1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/time.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/backing-dev.h> 26 #include <linux/mpage.h> 27 #include <linux/aio.h> 28 #include <linux/falloc.h> 29 #include <linux/swap.h> 30 #include <linux/writeback.h> 31 #include <linux/statfs.h> 32 #include <linux/compat.h> 33 #include <linux/slab.h> 34 #include <linux/btrfs.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "print-tree.h" 40 #include "tree-log.h" 41 #include "locking.h" 42 #include "compat.h" 43 #include "volumes.h" 44 45 static struct kmem_cache *btrfs_inode_defrag_cachep; 46 /* 47 * when auto defrag is enabled we 48 * queue up these defrag structs to remember which 49 * inodes need defragging passes 50 */ 51 struct inode_defrag { 52 struct rb_node rb_node; 53 /* objectid */ 54 u64 ino; 55 /* 56 * transid where the defrag was added, we search for 57 * extents newer than this 58 */ 59 u64 transid; 60 61 /* root objectid */ 62 u64 root; 63 64 /* last offset we were able to defrag */ 65 u64 last_offset; 66 67 /* if we've wrapped around back to zero once already */ 68 int cycled; 69 }; 70 71 static int __compare_inode_defrag(struct inode_defrag *defrag1, 72 struct inode_defrag *defrag2) 73 { 74 if (defrag1->root > defrag2->root) 75 return 1; 76 else if (defrag1->root < defrag2->root) 77 return -1; 78 else if (defrag1->ino > defrag2->ino) 79 return 1; 80 else if (defrag1->ino < defrag2->ino) 81 return -1; 82 else 83 return 0; 84 } 85 86 /* pop a record for an inode into the defrag tree. The lock 87 * must be held already 88 * 89 * If you're inserting a record for an older transid than an 90 * existing record, the transid already in the tree is lowered 91 * 92 * If an existing record is found the defrag item you 93 * pass in is freed 94 */ 95 static int __btrfs_add_inode_defrag(struct inode *inode, 96 struct inode_defrag *defrag) 97 { 98 struct btrfs_root *root = BTRFS_I(inode)->root; 99 struct inode_defrag *entry; 100 struct rb_node **p; 101 struct rb_node *parent = NULL; 102 int ret; 103 104 p = &root->fs_info->defrag_inodes.rb_node; 105 while (*p) { 106 parent = *p; 107 entry = rb_entry(parent, struct inode_defrag, rb_node); 108 109 ret = __compare_inode_defrag(defrag, entry); 110 if (ret < 0) 111 p = &parent->rb_left; 112 else if (ret > 0) 113 p = &parent->rb_right; 114 else { 115 /* if we're reinserting an entry for 116 * an old defrag run, make sure to 117 * lower the transid of our existing record 118 */ 119 if (defrag->transid < entry->transid) 120 entry->transid = defrag->transid; 121 if (defrag->last_offset > entry->last_offset) 122 entry->last_offset = defrag->last_offset; 123 return -EEXIST; 124 } 125 } 126 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 127 rb_link_node(&defrag->rb_node, parent, p); 128 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes); 129 return 0; 130 } 131 132 static inline int __need_auto_defrag(struct btrfs_root *root) 133 { 134 if (!btrfs_test_opt(root, AUTO_DEFRAG)) 135 return 0; 136 137 if (btrfs_fs_closing(root->fs_info)) 138 return 0; 139 140 return 1; 141 } 142 143 /* 144 * insert a defrag record for this inode if auto defrag is 145 * enabled 146 */ 147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 148 struct inode *inode) 149 { 150 struct btrfs_root *root = BTRFS_I(inode)->root; 151 struct inode_defrag *defrag; 152 u64 transid; 153 int ret; 154 155 if (!__need_auto_defrag(root)) 156 return 0; 157 158 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) 159 return 0; 160 161 if (trans) 162 transid = trans->transid; 163 else 164 transid = BTRFS_I(inode)->root->last_trans; 165 166 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 167 if (!defrag) 168 return -ENOMEM; 169 170 defrag->ino = btrfs_ino(inode); 171 defrag->transid = transid; 172 defrag->root = root->root_key.objectid; 173 174 spin_lock(&root->fs_info->defrag_inodes_lock); 175 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) { 176 /* 177 * If we set IN_DEFRAG flag and evict the inode from memory, 178 * and then re-read this inode, this new inode doesn't have 179 * IN_DEFRAG flag. At the case, we may find the existed defrag. 180 */ 181 ret = __btrfs_add_inode_defrag(inode, defrag); 182 if (ret) 183 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 184 } else { 185 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 186 } 187 spin_unlock(&root->fs_info->defrag_inodes_lock); 188 return 0; 189 } 190 191 /* 192 * Requeue the defrag object. If there is a defrag object that points to 193 * the same inode in the tree, we will merge them together (by 194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 195 */ 196 static void btrfs_requeue_inode_defrag(struct inode *inode, 197 struct inode_defrag *defrag) 198 { 199 struct btrfs_root *root = BTRFS_I(inode)->root; 200 int ret; 201 202 if (!__need_auto_defrag(root)) 203 goto out; 204 205 /* 206 * Here we don't check the IN_DEFRAG flag, because we need merge 207 * them together. 208 */ 209 spin_lock(&root->fs_info->defrag_inodes_lock); 210 ret = __btrfs_add_inode_defrag(inode, defrag); 211 spin_unlock(&root->fs_info->defrag_inodes_lock); 212 if (ret) 213 goto out; 214 return; 215 out: 216 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 217 } 218 219 /* 220 * pick the defragable inode that we want, if it doesn't exist, we will get 221 * the next one. 222 */ 223 static struct inode_defrag * 224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 225 { 226 struct inode_defrag *entry = NULL; 227 struct inode_defrag tmp; 228 struct rb_node *p; 229 struct rb_node *parent = NULL; 230 int ret; 231 232 tmp.ino = ino; 233 tmp.root = root; 234 235 spin_lock(&fs_info->defrag_inodes_lock); 236 p = fs_info->defrag_inodes.rb_node; 237 while (p) { 238 parent = p; 239 entry = rb_entry(parent, struct inode_defrag, rb_node); 240 241 ret = __compare_inode_defrag(&tmp, entry); 242 if (ret < 0) 243 p = parent->rb_left; 244 else if (ret > 0) 245 p = parent->rb_right; 246 else 247 goto out; 248 } 249 250 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 251 parent = rb_next(parent); 252 if (parent) 253 entry = rb_entry(parent, struct inode_defrag, rb_node); 254 else 255 entry = NULL; 256 } 257 out: 258 if (entry) 259 rb_erase(parent, &fs_info->defrag_inodes); 260 spin_unlock(&fs_info->defrag_inodes_lock); 261 return entry; 262 } 263 264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 265 { 266 struct inode_defrag *defrag; 267 struct rb_node *node; 268 269 spin_lock(&fs_info->defrag_inodes_lock); 270 node = rb_first(&fs_info->defrag_inodes); 271 while (node) { 272 rb_erase(node, &fs_info->defrag_inodes); 273 defrag = rb_entry(node, struct inode_defrag, rb_node); 274 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 275 276 if (need_resched()) { 277 spin_unlock(&fs_info->defrag_inodes_lock); 278 cond_resched(); 279 spin_lock(&fs_info->defrag_inodes_lock); 280 } 281 282 node = rb_first(&fs_info->defrag_inodes); 283 } 284 spin_unlock(&fs_info->defrag_inodes_lock); 285 } 286 287 #define BTRFS_DEFRAG_BATCH 1024 288 289 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 290 struct inode_defrag *defrag) 291 { 292 struct btrfs_root *inode_root; 293 struct inode *inode; 294 struct btrfs_key key; 295 struct btrfs_ioctl_defrag_range_args range; 296 int num_defrag; 297 int index; 298 int ret; 299 300 /* get the inode */ 301 key.objectid = defrag->root; 302 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 303 key.offset = (u64)-1; 304 305 index = srcu_read_lock(&fs_info->subvol_srcu); 306 307 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 308 if (IS_ERR(inode_root)) { 309 ret = PTR_ERR(inode_root); 310 goto cleanup; 311 } 312 313 key.objectid = defrag->ino; 314 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 315 key.offset = 0; 316 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 317 if (IS_ERR(inode)) { 318 ret = PTR_ERR(inode); 319 goto cleanup; 320 } 321 srcu_read_unlock(&fs_info->subvol_srcu, index); 322 323 /* do a chunk of defrag */ 324 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 325 memset(&range, 0, sizeof(range)); 326 range.len = (u64)-1; 327 range.start = defrag->last_offset; 328 329 sb_start_write(fs_info->sb); 330 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 331 BTRFS_DEFRAG_BATCH); 332 sb_end_write(fs_info->sb); 333 /* 334 * if we filled the whole defrag batch, there 335 * must be more work to do. Queue this defrag 336 * again 337 */ 338 if (num_defrag == BTRFS_DEFRAG_BATCH) { 339 defrag->last_offset = range.start; 340 btrfs_requeue_inode_defrag(inode, defrag); 341 } else if (defrag->last_offset && !defrag->cycled) { 342 /* 343 * we didn't fill our defrag batch, but 344 * we didn't start at zero. Make sure we loop 345 * around to the start of the file. 346 */ 347 defrag->last_offset = 0; 348 defrag->cycled = 1; 349 btrfs_requeue_inode_defrag(inode, defrag); 350 } else { 351 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 352 } 353 354 iput(inode); 355 return 0; 356 cleanup: 357 srcu_read_unlock(&fs_info->subvol_srcu, index); 358 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 359 return ret; 360 } 361 362 /* 363 * run through the list of inodes in the FS that need 364 * defragging 365 */ 366 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 367 { 368 struct inode_defrag *defrag; 369 u64 first_ino = 0; 370 u64 root_objectid = 0; 371 372 atomic_inc(&fs_info->defrag_running); 373 while(1) { 374 /* Pause the auto defragger. */ 375 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 376 &fs_info->fs_state)) 377 break; 378 379 if (!