482 
483 	start_pos = round_down(pos, fs_info->sectorsize);
484 	num_bytes = round_up(write_bytes + pos - start_pos,
485 			     fs_info->sectorsize);
486 	ASSERT(num_bytes <= U32_MAX);
487 
488 	end_of_last_block = start_pos + num_bytes - 1;
489 
490 	/*
491 	 * The pages may have already been dirty, clear out old accounting so
492 	 * we can set things up properly
493 	 */
494 	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
495 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
496 			 0, 0, cached);
497 
498 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
499 					extra_bits, cached);
500 	if (err)
501 		return err;
502 
503 	for (i = 0; i < num_pages; i++) {
504 		struct page *p = pages[i];
505 
506 		btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
507 		ClearPageChecked(p);
508 		btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
509 	}
510 
511 	/*
512 	 * we've only changed i_size in ram, and we haven't updated
513 	 * the disk i_size.  There is no need to log the inode
514 	 * at this time.
515 	 */
516 	if (end_pos > isize)
517 		i_size_write(&inode->vfs_inode, end_pos);
518 	return 0;
519 }
520 
521 /*
522  * this drops all the extents in the cache that intersect the range
523  * [start, end].  Existing extents are split as required.
524  */
525 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
526 			     int skip_pinned)
527 {
528 	struct extent_map *em;
529 	struct extent_map *split = NULL;
530 	struct extent_map *split2 = NULL;
531 	struct extent_map_tree *em_tree = &inode->extent_tree;
532 	u64 len = end - start + 1;
533 	u64 gen;
534 	int ret;
535 	int testend = 1;
536 	unsigned long flags;
537 	int compressed = 0;
538 	bool modified;
539 
540 	WARN_ON(end < start);
541 	if (end == (u64)-1) {
542 		len = (u64)-1;
543 		testend = 0;
544 	}
545 	while (1) {
546 		int no_splits = 0;
547 
548 		modified = false;
549 		if (!split)
550 			split = alloc_extent_map();
551 		if (!split2)
552 			split2 = alloc_extent_map();
553 		if (!split || !split2)
554 			no_splits = 1;
555 
556 		write_lock(&em_tree->lock);
557 		em = lookup_extent_mapping(em_tree, start, len);
558 		if (!em) {
559 			write_unlock(&em_tree->lock);
560 			break;
561 		}
562 		flags = em->flags;
563 		gen = em->generation;
564 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
565 			if (testend && em->start + em->len >= start + len) {
566 				free_extent_map(em);
567 				write_unlock(&em_tree->lock);
568 				break;
569 			}
570 			start = em->start + em->len;
571 			if (testend)
572 				len = start + len - (em->start + em->len);
573 			free_extent_map(em);
574 			write_unlock(&em_tree->lock);
575 			continue;
576 		}
577 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
578 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
579 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
580 		modified = !list_empty(&em->list);
581 		if (no_splits)
582 			goto next;
583 
584 		if (em->start < start) {
585 			split->start = em->start;
586 			split->len = start - em->start;
587 
588 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
589 				split->orig_start = em->orig_start;
590 				split->block_start = em->block_start;
591 
592 				if (compressed)
593 					split->block_len = em->block_len;
594 				else
595 					split->block_len = split->len;
596 				split->orig_block_len = max(split->block_len,
597 						em->orig_block_len);
598 				split->ram_bytes = em->ram_bytes;
599 			} else {
600 				split->orig_start = split->start;
601 				split->block_len = 0;
602 				split->block_start = em->block_start;
603 				split->orig_block_len = 0;
604 				split->ram_bytes = split->len;
605 			}
606 
607 			split->generation = gen;
608 			split->flags = flags;
609 			split->compress_type = em->compress_type;
610 			replace_extent_mapping(em_tree, em, split, modified);
611 			free_extent_map(split);
612 			split = split2;
613 			split2 = NULL;
614 		}
615 		if (testend && em->start + em->len > start + len) {
616 			u64 diff = start + len - em->start;
617 
618 			split->start = start + len;
619 			split->len = em->start + em->len - (start + len);
620 			split->flags = flags;
621 			split->compress_type = em->compress_type;
622 			split->generation = gen;
623 
624 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
625 				split->orig_block_len = max(em->block_len,
626 						    em->orig_block_len);
627 
628 				split->ram_bytes = em->ram_bytes;
629 				if (compressed) {
630 					split->block_len = em->block_len;
631 					split->block_start = em->block_start;
632 					split->orig_start = em->orig_start;
633 				} else {
634 					split->block_len = split->len;
635 					split->block_start = em->block_start
636 						+ diff;
637 					split->orig_start = em->orig_start;
638 				}
639 			} else {
640 				split->ram_bytes = split->len;
641 				split->orig_start = split->start;
642 				split->block_len = 0;
643 				split->block_start = em->block_start;
644 				split->orig_block_len = 0;
645 			}
646 
647 			if (extent_map_in_tree(em)) {
648 				replace_extent_mapping(em_tree, em, split,
649 						       modified);
650 			} else {
651 				ret = add_extent_mapping(em_tree, split,
652 							 modified);
653 				ASSERT(ret == 0); /* Logic error */
654 			}
655 			free_extent_map(split);
656 			split = NULL;
657 		}
658 next:
659 		if (extent_map_in_tree(em))
660 			remove_extent_mapping(em_tree, em);
661 		write_unlock(&em_tree->lock);
662 
663 		/* once for us */
664 		free_extent_map(em);
665 		/* once for the tree*/
666 		free_extent_map(em);
667 	}
668 	if (split)
669 		free_extent_map(split);
670 	if (split2)
671 		free_extent_map(split2);
672 }
673 
674 /*
675  * this is very complex, but the basic idea is to drop all extents
676  * in the range start - end.  hint_block is filled in with a block number
677  * that would be a good hint to the block allocator for this file.
678  *
679  * If an extent intersects the range but is not entirely inside the range
680  * it is either truncated or split.  Anything entirely inside the range
681  * is deleted from the tree.
682  *
683  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
684  * to deal with that. We set the field 'bytes_found' of the arguments structure
685  * with the number of allocated bytes found in the target range, so that the
686  * caller can update the inode's number of bytes in an atomic way when
687  * replacing extents in a range to avoid races with stat(2).
688  */
689 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
690 		       struct btrfs_root *root, struct btrfs_inode *inode,
691 		       struct btrfs_drop_extents_args *args)
692 {
693 	struct btrfs_fs_info *fs_info = root->fs_info;
694 	struct extent_buffer *leaf;
695 	struct btrfs_file_extent_item *fi;
696 	struct btrfs_ref ref = { 0 };
697 	struct btrfs_key key;
698 	struct btrfs_key new_key;
699 	u64 ino = btrfs_ino(inode);
700 	u64 search_start = args->start;
701 	u64 disk_bytenr = 0;
702 	u64 num_bytes = 0;
703 	u64 extent_offset = 0;
704 	u64 extent_end = 0;
705 	u64 last_end = args->start;
706 	int del_nr = 0;
707 	int del_slot = 0;
708 	int extent_type;
709 	int recow;
710 	int ret;
711 	int modify_tree = -1;
712 	int update_refs;
713 	int found = 0;
714 	int leafs_visited = 0;
715 	struct btrfs_path *path = args->path;
716 
717 	args->bytes_found = 0;
718 	args->extent_inserted = false;
719 
720 	/* Must always have a path if ->replace_extent is true */
721 	ASSERT(!(args->replace_extent && !args->path));
722 
723 	if (!path) {
724 		path = btrfs_alloc_path();
725 		if (!path) {
726 			ret = -ENOMEM;
727 			goto out;
728 		}
729 	}
730 
731 	if (args->drop_cache)
732 		btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
733 
734 	if (args->start >= inode->disk_i_size && !args->replace_extent)
735 		modify_tree = 0;
736 
737 	update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
738 	while (1) {
739 		recow = 0;
740 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
741 					       search_start, modify_tree);
742 		if (ret < 0)
743 			break;
744 		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
745 			leaf = path->nodes[0];
746 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
747 			if (key.objectid == ino &&
748 			    key.type == BTRFS_EXTENT_DATA_KEY)
749 				path->slots[0]--;
750 		}
751 		ret = 0;
752 		leafs_visited++;
753 next_slot:
754 		leaf = path->nodes[0];
755 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
756 			BUG_ON(del_nr > 0);
757 			ret = btrfs_next_leaf(root, path);
758 			if (ret < 0)
759 				break;
760 			if (ret > 0) {
761 				ret = 0;
762 				break;
763 			}
764 			leafs_visited++;
765 			leaf = path->nodes[0];
766 			recow = 1;
767 		}
768 
769 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
770 
771 		if (key.objectid > ino)
772 			break;
773 		if (WARN_ON_ONCE(key.objectid < ino) ||
774 		    key.type < BTRFS_EXTENT_DATA_KEY) {
775 			ASSERT(del_nr == 0);
776 			path->slots[0]++;
777 			goto next_slot;
778 		}
779 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
780 			break;
781 
782 		fi = btrfs_item_ptr(leaf, path->slots[0],
783 				    struct btrfs_file_extent_item);
784 		extent_type = btrfs_file_extent_type(leaf, fi);
785 
786 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
787 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
788 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
789 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
790 			extent_offset = btrfs_file_extent_offset(leaf, fi);
791 			extent_end = key.offset +
792 				btrfs_file_extent_num_bytes(leaf, fi);
793 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
794 			extent_end = key.offset +
795 				btrfs_file_extent_ram_bytes(leaf, fi);
796 		} else {
797 			/* can't happen */
798 			BUG();
799 		}
800 
801 		/*
802 		 * Don't skip extent items representing 0 byte lengths. They
803 		 * used to be created (bug) if while punching holes we hit
804 		 * -ENOSPC condition. So if we find one here, just ensure we
805 		 * delete it, otherwise we would insert a new file extent item
806 		 * with the same key (offset) as that 0 bytes length file
807 		 * extent item in the call to setup_items_for_insert() later
808 		 * in this function.
809 		 */
810 		if (extent_end == key.offset && extent_end >= search_start) {
811 			last_end = extent_end;
812 			goto delete_extent_item;
813 		}
814 
815 		if (extent_end <= search_start) {
816 			path->slots[0]++;
817 			goto next_slot;
818 		}
819 
820 		found = 1;
821 		search_start = max(key.offset, args->start);
822 		if (recow || !modify_tree) {
823 			modify_tree = -1;
824 			btrfs_release_path(path);
825 			continue;
826 		}
827 
828 		/*
829 		 *     | - range to drop - |
830 		 *  | -------- extent -------- |
831 		 */
832 		if (args->start > key.offset && args->end < extent_end) {
833 			BUG_ON(del_nr > 0);
834 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
835 				ret = -EOPNOTSUPP;
836 				break;
837 			}
838 
839 			memcpy(&new_key, &key, sizeof(new_key));
840 			new_key.offset = args->start;
841 			ret = btrfs_duplicate_item(trans, root, path,
842 						   &new_key);
843 			if (ret == -EAGAIN) {
844 				btrfs_release_path(path);
845 				continue;
846 			}
847 			if (ret < 0)
848 				break;
849 
850 			leaf = path->nodes[0];
851 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
852 					    struct btrfs_file_extent_item);
853 			btrfs_set_file_extent_num_bytes(leaf, fi,
854 							args->start - key.offset);
855 
856 			fi = btrfs_item_ptr(leaf, path->slots[0],
857 					    struct btrfs_file_extent_item);
858 
859 			extent_offset += args->start - key.offset;
860 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
861 			btrfs_set_file_extent_num_bytes(leaf, fi,
862 							extent_end - args->start);
863 			btrfs_mark_buffer_dirty(leaf);
864 
865 			if (update_refs && disk_bytenr > 0) {
866 				btrfs_init_generic_ref(&ref,
867 						BTRFS_ADD_DELAYED_REF,
868 						disk_bytenr, num_bytes, 0);
869 				btrfs_init_data_ref(&ref,
870 						root->root_key.objectid,
871 						new_key.objectid,
872 						args->start - extent_offset);
873 				ret = btrfs_inc_extent_ref(trans, &ref);
874 				BUG_ON(ret); /* -ENOMEM */
875 			}
876 			key.offset = args->start;
877 		}
878 		/*
879 		 * From here on out we will have actually dropped something, so
880 		 * last_end can be updated.
