1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/time.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/backing-dev.h> 26 #include <linux/mpage.h> 27 #include <linux/aio.h> 28 #include <linux/falloc.h> 29 #include <linux/swap.h> 30 #include <linux/writeback.h> 31 #include <linux/statfs.h> 32 #include <linux/compat.h> 33 #include <linux/slab.h> 34 #include <linux/btrfs.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "print-tree.h" 40 #include "tree-log.h" 41 #include "locking.h" 42 #include "volumes.h" 43 #include "qgroup.h" 44 45 static struct kmem_cache *btrfs_inode_defrag_cachep; 46 /* 47 * when auto defrag is enabled we 48 * queue up these defrag structs to remember which 49 * inodes need defragging passes 50 */ 51 struct inode_defrag { 52 struct rb_node rb_node; 53 /* objectid */ 54 u64 ino; 55 /* 56 * transid where the defrag was added, we search for 57 * extents newer than this 58 */ 59 u64 transid; 60 61 /* root objectid */ 62 u64 root; 63 64 /* last offset we were able to defrag */ 65 u64 last_offset; 66 67 /* if we've wrapped around back to zero once already */ 68 int cycled; 69 }; 70 71 static int __compare_inode_defrag(struct inode_defrag *defrag1, 72 struct inode_defrag *defrag2) 73 { 74 if (defrag1->root > defrag2->root) 75 return 1; 76 else if (defrag1->root < defrag2->root) 77 return -1; 78 else if (defrag1->ino > defrag2->ino) 79 return 1; 80 else if (defrag1->ino < defrag2->ino) 81 return -1; 82 else 83 return 0; 84 } 85 86 /* pop a record for an inode into the defrag tree. The lock 87 * must be held already 88 * 89 * If you're inserting a record for an older transid than an 90 * existing record, the transid already in the tree is lowered 91 * 92 * If an existing record is found the defrag item you 93 * pass in is freed 94 */ 95 static int __btrfs_add_inode_defrag(struct inode *inode, 96 struct inode_defrag *defrag) 97 { 98 struct btrfs_root *root = BTRFS_I(inode)->root; 99 struct inode_defrag *entry; 100 struct rb_node **p; 101 struct rb_node *parent = NULL; 102 int ret; 103 104 p = &root->fs_info->defrag_inodes.rb_node; 105 while (*p) { 106 parent = *p; 107 entry = rb_entry(parent, struct inode_defrag, rb_node); 108 109 ret = __compare_inode_defrag(defrag, entry); 110 if (ret < 0) 111 p = &parent->rb_left; 112 else if (ret > 0) 113 p = &parent->rb_right; 114 else { 115 /* if we're reinserting an entry for 116 * an old defrag run, make sure to 117 * lower the transid of our existing record 118 */ 119 if (defrag->transid < entry->transid) 120 entry->transid = defrag->transid; 121 if (defrag->last_offset > entry->last_offset) 122 entry->last_offset = defrag->last_offset; 123 return -EEXIST; 124 } 125 } 126 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 127 rb_link_node(&defrag->rb_node, parent, p); 128 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes); 129 return 0; 130 } 131 132 static inline int __need_auto_defrag(struct btrfs_root *root) 133 { 134 if (!btrfs_test_opt(root, AUTO_DEFRAG)) 135 return 0; 136 137 if (btrfs_fs_closing(root->fs_info)) 138 return 0; 139 140 return 1; 141 } 142 143 /* 144 * insert a defrag record for this inode if auto defrag is 145 * enabled 146 */ 147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 148 struct inode *inode) 149 { 150 struct btrfs_root *root = BTRFS_I(inode)->root; 151 struct inode_defrag *defrag; 152 u64 transid; 153 int ret; 154 155 if (!__need_auto_defrag(root)) 156 return 0; 157 158 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) 159 return 0; 160 161 if (trans) 162 transid = trans->transid; 163 else 164 transid = BTRFS_I(inode)->root->last_trans; 165 166 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 167 if (!defrag) 168 return -ENOMEM; 169 170 defrag->ino = btrfs_ino(inode); 171 defrag->transid = transid; 172 defrag->root = root->root_key.objectid; 173 174 spin_lock(&root->fs_info->defrag_inodes_lock); 175 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) { 176 /* 177 * If we set IN_DEFRAG flag and evict the inode from memory, 178 * and then re-read this inode, this new inode doesn't have 179 * IN_DEFRAG flag. At the case, we may find the existed defrag. 