1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "btrfs_inode.h" 24 #include "print-tree.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "volumes.h" 28 #include "qgroup.h" 29 #include "compression.h" 30 #include "delalloc-space.h" 31 #include "reflink.h" 32 #include "subpage.h" 33 34 static struct kmem_cache *btrfs_inode_defrag_cachep; 35 /* 36 * when auto defrag is enabled we 37 * queue up these defrag structs to remember which 38 * inodes need defragging passes 39 */ 40 struct inode_defrag { 41 struct rb_node rb_node; 42 /* objectid */ 43 u64 ino; 44 /* 45 * transid where the defrag was added, we search for 46 * extents newer than this 47 */ 48 u64 transid; 49 50 /* root objectid */ 51 u64 root; 52 53 /* last offset we were able to defrag */ 54 u64 last_offset; 55 56 /* if we've wrapped around back to zero once already */ 57 int cycled; 58 }; 59 60 static int __compare_inode_defrag(struct inode_defrag *defrag1, 61 struct inode_defrag *defrag2) 62 { 63 if (defrag1->root > defrag2->root) 64 return 1; 65 else if (defrag1->root < defrag2->root) 66 return -1; 67 else if (defrag1->ino > defrag2->ino) 68 return 1; 69 else if (defrag1->ino < defrag2->ino) 70 return -1; 71 else 72 return 0; 73 } 74 75 /* pop a record for an inode into the defrag tree. The lock 76 * must be held already 77 * 78 * If you're inserting a record for an older transid than an 79 * existing record, the transid already in the tree is lowered 80 * 81 * If an existing record is found the defrag item you 82 * pass in is freed 83 */ 84 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 85 struct inode_defrag *defrag) 86 { 87 struct btrfs_fs_info *fs_info = inode->root->fs_info; 88 struct inode_defrag *entry; 89 struct rb_node **p; 90 struct rb_node *parent = NULL; 91 int ret; 92 93 p = &fs_info->defrag_inodes.rb_node; 94 while (*p) { 95 parent = *p; 96 entry = rb_entry(parent, struct inode_defrag, rb_node); 97 98 ret = __compare_inode_defrag(defrag, entry); 99 if (ret < 0) 100 p = &parent->rb_left; 101 else if (ret > 0) 102 p = &parent->rb_right; 103 else { 104 /* if we're reinserting an entry for 105 * an old defrag run, make sure to 106 * lower the transid of our existing record 107 */ 108 if (defrag->transid < entry->transid) 109 entry->transid = defrag->transid; 110 if (defrag->last_offset > entry->last_offset) 111 entry->last_offset = defrag->last_offset; 112 return -EEXIST; 113 } 114 } 115 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 116 rb_link_node(&defrag->rb_node, parent, p); 117 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 118 return 0; 119 } 120 121 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 122 { 123 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 124 return 0; 125 126 if (btrfs_fs_closing(fs_info)) 127 return 0; 128 129 return 1; 130 } 131 132 /* 133 * insert a defrag record for this inode if auto defrag is 134 * enabled 135 */ 136 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 137 struct btrfs_inode *inode) 138 { 139 struct btrfs_root *root = inode->root; 140 struct btrfs_fs_info *fs_info = root->fs_info; 141 struct inode_defrag *defrag; 142 u64 transid; 143 int ret; 144 145 if (!__need_auto_defrag(fs_info)) 146 return 0; 147 148 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 149 return 0; 150 151 if (trans) 152 transid = trans->transid; 153 else 154 transid = inode->root->last_trans; 155 156 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 157 if (!defrag) 158 return -ENOMEM; 159 160 defrag->ino = btrfs_ino(inode); 161 defrag->transid = transid; 162 defrag->root = root->root_key.objectid; 163 164 spin_lock(&fs_info->defrag_inodes_lock); 165 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 166 /* 167 * If we set IN_DEFRAG flag and evict the inode from memory, 168 * and then re-read this inode, this new inode doesn't have 169 * IN_DEFRAG flag. At the case, we may find the existed defrag. 170 */ 171 ret = __btrfs_add_inode_defrag(inode, defrag); 172 if (ret) 173 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 174 } else { 175 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 176 } 177 spin_unlock(&fs_info->defrag_inodes_lock); 178 return 0; 179 } 180 181 /* 182 * Requeue the defrag object. If there is a defrag object that points to 183 * the same inode in the tree, we will merge them together (by 184 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 185 */ 186 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode, 187 struct inode_defrag *defrag) 188 { 189 struct btrfs_fs_info *fs_info = inode->root->fs_info; 190 int ret; 191 192 if (!__need_auto_defrag(fs_info)) 193 goto out; 194 195 /* 196 * Here we don't check the IN_DEFRAG flag, because we need merge 197 * them together. 198 */ 199 spin_lock(&fs_info->defrag_inodes_lock); 200 ret = __btrfs_add_inode_defrag(inode, defrag); 201 spin_unlock(&fs_info->defrag_inodes_lock); 202 if (ret) 203 goto out; 204 return; 205 out: 206 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 207 } 208 209 /* 210 * pick the defragable inode that we want, if it doesn't exist, we will get 211 * the next one. 212 */ 213 static struct inode_defrag * 214 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 215 { 216 struct inode_defrag *entry = NULL; 217 struct inode_defrag tmp; 218 struct rb_node *p; 219 struct rb_node *parent = NULL; 220 int ret; 221 222 tmp.ino = ino; 223 tmp.root = root; 224 225 spin_lock(&fs_info->defrag_inodes_lock); 226 p = fs_info->defrag_inodes.rb_node; 227 while (p) { 228 parent = p; 229 entry = rb_entry(parent, struct inode_defrag, rb_node); 230 231 ret = __compare_inode_defrag(&tmp, entry); 232 if (ret < 0) 233 p = parent->rb_left; 234 else if (ret > 0) 235 p = parent->rb_right; 236 else 237 goto out; 238 } 239 240 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 241 parent = rb_next(parent); 242 if (parent) 243 entry = rb_entry(parent, struct inode_defrag, rb_node); 244 else 245 entry = NULL; 246 } 247 out: 248 if (entry) 249 rb_erase(parent, &fs_info->defrag_inodes); 250 spin_unlock(&fs_info->defrag_inodes_lock); 251 return entry; 252 } 253 254 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 255 { 256 struct inode_defrag *defrag; 257 struct rb_node *node; 258 259 spin_lock(&fs_info->defrag_inodes_lock); 260 node = rb_first(&fs_info->defrag_inodes); 261 while (node) { 262 rb_erase(node, &fs_info->defrag_inodes); 263 defrag = rb_entry(node, struct inode_defrag, rb_node); 264 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 265 266 cond_resched_lock(&fs_info->defrag_inodes_lock); 267 268 node = rb_first(&fs_info->defrag_inodes); 269 } 270 spin_unlock(&fs_info->defrag_inodes_lock); 271 } 272 273 #define BTRFS_DEFRAG_BATCH 1024 274 275 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 276 struct inode_defrag *defrag) 277 { 278 struct btrfs_root *inode_root; 279 struct inode *inode; 280 struct btrfs_ioctl_defrag_range_args range; 281 int num_defrag; 282 int ret; 283 284 /* get the inode */ 285 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); 286 if (IS_ERR(inode_root)) { 287 ret = PTR_ERR(inode_root); 288 goto cleanup; 289 } 290 291 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root); 292 btrfs_put_root(inode_root); 293 if (IS_ERR(inode)) { 294 ret = PTR_ERR(inode); 295 goto cleanup; 296 } 297 298 /* do a chunk of defrag */ 299 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 300 memset(&range, 0, sizeof(range)); 301 range.len = (u64)-1; 302 range.start = defrag->last_offset; 303 304 sb_start_write(fs_info->sb); 305 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 306 BTRFS_DEFRAG_BATCH); 307 sb_end_write(fs_info->sb); 308 /* 309 * if we filled the whole defrag batch, there 310 * must be more work to do. Queue this defrag 311 * again 312 */ 313 if (num_defrag == BTRFS_DEFRAG_BATCH) { 314 defrag->last_offset = range.start; 315 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 316 } else if (defrag->last_offset && !defrag->cycled) { 317 /* 318 * we didn't fill our defrag batch, but 319 * we didn't start at zero. Make sure we loop 320 * around to the start of the file. 321 */ 322 defrag->last_offset = 0; 323 defrag->cycled = 1; 324 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 325 } else { 326 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 327 } 328 329 iput(inode); 330 return 0; 331 cleanup: 332 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 333 return ret; 334 } 335 336 /* 337 * run through the list of inodes in the FS that need 338 * defragging 339 */ 340 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 341 { 342 struct inode_defrag *defrag; 343 u64 first_ino = 0; 344 u64 root_objectid = 0; 345 346 atomic_inc(&fs_info->defrag_running); 347 while (1) { 348 /* Pause the auto defragger. */ 349 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 350 &fs_info->fs_state)) 351 break; 352 353 if (!__need_auto_defrag(fs_info)) 354 break; 355 356 /* find an inode to defrag */ 357 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 358 first_ino); 359 if (!defrag) { 360 if (root_objectid || first_ino) { 361 root_objectid = 0; 362 first_ino = 0; 363 continue; 364 } else { 365 break; 366 } 367 } 368 369 first_ino = defrag->ino + 1; 370 root_objectid = defrag->root; 371 372 __btrfs_run_defrag_inode(fs_info, defrag); 373 } 374 atomic_dec(&fs_info->defrag_running); 375 376 /* 377 * during unmount, we use the transaction_wait queue to 378 * wait for the defragger to stop 379 */ 380 wake_up(&fs_info->transaction_wait); 381 return 0; 382 } 383 384 /* simple helper to fault in pages and copy. This should go away 385 * and be replaced with calls into generic code. 386 */ 387 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 388 struct page **prepared_pages, 389 struct iov_iter *i) 390 { 391 size_t copied = 0; 392 size_t total_copied = 0; 393 int pg = 0; 394 int offset = offset_in_page(pos); 395 396 while (write_bytes > 0) { 397 size_t count = min_t(size_t, 398 PAGE_SIZE - offset, write_bytes); 399 struct page *page = prepared_pages[pg]; 400 /* 401 * Copy data from userspace to the current page 402 */ 403 copied = copy_page_from_iter_atomic(page, offset, count, i); 404 405 /* Flush processor's dcache for this page */ 406 flush_dcache_page(page); 407 408 /* 409 * if we get a partial write, we can end up with 410 * partially up to date pages. These add 411 * a lot of complexity, so make sure they don't 412 * happen by forcing this copy to be retried. 413 * 414 * The rest of the btrfs_file_write code will fall 415 * back to page at a time copies after we return 0. 416 */ 417 if (unlikely(copied < count)) { 418 if (!PageUptodate(page)) { 419 iov_iter_revert(i, copied); 420 copied = 0; 421 } 422 if (!copied) 423 break; 424 } 425 426 write_bytes -= copied; 427 total_copied += copied; 428 offset += copied; 429 if (offset == PAGE_SIZE) { 430 pg++; 431 offset = 0; 432 } 433 } 434 return total_copied; 435 } 436 437 /* 438 * unlocks pages after btrfs_file_write is done with them 439 */ 440 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 441 { 442 size_t i; 443 for (i = 0; i < num_pages; i++) { 444 /* page checked is some magic around finding pages that 445 * have been modified without going through btrfs_set_page_dirty 446 * clear it here. There should be no need to mark the pages 447 * accessed as prepare_pages should have marked them accessed 448 * in prepare_pages via find_or_create_page() 449 */ 450 ClearPageChecked(pages[i]); 451 unlock_page(pages[i]); 452 put_page(pages[i]); 453 } 454 } 455 456 /* 457 * After btrfs_copy_from_user(), update the following things for delalloc: 458 * - Mark newly dirtied pages as DELALLOC in the io tree. 459 * Used to advise which range is to be written back. 460 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 461 * - Update inode size for past EOF write 462 */ 463 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 464 size_t num_pages, loff_t pos, size_t write_bytes, 465 struct extent_state **cached, bool noreserve) 466 { 467 struct btrfs_fs_info *fs_info = inode->root->fs_info; 468 int err = 0; 469 int i; 470 u64 num_bytes; 471 u64 start_pos; 472 u64 end_of_last_block; 473 u64 end_pos = pos + write_bytes; 474 loff_t isize = i_size_read(&inode->vfs_inode); 475 unsigned int extra_bits = 0; 476 477 if (write_bytes == 0) 478 return 0; 479 480 if (noreserve) 481 extra_bits |= EXTENT_NORESERVE; 482 483 start_pos = round_down(pos, fs_info->sectorsize); 484 num_bytes = round_up(write_bytes + pos - start_pos, 485 fs_info->sectorsize); 486 ASSERT(num_bytes <= U32_MAX); 487 488 end_of_last_block = start_pos + num_bytes - 1; 489 490 /* 491 * The pages may have already been dirty, clear out old accounting so 492 * we can set things up properly 493 */ 494 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 495 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 496 0, 0, cached); 497 498 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 499 extra_bits, cached); 500 if (err) 501 return err; 502 503 for (i = 0; i < num_pages; i++) { 504 struct page *p = pages[i]; 505 506 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes); 507 ClearPageChecked(p); 508 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes); 509 } 510 511 /* 512 * we've only changed i_size in ram, and we haven't updated 513 * the disk i_size. There is no need to log the inode 514 * at this time. 515 */ 516 if (end_pos > isize) 517 i_size_write(&inode->vfs_inode, end_pos); 518 return 0; 519 } 520 521 /* 522 * this drops all the extents in the cache that intersect the range 523 * [start, end]. Existing extents are split as required. 