881 		 */
882 		last_end = extent_end;
883 
884 		/*
885 		 *  | ---- range to drop ----- |
886 		 *      | -------- extent -------- |
887 		 */
888 		if (args->start <= key.offset && args->end < extent_end) {
889 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
890 				ret = -EOPNOTSUPP;
891 				break;
892 			}
893 
894 			memcpy(&new_key, &key, sizeof(new_key));
895 			new_key.offset = args->end;
896 			btrfs_set_item_key_safe(fs_info, path, &new_key);
897 
898 			extent_offset += args->end - key.offset;
899 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
900 			btrfs_set_file_extent_num_bytes(leaf, fi,
901 							extent_end - args->end);
902 			btrfs_mark_buffer_dirty(leaf);
903 			if (update_refs && disk_bytenr > 0)
904 				args->bytes_found += args->end - key.offset;
905 			break;
906 		}
907 
908 		search_start = extent_end;
909 		/*
910 		 *       | ---- range to drop ----- |
911 		 *  | -------- extent -------- |
912 		 */
913 		if (args->start > key.offset && args->end >= extent_end) {
914 			BUG_ON(del_nr > 0);
915 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
916 				ret = -EOPNOTSUPP;
917 				break;
918 			}
919 
920 			btrfs_set_file_extent_num_bytes(leaf, fi,
921 							args->start - key.offset);
922 			btrfs_mark_buffer_dirty(leaf);
923 			if (update_refs && disk_bytenr > 0)
924 				args->bytes_found += extent_end - args->start;
925 			if (args->end == extent_end)
926 				break;
927 
928 			path->slots[0]++;
929 			goto next_slot;
930 		}
931 
932 		/*
933 		 *  | ---- range to drop ----- |
934 		 *    | ------ extent ------ |
935 		 */
936 		if (args->start <= key.offset && args->end >= extent_end) {
937 delete_extent_item:
938 			if (del_nr == 0) {
939 				del_slot = path->slots[0];
940 				del_nr = 1;
941 			} else {
942 				BUG_ON(del_slot + del_nr != path->slots[0]);
943 				del_nr++;
944 			}
945 
946 			if (update_refs &&
947 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
948 				args->bytes_found += extent_end - key.offset;
949 				extent_end = ALIGN(extent_end,
950 						   fs_info->sectorsize);
951 			} else if (update_refs && disk_bytenr > 0) {
952 				btrfs_init_generic_ref(&ref,
953 						BTRFS_DROP_DELAYED_REF,
954 						disk_bytenr, num_bytes, 0);
955 				btrfs_init_data_ref(&ref,
956 						root->root_key.objectid,
957 						key.objectid,
958 						key.offset - extent_offset);
959 				ret = btrfs_free_extent(trans, &ref);
960 				BUG_ON(ret); /* -ENOMEM */
961 				args->bytes_found += extent_end - key.offset;
962 			}
963 
964 			if (args->end == extent_end)
965 				break;
966 
967 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
968 				path->slots[0]++;
969 				goto next_slot;
970 			}
971 
972 			ret = btrfs_del_items(trans, root, path, del_slot,
973 					      del_nr);
974 			if (ret) {
975 				btrfs_abort_transaction(trans, ret);
976 				break;
977 			}
978 
979 			del_nr = 0;
980 			del_slot = 0;
981 
982 			btrfs_release_path(path);
983 			continue;
984 		}
985 
986 		BUG();
987 	}
988 
989 	if (!ret && del_nr > 0) {
990 		/*
991 		 * Set path->slots[0] to first slot, so that after the delete
992 		 * if items are move off from our leaf to its immediate left or
993 		 * right neighbor leafs, we end up with a correct and adjusted
994 		 * path->slots[0] for our insertion (if args->replace_extent).
995 		 */
996 		path->slots[0] = del_slot;
997 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
998 		if (ret)
999 			btrfs_abort_transaction(trans, ret);
1000 	}
1001 
1002 	leaf = path->nodes[0];
1003 	/*
1004 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
1005 	 * which case it unlocked our path, so check path->locks[0] matches a
1006 	 * write lock.
1007 	 */
1008 	if (!ret && args->replace_extent && leafs_visited == 1 &&
1009 	    path->locks[0] == BTRFS_WRITE_LOCK &&
1010 	    btrfs_leaf_free_space(leaf) >=
1011 	    sizeof(struct btrfs_item) + args->extent_item_size) {
1012 
1013 		key.objectid = ino;
1014 		key.type = BTRFS_EXTENT_DATA_KEY;
1015 		key.offset = args->start;
1016 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1017 			struct btrfs_key slot_key;
1018 
1019 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1020 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1021 				path->slots[0]++;
1022 		}
1023 		setup_items_for_insert(root, path, &key,
1024 				       &args->extent_item_size, 1);
1025 		args->extent_inserted = true;
1026 	}
1027 
1028 	if (!args->path)
1029 		btrfs_free_path(path);
1030 	else if (!args->extent_inserted)
1031 		btrfs_release_path(path);
1032 out:
1033 	args->drop_end = found ? min(args->end, last_end) : args->end;
1034 
1035 	return ret;
1036 }
1037 
1038 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1039 			    u64 objectid, u64 bytenr, u64 orig_offset,
1040 			    u64 *start, u64 *end)
1041 {
1042 	struct btrfs_file_extent_item *fi;
1043 	struct btrfs_key key;
1044 	u64 extent_end;
1045 
1046 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1047 		return 0;
1048 
1049 	btrfs_item_key_to_cpu(leaf, &key, slot);
1050 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1051 		return 0;
1052 
1053 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1054 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1055 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1056 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1057 	    btrfs_file_extent_compression(leaf, fi) ||
1058 	    btrfs_file_extent_encryption(leaf, fi) ||
1059 	    btrfs_file_extent_other_encoding(leaf, fi))
1060 		return 0;
1061 
1062 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1063 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1064 		return 0;
1065 
1066 	*start = key.offset;
1067 	*end = extent_end;
1068 	return 1;
1069 }
1070 
1071 /*
1072  * Mark extent in the range start - end as written.
1073  *
1074  * This changes extent type from 'pre-allocated' to 'regular'. If only
1075  * part of extent is marked as written, the extent will be split into
1076  * two or three.
1077  */
1078 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1079 			      struct btrfs_inode *inode, u64 start, u64 end)
1080 {
1081 	struct btrfs_fs_info *fs_info = trans->fs_info;
1082 	struct btrfs_root *root = inode->root;
1083 	struct extent_buffer *leaf;
1084 	struct btrfs_path *path;
1085 	struct btrfs_file_extent_item *fi;
1086 	struct btrfs_ref ref = { 0 };
1087 	struct btrfs_key key;
1088 	struct btrfs_key new_key;
1089 	u64 bytenr;
1090 	u64 num_bytes;
1091 	u64 extent_end;
1092 	u64 orig_offset;
1093 	u64 other_start;
1094 	u64 other_end;
1095 	u64 split;
1096 	int del_nr = 0;
1097 	int del_slot = 0;
1098 	int recow;
1099 	int ret = 0;
1100 	u64 ino = btrfs_ino(inode);
1101 
1102 	path = btrfs_alloc_path();
1103 	if (!path)
1104 		return -ENOMEM;
1105 again:
1106 	recow = 0;
1107 	split = start;
1108 	key.objectid = ino;
1109 	key.type = BTRFS_EXTENT_DATA_KEY;
1110 	key.offset = split;
1111 
1112 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1113 	if (ret < 0)
1114 		goto out;
1115 	if (ret > 0 && path->slots[0] > 0)
1116 		path->slots[0]--;
1117 
1118 	leaf = path->nodes[0];
1119 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1120 	if (key.objectid != ino ||
1121 	    key.type != BTRFS_EXTENT_DATA_KEY) {
1122 		ret = -EINVAL;
1123 		btrfs_abort_transaction(trans, ret);
1124 		goto out;
1125 	}
1126 	fi = btrfs_item_ptr(leaf, path->slots[0],
1127 			    struct btrfs_file_extent_item);
1128 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1129 		ret = -EINVAL;
1130 		btrfs_abort_transaction(trans, ret);
1131 		goto out;
1132 	}
1133 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1134 	if (key.offset > start || extent_end < end) {
1135 		ret = -EINVAL;
1136 		btrfs_abort_transaction(trans, ret);
1137 		goto out;
1138 	}
1139 
1140 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1141 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1142 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1143 	memcpy(&new_key, &key, sizeof(new_key));
1144 
1145 	if (start == key.offset && end < extent_end) {
1146 		other_start = 0;
1147 		other_end = start;
1148 		if (extent_mergeable(leaf, path->slots[0] - 1,
1149 				     ino, bytenr, orig_offset,
1150 				     &other_start, &other_end)) {
1151 			new_key.offset = end;
1152 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1153 			fi = btrfs_item_ptr(leaf, path->slots[0],
1154 					    struct btrfs_file_extent_item);
1155 			btrfs_set_file_extent_generation(leaf, fi,
1156 							 trans->transid);
1157 			btrfs_set_file_extent_num_bytes(leaf, fi,
1158 							extent_end - end);
1159 			btrfs_set_file_extent_offset(leaf, fi,
1160 						     end - orig_offset);
1161 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1162 					    struct btrfs_file_extent_item);
1163 			btrfs_set_file_extent_generation(leaf, fi,
1164 							 trans->transid);
1165 			btrfs_set_file_extent_num_bytes(leaf, fi,
1166 							end - other_start);
1167 			btrfs_mark_buffer_dirty(leaf);
1168 			goto out;
1169 		}
1170 	}
1171 
1172 	if (start > key.offset && end == extent_end) {
1173 		other_start = end;
1174 		other_end = 0;
1175 		if (extent_mergeable(leaf, path->slots[0] + 1,
1176 				     ino, bytenr, orig_offset,
1177 				     &other_start, &other_end)) {
1178 			fi = btrfs_item_ptr(leaf, path->slots[0],
1179 					    struct btrfs_file_extent_item);
1180 			btrfs_set_file_extent_num_bytes(leaf, fi,
1181 							start - key.offset);
1182 			btrfs_set_file_extent_generation(leaf, fi,
1183 							 trans->transid);
1184 			path->slots[0]++;
1185 			new_key.offset = start;
1186 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1187 
1188 			fi = btrfs_item_ptr(leaf, path->slots[0],
1189 					    struct btrfs_file_extent_item);
1190 			btrfs_set_file_extent_generation(leaf, fi,
1191 							 trans->transid);
1192 			btrfs_set_file_extent_num_bytes(leaf, fi,
1193 							other_end - start);
1194 			btrfs_set_file_extent_offset(leaf, fi,
1195 						     start - orig_offset);
1196 			btrfs_mark_buffer_dirty(leaf);
1197 			goto out;
1198 		}
1199 	}
1200 
1201 	while (start > key.offset || end < extent_end) {
1202 		if (key.offset == start)
1203 			split = end;
1204 
1205 		new_key.offset = split;
1206 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1207 		if (ret == -EAGAIN) {
1208 			btrfs_release_path(path);
1209 			goto again;
1210 		}
1211 		if (ret < 0) {
1212 			btrfs_abort_transaction(trans, ret);
1213 			goto out;
1214 		}
1215 
1216 		leaf = path->nodes[0];
1217 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1218 				    struct btrfs_file_extent_item);
1219 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1220 		btrfs_set_file_extent_num_bytes(leaf, fi,
1221 						split - key.offset);
1222 
1223 		fi = btrfs_item_ptr(leaf, path->slots[0],
1224 				    struct btrfs_file_extent_item);
1225 
1226 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1227 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1228 		btrfs_set_file_extent_num_bytes(leaf, fi,
1229 						extent_end - split);
1230 		btrfs_mark_buffer_dirty(leaf);
1231 
1232 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1233 				       num_bytes, 0);
1234 		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1235 				    orig_offset);
1236 		ret = btrfs_inc_extent_ref(trans, &ref);
1237 		if (ret) {
1238 			btrfs_abort_transaction(trans, ret);
1239 			goto out;
1240 		}
1241 
1242 		if (split == start) {
1243 			key.offset = start;
1244 		} else {
1245 			if (start != key.offset) {
1246 				ret = -EINVAL;
1247 				btrfs_abort_transaction(trans, ret);
1248 				goto out;
1249 			}
1250 			path->slots[0]--;
1251 			extent_end = end;
1252 		}
1253 		recow = 1;
1254 	}
1255 
1256 	other_start = end;
1257 	other_end = 0;
1258 	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1259 			       num_bytes, 0);
1260 	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1261 	if (extent_mergeable(leaf, path->slots[0] + 1,
1262 			     ino, bytenr, orig_offset,
1263 			     &other_start, &other_end)) {
1264 		if (recow) {
1265 			btrfs_release_path(path);
1266 			goto again;
1267 		}
1268 		extent_end = other_end;
1269 		del_slot = path->slots[0] + 1;
1270 		del_nr++;
1271 		ret = btrfs_free_extent(trans, &ref);
1272 		if (ret) {
1273 			btrfs_abort_transaction(trans, ret);
1274 			goto out;
1275 		}
1276 	}
1277 	other_start = 0;
1278 	other_end = start;
1279 	if (extent_mergeable(leaf, path->slots[0] - 1,
1280 			     ino, bytenr, orig_offset,
1281 			     &other_start, &other_end)) {
1282 		if (recow) {
1283 			btrfs_release_path(path);
1284 			goto again;
1285 		}
1286 		key.offset = other_start;
1287 		del_slot = path->slots[0];
1288 		del_nr++;
1289 		ret = btrfs_free_extent(trans, &ref);
1290 		if (ret) {
1291 			btrfs_abort_transaction(trans, ret);
1292 			goto out;
1293 		}
1294 	}
1295 	if (del_nr == 0) {
1296 		fi = btrfs_item_ptr(leaf, path->slots[0],
1297 			   struct btrfs_file_extent_item);
1298 		btrfs_set_file_extent_type(leaf, fi,
1299 					   BTRFS_FILE_EXTENT_REG);
1300 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1301 		btrfs_mark_buffer_dirty(leaf);
1302 	} else {
1303 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1304 			   struct btrfs_file_extent_item);
1305 		btrfs_set_file_extent_type(leaf, fi,
1306 					   BTRFS_FILE_EXTENT_REG);
1307 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1308 		btrfs_set_file_extent_num_bytes(leaf, fi,
1309 						extent_end - key.offset);
1310 		btrfs_mark_buffer_dirty(leaf);
1311 
1312 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1313 		if (ret < 0) {
1314 			btrfs_abort_transaction(trans, ret);
1315 			goto out;
1316 		}
1317 	}
1318 out:
1319 	btrfs_free_path(path);
1320 	return ret;
1321 }
1322 
1323 /*
1324  * on error we return an unlocked page and the error value
1325  * on success we return a locked page and 0
1326  */
1327 static int prepare_uptodate_page(struct inode *inode,
1328 				 struct page *page, u64 pos,
1329 				 bool force_uptodate)
1330 {
1331 	int ret = 0;
1332 
1333 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1334 	    !PageUptodate(page)) {
1335 		ret = btrfs_readpage(NULL, page);
1336 		if (ret)
1337 			return ret;
1338 		lock_page(page);
1339 		if (!PageUptodate(page)) {
1340 			unlock_page(page);
1341 			return -EIO;
1342 		}
1343 
1344 		/*
1345 		 * Since btrfs_readpage() will unlock the page before it
1346 		 * returns, there is a window where btrfs_releasepage() can be
1347 		 * called to release the page.  Here we check both inode
1348 		 * mapping and PagePrivate() to make sure the page was not
1349 		 * released.
