xref: /openbmc/linux/fs/btrfs/file.c (revision 034f90b3)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 #include "qgroup.h"
44 
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 /*
47  * when auto defrag is enabled we
48  * queue up these defrag structs to remember which
49  * inodes need defragging passes
50  */
51 struct inode_defrag {
52 	struct rb_node rb_node;
53 	/* objectid */
54 	u64 ino;
55 	/*
56 	 * transid where the defrag was added, we search for
57 	 * extents newer than this
58 	 */
59 	u64 transid;
60 
61 	/* root objectid */
62 	u64 root;
63 
64 	/* last offset we were able to defrag */
65 	u64 last_offset;
66 
67 	/* if we've wrapped around back to zero once already */
68 	int cycled;
69 };
70 
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 				  struct inode_defrag *defrag2)
73 {
74 	if (defrag1->root > defrag2->root)
75 		return 1;
76 	else if (defrag1->root < defrag2->root)
77 		return -1;
78 	else if (defrag1->ino > defrag2->ino)
79 		return 1;
80 	else if (defrag1->ino < defrag2->ino)
81 		return -1;
82 	else
83 		return 0;
84 }
85 
86 /* pop a record for an inode into the defrag tree.  The lock
87  * must be held already
88  *
89  * If you're inserting a record for an older transid than an
90  * existing record, the transid already in the tree is lowered
91  *
92  * If an existing record is found the defrag item you
93  * pass in is freed
94  */
95 static int __btrfs_add_inode_defrag(struct inode *inode,
96 				    struct inode_defrag *defrag)
97 {
98 	struct btrfs_root *root = BTRFS_I(inode)->root;
99 	struct inode_defrag *entry;
100 	struct rb_node **p;
101 	struct rb_node *parent = NULL;
102 	int ret;
103 
104 	p = &root->fs_info->defrag_inodes.rb_node;
105 	while (*p) {
106 		parent = *p;
107 		entry = rb_entry(parent, struct inode_defrag, rb_node);
108 
109 		ret = __compare_inode_defrag(defrag, entry);
110 		if (ret < 0)
111 			p = &parent->rb_left;
112 		else if (ret > 0)
113 			p = &parent->rb_right;
114 		else {
115 			/* if we're reinserting an entry for
116 			 * an old defrag run, make sure to
117 			 * lower the transid of our existing record
118 			 */
119 			if (defrag->transid < entry->transid)
120 				entry->transid = defrag->transid;
121 			if (defrag->last_offset > entry->last_offset)
122 				entry->last_offset = defrag->last_offset;
123 			return -EEXIST;
124 		}
125 	}
126 	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
127 	rb_link_node(&defrag->rb_node, parent, p);
128 	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
129 	return 0;
130 }
131 
132 static inline int __need_auto_defrag(struct btrfs_root *root)
133 {
134 	if (!btrfs_test_opt(root, AUTO_DEFRAG))
135 		return 0;
136 
137 	if (btrfs_fs_closing(root->fs_info))
138 		return 0;
139 
140 	return 1;
141 }
142 
143 /*
144  * insert a defrag record for this inode if auto defrag is
145  * enabled
146  */
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 			   struct inode *inode)
149 {
150 	struct btrfs_root *root = BTRFS_I(inode)->root;
151 	struct inode_defrag *defrag;
152 	u64 transid;
153 	int ret;
154 
155 	if (!__need_auto_defrag(root))
156 		return 0;
157 
158 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
159 		return 0;
160 
161 	if (trans)
162 		transid = trans->transid;
163 	else
164 		transid = BTRFS_I(inode)->root->last_trans;
165 
166 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
167 	if (!defrag)
168 		return -ENOMEM;
169 
170 	defrag->ino = btrfs_ino(inode);
171 	defrag->transid = transid;
172 	defrag->root = root->root_key.objectid;
173 
174 	spin_lock(&root->fs_info->defrag_inodes_lock);
175 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
176 		/*
177 		 * If we set IN_DEFRAG flag and evict the inode from memory,
178 		 * and then re-read this inode, this new inode doesn't have
179 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
180 		 */
181 		ret = __btrfs_add_inode_defrag(inode, defrag);
182 		if (ret)
183 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 	} else {
185 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
186 	}
187 	spin_unlock(&root->fs_info->defrag_inodes_lock);
188 	return 0;
189 }
190 
191 /*
192  * Requeue the defrag object. If there is a defrag object that points to
193  * the same inode in the tree, we will merge them together (by
194  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
195  */
196 static void btrfs_requeue_inode_defrag(struct inode *inode,
197 				       struct inode_defrag *defrag)
198 {
199 	struct btrfs_root *root = BTRFS_I(inode)->root;
200 	int ret;
201 
202 	if (!__need_auto_defrag(root))
203 		goto out;
204 
205 	/*
206 	 * Here we don't check the IN_DEFRAG flag, because we need merge
207 	 * them together.
208 	 */
209 	spin_lock(&root->fs_info->defrag_inodes_lock);
210 	ret = __btrfs_add_inode_defrag(inode, defrag);
211 	spin_unlock(&root->fs_info->defrag_inodes_lock);
212 	if (ret)
213 		goto out;
214 	return;
215 out:
216 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
217 }
218 
219 /*
220  * pick the defragable inode that we want, if it doesn't exist, we will get
221  * the next one.
222  */
223 static struct inode_defrag *
224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
225 {
226 	struct inode_defrag *entry = NULL;
227 	struct inode_defrag tmp;
228 	struct rb_node *p;
229 	struct rb_node *parent = NULL;
230 	int ret;
231 
232 	tmp.ino = ino;
233 	tmp.root = root;
234 
235 	spin_lock(&fs_info->defrag_inodes_lock);
236 	p = fs_info->defrag_inodes.rb_node;
237 	while (p) {
238 		parent = p;
239 		entry = rb_entry(parent, struct inode_defrag, rb_node);
240 
241 		ret = __compare_inode_defrag(&tmp, entry);
242 		if (ret < 0)
243 			p = parent->rb_left;
244 		else if (ret > 0)
245 			p = parent->rb_right;
246 		else
247 			goto out;
248 	}
249 
250 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
251 		parent = rb_next(parent);
252 		if (parent)
253 			entry = rb_entry(parent, struct inode_defrag, rb_node);
254 		else
255 			entry = NULL;
256 	}
257 out:
258 	if (entry)
259 		rb_erase(parent, &fs_info->defrag_inodes);
260 	spin_unlock(&fs_info->defrag_inodes_lock);
261 	return entry;
262 }
263 
264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
265 {
266 	struct inode_defrag *defrag;
267 	struct rb_node *node;
268 
269 	spin_lock(&fs_info->defrag_inodes_lock);
270 	node = rb_first(&fs_info->defrag_inodes);
271 	while (node) {
272 		rb_erase(node, &fs_info->defrag_inodes);
273 		defrag = rb_entry(node, struct inode_defrag, rb_node);
274 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
275 
276 		if (need_resched()) {
277 			spin_unlock(&fs_info->defrag_inodes_lock);
278 			cond_resched();
279 			spin_lock(&fs_info->defrag_inodes_lock);
280 		}
281 
282 		node = rb_first(&fs_info->defrag_inodes);
283 	}
284 	spin_unlock(&fs_info->defrag_inodes_lock);
285 }
286 
287 #define BTRFS_DEFRAG_BATCH	1024
288 
289 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
290 				    struct inode_defrag *defrag)
291 {
292 	struct btrfs_root *inode_root;
293 	struct inode *inode;
294 	struct btrfs_key key;
295 	struct btrfs_ioctl_defrag_range_args range;
296 	int num_defrag;
297 	int index;
298 	int ret;
299 
300 	/* get the inode */
301 	key.objectid = defrag->root;
302 	key.type = BTRFS_ROOT_ITEM_KEY;
303 	key.offset = (u64)-1;
304 
305 	index = srcu_read_lock(&fs_info->subvol_srcu);
306 
307 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
308 	if (IS_ERR(inode_root)) {
309 		ret = PTR_ERR(inode_root);
310 		goto cleanup;
311 	}
312 
313 	key.objectid = defrag->ino;
314 	key.type = BTRFS_INODE_ITEM_KEY;
315 	key.offset = 0;
316 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
317 	if (IS_ERR(inode)) {
318 		ret = PTR_ERR(inode);
319 		goto cleanup;
320 	}
321 	srcu_read_unlock(&fs_info->subvol_srcu, index);
322 
323 	/* do a chunk of defrag */
324 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
325 	memset(&range, 0, sizeof(range));
326 	range.len = (u64)-1;
327 	range.start = defrag->last_offset;
328 
329 	sb_start_write(fs_info->sb);
330 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
331 				       BTRFS_DEFRAG_BATCH);
332 	sb_end_write(fs_info->sb);
333 	/*
334 	 * if we filled the whole defrag batch, there
335 	 * must be more work to do.  Queue this defrag
336 	 * again
337 	 */
338 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
339 		defrag->last_offset = range.start;
340 		btrfs_requeue_inode_defrag(inode, defrag);
341 	} else if (defrag->last_offset && !defrag->cycled) {
342 		/*
343 		 * we didn't fill our defrag batch, but
344 		 * we didn't start at zero.  Make sure we loop
345 		 * around to the start of the file.
346 		 */
347 		defrag->last_offset = 0;
348 		defrag->cycled = 1;
349 		btrfs_requeue_inode_defrag(inode, defrag);
350 	} else {
351 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
352 	}
353 
354 	iput(inode);
355 	return 0;
356 cleanup:
357 	srcu_read_unlock(&fs_info->subvol_srcu, index);
358 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
359 	return ret;
360 }
361 
362 /*
363  * run through the list of inodes in the FS that need
364  * defragging
365  */
366 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
367 {
368 	struct inode_defrag *defrag;
369 	u64 first_ino = 0;
370 	u64 root_objectid = 0;
371 
372 	atomic_inc(&fs_info->defrag_running);
373 	while (1) {
374 		/* Pause the auto defragger. */
375 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
376 			     &fs_info->fs_state))
377 			break;
378 
379 		if (!__need_auto_defrag(fs_info->tree_root))
380 			break;
381 
382 		/* find an inode to defrag */
383 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
384 						 first_ino);
385 		if (!defrag) {
386 			if (root_objectid || first_ino) {
387 				root_objectid = 0;
388 				first_ino = 0;
389 				continue;
390 			} else {
391 				break;
392 			}
393 		}
394 
395 		first_ino = defrag->ino + 1;
396 		root_objectid = defrag->root;
397 
398 		__btrfs_run_defrag_inode(fs_info, defrag);
399 	}
400 	atomic_dec(&fs_info->defrag_running);
401 
402 	/*
403 	 * during unmount, we use the transaction_wait queue to
404 	 * wait for the defragger to stop
405 	 */
406 	wake_up(&fs_info->transaction_wait);
407 	return 0;
408 }
409 
410 /* simple helper to fault in pages and copy.  This should go away
411  * and be replaced with calls into generic code.
412  */
413 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
414 					 size_t write_bytes,
415 					 struct page **prepared_pages,
416 					 struct iov_iter *i)
417 {
418 	size_t copied = 0;
419 	size_t total_copied = 0;
420 	int pg = 0;
421 	int offset = pos & (PAGE_CACHE_SIZE - 1);
422 
423 	while (write_bytes > 0) {
424 		size_t count = min_t(size_t,
425 				     PAGE_CACHE_SIZE - offset, write_bytes);
426 		struct page *page = prepared_pages[pg];
427 		/*
428 		 * Copy data from userspace to the current page
429 		 */
430 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
431 
432 		/* Flush processor's dcache for this page */
433 		flush_dcache_page(page);
434 
435 		/*
436 		 * if we get a partial write, we can end up with
437 		 * partially up to date pages.  These add
438 		 * a lot of complexity, so make sure they don't
439 		 * happen by forcing this copy to be retried.