524 */ 525 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 526 int skip_pinned) 527 { 528 struct extent_map *em; 529 struct extent_map *split = NULL; 530 struct extent_map *split2 = NULL; 531 struct extent_map_tree *em_tree = &inode->extent_tree; 532 u64 len = end - start + 1; 533 u64 gen; 534 int ret; 535 int testend = 1; 536 unsigned long flags; 537 int compressed = 0; 538 bool modified; 539 540 WARN_ON(end < start); 541 if (end == (u64)-1) { 542 len = (u64)-1; 543 testend = 0; 544 } 545 while (1) { 546 int no_splits = 0; 547 548 modified = false; 549 if (!split) 550 split = alloc_extent_map(); 551 if (!split2) 552 split2 = alloc_extent_map(); 553 if (!split || !split2) 554 no_splits = 1; 555 556 write_lock(&em_tree->lock); 557 em = lookup_extent_mapping(em_tree, start, len); 558 if (!em) { 559 write_unlock(&em_tree->lock); 560 break; 561 } 562 flags = em->flags; 563 gen = em->generation; 564 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 565 if (testend && em->start + em->len >= start + len) { 566 free_extent_map(em); 567 write_unlock(&em_tree->lock); 568 break; 569 } 570 start = em->start + em->len; 571 if (testend) 572 len = start + len - (em->start + em->len); 573 free_extent_map(em); 574 write_unlock(&em_tree->lock); 575 continue; 576 } 577 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 578 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 579 clear_bit(EXTENT_FLAG_LOGGING, &flags); 580 modified = !list_empty(&em->list); 581 if (no_splits) 582 goto next; 583 584 if (em->start < start) { 585 split->start = em->start; 586 split->len = start - em->start; 587 588 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 589 split->orig_start = em->orig_start; 590 split->block_start = em->block_start; 591 592 if (compressed) 593 split->block_len = em->block_len; 594 else 595 split->block_len = split->len; 596 split->orig_block_len = max(split->block_len, 597 em->orig_block_len); 598 split->ram_bytes = em->ram_bytes; 599 } else { 600 split->orig_start = split->start; 601 split->block_len = 0; 602 split->block_start = em->block_start; 603 split->orig_block_len = 0; 604 split->ram_bytes = split->len; 605 } 606 607 split->generation = gen; 608 split->flags = flags; 609 split->compress_type = em->compress_type; 610 replace_extent_mapping(em_tree, em, split, modified); 611 free_extent_map(split); 612 split = split2; 613 split2 = NULL; 614 } 615 if (testend && em->start + em->len > start + len) { 616 u64 diff = start + len - em->start; 617 618 split->start = start + len; 619 split->len = em->start + em->len - (start + len); 620 split->flags = flags; 621 split->compress_type = em->compress_type; 622 split->generation = gen; 623 624 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 625 split->orig_block_len = max(em->block_len, 626 em->orig_block_len); 627 628 split->ram_bytes = em->ram_bytes; 629 if (compressed) { 630 split->block_len = em->block_len; 631 split->block_start = em->block_start; 632 split->orig_start = em->orig_start; 633 } else { 634 split->block_len = split->len; 635 split->block_start = em->block_start 636 + diff; 637 split->orig_start = em->orig_start; 638 } 639 } else { 640 split->ram_bytes = split->len; 641 split->orig_start = split->start; 642 split->block_len = 0; 643 split->block_start = em->block_start; 644 split->orig_block_len = 0; 645 } 646 647 if (extent_map_in_tree(em)) { 648 replace_extent_mapping(em_tree, em, split, 649 modified); 650 } else { 651 ret = add_extent_mapping(em_tree, split, 652 modified); 653 ASSERT(ret == 0); /* Logic error */ 654 } 655 free_extent_map(split); 656 split = NULL; 657 } 658 next: 659 if (extent_map_in_tree(em)) 660 remove_extent_mapping(em_tree, em); 661 write_unlock(&em_tree->lock); 662 663 /* once for us */ 664 free_extent_map(em); 665 /* once for the tree*/ 666 free_extent_map(em); 667 } 668 if (split) 669 free_extent_map(split); 670 if (split2) 671 free_extent_map(split2); 672 } 673 674 /* 675 * this is very complex, but the basic idea is to drop all extents 676 * in the range start - end. hint_block is filled in with a block number 677 * that would be a good hint to the block allocator for this file. 678 * 679 * If an extent intersects the range but is not entirely inside the range 680 * it is either truncated or split. Anything entirely inside the range 681 * is deleted from the tree. 682 * 683 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 684 * to deal with that. We set the field 'bytes_found' of the arguments structure 685 * with the number of allocated bytes found in the target range, so that the 686 * caller can update the inode's number of bytes in an atomic way when 687 * replacing extents in a range to avoid races with stat(2). 688 */ 689 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 690 struct btrfs_root *root, struct btrfs_inode *inode, 691 struct btrfs_drop_extents_args *args) 692 { 693 struct btrfs_fs_info *fs_info = root->fs_info; 694 struct extent_buffer *leaf; 695 struct btrfs_file_extent_item *fi; 696 struct btrfs_ref ref = { 0 }; 697 struct btrfs_key key; 698 struct btrfs_key new_key; 699 u64 ino = btrfs_ino(inode); 700 u64 search_start = args->start; 701 u64 disk_bytenr = 0; 702 u64 num_bytes = 0; 703 u64 extent_offset = 0; 704 u64 extent_end = 0; 705 u64 last_end = args->start; 706 int del_nr = 0; 707 int del_slot = 0; 708 int extent_type; 709 int recow; 710 int ret; 711 int modify_tree = -1; 712 int update_refs; 713 int found = 0; 714 int leafs_visited = 0; 715 struct btrfs_path *path = args->path; 716 717 args->bytes_found = 0; 718 args->extent_inserted = false; 719 720 /* Must always have a path if ->replace_extent is true */ 721 ASSERT(!(args->replace_extent && !args->path)); 722 723 if (!path) { 724 path = btrfs_alloc_path(); 725 if (!path) { 726 ret = -ENOMEM; 727 goto out; 728 } 729 } 730 731 if (args->drop_cache) 732 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0); 733 734 if (args->start >= inode->disk_i_size && !args->replace_extent) 735 modify_tree = 0; 736 737 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); 738 while (1) { 739 recow = 0; 740 ret = btrfs_lookup_file_extent(trans, root, path, ino, 741 search_start, modify_tree); 742 if (ret < 0) 743 break; 744 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 745 leaf = path->nodes[0]; 746 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 747 if (key.objectid == ino && 748 key.type == BTRFS_EXTENT_DATA_KEY) 749 path->slots[0]--; 750 } 751 ret = 0; 752 leafs_visited++; 753 next_slot: 754 leaf = path->nodes[0]; 755 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 756 BUG_ON(del_nr > 0); 757 ret = btrfs_next_leaf(root, path); 758 if (ret < 0) 759 break; 760 if (ret > 0) { 761 ret = 0; 762 break; 763 } 764 leafs_visited++; 765 leaf = path->nodes[0]; 766 recow = 1; 767 } 768 769 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 770 771 if (key.objectid > ino) 772 break; 773 if (WARN_ON_ONCE(key.objectid < ino) || 774 key.type < BTRFS_EXTENT_DATA_KEY) { 775 ASSERT(del_nr == 0); 776 path->slots[0]++; 777 goto next_slot; 778 } 779 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 780 break; 781 782 fi = btrfs_item_ptr(leaf, path->slots[0], 783 struct btrfs_file_extent_item); 784 extent_type = btrfs_file_extent_type(leaf, fi); 785 786 if (extent_type == BTRFS_FILE_EXTENT_REG || 787 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 788 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 789 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 790 extent_offset = btrfs_file_extent_offset(leaf, fi); 791 extent_end = key.offset + 792 btrfs_file_extent_num_bytes(leaf, fi); 793 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 794 extent_end = key.offset + 795 btrfs_file_extent_ram_bytes(leaf, fi); 796 } else { 797 /* can't happen */ 798 BUG(); 799 } 800 801 /* 802 * Don't skip extent items representing 0 byte lengths. They 803 * used to be created (bug) if while punching holes we hit 804 * -ENOSPC condition. So if we find one here, just ensure we 805 * delete it, otherwise we would insert a new file extent item 806 * with the same key (offset) as that 0 bytes length file 807 * extent item in the call to setup_items_for_insert() later 808 * in this function. 809 */ 810 if (extent_end == key.offset && extent_end >= search_start) { 811 last_end = extent_end; 812 goto delete_extent_item; 813 } 814 815 if (extent_end <= search_start) { 816 path->slots[0]++; 817 goto next_slot; 818 } 819 820 found = 1; 821 search_start = max(key.offset, args->start); 822 if (recow || !modify_tree) { 823 modify_tree = -1; 824 btrfs_release_path(path); 825 continue; 826 } 827 828 /* 829 * | - range to drop - | 830 * | -------- extent -------- | 831 */ 832 if (args->start > key.offset && args->end < extent_end) { 833 BUG_ON(del_nr > 0); 834 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 835 ret = -EOPNOTSUPP; 836 break; 837 } 838 839 memcpy(&new_key, &key, sizeof(new_key)); 840 new_key.offset = args->start; 841 ret = btrfs_duplicate_item(trans, root, path, 842 &new_key); 843 if (ret == -EAGAIN) { 844 btrfs_release_path(path); 845 continue; 846 } 847 if (ret < 0) 848 break; 849 850 leaf = path->nodes[0]; 851 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 852 struct btrfs_file_extent_item); 853 btrfs_set_file_extent_num_bytes(leaf, fi, 854 args->start - key.offset); 855 856 fi = btrfs_item_ptr(leaf, path->slots[0], 857 struct btrfs_file_extent_item); 858 859 extent_offset += args->start - key.offset; 860 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 861 btrfs_set_file_extent_num_bytes(leaf, fi, 862 extent_end - args->start); 863 btrfs_mark_buffer_dirty(leaf); 864 865 if (update_refs && disk_bytenr > 0) { 866 btrfs_init_generic_ref(&ref, 867 BTRFS_ADD_DELAYED_REF, 868 disk_bytenr, num_bytes, 0); 869 btrfs_init_data_ref(&ref, 870 root->root_key.objectid, 871 new_key.objectid, 872 args->start - extent_offset); 873 ret = btrfs_inc_extent_ref(trans, &ref); 874 BUG_ON(ret); /* -ENOMEM */ 875 } 876 key.offset = args->start; 877 } 878 /* 879 * From here on out we will have actually dropped something, so 880 * last_end can be updated. 881 */ 882 last_end = extent_end; 883 884 /* 885 * | ---- range to drop ----- | 886 * | -------- extent -------- | 887 */ 888 if (args->start <= key.offset && args->end < extent_end) { 889 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 890 ret = -EOPNOTSUPP; 891 break; 892 } 893 894 memcpy(&new_key, &key, sizeof(new_key)); 895 new_key.offset = args->end; 896 btrfs_set_item_key_safe(fs_info, path, &new_key); 897 898 extent_offset += args->end - key.offset; 899 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 900 btrfs_set_file_extent_num_bytes(leaf, fi, 901 extent_end - args->end); 902 btrfs_mark_buffer_dirty(leaf); 903 if (update_refs && disk_bytenr > 0) 904 args->bytes_found += args->end - key.offset; 905 break; 906 } 907 908 search_start = extent_end; 909 /* 910 * | ---- range to drop ----- | 911 * | -------- extent -------- | 912 */ 913 if (args->start > key.offset && args->end >= extent_end) { 914 BUG_ON(del_nr > 0); 915 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 916 ret = -EOPNOTSUPP; 917 break; 918 } 919 920 btrfs_set_file_extent_num_bytes(leaf, fi, 921 args->start - key.offset); 922 btrfs_mark_buffer_dirty(leaf); 923 if (update_refs && disk_bytenr > 0) 924 args->bytes_found += extent_end - args->start; 925 if (args->end == extent_end) 926 break; 927 928 path->slots[0]++; 929 goto next_slot; 930 } 931 932 /* 933 * | ---- range to drop ----- | 934 * | ------ extent ------ | 935 */ 936 if (args->start <= key.offset && args->end >= extent_end) { 937 delete_extent_item: 938 if (del_nr == 0) { 939 del_slot = path->slots[0]; 940 del_nr = 1; 941 } else { 942 BUG_ON(del_slot + del_nr != path->slots[0]); 943 del_nr++; 944 } 945 946 if (update_refs && 947 extent_type == BTRFS_FILE_EXTENT_INLINE) { 948 args->bytes_found += extent_end - key.offset; 949 extent_end = ALIGN(extent_end, 950 fs_info->sectorsize); 951 } else if (update_refs && disk_bytenr > 0) { 952 btrfs_init_generic_ref(&ref, 953 BTRFS_DROP_DELAYED_REF, 954 disk_bytenr, num_bytes, 0); 955 btrfs_init_data_ref(&ref, 956 root->root_key.objectid, 957 key.objectid, 958 key.offset - extent_offset); 959 ret = btrfs_free_extent(trans, &ref); 960 BUG_ON(ret); /* -ENOMEM */ 961 args->bytes_found += extent_end - key.offset; 962 } 963 964 if (args->end == extent_end) 965 break; 966 967 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 968 path->slots[0]++; 969 goto next_slot; 970 } 971 972 ret = btrfs_del_items(trans, root, path, del_slot, 973 del_nr); 974 if (ret) { 975 btrfs_abort_transaction(trans, ret); 976 break; 977 } 978 979 del_nr = 0; 980 del_slot = 0; 981 982 btrfs_release_path(path); 983 continue; 984 } 985 986 BUG(); 987 } 988 989 if (!ret && del_nr > 0) { 990 /* 991 * Set path->slots[0] to first slot, so that after the delete 992 * if items are move off from our leaf to its immediate left or 993 * right neighbor leafs, we end up with a correct and adjusted 994 * path->slots[0] for our insertion (if args->replace_extent). 