1350 		 *
1351 		 * The private flag check is essential for subpage as we need
1352 		 * to store extra bitmap using page->private.
1353 		 */
1354 		if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
1355 			unlock_page(page);
1356 			return -EAGAIN;
1357 		}
1358 	}
1359 	return 0;
1360 }
1361 
1362 /*
1363  * this just gets pages into the page cache and locks them down.
1364  */
1365 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1366 				  size_t num_pages, loff_t pos,
1367 				  size_t write_bytes, bool force_uptodate)
1368 {
1369 	int i;
1370 	unsigned long index = pos >> PAGE_SHIFT;
1371 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1372 	int err = 0;
1373 	int faili;
1374 
1375 	for (i = 0; i < num_pages; i++) {
1376 again:
1377 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1378 					       mask | __GFP_WRITE);
1379 		if (!pages[i]) {
1380 			faili = i - 1;
1381 			err = -ENOMEM;
1382 			goto fail;
1383 		}
1384 
1385 		err = set_page_extent_mapped(pages[i]);
1386 		if (err < 0) {
1387 			faili = i;
1388 			goto fail;
1389 		}
1390 
1391 		if (i == 0)
1392 			err = prepare_uptodate_page(inode, pages[i], pos,
1393 						    force_uptodate);
1394 		if (!err && i == num_pages - 1)
1395 			err = prepare_uptodate_page(inode, pages[i],
1396 						    pos + write_bytes, false);
1397 		if (err) {
1398 			put_page(pages[i]);
1399 			if (err == -EAGAIN) {
1400 				err = 0;
1401 				goto again;
1402 			}
1403 			faili = i - 1;
1404 			goto fail;
1405 		}
1406 		wait_on_page_writeback(pages[i]);
1407 	}
1408 
1409 	return 0;
1410 fail:
1411 	while (faili >= 0) {
1412 		unlock_page(pages[faili]);
1413 		put_page(pages[faili]);
1414 		faili--;
1415 	}
1416 	return err;
1417 
1418 }
1419 
1420 /*
1421  * This function locks the extent and properly waits for data=ordered extents
1422  * to finish before allowing the pages to be modified if need.
1423  *
1424  * The return value:
1425  * 1 - the extent is locked
1426  * 0 - the extent is not locked, and everything is OK
1427  * -EAGAIN - need re-prepare the pages
1428  * the other < 0 number - Something wrong happens
1429  */
1430 static noinline int
1431 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1432 				size_t num_pages, loff_t pos,
1433 				size_t write_bytes,
1434 				u64 *lockstart, u64 *lockend,
1435 				struct extent_state **cached_state)
1436 {
1437 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1438 	u64 start_pos;
1439 	u64 last_pos;
1440 	int i;
1441 	int ret = 0;
1442 
1443 	start_pos = round_down(pos, fs_info->sectorsize);
1444 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1445 
1446 	if (start_pos < inode->vfs_inode.i_size) {
1447 		struct btrfs_ordered_extent *ordered;
1448 
1449 		lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1450 				cached_state);
1451 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1452 						     last_pos - start_pos + 1);
1453 		if (ordered &&
1454 		    ordered->file_offset + ordered->num_bytes > start_pos &&
1455 		    ordered->file_offset <= last_pos) {
1456 			unlock_extent_cached(&inode->io_tree, start_pos,
1457 					last_pos, cached_state);
1458 			for (i = 0; i < num_pages; i++) {
1459 				unlock_page(pages[i]);
1460 				put_page(pages[i]);
1461 			}
1462 			btrfs_start_ordered_extent(ordered, 1);
1463 			btrfs_put_ordered_extent(ordered);
1464 			return -EAGAIN;
1465 		}
1466 		if (ordered)
1467 			btrfs_put_ordered_extent(ordered);
1468 
1469 		*lockstart = start_pos;
1470 		*lockend = last_pos;
1471 		ret = 1;
1472 	}
1473 
1474 	/*
1475 	 * We should be called after prepare_pages() which should have locked
1476 	 * all pages in the range.
1477 	 */
1478 	for (i = 0; i < num_pages; i++)
1479 		WARN_ON(!PageLocked(pages[i]));
1480 
1481 	return ret;
1482 }
1483 
1484 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1485 			   size_t *write_bytes, bool nowait)
1486 {
1487 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1488 	struct btrfs_root *root = inode->root;
1489 	u64 lockstart, lockend;
1490 	u64 num_bytes;
1491 	int ret;
1492 
1493 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1494 		return 0;
1495 
1496 	if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1497 		return -EAGAIN;
1498 
1499 	lockstart = round_down(pos, fs_info->sectorsize);
1500 	lockend = round_up(pos + *write_bytes,
1501 			   fs_info->sectorsize) - 1;
1502 	num_bytes = lockend - lockstart + 1;
1503 
1504 	if (nowait) {
1505 		struct btrfs_ordered_extent *ordered;
1506 
1507 		if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1508 			return -EAGAIN;
1509 
1510 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1511 						     num_bytes);
1512 		if (ordered) {
1513 			btrfs_put_ordered_extent(ordered);
1514 			ret = -EAGAIN;
1515 			goto out_unlock;
1516 		}
1517 	} else {
1518 		btrfs_lock_and_flush_ordered_range(inode, lockstart,
1519 						   lockend, NULL);
1520 	}
1521 
1522 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1523 			NULL, NULL, NULL, false);
1524 	if (ret <= 0) {
1525 		ret = 0;
1526 		if (!nowait)
1527 			btrfs_drew_write_unlock(&root->snapshot_lock);
1528 	} else {
1529 		*write_bytes = min_t(size_t, *write_bytes ,
1530 				     num_bytes - pos + lockstart);
1531 	}
1532 out_unlock:
1533 	unlock_extent(&inode->io_tree, lockstart, lockend);
1534 
1535 	return ret;
1536 }
1537 
1538 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1539 			      size_t *write_bytes)
1540 {
1541 	return check_can_nocow(inode, pos, write_bytes, true);
1542 }
1543 
1544 /*
1545  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1546  *
1547  * @pos:	 File offset
1548  * @write_bytes: The length to write, will be updated to the nocow writeable
1549  *		 range
1550  *
1551  * This function will flush ordered extents in the range to ensure proper
1552  * nocow checks.
1553  *
1554  * Return:
1555  * >0		and update @write_bytes if we can do nocow write
1556  *  0		if we can't do nocow write
1557  * -EAGAIN	if we can't get the needed lock or there are ordered extents
1558  * 		for * (nowait == true) case
1559  * <0		if other error happened
1560  *
1561  * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1562  */
1563 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1564 			   size_t *write_bytes)
1565 {
1566 	return check_can_nocow(inode, pos, write_bytes, false);
1567 }
1568 
1569 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1570 {
1571 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1572 }
1573 
1574 static void update_time_for_write(struct inode *inode)
1575 {
1576 	struct timespec64 now;
1577 
1578 	if (IS_NOCMTIME(inode))
1579 		return;
1580 
1581 	now = current_time(inode);
1582 	if (!timespec64_equal(&inode->i_mtime, &now))
1583 		inode->i_mtime = now;
1584 
1585 	if (!timespec64_equal(&inode->i_ctime, &now))
1586 		inode->i_ctime = now;
1587 
1588 	if (IS_I_VERSION(inode))
1589 		inode_inc_iversion(inode);
1590 }
1591 
1592 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1593 			     size_t count)
1594 {
1595 	struct file *file = iocb->ki_filp;
1596 	struct inode *inode = file_inode(file);
1597 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1598 	loff_t pos = iocb->ki_pos;
1599 	int ret;
1600 	loff_t oldsize;
1601 	loff_t start_pos;
1602 
1603 	if (iocb->ki_flags & IOCB_NOWAIT) {
1604 		size_t nocow_bytes = count;
1605 
1606 		/* We will allocate space in case nodatacow is not set, so bail */
1607 		if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0)
1608 			return -EAGAIN;
1609 		/*
1610 		 * There are holes in the range or parts of the range that must
1611 		 * be COWed (shared extents, RO block groups, etc), so just bail
1612 		 * out.
1613 		 */
1614 		if (nocow_bytes < count)
1615 			return -EAGAIN;
1616 	}
1617 
1618 	current->backing_dev_info = inode_to_bdi(inode);
1619 	ret = file_remove_privs(file);
1620 	if (ret)
1621 		return ret;
1622 
1623 	/*
1624 	 * We reserve space for updating the inode when we reserve space for the
1625 	 * extent we are going to write, so we will enospc out there.  We don't
1626 	 * need to start yet another transaction to update the inode as we will
1627 	 * update the inode when we finish writing whatever data we write.
1628 	 */
1629 	update_time_for_write(inode);
1630 
1631 	start_pos = round_down(pos, fs_info->sectorsize);
1632 	oldsize = i_size_read(inode);
1633 	if (start_pos > oldsize) {
1634 		/* Expand hole size to cover write data, preventing empty gap */
1635 		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1636 
1637 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1638 		if (ret) {
1639 			current->backing_dev_info = NULL;
1640 			return ret;
1641 		}
1642 	}
1643 
1644 	return 0;
1645 }
1646 
1647 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1648 					       struct iov_iter *i)
1649 {
1650 	struct file *file = iocb->ki_filp;
1651 	loff_t pos;
1652 	struct inode *inode = file_inode(file);
1653 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1654 	struct page **pages = NULL;
1655 	struct extent_changeset *data_reserved = NULL;
1656 	u64 release_bytes = 0;
1657 	u64 lockstart;
1658 	u64 lockend;
1659 	size_t num_written = 0;
1660 	int nrptrs;
1661 	ssize_t ret;
1662 	bool only_release_metadata = false;
1663 	bool force_page_uptodate = false;
1664 	loff_t old_isize = i_size_read(inode);
1665 	unsigned int ilock_flags = 0;
1666 
1667 	if (iocb->ki_flags & IOCB_NOWAIT)
1668 		ilock_flags |= BTRFS_ILOCK_TRY;
1669 
1670 	ret = btrfs_inode_lock(inode, ilock_flags);
1671 	if (ret < 0)
1672 		return ret;
1673 
1674 	ret = generic_write_checks(iocb, i);
1675 	if (ret <= 0)
1676 		goto out;
1677 
1678 	ret = btrfs_write_check(iocb, i, ret);
1679 	if (ret < 0)
1680 		goto out;
1681 
1682 	pos = iocb->ki_pos;
1683 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1684 			PAGE_SIZE / (sizeof(struct page *)));
1685 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1686 	nrptrs = max(nrptrs, 8);
1687 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1688 	if (!pages) {
1689 		ret = -ENOMEM;
1690 		goto out;
1691 	}
1692 
1693 	while (iov_iter_count(i) > 0) {
1694 		struct extent_state *cached_state = NULL;
1695 		size_t offset = offset_in_page(pos);
1696 		size_t sector_offset;
1697 		size_t write_bytes = min(iov_iter_count(i),
1698 					 nrptrs * (size_t)PAGE_SIZE -
1699 					 offset);
1700 		size_t num_pages;
1701 		size_t reserve_bytes;
1702 		size_t dirty_pages;
1703 		size_t copied;
1704 		size_t dirty_sectors;
1705 		size_t num_sectors;
1706 		int extents_locked;
1707 
1708 		/*
1709 		 * Fault pages before locking them in prepare_pages
1710 		 * to avoid recursive lock
1711 		 */
1712 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1713 			ret = -EFAULT;
1714 			break;
1715 		}
1716 
1717 		only_release_metadata = false;
1718 		sector_offset = pos & (fs_info->sectorsize - 1);
1719 
1720 		extent_changeset_release(data_reserved);
1721 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1722 						  &data_reserved, pos,
1723 						  write_bytes);
1724 		if (ret < 0) {
1725 			/*
1726 			 * If we don't have to COW at the offset, reserve
1727 			 * metadata only. write_bytes may get smaller than
1728 			 * requested here.