440 		 *
441 		 * The rest of the btrfs_file_write code will fall
442 		 * back to page at a time copies after we return 0.
443 		 */
444 		if (!PageUptodate(page) && copied < count)
445 			copied = 0;
446 
447 		iov_iter_advance(i, copied);
448 		write_bytes -= copied;
449 		total_copied += copied;
450 
451 		/* Return to btrfs_file_write_iter to fault page */
452 		if (unlikely(copied == 0))
453 			break;
454 
455 		if (copied < PAGE_CACHE_SIZE - offset) {
456 			offset += copied;
457 		} else {
458 			pg++;
459 			offset = 0;
460 		}
461 	}
462 	return total_copied;
463 }
464 
465 /*
466  * unlocks pages after btrfs_file_write is done with them
467  */
468 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
469 {
470 	size_t i;
471 	for (i = 0; i < num_pages; i++) {
472 		/* page checked is some magic around finding pages that
473 		 * have been modified without going through btrfs_set_page_dirty
474 		 * clear it here. There should be no need to mark the pages
475 		 * accessed as prepare_pages should have marked them accessed
476 		 * in prepare_pages via find_or_create_page()
477 		 */
478 		ClearPageChecked(pages[i]);
479 		unlock_page(pages[i]);
480 		page_cache_release(pages[i]);
481 	}
482 }
483 
484 /*
485  * after copy_from_user, pages need to be dirtied and we need to make
486  * sure holes are created between the current EOF and the start of
487  * any next extents (if required).
488  *
489  * this also makes the decision about creating an inline extent vs
490  * doing real data extents, marking pages dirty and delalloc as required.
491  */
492 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
493 			     struct page **pages, size_t num_pages,
494 			     loff_t pos, size_t write_bytes,
495 			     struct extent_state **cached)
496 {
497 	int err = 0;
498 	int i;
499 	u64 num_bytes;
500 	u64 start_pos;
501 	u64 end_of_last_block;
502 	u64 end_pos = pos + write_bytes;
503 	loff_t isize = i_size_read(inode);
504 
505 	start_pos = pos & ~((u64)root->sectorsize - 1);
506 	num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
507 
508 	end_of_last_block = start_pos + num_bytes - 1;
509 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
510 					cached);
511 	if (err)
512 		return err;
513 
514 	for (i = 0; i < num_pages; i++) {
515 		struct page *p = pages[i];
516 		SetPageUptodate(p);
517 		ClearPageChecked(p);
518 		set_page_dirty(p);
519 	}
520 
521 	/*
522 	 * we've only changed i_size in ram, and we haven't updated
523 	 * the disk i_size.  There is no need to log the inode
524 	 * at this time.
525 	 */
526 	if (end_pos > isize)
527 		i_size_write(inode, end_pos);
528 	return 0;
529 }
530 
531 /*
532  * this drops all the extents in the cache that intersect the range
533  * [start, end].  Existing extents are split as required.
534  */
535 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
536 			     int skip_pinned)
537 {
538 	struct extent_map *em;
539 	struct extent_map *split = NULL;
540 	struct extent_map *split2 = NULL;
541 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
542 	u64 len = end - start + 1;
543 	u64 gen;
544 	int ret;
545 	int testend = 1;
546 	unsigned long flags;
547 	int compressed = 0;
548 	bool modified;
549 
550 	WARN_ON(end < start);
551 	if (end == (u64)-1) {
552 		len = (u64)-1;
553 		testend = 0;
554 	}
555 	while (1) {
556 		int no_splits = 0;
557 
558 		modified = false;
559 		if (!split)
560 			split = alloc_extent_map();
561 		if (!split2)
562 			split2 = alloc_extent_map();
563 		if (!split || !split2)
564 			no_splits = 1;
565 
566 		write_lock(&em_tree->lock);
567 		em = lookup_extent_mapping(em_tree, start, len);
568 		if (!em) {
569 			write_unlock(&em_tree->lock);
570 			break;
571 		}
572 		flags = em->flags;
573 		gen = em->generation;
574 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
575 			if (testend && em->start + em->len >= start + len) {
576 				free_extent_map(em);
577 				write_unlock(&em_tree->lock);
578 				break;
579 			}
580 			start = em->start + em->len;
581 			if (testend)
582 				len = start + len - (em->start + em->len);
583 			free_extent_map(em);
584 			write_unlock(&em_tree->lock);
585 			continue;
586 		}
587 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
588 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
589 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
590 		modified = !list_empty(&em->list);
591 		if (no_splits)
592 			goto next;
593 
594 		if (em->start < start) {
595 			split->start = em->start;
596 			split->len = start - em->start;
597 
598 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
599 				split->orig_start = em->orig_start;
600 				split->block_start = em->block_start;
601 
602 				if (compressed)
603 					split->block_len = em->block_len;
604 				else
605 					split->block_len = split->len;
606 				split->orig_block_len = max(split->block_len,
607 						em->orig_block_len);
608 				split->ram_bytes = em->ram_bytes;
609 			} else {
610 				split->orig_start = split->start;
611 				split->block_len = 0;
612 				split->block_start = em->block_start;
613 				split->orig_block_len = 0;
614 				split->ram_bytes = split->len;
615 			}
616 
617 			split->generation = gen;
618 			split->bdev = em->bdev;
619 			split->flags = flags;
620 			split->compress_type = em->compress_type;
621 			replace_extent_mapping(em_tree, em, split, modified);
622 			free_extent_map(split);
623 			split = split2;
624 			split2 = NULL;
625 		}
626 		if (testend && em->start + em->len > start + len) {
627 			u64 diff = start + len - em->start;
628 
629 			split->start = start + len;
630 			split->len = em->start + em->len - (start + len);
631 			split->bdev = em->bdev;
632 			split->flags = flags;
633 			split->compress_type = em->compress_type;
634 			split->generation = gen;
635 
636 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
637 				split->orig_block_len = max(em->block_len,
638 						    em->orig_block_len);
639 
640 				split->ram_bytes = em->ram_bytes;
641 				if (compressed) {
642 					split->block_len = em->block_len;
643 					split->block_start = em->block_start;
644 					split->orig_start = em->orig_start;
645 				} else {
646 					split->block_len = split->len;
647 					split->block_start = em->block_start
648 						+ diff;
649 					split->orig_start = em->orig_start;
650 				}
651 			} else {
652 				split->ram_bytes = split->len;
653 				split->orig_start = split->start;
654 				split->block_len = 0;
655 				split->block_start = em->block_start;
656 				split->orig_block_len = 0;
657 			}
658 
659 			if (extent_map_in_tree(em)) {
660 				replace_extent_mapping(em_tree, em, split,
661 						       modified);
662 			} else {
663 				ret = add_extent_mapping(em_tree, split,
664 							 modified);
665 				ASSERT(ret == 0); /* Logic error */
666 			}
667 			free_extent_map(split);
668 			split = NULL;
669 		}
670 next:
671 		if (extent_map_in_tree(em))
672 			remove_extent_mapping(em_tree, em);
673 		write_unlock(&em_tree->lock);
674 
675 		/* once for us */
676 		free_extent_map(em);
677 		/* once for the tree*/
678 		free_extent_map(em);
679 	}
680 	if (split)
681 		free_extent_map(split);
682 	if (split2)
683 		free_extent_map(split2);
684 }
685 
686 /*
687  * this is very complex, but the basic idea is to drop all extents
688  * in the range start - end.  hint_block is filled in with a block number
689  * that would be a good hint to the block allocator for this file.
690  *
691  * If an extent intersects the range but is not entirely inside the range
692  * it is either truncated or split.  Anything entirely inside the range
693  * is deleted from the tree.
694  */
695 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
696 			 struct btrfs_root *root, struct inode *inode,
697 			 struct btrfs_path *path, u64 start, u64 end,
698 			 u64 *drop_end, int drop_cache,
699 			 int replace_extent,
700 			 u32 extent_item_size,
701 			 int *key_inserted)
702 {
703 	struct extent_buffer *leaf;
704 	struct btrfs_file_extent_item *fi;
705 	struct btrfs_key key;
706 	struct btrfs_key new_key;
707 	u64 ino = btrfs_ino(inode);
708 	u64 search_start = start;
709 	u64 disk_bytenr = 0;
710 	u64 num_bytes = 0;
711 	u64 extent_offset = 0;
712 	u64 extent_end = 0;
713 	int del_nr = 0;
714 	int del_slot = 0;
715 	int extent_type;
716 	int recow;
717 	int ret;
718 	int modify_tree = -1;
719 	int update_refs;
720 	int found = 0;
721 	int leafs_visited = 0;
722 
723 	if (drop_cache)
724 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
725 
726 	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
727 		modify_tree = 0;
728 
729 	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
730 		       root == root->fs_info->tree_root);
731 	while (1) {
732 		recow = 0;
733 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
734 					       search_start, modify_tree);
735 		if (ret < 0)
736 			break;
737 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
738 			leaf = path->nodes[0];
739 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
740 			if (key.objectid == ino &&
741 			    key.type == BTRFS_EXTENT_DATA_KEY)
742 				path->slots[0]--;
743 		}
744 		ret = 0;
745 		leafs_visited++;
746 next_slot:
747 		leaf = path->nodes[0];
748 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
749 			BUG_ON(del_nr > 0);
750 			ret = btrfs_next_leaf(root, path);
751 			if (ret < 0)
752 				break;
753 			if (ret > 0) {
754 				ret = 0;
755 				break;
756 			}
757 			leafs_visited++;
758 			leaf = path->nodes[0];
759 			recow = 1;
760 		}
761 
762 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
763 		if (key.objectid > ino ||
764 		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
765 			break;
766 
767 		fi = btrfs_item_ptr(leaf, path->slots[0],
768 				    struct btrfs_file_extent_item);
769 		extent_type = btrfs_file_extent_type(leaf, fi);
770 
771 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
772 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
773 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
774 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
775 			extent_offset = btrfs_file_extent_offset(leaf, fi);
776 			extent_end = key.offset +
777 				btrfs_file_extent_num_bytes(leaf, fi);
778 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
779 			extent_end = key.offset +
780 				btrfs_file_extent_inline_len(leaf,
781 						     path->slots[0], fi);
782 		} else {
783 			WARN_ON(1);
784 			extent_end = search_start;
785 		}
786 
787 		/*
788 		 * Don't skip extent items representing 0 byte lengths. They
789 		 * used to be created (bug) if while punching holes we hit
790 		 * -ENOSPC condition. So if we find one here, just ensure we
791 		 * delete it, otherwise we would insert a new file extent item
792 		 * with the same key (offset) as that 0 bytes length file
793 		 * extent item in the call to setup_items_for_insert() later
794 		 * in this function.