995 */ 996 path->slots[0] = del_slot; 997 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 998 if (ret) 999 btrfs_abort_transaction(trans, ret); 1000 } 1001 1002 leaf = path->nodes[0]; 1003 /* 1004 * If btrfs_del_items() was called, it might have deleted a leaf, in 1005 * which case it unlocked our path, so check path->locks[0] matches a 1006 * write lock. 1007 */ 1008 if (!ret && args->replace_extent && leafs_visited == 1 && 1009 path->locks[0] == BTRFS_WRITE_LOCK && 1010 btrfs_leaf_free_space(leaf) >= 1011 sizeof(struct btrfs_item) + args->extent_item_size) { 1012 1013 key.objectid = ino; 1014 key.type = BTRFS_EXTENT_DATA_KEY; 1015 key.offset = args->start; 1016 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 1017 struct btrfs_key slot_key; 1018 1019 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 1020 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1021 path->slots[0]++; 1022 } 1023 setup_items_for_insert(root, path, &key, 1024 &args->extent_item_size, 1); 1025 args->extent_inserted = true; 1026 } 1027 1028 if (!args->path) 1029 btrfs_free_path(path); 1030 else if (!args->extent_inserted) 1031 btrfs_release_path(path); 1032 out: 1033 args->drop_end = found ? min(args->end, last_end) : args->end; 1034 1035 return ret; 1036 } 1037 1038 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1039 u64 objectid, u64 bytenr, u64 orig_offset, 1040 u64 *start, u64 *end) 1041 { 1042 struct btrfs_file_extent_item *fi; 1043 struct btrfs_key key; 1044 u64 extent_end; 1045 1046 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1047 return 0; 1048 1049 btrfs_item_key_to_cpu(leaf, &key, slot); 1050 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1051 return 0; 1052 1053 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1054 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1055 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1056 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1057 btrfs_file_extent_compression(leaf, fi) || 1058 btrfs_file_extent_encryption(leaf, fi) || 1059 btrfs_file_extent_other_encoding(leaf, fi)) 1060 return 0; 1061 1062 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1063 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1064 return 0; 1065 1066 *start = key.offset; 1067 *end = extent_end; 1068 return 1; 1069 } 1070 1071 /* 1072 * Mark extent in the range start - end as written. 1073 * 1074 * This changes extent type from 'pre-allocated' to 'regular'. If only 1075 * part of extent is marked as written, the extent will be split into 1076 * two or three. 1077 */ 1078 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1079 struct btrfs_inode *inode, u64 start, u64 end) 1080 { 1081 struct btrfs_fs_info *fs_info = trans->fs_info; 1082 struct btrfs_root *root = inode->root; 1083 struct extent_buffer *leaf; 1084 struct btrfs_path *path; 1085 struct btrfs_file_extent_item *fi; 1086 struct btrfs_ref ref = { 0 }; 1087 struct btrfs_key key; 1088 struct btrfs_key new_key; 1089 u64 bytenr; 1090 u64 num_bytes; 1091 u64 extent_end; 1092 u64 orig_offset; 1093 u64 other_start; 1094 u64 other_end; 1095 u64 split; 1096 int del_nr = 0; 1097 int del_slot = 0; 1098 int recow; 1099 int ret = 0; 1100 u64 ino = btrfs_ino(inode); 1101 1102 path = btrfs_alloc_path(); 1103 if (!path) 1104 return -ENOMEM; 1105 again: 1106 recow = 0; 1107 split = start; 1108 key.objectid = ino; 1109 key.type = BTRFS_EXTENT_DATA_KEY; 1110 key.offset = split; 1111 1112 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1113 if (ret < 0) 1114 goto out; 1115 if (ret > 0 && path->slots[0] > 0) 1116 path->slots[0]--; 1117 1118 leaf = path->nodes[0]; 1119 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1120 if (key.objectid != ino || 1121 key.type != BTRFS_EXTENT_DATA_KEY) { 1122 ret = -EINVAL; 1123 btrfs_abort_transaction(trans, ret); 1124 goto out; 1125 } 1126 fi = btrfs_item_ptr(leaf, path->slots[0], 1127 struct btrfs_file_extent_item); 1128 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1129 ret = -EINVAL; 1130 btrfs_abort_transaction(trans, ret); 1131 goto out; 1132 } 1133 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1134 if (key.offset > start || extent_end < end) { 1135 ret = -EINVAL; 1136 btrfs_abort_transaction(trans, ret); 1137 goto out; 1138 } 1139 1140 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1141 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1142 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1143 memcpy(&new_key, &key, sizeof(new_key)); 1144 1145 if (start == key.offset && end < extent_end) { 1146 other_start = 0; 1147 other_end = start; 1148 if (extent_mergeable(leaf, path->slots[0] - 1, 1149 ino, bytenr, orig_offset, 1150 &other_start, &other_end)) { 1151 new_key.offset = end; 1152 btrfs_set_item_key_safe(fs_info, path, &new_key); 1153 fi = btrfs_item_ptr(leaf, path->slots[0], 1154 struct btrfs_file_extent_item); 1155 btrfs_set_file_extent_generation(leaf, fi, 1156 trans->transid); 1157 btrfs_set_file_extent_num_bytes(leaf, fi, 1158 extent_end - end); 1159 btrfs_set_file_extent_offset(leaf, fi, 1160 end - orig_offset); 1161 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1162 struct btrfs_file_extent_item); 1163 btrfs_set_file_extent_generation(leaf, fi, 1164 trans->transid); 1165 btrfs_set_file_extent_num_bytes(leaf, fi, 1166 end - other_start); 1167 btrfs_mark_buffer_dirty(leaf); 1168 goto out; 1169 } 1170 } 1171 1172 if (start > key.offset && end == extent_end) { 1173 other_start = end; 1174 other_end = 0; 1175 if (extent_mergeable(leaf, path->slots[0] + 1, 1176 ino, bytenr, orig_offset, 1177 &other_start, &other_end)) { 1178 fi = btrfs_item_ptr(leaf, path->slots[0], 1179 struct btrfs_file_extent_item); 1180 btrfs_set_file_extent_num_bytes(leaf, fi, 1181 start - key.offset); 1182 btrfs_set_file_extent_generation(leaf, fi, 1183 trans->transid); 1184 path->slots[0]++; 1185 new_key.offset = start; 1186 btrfs_set_item_key_safe(fs_info, path, &new_key); 1187 1188 fi = btrfs_item_ptr(leaf, path->slots[0], 1189 struct btrfs_file_extent_item); 1190 btrfs_set_file_extent_generation(leaf, fi, 1191 trans->transid); 1192 btrfs_set_file_extent_num_bytes(leaf, fi, 1193 other_end - start); 1194 btrfs_set_file_extent_offset(leaf, fi, 1195 start - orig_offset); 1196 btrfs_mark_buffer_dirty(leaf); 1197 goto out; 1198 } 1199 } 1200 1201 while (start > key.offset || end < extent_end) { 1202 if (key.offset == start) 1203 split = end; 1204 1205 new_key.offset = split; 1206 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1207 if (ret == -EAGAIN) { 1208 btrfs_release_path(path); 1209 goto again; 1210 } 1211 if (ret < 0) { 1212 btrfs_abort_transaction(trans, ret); 1213 goto out; 1214 } 1215 1216 leaf = path->nodes[0]; 1217 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1218 struct btrfs_file_extent_item); 1219 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1220 btrfs_set_file_extent_num_bytes(leaf, fi, 1221 split - key.offset); 1222 1223 fi = btrfs_item_ptr(leaf, path->slots[0], 1224 struct btrfs_file_extent_item); 1225 1226 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1227 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1228 btrfs_set_file_extent_num_bytes(leaf, fi, 1229 extent_end - split); 1230 btrfs_mark_buffer_dirty(leaf); 1231 1232 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 1233 num_bytes, 0); 1234 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 1235 orig_offset); 1236 ret = btrfs_inc_extent_ref(trans, &ref); 1237 if (ret) { 1238 btrfs_abort_transaction(trans, ret); 1239 goto out; 1240 } 1241 1242 if (split == start) { 1243 key.offset = start; 1244 } else { 1245 if (start != key.offset) { 1246 ret = -EINVAL; 1247 btrfs_abort_transaction(trans, ret); 1248 goto out; 1249 } 1250 path->slots[0]--; 1251 extent_end = end; 1252 } 1253 recow = 1; 1254 } 1255 1256 other_start = end; 1257 other_end = 0; 1258 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1259 num_bytes, 0); 1260 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset); 1261 if (extent_mergeable(leaf, path->slots[0] + 1, 1262 ino, bytenr, orig_offset, 1263 &other_start, &other_end)) { 1264 if (recow) { 1265 btrfs_release_path(path); 1266 goto again; 1267 } 1268 extent_end = other_end; 1269 del_slot = path->slots[0] + 1; 1270 del_nr++; 1271 ret = btrfs_free_extent(trans, &ref); 1272 if (ret) { 1273 btrfs_abort_transaction(trans, ret); 1274 goto out; 1275 } 1276 } 1277 other_start = 0; 1278 other_end = start; 1279 if (extent_mergeable(leaf, path->slots[0] - 1, 1280 ino, bytenr, orig_offset, 1281 &other_start, &other_end)) { 1282 if (recow) { 1283 btrfs_release_path(path); 1284 goto again; 1285 } 1286 key.offset = other_start; 1287 del_slot = path->slots[0]; 1288 del_nr++; 1289 ret = btrfs_free_extent(trans, &ref); 1290 if (ret) { 1291 btrfs_abort_transaction(trans, ret); 1292 goto out; 1293 } 1294 } 1295 if (del_nr == 0) { 1296 fi = btrfs_item_ptr(leaf, path->slots[0], 1297 struct btrfs_file_extent_item); 1298 btrfs_set_file_extent_type(leaf, fi, 1299 BTRFS_FILE_EXTENT_REG); 1300 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1301 btrfs_mark_buffer_dirty(leaf); 1302 } else { 1303 fi = btrfs_item_ptr(leaf, del_slot - 1, 1304 struct btrfs_file_extent_item); 1305 btrfs_set_file_extent_type(leaf, fi, 1306 BTRFS_FILE_EXTENT_REG); 1307 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1308 btrfs_set_file_extent_num_bytes(leaf, fi, 1309 extent_end - key.offset); 1310 btrfs_mark_buffer_dirty(leaf); 1311 1312 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1313 if (ret < 0) { 1314 btrfs_abort_transaction(trans, ret); 1315 goto out; 1316 } 1317 } 1318 out: 1319 btrfs_free_path(path); 1320 return ret; 1321 } 1322 1323 /* 1324 * on error we return an unlocked page and the error value 1325 * on success we return a locked page and 0 1326 */ 1327 static int prepare_uptodate_page(struct inode *inode, 1328 struct page *page, u64 pos, 1329 bool force_uptodate) 1330 { 1331 int ret = 0; 1332 1333 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1334 !PageUptodate(page)) { 1335 ret = btrfs_readpage(NULL, page); 1336 if (ret) 1337 return ret; 1338 lock_page(page); 1339 if (!PageUptodate(page)) { 1340 unlock_page(page); 1341 return -EIO; 1342 } 1343 1344 /* 1345 * Since btrfs_readpage() will unlock the page before it 1346 * returns, there is a window where btrfs_releasepage() can be 1347 * called to release the page. Here we check both inode 1348 * mapping and PagePrivate() to make sure the page was not 1349 * released. 1350 * 1351 * The private flag check is essential for subpage as we need 1352 * to store extra bitmap using page->private. 1353 */ 1354 if (page->mapping != inode->i_mapping || !PagePrivate(page)) { 1355 unlock_page(page); 1356 return -EAGAIN; 1357 } 1358 } 1359 return 0; 1360 } 1361 1362 /* 1363 * this just gets pages into the page cache and locks them down. 1364 */ 1365 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1366 size_t num_pages, loff_t pos, 1367 size_t write_bytes, bool force_uptodate) 1368 { 1369 int i; 1370 unsigned long index = pos >> PAGE_SHIFT; 1371 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1372 int err = 0; 1373 int faili; 1374 1375 for (i = 0; i < num_pages; i++) { 1376 again: 1377 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1378 mask | __GFP_WRITE); 1379 if (!pages[i]) { 1380 faili = i - 1; 1381 err = -ENOMEM; 1382 goto fail; 1383 } 1384 1385 err = set_page_extent_mapped(pages[i]); 1386 if (err < 0) { 1387 faili = i; 1388 goto fail; 1389 } 1390 1391 if (i == 0) 1392 err = prepare_uptodate_page(inode, pages[i], pos, 1393 force_uptodate); 1394 if (!err && i == num_pages - 1) 1395 err = prepare_uptodate_page(inode, pages[i], 1396 pos + write_bytes, false); 1397 if (err) { 1398 put_page(pages[i]); 1399 if (err == -EAGAIN) { 1400 err = 0; 1401 goto again; 1402 } 1403 faili = i - 1; 1404 goto fail; 1405 } 1406 wait_on_page_writeback(pages[i]); 1407 } 1408 1409 return 0; 1410 fail: 1411 while (faili >= 0) { 1412 unlock_page(pages[faili]); 1413 put_page(pages[faili]); 1414 faili--; 1415 } 1416 return err; 1417 1418 } 1419 1420 /* 1421 * This function locks the extent and properly waits for data=ordered extents 1422 * to finish before allowing the pages to be modified if need. 1423 * 1424 * The return value: 1425 * 1 - the extent is locked 1426 * 0 - the extent is not locked, and everything is OK 1427 * -EAGAIN - need re-prepare the pages 1428 * the other < 0 number - Something wrong happens 1429 */ 1430 static noinline int 1431 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1432 size_t num_pages, loff_t pos, 1433 size_t write_bytes, 1434 u64 *lockstart, u64 *lockend, 1435 struct extent_state **cached_state) 1436 { 1437 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1438 u64 start_pos; 1439 u64 last_pos; 1440 int i; 1441 int ret = 0; 1442 1443 start_pos = round_down(pos, fs_info->sectorsize); 1444 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 1445 1446 if (start_pos < inode->vfs_inode.i_size) { 1447 struct btrfs_ordered_extent *ordered; 1448 1449 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1450 cached_state); 1451 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1452 last_pos - start_pos + 1); 1453 if (ordered && 1454 ordered->file_offset + ordered->num_bytes > start_pos && 1455 ordered->file_offset <= last_pos) { 1456 unlock_extent_cached(&inode->io_tree, start_pos, 1457 last_pos, cached_state); 1458 for (i = 0; i < num_pages; i++) { 1459 unlock_page(pages[i]); 1460 put_page(pages[i]); 1461 } 1462 btrfs_start_ordered_extent(ordered, 1); 1463 btrfs_put_ordered_extent(ordered); 1464 return -EAGAIN; 1465 } 1466 if (ordered) 1467 btrfs_put_ordered_extent(ordered); 1468 1469 *lockstart = start_pos; 1470 *lockend = last_pos; 1471 ret = 1; 1472 } 1473 1474 /* 1475 * We should be called after prepare_pages() which should have locked 1476 * all pages in the range. 