1729 			 */
1730 			if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1731 						   &write_bytes) > 0)
1732 				only_release_metadata = true;
1733 			else
1734 				break;
1735 		}
1736 
1737 		num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1738 		WARN_ON(num_pages > nrptrs);
1739 		reserve_bytes = round_up(write_bytes + sector_offset,
1740 					 fs_info->sectorsize);
1741 		WARN_ON(reserve_bytes == 0);
1742 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1743 				reserve_bytes);
1744 		if (ret) {
1745 			if (!only_release_metadata)
1746 				btrfs_free_reserved_data_space(BTRFS_I(inode),
1747 						data_reserved, pos,
1748 						write_bytes);
1749 			else
1750 				btrfs_check_nocow_unlock(BTRFS_I(inode));
1751 			break;
1752 		}
1753 
1754 		release_bytes = reserve_bytes;
1755 again:
1756 		/*
1757 		 * This is going to setup the pages array with the number of
1758 		 * pages we want, so we don't really need to worry about the
1759 		 * contents of pages from loop to loop
1760 		 */
1761 		ret = prepare_pages(inode, pages, num_pages,
1762 				    pos, write_bytes,
1763 				    force_page_uptodate);
1764 		if (ret) {
1765 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1766 						       reserve_bytes);
1767 			break;
1768 		}
1769 
1770 		extents_locked = lock_and_cleanup_extent_if_need(
1771 				BTRFS_I(inode), pages,
1772 				num_pages, pos, write_bytes, &lockstart,
1773 				&lockend, &cached_state);
1774 		if (extents_locked < 0) {
1775 			if (extents_locked == -EAGAIN)
1776 				goto again;
1777 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1778 						       reserve_bytes);
1779 			ret = extents_locked;
1780 			break;
1781 		}
1782 
1783 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1784 
1785 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1786 		dirty_sectors = round_up(copied + sector_offset,
1787 					fs_info->sectorsize);
1788 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1789 
1790 		/*
1791 		 * if we have trouble faulting in the pages, fall
1792 		 * back to one page at a time
1793 		 */
1794 		if (copied < write_bytes)
1795 			nrptrs = 1;
1796 
1797 		if (copied == 0) {
1798 			force_page_uptodate = true;
1799 			dirty_sectors = 0;
1800 			dirty_pages = 0;
1801 		} else {
1802 			force_page_uptodate = false;
1803 			dirty_pages = DIV_ROUND_UP(copied + offset,
1804 						   PAGE_SIZE);
1805 		}
1806 
1807 		if (num_sectors > dirty_sectors) {
1808 			/* release everything except the sectors we dirtied */
1809 			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1810 			if (only_release_metadata) {
1811 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1812 							release_bytes, true);
1813 			} else {
1814 				u64 __pos;
1815 
1816 				__pos = round_down(pos,
1817 						   fs_info->sectorsize) +
1818 					(dirty_pages << PAGE_SHIFT);
1819 				btrfs_delalloc_release_space(BTRFS_I(inode),
1820 						data_reserved, __pos,
1821 						release_bytes, true);
1822 			}
1823 		}
1824 
1825 		release_bytes = round_up(copied + sector_offset,
1826 					fs_info->sectorsize);
1827 
1828 		ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1829 					dirty_pages, pos, copied,
1830 					&cached_state, only_release_metadata);
1831 
1832 		/*
1833 		 * If we have not locked the extent range, because the range's
1834 		 * start offset is >= i_size, we might still have a non-NULL
1835 		 * cached extent state, acquired while marking the extent range
1836 		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1837 		 * possible cached extent state to avoid a memory leak.
1838 		 */
1839 		if (extents_locked)
1840 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1841 					     lockstart, lockend, &cached_state);
1842 		else
1843 			free_extent_state(cached_state);
1844 
1845 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1846 		if (ret) {
1847 			btrfs_drop_pages(pages, num_pages);
1848 			break;
1849 		}
1850 
1851 		release_bytes = 0;
1852 		if (only_release_metadata)
1853 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1854 
1855 		btrfs_drop_pages(pages, num_pages);
1856 
1857 		cond_resched();
1858 
1859 		balance_dirty_pages_ratelimited(inode->i_mapping);
1860 
1861 		pos += copied;
1862 		num_written += copied;
1863 	}
1864 
1865 	kfree(pages);
1866 
1867 	if (release_bytes) {
1868 		if (only_release_metadata) {
1869 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1870 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1871 					release_bytes, true);
1872 		} else {
1873 			btrfs_delalloc_release_space(BTRFS_I(inode),
1874 					data_reserved,
1875 					round_down(pos, fs_info->sectorsize),
1876 					release_bytes, true);
1877 		}
1878 	}
1879 
1880 	extent_changeset_free(data_reserved);
1881 	if (num_written > 0) {
1882 		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1883 		iocb->ki_pos += num_written;
1884 	}
1885 out:
1886 	btrfs_inode_unlock(inode, ilock_flags);
1887 	return num_written ? num_written : ret;
1888 }
1889 
1890 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1891 			       const struct iov_iter *iter, loff_t offset)
1892 {
1893 	const u32 blocksize_mask = fs_info->sectorsize - 1;
1894 
1895 	if (offset & blocksize_mask)
1896 		return -EINVAL;
1897 
1898 	if (iov_iter_alignment(iter) & blocksize_mask)
1899 		return -EINVAL;
1900 
1901 	return 0;
1902 }
1903 
1904 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1905 {
1906 	struct file *file = iocb->ki_filp;
1907 	struct inode *inode = file_inode(file);
1908 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1909 	loff_t pos;
1910 	ssize_t written = 0;
1911 	ssize_t written_buffered;
1912 	loff_t endbyte;
1913 	ssize_t err;
1914 	unsigned int ilock_flags = 0;
1915 	struct iomap_dio *dio = NULL;
1916 
1917 	if (iocb->ki_flags & IOCB_NOWAIT)
1918 		ilock_flags |= BTRFS_ILOCK_TRY;
1919 
1920 	/* If the write DIO is within EOF, use a shared lock */
1921 	if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1922 		ilock_flags |= BTRFS_ILOCK_SHARED;
1923 
1924 relock:
1925 	err = btrfs_inode_lock(inode, ilock_flags);
1926 	if (err < 0)
1927 		return err;
1928 
1929 	err = generic_write_checks(iocb, from);
1930 	if (err <= 0) {
1931 		btrfs_inode_unlock(inode, ilock_flags);
1932 		return err;
1933 	}
1934 
1935 	err = btrfs_write_check(iocb, from, err);
1936 	if (err < 0) {
1937 		btrfs_inode_unlock(inode, ilock_flags);
1938 		goto out;
1939 	}
1940 
1941 	pos = iocb->ki_pos;
1942 	/*
1943 	 * Re-check since file size may have changed just before taking the
1944 	 * lock or pos may have changed because of O_APPEND in generic_write_check()
1945 	 */
1946 	if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1947 	    pos + iov_iter_count(from) > i_size_read(inode)) {
1948 		btrfs_inode_unlock(inode, ilock_flags);
1949 		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1950 		goto relock;
1951 	}
1952 
1953 	if (check_direct_IO(fs_info, from, pos)) {
1954 		btrfs_inode_unlock(inode, ilock_flags);
1955 		goto buffered;
1956 	}
1957 
1958 	dio = __iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
1959 			     0);
1960 
1961 	btrfs_inode_unlock(inode, ilock_flags);
1962 
1963 	if (IS_ERR_OR_NULL(dio)) {
1964 		err = PTR_ERR_OR_ZERO(dio);
1965 		if (err < 0 && err != -ENOTBLK)
1966 			goto out;
1967 	} else {
1968 		written = iomap_dio_complete(dio);
1969 	}
1970 
1971 	if (written < 0 || !iov_iter_count(from)) {
1972 		err = written;
1973 		goto out;
1974 	}
1975 
1976 buffered:
1977 	pos = iocb->ki_pos;
1978 	written_buffered = btrfs_buffered_write(iocb, from);
1979 	if (written_buffered < 0) {
1980 		err = written_buffered;
1981 		goto out;
1982 	}
1983 	/*
1984 	 * Ensure all data is persisted. We want the next direct IO read to be
1985 	 * able to read what was just written.
1986 	 */
1987 	endbyte = pos + written_buffered - 1;
1988 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1989 	if (err)
1990 		goto out;
1991 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1992 	if (err)
1993 		goto out;
1994 	written += written_buffered;
1995 	iocb->ki_pos = pos + written_buffered;
1996 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1997 				 endbyte >> PAGE_SHIFT);
1998 out:
1999 	return written ? written : err;
2000 }
2001 
2002 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
2003 				    struct iov_iter *from)
2004 {
2005 	struct file *file = iocb->ki_filp;
2006 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
2007 	ssize_t num_written = 0;
2008 	const bool sync = iocb->ki_flags & IOCB_DSYNC;
2009 
2010 	/*
2011 	 * If the fs flips readonly due to some impossible error, although we
2012 	 * have opened a file as writable, we have to stop this write operation
2013 	 * to ensure consistency.
2014 	 */
2015 	if (test_bit(BTRFS_FS_STATE_ERROR, &inode->root->fs_info->fs_state))
2016 		return -EROFS;
2017 
2018 	if (!(iocb->ki_flags & IOCB_DIRECT) &&
2019 	    (iocb->ki_flags & IOCB_NOWAIT))
2020 		return -EOPNOTSUPP;
2021 
2022 	if (sync)
2023 		atomic_inc(&inode->sync_writers);
2024 
2025 	if (iocb->ki_flags & IOCB_DIRECT)
2026 		num_written = btrfs_direct_write(iocb, from);
2027 	else
2028 		num_written = btrfs_buffered_write(iocb, from);
2029 
2030 	btrfs_set_inode_last_sub_trans(inode);
2031 
2032 	if (num_written > 0)
2033 		num_written = generic_write_sync(iocb, num_written);
2034 
2035 	if (sync)
2036 		atomic_dec(&inode->sync_writers);
2037 
2038 	current->backing_dev_info = NULL;
2039 	return num_written;
2040 }
2041 
2042 int btrfs_release_file(struct inode *inode, struct file *filp)
2043 {
2044 	struct btrfs_file_private *private = filp->private_data;
2045 
2046 	if (private && private->filldir_buf)
2047 		kfree(private->filldir_buf);
2048 	kfree(private);
2049 	filp->private_data = NULL;
2050 
2051 	/*
2052 	 * Set by setattr when we are about to truncate a file from a non-zero
2053 	 * size to a zero size.  This tries to flush down new bytes that may
2054 	 * have been written if the application were using truncate to replace
2055 	 * a file in place.
2056 	 */
2057 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2058 			       &BTRFS_I(inode)->runtime_flags))
2059 			filemap_flush(inode->i_mapping);
2060 	return 0;
2061 }
2062 
2063 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2064 {
2065 	int ret;
2066 	struct blk_plug plug;
2067 
2068 	/*
2069 	 * This is only called in fsync, which would do synchronous writes, so
2070 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2071 	 * multiple disks using raid profile, a large IO can be split to
2072 	 * several segments of stripe length (currently 64K).
2073 	 */
2074 	blk_start_plug(&plug);
2075 	atomic_inc(&BTRFS_I(inode)->sync_writers);
2076 	ret = btrfs_fdatawrite_range(inode, start, end);
2077 	atomic_dec(&BTRFS_I(inode)->sync_writers);
2078 	blk_finish_plug(&plug);
2079 
2080 	return ret;
2081 }
2082 
2083 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2084 {
2085 	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2086 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2087 
2088 	if (btrfs_inode_in_log(inode, fs_info->generation) &&
2089 	    list_empty(&ctx->ordered_extents))
2090 		return true;
2091 
2092 	/*
2093 	 * If we are doing a fast fsync we can not bail out if the inode's
2094 	 * last_trans is <= then the last committed transaction, because we only
2095 	 * update the last_trans of the inode during ordered extent completion,
2096 	 * and for a fast fsync we don't wait for that, we only wait for the
2097 	 * writeback to complete.
2098 	 */
2099 	if (inode->last_trans <= fs_info->last_trans_committed &&
2100 	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2101 	     list_empty(&ctx->ordered_extents)))
2102 		return true;
2103 
2104 	return false;
2105 }
2106 
2107 /*
2108  * fsync call for both files and directories.  This logs the inode into
2109  * the tree log instead of forcing full commits whenever possible.
2110  *
2111  * It needs to call filemap_fdatawait so that all ordered extent updates are
2112  * in the metadata btree are up to date for copying to the log.
2113  *
2114  * It drops the inode mutex before doing the tree log commit.  This is an
2115  * important optimization for directories because holding the mutex prevents
2116  * new operations on the dir while we write to disk.