__need_auto_defrag(fs_info->tree_root)) 380 break; 381 382 /* find an inode to defrag */ 383 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 384 first_ino); 385 if (!defrag) { 386 if (root_objectid || first_ino) { 387 root_objectid = 0; 388 first_ino = 0; 389 continue; 390 } else { 391 break; 392 } 393 } 394 395 first_ino = defrag->ino + 1; 396 root_objectid = defrag->root; 397 398 __btrfs_run_defrag_inode(fs_info, defrag); 399 } 400 atomic_dec(&fs_info->defrag_running); 401 402 /* 403 * during unmount, we use the transaction_wait queue to 404 * wait for the defragger to stop 405 */ 406 wake_up(&fs_info->transaction_wait); 407 return 0; 408 } 409 410 /* simple helper to fault in pages and copy. This should go away 411 * and be replaced with calls into generic code. 412 */ 413 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages, 414 size_t write_bytes, 415 struct page **prepared_pages, 416 struct iov_iter *i) 417 { 418 size_t copied = 0; 419 size_t total_copied = 0; 420 int pg = 0; 421 int offset = pos & (PAGE_CACHE_SIZE - 1); 422 423 while (write_bytes > 0) { 424 size_t count = min_t(size_t, 425 PAGE_CACHE_SIZE - offset, write_bytes); 426 struct page *page = prepared_pages[pg]; 427 /* 428 * Copy data from userspace to the current page 429 * 430 * Disable pagefault to avoid recursive lock since 431 * the pages are already locked 432 */ 433 pagefault_disable(); 434 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 435 pagefault_enable(); 436 437 /* Flush processor's dcache for this page */ 438 flush_dcache_page(page); 439 440 /* 441 * if we get a partial write, we can end up with 442 * partially up to date pages. These add 443 * a lot of complexity, so make sure they don't 444 * happen by forcing this copy to be retried. 445 * 446 * The rest of the btrfs_file_write code will fall 447 * back to page at a time copies after we return 0. 448 */ 449 if (!PageUptodate(page) && copied < count) 450 copied = 0; 451 452 iov_iter_advance(i, copied); 453 write_bytes -= copied; 454 total_copied += copied; 455 456 /* Return to btrfs_file_aio_write to fault page */ 457 if (unlikely(copied == 0)) 458 break; 459 460 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) { 461 offset += copied; 462 } else { 463 pg++; 464 offset = 0; 465 } 466 } 467 return total_copied; 468 } 469 470 /* 471 * unlocks pages after btrfs_file_write is done with them 472 */ 473 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 474 { 475 size_t i; 476 for (i = 0; i < num_pages; i++) { 477 /* page checked is some magic around finding pages that 478 * have been modified without going through btrfs_set_page_dirty 479 * clear it here 480 */ 481 ClearPageChecked(pages[i]); 482 unlock_page(pages[i]); 483 mark_page_accessed(pages[i]); 484 page_cache_release(pages[i]); 485 } 486 } 487 488 /* 489 * after copy_from_user, pages need to be dirtied and we need to make 490 * sure holes are created between the current EOF and the start of 491 * any next extents (if required). 492 * 493 * this also makes the decision about creating an inline extent vs 494 * doing real data extents, marking pages dirty and delalloc as required. 495 */ 496 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, 497 struct page **pages, size_t num_pages, 498 loff_t pos, size_t write_bytes, 499 struct extent_state **cached) 500 { 501 int err = 0; 502 int i; 503 u64 num_bytes; 504 u64 start_pos; 505 u64 end_of_last_block; 506 u64 end_pos = pos + write_bytes; 507 loff_t isize = i_size_read(inode); 508 509 start_pos = pos & ~((u64)root->sectorsize - 1); 510 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize); 511 512 end_of_last_block = start_pos + num_bytes - 1; 513 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 514 cached); 515 if (err) 516 return err; 517 518 for (i = 0; i < num_pages; i++) { 519 struct page *p = pages[i]; 520 SetPageUptodate(p); 521 ClearPageChecked(p); 522 set_page_dirty(p); 523 } 524 525 /* 526 * we've only changed i_size in ram, and we haven't updated 527 * the disk i_size. There is no need to log the inode 528 * at this time. 529 */ 530 if (end_pos > isize) 531 i_size_write(inode, end_pos); 532 return 0; 533 } 534 535 /* 536 * this drops all the extents in the cache that intersect the range 537 * [start, end]. Existing extents are split as required. 538 */ 539 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, 540 int skip_pinned) 541 { 542 struct extent_map *em; 543 struct extent_map *split = NULL; 544 struct extent_map *split2 = NULL; 545 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 546 u64 len = end - start + 1; 547 u64 gen; 548 int ret; 549 int testend = 1; 550 unsigned long flags; 551 int compressed = 0; 552 bool modified; 553 554 WARN_ON(end < start); 555 if (end == (u64)-1) { 556 len = (u64)-1; 557 testend = 0; 558 } 559 while (1) { 560 int no_splits = 0; 561 562 modified = false; 563 if (!split) 564 split = alloc_extent_map(); 565 if (!split2) 566 split2 = alloc_extent_map(); 567 if (!split || !split2) 568 no_splits = 1; 569 570 write_lock(&em_tree->lock); 571 em = lookup_extent_mapping(em_tree, start, len); 572 if (!em) { 573 write_unlock(&em_tree->lock); 574 break; 575 } 576 flags = em->flags; 577 gen = em->generation; 578 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 579 if (testend && em->start + em->len >= start + len) { 580 free_extent_map(em); 581 write_unlock(&em_tree->lock); 582 break; 583 } 584 start = em->start + em->len; 585 if (testend) 586 len = start + len - (em->start + em->len); 587 free_extent_map(em); 588 write_unlock(&em_tree->lock); 589 continue; 590 } 591 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 592 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 593 clear_bit(EXTENT_FLAG_LOGGING, &flags); 594 modified = !list_empty(&em->list); 595 remove_extent_mapping(em_tree, em); 596 if (no_splits) 597 goto next; 598 599 if (em->start < start) { 600 split->start = em->start; 601 split->len = start - em->start; 602 603 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 604 split->orig_start = em->orig_start; 605 split->block_start = em->block_start; 606 607 if (compressed) 608 split->block_len = em->block_len; 609 else 610 split->block_len = split->len; 611 split->orig_block_len = max(split->block_len, 612 em->orig_block_len); 613 split->ram_bytes = em->ram_bytes; 614 } else { 615 split->orig_start = split->start; 616 split->block_len = 0; 617 split->block_start = em->block_start; 618 split->orig_block_len = 0; 619 split->ram_bytes = split->len; 620 } 621 622 split->generation = gen; 623 split->bdev = em->bdev; 624 split->flags = flags; 625 split->compress_type = em->compress_type; 626 ret = add_extent_mapping(em_tree, split, modified); 627 BUG_ON(ret); /* Logic error */ 628 free_extent_map(split); 629 split = split2; 630 split2 = NULL; 631 } 632 if (testend && em->start + em->len > start + len) { 633 u64 diff = start + len - em->start; 634 635 split->start = start + len; 636 split->len = em->start + em->len - (start + len); 637 split->bdev = em->bdev; 638 split->flags = flags; 639 split->compress_type = em->compress_type; 640 split->generation = gen; 641 642 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 643 split->orig_block_len = max(em->block_len, 644 em->orig_block_len); 645 646 split->ram_bytes = em->ram_bytes; 647 if (compressed) { 648 split->block_len = em->block_len; 649 split->block_start = em->block_start; 650 split->orig_start = em->orig_start; 651 } else { 652 split->block_len = split->len; 653 split->block_start = em->block_start 654 + diff; 655 split->orig_start = em->orig_start; 656 } 657 } else { 658 split->ram_bytes = split->len; 659 split->orig_start = split->start; 660 split->block_len = 0; 661 split->block_start = em->block_start; 662 split->orig_block_len = 0; 663 } 664 665 ret = add_extent_mapping(em_tree, split, modified); 666 BUG_ON(ret); /* Logic error */ 667 free_extent_map(split); 668 split = NULL; 669 } 670 next: 671 write_unlock(&em_tree->lock); 672 673 /* once for us */ 674 free_extent_map(em); 675 /* once for the tree*/ 676 free_extent_map(em); 677 } 678 if (split) 679 free_extent_map(split); 680 if (split2) 681 free_extent_map(split2); 682 } 683 684 /* 685 * this is very complex, but the basic idea is to drop all extents 686 * in the range start - end. hint_block is filled in with a block number 687 * that would be a good hint to the block allocator for this file. 688 * 689 * If an extent intersects the range but is not entirely inside the range 690 * it is either truncated or split. Anything entirely inside the range 691 * is deleted from