1477 */ 1478 for (i = 0; i < num_pages; i++) 1479 WARN_ON(!PageLocked(pages[i])); 1480 1481 return ret; 1482 } 1483 1484 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1485 size_t *write_bytes, bool nowait) 1486 { 1487 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1488 struct btrfs_root *root = inode->root; 1489 u64 lockstart, lockend; 1490 u64 num_bytes; 1491 int ret; 1492 1493 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1494 return 0; 1495 1496 if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock)) 1497 return -EAGAIN; 1498 1499 lockstart = round_down(pos, fs_info->sectorsize); 1500 lockend = round_up(pos + *write_bytes, 1501 fs_info->sectorsize) - 1; 1502 num_bytes = lockend - lockstart + 1; 1503 1504 if (nowait) { 1505 struct btrfs_ordered_extent *ordered; 1506 1507 if (!try_lock_extent(&inode->io_tree, lockstart, lockend)) 1508 return -EAGAIN; 1509 1510 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1511 num_bytes); 1512 if (ordered) { 1513 btrfs_put_ordered_extent(ordered); 1514 ret = -EAGAIN; 1515 goto out_unlock; 1516 } 1517 } else { 1518 btrfs_lock_and_flush_ordered_range(inode, lockstart, 1519 lockend, NULL); 1520 } 1521 1522 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1523 NULL, NULL, NULL, false); 1524 if (ret <= 0) { 1525 ret = 0; 1526 if (!nowait) 1527 btrfs_drew_write_unlock(&root->snapshot_lock); 1528 } else { 1529 *write_bytes = min_t(size_t, *write_bytes , 1530 num_bytes - pos + lockstart); 1531 } 1532 out_unlock: 1533 unlock_extent(&inode->io_tree, lockstart, lockend); 1534 1535 return ret; 1536 } 1537 1538 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos, 1539 size_t *write_bytes) 1540 { 1541 return check_can_nocow(inode, pos, write_bytes, true); 1542 } 1543 1544 /* 1545 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1546 * 1547 * @pos: File offset 1548 * @write_bytes: The length to write, will be updated to the nocow writeable 1549 * range 1550 * 1551 * This function will flush ordered extents in the range to ensure proper 1552 * nocow checks. 1553 * 1554 * Return: 1555 * >0 and update @write_bytes if we can do nocow write 1556 * 0 if we can't do nocow write 1557 * -EAGAIN if we can't get the needed lock or there are ordered extents 1558 * for * (nowait == true) case 1559 * <0 if other error happened 1560 * 1561 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock(). 1562 */ 1563 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1564 size_t *write_bytes) 1565 { 1566 return check_can_nocow(inode, pos, write_bytes, false); 1567 } 1568 1569 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1570 { 1571 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1572 } 1573 1574 static void update_time_for_write(struct inode *inode) 1575 { 1576 struct timespec64 now; 1577 1578 if (IS_NOCMTIME(inode)) 1579 return; 1580 1581 now = current_time(inode); 1582 if (!timespec64_equal(&inode->i_mtime, &now)) 1583 inode->i_mtime = now; 1584 1585 if (!timespec64_equal(&inode->i_ctime, &now)) 1586 inode->i_ctime = now; 1587 1588 if (IS_I_VERSION(inode)) 1589 inode_inc_iversion(inode); 1590 } 1591 1592 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1593 size_t count) 1594 { 1595 struct file *file = iocb->ki_filp; 1596 struct inode *inode = file_inode(file); 1597 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1598 loff_t pos = iocb->ki_pos; 1599 int ret; 1600 loff_t oldsize; 1601 loff_t start_pos; 1602 1603 if (iocb->ki_flags & IOCB_NOWAIT) { 1604 size_t nocow_bytes = count; 1605 1606 /* We will allocate space in case nodatacow is not set, so bail */ 1607 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0) 1608 return -EAGAIN; 1609 /* 1610 * There are holes in the range or parts of the range that must 1611 * be COWed (shared extents, RO block groups, etc), so just bail 1612 * out. 1613 */ 1614 if (nocow_bytes < count) 1615 return -EAGAIN; 1616 } 1617 1618 current->backing_dev_info = inode_to_bdi(inode); 1619 ret = file_remove_privs(file); 1620 if (ret) 1621 return ret; 1622 1623 /* 1624 * We reserve space for updating the inode when we reserve space for the 1625 * extent we are going to write, so we will enospc out there. We don't 1626 * need to start yet another transaction to update the inode as we will 1627 * update the inode when we finish writing whatever data we write. 1628 */ 1629 update_time_for_write(inode); 1630 1631 start_pos = round_down(pos, fs_info->sectorsize); 1632 oldsize = i_size_read(inode); 1633 if (start_pos > oldsize) { 1634 /* Expand hole size to cover write data, preventing empty gap */ 1635 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1636 1637 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1638 if (ret) { 1639 current->backing_dev_info = NULL; 1640 return ret; 1641 } 1642 } 1643 1644 return 0; 1645 } 1646 1647 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1648 struct iov_iter *i) 1649 { 1650 struct file *file = iocb->ki_filp; 1651 loff_t pos; 1652 struct inode *inode = file_inode(file); 1653 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1654 struct page **pages = NULL; 1655 struct extent_changeset *data_reserved = NULL; 1656 u64 release_bytes = 0; 1657 u64 lockstart; 1658 u64 lockend; 1659 size_t num_written = 0; 1660 int nrptrs; 1661 ssize_t ret; 1662 bool only_release_metadata = false; 1663 bool force_page_uptodate = false; 1664 loff_t old_isize = i_size_read(inode); 1665 unsigned int ilock_flags = 0; 1666 1667 if (iocb->ki_flags & IOCB_NOWAIT) 1668 ilock_flags |= BTRFS_ILOCK_TRY; 1669 1670 ret = btrfs_inode_lock(inode, ilock_flags); 1671 if (ret < 0) 1672 return ret; 1673 1674 ret = generic_write_checks(iocb, i); 1675 if (ret <= 0) 1676 goto out; 1677 1678 ret = btrfs_write_check(iocb, i, ret); 1679 if (ret < 0) 1680 goto out; 1681 1682 pos = iocb->ki_pos; 1683 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1684 PAGE_SIZE / (sizeof(struct page *))); 1685 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1686 nrptrs = max(nrptrs, 8); 1687 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1688 if (!pages) { 1689 ret = -ENOMEM; 1690 goto out; 1691 } 1692 1693 while (iov_iter_count(i) > 0) { 1694 struct extent_state *cached_state = NULL; 1695 size_t offset = offset_in_page(pos); 1696 size_t sector_offset; 1697 size_t write_bytes = min(iov_iter_count(i), 1698 nrptrs * (size_t)PAGE_SIZE - 1699 offset); 1700 size_t num_pages; 1701 size_t reserve_bytes; 1702 size_t dirty_pages; 1703 size_t copied; 1704 size_t dirty_sectors; 1705 size_t num_sectors; 1706 int extents_locked; 1707 1708 /* 1709 * Fault pages before locking them in prepare_pages 1710 * to avoid recursive lock 1711 */ 1712 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1713 ret = -EFAULT; 1714 break; 1715 } 1716 1717 only_release_metadata = false; 1718 sector_offset = pos & (fs_info->sectorsize - 1); 1719 1720 extent_changeset_release(data_reserved); 1721 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1722 &data_reserved, pos, 1723 write_bytes); 1724 if (ret < 0) { 1725 /* 1726 * If we don't have to COW at the offset, reserve 1727 * metadata only. write_bytes may get smaller than 1728 * requested here. 1729 */ 1730 if (btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1731 &write_bytes) > 0) 1732 only_release_metadata = true; 1733 else 1734 break; 1735 } 1736 1737 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1738 WARN_ON(num_pages > nrptrs); 1739 reserve_bytes = round_up(write_bytes + sector_offset, 1740 fs_info->sectorsize); 1741 WARN_ON(reserve_bytes == 0); 1742 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1743 reserve_bytes); 1744 if (ret) { 1745 if (!only_release_metadata) 1746 btrfs_free_reserved_data_space(BTRFS_I(inode), 1747 data_reserved, pos, 1748 write_bytes); 1749 else 1750 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1751 break; 1752 } 1753 1754 release_bytes = reserve_bytes; 1755 again: 1756 /* 1757 * This is going to setup the pages array with the number of 1758 * pages we want, so we don't really need to worry about the 1759 * contents of pages from loop to loop 1760 */ 1761 ret = prepare_pages(inode, pages, num_pages, 1762 pos, write_bytes, 1763 force_page_uptodate); 1764 if (ret) { 1765 btrfs_delalloc_release_extents(BTRFS_I(inode), 1766 reserve_bytes); 1767 break; 1768 } 1769 1770 extents_locked = lock_and_cleanup_extent_if_need( 1771 BTRFS_I(inode), pages, 1772 num_pages, pos, write_bytes, &lockstart, 1773 &lockend, &cached_state); 1774 if (extents_locked < 0) { 1775 if (extents_locked == -EAGAIN) 1776 goto again; 1777 btrfs_delalloc_release_extents(BTRFS_I(inode), 1778 reserve_bytes); 1779 ret = extents_locked; 1780 break; 1781 } 1782 1783 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1784 1785 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1786 dirty_sectors = round_up(copied + sector_offset, 1787 fs_info->sectorsize); 1788 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1789 1790 /* 1791 * if we have trouble faulting in the pages, fall 1792 * back to one page at a time 1793 */ 1794 if (copied < write_bytes) 1795 nrptrs = 1; 1796 1797 if (copied == 0) { 1798 force_page_uptodate = true; 1799 dirty_sectors = 0; 1800 dirty_pages = 0; 1801 } else { 1802 force_page_uptodate = false; 1803 dirty_pages = DIV_ROUND_UP(copied + offset, 1804 PAGE_SIZE); 1805 } 1806 1807 if (num_sectors > dirty_sectors) { 1808 /* release everything except the sectors we dirtied */ 1809 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1810 if (only_release_metadata) { 1811 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1812 release_bytes, true); 1813 } else { 1814 u64 __pos; 1815 1816 __pos = round_down(pos, 1817 fs_info->sectorsize) + 1818 (dirty_pages << PAGE_SHIFT); 1819 btrfs_delalloc_release_space(BTRFS_I(inode), 1820 data_reserved, __pos, 1821 release_bytes, true); 1822 } 1823 } 1824 1825 release_bytes = round_up(copied + sector_offset, 1826 fs_info->sectorsize); 1827 1828 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1829 dirty_pages, pos, copied, 1830 &cached_state, only_release_metadata); 1831 1832 /* 1833 * If we have not locked the extent range, because the range's 1834 * start offset is >= i_size, we might still have a non-NULL 1835 * cached extent state, acquired while marking the extent range 1836 * as delalloc through btrfs_dirty_pages(). Therefore free any 1837 * possible cached extent state to avoid a memory leak. 1838 */ 1839 if (extents_locked) 1840 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1841 lockstart, lockend, &cached_state); 1842 else 1843 free_extent_state(cached_state); 1844 1845 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1846 if (ret) { 1847 btrfs_drop_pages(pages, num_pages); 1848 break; 1849 } 1850 1851 release_bytes = 0; 1852 if (only_release_metadata) 1853 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1854 1855 btrfs_drop_pages(pages, num_pages); 1856 1857 cond_resched(); 1858 1859 balance_dirty_pages_ratelimited(inode->i_mapping); 1860 1861 pos += copied; 1862 num_written += copied; 1863 } 1864 1865 kfree(pages); 1866 1867 if (release_bytes) { 1868 if (only_release_metadata) { 1869 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1870 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1871 release_bytes, true); 1872 } else { 1873 btrfs_delalloc_release_space(BTRFS_I(inode), 1874 data_reserved, 1875 round_down(pos, fs_info->sectorsize), 1876 release_bytes, true); 1877 } 1878 } 1879 1880 extent_changeset_free(data_reserved); 1881 if (num_written > 0) { 1882 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1883 iocb->ki_pos += num_written; 1884 } 1885 out: 1886 btrfs_inode_unlock(inode, ilock_flags); 1887 return num_written ? num_written : ret; 1888 } 1889 1890 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1891 const struct iov_iter *iter, loff_t offset) 1892 { 1893 const u32 blocksize_mask = fs_info->sectorsize - 1; 1894 1895 if (offset & blocksize_mask) 1896 return -EINVAL; 1897 1898 if (iov_iter_alignment(iter) & blocksize_mask) 1899 return -EINVAL; 1900 1901 return 0; 1902 } 1903 1904 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1905 { 1906 struct file *file = iocb->ki_filp; 1907 struct inode *inode = file_inode(file); 1908 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1909 loff_t pos; 1910 ssize_t written = 0; 1911 ssize_t written_buffered; 1912 loff_t endbyte; 1913 ssize_t err; 1914 unsigned int ilock_flags = 0; 1915 struct iomap_dio *dio = NULL; 1916 1917 if (iocb->ki_flags & IOCB_NOWAIT) 1918 ilock_flags |= BTRFS_ILOCK_TRY; 1919 1920 /* If the write DIO is within EOF, use a shared lock */ 1921 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode)) 1922 ilock_flags |= BTRFS_ILOCK_SHARED; 1923 1924 relock: 1925 err = btrfs_inode_lock(inode, ilock_flags); 1926 if (err < 0) 1927 return err; 1928 1929 err = generic_write_checks(iocb, from); 1930 if (err <= 0) { 1931 btrfs_inode_unlock(inode, ilock_flags); 1932 return err; 1933 } 1934 1935 err = btrfs_write_check(iocb, from, err); 1936 if (err < 0) { 1937 btrfs_inode_unlock(inode, ilock_flags); 1938 goto out; 1939 } 1940 1941 pos = iocb->ki_pos; 1942 /* 1943 * Re-check since file size may have changed just before taking the 1944 * lock or pos may have changed because of O_APPEND in generic_write_check() 1945 */ 1946 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1947 pos + iov_iter_count(from) > i_size_read(inode)) { 1948 btrfs_inode_unlock(inode, ilock_flags); 1949 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1950 goto relock; 1951 } 1952 1953 if (check_direct_IO(fs_info, from, pos)) { 1954 btrfs_inode_unlock(inode, ilock_flags); 1955 goto buffered; 1956 } 1957 1958 dio = __iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 1959 0); 1960 1961 btrfs_inode_unlock(inode, ilock_flags); 1962 1963 if (IS_ERR_OR_NULL(dio)) { 1964 err = PTR_ERR_OR_ZERO(dio); 1965 if (err < 0 && err != -ENOTBLK) 1966 goto out; 1967 } else { 1968 written = iomap_dio_complete(dio); 1969 } 1970 1971 if (written < 0 || !iov_iter_count(from)) { 1972 err = written; 1973 goto out; 1974 } 1975 1976 buffered: 1977 pos = iocb->ki_pos; 1978 written_buffered = btrfs_buffered_write(iocb, from); 1979 if (written_buffered < 0) { 1980 err = written_buffered; 1981 goto out; 1982 } 1983 /* 1984 * Ensure all data is persisted. We want the next direct IO read to be 1985 * able to read what was just written. 