795 		 */
796 		if (extent_end == key.offset && extent_end >= search_start)
797 			goto delete_extent_item;
798 
799 		if (extent_end <= search_start) {
800 			path->slots[0]++;
801 			goto next_slot;
802 		}
803 
804 		found = 1;
805 		search_start = max(key.offset, start);
806 		if (recow || !modify_tree) {
807 			modify_tree = -1;
808 			btrfs_release_path(path);
809 			continue;
810 		}
811 
812 		/*
813 		 *     | - range to drop - |
814 		 *  | -------- extent -------- |
815 		 */
816 		if (start > key.offset && end < extent_end) {
817 			BUG_ON(del_nr > 0);
818 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
819 				ret = -EOPNOTSUPP;
820 				break;
821 			}
822 
823 			memcpy(&new_key, &key, sizeof(new_key));
824 			new_key.offset = start;
825 			ret = btrfs_duplicate_item(trans, root, path,
826 						   &new_key);
827 			if (ret == -EAGAIN) {
828 				btrfs_release_path(path);
829 				continue;
830 			}
831 			if (ret < 0)
832 				break;
833 
834 			leaf = path->nodes[0];
835 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
836 					    struct btrfs_file_extent_item);
837 			btrfs_set_file_extent_num_bytes(leaf, fi,
838 							start - key.offset);
839 
840 			fi = btrfs_item_ptr(leaf, path->slots[0],
841 					    struct btrfs_file_extent_item);
842 
843 			extent_offset += start - key.offset;
844 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
845 			btrfs_set_file_extent_num_bytes(leaf, fi,
846 							extent_end - start);
847 			btrfs_mark_buffer_dirty(leaf);
848 
849 			if (update_refs && disk_bytenr > 0) {
850 				ret = btrfs_inc_extent_ref(trans, root,
851 						disk_bytenr, num_bytes, 0,
852 						root->root_key.objectid,
853 						new_key.objectid,
854 						start - extent_offset, 1);
855 				BUG_ON(ret); /* -ENOMEM */
856 			}
857 			key.offset = start;
858 		}
859 		/*
860 		 *  | ---- range to drop ----- |
861 		 *      | -------- extent -------- |
862 		 */
863 		if (start <= key.offset && end < extent_end) {
864 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
865 				ret = -EOPNOTSUPP;
866 				break;
867 			}
868 
869 			memcpy(&new_key, &key, sizeof(new_key));
870 			new_key.offset = end;
871 			btrfs_set_item_key_safe(root, path, &new_key);
872 
873 			extent_offset += end - key.offset;
874 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
875 			btrfs_set_file_extent_num_bytes(leaf, fi,
876 							extent_end - end);
877 			btrfs_mark_buffer_dirty(leaf);
878 			if (update_refs && disk_bytenr > 0)
879 				inode_sub_bytes(inode, end - key.offset);
880 			break;
881 		}
882 
883 		search_start = extent_end;
884 		/*
885 		 *       | ---- range to drop ----- |
886 		 *  | -------- extent -------- |
887 		 */
888 		if (start > key.offset && end >= extent_end) {
889 			BUG_ON(del_nr > 0);
890 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
891 				ret = -EOPNOTSUPP;
892 				break;
893 			}
894 
895 			btrfs_set_file_extent_num_bytes(leaf, fi,
896 							start - key.offset);
897 			btrfs_mark_buffer_dirty(leaf);
898 			if (update_refs && disk_bytenr > 0)
899 				inode_sub_bytes(inode, extent_end - start);
900 			if (end == extent_end)
901 				break;
902 
903 			path->slots[0]++;
904 			goto next_slot;
905 		}
906 
907 		/*
908 		 *  | ---- range to drop ----- |
909 		 *    | ------ extent ------ |
910 		 */
911 		if (start <= key.offset && end >= extent_end) {
912 delete_extent_item:
913 			if (del_nr == 0) {
914 				del_slot = path->slots[0];
915 				del_nr = 1;
916 			} else {
917 				BUG_ON(del_slot + del_nr != path->slots[0]);
918 				del_nr++;
919 			}
920 
921 			if (update_refs &&
922 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
923 				inode_sub_bytes(inode,
924 						extent_end - key.offset);
925 				extent_end = ALIGN(extent_end,
926 						   root->sectorsize);
927 			} else if (update_refs && disk_bytenr > 0) {
928 				ret = btrfs_free_extent(trans, root,
929 						disk_bytenr, num_bytes, 0,
930 						root->root_key.objectid,
931 						key.objectid, key.offset -
932 						extent_offset, 0);
933 				BUG_ON(ret); /* -ENOMEM */
934 				inode_sub_bytes(inode,
935 						extent_end - key.offset);
936 			}
937 
938 			if (end == extent_end)
939 				break;
940 
941 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
942 				path->slots[0]++;
943 				goto next_slot;
944 			}
945 
946 			ret = btrfs_del_items(trans, root, path, del_slot,
947 					      del_nr);
948 			if (ret) {
949 				btrfs_abort_transaction(trans, root, ret);
950 				break;
951 			}
952 
953 			del_nr = 0;
954 			del_slot = 0;
955 
956 			btrfs_release_path(path);
957 			continue;
958 		}
959 
960 		BUG_ON(1);
961 	}
962 
963 	if (!ret && del_nr > 0) {
964 		/*
965 		 * Set path->slots[0] to first slot, so that after the delete
966 		 * if items are move off from our leaf to its immediate left or
967 		 * right neighbor leafs, we end up with a correct and adjusted
968 		 * path->slots[0] for our insertion (if replace_extent != 0).
969 		 */
970 		path->slots[0] = del_slot;
971 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
972 		if (ret)
973 			btrfs_abort_transaction(trans, root, ret);
974 	}
975 
976 	leaf = path->nodes[0];
977 	/*
978 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
979 	 * which case it unlocked our path, so check path->locks[0] matches a
980 	 * write lock.
981 	 */
982 	if (!ret && replace_extent && leafs_visited == 1 &&
983 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
984 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
985 	    btrfs_leaf_free_space(root, leaf) >=
986 	    sizeof(struct btrfs_item) + extent_item_size) {
987 
988 		key.objectid = ino;
989 		key.type = BTRFS_EXTENT_DATA_KEY;
990 		key.offset = start;
991 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
992 			struct btrfs_key slot_key;
993 
994 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
995 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
996 				path->slots[0]++;
997 		}
998 		setup_items_for_insert(root, path, &key,
999 				       &extent_item_size,
1000 				       extent_item_size,
1001 				       sizeof(struct btrfs_item) +
1002 				       extent_item_size, 1);
1003 		*key_inserted = 1;
1004 	}
1005 
1006 	if (!replace_extent || !(*key_inserted))
1007 		btrfs_release_path(path);
1008 	if (drop_end)
1009 		*drop_end = found ? min(end, extent_end) : end;
1010 	return ret;
1011 }
1012 
1013 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1014 		       struct btrfs_root *root, struct inode *inode, u64 start,
1015 		       u64 end, int drop_cache)
1016 {
1017 	struct btrfs_path *path;
1018 	int ret;
1019 
1020 	path = btrfs_alloc_path();
1021 	if (!path)
1022 		return -ENOMEM;
1023 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1024 				   drop_cache, 0, 0, NULL);
1025 	btrfs_free_path(path);
1026 	return ret;
1027 }
1028 
1029 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1030 			    u64 objectid, u64 bytenr, u64 orig_offset,
1031 			    u64 *start, u64 *end)
1032 {
1033 	struct btrfs_file_extent_item *fi;
1034 	struct btrfs_key key;
1035 	u64 extent_end;
1036 
1037 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1038 		return 0;
1039 
1040 	btrfs_item_key_to_cpu(leaf, &key, slot);
1041 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1042 		return 0;
1043 
1044 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1045 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1046 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1047 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1048 	    btrfs_file_extent_compression(leaf, fi) ||
1049 	    btrfs_file_extent_encryption(leaf, fi) ||
1050 	    btrfs_file_extent_other_encoding(leaf, fi))
1051 		return 0;
1052 
1053 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1054 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1055 		return 0;
1056 
1057 	*start = key.offset;
1058 	*end = extent_end;
1059 	return 1;
1060 }
1061 
1062 /*
1063  * Mark extent in the range start - end as written.
1064  *
1065  * This changes extent type from 'pre-allocated' to 'regular'. If only
1066  * part of extent is marked as written, the extent will be split into
1067  * two or three.
1068  */
1069 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1070 			      struct inode *inode, u64 start, u64 end)
1071 {
1072 	struct btrfs_root *root = BTRFS_I(inode)->root;
1073 	struct extent_buffer *leaf;
1074 	struct btrfs_path *path;
1075 	struct btrfs_file_extent_item *fi;
1076 	struct btrfs_key key;
1077 	struct btrfs_key new_key;
1078 	u64 bytenr;
1079 	u64 num_bytes;
1080 	u64 extent_end;
1081 	u64 orig_offset;
1082 	u64 other_start;
1083 	u64 other_end;
1084 	u64 split;
1085 	int del_nr = 0;
1086 	int del_slot = 0;
1087 	int recow;
1088 	int ret;
1089 	u64 ino = btrfs_ino(inode);
1090 
1091 	path = btrfs_alloc_path();
1092 	if (!path)
1093 		return -ENOMEM;
1094 again:
1095 	recow = 0;
1096 	split = start;
1097 	key.objectid = ino;
1098 	key.type = BTRFS_EXTENT_DATA_KEY;
1099 	key.offset = split;
1100 
1101 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1102 	if (ret < 0)
1103 		goto out;
1104 	if (ret > 0 && path->slots[0] > 0)
1105 		path->slots[0]--;
1106 
1107 	leaf = path->nodes[0];
1108 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1109 	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1110 	fi = btrfs_item_ptr(leaf, path->slots[0],
1111 			    struct btrfs_file_extent_item);
1112 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1113 	       BTRFS_FILE_EXTENT_PREALLOC);
1114 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1115 	BUG_ON(key.offset > start || extent_end < end);
1116 
1117 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1118 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1119 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1120 	memcpy(&new_key, &key, sizeof(new_key));
1121 
1122 	if (start == key.offset && end < extent_end) {
1123 		other_start = 0;
1124 		other_end = start;
1125 		if (extent_mergeable(leaf, path->slots[0] - 1,
1126 				     ino, bytenr, orig_offset,
1127 				     &other_start, &other_end)) {
1128 			new_key.offset = end;
1129 			btrfs_set_item_key_safe(root, path, &new_key);
1130 			fi = btrfs_item_ptr(leaf, path->slots[0],
1131 					    struct btrfs_file_extent_item);
1132 			btrfs_set_file_extent_generation(leaf, fi,
1133 							 trans->transid);
1134 			btrfs_set_file_extent_num_bytes(leaf, fi,
1135 							extent_end - end);
1136 			btrfs_set_file_extent_offset(leaf, fi,
1137 						     end - orig_offset);
1138 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1139 					    struct btrfs_file_extent_item);
1140 			btrfs_set_file_extent_generation(leaf, fi,
1141 							 trans->transid);
1142 			btrfs_set_file_extent_num_bytes(leaf, fi,
1143 							end - other_start);
1144 			btrfs_mark_buffer_dirty(leaf);
1145 			goto out;
1146 		}
1147 	}
1148 
1149 	if (start > key.offset && end == extent_end) {
1150 		other_start = end;
1151 		other_end = 0;
1152 		if (extent_mergeable(leaf, path->slots[0] + 1,
1153 				     ino, bytenr, orig_offset,
1154 				     &other_start, &other_end)) {
1155 			fi = btrfs_item_ptr(leaf, path->slots[0],
1156 					    struct btrfs_file_extent_item);
1157 			btrfs_set_file_extent_num_bytes(leaf, fi,
1158 							start - key.offset);
1159 			btrfs_set_file_extent_generation(leaf, fi,
1160 							 trans->transid);