the tree. 692 */ 693 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 694 struct btrfs_root *root, struct inode *inode, 695 struct btrfs_path *path, u64 start, u64 end, 696 u64 *drop_end, int drop_cache) 697 { 698 struct extent_buffer *leaf; 699 struct btrfs_file_extent_item *fi; 700 struct btrfs_key key; 701 struct btrfs_key new_key; 702 u64 ino = btrfs_ino(inode); 703 u64 search_start = start; 704 u64 disk_bytenr = 0; 705 u64 num_bytes = 0; 706 u64 extent_offset = 0; 707 u64 extent_end = 0; 708 int del_nr = 0; 709 int del_slot = 0; 710 int extent_type; 711 int recow; 712 int ret; 713 int modify_tree = -1; 714 int update_refs = (root->ref_cows || root == root->fs_info->tree_root); 715 int found = 0; 716 717 if (drop_cache) 718 btrfs_drop_extent_cache(inode, start, end - 1, 0); 719 720 if (start >= BTRFS_I(inode)->disk_i_size) 721 modify_tree = 0; 722 723 while (1) { 724 recow = 0; 725 ret = btrfs_lookup_file_extent(trans, root, path, ino, 726 search_start, modify_tree); 727 if (ret < 0) 728 break; 729 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 730 leaf = path->nodes[0]; 731 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 732 if (key.objectid == ino && 733 key.type == BTRFS_EXTENT_DATA_KEY) 734 path->slots[0]--; 735 } 736 ret = 0; 737 next_slot: 738 leaf = path->nodes[0]; 739 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 740 BUG_ON(del_nr > 0); 741 ret = btrfs_next_leaf(root, path); 742 if (ret < 0) 743 break; 744 if (ret > 0) { 745 ret = 0; 746 break; 747 } 748 leaf = path->nodes[0]; 749 recow = 1; 750 } 751 752 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 753 if (key.objectid > ino || 754 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 755 break; 756 757 fi = btrfs_item_ptr(leaf, path->slots[0], 758 struct btrfs_file_extent_item); 759 extent_type = btrfs_file_extent_type(leaf, fi); 760 761 if (extent_type == BTRFS_FILE_EXTENT_REG || 762 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 763 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 764 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 765 extent_offset = btrfs_file_extent_offset(leaf, fi); 766 extent_end = key.offset + 767 btrfs_file_extent_num_bytes(leaf, fi); 768 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 769 extent_end = key.offset + 770 btrfs_file_extent_inline_len(leaf, fi); 771 } else { 772 WARN_ON(1); 773 extent_end = search_start; 774 } 775 776 if (extent_end <= search_start) { 777 path->slots[0]++; 778 goto next_slot; 779 } 780 781 found = 1; 782 search_start = max(key.offset, start); 783 if (recow || !modify_tree) { 784 modify_tree = -1; 785 btrfs_release_path(path); 786 continue; 787 } 788 789 /* 790 * | - range to drop - | 791 * | -------- extent -------- | 792 */ 793 if (start > key.offset && end < extent_end) { 794 BUG_ON(del_nr > 0); 795 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); 796 797 memcpy(&new_key, &key, sizeof(new_key)); 798 new_key.offset = start; 799 ret = btrfs_duplicate_item(trans, root, path, 800 &new_key); 801 if (ret == -EAGAIN) { 802 btrfs_release_path(path); 803 continue; 804 } 805 if (ret < 0) 806 break; 807 808 leaf = path->nodes[0]; 809 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 810 struct btrfs_file_extent_item); 811 btrfs_set_file_extent_num_bytes(leaf, fi, 812 start - key.offset); 813 814 fi = btrfs_item_ptr(leaf, path->slots[0], 815 struct btrfs_file_extent_item); 816 817 extent_offset += start - key.offset; 818 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 819 btrfs_set_file_extent_num_bytes(leaf, fi, 820 extent_end - start); 821 btrfs_mark_buffer_dirty(leaf); 822 823 if (update_refs && disk_bytenr > 0) { 824 ret = btrfs_inc_extent_ref(trans, root, 825 disk_bytenr, num_bytes, 0, 826 root->root_key.objectid, 827 new_key.objectid, 828 start - extent_offset, 0); 829 BUG_ON(ret); /* -ENOMEM */ 830 } 831 key.offset = start; 832 } 833 /* 834 * | ---- range to drop ----- | 835 * | -------- extent -------- | 836 */ 837 if (start <= key.offset && end < extent_end) { 838 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); 839 840 memcpy(&new_key, &key, sizeof(new_key)); 841 new_key.offset = end; 842 btrfs_set_item_key_safe(root, path, &new_key); 843 844 extent_offset += end - key.offset; 845 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 846 btrfs_set_file_extent_num_bytes(leaf, fi, 847 extent_end - end); 848 btrfs_mark_buffer_dirty(leaf); 849 if (update_refs && disk_bytenr > 0) 850 inode_sub_bytes(inode, end - key.offset); 851 break; 852 } 853 854 search_start = extent_end; 855 /* 856 * | ---- range to drop ----- | 857 * | -------- extent -------- | 858 */ 859 if (start > key.offset && end >= extent_end) { 860 BUG_ON(del_nr > 0); 861 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); 862 863 btrfs_set_file_extent_num_bytes(leaf, fi, 864 start - key.offset); 865 btrfs_mark_buffer_dirty(leaf); 866 if (update_refs && disk_bytenr > 0) 867 inode_sub_bytes(inode, extent_end - start); 868 if (end == extent_end) 869 break; 870 871 path->slots[0]++; 872 goto next_slot; 873 } 874 875 /* 876 * | ---- range to drop ----- | 877 * | ------ extent ------ | 878 */ 879 if (start <= key.offset && end >= extent_end) { 880 if (del_nr == 0) { 881 del_slot = path->slots[0]; 882 del_nr = 1; 883 } else { 884 BUG_ON(del_slot + del_nr != path->slots[0]); 885 del_nr++; 886 } 887 888 if (update_refs && 889 extent_type == BTRFS_FILE_EXTENT_INLINE) { 890 inode_sub_bytes(inode, 891 extent_end - key.offset); 892 extent_end = ALIGN(extent_end, 893 root->sectorsize); 894 } else if (update_refs && disk_bytenr > 0) { 895 ret = btrfs_free_extent(trans, root, 896 disk_bytenr, num_bytes, 0, 897 root->root_key.objectid, 898 key.objectid, key.offset - 899 extent_offset, 0); 900 BUG_ON(ret); /* -ENOMEM */ 901 inode_sub_bytes(inode, 902 extent_end - key.offset); 903 } 904 905 if (end == extent_end) 906 break; 907 908 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 909 path->slots[0]++; 910 goto next_slot; 911 } 912 913 ret = btrfs_del_items(trans, root, path, del_slot, 914 del_nr); 915 if (ret) { 916 btrfs_abort_transaction(trans, root, ret); 917 break; 918 } 919 920 del_nr = 0; 921 del_slot = 0; 922 923 btrfs_release_path(path); 924 continue; 925 } 926 927 BUG_ON(1); 928 } 929 930 if (!ret && del_nr > 0) { 931 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 932 if (ret) 933 btrfs_abort_transaction(trans, root, ret); 934 } 935 936 if (drop_end) 937 *drop_end = found ? min(end, extent_end) : end; 938 btrfs_release_path(path); 939 return ret; 940 } 941 942 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 943 struct btrfs_root *root, struct inode *inode, u64 start, 944 u64 end, int drop_cache) 945 { 946 struct btrfs_path *path; 947 int ret; 948 949 path = btrfs_alloc_path(); 950 if (!path) 951 return -ENOMEM; 952 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 953 drop_cache); 954 btrfs_free_path(path); 955 return ret; 956 } 957 958 static int extent_mergeable(struct extent_buffer *leaf, int slot, 959 u64 objectid, u64 bytenr, u64 orig_offset, 960 u64 *start, u64 *end) 961 { 962 struct btrfs_file_extent_item *fi; 963 struct btrfs_key key; 964 u64 extent_end; 965 966 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 967 return 0; 968 969 btrfs_item_key_to_cpu(leaf, &key, slot); 970 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 971 return 0; 972 973 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 974 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 975 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 976 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 977 btrfs_file_extent_compression(leaf, fi) || 978 btrfs_file_extent_encryption(leaf, fi) || 979 btrfs_file_extent_other_encoding(leaf, fi)) 980 return 0; 981 982 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 983 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 984 return 0; 985 986 *start = key.offset; 987 *end = extent_end; 988 return 1; 989 } 990 991 /* 992 * Mark extent in the range start - end as written. 993 * 994 * This changes extent type from 'pre-allocated' to 'regular'. If only 995 * part of extent is marked as written, the extent will be split into 996 * two or three. 