1986 */ 1987 endbyte = pos + written_buffered - 1; 1988 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1989 if (err) 1990 goto out; 1991 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1992 if (err) 1993 goto out; 1994 written += written_buffered; 1995 iocb->ki_pos = pos + written_buffered; 1996 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1997 endbyte >> PAGE_SHIFT); 1998 out: 1999 return written ? written : err; 2000 } 2001 2002 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 2003 struct iov_iter *from) 2004 { 2005 struct file *file = iocb->ki_filp; 2006 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 2007 ssize_t num_written = 0; 2008 const bool sync = iocb->ki_flags & IOCB_DSYNC; 2009 2010 /* 2011 * If the fs flips readonly due to some impossible error, although we 2012 * have opened a file as writable, we have to stop this write operation 2013 * to ensure consistency. 2014 */ 2015 if (test_bit(BTRFS_FS_STATE_ERROR, &inode->root->fs_info->fs_state)) 2016 return -EROFS; 2017 2018 if (!(iocb->ki_flags & IOCB_DIRECT) && 2019 (iocb->ki_flags & IOCB_NOWAIT)) 2020 return -EOPNOTSUPP; 2021 2022 if (sync) 2023 atomic_inc(&inode->sync_writers); 2024 2025 if (iocb->ki_flags & IOCB_DIRECT) 2026 num_written = btrfs_direct_write(iocb, from); 2027 else 2028 num_written = btrfs_buffered_write(iocb, from); 2029 2030 btrfs_set_inode_last_sub_trans(inode); 2031 2032 if (num_written > 0) 2033 num_written = generic_write_sync(iocb, num_written); 2034 2035 if (sync) 2036 atomic_dec(&inode->sync_writers); 2037 2038 current->backing_dev_info = NULL; 2039 return num_written; 2040 } 2041 2042 int btrfs_release_file(struct inode *inode, struct file *filp) 2043 { 2044 struct btrfs_file_private *private = filp->private_data; 2045 2046 if (private && private->filldir_buf) 2047 kfree(private->filldir_buf); 2048 kfree(private); 2049 filp->private_data = NULL; 2050 2051 /* 2052 * Set by setattr when we are about to truncate a file from a non-zero 2053 * size to a zero size. This tries to flush down new bytes that may 2054 * have been written if the application were using truncate to replace 2055 * a file in place. 2056 */ 2057 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 2058 &BTRFS_I(inode)->runtime_flags)) 2059 filemap_flush(inode->i_mapping); 2060 return 0; 2061 } 2062 2063 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2064 { 2065 int ret; 2066 struct blk_plug plug; 2067 2068 /* 2069 * This is only called in fsync, which would do synchronous writes, so 2070 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2071 * multiple disks using raid profile, a large IO can be split to 2072 * several segments of stripe length (currently 64K). 2073 */ 2074 blk_start_plug(&plug); 2075 atomic_inc(&BTRFS_I(inode)->sync_writers); 2076 ret = btrfs_fdatawrite_range(inode, start, end); 2077 atomic_dec(&BTRFS_I(inode)->sync_writers); 2078 blk_finish_plug(&plug); 2079 2080 return ret; 2081 } 2082 2083 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 2084 { 2085 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 2086 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2087 2088 if (btrfs_inode_in_log(inode, fs_info->generation) && 2089 list_empty(&ctx->ordered_extents)) 2090 return true; 2091 2092 /* 2093 * If we are doing a fast fsync we can not bail out if the inode's 2094 * last_trans is <= then the last committed transaction, because we only 2095 * update the last_trans of the inode during ordered extent completion, 2096 * and for a fast fsync we don't wait for that, we only wait for the 2097 * writeback to complete. 2098 */ 2099 if (inode->last_trans <= fs_info->last_trans_committed && 2100 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 2101 list_empty(&ctx->ordered_extents))) 2102 return true; 2103 2104 return false; 2105 } 2106 2107 /* 2108 * fsync call for both files and directories. This logs the inode into 2109 * the tree log instead of forcing full commits whenever possible. 2110 * 2111 * It needs to call filemap_fdatawait so that all ordered extent updates are 2112 * in the metadata btree are up to date for copying to the log. 2113 * 2114 * It drops the inode mutex before doing the tree log commit. This is an 2115 * important optimization for directories because holding the mutex prevents 2116 * new operations on the dir while we write to disk. 2117 */ 2118 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2119 { 2120 struct dentry *dentry = file_dentry(file); 2121 struct inode *inode = d_inode(dentry); 2122 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2123 struct btrfs_root *root = BTRFS_I(inode)->root; 2124 struct btrfs_trans_handle *trans; 2125 struct btrfs_log_ctx ctx; 2126 int ret = 0, err; 2127 u64 len; 2128 bool full_sync; 2129 2130 trace_btrfs_sync_file(file, datasync); 2131 2132 btrfs_init_log_ctx(&ctx, inode); 2133 2134 /* 2135 * Always set the range to a full range, otherwise we can get into 2136 * several problems, from missing file extent items to represent holes 2137 * when not using the NO_HOLES feature, to log tree corruption due to 2138 * races between hole detection during logging and completion of ordered 2139 * extents outside the range, to missing checksums due to ordered extents 2140 * for which we flushed only a subset of their pages. 2141 */ 2142 start = 0; 2143 end = LLONG_MAX; 2144 len = (u64)LLONG_MAX + 1; 2145 2146 /* 2147 * We write the dirty pages in the range and wait until they complete 2148 * out of the ->i_mutex. If so, we can flush the dirty pages by 2149 * multi-task, and make the performance up. See 2150 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2151 */ 2152 ret = start_ordered_ops(inode, start, end); 2153 if (ret) 2154 goto out; 2155 2156 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 2157 2158 atomic_inc(&root->log_batch); 2159 2160 /* 2161 * Always check for the full sync flag while holding the inode's lock, 2162 * to avoid races with other tasks. The flag must be either set all the 2163 * time during logging or always off all the time while logging. 2164 */ 2165 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2166 &BTRFS_I(inode)->runtime_flags); 2167 2168 /* 2169 * Before we acquired the inode's lock and the mmap lock, someone may 2170 * have dirtied more pages in the target range. We need to make sure 2171 * that writeback for any such pages does not start while we are logging 2172 * the inode, because if it does, any of the following might happen when 2173 * we are not doing a full inode sync: 2174 * 2175 * 1) We log an extent after its writeback finishes but before its 2176 * checksums are added to the csum tree, leading to -EIO errors 2177 * when attempting to read the extent after a log replay. 2178 * 2179 * 2) We can end up logging an extent before its writeback finishes. 2180 * Therefore after the log replay we will have a file extent item 2181 * pointing to an unwritten extent (and no data checksums as well). 2182 * 2183 * So trigger writeback for any eventual new dirty pages and then we 2184 * wait for all ordered extents to complete below. 2185 */ 2186 ret = start_ordered_ops(inode, start, end); 2187 if (ret) { 2188 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2189 goto out; 2190 } 2191 2192 /* 2193 * We have to do this here to avoid the priority inversion of waiting on 2194 * IO of a lower priority task while holding a transaction open. 2195 * 2196 * For a full fsync we wait for the ordered extents to complete while 2197 * for a fast fsync we wait just for writeback to complete, and then 2198 * attach the ordered extents to the transaction so that a transaction 2199 * commit waits for their completion, to avoid data loss if we fsync, 2200 * the current transaction commits before the ordered extents complete 2201 * and a power failure happens right after that. 2202 * 2203 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 2204 * logical address recorded in the ordered extent may change. We need 2205 * to wait for the IO to stabilize the logical address. 2206 */ 2207 if (full_sync || btrfs_is_zoned(fs_info)) { 2208 ret = btrfs_wait_ordered_range(inode, start, len); 2209 } else { 2210 /* 2211 * Get our ordered extents as soon as possible to avoid doing 2212 * checksum lookups in the csum tree, and use instead the 2213 * checksums attached to the ordered extents. 2214 */ 2215 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 2216 &ctx.ordered_extents); 2217 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 2218 } 2219 2220 if (ret) 2221 goto out_release_extents; 2222 2223 atomic_inc(&root->log_batch); 2224 2225 smp_mb(); 2226 if (skip_inode_logging(&ctx)) { 2227 /* 2228 * We've had everything committed since the last time we were 2229 * modified so clear this flag in case it was set for whatever 2230 * reason, it's no longer relevant. 2231 */ 2232 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2233 &BTRFS_I(inode)->runtime_flags); 2234 /* 2235 * An ordered extent might have started before and completed 2236 * already with io errors, in which case the inode was not 2237 * updated and we end up here. So check the inode's mapping 2238 * for any errors that might have happened since we last 2239 * checked called fsync. 2240 */ 2241 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2242 goto out_release_extents; 2243 } 2244 2245 /* 2246 * We use start here because we will need to wait on the IO to complete 2247 * in btrfs_sync_log, which could require joining a transaction (for 2248 * example checking cross references in the nocow path). If we use join 2249 * here we could get into a situation where we're waiting on IO to 2250 * happen that is blocked on a transaction trying to commit. With start 2251 * we inc the extwriter counter, so we wait for all extwriters to exit 2252 * before we start blocking joiners. This comment is to keep somebody 2253 * from thinking they are super smart and changing this to 2254 * btrfs_join_transaction *cough*Josef*cough*. 2255 */ 2256 trans = btrfs_start_transaction(root, 0); 2257 if (IS_ERR(trans)) { 2258 ret = PTR_ERR(trans); 2259 goto out_release_extents; 2260 } 2261 trans->in_fsync = true; 2262 2263 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 2264 btrfs_release_log_ctx_extents(&ctx); 2265 if (ret < 0) { 2266 /* Fallthrough and commit/free transaction. */ 2267 ret = 1; 2268 } 2269 2270 /* we've logged all the items and now have a consistent 2271 * version of the file in the log. It is possible that 2272 * someone will come in and modify the file, but that's 2273 * fine because the log is consistent on disk, and we 2274 * have references to all of the file's extents 2275 * 2276 * It is possible that someone will come in and log the 2277 * file again, but that will end up using the synchronization 2278 * inside btrfs_sync_log to keep things safe. 2279 */ 2280 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2281 2282 if (ret != BTRFS_NO_LOG_SYNC) { 2283 if (!ret) { 2284 ret = btrfs_sync_log(trans, root, &ctx); 2285 if (!ret) { 2286 ret = btrfs_end_transaction(trans); 2287 goto out; 2288 } 2289 } 2290 if (!full_sync) { 2291 ret = btrfs_wait_ordered_range(inode, start, len); 2292 if (ret) { 2293 btrfs_end_transaction(trans); 2294 goto out; 2295 } 2296 } 2297 ret = btrfs_commit_transaction(trans); 2298 } else { 2299 ret = btrfs_end_transaction(trans); 2300 } 2301 out: 2302 ASSERT(list_empty(&ctx.list)); 2303 err = file_check_and_advance_wb_err(file); 2304 if (!ret) 2305 ret = err; 2306 return ret > 0 ? -EIO : ret; 2307 2308 out_release_extents: 2309 btrfs_release_log_ctx_extents(&ctx); 2310 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2311 goto out; 2312 } 2313 2314 static const struct vm_operations_struct btrfs_file_vm_ops = { 2315 .fault = filemap_fault, 2316 .map_pages = filemap_map_pages, 2317 .page_mkwrite = btrfs_page_mkwrite, 2318 }; 2319 2320 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2321 { 2322 struct address_space *mapping = filp->f_mapping; 2323 2324 if (!mapping->a_ops->readpage) 2325 return -ENOEXEC; 2326 2327 file_accessed(filp); 2328 vma->vm_ops = &btrfs_file_vm_ops; 2329 2330 return 0; 2331 } 2332 2333 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2334 int slot, u64 start, u64 end) 2335 { 2336 struct btrfs_file_extent_item *fi; 2337 struct btrfs_key key; 2338 2339 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2340 return 0; 2341 2342 btrfs_item_key_to_cpu(leaf, &key, slot); 2343 if (key.objectid != btrfs_ino(inode) || 2344 key.type != BTRFS_EXTENT_DATA_KEY) 2345 return 0; 2346 2347 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2348 2349 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2350 return 0; 2351 2352 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2353 return 0; 2354 2355 if (key.offset == end) 2356 return 1; 2357 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2358 return 1; 2359 return 0; 2360 } 2361 2362 static int fill_holes(struct btrfs_trans_handle *trans, 2363 struct btrfs_inode *inode, 2364 struct btrfs_path *path, u64 offset, u64 end) 2365 { 2366 struct btrfs_fs_info *fs_info = trans->fs_info; 2367 struct btrfs_root *root = inode->root; 2368 struct extent_buffer *leaf; 2369 struct btrfs_file_extent_item *fi; 2370 struct extent_map *hole_em; 2371 struct extent_map_tree *em_tree = &inode->extent_tree; 2372 struct btrfs_key key; 2373 int ret; 2374 2375 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2376 goto out; 2377 2378 key.objectid = btrfs_ino(inode); 2379 key.type = BTRFS_EXTENT_DATA_KEY; 2380 key.offset = offset; 2381 2382 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2383 if (ret <= 0) { 2384 /* 2385 * We should have dropped this offset, so if we find it then 2386 * something has gone horribly wrong. 