1161 			path->slots[0]++;
1162 			new_key.offset = start;
1163 			btrfs_set_item_key_safe(root, path, &new_key);
1164 
1165 			fi = btrfs_item_ptr(leaf, path->slots[0],
1166 					    struct btrfs_file_extent_item);
1167 			btrfs_set_file_extent_generation(leaf, fi,
1168 							 trans->transid);
1169 			btrfs_set_file_extent_num_bytes(leaf, fi,
1170 							other_end - start);
1171 			btrfs_set_file_extent_offset(leaf, fi,
1172 						     start - orig_offset);
1173 			btrfs_mark_buffer_dirty(leaf);
1174 			goto out;
1175 		}
1176 	}
1177 
1178 	while (start > key.offset || end < extent_end) {
1179 		if (key.offset == start)
1180 			split = end;
1181 
1182 		new_key.offset = split;
1183 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1184 		if (ret == -EAGAIN) {
1185 			btrfs_release_path(path);
1186 			goto again;
1187 		}
1188 		if (ret < 0) {
1189 			btrfs_abort_transaction(trans, root, ret);
1190 			goto out;
1191 		}
1192 
1193 		leaf = path->nodes[0];
1194 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1195 				    struct btrfs_file_extent_item);
1196 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1197 		btrfs_set_file_extent_num_bytes(leaf, fi,
1198 						split - key.offset);
1199 
1200 		fi = btrfs_item_ptr(leaf, path->slots[0],
1201 				    struct btrfs_file_extent_item);
1202 
1203 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1204 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1205 		btrfs_set_file_extent_num_bytes(leaf, fi,
1206 						extent_end - split);
1207 		btrfs_mark_buffer_dirty(leaf);
1208 
1209 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1210 					   root->root_key.objectid,
1211 					   ino, orig_offset, 1);
1212 		BUG_ON(ret); /* -ENOMEM */
1213 
1214 		if (split == start) {
1215 			key.offset = start;
1216 		} else {
1217 			BUG_ON(start != key.offset);
1218 			path->slots[0]--;
1219 			extent_end = end;
1220 		}
1221 		recow = 1;
1222 	}
1223 
1224 	other_start = end;
1225 	other_end = 0;
1226 	if (extent_mergeable(leaf, path->slots[0] + 1,
1227 			     ino, bytenr, orig_offset,
1228 			     &other_start, &other_end)) {
1229 		if (recow) {
1230 			btrfs_release_path(path);
1231 			goto again;
1232 		}
1233 		extent_end = other_end;
1234 		del_slot = path->slots[0] + 1;
1235 		del_nr++;
1236 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1237 					0, root->root_key.objectid,
1238 					ino, orig_offset, 0);
1239 		BUG_ON(ret); /* -ENOMEM */
1240 	}
1241 	other_start = 0;
1242 	other_end = start;
1243 	if (extent_mergeable(leaf, path->slots[0] - 1,
1244 			     ino, bytenr, orig_offset,
1245 			     &other_start, &other_end)) {
1246 		if (recow) {
1247 			btrfs_release_path(path);
1248 			goto again;
1249 		}
1250 		key.offset = other_start;
1251 		del_slot = path->slots[0];
1252 		del_nr++;
1253 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1254 					0, root->root_key.objectid,
1255 					ino, orig_offset, 0);
1256 		BUG_ON(ret); /* -ENOMEM */
1257 	}
1258 	if (del_nr == 0) {
1259 		fi = btrfs_item_ptr(leaf, path->slots[0],
1260 			   struct btrfs_file_extent_item);
1261 		btrfs_set_file_extent_type(leaf, fi,
1262 					   BTRFS_FILE_EXTENT_REG);
1263 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1264 		btrfs_mark_buffer_dirty(leaf);
1265 	} else {
1266 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1267 			   struct btrfs_file_extent_item);
1268 		btrfs_set_file_extent_type(leaf, fi,
1269 					   BTRFS_FILE_EXTENT_REG);
1270 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1271 		btrfs_set_file_extent_num_bytes(leaf, fi,
1272 						extent_end - key.offset);
1273 		btrfs_mark_buffer_dirty(leaf);
1274 
1275 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1276 		if (ret < 0) {
1277 			btrfs_abort_transaction(trans, root, ret);
1278 			goto out;
1279 		}
1280 	}
1281 out:
1282 	btrfs_free_path(path);
1283 	return 0;
1284 }
1285 
1286 /*
1287  * on error we return an unlocked page and the error value
1288  * on success we return a locked page and 0
1289  */
1290 static int prepare_uptodate_page(struct page *page, u64 pos,
1291 				 bool force_uptodate)
1292 {
1293 	int ret = 0;
1294 
1295 	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1296 	    !PageUptodate(page)) {
1297 		ret = btrfs_readpage(NULL, page);
1298 		if (ret)
1299 			return ret;
1300 		lock_page(page);
1301 		if (!PageUptodate(page)) {
1302 			unlock_page(page);
1303 			return -EIO;
1304 		}
1305 	}
1306 	return 0;
1307 }
1308 
1309 /*
1310  * this just gets pages into the page cache and locks them down.
1311  */
1312 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1313 				  size_t num_pages, loff_t pos,
1314 				  size_t write_bytes, bool force_uptodate)
1315 {
1316 	int i;
1317 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
1318 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1319 	int err = 0;
1320 	int faili;
1321 
1322 	for (i = 0; i < num_pages; i++) {
1323 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1324 					       mask | __GFP_WRITE);
1325 		if (!pages[i]) {
1326 			faili = i - 1;
1327 			err = -ENOMEM;
1328 			goto fail;
1329 		}
1330 
1331 		if (i == 0)
1332 			err = prepare_uptodate_page(pages[i], pos,
1333 						    force_uptodate);
1334 		if (i == num_pages - 1)
1335 			err = prepare_uptodate_page(pages[i],
1336 						    pos + write_bytes, false);
1337 		if (err) {
1338 			page_cache_release(pages[i]);
1339 			faili = i - 1;
1340 			goto fail;
1341 		}
1342 		wait_on_page_writeback(pages[i]);
1343 	}
1344 
1345 	return 0;
1346 fail:
1347 	while (faili >= 0) {
1348 		unlock_page(pages[faili]);
1349 		page_cache_release(pages[faili]);
1350 		faili--;
1351 	}
1352 	return err;
1353 
1354 }
1355 
1356 /*
1357  * This function locks the extent and properly waits for data=ordered extents
1358  * to finish before allowing the pages to be modified if need.
1359  *
1360  * The return value:
1361  * 1 - the extent is locked
1362  * 0 - the extent is not locked, and everything is OK
1363  * -EAGAIN - need re-prepare the pages
1364  * the other < 0 number - Something wrong happens
1365  */
1366 static noinline int
1367 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1368 				size_t num_pages, loff_t pos,
1369 				u64 *lockstart, u64 *lockend,
1370 				struct extent_state **cached_state)
1371 {
1372 	u64 start_pos;
1373 	u64 last_pos;
1374 	int i;
1375 	int ret = 0;
1376 
1377 	start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1378 	last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1379 
1380 	if (start_pos < inode->i_size) {
1381 		struct btrfs_ordered_extent *ordered;
1382 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1383 				 start_pos, last_pos, 0, cached_state);
1384 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1385 						     last_pos - start_pos + 1);
1386 		if (ordered &&
1387 		    ordered->file_offset + ordered->len > start_pos &&
1388 		    ordered->file_offset <= last_pos) {
1389 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1390 					     start_pos, last_pos,
1391 					     cached_state, GFP_NOFS);
1392 			for (i = 0; i < num_pages; i++) {
1393 				unlock_page(pages[i]);
1394 				page_cache_release(pages[i]);
1395 			}
1396 			btrfs_start_ordered_extent(inode, ordered, 1);
1397 			btrfs_put_ordered_extent(ordered);
1398 			return -EAGAIN;
1399 		}
1400 		if (ordered)
1401 			btrfs_put_ordered_extent(ordered);
1402 
1403 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1404 				  last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1405 				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1406 				  0, 0, cached_state, GFP_NOFS);
1407 		*lockstart = start_pos;
1408 		*lockend = last_pos;
1409 		ret = 1;
1410 	}
1411 
1412 	for (i = 0; i < num_pages; i++) {
1413 		if (clear_page_dirty_for_io(pages[i]))
1414 			account_page_redirty(pages[i]);
1415 		set_page_extent_mapped(pages[i]);
1416 		WARN_ON(!PageLocked(pages[i]));
1417 	}
1418 
1419 	return ret;
1420 }
1421 
1422 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1423 				    size_t *write_bytes)
1424 {
1425 	struct btrfs_root *root = BTRFS_I(inode)->root;
1426 	struct btrfs_ordered_extent *ordered;
1427 	u64 lockstart, lockend;
1428 	u64 num_bytes;
1429 	int ret;
1430 
1431 	ret = btrfs_start_write_no_snapshoting(root);
1432 	if (!ret)
1433 		return -ENOSPC;
1434 
1435 	lockstart = round_down(pos, root->sectorsize);
1436 	lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1437 
1438 	while (1) {
1439 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1440 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1441 						     lockend - lockstart + 1);
1442 		if (!ordered) {
1443 			break;
1444 		}
1445 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1446 		btrfs_start_ordered_extent(inode, ordered, 1);
1447 		btrfs_put_ordered_extent(ordered);
1448 	}
1449 
1450 	num_bytes = lockend - lockstart + 1;
1451 	ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1452 	if (ret <= 0) {
1453 		ret = 0;
1454 		btrfs_end_write_no_snapshoting(root);
1455 	} else {
1456 		*write_bytes = min_t(size_t, *write_bytes ,
1457 				     num_bytes - pos + lockstart);
1458 	}
1459 
1460 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1461 
1462 	return ret;
1463 }
1464 
1465 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1466 					       struct iov_iter *i,
1467 					       loff_t pos)
1468 {
1469 	struct inode *inode = file_inode(file);
1470 	struct btrfs_root *root = BTRFS_I(inode)->root;
1471 	struct page **pages = NULL;
1472 	struct extent_state *cached_state = NULL;
1473 	u64 release_bytes = 0;
1474 	u64 lockstart;
1475 	u64 lockend;
1476 	unsigned long first_index;
1477 	size_t num_written = 0;
1478 	int nrptrs;
1479 	int ret = 0;
1480 	bool only_release_metadata = false;
1481 	bool force_page_uptodate = false;
1482 	bool need_unlock;
1483 
1484 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_CACHE_SIZE),
1485 			PAGE_CACHE_SIZE / (sizeof(struct page *)));
1486 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1487 	nrptrs = max(nrptrs, 8);
1488 	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1489 	if (!pages)
1490 		return -ENOMEM;
1491 
1492 	first_index = pos >> PAGE_CACHE_SHIFT;
1493 
1494 	while (iov_iter_count(i) > 0) {
1495 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1496 		size_t write_bytes = min(iov_iter_count(i),
1497 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
1498 					 offset);
1499 		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1500 						PAGE_CACHE_SIZE);
1501 		size_t reserve_bytes;
1502 		size_t dirty_pages;
1503 		size_t copied;
1504 
1505 		WARN_ON(num_pages > nrptrs);
1506 
1507 		/*
1508 		 * Fault pages before locking them in prepare_pages
1509 		 * to avoid recursive lock
1510 		 */
1511 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1512 			ret = -EFAULT;
1513 			break;
1514 		}
1515 
1516 		reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1517 		ret = btrfs_check_data_free_space(inode, reserve_bytes);
1518 		if (ret == -ENOSPC &&
1519 		    (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1520 					      BTRFS_INODE_PREALLOC))) {
1521 			ret = check_can_nocow(inode, pos, &write_bytes);
1522 			if (ret > 0) {
1523 				only_release_metadata = true;
1524 				/*
1525 				 * our prealloc extent may be smaller than
1526 				 * write_bytes, so scale down.