997 */ 998 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 999 struct inode *inode, u64 start, u64 end) 1000 { 1001 struct btrfs_root *root = BTRFS_I(inode)->root; 1002 struct extent_buffer *leaf; 1003 struct btrfs_path *path; 1004 struct btrfs_file_extent_item *fi; 1005 struct btrfs_key key; 1006 struct btrfs_key new_key; 1007 u64 bytenr; 1008 u64 num_bytes; 1009 u64 extent_end; 1010 u64 orig_offset; 1011 u64 other_start; 1012 u64 other_end; 1013 u64 split; 1014 int del_nr = 0; 1015 int del_slot = 0; 1016 int recow; 1017 int ret; 1018 u64 ino = btrfs_ino(inode); 1019 1020 path = btrfs_alloc_path(); 1021 if (!path) 1022 return -ENOMEM; 1023 again: 1024 recow = 0; 1025 split = start; 1026 key.objectid = ino; 1027 key.type = BTRFS_EXTENT_DATA_KEY; 1028 key.offset = split; 1029 1030 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1031 if (ret < 0) 1032 goto out; 1033 if (ret > 0 && path->slots[0] > 0) 1034 path->slots[0]--; 1035 1036 leaf = path->nodes[0]; 1037 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1038 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY); 1039 fi = btrfs_item_ptr(leaf, path->slots[0], 1040 struct btrfs_file_extent_item); 1041 BUG_ON(btrfs_file_extent_type(leaf, fi) != 1042 BTRFS_FILE_EXTENT_PREALLOC); 1043 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1044 BUG_ON(key.offset > start || extent_end < end); 1045 1046 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1047 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1048 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1049 memcpy(&new_key, &key, sizeof(new_key)); 1050 1051 if (start == key.offset && end < extent_end) { 1052 other_start = 0; 1053 other_end = start; 1054 if (extent_mergeable(leaf, path->slots[0] - 1, 1055 ino, bytenr, orig_offset, 1056 &other_start, &other_end)) { 1057 new_key.offset = end; 1058 btrfs_set_item_key_safe(root, path, &new_key); 1059 fi = btrfs_item_ptr(leaf, path->slots[0], 1060 struct btrfs_file_extent_item); 1061 btrfs_set_file_extent_generation(leaf, fi, 1062 trans->transid); 1063 btrfs_set_file_extent_num_bytes(leaf, fi, 1064 extent_end - end); 1065 btrfs_set_file_extent_offset(leaf, fi, 1066 end - orig_offset); 1067 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1068 struct btrfs_file_extent_item); 1069 btrfs_set_file_extent_generation(leaf, fi, 1070 trans->transid); 1071 btrfs_set_file_extent_num_bytes(leaf, fi, 1072 end - other_start); 1073 btrfs_mark_buffer_dirty(leaf); 1074 goto out; 1075 } 1076 } 1077 1078 if (start > key.offset && end == extent_end) { 1079 other_start = end; 1080 other_end = 0; 1081 if (extent_mergeable(leaf, path->slots[0] + 1, 1082 ino, bytenr, orig_offset, 1083 &other_start, &other_end)) { 1084 fi = btrfs_item_ptr(leaf, path->slots[0], 1085 struct btrfs_file_extent_item); 1086 btrfs_set_file_extent_num_bytes(leaf, fi, 1087 start - key.offset); 1088 btrfs_set_file_extent_generation(leaf, fi, 1089 trans->transid); 1090 path->slots[0]++; 1091 new_key.offset = start; 1092 btrfs_set_item_key_safe(root, path, &new_key); 1093 1094 fi = btrfs_item_ptr(leaf, path->slots[0], 1095 struct btrfs_file_extent_item); 1096 btrfs_set_file_extent_generation(leaf, fi, 1097 trans->transid); 1098 btrfs_set_file_extent_num_bytes(leaf, fi, 1099 other_end - start); 1100 btrfs_set_file_extent_offset(leaf, fi, 1101 start - orig_offset); 1102 btrfs_mark_buffer_dirty(leaf); 1103 goto out; 1104 } 1105 } 1106 1107 while (start > key.offset || end < extent_end) { 1108 if (key.offset == start) 1109 split = end; 1110 1111 new_key.offset = split; 1112 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1113 if (ret == -EAGAIN) { 1114 btrfs_release_path(path); 1115 goto again; 1116 } 1117 if (ret < 0) { 1118 btrfs_abort_transaction(trans, root, ret); 1119 goto out; 1120 } 1121 1122 leaf = path->nodes[0]; 1123 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1124 struct btrfs_file_extent_item); 1125 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1126 btrfs_set_file_extent_num_bytes(leaf, fi, 1127 split - key.offset); 1128 1129 fi = btrfs_item_ptr(leaf, path->slots[0], 1130 struct btrfs_file_extent_item); 1131 1132 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1133 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1134 btrfs_set_file_extent_num_bytes(leaf, fi, 1135 extent_end - split); 1136 btrfs_mark_buffer_dirty(leaf); 1137 1138 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, 1139 root->root_key.objectid, 1140 ino, orig_offset, 0); 1141 BUG_ON(ret); /* -ENOMEM */ 1142 1143 if (split == start) { 1144 key.offset = start; 1145 } else { 1146 BUG_ON(start != key.offset); 1147 path->slots[0]--; 1148 extent_end = end; 1149 } 1150 recow = 1; 1151 } 1152 1153 other_start = end; 1154 other_end = 0; 1155 if (extent_mergeable(leaf, path->slots[0] + 1, 1156 ino, bytenr, orig_offset, 1157 &other_start, &other_end)) { 1158 if (recow) { 1159 btrfs_release_path(path); 1160 goto again; 1161 } 1162 extent_end = other_end; 1163 del_slot = path->slots[0] + 1; 1164 del_nr++; 1165 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1166 0, root->root_key.objectid, 1167 ino, orig_offset, 0); 1168 BUG_ON(ret); /* -ENOMEM */ 1169 } 1170 other_start = 0; 1171 other_end = start; 1172 if (extent_mergeable(leaf, path->slots[0] - 1, 1173 ino, bytenr, orig_offset, 1174 &other_start, &other_end)) { 1175 if (recow) { 1176 btrfs_release_path(path); 1177 goto again; 1178 } 1179 key.offset = other_start; 1180 del_slot = path->slots[0]; 1181 del_nr++; 1182 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1183 0, root->root_key.objectid, 1184 ino, orig_offset, 0); 1185 BUG_ON(ret); /* -ENOMEM */ 1186 } 1187 if (del_nr == 0) { 1188 fi = btrfs_item_ptr(leaf, path->slots[0], 1189 struct btrfs_file_extent_item); 1190 btrfs_set_file_extent_type(leaf, fi, 1191 BTRFS_FILE_EXTENT_REG); 1192 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1193 btrfs_mark_buffer_dirty(leaf); 1194 } else { 1195 fi = btrfs_item_ptr(leaf, del_slot - 1, 1196 struct btrfs_file_extent_item); 1197 btrfs_set_file_extent_type(leaf, fi, 1198 BTRFS_FILE_EXTENT_REG); 1199 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1200 btrfs_set_file_extent_num_bytes(leaf, fi, 1201 extent_end - key.offset); 1202 btrfs_mark_buffer_dirty(leaf); 1203 1204 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1205 if (ret < 0) { 1206 btrfs_abort_transaction(trans, root, ret); 1207 goto out; 1208 } 1209 } 1210 out: 1211 btrfs_free_path(path); 1212 return 0; 1213 } 1214 1215 /* 1216 * on error we return an unlocked page and the error value 1217 * on success we return a locked page and 0 1218 */ 1219 static int prepare_uptodate_page(struct page *page, u64 pos, 1220 bool force_uptodate) 1221 { 1222 int ret = 0; 1223 1224 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) && 1225 !PageUptodate(page)) { 1226 ret = btrfs_readpage(NULL, page); 1227 if (ret) 1228 return ret; 1229 lock_page(page); 1230 if (!PageUptodate(page)) { 1231 unlock_page(page); 1232 return -EIO; 1233 } 1234 } 1235 return 0; 1236 } 1237 1238 /* 1239 * this gets pages into the page cache and locks them down, it also properly 1240 * waits for data=ordered extents to finish before allowing the pages to be 1241 * modified. 1242 */ 1243 static noinline int prepare_pages(struct btrfs_root *root, struct file *file, 1244 struct page **pages, size_t num_pages, 1245 loff_t pos, unsigned long first_index, 1246 size_t write_bytes, bool force_uptodate) 1247 { 1248 struct extent_state *cached_state = NULL; 1249 int i; 1250 unsigned long index = pos >> PAGE_CACHE_SHIFT; 1251 struct inode *inode = file_inode(file); 1252 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1253 int err = 0; 1254 int faili = 0; 1255 u64 start_pos; 1256 u64 last_pos; 1257 1258 start_pos = pos & ~((u64)root->sectorsize - 1); 1259 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT; 1260 1261 again: 1262 for (i = 0; i < num_pages; i++) { 1263 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1264 mask | __GFP_WRITE); 1265 if (!pages[i]) { 1266 faili = i - 1; 1267 err = -ENOMEM; 1268 goto fail; 1269 } 1270 1271 if (i == 0) 1272 err = prepare_uptodate_page(pages[i], pos, 1273 force_uptodate); 1274 if (i == num_pages - 1) 1275 err = prepare_uptodate_page(pages[i], 1276 pos + write_bytes, false); 1277 if (err) { 1278 page_cache_release(pages[i]); 1279 faili = i - 1; 1280 goto fail; 1281 } 1282 wait_on_page_writeback(pages[i]); 1283 } 1284 err = 0; 1285 if (start_pos < inode->i_size) { 1286 struct btrfs_ordered_extent *ordered; 1287 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1288 start_pos, last_pos - 1, 0, &cached_state); 1289 ordered = btrfs_lookup_first_ordered_extent(inode, 1290 last_pos - 1); 1291 if (ordered && 1292 ordered->file_offset + ordered->len > start_pos && 1293 ordered->file_offset < last_pos) { 1294 btrfs_put_ordered_extent(ordered); 1295 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1296 start_pos, last_pos - 1, 1297 &cached_state, GFP_NOFS); 1298 for (i = 0; i < num_pages; i++) { 1299 unlock_page(pages[i]); 1300 page_cache_release(pages[i]); 1301 } 1302 btrfs_wait_ordered_range(inode, start_pos, 1303 last_pos - start_pos); 1304 goto again; 1305 } 1306 if (ordered) 1307 btrfs_put_ordered_extent(ordered); 1308 1309 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, 1310 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1311 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1312 0, 0, &cached_state, GFP_NOFS); 1313 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1314 start_pos, last_pos - 1, &cached_state, 1315 GFP_NOFS); 1316 } 1317 for (i = 0; i < num_pages; i++) { 1318 if (clear_page_dirty_for_io(pages[i])) 1319 account_page_redirty(pages[i]); 1320 set_page_extent_mapped(pages[i]); 1321 WARN_ON(!PageLocked(pages[i])); 1322 } 1323 return 0; 1324 fail: 1325 while (faili >= 0) { 1326 unlock_page(pages[faili]); 1327 page_cache_release(pages[faili]); 1328 faili--; 1329 } 