2387 */ 2388 if (ret == 0) 2389 ret = -EINVAL; 2390 return ret; 2391 } 2392 2393 leaf = path->nodes[0]; 2394 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2395 u64 num_bytes; 2396 2397 path->slots[0]--; 2398 fi = btrfs_item_ptr(leaf, path->slots[0], 2399 struct btrfs_file_extent_item); 2400 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2401 end - offset; 2402 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2403 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2404 btrfs_set_file_extent_offset(leaf, fi, 0); 2405 btrfs_mark_buffer_dirty(leaf); 2406 goto out; 2407 } 2408 2409 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2410 u64 num_bytes; 2411 2412 key.offset = offset; 2413 btrfs_set_item_key_safe(fs_info, path, &key); 2414 fi = btrfs_item_ptr(leaf, path->slots[0], 2415 struct btrfs_file_extent_item); 2416 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2417 offset; 2418 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2419 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2420 btrfs_set_file_extent_offset(leaf, fi, 0); 2421 btrfs_mark_buffer_dirty(leaf); 2422 goto out; 2423 } 2424 btrfs_release_path(path); 2425 2426 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2427 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2428 if (ret) 2429 return ret; 2430 2431 out: 2432 btrfs_release_path(path); 2433 2434 hole_em = alloc_extent_map(); 2435 if (!hole_em) { 2436 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2437 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2438 } else { 2439 hole_em->start = offset; 2440 hole_em->len = end - offset; 2441 hole_em->ram_bytes = hole_em->len; 2442 hole_em->orig_start = offset; 2443 2444 hole_em->block_start = EXTENT_MAP_HOLE; 2445 hole_em->block_len = 0; 2446 hole_em->orig_block_len = 0; 2447 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2448 hole_em->generation = trans->transid; 2449 2450 do { 2451 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2452 write_lock(&em_tree->lock); 2453 ret = add_extent_mapping(em_tree, hole_em, 1); 2454 write_unlock(&em_tree->lock); 2455 } while (ret == -EEXIST); 2456 free_extent_map(hole_em); 2457 if (ret) 2458 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2459 &inode->runtime_flags); 2460 } 2461 2462 return 0; 2463 } 2464 2465 /* 2466 * Find a hole extent on given inode and change start/len to the end of hole 2467 * extent.(hole/vacuum extent whose em->start <= start && 2468 * em->start + em->len > start) 2469 * When a hole extent is found, return 1 and modify start/len. 2470 */ 2471 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2472 { 2473 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2474 struct extent_map *em; 2475 int ret = 0; 2476 2477 em = btrfs_get_extent(inode, NULL, 0, 2478 round_down(*start, fs_info->sectorsize), 2479 round_up(*len, fs_info->sectorsize)); 2480 if (IS_ERR(em)) 2481 return PTR_ERR(em); 2482 2483 /* Hole or vacuum extent(only exists in no-hole mode) */ 2484 if (em->block_start == EXTENT_MAP_HOLE) { 2485 ret = 1; 2486 *len = em->start + em->len > *start + *len ? 2487 0 : *start + *len - em->start - em->len; 2488 *start = em->start + em->len; 2489 } 2490 free_extent_map(em); 2491 return ret; 2492 } 2493 2494 static int btrfs_punch_hole_lock_range(struct inode *inode, 2495 const u64 lockstart, 2496 const u64 lockend, 2497 struct extent_state **cached_state) 2498 { 2499 /* 2500 * For subpage case, if the range is not at page boundary, we could 2501 * have pages at the leading/tailing part of the range. 2502 * This could lead to dead loop since filemap_range_has_page() 2503 * will always return true. 2504 * So here we need to do extra page alignment for 2505 * filemap_range_has_page(). 2506 */ 2507 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2508 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2509 2510 while (1) { 2511 struct btrfs_ordered_extent *ordered; 2512 int ret; 2513 2514 truncate_pagecache_range(inode, lockstart, lockend); 2515 2516 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2517 cached_state); 2518 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), 2519 lockend); 2520 2521 /* 2522 * We need to make sure we have no ordered extents in this range 2523 * and nobody raced in and read a page in this range, if we did 2524 * we need to try again. 2525 */ 2526 if ((!ordered || 2527 (ordered->file_offset + ordered->num_bytes <= lockstart || 2528 ordered->file_offset > lockend)) && 2529 !filemap_range_has_page(inode->i_mapping, 2530 page_lockstart, page_lockend)) { 2531 if (ordered) 2532 btrfs_put_ordered_extent(ordered); 2533 break; 2534 } 2535 if (ordered) 2536 btrfs_put_ordered_extent(ordered); 2537 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2538 lockend, cached_state); 2539 ret = btrfs_wait_ordered_range(inode, lockstart, 2540 lockend - lockstart + 1); 2541 if (ret) 2542 return ret; 2543 } 2544 return 0; 2545 } 2546 2547 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2548 struct btrfs_inode *inode, 2549 struct btrfs_path *path, 2550 struct btrfs_replace_extent_info *extent_info, 2551 const u64 replace_len, 2552 const u64 bytes_to_drop) 2553 { 2554 struct btrfs_fs_info *fs_info = trans->fs_info; 2555 struct btrfs_root *root = inode->root; 2556 struct btrfs_file_extent_item *extent; 2557 struct extent_buffer *leaf; 2558 struct btrfs_key key; 2559 int slot; 2560 struct btrfs_ref ref = { 0 }; 2561 int ret; 2562 2563 if (replace_len == 0) 2564 return 0; 2565 2566 if (extent_info->disk_offset == 0 && 2567 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2568 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2569 return 0; 2570 } 2571 2572 key.objectid = btrfs_ino(inode); 2573 key.type = BTRFS_EXTENT_DATA_KEY; 2574 key.offset = extent_info->file_offset; 2575 ret = btrfs_insert_empty_item(trans, root, path, &key, 2576 sizeof(struct btrfs_file_extent_item)); 2577 if (ret) 2578 return ret; 2579 leaf = path->nodes[0]; 2580 slot = path->slots[0]; 2581 write_extent_buffer(leaf, extent_info->extent_buf, 2582 btrfs_item_ptr_offset(leaf, slot), 2583 sizeof(struct btrfs_file_extent_item)); 2584 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2585 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2586 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2587 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2588 if (extent_info->is_new_extent) 2589 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2590 btrfs_mark_buffer_dirty(leaf); 2591 btrfs_release_path(path); 2592 2593 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2594 replace_len); 2595 if (ret) 2596 return ret; 2597 2598 /* If it's a hole, nothing more needs to be done. */ 2599 if (extent_info->disk_offset == 0) { 2600 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2601 return 0; 2602 } 2603 2604 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2605 2606 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2607 key.objectid = extent_info->disk_offset; 2608 key.type = BTRFS_EXTENT_ITEM_KEY; 2609 key.offset = extent_info->disk_len; 2610 ret = btrfs_alloc_reserved_file_extent(trans, root, 2611 btrfs_ino(inode), 2612 extent_info->file_offset, 2613 extent_info->qgroup_reserved, 2614 &key); 2615 } else { 2616 u64 ref_offset; 2617 2618 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2619 extent_info->disk_offset, 2620 extent_info->disk_len, 0); 2621 ref_offset = extent_info->file_offset - extent_info->data_offset; 2622 btrfs_init_data_ref(&ref, root->root_key.objectid, 2623 btrfs_ino(inode), ref_offset); 2624 ret = btrfs_inc_extent_ref(trans, &ref); 2625 } 2626 2627 extent_info->insertions++; 2628 2629 return ret; 2630 } 2631 2632 /* 2633 * The respective range must have been previously locked, as well as the inode. 2634 * The end offset is inclusive (last byte of the range). 2635 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2636 * the file range with an extent. 2637 * When not punching a hole, we don't want to end up in a state where we dropped 2638 * extents without inserting a new one, so we must abort the transaction to avoid 2639 * a corruption. 2640 */ 2641 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2642 struct btrfs_path *path, const u64 start, 2643 const u64 end, 2644 struct btrfs_replace_extent_info *extent_info, 2645 struct btrfs_trans_handle **trans_out) 2646 { 2647 struct btrfs_drop_extents_args drop_args = { 0 }; 2648 struct btrfs_root *root = inode->root; 2649 struct btrfs_fs_info *fs_info = root->fs_info; 2650 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2651 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2652 struct btrfs_trans_handle *trans = NULL; 2653 struct btrfs_block_rsv *rsv; 2654 unsigned int rsv_count; 2655 u64 cur_offset; 2656 u64 len = end - start; 2657 int ret = 0; 2658 2659 if (end <= start) 2660 return -EINVAL; 2661 2662 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2663 if (!rsv) { 2664 ret = -ENOMEM; 2665 goto out; 2666 } 2667 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2668 rsv->failfast = 1; 2669 2670 /* 2671 * 1 - update the inode 2672 * 1 - removing the extents in the range 2673 * 1 - adding the hole extent if no_holes isn't set or if we are 2674 * replacing the range with a new extent 2675 */ 2676 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2677 rsv_count = 3; 2678 else 2679 rsv_count = 2; 2680 2681 trans = btrfs_start_transaction(root, rsv_count); 2682 if (IS_ERR(trans)) { 2683 ret = PTR_ERR(trans); 2684 trans = NULL; 2685 goto out_free; 2686 } 2687 2688 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2689 min_size, false); 2690 BUG_ON(ret); 2691 trans->block_rsv = rsv; 2692 2693 cur_offset = start; 2694 drop_args.path = path; 2695 drop_args.end = end + 1; 2696 drop_args.drop_cache = true; 2697 while (cur_offset < end) { 2698 drop_args.start = cur_offset; 2699 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2700 /* If we are punching a hole decrement the inode's byte count */ 2701 if (!extent_info) 2702 btrfs_update_inode_bytes(inode, 0, 2703 drop_args.bytes_found); 2704 if (ret != -ENOSPC) { 2705 /* 2706 * The only time we don't want to abort is if we are 2707 * attempting to clone a partial inline extent, in which 2708 * case we'll get EOPNOTSUPP. However if we aren't 2709 * clone we need to abort no matter what, because if we 2710 * got EOPNOTSUPP via prealloc then we messed up and 2711 * need to abort. 2712 */ 2713 if (ret && 2714 (ret != -EOPNOTSUPP || 2715 (extent_info && extent_info->is_new_extent))) 2716 btrfs_abort_transaction(trans, ret); 2717 break; 2718 } 2719 2720 trans->block_rsv = &fs_info->trans_block_rsv; 2721 2722 if (!extent_info && cur_offset < drop_args.drop_end && 2723 cur_offset < ino_size) { 2724 ret = fill_holes(trans, inode, path, cur_offset, 2725 drop_args.drop_end); 2726 if (ret) { 2727 /* 2728 * If we failed then we didn't insert our hole 2729 * entries for the area we dropped, so now the 2730 * fs is corrupted, so we must abort the 2731 * transaction. 2732 */ 2733 btrfs_abort_transaction(trans, ret); 2734 break; 2735 } 2736 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2737 /* 2738 * We are past the i_size here, but since we didn't 2739 * insert holes we need to clear the mapped area so we 2740 * know to not set disk_i_size in this area until a new 2741 * file extent is inserted here. 2742 */ 2743 ret = btrfs_inode_clear_file_extent_range(inode, 2744 cur_offset, 2745 drop_args.drop_end - cur_offset); 2746 if (ret) { 2747 /* 2748 * We couldn't clear our area, so we could 2749 * presumably adjust up and corrupt the fs, so 2750 * we need to abort. 2751 */ 2752 btrfs_abort_transaction(trans, ret); 2753 break; 2754 } 2755 } 2756 2757 if (extent_info && 2758 drop_args.drop_end > extent_info->file_offset) { 2759 u64 replace_len = drop_args.drop_end - 2760 extent_info->file_offset; 2761 2762 ret = btrfs_insert_replace_extent(trans, inode, path, 2763 extent_info, replace_len, 2764 drop_args.bytes_found); 2765 if (ret) { 2766 btrfs_abort_transaction(trans, ret); 2767 break; 2768 } 2769 extent_info->data_len -= replace_len; 2770 extent_info->data_offset += replace_len; 2771 extent_info->file_offset += replace_len; 2772 } 2773 2774 ret = btrfs_update_inode(trans, root, inode); 2775 if (ret) 2776 break; 2777 2778 btrfs_end_transaction(trans); 2779 btrfs_btree_balance_dirty(fs_info); 2780 2781 trans = btrfs_start_transaction(root, rsv_count); 2782 if (IS_ERR(trans)) { 2783 ret = PTR_ERR(trans); 2784 trans = NULL; 2785 break; 2786 } 2787 2788 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2789 rsv, min_size, false); 2790 BUG_ON(ret); /* shouldn't happen */ 2791 trans->block_rsv = rsv; 2792 2793 cur_offset = drop_args.drop_end; 2794 len = end - cur_offset; 2795 if (!extent_info && len) { 2796 ret = find_first_non_hole(inode, &cur_offset, &len); 2797 if (unlikely(ret < 0)) 2798 break; 2799 if (ret && !len) { 2800 ret = 0; 2801 break; 2802 } 2803 } 2804 } 2805 2806 /* 2807 * If we were cloning, force the next fsync to be a full one since we 2808 * we replaced (or just dropped in the case of cloning holes when 2809 * NO_HOLES is enabled) file extent items and did not setup new extent 2810 * maps for the replacement extents (or holes). 