2117  */
2118 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2119 {
2120 	struct dentry *dentry = file_dentry(file);
2121 	struct inode *inode = d_inode(dentry);
2122 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2123 	struct btrfs_root *root = BTRFS_I(inode)->root;
2124 	struct btrfs_trans_handle *trans;
2125 	struct btrfs_log_ctx ctx;
2126 	int ret = 0, err;
2127 	u64 len;
2128 	bool full_sync;
2129 
2130 	trace_btrfs_sync_file(file, datasync);
2131 
2132 	btrfs_init_log_ctx(&ctx, inode);
2133 
2134 	/*
2135 	 * Always set the range to a full range, otherwise we can get into
2136 	 * several problems, from missing file extent items to represent holes
2137 	 * when not using the NO_HOLES feature, to log tree corruption due to
2138 	 * races between hole detection during logging and completion of ordered
2139 	 * extents outside the range, to missing checksums due to ordered extents
2140 	 * for which we flushed only a subset of their pages.
2141 	 */
2142 	start = 0;
2143 	end = LLONG_MAX;
2144 	len = (u64)LLONG_MAX + 1;
2145 
2146 	/*
2147 	 * We write the dirty pages in the range and wait until they complete
2148 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
2149 	 * multi-task, and make the performance up.  See
2150 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2151 	 */
2152 	ret = start_ordered_ops(inode, start, end);
2153 	if (ret)
2154 		goto out;
2155 
2156 	btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2157 
2158 	atomic_inc(&root->log_batch);
2159 
2160 	/*
2161 	 * Always check for the full sync flag while holding the inode's lock,
2162 	 * to avoid races with other tasks. The flag must be either set all the
2163 	 * time during logging or always off all the time while logging.
2164 	 */
2165 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2166 			     &BTRFS_I(inode)->runtime_flags);
2167 
2168 	/*
2169 	 * Before we acquired the inode's lock and the mmap lock, someone may
2170 	 * have dirtied more pages in the target range. We need to make sure
2171 	 * that writeback for any such pages does not start while we are logging
2172 	 * the inode, because if it does, any of the following might happen when
2173 	 * we are not doing a full inode sync:
2174 	 *
2175 	 * 1) We log an extent after its writeback finishes but before its
2176 	 *    checksums are added to the csum tree, leading to -EIO errors
2177 	 *    when attempting to read the extent after a log replay.
2178 	 *
2179 	 * 2) We can end up logging an extent before its writeback finishes.
2180 	 *    Therefore after the log replay we will have a file extent item
2181 	 *    pointing to an unwritten extent (and no data checksums as well).
2182 	 *
2183 	 * So trigger writeback for any eventual new dirty pages and then we
2184 	 * wait for all ordered extents to complete below.
2185 	 */
2186 	ret = start_ordered_ops(inode, start, end);
2187 	if (ret) {
2188 		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2189 		goto out;
2190 	}
2191 
2192 	/*
2193 	 * We have to do this here to avoid the priority inversion of waiting on
2194 	 * IO of a lower priority task while holding a transaction open.
2195 	 *
2196 	 * For a full fsync we wait for the ordered extents to complete while
2197 	 * for a fast fsync we wait just for writeback to complete, and then
2198 	 * attach the ordered extents to the transaction so that a transaction
2199 	 * commit waits for their completion, to avoid data loss if we fsync,
2200 	 * the current transaction commits before the ordered extents complete
2201 	 * and a power failure happens right after that.
2202 	 *
2203 	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2204 	 * logical address recorded in the ordered extent may change. We need
2205 	 * to wait for the IO to stabilize the logical address.
2206 	 */
2207 	if (full_sync || btrfs_is_zoned(fs_info)) {
2208 		ret = btrfs_wait_ordered_range(inode, start, len);
2209 	} else {
2210 		/*
2211 		 * Get our ordered extents as soon as possible to avoid doing
2212 		 * checksum lookups in the csum tree, and use instead the
2213 		 * checksums attached to the ordered extents.
2214 		 */
2215 		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2216 						      &ctx.ordered_extents);
2217 		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2218 	}
2219 
2220 	if (ret)
2221 		goto out_release_extents;
2222 
2223 	atomic_inc(&root->log_batch);
2224 
2225 	smp_mb();
2226 	if (skip_inode_logging(&ctx)) {
2227 		/*
2228 		 * We've had everything committed since the last time we were
2229 		 * modified so clear this flag in case it was set for whatever
2230 		 * reason, it's no longer relevant.
2231 		 */
2232 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2233 			  &BTRFS_I(inode)->runtime_flags);
2234 		/*
2235 		 * An ordered extent might have started before and completed
2236 		 * already with io errors, in which case the inode was not
2237 		 * updated and we end up here. So check the inode's mapping
2238 		 * for any errors that might have happened since we last
2239 		 * checked called fsync.
2240 		 */
2241 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2242 		goto out_release_extents;
2243 	}
2244 
2245 	/*
2246 	 * We use start here because we will need to wait on the IO to complete
2247 	 * in btrfs_sync_log, which could require joining a transaction (for
2248 	 * example checking cross references in the nocow path).  If we use join
2249 	 * here we could get into a situation where we're waiting on IO to
2250 	 * happen that is blocked on a transaction trying to commit.  With start
2251 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2252 	 * before we start blocking joiners.  This comment is to keep somebody
2253 	 * from thinking they are super smart and changing this to
2254 	 * btrfs_join_transaction *cough*Josef*cough*.
2255 	 */
2256 	trans = btrfs_start_transaction(root, 0);
2257 	if (IS_ERR(trans)) {
2258 		ret = PTR_ERR(trans);
2259 		goto out_release_extents;
2260 	}
2261 	trans->in_fsync = true;
2262 
2263 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2264 	btrfs_release_log_ctx_extents(&ctx);
2265 	if (ret < 0) {
2266 		/* Fallthrough and commit/free transaction. */
2267 		ret = 1;
2268 	}
2269 
2270 	/* we've logged all the items and now have a consistent
2271 	 * version of the file in the log.  It is possible that
2272 	 * someone will come in and modify the file, but that's
2273 	 * fine because the log is consistent on disk, and we
2274 	 * have references to all of the file's extents
2275 	 *
2276 	 * It is possible that someone will come in and log the
2277 	 * file again, but that will end up using the synchronization
2278 	 * inside btrfs_sync_log to keep things safe.
2279 	 */
2280 	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2281 
2282 	if (ret != BTRFS_NO_LOG_SYNC) {
2283 		if (!ret) {
2284 			ret = btrfs_sync_log(trans, root, &ctx);
2285 			if (!ret) {
2286 				ret = btrfs_end_transaction(trans);
2287 				goto out;
2288 			}
2289 		}
2290 		if (!full_sync) {
2291 			ret = btrfs_wait_ordered_range(inode, start, len);
2292 			if (ret) {
2293 				btrfs_end_transaction(trans);
2294 				goto out;
2295 			}
2296 		}
2297 		ret = btrfs_commit_transaction(trans);
2298 	} else {
2299 		ret = btrfs_end_transaction(trans);
2300 	}
2301 out:
2302 	ASSERT(list_empty(&ctx.list));
2303 	err = file_check_and_advance_wb_err(file);
2304 	if (!ret)
2305 		ret = err;
2306 	return ret > 0 ? -EIO : ret;
2307 
2308 out_release_extents:
2309 	btrfs_release_log_ctx_extents(&ctx);
2310 	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2311 	goto out;
2312 }
2313 
2314 static const struct vm_operations_struct btrfs_file_vm_ops = {
2315 	.fault		= filemap_fault,
2316 	.map_pages	= filemap_map_pages,
2317 	.page_mkwrite	= btrfs_page_mkwrite,
2318 };
2319 
2320 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2321 {
2322 	struct address_space *mapping = filp->f_mapping;
2323 
2324 	if (!mapping->a_ops->readpage)
2325 		return -ENOEXEC;
2326 
2327 	file_accessed(filp);
2328 	vma->vm_ops = &btrfs_file_vm_ops;
2329 
2330 	return 0;
2331 }
2332 
2333 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2334 			  int slot, u64 start, u64 end)
2335 {
2336 	struct btrfs_file_extent_item *fi;
2337 	struct btrfs_key key;
2338 
2339 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2340 		return 0;
2341 
2342 	btrfs_item_key_to_cpu(leaf, &key, slot);
2343 	if (key.objectid != btrfs_ino(inode) ||
2344 	    key.type != BTRFS_EXTENT_DATA_KEY)
2345 		return 0;
2346 
2347 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2348 
2349 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2350 		return 0;
2351 
2352 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2353 		return 0;
2354 
2355 	if (key.offset == end)
2356 		return 1;
2357 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2358 		return 1;
2359 	return 0;
2360 }
2361 
2362 static int fill_holes(struct btrfs_trans_handle *trans,
2363 		struct btrfs_inode *inode,
2364 		struct btrfs_path *path, u64 offset, u64 end)
2365 {
2366 	struct btrfs_fs_info *fs_info = trans->fs_info;
2367 	struct btrfs_root *root = inode->root;
2368 	struct extent_buffer *leaf;
2369 	struct btrfs_file_extent_item *fi;
2370 	struct extent_map *hole_em;
2371 	struct extent_map_tree *em_tree = &inode->extent_tree;
2372 	struct btrfs_key key;
2373 	int ret;
2374 
2375 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2376 		goto out;
2377 
2378 	key.objectid = btrfs_ino(inode);
2379 	key.type = BTRFS_EXTENT_DATA_KEY;
2380 	key.offset = offset;
2381 
2382 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2383 	if (ret <= 0) {
2384 		/*
2385 		 * We should have dropped this offset, so if we find it then
2386 		 * something has gone horribly wrong.
2387 		 */
2388 		if (ret == 0)
2389 			ret = -EINVAL;
2390 		return ret;
2391 	}
2392 
2393 	leaf = path->nodes[0];
2394 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2395 		u64 num_bytes;
2396 
2397 		path->slots[0]--;
2398 		fi = btrfs_item_ptr(leaf, path->slots[0],
2399 				    struct btrfs_file_extent_item);
2400 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2401 			end - offset;
2402 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2403 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2404 		btrfs_set_file_extent_offset(leaf, fi, 0);
2405 		btrfs_mark_buffer_dirty(leaf);
2406 		goto out;
2407 	}
2408 
2409 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2410 		u64 num_bytes;
2411 
2412 		key.offset = offset;
2413 		btrfs_set_item_key_safe(fs_info, path, &key);
2414 		fi = btrfs_item_ptr(leaf, path->slots[0],
2415 				    struct btrfs_file_extent_item);
2416 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2417 			offset;
2418 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2419 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2420 		btrfs_set_file_extent_offset(leaf, fi, 0);
2421 		btrfs_mark_buffer_dirty(leaf);
2422 		goto out;
2423 	}
2424 	btrfs_release_path(path);
2425 
2426 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2427 			offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2428 	if (ret)
2429 		return ret;
2430 
2431 out:
2432 	btrfs_release_path(path);
2433 
2434 	hole_em = alloc_extent_map();
2435 	if (!hole_em) {
2436 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2437 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2438 	} else {
2439 		hole_em->start = offset;
2440 		hole_em->len = end - offset;
2441 		hole_em->ram_bytes = hole_em->len;
2442 		hole_em->orig_start = offset;
2443 
2444 		hole_em->block_start = EXTENT_MAP_HOLE;
2445 		hole_em->block_len = 0;
2446 		hole_em->orig_block_len = 0;
2447 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2448 		hole_em->generation = trans->transid;
2449 
2450 		do {
2451 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2452 			write_lock(&em_tree->lock);
2453 			ret = add_extent_mapping(em_tree, hole_em, 1);
2454 			write_unlock(&em_tree->lock);
2455 		} while (ret == -EEXIST);
2456 		free_extent_map(hole_em);
2457 		if (ret)
2458 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2459 					&inode->runtime_flags);
2460 	}
2461 
2462 	return 0;
2463 }
2464 
2465 /*
2466  * Find a hole extent on given inode and change start/len to the end of hole
2467  * extent.(hole/vacuum extent whose em->start <= start &&
2468  *	   em->start + em->len > start)
2469  * When a hole extent is found, return 1 and modify start/len.
2470  */
2471 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2472 {
2473 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2474 	struct extent_map *em;
2475 	int ret = 0;
2476 
2477 	em = btrfs_get_extent(inode, NULL, 0,
2478 			      round_down(*start, fs_info->sectorsize),
2479 			      round_up(*len, fs_info->sectorsize));
2480 	if (IS_ERR(em))
2481 		return PTR_ERR(em);
2482 
2483 	/* Hole or vacuum extent(only exists in no-hole mode) */
2484 	if (em->block_start == EXTENT_MAP_HOLE) {
2485 		ret = 1;
2486 		*len = em->start + em->len > *start + *len ?
2487 		       0 : *start + *len - em->start - em->len;
2488 		*start = em->start + em->len;
2489 	}
2490 	free_extent_map(em);
2491 	return ret;
2492 }
2493 
2494 static int btrfs_punch_hole_lock_range(struct inode *inode,
2495 				       const u64 lockstart,
2496 				       const u64 lockend,
2497 				       struct extent_state **cached_state)
2498 {
2499 	/*
2500 	 * For subpage case, if the range is not at page boundary, we could
2501 	 * have pages at the leading/tailing part of the range.
2502 	 * This could lead to dead loop since filemap_range_has_page()
2503 	 * will always return true.
2504 	 * So here we need to do extra page alignment for
2505 	 * filemap_range_has_page().