180 */ 181 ret = __btrfs_add_inode_defrag(inode, defrag); 182 if (ret) 183 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 184 } else { 185 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 186 } 187 spin_unlock(&root->fs_info->defrag_inodes_lock); 188 return 0; 189 } 190 191 /* 192 * Requeue the defrag object. If there is a defrag object that points to 193 * the same inode in the tree, we will merge them together (by 194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 195 */ 196 static void btrfs_requeue_inode_defrag(struct inode *inode, 197 struct inode_defrag *defrag) 198 { 199 struct btrfs_root *root = BTRFS_I(inode)->root; 200 int ret; 201 202 if (!__need_auto_defrag(root)) 203 goto out; 204 205 /* 206 * Here we don't check the IN_DEFRAG flag, because we need merge 207 * them together. 208 */ 209 spin_lock(&root->fs_info->defrag_inodes_lock); 210 ret = __btrfs_add_inode_defrag(inode, defrag); 211 spin_unlock(&root->fs_info->defrag_inodes_lock); 212 if (ret) 213 goto out; 214 return; 215 out: 216 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 217 } 218 219 /* 220 * pick the defragable inode that we want, if it doesn't exist, we will get 221 * the next one. 222 */ 223 static struct inode_defrag * 224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 225 { 226 struct inode_defrag *entry = NULL; 227 struct inode_defrag tmp; 228 struct rb_node *p; 229 struct rb_node *parent = NULL; 230 int ret; 231 232 tmp.ino = ino; 233 tmp.root = root; 234 235 spin_lock(&fs_info->defrag_inodes_lock); 236 p = fs_info->defrag_inodes.rb_node; 237 while (p) { 238 parent = p; 239 entry = rb_entry(parent, struct inode_defrag, rb_node); 240 241 ret = __compare_inode_defrag(&tmp, entry); 242 if (ret < 0) 243 p = parent->rb_left; 244 else if (ret > 0) 245 p = parent->rb_right; 246 else 247 goto out; 248 } 249 250 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 251 parent = rb_next(parent); 252 if (parent) 253 entry = rb_entry(parent, struct inode_defrag, rb_node); 254 else 255 entry = NULL; 256 } 257 out: 258 if (entry) 259 rb_erase(parent, &fs_info->defrag_inodes); 260 spin_unlock(&fs_info->defrag_inodes_lock); 261 return entry; 262 } 263 264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 265 { 266 struct inode_defrag *defrag; 267 struct rb_node *node; 268 269 spin_lock(&fs_info->defrag_inodes_lock); 270 node = rb_first(&fs_info->defrag_inodes); 271 while (node) { 272 rb_erase(node, &fs_info->defrag_inodes); 273 defrag = rb_entry(node, struct inode_defrag, rb_node); 274 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 275 276 if (need_resched()) { 277 spin_unlock(&fs_info->defrag_inodes_lock); 278 cond_resched(); 279 spin_lock(&fs_info->defrag_inodes_lock); 280 } 281 282 node = rb_first(&fs_info->defrag_inodes); 283 } 284 spin_unlock(&fs_info->defrag_inodes_lock); 285 } 286 287 #define BTRFS_DEFRAG_BATCH 1024 288 289 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 290 struct inode_defrag *defrag) 291 { 292 struct btrfs_root *inode_root; 293 struct inode *inode; 294 struct btrfs_key key; 295 struct btrfs_ioctl_defrag_range_args range; 296 int num_defrag; 297 int index; 298 int ret; 299 300 /* get the inode */ 301 key.objectid = defrag->root; 302 key.type = BTRFS_ROOT_ITEM_KEY; 303 key.offset = (u64)-1; 304 305 index = srcu_read_lock(&fs_info->subvol_srcu); 306 307 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 308 if (IS_ERR(inode_root)) { 309 ret = PTR_ERR(inode_root); 310 goto cleanup; 311 } 312 313 key.objectid = defrag->ino; 314 key.type = BTRFS_INODE_ITEM_KEY; 315 key.offset = 0; 316 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 317 if (IS_ERR(inode)) { 318 ret = PTR_ERR(inode); 319 goto cleanup; 320 } 321 srcu_read_unlock(&fs_info->subvol_srcu, index); 322 323 /* do a chunk of defrag */ 324 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 325 memset(&range, 0, sizeof(range)); 326 range.len = (u64)-1; 327 range.start = defrag->last_offset; 328 329 sb_start_write(fs_info->sb); 330 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 331 BTRFS_DEFRAG_BATCH); 332 sb_end_write(fs_info->sb); 333 /* 334 * if we filled the whole defrag batch, there 335 * must be more work to do. Queue this defrag 336 * again 337 */ 338 if (num_defrag == BTRFS_DEFRAG_BATCH) { 339 defrag->last_offset = range.start; 340 