1527 				 */
1528 				num_pages = DIV_ROUND_UP(write_bytes + offset,
1529 							 PAGE_CACHE_SIZE);
1530 				reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1531 				ret = 0;
1532 			} else {
1533 				ret = -ENOSPC;
1534 			}
1535 		}
1536 
1537 		if (ret)
1538 			break;
1539 
1540 		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1541 		if (ret) {
1542 			if (!only_release_metadata)
1543 				btrfs_free_reserved_data_space(inode,
1544 							       reserve_bytes);
1545 			else
1546 				btrfs_end_write_no_snapshoting(root);
1547 			break;
1548 		}
1549 
1550 		release_bytes = reserve_bytes;
1551 		need_unlock = false;
1552 again:
1553 		/*
1554 		 * This is going to setup the pages array with the number of
1555 		 * pages we want, so we don't really need to worry about the
1556 		 * contents of pages from loop to loop
1557 		 */
1558 		ret = prepare_pages(inode, pages, num_pages,
1559 				    pos, write_bytes,
1560 				    force_page_uptodate);
1561 		if (ret)
1562 			break;
1563 
1564 		ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1565 						      pos, &lockstart, &lockend,
1566 						      &cached_state);
1567 		if (ret < 0) {
1568 			if (ret == -EAGAIN)
1569 				goto again;
1570 			break;
1571 		} else if (ret > 0) {
1572 			need_unlock = true;
1573 			ret = 0;
1574 		}
1575 
1576 		copied = btrfs_copy_from_user(pos, num_pages,
1577 					   write_bytes, pages, i);
1578 
1579 		/*
1580 		 * if we have trouble faulting in the pages, fall
1581 		 * back to one page at a time
1582 		 */
1583 		if (copied < write_bytes)
1584 			nrptrs = 1;
1585 
1586 		if (copied == 0) {
1587 			force_page_uptodate = true;
1588 			dirty_pages = 0;
1589 		} else {
1590 			force_page_uptodate = false;
1591 			dirty_pages = DIV_ROUND_UP(copied + offset,
1592 						   PAGE_CACHE_SIZE);
1593 		}
1594 
1595 		/*
1596 		 * If we had a short copy we need to release the excess delaloc
1597 		 * bytes we reserved.  We need to increment outstanding_extents
1598 		 * because btrfs_delalloc_release_space will decrement it, but
1599 		 * we still have an outstanding extent for the chunk we actually
1600 		 * managed to copy.
1601 		 */
1602 		if (num_pages > dirty_pages) {
1603 			release_bytes = (num_pages - dirty_pages) <<
1604 				PAGE_CACHE_SHIFT;
1605 			if (copied > 0) {
1606 				spin_lock(&BTRFS_I(inode)->lock);
1607 				BTRFS_I(inode)->outstanding_extents++;
1608 				spin_unlock(&BTRFS_I(inode)->lock);
1609 			}
1610 			if (only_release_metadata)
1611 				btrfs_delalloc_release_metadata(inode,
1612 								release_bytes);
1613 			else
1614 				btrfs_delalloc_release_space(inode,
1615 							     release_bytes);
1616 		}
1617 
1618 		release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1619 
1620 		if (copied > 0)
1621 			ret = btrfs_dirty_pages(root, inode, pages,
1622 						dirty_pages, pos, copied,
1623 						NULL);
1624 		if (need_unlock)
1625 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1626 					     lockstart, lockend, &cached_state,
1627 					     GFP_NOFS);
1628 		if (ret) {
1629 			btrfs_drop_pages(pages, num_pages);
1630 			break;
1631 		}
1632 
1633 		release_bytes = 0;
1634 		if (only_release_metadata)
1635 			btrfs_end_write_no_snapshoting(root);
1636 
1637 		if (only_release_metadata && copied > 0) {
1638 			u64 lockstart = round_down(pos, root->sectorsize);
1639 			u64 lockend = lockstart +
1640 				(dirty_pages << PAGE_CACHE_SHIFT) - 1;
1641 
1642 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1643 				       lockend, EXTENT_NORESERVE, NULL,
1644 				       NULL, GFP_NOFS);
1645 			only_release_metadata = false;
1646 		}
1647 
1648 		btrfs_drop_pages(pages, num_pages);
1649 
1650 		cond_resched();
1651 
1652 		balance_dirty_pages_ratelimited(inode->i_mapping);
1653 		if (dirty_pages < (root->nodesize >> PAGE_CACHE_SHIFT) + 1)
1654 			btrfs_btree_balance_dirty(root);
1655 
1656 		pos += copied;
1657 		num_written += copied;
1658 	}
1659 
1660 	kfree(pages);
1661 
1662 	if (release_bytes) {
1663 		if (only_release_metadata) {
1664 			btrfs_end_write_no_snapshoting(root);
1665 			btrfs_delalloc_release_metadata(inode, release_bytes);
1666 		} else {
1667 			btrfs_delalloc_release_space(inode, release_bytes);
1668 		}
1669 	}
1670 
1671 	return num_written ? num_written : ret;
1672 }
1673 
1674 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1675 				    struct iov_iter *from,
1676 				    loff_t pos)
1677 {
1678 	struct file *file = iocb->ki_filp;
1679 	struct inode *inode = file_inode(file);
1680 	ssize_t written;
1681 	ssize_t written_buffered;
1682 	loff_t endbyte;
1683 	int err;
1684 
1685 	written = generic_file_direct_write(iocb, from, pos);
1686 
1687 	if (written < 0 || !iov_iter_count(from))
1688 		return written;
1689 
1690 	pos += written;
1691 	written_buffered = __btrfs_buffered_write(file, from, pos);
1692 	if (written_buffered < 0) {
1693 		err = written_buffered;
1694 		goto out;
1695 	}
1696 	/*
1697 	 * Ensure all data is persisted. We want the next direct IO read to be
1698 	 * able to read what was just written.
1699 	 */
1700 	endbyte = pos + written_buffered - 1;
1701 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1702 	if (err)
1703 		goto out;
1704 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1705 	if (err)
1706 		goto out;
1707 	written += written_buffered;
1708 	iocb->ki_pos = pos + written_buffered;
1709 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1710 				 endbyte >> PAGE_CACHE_SHIFT);
1711 out:
1712 	return written ? written : err;
1713 }
1714 
1715 static void update_time_for_write(struct inode *inode)
1716 {
1717 	struct timespec now;
1718 
1719 	if (IS_NOCMTIME(inode))
1720 		return;
1721 
1722 	now = current_fs_time(inode->i_sb);
1723 	if (!timespec_equal(&inode->i_mtime, &now))
1724 		inode->i_mtime = now;
1725 
1726 	if (!timespec_equal(&inode->i_ctime, &now))
1727 		inode->i_ctime = now;
1728 
1729 	if (IS_I_VERSION(inode))
1730 		inode_inc_iversion(inode);
1731 }
1732 
1733 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1734 				    struct iov_iter *from)
1735 {
1736 	struct file *file = iocb->ki_filp;
1737 	struct inode *inode = file_inode(file);
1738 	struct btrfs_root *root = BTRFS_I(inode)->root;
1739 	u64 start_pos;
1740 	u64 end_pos;
1741 	ssize_t num_written = 0;
1742 	ssize_t err = 0;
1743 	size_t count = iov_iter_count(from);
1744 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1745 	loff_t pos = iocb->ki_pos;
1746 
1747 	mutex_lock(&inode->i_mutex);
1748 
1749 	current->backing_dev_info = inode_to_bdi(inode);
1750 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1751 	if (err) {
1752 		mutex_unlock(&inode->i_mutex);
1753 		goto out;
1754 	}
1755 
1756 	if (count == 0) {
1757 		mutex_unlock(&inode->i_mutex);
1758 		goto out;
1759 	}
1760 
1761 	iov_iter_truncate(from, count);
1762 
1763 	err = file_remove_suid(file);
1764 	if (err) {
1765 		mutex_unlock(&inode->i_mutex);
1766 		goto out;
1767 	}
1768 
1769 	/*
1770 	 * If BTRFS flips readonly due to some impossible error
1771 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1772 	 * although we have opened a file as writable, we have
1773 	 * to stop this write operation to ensure FS consistency.
1774 	 */
1775 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1776 		mutex_unlock(&inode->i_mutex);
1777 		err = -EROFS;
1778 		goto out;
1779 	}
1780 
1781 	/*
1782 	 * We reserve space for updating the inode when we reserve space for the
1783 	 * extent we are going to write, so we will enospc out there.  We don't
1784 	 * need to start yet another transaction to update the inode as we will
1785 	 * update the inode when we finish writing whatever data we write.
1786 	 */
1787 	update_time_for_write(inode);
1788 
1789 	start_pos = round_down(pos, root->sectorsize);
1790 	if (start_pos > i_size_read(inode)) {
1791 		/* Expand hole size to cover write data, preventing empty gap */
1792 		end_pos = round_up(pos + count, root->sectorsize);
1793 		err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
1794 		if (err) {
1795 			mutex_unlock(&inode->i_mutex);
1796 			goto out;
1797 		}
1798 	}
1799 
1800 	if (sync)
1801 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1802 
1803 	if (file->f_flags & O_DIRECT) {
1804 		num_written = __btrfs_direct_write(iocb, from, pos);
1805 	} else {
1806 		num_written = __btrfs_buffered_write(file, from, pos);
1807 		if (num_written > 0)
1808 			iocb->ki_pos = pos + num_written;
1809 	}
1810 
1811 	mutex_unlock(&inode->i_mutex);
1812 
1813 	/*
1814 	 * We also have to set last_sub_trans to the current log transid,
1815 	 * otherwise subsequent syncs to a file that's been synced in this
1816 	 * transaction will appear to have already occured.
1817 	 */
1818 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1819 	if (num_written > 0) {
1820 		err = generic_write_sync(file, pos, num_written);
1821 		if (err < 0)
1822 			num_written = err;
1823 	}
1824 
1825 	if (sync)
1826 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1827 out:
1828 	current->backing_dev_info = NULL;
1829 	return num_written ? num_written : err;
1830 }
1831 
1832 int btrfs_release_file(struct inode *inode, struct file *filp)
1833 {
1834 	if (filp->private_data)
1835 		btrfs_ioctl_trans_end(filp);
1836 	/*
1837 	 * ordered_data_close is set by settattr when we are about to truncate
1838 	 * a file from a non-zero size to a zero size.  This tries to
1839 	 * flush down new bytes that may have been written if the
1840 	 * application were using truncate to replace a file in place.
1841 	 */
1842 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1843 			       &BTRFS_I(inode)->runtime_flags))
1844 			filemap_flush(inode->i_mapping);
1845 	return 0;
1846 }
1847 
1848 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1849 {
1850 	int ret;
1851 
1852 	atomic_inc(&BTRFS_I(inode)->sync_writers);
1853 	ret = btrfs_fdatawrite_range(inode, start, end);
1854 	atomic_dec(&BTRFS_I(inode)->sync_writers);
1855 
1856 	return ret;
1857 }
1858 
1859 /*
1860  * fsync call for both files and directories.  This logs the inode into
1861  * the tree log instead of forcing full commits whenever possible.
1862  *
1863  * It needs to call filemap_fdatawait so that all ordered extent updates are
1864  * in the metadata btree are up to date for copying to the log.
1865  *
1866  * It drops the inode mutex before doing the tree log commit.  This is an
1867  * important optimization for directories because holding the mutex prevents
1868  * new operations on the dir while we write to disk.