2811 */ 2812 if (extent_info && !extent_info->is_new_extent) 2813 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2814 2815 if (ret) 2816 goto out_trans; 2817 2818 trans->block_rsv = &fs_info->trans_block_rsv; 2819 /* 2820 * If we are using the NO_HOLES feature we might have had already an 2821 * hole that overlaps a part of the region [lockstart, lockend] and 2822 * ends at (or beyond) lockend. Since we have no file extent items to 2823 * represent holes, drop_end can be less than lockend and so we must 2824 * make sure we have an extent map representing the existing hole (the 2825 * call to __btrfs_drop_extents() might have dropped the existing extent 2826 * map representing the existing hole), otherwise the fast fsync path 2827 * will not record the existence of the hole region 2828 * [existing_hole_start, lockend]. 2829 */ 2830 if (drop_args.drop_end <= end) 2831 drop_args.drop_end = end + 1; 2832 /* 2833 * Don't insert file hole extent item if it's for a range beyond eof 2834 * (because it's useless) or if it represents a 0 bytes range (when 2835 * cur_offset == drop_end). 2836 */ 2837 if (!extent_info && cur_offset < ino_size && 2838 cur_offset < drop_args.drop_end) { 2839 ret = fill_holes(trans, inode, path, cur_offset, 2840 drop_args.drop_end); 2841 if (ret) { 2842 /* Same comment as above. */ 2843 btrfs_abort_transaction(trans, ret); 2844 goto out_trans; 2845 } 2846 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2847 /* See the comment in the loop above for the reasoning here. */ 2848 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2849 drop_args.drop_end - cur_offset); 2850 if (ret) { 2851 btrfs_abort_transaction(trans, ret); 2852 goto out_trans; 2853 } 2854 2855 } 2856 if (extent_info) { 2857 ret = btrfs_insert_replace_extent(trans, inode, path, 2858 extent_info, extent_info->data_len, 2859 drop_args.bytes_found); 2860 if (ret) { 2861 btrfs_abort_transaction(trans, ret); 2862 goto out_trans; 2863 } 2864 } 2865 2866 out_trans: 2867 if (!trans) 2868 goto out_free; 2869 2870 trans->block_rsv = &fs_info->trans_block_rsv; 2871 if (ret) 2872 btrfs_end_transaction(trans); 2873 else 2874 *trans_out = trans; 2875 out_free: 2876 btrfs_free_block_rsv(fs_info, rsv); 2877 out: 2878 return ret; 2879 } 2880 2881 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2882 { 2883 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2884 struct btrfs_root *root = BTRFS_I(inode)->root; 2885 struct extent_state *cached_state = NULL; 2886 struct btrfs_path *path; 2887 struct btrfs_trans_handle *trans = NULL; 2888 u64 lockstart; 2889 u64 lockend; 2890 u64 tail_start; 2891 u64 tail_len; 2892 u64 orig_start = offset; 2893 int ret = 0; 2894 bool same_block; 2895 u64 ino_size; 2896 bool truncated_block = false; 2897 bool updated_inode = false; 2898 2899 ret = btrfs_wait_ordered_range(inode, offset, len); 2900 if (ret) 2901 return ret; 2902 2903 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 2904 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2905 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2906 if (ret < 0) 2907 goto out_only_mutex; 2908 if (ret && !len) { 2909 /* Already in a large hole */ 2910 ret = 0; 2911 goto out_only_mutex; 2912 } 2913 2914 lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode))); 2915 lockend = round_down(offset + len, 2916 btrfs_inode_sectorsize(BTRFS_I(inode))) - 1; 2917 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2918 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2919 /* 2920 * We needn't truncate any block which is beyond the end of the file 2921 * because we are sure there is no data there. 2922 */ 2923 /* 2924 * Only do this if we are in the same block and we aren't doing the 2925 * entire block. 2926 */ 2927 if (same_block && len < fs_info->sectorsize) { 2928 if (offset < ino_size) { 2929 truncated_block = true; 2930 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2931 0); 2932 } else { 2933 ret = 0; 2934 } 2935 goto out_only_mutex; 2936 } 2937 2938 /* zero back part of the first block */ 2939 if (offset < ino_size) { 2940 truncated_block = true; 2941 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2942 if (ret) { 2943 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2944 return ret; 2945 } 2946 } 2947 2948 /* Check the aligned pages after the first unaligned page, 2949 * if offset != orig_start, which means the first unaligned page 2950 * including several following pages are already in holes, 2951 * the extra check can be skipped */ 2952 if (offset == orig_start) { 2953 /* after truncate page, check hole again */ 2954 len = offset + len - lockstart; 2955 offset = lockstart; 2956 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2957 if (ret < 0) 2958 goto out_only_mutex; 2959 if (ret && !len) { 2960 ret = 0; 2961 goto out_only_mutex; 2962 } 2963 lockstart = offset; 2964 } 2965 2966 /* Check the tail unaligned part is in a hole */ 2967 tail_start = lockend + 1; 2968 tail_len = offset + len - tail_start; 2969 if (tail_len) { 2970 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2971 if (unlikely(ret < 0)) 2972 goto out_only_mutex; 2973 if (!ret) { 2974 /* zero the front end of the last page */ 2975 if (tail_start + tail_len < ino_size) { 2976 truncated_block = true; 2977 ret = btrfs_truncate_block(BTRFS_I(inode), 2978 tail_start + tail_len, 2979 0, 1); 2980 if (ret) 2981 goto out_only_mutex; 2982 } 2983 } 2984 } 2985 2986 if (lockend < lockstart) { 2987 ret = 0; 2988 goto out_only_mutex; 2989 } 2990 2991 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2992 &cached_state); 2993 if (ret) 2994 goto out_only_mutex; 2995 2996 path = btrfs_alloc_path(); 2997 if (!path) { 2998 ret = -ENOMEM; 2999 goto out; 3000 } 3001 3002 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 3003 lockend, NULL, &trans); 3004 btrfs_free_path(path); 3005 if (ret) 3006 goto out; 3007 3008 ASSERT(trans != NULL); 3009 inode_inc_iversion(inode); 3010 inode->i_mtime = inode->i_ctime = current_time(inode); 3011 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3012 updated_inode = true; 3013 btrfs_end_transaction(trans); 3014 btrfs_btree_balance_dirty(fs_info); 3015 out: 3016 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3017 &cached_state); 3018 out_only_mutex: 3019 if (!updated_inode && truncated_block && !ret) { 3020 /* 3021 * If we only end up zeroing part of a page, we still need to 3022 * update the inode item, so that all the time fields are 3023 * updated as well as the necessary btrfs inode in memory fields 3024 * for detecting, at fsync time, if the inode isn't yet in the 3025 * log tree or it's there but not up to date. 3026 */ 3027 struct timespec64 now = current_time(inode); 3028 3029 inode_inc_iversion(inode); 3030 inode->i_mtime = now; 3031 inode->i_ctime = now; 3032 trans = btrfs_start_transaction(root, 1); 3033 if (IS_ERR(trans)) { 3034 ret = PTR_ERR(trans); 3035 } else { 3036 int ret2; 3037 3038 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3039 ret2 = btrfs_end_transaction(trans); 3040 if (!ret) 3041 ret = ret2; 3042 } 3043 } 3044 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3045 return ret; 3046 } 3047 3048 /* Helper structure to record which range is already reserved */ 3049 struct falloc_range { 3050 struct list_head list; 3051 u64 start; 3052 u64 len; 3053 }; 3054 3055 /* 3056 * Helper function to add falloc range 3057 * 3058 * Caller should have locked the larger range of extent containing 3059 * [start, len) 3060 */ 3061 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 3062 { 3063 struct falloc_range *range = NULL; 3064 3065 if (!list_empty(head)) { 3066 /* 3067 * As fallocate iterates by bytenr order, we only need to check 3068 * the last range. 3069 */ 3070 range = list_last_entry(head, struct falloc_range, list); 3071 if (range->start + range->len == start) { 3072 range->len += len; 3073 return 0; 3074 } 3075 } 3076 3077 range = kmalloc(sizeof(*range), GFP_KERNEL); 3078 if (!range) 3079 return -ENOMEM; 3080 range->start = start; 3081 range->len = len; 3082 list_add_tail(&range->list, head); 3083 return 0; 3084 } 3085 3086 static int btrfs_fallocate_update_isize(struct inode *inode, 3087 const u64 end, 3088 const int mode) 3089 { 3090 struct btrfs_trans_handle *trans; 3091 struct btrfs_root *root = BTRFS_I(inode)->root; 3092 int ret; 3093 int ret2; 3094 3095 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 3096 return 0; 3097 3098 trans = btrfs_start_transaction(root, 1); 3099 if (IS_ERR(trans)) 3100 return PTR_ERR(trans); 3101 3102 inode->i_ctime = current_time(inode); 3103 i_size_write(inode, end); 3104 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 3105 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3106 ret2 = btrfs_end_transaction(trans); 3107 3108 return ret ? ret : ret2; 3109 } 3110 3111 enum { 3112 RANGE_BOUNDARY_WRITTEN_EXTENT, 3113 RANGE_BOUNDARY_PREALLOC_EXTENT, 3114 RANGE_BOUNDARY_HOLE, 3115 }; 3116 3117 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 3118 u64 offset) 3119 { 3120 const u64 sectorsize = btrfs_inode_sectorsize(inode); 3121 struct extent_map *em; 3122 int ret; 3123 3124 offset = round_down(offset, sectorsize); 3125 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize); 3126 if (IS_ERR(em)) 3127 return PTR_ERR(em); 3128 3129 if (em->block_start == EXTENT_MAP_HOLE) 3130 ret = RANGE_BOUNDARY_HOLE; 3131 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3132 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 3133 else 3134 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 3135 3136 free_extent_map(em); 3137 return ret; 3138 } 3139 3140 static int btrfs_zero_range(struct inode *inode, 3141 loff_t offset, 3142 loff_t len, 3143 const int mode) 3144 { 3145 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3146 struct extent_map *em; 3147 struct extent_changeset *data_reserved = NULL; 3148 int ret; 3149 u64 alloc_hint = 0; 3150 const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode)); 3151 u64 alloc_start = round_down(offset, sectorsize); 3152 u64 alloc_end = round_up(offset + len, sectorsize); 3153 u64 bytes_to_reserve = 0; 3154 bool space_reserved = false; 3155 3156 inode_dio_wait(inode); 3157 3158 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3159 alloc_end - alloc_start); 3160 if (IS_ERR(em)) { 3161 ret = PTR_ERR(em); 3162 goto out; 3163 } 3164 3165 /* 3166 * Avoid hole punching and extent allocation for some cases. More cases 3167 * could be considered, but these are unlikely common and we keep things 3168 * as simple as possible for now. Also, intentionally, if the target 3169 * range contains one or more prealloc extents together with regular 3170 * extents and holes, we drop all the existing extents and allocate a 3171 * new prealloc extent, so that we get a larger contiguous disk extent. 3172 */ 3173 if (em->start <= alloc_start && 3174 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3175 const u64 em_end = em->start + em->len; 3176 3177 if (em_end >= offset + len) { 3178 /* 3179 * The whole range is already a prealloc extent, 3180 * do nothing except updating the inode's i_size if 3181 * needed. 3182 */ 3183 free_extent_map(em); 3184 ret = btrfs_fallocate_update_isize(inode, offset + len, 3185 mode); 3186 goto out; 3187 } 3188 /* 3189 * Part of the range is already a prealloc extent, so operate 3190 * only on the remaining part of the range. 3191 */ 3192 alloc_start = em_end; 3193 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 3194 len = offset + len - alloc_start; 3195 offset = alloc_start; 3196 alloc_hint = em->block_start + em->len; 3197 } 3198 free_extent_map(em); 3199 3200 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 3201 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 3202 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3203 sectorsize); 3204 if (IS_ERR(em)) { 3205 ret = PTR_ERR(em); 3206 goto out; 3207 } 3208 3209 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3210 free_extent_map(em); 3211 ret = btrfs_fallocate_update_isize(inode, offset + len, 3212 mode); 3213 goto out; 3214 } 3215 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 3216 free_extent_map(em); 3217 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 3218 0); 3219 if (!ret) 3220 ret = btrfs_fallocate_update_isize(inode, 3221 offset + len, 3222 mode); 3223 return ret; 3224 } 3225 free_extent_map(em); 3226 alloc_start = round_down(offset, sectorsize); 3227 alloc_end = alloc_start + sectorsize; 3228 goto reserve_space; 3229 } 3230 3231 alloc_start = round_up(offset, sectorsize); 3232 alloc_end = round_down(offset + len, sectorsize); 3233 3234 /* 3235 * For unaligned ranges, check the pages at the boundaries, they might 3236 * map to an extent, in which case we need to partially zero them, or 3237 * they might map to a hole, in which case we need our allocation range 3238 * to cover them. 3239 */ 3240 if (!IS_ALIGNED(offset, sectorsize)) { 3241 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3242 offset); 3243 if (ret < 0) 3244 goto out; 3245 if (ret == RANGE_BOUNDARY_HOLE) { 3246 alloc_start = round_down(offset, sectorsize); 3247 ret = 0; 3248 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3249 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 3250 if (ret) 3251 goto out; 3252 } else { 3253 ret = 0; 3254 } 3255 } 3256 3257 if (!IS_ALIGNED(offset + len, sectorsize)) { 3258 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3259 offset + len); 3260 if (ret < 0) 3261 goto out; 3262 if (ret == RANGE_BOUNDARY_HOLE) { 3263 alloc_end = round_up(offset + len, sectorsize); 3264 ret = 0; 3265 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3266 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 3267 0, 1); 3268 if (ret) 3269 goto out; 3270 } else { 3271 ret = 0; 3272 } 3273 } 3274 3275 reserve_space: 3276 if (alloc_start < alloc_end) { 3277 struct extent_state *cached_state = NULL; 3278 const u64 lockstart = alloc_start; 3279 const u64 lockend = alloc_end - 1; 3280 3281 