1330 return err; 1331 1332 } 1333 1334 static noinline int check_can_nocow(struct inode *inode, loff_t pos, 1335 size_t *write_bytes) 1336 { 1337 struct btrfs_root *root = BTRFS_I(inode)->root; 1338 struct btrfs_ordered_extent *ordered; 1339 u64 lockstart, lockend; 1340 u64 num_bytes; 1341 int ret; 1342 1343 lockstart = round_down(pos, root->sectorsize); 1344 lockend = lockstart + round_up(*write_bytes, root->sectorsize) - 1; 1345 1346 while (1) { 1347 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1348 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1349 lockend - lockstart + 1); 1350 if (!ordered) { 1351 break; 1352 } 1353 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1354 btrfs_start_ordered_extent(inode, ordered, 1); 1355 btrfs_put_ordered_extent(ordered); 1356 } 1357 1358 num_bytes = lockend - lockstart + 1; 1359 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL); 1360 if (ret <= 0) { 1361 ret = 0; 1362 } else { 1363 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 1364 EXTENT_DIRTY | EXTENT_DELALLOC | 1365 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1366 NULL, GFP_NOFS); 1367 *write_bytes = min_t(size_t, *write_bytes, num_bytes); 1368 } 1369 1370 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1371 1372 return ret; 1373 } 1374 1375 static noinline ssize_t __btrfs_buffered_write(struct file *file, 1376 struct iov_iter *i, 1377 loff_t pos) 1378 { 1379 struct inode *inode = file_inode(file); 1380 struct btrfs_root *root = BTRFS_I(inode)->root; 1381 struct page **pages = NULL; 1382 u64 release_bytes = 0; 1383 unsigned long first_index; 1384 size_t num_written = 0; 1385 int nrptrs; 1386 int ret = 0; 1387 bool only_release_metadata = false; 1388 bool force_page_uptodate = false; 1389 1390 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) / 1391 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE / 1392 (sizeof(struct page *))); 1393 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1394 nrptrs = max(nrptrs, 8); 1395 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL); 1396 if (!pages) 1397 return -ENOMEM; 1398 1399 first_index = pos >> PAGE_CACHE_SHIFT; 1400 1401 while (iov_iter_count(i) > 0) { 1402 size_t offset = pos & (PAGE_CACHE_SIZE - 1); 1403 size_t write_bytes = min(iov_iter_count(i), 1404 nrptrs * (size_t)PAGE_CACHE_SIZE - 1405 offset); 1406 size_t num_pages = (write_bytes + offset + 1407 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1408 size_t reserve_bytes; 1409 size_t dirty_pages; 1410 size_t copied; 1411 1412 WARN_ON(num_pages > nrptrs); 1413 1414 /* 1415 * Fault pages before locking them in prepare_pages 1416 * to avoid recursive lock 1417 */ 1418 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1419 ret = -EFAULT; 1420 break; 1421 } 1422 1423 reserve_bytes = num_pages << PAGE_CACHE_SHIFT; 1424 ret = btrfs_check_data_free_space(inode, reserve_bytes); 1425 if (ret == -ENOSPC && 1426 (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1427 BTRFS_INODE_PREALLOC))) { 1428 ret = check_can_nocow(inode, pos, &write_bytes); 1429 if (ret > 0) { 1430 only_release_metadata = true; 1431 /* 1432 * our prealloc extent may be smaller than 1433 * write_bytes, so scale down. 1434 */ 1435 num_pages = (write_bytes + offset + 1436 PAGE_CACHE_SIZE - 1) >> 1437 PAGE_CACHE_SHIFT; 1438 reserve_bytes = num_pages << PAGE_CACHE_SHIFT; 1439 ret = 0; 1440 } else { 1441 ret = -ENOSPC; 1442 } 1443 } 1444 1445 if (ret) 1446 break; 1447 1448 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes); 1449 if (ret) { 1450 if (!only_release_metadata) 1451 btrfs_free_reserved_data_space(inode, 1452 reserve_bytes); 1453 break; 1454 } 1455 1456 release_bytes = reserve_bytes; 1457 1458 /* 1459 * This is going to setup the pages array with the number of 1460 * pages we want, so we don't really need to worry about the 1461 * contents of pages from loop to loop 1462 */ 1463 ret = prepare_pages(root, file, pages, num_pages, 1464 pos, first_index, write_bytes, 1465 force_page_uptodate); 1466 if (ret) 1467 break; 1468 1469 copied = btrfs_copy_from_user(pos, num_pages, 1470 write_bytes, pages, i); 1471 1472 /* 1473 * if we have trouble faulting in the pages, fall 1474 * back to one page at a time 1475 */ 1476 if (copied < write_bytes) 1477 nrptrs = 1; 1478 1479 if (copied == 0) { 1480 force_page_uptodate = true; 1481 dirty_pages = 0; 1482 } else { 1483 force_page_uptodate = false; 1484 dirty_pages = (copied + offset + 1485 PAGE_CACHE_SIZE - 1) >> 1486 PAGE_CACHE_SHIFT; 1487 } 1488 1489 /* 1490 * If we had a short copy we need to release the excess delaloc 1491 * bytes we reserved. We need to increment outstanding_extents 1492 * because btrfs_delalloc_release_space will decrement it, but 1493 * we still have an outstanding extent for the chunk we actually 1494 * managed to copy. 1495 */ 1496 if (num_pages > dirty_pages) { 1497 release_bytes = (num_pages - dirty_pages) << 1498 PAGE_CACHE_SHIFT; 1499 if (copied > 0) { 1500 spin_lock(&BTRFS_I(inode)->lock); 1501 BTRFS_I(inode)->outstanding_extents++; 1502 spin_unlock(&BTRFS_I(inode)->lock); 1503 } 1504 if (only_release_metadata) 1505 btrfs_delalloc_release_metadata(inode, 1506 release_bytes); 1507 else 1508 btrfs_delalloc_release_space(inode, 1509 release_bytes); 1510 } 1511 1512 release_bytes = dirty_pages << PAGE_CACHE_SHIFT; 1513 if (copied > 0) { 1514 ret = btrfs_dirty_pages(root, inode, pages, 1515 dirty_pages, pos, copied, 1516 NULL); 1517 if (ret) { 1518 btrfs_drop_pages(pages, num_pages); 1519 break; 1520 } 1521 } 1522 1523 release_bytes = 0; 1524 btrfs_drop_pages(pages, num_pages); 1525 1526 if (only_release_metadata && copied > 0) { 1527 u64 lockstart = round_down(pos, root->sectorsize); 1528 u64 lockend = lockstart + 1529 (dirty_pages << PAGE_CACHE_SHIFT) - 1; 1530 1531 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1532 lockend, EXTENT_NORESERVE, NULL, 1533 NULL, GFP_NOFS); 1534 only_release_metadata = false; 1535 } 1536 1537 cond_resched(); 1538 1539 balance_dirty_pages_ratelimited(inode->i_mapping); 1540 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1) 1541 btrfs_btree_balance_dirty(root); 1542 1543 pos += copied; 1544 num_written += copied; 1545 } 1546 1547 kfree(pages); 1548 1549 if (release_bytes) { 1550 if (only_release_metadata) 1551 btrfs_delalloc_release_metadata(inode, release_bytes); 1552 else 1553 btrfs_delalloc_release_space(inode, release_bytes); 1554 } 1555 1556 return num_written ? num_written : ret; 1557 } 1558 1559 static ssize_t __btrfs_direct_write(struct kiocb *iocb, 1560 const struct iovec *iov, 1561 unsigned long nr_segs, loff_t pos, 1562 loff_t *ppos, size_t count, size_t ocount) 1563 { 1564 struct file *file = iocb->ki_filp; 1565 struct iov_iter i; 1566 ssize_t written; 1567 ssize_t written_buffered; 1568 loff_t endbyte; 1569 int err; 1570 1571 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos, 1572 count, ocount); 1573 1574 if (written < 0 || written == count) 1575 return written; 1576 1577 pos += written; 1578 count -= written; 1579 iov_iter_init(&i, iov, nr_segs, count, written); 1580 written_buffered = __btrfs_buffered_write(file, &i, pos); 1581 if (written_buffered < 0) { 1582 err = written_buffered; 1583 goto out; 1584 } 1585 endbyte = pos + written_buffered - 1; 1586 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 1587 if (err) 1588 goto out; 1589 written += written_buffered; 1590 *ppos = pos + written_buffered; 1591 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT, 1592 endbyte >> PAGE_CACHE_SHIFT); 1593 out: 1594 return written ? written : err; 1595 } 1596 1597 static void update_time_for_write(struct inode *inode) 1598 { 1599 struct timespec now; 1600 1601 if (IS_NOCMTIME(inode)) 1602 return; 1603 1604 now = current_fs_time(inode->i_sb); 1605 if (!timespec_equal(&inode->i_mtime, &now)) 1606 inode->i_mtime = now; 1607 1608 if (!timespec_equal(&inode->i_ctime, &now)) 1609 inode->i_ctime = now; 1610 1611 if (IS_I_VERSION(inode)) 1612 inode_inc_iversion(inode); 1613 } 1614 1615 static ssize_t btrfs_file_aio_write(struct kiocb *iocb, 1616 const struct iovec *iov, 1617 unsigned long nr_segs, loff_t pos) 1618 { 1619 struct file *file = iocb->ki_filp; 1620 struct inode *inode = file_inode(file); 1621 struct btrfs_root *root = BTRFS_I(inode)->root; 1622 loff_t *ppos = &iocb->ki_pos; 1623 u64 start_pos; 1624 ssize_t num_written = 0; 1625 ssize_t err = 0; 1626 size_t count, ocount; 1627 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1628 1629 mutex_lock(&inode->i_mutex); 1630 1631 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 1632 if (err) { 1633 mutex_unlock(&inode->i_mutex); 1634 goto out; 1635 } 1636 count = ocount; 1637 1638 current->backing_dev_info = inode->i_mapping->backing_dev_info; 1639 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 1640 if (err) { 1641 mutex_unlock(&inode->i_mutex); 1642 goto out; 1643 } 1644 1645 if (count == 0) { 1646 mutex_unlock(&inode->i_mutex); 1647 goto out; 1648 } 1649 1650 err = file_remove_suid(file); 1651 if (err) { 1652 mutex_unlock(&inode->i_mutex); 1653 goto out; 1654 } 1655 1656 /* 1657 * If BTRFS flips readonly due to some impossible error 1658 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1659 * although we have opened a file as writable, we have 1660 * to stop this write operation to ensure FS consistency. 