1869  */
1870 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1871 {
1872 	struct dentry *dentry = file->f_path.dentry;
1873 	struct inode *inode = dentry->d_inode;
1874 	struct btrfs_root *root = BTRFS_I(inode)->root;
1875 	struct btrfs_trans_handle *trans;
1876 	struct btrfs_log_ctx ctx;
1877 	int ret = 0;
1878 	bool full_sync = 0;
1879 
1880 	trace_btrfs_sync_file(file, datasync);
1881 
1882 	/*
1883 	 * We write the dirty pages in the range and wait until they complete
1884 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1885 	 * multi-task, and make the performance up.  See
1886 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1887 	 */
1888 	ret = start_ordered_ops(inode, start, end);
1889 	if (ret)
1890 		return ret;
1891 
1892 	mutex_lock(&inode->i_mutex);
1893 	atomic_inc(&root->log_batch);
1894 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1895 			     &BTRFS_I(inode)->runtime_flags);
1896 	/*
1897 	 * We might have have had more pages made dirty after calling
1898 	 * start_ordered_ops and before acquiring the inode's i_mutex.
1899 	 */
1900 	if (full_sync) {
1901 		/*
1902 		 * For a full sync, we need to make sure any ordered operations
1903 		 * start and finish before we start logging the inode, so that
1904 		 * all extents are persisted and the respective file extent
1905 		 * items are in the fs/subvol btree.
1906 		 */
1907 		ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1908 	} else {
1909 		/*
1910 		 * Start any new ordered operations before starting to log the
1911 		 * inode. We will wait for them to finish in btrfs_sync_log().
1912 		 *
1913 		 * Right before acquiring the inode's mutex, we might have new
1914 		 * writes dirtying pages, which won't immediately start the
1915 		 * respective ordered operations - that is done through the
1916 		 * fill_delalloc callbacks invoked from the writepage and
1917 		 * writepages address space operations. So make sure we start
1918 		 * all ordered operations before starting to log our inode. Not
1919 		 * doing this means that while logging the inode, writeback
1920 		 * could start and invoke writepage/writepages, which would call
1921 		 * the fill_delalloc callbacks (cow_file_range,
1922 		 * submit_compressed_extents). These callbacks add first an
1923 		 * extent map to the modified list of extents and then create
1924 		 * the respective ordered operation, which means in
1925 		 * tree-log.c:btrfs_log_inode() we might capture all existing
1926 		 * ordered operations (with btrfs_get_logged_extents()) before
1927 		 * the fill_delalloc callback adds its ordered operation, and by
1928 		 * the time we visit the modified list of extent maps (with
1929 		 * btrfs_log_changed_extents()), we see and process the extent
1930 		 * map they created. We then use the extent map to construct a
1931 		 * file extent item for logging without waiting for the
1932 		 * respective ordered operation to finish - this file extent
1933 		 * item points to a disk location that might not have yet been
1934 		 * written to, containing random data - so after a crash a log
1935 		 * replay will make our inode have file extent items that point
1936 		 * to disk locations containing invalid data, as we returned
1937 		 * success to userspace without waiting for the respective
1938 		 * ordered operation to finish, because it wasn't captured by
1939 		 * btrfs_get_logged_extents().
1940 		 */
1941 		ret = start_ordered_ops(inode, start, end);
1942 	}
1943 	if (ret) {
1944 		mutex_unlock(&inode->i_mutex);
1945 		goto out;
1946 	}
1947 	atomic_inc(&root->log_batch);
1948 
1949 	/*
1950 	 * If the last transaction that changed this file was before the current
1951 	 * transaction and we have the full sync flag set in our inode, we can
1952 	 * bail out now without any syncing.
1953 	 *
1954 	 * Note that we can't bail out if the full sync flag isn't set. This is
1955 	 * because when the full sync flag is set we start all ordered extents
1956 	 * and wait for them to fully complete - when they complete they update
1957 	 * the inode's last_trans field through:
1958 	 *
1959 	 *     btrfs_finish_ordered_io() ->
1960 	 *         btrfs_update_inode_fallback() ->
1961 	 *             btrfs_update_inode() ->
1962 	 *                 btrfs_set_inode_last_trans()
1963 	 *
1964 	 * So we are sure that last_trans is up to date and can do this check to
1965 	 * bail out safely. For the fast path, when the full sync flag is not
1966 	 * set in our inode, we can not do it because we start only our ordered
1967 	 * extents and don't wait for them to complete (that is when
1968 	 * btrfs_finish_ordered_io runs), so here at this point their last_trans
1969 	 * value might be less than or equals to fs_info->last_trans_committed,
1970 	 * and setting a speculative last_trans for an inode when a buffered
1971 	 * write is made (such as fs_info->generation + 1 for example) would not
1972 	 * be reliable since after setting the value and before fsync is called
1973 	 * any number of transactions can start and commit (transaction kthread
1974 	 * commits the current transaction periodically), and a transaction
1975 	 * commit does not start nor waits for ordered extents to complete.
1976 	 */
1977 	smp_mb();
1978 	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1979 	    (full_sync && BTRFS_I(inode)->last_trans <=
1980 	     root->fs_info->last_trans_committed)) {
1981 		/*
1982 		 * We'v had everything committed since the last time we were
1983 		 * modified so clear this flag in case it was set for whatever
1984 		 * reason, it's no longer relevant.
1985 		 */
1986 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1987 			  &BTRFS_I(inode)->runtime_flags);
1988 		mutex_unlock(&inode->i_mutex);
1989 		goto out;
1990 	}
1991 
1992 	/*
1993 	 * ok we haven't committed the transaction yet, lets do a commit
1994 	 */
1995 	if (file->private_data)
1996 		btrfs_ioctl_trans_end(file);
1997 
1998 	/*
1999 	 * We use start here because we will need to wait on the IO to complete
2000 	 * in btrfs_sync_log, which could require joining a transaction (for
2001 	 * example checking cross references in the nocow path).  If we use join
2002 	 * here we could get into a situation where we're waiting on IO to
2003 	 * happen that is blocked on a transaction trying to commit.  With start
2004 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2005 	 * before we start blocking join'ers.  This comment is to keep somebody
2006 	 * from thinking they are super smart and changing this to
2007 	 * btrfs_join_transaction *cough*Josef*cough*.
2008 	 */
2009 	trans = btrfs_start_transaction(root, 0);
2010 	if (IS_ERR(trans)) {
2011 		ret = PTR_ERR(trans);
2012 		mutex_unlock(&inode->i_mutex);
2013 		goto out;
2014 	}
2015 	trans->sync = true;
2016 
2017 	btrfs_init_log_ctx(&ctx);
2018 
2019 	ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2020 	if (ret < 0) {
2021 		/* Fallthrough and commit/free transaction. */
2022 		ret = 1;
2023 	}
2024 
2025 	/* we've logged all the items and now have a consistent
2026 	 * version of the file in the log.  It is possible that
2027 	 * someone will come in and modify the file, but that's
2028 	 * fine because the log is consistent on disk, and we
2029 	 * have references to all of the file's extents
2030 	 *
2031 	 * It is possible that someone will come in and log the
2032 	 * file again, but that will end up using the synchronization
2033 	 * inside btrfs_sync_log to keep things safe.
2034 	 */
2035 	mutex_unlock(&inode->i_mutex);
2036 
2037 	/*
2038 	 * If any of the ordered extents had an error, just return it to user
2039 	 * space, so that the application knows some writes didn't succeed and
2040 	 * can take proper action (retry for e.g.). Blindly committing the
2041 	 * transaction in this case, would fool userspace that everything was
2042 	 * successful. And we also want to make sure our log doesn't contain
2043 	 * file extent items pointing to extents that weren't fully written to -
2044 	 * just like in the non fast fsync path, where we check for the ordered
2045 	 * operation's error flag before writing to the log tree and return -EIO
2046 	 * if any of them had this flag set (btrfs_wait_ordered_range) -
2047 	 * therefore we need to check for errors in the ordered operations,
2048 	 * which are indicated by ctx.io_err.
2049 	 */
2050 	if (ctx.io_err) {
2051 		btrfs_end_transaction(trans, root);
2052 		ret = ctx.io_err;
2053 		goto out;
2054 	}
2055 
2056 	if (ret != BTRFS_NO_LOG_SYNC) {
2057 		if (!ret) {
2058 			ret = btrfs_sync_log(trans, root, &ctx);
2059 			if (!ret) {
2060 				ret = btrfs_end_transaction(trans, root);
2061 				goto out;
2062 			}
2063 		}
2064 		if (!full_sync) {
2065 			ret = btrfs_wait_ordered_range(inode, start,
2066 						       end - start + 1);
2067 			if (ret) {
2068 				btrfs_end_transaction(trans, root);
2069 				goto out;
2070 			}
2071 		}
2072 		ret = btrfs_commit_transaction(trans, root);
2073 	} else {
2074 		ret = btrfs_end_transaction(trans, root);
2075 	}
2076 out:
2077 	return ret > 0 ? -EIO : ret;
2078 }
2079 
2080 static const struct vm_operations_struct btrfs_file_vm_ops = {
2081 	.fault		= filemap_fault,
2082 	.map_pages	= filemap_map_pages,
2083 	.page_mkwrite	= btrfs_page_mkwrite,
2084 };
2085 
2086 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2087 {
2088 	struct address_space *mapping = filp->f_mapping;
2089 
2090 	if (!mapping->a_ops->readpage)
2091 		return -ENOEXEC;
2092 
2093 	file_accessed(filp);
2094 	vma->vm_ops = &btrfs_file_vm_ops;
2095 
2096 	return 0;
2097 }
2098 
2099 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2100 			  int slot, u64 start, u64 end)
2101 {
2102 	struct btrfs_file_extent_item *fi;
2103 	struct btrfs_key key;
2104 
2105 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2106 		return 0;
2107 
2108 	btrfs_item_key_to_cpu(leaf, &key, slot);
2109 	if (key.objectid != btrfs_ino(inode) ||
2110 	    key.type != BTRFS_EXTENT_DATA_KEY)
2111 		return 0;
2112 
2113 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2114 
2115 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2116 		return 0;
2117 
2118 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2119 		return 0;
2120 
2121 	if (key.offset == end)
2122 		return 1;
2123 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2124 		return 1;
2125 	return 0;
2126 }
2127 
2128 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2129 		      struct btrfs_path *path, u64 offset, u64 end)
2130 {
2131 	struct btrfs_root *root = BTRFS_I(inode)->root;
2132 	struct extent_buffer *leaf;
2133 	struct btrfs_file_extent_item *fi;
2134 	struct extent_map *hole_em;
2135 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2136 	struct btrfs_key key;
2137 	int ret;
2138 
2139 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2140 		goto out;
2141 
2142 	key.objectid = btrfs_ino(inode);
2143 	key.type = BTRFS_EXTENT_DATA_KEY;
2144 	key.offset = offset;
2145 
2146 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2147 	if (ret < 0)
2148 		return ret;
2149 	BUG_ON(!ret);
2150 
2151 	leaf = path->nodes[0];
2152 	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2153 		u64 num_bytes;
2154 
2155 		path->slots[0]--;
2156 		fi = btrfs_item_ptr(leaf, path->slots[0],
2157 				    struct btrfs_file_extent_item);
2158 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2159 			end - offset;
2160 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2161 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2162 		btrfs_set_file_extent_offset(leaf, fi, 0);
2163 		btrfs_mark_buffer_dirty(leaf);
2164 		goto out;
2165 	}
2166 
2167 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2168 		u64 num_bytes;
2169 
2170 		key.offset = offset;
2171 		btrfs_set_item_key_safe(root, path, &key);
2172 		fi = btrfs_item_ptr(leaf, path->slots[0],
2173 				    struct btrfs_file_extent_item);
2174 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2175 			offset;
2176 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2177 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2178 		btrfs_set_file_extent_offset(leaf, fi, 0);
2179 		btrfs_mark_buffer_dirty(leaf);
2180 		goto out;
2181 	}
2182 	btrfs_release_path(path);
2183 
2184 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2185 				       0, 0, end - offset, 0, end - offset,
2186 				       0, 0, 0);
2187 	if (ret)
2188 		return ret;
2189 
2190 out:
2191 	btrfs_release_path(path);
2192 
2193 	hole_em = alloc_extent_map();
2194 	if (!hole_em) {
2195 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2196 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2197 			&BTRFS_I(inode)->runtime_flags);
2198 	} else {
2199 		hole_em->start = offset;
2200 		hole_em->len = end - offset;
2201 		hole_em->ram_bytes = hole_em->len;
2202 		hole_em->orig_start = offset;
2203 
2204 		hole_em->block_start = EXTENT_MAP_HOLE;
2205 		hole_em->block_len = 0;
2206 		hole_em->orig_block_len = 0;
2207 		hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2208 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2209 		hole_em->generation = trans->transid;
2210 
2211 		do {
2212 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2213 			write_lock(&em_tree->lock);
2214 			ret = add_extent_mapping(em_tree, hole_em, 1);
2215 			write_unlock(&em_tree->lock);
2216 		} while (ret == -EEXIST);
2217 		free_extent_map(hole_em);
2218 		if (ret)
2219 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2220 				&BTRFS_I(inode)->runtime_flags);
2221 	}
2222 
2223 	return 0;
2224 }
2225 
2226 /*
2227  * Find a hole extent on given inode and change start/len to the end of hole
2228  * extent.(hole/vacuum extent whose em->start <= start &&
2229  *	   em->start + em->len > start)
2230  * When a hole extent is found, return 1 and modify start/len.