bytes_to_reserve = alloc_end - alloc_start; 3282 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3283 bytes_to_reserve); 3284 if (ret < 0) 3285 goto out; 3286 space_reserved = true; 3287 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3288 &cached_state); 3289 if (ret) 3290 goto out; 3291 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3292 alloc_start, bytes_to_reserve); 3293 if (ret) { 3294 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3295 lockend, &cached_state); 3296 goto out; 3297 } 3298 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3299 alloc_end - alloc_start, 3300 i_blocksize(inode), 3301 offset + len, &alloc_hint); 3302 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3303 lockend, &cached_state); 3304 /* btrfs_prealloc_file_range releases reserved space on error */ 3305 if (ret) { 3306 space_reserved = false; 3307 goto out; 3308 } 3309 } 3310 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3311 out: 3312 if (ret && space_reserved) 3313 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3314 alloc_start, bytes_to_reserve); 3315 extent_changeset_free(data_reserved); 3316 3317 return ret; 3318 } 3319 3320 static long btrfs_fallocate(struct file *file, int mode, 3321 loff_t offset, loff_t len) 3322 { 3323 struct inode *inode = file_inode(file); 3324 struct extent_state *cached_state = NULL; 3325 struct extent_changeset *data_reserved = NULL; 3326 struct falloc_range *range; 3327 struct falloc_range *tmp; 3328 struct list_head reserve_list; 3329 u64 cur_offset; 3330 u64 last_byte; 3331 u64 alloc_start; 3332 u64 alloc_end; 3333 u64 alloc_hint = 0; 3334 u64 locked_end; 3335 u64 actual_end = 0; 3336 struct extent_map *em; 3337 int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode)); 3338 int ret; 3339 3340 /* Do not allow fallocate in ZONED mode */ 3341 if (btrfs_is_zoned(btrfs_sb(inode->i_sb))) 3342 return -EOPNOTSUPP; 3343 3344 alloc_start = round_down(offset, blocksize); 3345 alloc_end = round_up(offset + len, blocksize); 3346 cur_offset = alloc_start; 3347 3348 /* Make sure we aren't being give some crap mode */ 3349 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3350 FALLOC_FL_ZERO_RANGE)) 3351 return -EOPNOTSUPP; 3352 3353 if (mode & FALLOC_FL_PUNCH_HOLE) 3354 return btrfs_punch_hole(inode, offset, len); 3355 3356 /* 3357 * Only trigger disk allocation, don't trigger qgroup reserve 3358 * 3359 * For qgroup space, it will be checked later. 3360 */ 3361 if (!(mode & FALLOC_FL_ZERO_RANGE)) { 3362 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3363 alloc_end - alloc_start); 3364 if (ret < 0) 3365 return ret; 3366 } 3367 3368 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 3369 3370 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3371 ret = inode_newsize_ok(inode, offset + len); 3372 if (ret) 3373 goto out; 3374 } 3375 3376 /* 3377 * TODO: Move these two operations after we have checked 3378 * accurate reserved space, or fallocate can still fail but 3379 * with page truncated or size expanded. 3380 * 3381 * But that's a minor problem and won't do much harm BTW. 3382 */ 3383 if (alloc_start > inode->i_size) { 3384 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3385 alloc_start); 3386 if (ret) 3387 goto out; 3388 } else if (offset + len > inode->i_size) { 3389 /* 3390 * If we are fallocating from the end of the file onward we 3391 * need to zero out the end of the block if i_size lands in the 3392 * middle of a block. 3393 */ 3394 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3395 if (ret) 3396 goto out; 3397 } 3398 3399 /* 3400 * wait for ordered IO before we have any locks. We'll loop again 3401 * below with the locks held. 3402 */ 3403 ret = btrfs_wait_ordered_range(inode, alloc_start, 3404 alloc_end - alloc_start); 3405 if (ret) 3406 goto out; 3407 3408 if (mode & FALLOC_FL_ZERO_RANGE) { 3409 ret = btrfs_zero_range(inode, offset, len, mode); 3410 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3411 return ret; 3412 } 3413 3414 locked_end = alloc_end - 1; 3415 while (1) { 3416 struct btrfs_ordered_extent *ordered; 3417 3418 /* the extent lock is ordered inside the running 3419 * transaction 3420 */ 3421 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 3422 locked_end, &cached_state); 3423 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), 3424 locked_end); 3425 3426 if (ordered && 3427 ordered->file_offset + ordered->num_bytes > alloc_start && 3428 ordered->file_offset < alloc_end) { 3429 btrfs_put_ordered_extent(ordered); 3430 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 3431 alloc_start, locked_end, 3432 &cached_state); 3433 /* 3434 * we can't wait on the range with the transaction 3435 * running or with the extent lock held 3436 */ 3437 ret = btrfs_wait_ordered_range(inode, alloc_start, 3438 alloc_end - alloc_start); 3439 if (ret) 3440 goto out; 3441 } else { 3442 if (ordered) 3443 btrfs_put_ordered_extent(ordered); 3444 break; 3445 } 3446 } 3447 3448 /* First, check if we exceed the qgroup limit */ 3449 INIT_LIST_HEAD(&reserve_list); 3450 while (cur_offset < alloc_end) { 3451 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3452 alloc_end - cur_offset); 3453 if (IS_ERR(em)) { 3454 ret = PTR_ERR(em); 3455 break; 3456 } 3457 last_byte = min(extent_map_end(em), alloc_end); 3458 actual_end = min_t(u64, extent_map_end(em), offset + len); 3459 last_byte = ALIGN(last_byte, blocksize); 3460 if (em->block_start == EXTENT_MAP_HOLE || 3461 (cur_offset >= inode->i_size && 3462 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3463 ret = add_falloc_range(&reserve_list, cur_offset, 3464 last_byte - cur_offset); 3465 if (ret < 0) { 3466 free_extent_map(em); 3467 break; 3468 } 3469 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3470 &data_reserved, cur_offset, 3471 last_byte - cur_offset); 3472 if (ret < 0) { 3473 cur_offset = last_byte; 3474 free_extent_map(em); 3475 break; 3476 } 3477 } else { 3478 /* 3479 * Do not need to reserve unwritten extent for this 3480 * range, free reserved data space first, otherwise 3481 * it'll result in false ENOSPC error. 3482 */ 3483 btrfs_free_reserved_data_space(BTRFS_I(inode), 3484 data_reserved, cur_offset, 3485 last_byte - cur_offset); 3486 } 3487 free_extent_map(em); 3488 cur_offset = last_byte; 3489 } 3490 3491 /* 3492 * If ret is still 0, means we're OK to fallocate. 3493 * Or just cleanup the list and exit. 3494 */ 3495 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3496 if (!ret) 3497 ret = btrfs_prealloc_file_range(inode, mode, 3498 range->start, 3499 range->len, i_blocksize(inode), 3500 offset + len, &alloc_hint); 3501 else 3502 btrfs_free_reserved_data_space(BTRFS_I(inode), 3503 data_reserved, range->start, 3504 range->len); 3505 list_del(&range->list); 3506 kfree(range); 3507 } 3508 if (ret < 0) 3509 goto out_unlock; 3510 3511 /* 3512 * We didn't need to allocate any more space, but we still extended the 3513 * size of the file so we need to update i_size and the inode item. 3514 */ 3515 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3516 out_unlock: 3517 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3518 &cached_state); 3519 out: 3520 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3521 /* Let go of our reservation. */ 3522 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) 3523 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3524 cur_offset, alloc_end - cur_offset); 3525 extent_changeset_free(data_reserved); 3526 return ret; 3527 } 3528 3529 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset, 3530 int whence) 3531 { 3532 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3533 struct extent_map *em = NULL; 3534 struct extent_state *cached_state = NULL; 3535 loff_t i_size = inode->vfs_inode.i_size; 3536 u64 lockstart; 3537 u64 lockend; 3538 u64 start; 3539 u64 len; 3540 int ret = 0; 3541 3542 if (i_size == 0 || offset >= i_size) 3543 return -ENXIO; 3544 3545 /* 3546 * offset can be negative, in this case we start finding DATA/HOLE from 3547 * the very start of the file. 3548 */ 3549 start = max_t(loff_t, 0, offset); 3550 3551 lockstart = round_down(start, fs_info->sectorsize); 3552 lockend = round_up(i_size, fs_info->sectorsize); 3553 if (lockend <= lockstart) 3554 lockend = lockstart + fs_info->sectorsize; 3555 lockend--; 3556 len = lockend - lockstart + 1; 3557 3558 lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state); 3559 3560 while (start < i_size) { 3561 em = btrfs_get_extent_fiemap(inode, start, len); 3562 if (IS_ERR(em)) { 3563 ret = PTR_ERR(em); 3564 em = NULL; 3565 break; 3566 } 3567 3568 if (whence == SEEK_HOLE && 3569 (em->block_start == EXTENT_MAP_HOLE || 3570 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3571 break; 3572 else if (whence == SEEK_DATA && 3573 (em->block_start != EXTENT_MAP_HOLE && 3574 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3575 break; 3576 3577 start = em->start + em->len; 3578 free_extent_map(em); 3579 em = NULL; 3580 cond_resched(); 3581 } 3582 free_extent_map(em); 3583 unlock_extent_cached(&inode->io_tree, lockstart, lockend, 3584 &cached_state); 3585 if (ret) { 3586 offset = ret; 3587 } else { 3588 if (whence == SEEK_DATA && start >= i_size) 3589 offset = -ENXIO; 3590 else 3591 offset = min_t(loff_t, start, i_size); 3592 } 3593 3594 return offset; 3595 } 3596 3597 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3598 { 3599 struct inode *inode = file->f_mapping->host; 3600 3601 switch (whence) { 3602 default: 3603 return generic_file_llseek(file, offset, whence); 3604 case SEEK_DATA: 3605 case SEEK_HOLE: 3606 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3607 offset = find_desired_extent(BTRFS_I(inode), offset, whence); 3608 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3609 break; 3610 } 3611 3612 if (offset < 0) 3613 return offset; 3614 3615 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3616 } 3617 3618 static int btrfs_file_open(struct inode *inode, struct file *filp) 3619 { 3620 int ret; 3621 3622 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; 3623 3624 ret = fsverity_file_open(inode, filp); 3625 if (ret) 3626 return ret; 3627 return generic_file_open(inode, filp); 3628 } 3629 3630 static int check_direct_read(struct btrfs_fs_info *fs_info, 3631 const struct iov_iter *iter, loff_t offset) 3632 { 3633 int ret; 3634 int i, seg; 3635 3636 ret = check_direct_IO(fs_info, iter, offset); 3637 if (ret < 0) 3638 return ret; 3639 3640 if (!iter_is_iovec(iter)) 3641 return 0; 3642 3643 for (seg = 0; seg < iter->nr_segs; seg++) 3644 for (i = seg + 1; i < iter->nr_segs; i++) 3645 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 3646 return -EINVAL; 3647 return 0; 3648 } 3649 3650 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 3651 { 3652 struct inode *inode = file_inode(iocb->ki_filp); 3653 ssize_t ret; 3654 3655 if (fsverity_active(inode)) 3656 return 0; 3657 3658 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos)) 3659 return 0; 3660 3661 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3662 ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 0); 3663 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3664 return ret; 3665 } 3666 3667 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3668 { 3669 ssize_t ret = 0; 3670 3671 if (iocb->ki_flags & IOCB_DIRECT) { 3672 ret = btrfs_direct_read(iocb, to); 3673 if (ret < 0 || !iov_iter_count(to) || 3674 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3675 return ret; 3676 } 3677 3678 return filemap_read(iocb, to, ret); 3679 } 3680 3681 const struct file_operations btrfs_file_operations = { 3682 .llseek = btrfs_file_llseek, 3683 .read_iter = btrfs_file_read_iter, 3684 .splice_read = generic_file_splice_read, 3685 .write_iter = btrfs_file_write_iter, 3686 .splice_write = iter_file_splice_write, 3687 .mmap = btrfs_file_mmap, 3688 .open = btrfs_file_open, 3689 .release = btrfs_release_file, 3690 .fsync = btrfs_sync_file, 3691 .fallocate = btrfs_fallocate, 3692 .unlocked_ioctl = btrfs_ioctl, 3693 #ifdef CONFIG_COMPAT 3694 .compat_ioctl = btrfs_compat_ioctl, 3695 #endif 3696 .remap_file_range = btrfs_remap_file_range, 3697 }; 3698 3699 void __cold btrfs_auto_defrag_exit(void) 3700 { 3701 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3702 } 3703 3704 int __init btrfs_auto_defrag_init(void) 3705 { 3706 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3707 sizeof(struct inode_defrag), 0, 3708 SLAB_MEM_SPREAD, 3709 NULL); 3710 if (!btrfs_inode_defrag_cachep) 3711 return -ENOMEM; 3712 3713 return 0; 3714 } 3715 3716 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3717 { 3718 int ret; 3719 3720 /* 3721 * So with compression we will find and lock a dirty page and clear the 3722 * first one as dirty, setup an async extent, and immediately return 3723 * with the entire range locked but with nobody actually marked with 3724 * writeback. So we can't just filemap_write_and_wait_range() and 3725 * expect it to work since it will just kick off a thread to do the 3726 * actual work. So we need to call filemap_fdatawrite_range _again_ 3727 * since it will wait on the page lock, which won't be unlocked until 3728 * after the pages have been marked as writeback and so we're good to go 3729 * from there. We have to do this otherwise we'll miss the ordered 3730 * extents and that results in badness. Please Josef, do not think you 3731 * know better and pull this out at some point in the future, it is 3732 * right and you are wrong. 3733 */ 3734 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3735 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3736 &BTRFS_I(inode)->runtime_flags)) 3737 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3738 3739 return ret; 3740 } 3741