2506 	 */
2507 	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2508 	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2509 
2510 	while (1) {
2511 		struct btrfs_ordered_extent *ordered;
2512 		int ret;
2513 
2514 		truncate_pagecache_range(inode, lockstart, lockend);
2515 
2516 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2517 				 cached_state);
2518 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2519 							    lockend);
2520 
2521 		/*
2522 		 * We need to make sure we have no ordered extents in this range
2523 		 * and nobody raced in and read a page in this range, if we did
2524 		 * we need to try again.
2525 		 */
2526 		if ((!ordered ||
2527 		    (ordered->file_offset + ordered->num_bytes <= lockstart ||
2528 		     ordered->file_offset > lockend)) &&
2529 		     !filemap_range_has_page(inode->i_mapping,
2530 					     page_lockstart, page_lockend)) {
2531 			if (ordered)
2532 				btrfs_put_ordered_extent(ordered);
2533 			break;
2534 		}
2535 		if (ordered)
2536 			btrfs_put_ordered_extent(ordered);
2537 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2538 				     lockend, cached_state);
2539 		ret = btrfs_wait_ordered_range(inode, lockstart,
2540 					       lockend - lockstart + 1);
2541 		if (ret)
2542 			return ret;
2543 	}
2544 	return 0;
2545 }
2546 
2547 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2548 				     struct btrfs_inode *inode,
2549 				     struct btrfs_path *path,
2550 				     struct btrfs_replace_extent_info *extent_info,
2551 				     const u64 replace_len,
2552 				     const u64 bytes_to_drop)
2553 {
2554 	struct btrfs_fs_info *fs_info = trans->fs_info;
2555 	struct btrfs_root *root = inode->root;
2556 	struct btrfs_file_extent_item *extent;
2557 	struct extent_buffer *leaf;
2558 	struct btrfs_key key;
2559 	int slot;
2560 	struct btrfs_ref ref = { 0 };
2561 	int ret;
2562 
2563 	if (replace_len == 0)
2564 		return 0;
2565 
2566 	if (extent_info->disk_offset == 0 &&
2567 	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2568 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2569 		return 0;
2570 	}
2571 
2572 	key.objectid = btrfs_ino(inode);
2573 	key.type = BTRFS_EXTENT_DATA_KEY;
2574 	key.offset = extent_info->file_offset;
2575 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2576 				      sizeof(struct btrfs_file_extent_item));
2577 	if (ret)
2578 		return ret;
2579 	leaf = path->nodes[0];
2580 	slot = path->slots[0];
2581 	write_extent_buffer(leaf, extent_info->extent_buf,
2582 			    btrfs_item_ptr_offset(leaf, slot),
2583 			    sizeof(struct btrfs_file_extent_item));
2584 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2585 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2586 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2587 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2588 	if (extent_info->is_new_extent)
2589 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2590 	btrfs_mark_buffer_dirty(leaf);
2591 	btrfs_release_path(path);
2592 
2593 	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2594 						replace_len);
2595 	if (ret)
2596 		return ret;
2597 
2598 	/* If it's a hole, nothing more needs to be done. */
2599 	if (extent_info->disk_offset == 0) {
2600 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2601 		return 0;
2602 	}
2603 
2604 	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2605 
2606 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2607 		key.objectid = extent_info->disk_offset;
2608 		key.type = BTRFS_EXTENT_ITEM_KEY;
2609 		key.offset = extent_info->disk_len;
2610 		ret = btrfs_alloc_reserved_file_extent(trans, root,
2611 						       btrfs_ino(inode),
2612 						       extent_info->file_offset,
2613 						       extent_info->qgroup_reserved,
2614 						       &key);
2615 	} else {
2616 		u64 ref_offset;
2617 
2618 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2619 				       extent_info->disk_offset,
2620 				       extent_info->disk_len, 0);
2621 		ref_offset = extent_info->file_offset - extent_info->data_offset;
2622 		btrfs_init_data_ref(&ref, root->root_key.objectid,
2623 				    btrfs_ino(inode), ref_offset);
2624 		ret = btrfs_inc_extent_ref(trans, &ref);
2625 	}
2626 
2627 	extent_info->insertions++;
2628 
2629 	return ret;
2630 }
2631 
2632 /*
2633  * The respective range must have been previously locked, as well as the inode.
2634  * The end offset is inclusive (last byte of the range).
2635  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2636  * the file range with an extent.
2637  * When not punching a hole, we don't want to end up in a state where we dropped
2638  * extents without inserting a new one, so we must abort the transaction to avoid
2639  * a corruption.
2640  */
2641 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2642 			       struct btrfs_path *path, const u64 start,
2643 			       const u64 end,
2644 			       struct btrfs_replace_extent_info *extent_info,
2645 			       struct btrfs_trans_handle **trans_out)
2646 {
2647 	struct btrfs_drop_extents_args drop_args = { 0 };
2648 	struct btrfs_root *root = inode->root;
2649 	struct btrfs_fs_info *fs_info = root->fs_info;
2650 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2651 	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2652 	struct btrfs_trans_handle *trans = NULL;
2653 	struct btrfs_block_rsv *rsv;
2654 	unsigned int rsv_count;
2655 	u64 cur_offset;
2656 	u64 len = end - start;
2657 	int ret = 0;
2658 
2659 	if (end <= start)
2660 		return -EINVAL;
2661 
2662 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2663 	if (!rsv) {
2664 		ret = -ENOMEM;
2665 		goto out;
2666 	}
2667 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2668 	rsv->failfast = 1;
2669 
2670 	/*
2671 	 * 1 - update the inode
2672 	 * 1 - removing the extents in the range
2673 	 * 1 - adding the hole extent if no_holes isn't set or if we are
2674 	 *     replacing the range with a new extent
2675 	 */
2676 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2677 		rsv_count = 3;
2678 	else
2679 		rsv_count = 2;
2680 
2681 	trans = btrfs_start_transaction(root, rsv_count);
2682 	if (IS_ERR(trans)) {
2683 		ret = PTR_ERR(trans);
2684 		trans = NULL;
2685 		goto out_free;
2686 	}
2687 
2688 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2689 				      min_size, false);
2690 	BUG_ON(ret);
2691 	trans->block_rsv = rsv;
2692 
2693 	cur_offset = start;
2694 	drop_args.path = path;
2695 	drop_args.end = end + 1;
2696 	drop_args.drop_cache = true;
2697 	while (cur_offset < end) {
2698 		drop_args.start = cur_offset;
2699 		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2700 		/* If we are punching a hole decrement the inode's byte count */
2701 		if (!extent_info)
2702 			btrfs_update_inode_bytes(inode, 0,
2703 						 drop_args.bytes_found);
2704 		if (ret != -ENOSPC) {
2705 			/*
2706 			 * The only time we don't want to abort is if we are
2707 			 * attempting to clone a partial inline extent, in which
2708 			 * case we'll get EOPNOTSUPP.  However if we aren't
2709 			 * clone we need to abort no matter what, because if we
2710 			 * got EOPNOTSUPP via prealloc then we messed up and
2711 			 * need to abort.
2712 			 */
2713 			if (ret &&
2714 			    (ret != -EOPNOTSUPP ||
2715 			     (extent_info && extent_info->is_new_extent)))
2716 				btrfs_abort_transaction(trans, ret);
2717 			break;
2718 		}
2719 
2720 		trans->block_rsv = &fs_info->trans_block_rsv;
2721 
2722 		if (!extent_info && cur_offset < drop_args.drop_end &&
2723 		    cur_offset < ino_size) {
2724 			ret = fill_holes(trans, inode, path, cur_offset,
2725 					 drop_args.drop_end);
2726 			if (ret) {
2727 				/*
2728 				 * If we failed then we didn't insert our hole
2729 				 * entries for the area we dropped, so now the
2730 				 * fs is corrupted, so we must abort the
2731 				 * transaction.
2732 				 */
2733 				btrfs_abort_transaction(trans, ret);
2734 				break;
2735 			}
2736 		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2737 			/*
2738 			 * We are past the i_size here, but since we didn't
2739 			 * insert holes we need to clear the mapped area so we
2740 			 * know to not set disk_i_size in this area until a new
2741 			 * file extent is inserted here.
2742 			 */
2743 			ret = btrfs_inode_clear_file_extent_range(inode,
2744 					cur_offset,
2745 					drop_args.drop_end - cur_offset);
2746 			if (ret) {
2747 				/*
2748 				 * We couldn't clear our area, so we could
2749 				 * presumably adjust up and corrupt the fs, so
2750 				 * we need to abort.
2751 				 */
2752 				btrfs_abort_transaction(trans, ret);
2753 				break;
2754 			}
2755 		}
2756 
2757 		if (extent_info &&
2758 		    drop_args.drop_end > extent_info->file_offset) {
2759 			u64 replace_len = drop_args.drop_end -
2760 					  extent_info->file_offset;
2761 
2762 			ret = btrfs_insert_replace_extent(trans, inode,	path,
2763 					extent_info, replace_len,
2764 					drop_args.bytes_found);
2765 			if (ret) {
2766 				btrfs_abort_transaction(trans, ret);
2767 				break;
2768 			}
2769 			extent_info->data_len -= replace_len;
2770 			extent_info->data_offset += replace_len;
2771 			extent_info->file_offset += replace_len;
2772 		}
2773 
2774 		ret = btrfs_update_inode(trans, root, inode);
2775 		if (ret)
2776 			break;
2777 
2778 		btrfs_end_transaction(trans);
2779 		btrfs_btree_balance_dirty(fs_info);
2780 
2781 		trans = btrfs_start_transaction(root, rsv_count);
2782 		if (IS_ERR(trans)) {
2783 			ret = PTR_ERR(trans);
2784 			trans = NULL;
2785 			break;
2786 		}
2787 
2788 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2789 					      rsv, min_size, false);
2790 		BUG_ON(ret);	/* shouldn't happen */
2791 		trans->block_rsv = rsv;
2792 
2793 		cur_offset = drop_args.drop_end;
2794 		len = end - cur_offset;
2795 		if (!extent_info && len) {
2796 			ret = find_first_non_hole(inode, &cur_offset, &len);
2797 			if (unlikely(ret < 0))
2798 				break;
2799 			if (ret && !len) {
2800 				ret = 0;
2801 				break;
2802 			}
2803 		}
2804 	}
2805 
2806 	/*
2807 	 * If we were cloning, force the next fsync to be a full one since we
2808 	 * we replaced (or just dropped in the case of cloning holes when
2809 	 * NO_HOLES is enabled) file extent items and did not setup new extent
2810 	 * maps for the replacement extents (or holes).
2811 	 */
2812 	if (extent_info && !extent_info->is_new_extent)
2813 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2814 
2815 	if (ret)
2816 		goto out_trans;
2817 
2818 	trans->block_rsv = &fs_info->trans_block_rsv;
2819 	/*
2820 	 * If we are using the NO_HOLES feature we might have had already an
2821 	 * hole that overlaps a part of the region [lockstart, lockend] and
2822 	 * ends at (or beyond) lockend. Since we have no file extent items to
2823 	 * represent holes, drop_end can be less than lockend and so we must
2824 	 * make sure we have an extent map representing the existing hole (the
2825 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2826 	 * map representing the existing hole), otherwise the fast fsync path
2827 	 * will not record the existence of the hole region
2828 	 * [existing_hole_start, lockend].
2829 	 */
2830 	if (drop_args.drop_end <= end)
2831 		drop_args.drop_end = end + 1;
2832 	/*
2833 	 * Don't insert file hole extent item if it's for a range beyond eof
2834 	 * (because it's useless) or if it represents a 0 bytes range (when
2835 	 * cur_offset == drop_end).
2836 	 */
2837 	if (!extent_info && cur_offset < ino_size &&
2838 	    cur_offset < drop_args.drop_end) {
2839 		ret = fill_holes(trans, inode, path, cur_offset,
2840 				 drop_args.drop_end);
2841 		if (ret) {
2842 			/* Same comment as above. */
2843 			btrfs_abort_transaction(trans, ret);
2844 			goto out_trans;
2845 		}
2846 	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2847 		/* See the comment in the loop above for the reasoning here. */
2848 		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2849 					drop_args.drop_end - cur_offset);
2850 		if (ret) {
2851 			btrfs_abort_transaction(trans, ret);
2852 			goto out_trans;
2853 		}
2854 
2855 	}
2856 	if (extent_info) {
2857 		ret = btrfs_insert_replace_extent(trans, inode, path,
2858 				extent_info, extent_info->data_len,
2859 				drop_args.bytes_found);
2860 		if (ret) {
2861 			btrfs_abort_transaction(trans, ret);
2862 			goto out_trans;
2863 		}
2864 	}
2865 
2866 out_trans:
2867 	if (!trans)
2868 		goto out_free;
2869 
2870 	trans->block_rsv = &fs_info->trans_block_rsv;
2871 	if (ret)
2872 		btrfs_end_transaction(trans);
2873 	else
2874 		*trans_out = trans;
2875 out_free:
2876 	btrfs_free_block_rsv(fs_info, rsv);
2877 out:
2878 	return ret;
2879 }
2880 
2881 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2882 {
2883 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2884 	struct btrfs_root *root = BTRFS_I(inode)->root;
2885 	struct extent_state *cached_state = NULL;
2886 	struct btrfs_path *path;
2887 	struct btrfs_trans_handle *trans = NULL;
2888 	u64 lockstart;
2889 	u64 lockend;
2890 	u64 tail_start;
2891 	u64 tail_len;
2892 	u64 orig_start = offset;
2893 	int ret = 0;
2894 	bool same_block;
2895 	u64 ino_size;
2896 	bool truncated_block = false;
2897 	bool updated_inode = false;
2898 
2899 	ret = btrfs_wait_ordered_range(inode, offset, len);
2900 	if (ret)
2901 		return ret;
2902 
2903 	btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2904 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2905 	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2906 	if (ret < 0)
2907 		goto out_only_mutex;
2908 	if (ret && !len) {
2909 		/* Already in a large hole */
2910 		ret = 0;
2911 		goto out_only_mutex;
2912 	}
2913 
2914 	lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2915 	lockend = round_down(offset + len,
2916 			     btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2917 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2918 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2919 	/*
2920 	 * We needn't truncate any block which is beyond the end of the file
2921 	 * because we are sure there is no data there.