1661 */ 1662 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1663 mutex_unlock(&inode->i_mutex); 1664 err = -EROFS; 1665 goto out; 1666 } 1667 1668 /* 1669 * We reserve space for updating the inode when we reserve space for the 1670 * extent we are going to write, so we will enospc out there. We don't 1671 * need to start yet another transaction to update the inode as we will 1672 * update the inode when we finish writing whatever data we write. 1673 */ 1674 update_time_for_write(inode); 1675 1676 start_pos = round_down(pos, root->sectorsize); 1677 if (start_pos > i_size_read(inode)) { 1678 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos); 1679 if (err) { 1680 mutex_unlock(&inode->i_mutex); 1681 goto out; 1682 } 1683 } 1684 1685 if (sync) 1686 atomic_inc(&BTRFS_I(inode)->sync_writers); 1687 1688 if (unlikely(file->f_flags & O_DIRECT)) { 1689 num_written = __btrfs_direct_write(iocb, iov, nr_segs, 1690 pos, ppos, count, ocount); 1691 } else { 1692 struct iov_iter i; 1693 1694 iov_iter_init(&i, iov, nr_segs, count, num_written); 1695 1696 num_written = __btrfs_buffered_write(file, &i, pos); 1697 if (num_written > 0) 1698 *ppos = pos + num_written; 1699 } 1700 1701 mutex_unlock(&inode->i_mutex); 1702 1703 /* 1704 * we want to make sure fsync finds this change 1705 * but we haven't joined a transaction running right now. 1706 * 1707 * Later on, someone is sure to update the inode and get the 1708 * real transid recorded. 1709 * 1710 * We set last_trans now to the fs_info generation + 1, 1711 * this will either be one more than the running transaction 1712 * or the generation used for the next transaction if there isn't 1713 * one running right now. 1714 * 1715 * We also have to set last_sub_trans to the current log transid, 1716 * otherwise subsequent syncs to a file that's been synced in this 1717 * transaction will appear to have already occured. 1718 */ 1719 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1; 1720 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1721 if (num_written > 0) { 1722 err = generic_write_sync(file, pos, num_written); 1723 if (err < 0 && num_written > 0) 1724 num_written = err; 1725 } 1726 1727 if (sync) 1728 atomic_dec(&BTRFS_I(inode)->sync_writers); 1729 out: 1730 current->backing_dev_info = NULL; 1731 return num_written ? num_written : err; 1732 } 1733 1734 int btrfs_release_file(struct inode *inode, struct file *filp) 1735 { 1736 /* 1737 * ordered_data_close is set by settattr when we are about to truncate 1738 * a file from a non-zero size to a zero size. This tries to 1739 * flush down new bytes that may have been written if the 1740 * application were using truncate to replace a file in place. 1741 */ 1742 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 1743 &BTRFS_I(inode)->runtime_flags)) { 1744 struct btrfs_trans_handle *trans; 1745 struct btrfs_root *root = BTRFS_I(inode)->root; 1746 1747 /* 1748 * We need to block on a committing transaction to keep us from 1749 * throwing a ordered operation on to the list and causing 1750 * something like sync to deadlock trying to flush out this 1751 * inode. 1752 */ 1753 trans = btrfs_start_transaction(root, 0); 1754 if (IS_ERR(trans)) 1755 return PTR_ERR(trans); 1756 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode); 1757 btrfs_end_transaction(trans, root); 1758 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 1759 filemap_flush(inode->i_mapping); 1760 } 1761 if (filp->private_data) 1762 btrfs_ioctl_trans_end(filp); 1763 return 0; 1764 } 1765 1766 /* 1767 * fsync call for both files and directories. This logs the inode into 1768 * the tree log instead of forcing full commits whenever possible. 1769 * 1770 * It needs to call filemap_fdatawait so that all ordered extent updates are 1771 * in the metadata btree are up to date for copying to the log. 1772 * 1773 * It drops the inode mutex before doing the tree log commit. This is an 1774 * important optimization for directories because holding the mutex prevents 1775 * new operations on the dir while we write to disk. 1776 */ 1777 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1778 { 1779 struct dentry *dentry = file->f_path.dentry; 1780 struct inode *inode = dentry->d_inode; 1781 struct btrfs_root *root = BTRFS_I(inode)->root; 1782 int ret = 0; 1783 struct btrfs_trans_handle *trans; 1784 bool full_sync = 0; 1785 1786 trace_btrfs_sync_file(file, datasync); 1787 1788 /* 1789 * We write the dirty pages in the range and wait until they complete 1790 * out of the ->i_mutex. If so, we can flush the dirty pages by 1791 * multi-task, and make the performance up. See 1792 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1793 */ 1794 atomic_inc(&BTRFS_I(inode)->sync_writers); 1795 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 1796 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1797 &BTRFS_I(inode)->runtime_flags)) 1798 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 1799 atomic_dec(&BTRFS_I(inode)->sync_writers); 1800 if (ret) 1801 return ret; 1802 1803 mutex_lock(&inode->i_mutex); 1804 1805 /* 1806 * We flush the dirty pages again to avoid some dirty pages in the 1807 * range being left. 1808 */ 1809 atomic_inc(&root->log_batch); 1810 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1811 &BTRFS_I(inode)->runtime_flags); 1812 if (full_sync) 1813 btrfs_wait_ordered_range(inode, start, end - start + 1); 1814 atomic_inc(&root->log_batch); 1815 1816 /* 1817 * check the transaction that last modified this inode 1818 * and see if its already been committed 1819 */ 1820 if (!BTRFS_I(inode)->last_trans) { 1821 mutex_unlock(&inode->i_mutex); 1822 goto out; 1823 } 1824 1825 /* 1826 * if the last transaction that changed this file was before 1827 * the current transaction, we can bail out now without any 1828 * syncing 1829 */ 1830 smp_mb(); 1831 if (btrfs_inode_in_log(inode, root->fs_info->generation) || 1832 BTRFS_I(inode)->last_trans <= 1833 root->fs_info->last_trans_committed) { 1834 BTRFS_I(inode)->last_trans = 0; 1835 1836 /* 1837 * We'v had everything committed since the last time we were 1838 * modified so clear this flag in case it was set for whatever 1839 * reason, it's no longer relevant. 1840 */ 1841 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1842 &BTRFS_I(inode)->runtime_flags); 1843 mutex_unlock(&inode->i_mutex); 1844 goto out; 1845 } 1846 1847 /* 1848 * ok we haven't committed the transaction yet, lets do a commit 1849 */ 1850 if (file->private_data) 1851 btrfs_ioctl_trans_end(file); 1852 1853 trans = btrfs_start_transaction(root, 0); 1854 if (IS_ERR(trans)) { 1855 ret = PTR_ERR(trans); 1856 mutex_unlock(&inode->i_mutex); 1857 goto out; 1858 } 1859 1860 ret = btrfs_log_dentry_safe(trans, root, dentry); 1861 if (ret < 0) { 1862 /* Fallthrough and commit/free transaction. */ 1863 ret = 1; 1864 } 1865 1866 /* we've logged all the items and now have a consistent 1867 * version of the file in the log. It is possible that 1868 * someone will come in and modify the file, but that's 1869 * fine because the log is consistent on disk, and we 1870 * have references to all of the file's extents 1871 * 1872 * It is possible that someone will come in and log the 1873 * file again, but that will end up using the synchronization 1874 * inside btrfs_sync_log to keep things safe. 1875 */ 1876 mutex_unlock(&inode->i_mutex); 1877 1878 if (ret != BTRFS_NO_LOG_SYNC) { 1879 if (ret > 0) { 1880 /* 1881 * If we didn't already wait for ordered extents we need 1882 * to do that now. 1883 */ 1884 if (!full_sync) 1885 btrfs_wait_ordered_range(inode, start, 1886 end - start + 1); 1887 ret = btrfs_commit_transaction(trans, root); 1888 } else { 1889 ret = btrfs_sync_log(trans, root); 1890 if (ret == 0) { 1891 ret = btrfs_end_transaction(trans, root); 1892 } else { 1893 if (!full_sync) 1894 btrfs_wait_ordered_range(inode, start, 1895 end - 1896 start + 1); 1897 ret = btrfs_commit_transaction(trans, root); 1898 } 1899 } 1900 } else { 1901 ret = btrfs_end_transaction(trans, root); 1902 } 1903 out: 1904 return ret > 0 ? -EIO : ret; 1905 } 1906 1907 static const struct vm_operations_struct btrfs_file_vm_ops = { 1908 .fault = filemap_fault, 1909 .page_mkwrite = btrfs_page_mkwrite, 1910 .remap_pages = generic_file_remap_pages, 1911 }; 1912 1913 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 1914 { 1915 struct address_space *mapping = filp->f_mapping; 1916 1917 if (!mapping->a_ops->readpage) 1918 return -ENOEXEC; 1919 1920 file_accessed(filp); 1921 vma->vm_ops = &btrfs_file_vm_ops; 1922 1923 return 0; 1924 } 1925 1926 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf, 1927 int slot, u64 start, u64 end) 1928 { 1929 struct btrfs_file_extent_item *fi; 1930 struct btrfs_key key; 1931 1932 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1933 return 0; 1934 1935 btrfs_item_key_to_cpu(leaf, &key, slot); 