2231  */
2232 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2233 {
2234 	struct extent_map *em;
2235 	int ret = 0;
2236 
2237 	em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2238 	if (IS_ERR_OR_NULL(em)) {
2239 		if (!em)
2240 			ret = -ENOMEM;
2241 		else
2242 			ret = PTR_ERR(em);
2243 		return ret;
2244 	}
2245 
2246 	/* Hole or vacuum extent(only exists in no-hole mode) */
2247 	if (em->block_start == EXTENT_MAP_HOLE) {
2248 		ret = 1;
2249 		*len = em->start + em->len > *start + *len ?
2250 		       0 : *start + *len - em->start - em->len;
2251 		*start = em->start + em->len;
2252 	}
2253 	free_extent_map(em);
2254 	return ret;
2255 }
2256 
2257 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2258 {
2259 	struct btrfs_root *root = BTRFS_I(inode)->root;
2260 	struct extent_state *cached_state = NULL;
2261 	struct btrfs_path *path;
2262 	struct btrfs_block_rsv *rsv;
2263 	struct btrfs_trans_handle *trans;
2264 	u64 lockstart;
2265 	u64 lockend;
2266 	u64 tail_start;
2267 	u64 tail_len;
2268 	u64 orig_start = offset;
2269 	u64 cur_offset;
2270 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2271 	u64 drop_end;
2272 	int ret = 0;
2273 	int err = 0;
2274 	int rsv_count;
2275 	bool same_page;
2276 	bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2277 	u64 ino_size;
2278 	bool truncated_page = false;
2279 	bool updated_inode = false;
2280 
2281 	ret = btrfs_wait_ordered_range(inode, offset, len);
2282 	if (ret)
2283 		return ret;
2284 
2285 	mutex_lock(&inode->i_mutex);
2286 	ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2287 	ret = find_first_non_hole(inode, &offset, &len);
2288 	if (ret < 0)
2289 		goto out_only_mutex;
2290 	if (ret && !len) {
2291 		/* Already in a large hole */
2292 		ret = 0;
2293 		goto out_only_mutex;
2294 	}
2295 
2296 	lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2297 	lockend = round_down(offset + len,
2298 			     BTRFS_I(inode)->root->sectorsize) - 1;
2299 	same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2300 		    ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2301 
2302 	/*
2303 	 * We needn't truncate any page which is beyond the end of the file
2304 	 * because we are sure there is no data there.
2305 	 */
2306 	/*
2307 	 * Only do this if we are in the same page and we aren't doing the
2308 	 * entire page.
2309 	 */
2310 	if (same_page && len < PAGE_CACHE_SIZE) {
2311 		if (offset < ino_size) {
2312 			truncated_page = true;
2313 			ret = btrfs_truncate_page(inode, offset, len, 0);
2314 		} else {
2315 			ret = 0;
2316 		}
2317 		goto out_only_mutex;
2318 	}
2319 
2320 	/* zero back part of the first page */
2321 	if (offset < ino_size) {
2322 		truncated_page = true;
2323 		ret = btrfs_truncate_page(inode, offset, 0, 0);
2324 		if (ret) {
2325 			mutex_unlock(&inode->i_mutex);
2326 			return ret;
2327 		}
2328 	}
2329 
2330 	/* Check the aligned pages after the first unaligned page,
2331 	 * if offset != orig_start, which means the first unaligned page
2332 	 * including serveral following pages are already in holes,
2333 	 * the extra check can be skipped */
2334 	if (offset == orig_start) {
2335 		/* after truncate page, check hole again */
2336 		len = offset + len - lockstart;
2337 		offset = lockstart;
2338 		ret = find_first_non_hole(inode, &offset, &len);
2339 		if (ret < 0)
2340 			goto out_only_mutex;
2341 		if (ret && !len) {
2342 			ret = 0;
2343 			goto out_only_mutex;
2344 		}
2345 		lockstart = offset;
2346 	}
2347 
2348 	/* Check the tail unaligned part is in a hole */
2349 	tail_start = lockend + 1;
2350 	tail_len = offset + len - tail_start;
2351 	if (tail_len) {
2352 		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2353 		if (unlikely(ret < 0))
2354 			goto out_only_mutex;
2355 		if (!ret) {
2356 			/* zero the front end of the last page */
2357 			if (tail_start + tail_len < ino_size) {
2358 				truncated_page = true;
2359 				ret = btrfs_truncate_page(inode,
2360 						tail_start + tail_len, 0, 1);
2361 				if (ret)
2362 					goto out_only_mutex;
2363 			}
2364 		}
2365 	}
2366 
2367 	if (lockend < lockstart) {
2368 		ret = 0;
2369 		goto out_only_mutex;
2370 	}
2371 
2372 	while (1) {
2373 		struct btrfs_ordered_extent *ordered;
2374 
2375 		truncate_pagecache_range(inode, lockstart, lockend);
2376 
2377 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2378 				 0, &cached_state);
2379 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2380 
2381 		/*
2382 		 * We need to make sure we have no ordered extents in this range
2383 		 * and nobody raced in and read a page in this range, if we did
2384 		 * we need to try again.
2385 		 */
2386 		if ((!ordered ||
2387 		    (ordered->file_offset + ordered->len <= lockstart ||
2388 		     ordered->file_offset > lockend)) &&
2389 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2390 			if (ordered)
2391 				btrfs_put_ordered_extent(ordered);
2392 			break;
2393 		}
2394 		if (ordered)
2395 			btrfs_put_ordered_extent(ordered);
2396 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2397 				     lockend, &cached_state, GFP_NOFS);
2398 		ret = btrfs_wait_ordered_range(inode, lockstart,
2399 					       lockend - lockstart + 1);
2400 		if (ret) {
2401 			mutex_unlock(&inode->i_mutex);
2402 			return ret;
2403 		}
2404 	}
2405 
2406 	path = btrfs_alloc_path();
2407 	if (!path) {
2408 		ret = -ENOMEM;
2409 		goto out;
2410 	}
2411 
2412 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2413 	if (!rsv) {
2414 		ret = -ENOMEM;
2415 		goto out_free;
2416 	}
2417 	rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2418 	rsv->failfast = 1;
2419 
2420 	/*
2421 	 * 1 - update the inode
2422 	 * 1 - removing the extents in the range
2423 	 * 1 - adding the hole extent if no_holes isn't set
2424 	 */
2425 	rsv_count = no_holes ? 2 : 3;
2426 	trans = btrfs_start_transaction(root, rsv_count);
2427 	if (IS_ERR(trans)) {
2428 		err = PTR_ERR(trans);
2429 		goto out_free;
2430 	}
2431 
2432 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2433 				      min_size);
2434 	BUG_ON(ret);
2435 	trans->block_rsv = rsv;
2436 
2437 	cur_offset = lockstart;
2438 	len = lockend - cur_offset;
2439 	while (cur_offset < lockend) {
2440 		ret = __btrfs_drop_extents(trans, root, inode, path,
2441 					   cur_offset, lockend + 1,
2442 					   &drop_end, 1, 0, 0, NULL);
2443 		if (ret != -ENOSPC)
2444 			break;
2445 
2446 		trans->block_rsv = &root->fs_info->trans_block_rsv;
2447 
2448 		if (cur_offset < ino_size) {
2449 			ret = fill_holes(trans, inode, path, cur_offset,
2450 					 drop_end);
2451 			if (ret) {
2452 				err = ret;
2453 				break;
2454 			}
2455 		}
2456 
2457 		cur_offset = drop_end;
2458 
2459 		ret = btrfs_update_inode(trans, root, inode);
2460 		if (ret) {
2461 			err = ret;
2462 			break;
2463 		}
2464 
2465 		btrfs_end_transaction(trans, root);
2466 		btrfs_btree_balance_dirty(root);
2467 
2468 		trans = btrfs_start_transaction(root, rsv_count);
2469 		if (IS_ERR(trans)) {
2470 			ret = PTR_ERR(trans);
2471 			trans = NULL;
2472 			break;
2473 		}
2474 
2475 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2476 					      rsv, min_size);
2477 		BUG_ON(ret);	/* shouldn't happen */
2478 		trans->block_rsv = rsv;
2479 
2480 		ret = find_first_non_hole(inode, &cur_offset, &len);
2481 		if (unlikely(ret < 0))
2482 			break;
2483 		if (ret && !len) {
2484 			ret = 0;
2485 			break;
2486 		}
2487 	}
2488 
2489 	if (ret) {
2490 		err = ret;
2491 		goto out_trans;
2492 	}
2493 
2494 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2495 	/*
2496 	 * Don't insert file hole extent item if it's for a range beyond eof
2497 	 * (because it's useless) or if it represents a 0 bytes range (when
2498 	 * cur_offset == drop_end).
2499 	 */
2500 	if (cur_offset < ino_size && cur_offset < drop_end) {
2501 		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2502 		if (ret) {
2503 			err = ret;
2504 			goto out_trans;
2505 		}
2506 	}
2507 
2508 out_trans:
2509 	if (!trans)
2510 		goto out_free;
2511 
2512 	inode_inc_iversion(inode);
2513 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2514 
2515 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2516 	ret = btrfs_update_inode(trans, root, inode);
2517 	updated_inode = true;
2518 	btrfs_end_transaction(trans, root);
2519 	btrfs_btree_balance_dirty(root);
2520 out_free:
2521 	btrfs_free_path(path);
2522 	btrfs_free_block_rsv(root, rsv);
2523 out:
2524 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2525 			     &cached_state, GFP_NOFS);
2526 out_only_mutex:
2527 	if (!updated_inode && truncated_page && !ret && !err) {
2528 		/*
2529 		 * If we only end up zeroing part of a page, we still need to
2530 		 * update the inode item, so that all the time fields are
2531 		 * updated as well as the necessary btrfs inode in memory fields
2532 		 * for detecting, at fsync time, if the inode isn't yet in the
2533 		 * log tree or it's there but not up to date.