2922 	 */
2923 	/*
2924 	 * Only do this if we are in the same block and we aren't doing the
2925 	 * entire block.
2926 	 */
2927 	if (same_block && len < fs_info->sectorsize) {
2928 		if (offset < ino_size) {
2929 			truncated_block = true;
2930 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2931 						   0);
2932 		} else {
2933 			ret = 0;
2934 		}
2935 		goto out_only_mutex;
2936 	}
2937 
2938 	/* zero back part of the first block */
2939 	if (offset < ino_size) {
2940 		truncated_block = true;
2941 		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2942 		if (ret) {
2943 			btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2944 			return ret;
2945 		}
2946 	}
2947 
2948 	/* Check the aligned pages after the first unaligned page,
2949 	 * if offset != orig_start, which means the first unaligned page
2950 	 * including several following pages are already in holes,
2951 	 * the extra check can be skipped */
2952 	if (offset == orig_start) {
2953 		/* after truncate page, check hole again */
2954 		len = offset + len - lockstart;
2955 		offset = lockstart;
2956 		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2957 		if (ret < 0)
2958 			goto out_only_mutex;
2959 		if (ret && !len) {
2960 			ret = 0;
2961 			goto out_only_mutex;
2962 		}
2963 		lockstart = offset;
2964 	}
2965 
2966 	/* Check the tail unaligned part is in a hole */
2967 	tail_start = lockend + 1;
2968 	tail_len = offset + len - tail_start;
2969 	if (tail_len) {
2970 		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2971 		if (unlikely(ret < 0))
2972 			goto out_only_mutex;
2973 		if (!ret) {
2974 			/* zero the front end of the last page */
2975 			if (tail_start + tail_len < ino_size) {
2976 				truncated_block = true;
2977 				ret = btrfs_truncate_block(BTRFS_I(inode),
2978 							tail_start + tail_len,
2979 							0, 1);
2980 				if (ret)
2981 					goto out_only_mutex;
2982 			}
2983 		}
2984 	}
2985 
2986 	if (lockend < lockstart) {
2987 		ret = 0;
2988 		goto out_only_mutex;
2989 	}
2990 
2991 	ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2992 					  &cached_state);
2993 	if (ret)
2994 		goto out_only_mutex;
2995 
2996 	path = btrfs_alloc_path();
2997 	if (!path) {
2998 		ret = -ENOMEM;
2999 		goto out;
3000 	}
3001 
3002 	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
3003 					 lockend, NULL, &trans);
3004 	btrfs_free_path(path);
3005 	if (ret)
3006 		goto out;
3007 
3008 	ASSERT(trans != NULL);
3009 	inode_inc_iversion(inode);
3010 	inode->i_mtime = inode->i_ctime = current_time(inode);
3011 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3012 	updated_inode = true;
3013 	btrfs_end_transaction(trans);
3014 	btrfs_btree_balance_dirty(fs_info);
3015 out:
3016 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3017 			     &cached_state);
3018 out_only_mutex:
3019 	if (!updated_inode && truncated_block && !ret) {
3020 		/*
3021 		 * If we only end up zeroing part of a page, we still need to
3022 		 * update the inode item, so that all the time fields are
3023 		 * updated as well as the necessary btrfs inode in memory fields
3024 		 * for detecting, at fsync time, if the inode isn't yet in the
3025 		 * log tree or it's there but not up to date.
3026 		 */
3027 		struct timespec64 now = current_time(inode);
3028 
3029 		inode_inc_iversion(inode);
3030 		inode->i_mtime = now;
3031 		inode->i_ctime = now;
3032 		trans = btrfs_start_transaction(root, 1);
3033 		if (IS_ERR(trans)) {
3034 			ret = PTR_ERR(trans);
3035 		} else {
3036 			int ret2;
3037 
3038 			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3039 			ret2 = btrfs_end_transaction(trans);
3040 			if (!ret)
3041 				ret = ret2;
3042 		}
3043 	}
3044 	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3045 	return ret;
3046 }
3047 
3048 /* Helper structure to record which range is already reserved */
3049 struct falloc_range {
3050 	struct list_head list;
3051 	u64 start;
3052 	u64 len;
3053 };
3054 
3055 /*
3056  * Helper function to add falloc range
3057  *
3058  * Caller should have locked the larger range of extent containing
3059  * [start, len)
3060  */
3061 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3062 {
3063 	struct falloc_range *range = NULL;
3064 
3065 	if (!list_empty(head)) {
3066 		/*
3067 		 * As fallocate iterates by bytenr order, we only need to check
3068 		 * the last range.
3069 		 */
3070 		range = list_last_entry(head, struct falloc_range, list);
3071 		if (range->start + range->len == start) {
3072 			range->len += len;
3073 			return 0;
3074 		}
3075 	}
3076 
3077 	range = kmalloc(sizeof(*range), GFP_KERNEL);
3078 	if (!range)
3079 		return -ENOMEM;
3080 	range->start = start;
3081 	range->len = len;
3082 	list_add_tail(&range->list, head);
3083 	return 0;
3084 }
3085 
3086 static int btrfs_fallocate_update_isize(struct inode *inode,
3087 					const u64 end,
3088 					const int mode)
3089 {
3090 	struct btrfs_trans_handle *trans;
3091 	struct btrfs_root *root = BTRFS_I(inode)->root;
3092 	int ret;
3093 	int ret2;
3094 
3095 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3096 		return 0;
3097 
3098 	trans = btrfs_start_transaction(root, 1);
3099 	if (IS_ERR(trans))
3100 		return PTR_ERR(trans);
3101 
3102 	inode->i_ctime = current_time(inode);
3103 	i_size_write(inode, end);
3104 	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3105 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3106 	ret2 = btrfs_end_transaction(trans);
3107 
3108 	return ret ? ret : ret2;
3109 }
3110 
3111 enum {
3112 	RANGE_BOUNDARY_WRITTEN_EXTENT,
3113 	RANGE_BOUNDARY_PREALLOC_EXTENT,
3114 	RANGE_BOUNDARY_HOLE,
3115 };
3116 
3117 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3118 						 u64 offset)
3119 {
3120 	const u64 sectorsize = btrfs_inode_sectorsize(inode);
3121 	struct extent_map *em;
3122 	int ret;
3123 
3124 	offset = round_down(offset, sectorsize);
3125 	em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3126 	if (IS_ERR(em))
3127 		return PTR_ERR(em);
3128 
3129 	if (em->block_start == EXTENT_MAP_HOLE)
3130 		ret = RANGE_BOUNDARY_HOLE;
3131 	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3132 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3133 	else
3134 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3135 
3136 	free_extent_map(em);
3137 	return ret;
3138 }
3139 
3140 static int btrfs_zero_range(struct inode *inode,
3141 			    loff_t offset,
3142 			    loff_t len,
3143 			    const int mode)
3144 {
3145 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3146 	struct extent_map *em;
3147 	struct extent_changeset *data_reserved = NULL;
3148 	int ret;
3149 	u64 alloc_hint = 0;
3150 	const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3151 	u64 alloc_start = round_down(offset, sectorsize);
3152 	u64 alloc_end = round_up(offset + len, sectorsize);
3153 	u64 bytes_to_reserve = 0;
3154 	bool space_reserved = false;
3155 
3156 	inode_dio_wait(inode);
3157 
3158 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3159 			      alloc_end - alloc_start);
3160 	if (IS_ERR(em)) {
3161 		ret = PTR_ERR(em);
3162 		goto out;
3163 	}
3164 
3165 	/*
3166 	 * Avoid hole punching and extent allocation for some cases. More cases
3167 	 * could be considered, but these are unlikely common and we keep things
3168 	 * as simple as possible for now. Also, intentionally, if the target
3169 	 * range contains one or more prealloc extents together with regular
3170 	 * extents and holes, we drop all the existing extents and allocate a
3171 	 * new prealloc extent, so that we get a larger contiguous disk extent.
3172 	 */
3173 	if (em->start <= alloc_start &&
3174 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3175 		const u64 em_end = em->start + em->len;
3176 
3177 		if (em_end >= offset + len) {
3178 			/*
3179 			 * The whole range is already a prealloc extent,
3180 			 * do nothing except updating the inode's i_size if
3181 			 * needed.
3182 			 */
3183 			free_extent_map(em);
3184 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3185 							   mode);
3186 			goto out;
3187 		}
3188 		/*
3189 		 * Part of the range is already a prealloc extent, so operate
3190 		 * only on the remaining part of the range.
3191 		 */
3192 		alloc_start = em_end;
3193 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3194 		len = offset + len - alloc_start;
3195 		offset = alloc_start;
3196 		alloc_hint = em->block_start + em->len;
3197 	}
3198 	free_extent_map(em);
3199 
3200 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3201 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3202 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3203 				      sectorsize);
3204 		if (IS_ERR(em)) {
3205 			ret = PTR_ERR(em);
3206 			goto out;
3207 		}
3208 
3209 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3210 			free_extent_map(em);
3211 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3212 							   mode);
3213 			goto out;
3214 		}
3215 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3216 			free_extent_map(em);
3217 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3218 						   0);
3219 			if (!ret)
3220 				ret = btrfs_fallocate_update_isize(inode,
3221 								   offset + len,
3222 								   mode);
3223 			return ret;
3224 		}
3225 		free_extent_map(em);
3226 		alloc_start = round_down(offset, sectorsize);
3227 		alloc_end = alloc_start + sectorsize;
3228 		goto reserve_space;
3229 	}
3230 
3231 	alloc_start = round_up(offset, sectorsize);
3232 	alloc_end = round_down(offset + len, sectorsize);
3233 
3234 	/*
3235 	 * For unaligned ranges, check the pages at the boundaries, they might
3236 	 * map to an extent, in which case we need to partially zero them, or
3237 	 * they might map to a hole, in which case we need our allocation range
3238 	 * to cover them.
3239 	 */
3240 	if (!IS_ALIGNED(offset, sectorsize)) {
3241 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3242 							    offset);
3243 		if (ret < 0)
3244 			goto out;
3245 		if (ret == RANGE_BOUNDARY_HOLE) {
3246 			alloc_start = round_down(offset, sectorsize);
3247 			ret = 0;
3248 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3249 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3250 			if (ret)
3251 				goto out;
3252 		} else {
3253 			ret = 0;
3254 		}
3255 	}
3256 
3257 	if (!IS_ALIGNED(offset + len, sectorsize)) {
3258 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3259 							    offset + len);
3260 		if (ret < 0)
3261 			goto out;
3262 		if (ret == RANGE_BOUNDARY_HOLE) {
3263 			alloc_end = round_up(offset + len, sectorsize);
3264 			ret = 0;
3265 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3266 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3267 						   0, 1);
3268 			if (ret)
3269 				goto out;
3270 		} else {
3271 			ret = 0;
3272 		}
3273 	}
3274 
3275 reserve_space:
3276 	if (alloc_start < alloc_end) {
3277 		struct extent_state *cached_state = NULL;
3278 		const u64 lockstart = alloc_start;
3279 		const u64 lockend = alloc_end - 1;
3280 
3281 		bytes_to_reserve = alloc_end - alloc_start;
3282 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3283 						      bytes_to_reserve);
3284 		if (ret < 0)
3285 			goto out;
3286 		space_reserved = true;
3287 		ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3288 						  &cached_state);
3289 		if (ret)
3290 			goto out;
3291 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3292 						alloc_start, bytes_to_reserve);
3293 		if (ret) {
3294 			unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3295 					     lockend, &cached_state);
3296 			goto out;
3297 		}
3298 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3299 						alloc_end - alloc_start,
3300 						i_blocksize(inode),
3301 						offset + len, &alloc_hint);
3302 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3303 				     lockend, &cached_state);
3304 		/* btrfs_prealloc_file_range releases reserved space on error */
3305 		if (ret) {
3306 			space_reserved = false;
3307 			goto out;
3308 		}
3309 	}
3310 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3311  out:
3312 	if (ret && space_reserved)
3313 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3314 					       alloc_start, bytes_to_reserve);
3315 	extent_changeset_free(data_reserved);
3316 
3317 	return ret;
3318 }
3319 
3320 static long btrfs_fallocate(struct file *file, int mode,
3321 			    loff_t offset, loff_t len)
3322 {
3323 	struct inode *inode = file_inode(file);
3324 	struct extent_state *cached_state = NULL;
3325 	struct extent_changeset *data_reserved = NULL;
3326 	struct falloc_range *range;
3327 	struct falloc_range *tmp;
3328 	struct list_head reserve_list;
3329 	u64 cur_offset;
3330 	u64 last_byte;
3331 	u64 alloc_start;
3332 	u64 alloc_end;
3333 	u64 alloc_hint = 0;
3334 	u64 locked_end;
3335 	u64 actual_end = 0;
3336 	struct extent_map *em;
3337 	int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3338 	int ret;
3339 
3340 	/* Do not allow fallocate in ZONED mode */
3341 	if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3342 		return -EOPNOTSUPP;
3343 
3344 	alloc_start = round_down(offset, blocksize);
3345 	alloc_end = round_up(offset + len, blocksize);
3346 	cur_offset = alloc_start;
3347 
3348 	/* Make sure we aren't being give some crap mode */
3349 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3350 		     FALLOC_FL_ZERO_RANGE))
3351 		return -EOPNOTSUPP;
3352 
3353 	if (mode & FALLOC_FL_PUNCH_HOLE)
3354 		return btrfs_punch_hole(inode, offset, len);
3355 
3356 	/*
3357 	 * Only trigger disk allocation, don't trigger qgroup reserve
3358 	 *
3359 	 * For qgroup space, it will be checked later.