1936 if (key.objectid != btrfs_ino(inode) || 1937 key.type != BTRFS_EXTENT_DATA_KEY) 1938 return 0; 1939 1940 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1941 1942 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 1943 return 0; 1944 1945 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 1946 return 0; 1947 1948 if (key.offset == end) 1949 return 1; 1950 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 1951 return 1; 1952 return 0; 1953 } 1954 1955 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode, 1956 struct btrfs_path *path, u64 offset, u64 end) 1957 { 1958 struct btrfs_root *root = BTRFS_I(inode)->root; 1959 struct extent_buffer *leaf; 1960 struct btrfs_file_extent_item *fi; 1961 struct extent_map *hole_em; 1962 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1963 struct btrfs_key key; 1964 int ret; 1965 1966 key.objectid = btrfs_ino(inode); 1967 key.type = BTRFS_EXTENT_DATA_KEY; 1968 key.offset = offset; 1969 1970 1971 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1972 if (ret < 0) 1973 return ret; 1974 BUG_ON(!ret); 1975 1976 leaf = path->nodes[0]; 1977 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) { 1978 u64 num_bytes; 1979 1980 path->slots[0]--; 1981 fi = btrfs_item_ptr(leaf, path->slots[0], 1982 struct btrfs_file_extent_item); 1983 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 1984 end - offset; 1985 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1986 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 1987 btrfs_set_file_extent_offset(leaf, fi, 0); 1988 btrfs_mark_buffer_dirty(leaf); 1989 goto out; 1990 } 1991 1992 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) { 1993 u64 num_bytes; 1994 1995 path->slots[0]++; 1996 key.offset = offset; 1997 btrfs_set_item_key_safe(root, path, &key); 1998 fi = btrfs_item_ptr(leaf, path->slots[0], 1999 struct btrfs_file_extent_item); 2000 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2001 offset; 2002 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2003 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2004 btrfs_set_file_extent_offset(leaf, fi, 0); 2005 btrfs_mark_buffer_dirty(leaf); 2006 goto out; 2007 } 2008 btrfs_release_path(path); 2009 2010 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 2011 0, 0, end - offset, 0, end - offset, 2012 0, 0, 0); 2013 if (ret) 2014 return ret; 2015 2016 out: 2017 btrfs_release_path(path); 2018 2019 hole_em = alloc_extent_map(); 2020 if (!hole_em) { 2021 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2022 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2023 &BTRFS_I(inode)->runtime_flags); 2024 } else { 2025 hole_em->start = offset; 2026 hole_em->len = end - offset; 2027 hole_em->ram_bytes = hole_em->len; 2028 hole_em->orig_start = offset; 2029 2030 hole_em->block_start = EXTENT_MAP_HOLE; 2031 hole_em->block_len = 0; 2032 hole_em->orig_block_len = 0; 2033 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 2034 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2035 hole_em->generation = trans->transid; 2036 2037 do { 2038 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2039 write_lock(&em_tree->lock); 2040 ret = add_extent_mapping(em_tree, hole_em, 1); 2041 write_unlock(&em_tree->lock); 2042 } while (ret == -EEXIST); 2043 free_extent_map(hole_em); 2044 if (ret) 2045 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2046 &BTRFS_I(inode)->runtime_flags); 2047 } 2048 2049 return 0; 2050 } 2051 2052 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2053 { 2054 struct btrfs_root *root = BTRFS_I(inode)->root; 2055 struct extent_state *cached_state = NULL; 2056 struct btrfs_path *path; 2057 struct btrfs_block_rsv *rsv; 2058 struct btrfs_trans_handle *trans; 2059 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize); 2060 u64 lockend = round_down(offset + len, 2061 BTRFS_I(inode)->root->sectorsize) - 1; 2062 u64 cur_offset = lockstart; 2063 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 2064 u64 drop_end; 2065 int ret = 0; 2066 int err = 0; 2067 bool same_page = ((offset >> PAGE_CACHE_SHIFT) == 2068 ((offset + len - 1) >> PAGE_CACHE_SHIFT)); 2069 2070 btrfs_wait_ordered_range(inode, offset, len); 2071 2072 mutex_lock(&inode->i_mutex); 2073 /* 2074 * We needn't truncate any page which is beyond the end of the file 2075 * because we are sure there is no data there. 2076 */ 2077 /* 2078 * Only do this if we are in the same page and we aren't doing the 2079 * entire page. 2080 */ 2081 if (same_page && len < PAGE_CACHE_SIZE) { 2082 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) 2083 ret = btrfs_truncate_page(inode, offset, len, 0); 2084 mutex_unlock(&inode->i_mutex); 2085 return ret; 2086 } 2087 2088 /* zero back part of the first page */ 2089 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) { 2090 ret = btrfs_truncate_page(inode, offset, 0, 0); 2091 if (ret) { 2092 mutex_unlock(&inode->i_mutex); 2093 return ret; 2094 } 2095 } 2096 2097 /* zero the front end of the last page */ 2098 if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) { 2099 ret = btrfs_truncate_page(inode, offset + len, 0, 1); 2100 if (ret) { 2101 mutex_unlock(&inode->i_mutex); 2102 return ret; 2103 } 2104 } 2105 2106 if (lockend < lockstart) { 2107 mutex_unlock(&inode->i_mutex); 2108 return 0; 2109 } 2110 2111 while (1) { 2112 struct btrfs_ordered_extent *ordered; 2113 2114 truncate_pagecache_range(inode, lockstart, lockend); 2115 2116 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2117 0, &cached_state); 2118 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2119 2120 /* 2121 * We need to make sure we have no ordered extents in this range 2122 * and nobody raced in and read a page in this range, if we did 2123 * we need to try again. 2124 */ 2125 if ((!ordered || 2126 (ordered->file_offset + ordered->len < lockstart || 2127 ordered->file_offset > lockend)) && 2128 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart, 2129 lockend, EXTENT_UPTODATE, 0, 2130 cached_state)) { 2131 if (ordered) 2132 btrfs_put_ordered_extent(ordered); 2133 break; 2134 } 2135 if (ordered) 2136 btrfs_put_ordered_extent(ordered); 2137 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2138 lockend, &cached_state, GFP_NOFS); 2139 btrfs_wait_ordered_range(inode, lockstart, 2140 lockend - lockstart + 1); 2141 } 2142 2143 path = btrfs_alloc_path(); 2144 if (!path) { 2145 ret = -ENOMEM; 2146 goto out; 2147 } 2148 2149 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2150 if (!rsv) { 2151 ret = -ENOMEM; 2152 goto out_free; 2153 } 2154 rsv->size = btrfs_calc_trunc_metadata_size(root, 1); 2155 rsv->failfast = 1; 2156 2157 /* 2158 * 1 - update the inode 2159 * 1 - removing the extents in the range 2160 * 1 - adding the hole extent 2161 */ 2162 trans = btrfs_start_transaction(root, 3); 2163 if (IS_ERR(trans)) { 2164 err = PTR_ERR(trans); 2165 goto out_free; 2166 } 2167 2168 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 2169 min_size); 2170 BUG_ON(ret); 2171 trans->block_rsv = rsv; 2172 2173 while (cur_offset < lockend) { 2174 ret = __btrfs_drop_extents(trans, root, inode, path, 2175 cur_offset, lockend + 1, 2176 &drop_end, 1); 2177 if (ret != -ENOSPC) 2178 break; 2179 2180 trans->block_rsv = &root->fs_info->trans_block_rsv; 2181 2182 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2183 if (ret) { 2184 err = ret; 2185 break; 2186 } 2187 2188 cur_offset = drop_end; 2189 2190 ret = btrfs_update_inode(trans, root, inode); 2191 if (ret) { 2192 err = ret; 2193 break; 2194 } 2195 2196 btrfs_end_transaction(trans, root); 2197 btrfs_btree_balance_dirty(root); 2198 2199 trans = btrfs_start_transaction(root, 3); 2200 if (IS_ERR(trans)) { 2201 ret = PTR_ERR(trans); 2202 trans = NULL; 2203 break; 2204 } 2205 2206 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 2207 rsv, min_size); 2208 BUG_ON(ret); /* shouldn't happen */ 2209 trans->block_rsv = rsv; 2210 } 2211 2212 if (ret) { 2213 err = ret; 2214 goto out_trans; 2215 } 2216 2217 trans->block_rsv = &root->fs_info->trans_block_rsv; 2218 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2219 if (ret) { 2220 err = ret; 2221 goto out_trans; 2222 } 2223 2224 out_trans: 2225 if (!trans) 2226 goto out_free; 2227 2228 inode_inc_iversion(inode); 2229 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2230 2231 trans->block_rsv = &root->fs_info->trans_block_rsv; 2232 ret = btrfs_update_inode(trans, root, inode); 2233 btrfs_end_transaction(trans, root); 2234 btrfs_btree_balance_dirty(root); 2235 out_free: 2236 btrfs_free_path(path); 2237 btrfs_free_block_rsv(root, rsv); 2238 out: 2239 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2240 &cached_state, GFP_NOFS); 2241 mutex_unlock(&inode->i_mutex); 2242 if (ret && !err) 2243 err = ret; 2244 return err; 2245 } 2246 2247 static long btrfs_fallocate(struct file *file, int mode, 2248 loff_t offset, loff_t len) 2249 { 2250 struct inode *inode = file_inode(file); 2251 struct extent_state *cached_state = NULL; 2252 struct btrfs_root *root = BTRFS_I(inode)->root; 2253 u64 cur_offset; 2254 u64 last_byte; 2255 u64 alloc_start; 2256 u64 alloc_end; 2257 u64 alloc_hint = 0; 2258 u64 locked_end; 2259 struct extent_map *em; 2260 int blocksize = BTRFS_I(inode)->root->sectorsize; 2261 int ret; 2262 2263 alloc_start = round_down(offset, blocksize); 2264 alloc_end = round_up(offset + len, blocksize); 2265 2266 /* Make sure we aren't being give some crap mode */ 2267 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2268 return -EOPNOTSUPP; 2269 2270 if (mode & FALLOC_FL_PUNCH_HOLE) 2271 return btrfs_punch_hole(inode, offset, len); 2272 2273 /* 2274 * Make sure we have enough space before we do the 2275 * allocation. 