2534 		 */
2535 		trans = btrfs_start_transaction(root, 1);
2536 		if (IS_ERR(trans)) {
2537 			err = PTR_ERR(trans);
2538 		} else {
2539 			err = btrfs_update_inode(trans, root, inode);
2540 			ret = btrfs_end_transaction(trans, root);
2541 		}
2542 	}
2543 	mutex_unlock(&inode->i_mutex);
2544 	if (ret && !err)
2545 		err = ret;
2546 	return err;
2547 }
2548 
2549 static long btrfs_fallocate(struct file *file, int mode,
2550 			    loff_t offset, loff_t len)
2551 {
2552 	struct inode *inode = file_inode(file);
2553 	struct extent_state *cached_state = NULL;
2554 	struct btrfs_root *root = BTRFS_I(inode)->root;
2555 	u64 cur_offset;
2556 	u64 last_byte;
2557 	u64 alloc_start;
2558 	u64 alloc_end;
2559 	u64 alloc_hint = 0;
2560 	u64 locked_end;
2561 	struct extent_map *em;
2562 	int blocksize = BTRFS_I(inode)->root->sectorsize;
2563 	int ret;
2564 
2565 	alloc_start = round_down(offset, blocksize);
2566 	alloc_end = round_up(offset + len, blocksize);
2567 
2568 	/* Make sure we aren't being give some crap mode */
2569 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2570 		return -EOPNOTSUPP;
2571 
2572 	if (mode & FALLOC_FL_PUNCH_HOLE)
2573 		return btrfs_punch_hole(inode, offset, len);
2574 
2575 	/*
2576 	 * Make sure we have enough space before we do the
2577 	 * allocation.
2578 	 */
2579 	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2580 	if (ret)
2581 		return ret;
2582 	if (root->fs_info->quota_enabled) {
2583 		ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2584 		if (ret)
2585 			goto out_reserve_fail;
2586 	}
2587 
2588 	mutex_lock(&inode->i_mutex);
2589 	ret = inode_newsize_ok(inode, alloc_end);
2590 	if (ret)
2591 		goto out;
2592 
2593 	if (alloc_start > inode->i_size) {
2594 		ret = btrfs_cont_expand(inode, i_size_read(inode),
2595 					alloc_start);
2596 		if (ret)
2597 			goto out;
2598 	} else {
2599 		/*
2600 		 * If we are fallocating from the end of the file onward we
2601 		 * need to zero out the end of the page if i_size lands in the
2602 		 * middle of a page.
2603 		 */
2604 		ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2605 		if (ret)
2606 			goto out;
2607 	}
2608 
2609 	/*
2610 	 * wait for ordered IO before we have any locks.  We'll loop again
2611 	 * below with the locks held.
2612 	 */
2613 	ret = btrfs_wait_ordered_range(inode, alloc_start,
2614 				       alloc_end - alloc_start);
2615 	if (ret)
2616 		goto out;
2617 
2618 	locked_end = alloc_end - 1;
2619 	while (1) {
2620 		struct btrfs_ordered_extent *ordered;
2621 
2622 		/* the extent lock is ordered inside the running
2623 		 * transaction
2624 		 */
2625 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2626 				 locked_end, 0, &cached_state);
2627 		ordered = btrfs_lookup_first_ordered_extent(inode,
2628 							    alloc_end - 1);
2629 		if (ordered &&
2630 		    ordered->file_offset + ordered->len > alloc_start &&
2631 		    ordered->file_offset < alloc_end) {
2632 			btrfs_put_ordered_extent(ordered);
2633 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2634 					     alloc_start, locked_end,
2635 					     &cached_state, GFP_NOFS);
2636 			/*
2637 			 * we can't wait on the range with the transaction
2638 			 * running or with the extent lock held
2639 			 */
2640 			ret = btrfs_wait_ordered_range(inode, alloc_start,
2641 						       alloc_end - alloc_start);
2642 			if (ret)
2643 				goto out;
2644 		} else {
2645 			if (ordered)
2646 				btrfs_put_ordered_extent(ordered);
2647 			break;
2648 		}
2649 	}
2650 
2651 	cur_offset = alloc_start;
2652 	while (1) {
2653 		u64 actual_end;
2654 
2655 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2656 				      alloc_end - cur_offset, 0);
2657 		if (IS_ERR_OR_NULL(em)) {
2658 			if (!em)
2659 				ret = -ENOMEM;
2660 			else
2661 				ret = PTR_ERR(em);
2662 			break;
2663 		}
2664 		last_byte = min(extent_map_end(em), alloc_end);
2665 		actual_end = min_t(u64, extent_map_end(em), offset + len);
2666 		last_byte = ALIGN(last_byte, blocksize);
2667 
2668 		if (em->block_start == EXTENT_MAP_HOLE ||
2669 		    (cur_offset >= inode->i_size &&
2670 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2671 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2672 							last_byte - cur_offset,
2673 							1 << inode->i_blkbits,
2674 							offset + len,
2675 							&alloc_hint);
2676 
2677 			if (ret < 0) {
2678 				free_extent_map(em);
2679 				break;
2680 			}
2681 		} else if (actual_end > inode->i_size &&
2682 			   !(mode & FALLOC_FL_KEEP_SIZE)) {
2683 			/*
2684 			 * We didn't need to allocate any more space, but we
2685 			 * still extended the size of the file so we need to
2686 			 * update i_size.
2687 			 */
2688 			inode->i_ctime = CURRENT_TIME;
2689 			i_size_write(inode, actual_end);
2690 			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2691 		}
2692 		free_extent_map(em);
2693 
2694 		cur_offset = last_byte;
2695 		if (cur_offset >= alloc_end) {
2696 			ret = 0;
2697 			break;
2698 		}
2699 	}
2700 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2701 			     &cached_state, GFP_NOFS);
2702 out:
2703 	mutex_unlock(&inode->i_mutex);
2704 	if (root->fs_info->quota_enabled)
2705 		btrfs_qgroup_free(root, alloc_end - alloc_start);
2706 out_reserve_fail:
2707 	/* Let go of our reservation. */
2708 	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2709 	return ret;
2710 }
2711 
2712 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2713 {
2714 	struct btrfs_root *root = BTRFS_I(inode)->root;
2715 	struct extent_map *em = NULL;
2716 	struct extent_state *cached_state = NULL;
2717 	u64 lockstart;
2718 	u64 lockend;
2719 	u64 start;
2720 	u64 len;
2721 	int ret = 0;
2722 
2723 	if (inode->i_size == 0)
2724 		return -ENXIO;
2725 
2726 	/*
2727 	 * *offset can be negative, in this case we start finding DATA/HOLE from
2728 	 * the very start of the file.
2729 	 */
2730 	start = max_t(loff_t, 0, *offset);
2731 
2732 	lockstart = round_down(start, root->sectorsize);
2733 	lockend = round_up(i_size_read(inode), root->sectorsize);
2734 	if (lockend <= lockstart)
2735 		lockend = lockstart + root->sectorsize;
2736 	lockend--;
2737 	len = lockend - lockstart + 1;
2738 
2739 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2740 			 &cached_state);
2741 
2742 	while (start < inode->i_size) {
2743 		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2744 		if (IS_ERR(em)) {
2745 			ret = PTR_ERR(em);
2746 			em = NULL;
2747 			break;
2748 		}
2749 
2750 		if (whence == SEEK_HOLE &&
2751 		    (em->block_start == EXTENT_MAP_HOLE ||
2752 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2753 			break;
2754 		else if (whence == SEEK_DATA &&
2755 			   (em->block_start != EXTENT_MAP_HOLE &&
2756 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2757 			break;
2758 
2759 		start = em->start + em->len;
2760 		free_extent_map(em);
2761 		em = NULL;
2762 		cond_resched();
2763 	}
2764 	free_extent_map(em);
2765 	if (!ret) {
2766 		if (whence == SEEK_DATA && start >= inode->i_size)
2767 			ret = -ENXIO;
2768 		else
2769 			*offset = min_t(loff_t, start, inode->i_size);
2770 	}
2771 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2772 			     &cached_state, GFP_NOFS);
2773 	return ret;
2774 }
2775 
2776 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2777 {
2778 	struct inode *inode = file->f_mapping->host;
2779 	int ret;
2780 
2781 	mutex_lock(&inode->i_mutex);
2782 	switch (whence) {
2783 	case SEEK_END:
2784 	case SEEK_CUR:
2785 		offset = generic_file_llseek(file, offset, whence);
2786 		goto out;
2787 	case SEEK_DATA:
2788 	case SEEK_HOLE:
2789 		if (offset >= i_size_read(inode)) {
2790 			mutex_unlock(&inode->i_mutex);
2791 			return -ENXIO;
2792 		}
2793 
2794 		ret = find_desired_extent(inode, &offset, whence);
2795 		if (ret) {
2796 			mutex_unlock(&inode->i_mutex);
2797 			return ret;
2798 		}
2799 	}
2800 
2801 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2802 out:
2803 	mutex_unlock(&inode->i_mutex);
2804 	return offset;
2805 }
2806 
2807 const struct file_operations btrfs_file_operations = {
2808 	.llseek		= btrfs_file_llseek,
2809 	.read		= new_sync_read,
2810 	.write		= new_sync_write,
2811 	.read_iter      = generic_file_read_iter,
2812 	.splice_read	= generic_file_splice_read,
2813 	.write_iter	= btrfs_file_write_iter,
2814 	.mmap		= btrfs_file_mmap,
2815 	.open		= generic_file_open,
2816 	.release	= btrfs_release_file,
2817 	.fsync		= btrfs_sync_file,
2818 	.fallocate	= btrfs_fallocate,
2819 	.unlocked_ioctl	= btrfs_ioctl,
2820 #ifdef CONFIG_COMPAT
2821 	.compat_ioctl	= btrfs_ioctl,
2822 #endif
2823 };
2824 
2825 void btrfs_auto_defrag_exit(void)
2826 {
2827 	if (btrfs_inode_defrag_cachep)
2828 		kmem_cache_destroy(btrfs_inode_defrag_cachep);
2829 }
2830 
2831 int btrfs_auto_defrag_init(void)
2832 {
2833 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2834 					sizeof(struct inode_defrag), 0,
2835 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2836 					NULL);
2837 	if (!btrfs_inode_defrag_cachep)
2838 		return -ENOMEM;
2839 
2840 	return 0;
2841 }
2842 
2843 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
2844 {
2845 	int ret;
2846 
2847 	/*
2848 	 * So with compression we will find and lock a dirty page and clear the
2849 	 * first one as dirty, setup an async extent, and immediately return
2850 	 * with the entire range locked but with nobody actually marked with
2851 	 * writeback.  So we can't just filemap_write_and_wait_range() and
2852 	 * expect it to work since it will just kick off a thread to do the
2853 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
2854 	 * since it will wait on the page lock, which won't be unlocked until
2855 	 * after the pages have been marked as writeback and so we're good to go
2856 	 * from there.  We have to do this otherwise we'll miss the ordered
2857 	 * extents and that results in badness.  Please Josef, do not think you
2858 	 * know better and pull this out at some point in the future, it is
2859 	 * right and you are wrong.
2860 	 */
2861 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2862 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
2863 			     &BTRFS_I(inode)->runtime_flags))
2864 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2865 
2866 	return ret;
2867 }
2868