3360 	 */
3361 	if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3362 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3363 						      alloc_end - alloc_start);
3364 		if (ret < 0)
3365 			return ret;
3366 	}
3367 
3368 	btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
3369 
3370 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3371 		ret = inode_newsize_ok(inode, offset + len);
3372 		if (ret)
3373 			goto out;
3374 	}
3375 
3376 	/*
3377 	 * TODO: Move these two operations after we have checked
3378 	 * accurate reserved space, or fallocate can still fail but
3379 	 * with page truncated or size expanded.
3380 	 *
3381 	 * But that's a minor problem and won't do much harm BTW.
3382 	 */
3383 	if (alloc_start > inode->i_size) {
3384 		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3385 					alloc_start);
3386 		if (ret)
3387 			goto out;
3388 	} else if (offset + len > inode->i_size) {
3389 		/*
3390 		 * If we are fallocating from the end of the file onward we
3391 		 * need to zero out the end of the block if i_size lands in the
3392 		 * middle of a block.
3393 		 */
3394 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3395 		if (ret)
3396 			goto out;
3397 	}
3398 
3399 	/*
3400 	 * wait for ordered IO before we have any locks.  We'll loop again
3401 	 * below with the locks held.
3402 	 */
3403 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3404 				       alloc_end - alloc_start);
3405 	if (ret)
3406 		goto out;
3407 
3408 	if (mode & FALLOC_FL_ZERO_RANGE) {
3409 		ret = btrfs_zero_range(inode, offset, len, mode);
3410 		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3411 		return ret;
3412 	}
3413 
3414 	locked_end = alloc_end - 1;
3415 	while (1) {
3416 		struct btrfs_ordered_extent *ordered;
3417 
3418 		/* the extent lock is ordered inside the running
3419 		 * transaction
3420 		 */
3421 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3422 				 locked_end, &cached_state);
3423 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3424 							    locked_end);
3425 
3426 		if (ordered &&
3427 		    ordered->file_offset + ordered->num_bytes > alloc_start &&
3428 		    ordered->file_offset < alloc_end) {
3429 			btrfs_put_ordered_extent(ordered);
3430 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3431 					     alloc_start, locked_end,
3432 					     &cached_state);
3433 			/*
3434 			 * we can't wait on the range with the transaction
3435 			 * running or with the extent lock held
3436 			 */
3437 			ret = btrfs_wait_ordered_range(inode, alloc_start,
3438 						       alloc_end - alloc_start);
3439 			if (ret)
3440 				goto out;
3441 		} else {
3442 			if (ordered)
3443 				btrfs_put_ordered_extent(ordered);
3444 			break;
3445 		}
3446 	}
3447 
3448 	/* First, check if we exceed the qgroup limit */
3449 	INIT_LIST_HEAD(&reserve_list);
3450 	while (cur_offset < alloc_end) {
3451 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3452 				      alloc_end - cur_offset);
3453 		if (IS_ERR(em)) {
3454 			ret = PTR_ERR(em);
3455 			break;
3456 		}
3457 		last_byte = min(extent_map_end(em), alloc_end);
3458 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3459 		last_byte = ALIGN(last_byte, blocksize);
3460 		if (em->block_start == EXTENT_MAP_HOLE ||
3461 		    (cur_offset >= inode->i_size &&
3462 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3463 			ret = add_falloc_range(&reserve_list, cur_offset,
3464 					       last_byte - cur_offset);
3465 			if (ret < 0) {
3466 				free_extent_map(em);
3467 				break;
3468 			}
3469 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3470 					&data_reserved, cur_offset,
3471 					last_byte - cur_offset);
3472 			if (ret < 0) {
3473 				cur_offset = last_byte;
3474 				free_extent_map(em);
3475 				break;
3476 			}
3477 		} else {
3478 			/*
3479 			 * Do not need to reserve unwritten extent for this
3480 			 * range, free reserved data space first, otherwise
3481 			 * it'll result in false ENOSPC error.
3482 			 */
3483 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3484 				data_reserved, cur_offset,
3485 				last_byte - cur_offset);
3486 		}
3487 		free_extent_map(em);
3488 		cur_offset = last_byte;
3489 	}
3490 
3491 	/*
3492 	 * If ret is still 0, means we're OK to fallocate.
3493 	 * Or just cleanup the list and exit.
3494 	 */
3495 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3496 		if (!ret)
3497 			ret = btrfs_prealloc_file_range(inode, mode,
3498 					range->start,
3499 					range->len, i_blocksize(inode),
3500 					offset + len, &alloc_hint);
3501 		else
3502 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3503 					data_reserved, range->start,
3504 					range->len);
3505 		list_del(&range->list);
3506 		kfree(range);
3507 	}
3508 	if (ret < 0)
3509 		goto out_unlock;
3510 
3511 	/*
3512 	 * We didn't need to allocate any more space, but we still extended the
3513 	 * size of the file so we need to update i_size and the inode item.
3514 	 */
3515 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3516 out_unlock:
3517 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3518 			     &cached_state);
3519 out:
3520 	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3521 	/* Let go of our reservation. */
3522 	if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3523 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3524 				cur_offset, alloc_end - cur_offset);
3525 	extent_changeset_free(data_reserved);
3526 	return ret;
3527 }
3528 
3529 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
3530 				  int whence)
3531 {
3532 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3533 	struct extent_map *em = NULL;
3534 	struct extent_state *cached_state = NULL;
3535 	loff_t i_size = inode->vfs_inode.i_size;
3536 	u64 lockstart;
3537 	u64 lockend;
3538 	u64 start;
3539 	u64 len;
3540 	int ret = 0;
3541 
3542 	if (i_size == 0 || offset >= i_size)
3543 		return -ENXIO;
3544 
3545 	/*
3546 	 * offset can be negative, in this case we start finding DATA/HOLE from
3547 	 * the very start of the file.
3548 	 */
3549 	start = max_t(loff_t, 0, offset);
3550 
3551 	lockstart = round_down(start, fs_info->sectorsize);
3552 	lockend = round_up(i_size, fs_info->sectorsize);
3553 	if (lockend <= lockstart)
3554 		lockend = lockstart + fs_info->sectorsize;
3555 	lockend--;
3556 	len = lockend - lockstart + 1;
3557 
3558 	lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
3559 
3560 	while (start < i_size) {
3561 		em = btrfs_get_extent_fiemap(inode, start, len);
3562 		if (IS_ERR(em)) {
3563 			ret = PTR_ERR(em);
3564 			em = NULL;
3565 			break;
3566 		}
3567 
3568 		if (whence == SEEK_HOLE &&
3569 		    (em->block_start == EXTENT_MAP_HOLE ||
3570 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3571 			break;
3572 		else if (whence == SEEK_DATA &&
3573 			   (em->block_start != EXTENT_MAP_HOLE &&
3574 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3575 			break;
3576 
3577 		start = em->start + em->len;
3578 		free_extent_map(em);
3579 		em = NULL;
3580 		cond_resched();
3581 	}
3582 	free_extent_map(em);
3583 	unlock_extent_cached(&inode->io_tree, lockstart, lockend,
3584 			     &cached_state);
3585 	if (ret) {
3586 		offset = ret;
3587 	} else {
3588 		if (whence == SEEK_DATA && start >= i_size)
3589 			offset = -ENXIO;
3590 		else
3591 			offset = min_t(loff_t, start, i_size);
3592 	}
3593 
3594 	return offset;
3595 }
3596 
3597 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3598 {
3599 	struct inode *inode = file->f_mapping->host;
3600 
3601 	switch (whence) {
3602 	default:
3603 		return generic_file_llseek(file, offset, whence);
3604 	case SEEK_DATA:
3605 	case SEEK_HOLE:
3606 		btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3607 		offset = find_desired_extent(BTRFS_I(inode), offset, whence);
3608 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3609 		break;
3610 	}
3611 
3612 	if (offset < 0)
3613 		return offset;
3614 
3615 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3616 }
3617 
3618 static int btrfs_file_open(struct inode *inode, struct file *filp)
3619 {
3620 	int ret;
3621 
3622 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3623 
3624 	ret = fsverity_file_open(inode, filp);
3625 	if (ret)
3626 		return ret;
3627 	return generic_file_open(inode, filp);
3628 }
3629 
3630 static int check_direct_read(struct btrfs_fs_info *fs_info,
3631 			     const struct iov_iter *iter, loff_t offset)
3632 {
3633 	int ret;
3634 	int i, seg;
3635 
3636 	ret = check_direct_IO(fs_info, iter, offset);
3637 	if (ret < 0)
3638 		return ret;
3639 
3640 	if (!iter_is_iovec(iter))
3641 		return 0;
3642 
3643 	for (seg = 0; seg < iter->nr_segs; seg++)
3644 		for (i = seg + 1; i < iter->nr_segs; i++)
3645 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3646 				return -EINVAL;
3647 	return 0;
3648 }
3649 
3650 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3651 {
3652 	struct inode *inode = file_inode(iocb->ki_filp);
3653 	ssize_t ret;
3654 
3655 	if (fsverity_active(inode))
3656 		return 0;
3657 
3658 	if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3659 		return 0;
3660 
3661 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3662 	ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 0);
3663 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3664 	return ret;
3665 }
3666 
3667 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3668 {
3669 	ssize_t ret = 0;
3670 
3671 	if (iocb->ki_flags & IOCB_DIRECT) {
3672 		ret = btrfs_direct_read(iocb, to);
3673 		if (ret < 0 || !iov_iter_count(to) ||
3674 		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3675 			return ret;
3676 	}
3677 
3678 	return filemap_read(iocb, to, ret);
3679 }
3680 
3681 const struct file_operations btrfs_file_operations = {
3682 	.llseek		= btrfs_file_llseek,
3683 	.read_iter      = btrfs_file_read_iter,
3684 	.splice_read	= generic_file_splice_read,
3685 	.write_iter	= btrfs_file_write_iter,
3686 	.splice_write	= iter_file_splice_write,
3687 	.mmap		= btrfs_file_mmap,
3688 	.open		= btrfs_file_open,
3689 	.release	= btrfs_release_file,
3690 	.fsync		= btrfs_sync_file,
3691 	.fallocate	= btrfs_fallocate,
3692 	.unlocked_ioctl	= btrfs_ioctl,
3693 #ifdef CONFIG_COMPAT
3694 	.compat_ioctl	= btrfs_compat_ioctl,
3695 #endif
3696 	.remap_file_range = btrfs_remap_file_range,
3697 };
3698 
3699 void __cold btrfs_auto_defrag_exit(void)
3700 {
3701 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3702 }
3703 
3704 int __init btrfs_auto_defrag_init(void)
3705 {
3706 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3707 					sizeof(struct inode_defrag), 0,
3708 					SLAB_MEM_SPREAD,
3709 					NULL);
3710 	if (!btrfs_inode_defrag_cachep)
3711 		return -ENOMEM;
3712 
3713 	return 0;
3714 }
3715 
3716 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3717 {
3718 	int ret;
3719 
3720 	/*
3721 	 * So with compression we will find and lock a dirty page and clear the
3722 	 * first one as dirty, setup an async extent, and immediately return
3723 	 * with the entire range locked but with nobody actually marked with
3724 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3725 	 * expect it to work since it will just kick off a thread to do the
3726 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3727 	 * since it will wait on the page lock, which won't be unlocked until
3728 	 * after the pages have been marked as writeback and so we're good to go
3729 	 * from there.  We have to do this otherwise we'll miss the ordered
3730 	 * extents and that results in badness.  Please Josef, do not think you
3731 	 * know better and pull this out at some point in the future, it is
3732 	 * right and you are wrong.
3733 	 */
3734 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3735 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3736 			     &BTRFS_I(inode)->runtime_flags))
3737 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3738 
3739 	return ret;
3740 }
3741