2276 */ 2277 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start); 2278 if (ret) 2279 return ret; 2280 if (root->fs_info->quota_enabled) { 2281 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start); 2282 if (ret) 2283 goto out_reserve_fail; 2284 } 2285 2286 mutex_lock(&inode->i_mutex); 2287 ret = inode_newsize_ok(inode, alloc_end); 2288 if (ret) 2289 goto out; 2290 2291 if (alloc_start > inode->i_size) { 2292 ret = btrfs_cont_expand(inode, i_size_read(inode), 2293 alloc_start); 2294 if (ret) 2295 goto out; 2296 } else { 2297 /* 2298 * If we are fallocating from the end of the file onward we 2299 * need to zero out the end of the page if i_size lands in the 2300 * middle of a page. 2301 */ 2302 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0); 2303 if (ret) 2304 goto out; 2305 } 2306 2307 /* 2308 * wait for ordered IO before we have any locks. We'll loop again 2309 * below with the locks held. 2310 */ 2311 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start); 2312 2313 locked_end = alloc_end - 1; 2314 while (1) { 2315 struct btrfs_ordered_extent *ordered; 2316 2317 /* the extent lock is ordered inside the running 2318 * transaction 2319 */ 2320 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 2321 locked_end, 0, &cached_state); 2322 ordered = btrfs_lookup_first_ordered_extent(inode, 2323 alloc_end - 1); 2324 if (ordered && 2325 ordered->file_offset + ordered->len > alloc_start && 2326 ordered->file_offset < alloc_end) { 2327 btrfs_put_ordered_extent(ordered); 2328 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 2329 alloc_start, locked_end, 2330 &cached_state, GFP_NOFS); 2331 /* 2332 * we can't wait on the range with the transaction 2333 * running or with the extent lock held 2334 */ 2335 btrfs_wait_ordered_range(inode, alloc_start, 2336 alloc_end - alloc_start); 2337 } else { 2338 if (ordered) 2339 btrfs_put_ordered_extent(ordered); 2340 break; 2341 } 2342 } 2343 2344 cur_offset = alloc_start; 2345 while (1) { 2346 u64 actual_end; 2347 2348 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2349 alloc_end - cur_offset, 0); 2350 if (IS_ERR_OR_NULL(em)) { 2351 if (!em) 2352 ret = -ENOMEM; 2353 else 2354 ret = PTR_ERR(em); 2355 break; 2356 } 2357 last_byte = min(extent_map_end(em), alloc_end); 2358 actual_end = min_t(u64, extent_map_end(em), offset + len); 2359 last_byte = ALIGN(last_byte, blocksize); 2360 2361 if (em->block_start == EXTENT_MAP_HOLE || 2362 (cur_offset >= inode->i_size && 2363 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 2364 ret = btrfs_prealloc_file_range(inode, mode, cur_offset, 2365 last_byte - cur_offset, 2366 1 << inode->i_blkbits, 2367 offset + len, 2368 &alloc_hint); 2369 2370 if (ret < 0) { 2371 free_extent_map(em); 2372 break; 2373 } 2374 } else if (actual_end > inode->i_size && 2375 !(mode & FALLOC_FL_KEEP_SIZE)) { 2376 /* 2377 * We didn't need to allocate any more space, but we 2378 * still extended the size of the file so we need to 2379 * update i_size. 2380 */ 2381 inode->i_ctime = CURRENT_TIME; 2382 i_size_write(inode, actual_end); 2383 btrfs_ordered_update_i_size(inode, actual_end, NULL); 2384 } 2385 free_extent_map(em); 2386 2387 cur_offset = last_byte; 2388 if (cur_offset >= alloc_end) { 2389 ret = 0; 2390 break; 2391 } 2392 } 2393 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 2394 &cached_state, GFP_NOFS); 2395 out: 2396 mutex_unlock(&inode->i_mutex); 2397 if (root->fs_info->quota_enabled) 2398 btrfs_qgroup_free(root, alloc_end - alloc_start); 2399 out_reserve_fail: 2400 /* Let go of our reservation. */ 2401 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start); 2402 return ret; 2403 } 2404 2405 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 2406 { 2407 struct btrfs_root *root = BTRFS_I(inode)->root; 2408 struct extent_map *em; 2409 struct extent_state *cached_state = NULL; 2410 u64 lockstart = *offset; 2411 u64 lockend = i_size_read(inode); 2412 u64 start = *offset; 2413 u64 orig_start = *offset; 2414 u64 len = i_size_read(inode); 2415 u64 last_end = 0; 2416 int ret = 0; 2417 2418 lockend = max_t(u64, root->sectorsize, lockend); 2419 if (lockend <= lockstart) 2420 lockend = lockstart + root->sectorsize; 2421 2422 lockend--; 2423 len = lockend - lockstart + 1; 2424 2425 len = max_t(u64, len, root->sectorsize); 2426 if (inode->i_size == 0) 2427 return -ENXIO; 2428 2429 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0, 2430 &cached_state); 2431 2432 /* 2433 * Delalloc is such a pain. If we have a hole and we have pending 2434 * delalloc for a portion of the hole we will get back a hole that 2435 * exists for the entire range since it hasn't been actually written 2436 * yet. So to take care of this case we need to look for an extent just 2437 * before the position we want in case there is outstanding delalloc 2438 * going on here. 2439 */ 2440 if (whence == SEEK_HOLE && start != 0) { 2441 if (start <= root->sectorsize) 2442 em = btrfs_get_extent_fiemap(inode, NULL, 0, 0, 2443 root->sectorsize, 0); 2444 else 2445 em = btrfs_get_extent_fiemap(inode, NULL, 0, 2446 start - root->sectorsize, 2447 root->sectorsize, 0); 2448 if (IS_ERR(em)) { 2449 ret = PTR_ERR(em); 2450 goto out; 2451 } 2452 last_end = em->start + em->len; 2453 if (em->block_start == EXTENT_MAP_DELALLOC) 2454 last_end = min_t(u64, last_end, inode->i_size); 2455 free_extent_map(em); 2456 } 2457 2458 while (1) { 2459 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0); 2460 if (IS_ERR(em)) { 2461 ret = PTR_ERR(em); 2462 break; 2463 } 2464 2465 if (em->block_start == EXTENT_MAP_HOLE) { 2466 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { 2467 if (last_end <= orig_start) { 2468 free_extent_map(em); 2469 ret = -ENXIO; 2470 break; 2471 } 2472 } 2473 2474 if (whence == SEEK_HOLE) { 2475 *offset = start; 2476 free_extent_map(em); 2477 break; 2478 } 2479 } else { 2480 if (whence == SEEK_DATA) { 2481 if (em->block_start == EXTENT_MAP_DELALLOC) { 2482 if (start >= inode->i_size) { 2483 free_extent_map(em); 2484 ret = -ENXIO; 2485 break; 2486 } 2487 } 2488 2489 if (!test_bit(EXTENT_FLAG_PREALLOC, 2490 &em->flags)) { 2491 *offset = start; 2492 free_extent_map(em); 2493 break; 2494 } 2495 } 2496 } 2497 2498 start = em->start + em->len; 2499 last_end = em->start + em->len; 2500 2501 if (em->block_start == EXTENT_MAP_DELALLOC) 2502 last_end = min_t(u64, last_end, inode->i_size); 2503 2504 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { 2505 free_extent_map(em); 2506 ret = -ENXIO; 2507 break; 2508 } 2509 free_extent_map(em); 2510 cond_resched(); 2511 } 2512 if (!ret) 2513 *offset = min(*offset, inode->i_size); 2514 out: 2515 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2516 &cached_state, GFP_NOFS); 2517 return ret; 2518 } 2519 2520 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 2521 { 2522 struct inode *inode = file->f_mapping->host; 2523 int ret; 2524 2525 mutex_lock(&inode->i_mutex); 2526 switch (whence) { 2527 case SEEK_END: 2528 case SEEK_CUR: 2529 offset = generic_file_llseek(file, offset, whence); 2530 goto out; 2531 case SEEK_DATA: 2532 case SEEK_HOLE: 2533 if (offset >= i_size_read(inode)) { 2534 mutex_unlock(&inode->i_mutex); 2535 return -ENXIO; 2536 } 2537 2538 ret = find_desired_extent(inode, &offset, whence); 2539 if (ret) { 2540 mutex_unlock(&inode->i_mutex); 2541 return ret; 2542 } 2543 } 2544 2545 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2546 out: 2547 mutex_unlock(&inode->i_mutex); 2548 return offset; 2549 } 2550 2551 const struct file_operations btrfs_file_operations = { 2552 .llseek = btrfs_file_llseek, 2553 .read = do_sync_read, 2554 .write = do_sync_write, 2555 .aio_read = generic_file_aio_read, 2556 .splice_read = generic_file_splice_read, 2557 .aio_write = btrfs_file_aio_write, 2558 .mmap = btrfs_file_mmap, 2559 .open = generic_file_open, 2560 .release = btrfs_release_file, 2561 .fsync = btrfs_sync_file, 2562 .fallocate = btrfs_fallocate, 2563 .unlocked_ioctl = btrfs_ioctl, 2564 #ifdef CONFIG_COMPAT 2565 .compat_ioctl = btrfs_ioctl, 2566 #endif 2567 }; 2568 2569 void btrfs_auto_defrag_exit(void) 2570 { 2571 if (btrfs_inode_defrag_cachep) 2572 kmem_cache_destroy(btrfs_inode_defrag_cachep); 2573 } 2574 2575 int btrfs_auto_defrag_init(void) 2576 { 2577 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 2578 sizeof(struct inode_defrag), 0, 2579 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 2580 NULL); 2581 if (!btrfs_inode_defrag_cachep) 2582 return -ENOMEM; 2583 2584 return 0; 2585 } 2586