btrfs_requeue_inode_defrag(inode, defrag); 341 } else if (defrag->last_offset && !defrag->cycled) { 342 /* 343 * we didn't fill our defrag batch, but 344 * we didn't start at zero. Make sure we loop 345 * around to the start of the file. 346 */ 347 defrag->last_offset = 0; 348 defrag->cycled = 1; 349 btrfs_requeue_inode_defrag(inode, defrag); 350 } else { 351 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 352 } 353 354 iput(inode); 355 return 0; 356 cleanup: 357 srcu_read_unlock(&fs_info->subvol_srcu, index); 358 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 359 return ret; 360 } 361 362 /* 363 * run through the list of inodes in the FS that need 364 * defragging 365 */ 366 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 367 { 368 struct inode_defrag *defrag; 369 u64 first_ino = 0; 370 u64 root_objectid = 0; 371 372 atomic_inc(&fs_info->defrag_running); 373 while (1) { 374 /* Pause the auto defragger. */ 375 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 376 &fs_info->fs_state)) 377 break; 378 379 if (!__need_auto_defrag(fs_info->tree_root)) 380 break; 381 382 /* find an inode to defrag */ 383 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 384 first_ino); 385 if (!defrag) { 386 if (root_objectid || first_ino) { 387 root_objectid = 0; 388 first_ino = 0; 389 continue; 390 } else { 391 break; 392 } 393 } 394 395 first_ino = defrag->ino + 1; 396 root_objectid = defrag->root; 397 398 __btrfs_run_defrag_inode(fs_info, defrag); 399 } 400 atomic_dec(&fs_info->defrag_running); 401 402 /* 403 * during unmount, we use the transaction_wait queue to 404 * wait for the defragger to stop 405 */ 406 wake_up(&fs_info->transaction_wait); 407 return 0; 408 } 409 410 /* simple helper to fault in pages and copy. This should go away 411 * and be replaced with calls into generic code. 412 */ 413 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages, 414 size_t write_bytes, 415 struct page **prepared_pages, 416 struct iov_iter *i) 417 { 418 size_t copied = 0; 419 size_t total_copied = 0; 420 int pg = 0; 421 int offset = pos & (PAGE_CACHE_SIZE - 1); 422 423 while (write_bytes > 0) { 424 size_t count = min_t(size_t, 425 PAGE_CACHE_SIZE - offset, write_bytes); 426 struct page *page = prepared_pages[pg]; 427 /* 428 * Copy data from userspace to the current page 429 */ 430 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 431 432 /* Flush processor's dcache for this page */ 433 flush_dcache_page(page); 434 435 /* 436 * if we get a partial write, we can end up with 437 * partially up to date pages. These add 438 * a lot of complexity, so make sure they don't 439 * happen by forcing this copy to be retried. 440 * 441 * The rest of the btrfs_file_write code will fall 442 * back to page at a time copies after we return 0. 443 */ 444 if (!PageUptodate(page) && copied < count) 445 copied = 0; 446 447 iov_iter_advance(i, copied); 448 write_bytes -= copied; 449 total_copied += copied; 450 451 /* Return to btrfs_file_write_iter to fault page */ 452 if (unlikely(copied == 0)) 453 break; 454 455 if (copied < PAGE_CACHE_SIZE - offset) { 456 offset += copied; 457 } else { 458 pg++; 459 offset = 0; 460 } 461 } 462 return total_copied; 463 } 464 465 /* 466 * unlocks pages after btrfs_file_write is done with them 467 */ 468 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 469 { 470 size_t i; 471 for (i = 0; i < num_pages; i++) { 472 /* page checked is some magic around finding pages that 473 * have been modified without going through btrfs_set_page_dirty 474 * clear it here. There should be no need to mark the pages 475 * accessed as prepare_pages should have marked them accessed 476 * in prepare_pages via find_or_create_page() 477 */ 478 ClearPageChecked(pages[i]); 479 unlock_page(pages[i]); 480 page_cache_release(pages[i]); 481 } 482 } 483 484 /* 485 * after copy_from_user, pages need to be dirtied and we need to make 486 * sure holes are created between the current EOF and the start of 487 * any next extents (if required). 488 * 489 * this also makes the decision about creating an inline extent vs 490 * doing real data extents, marking pages dirty and delalloc as required. 491 */ 492 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, 493 struct page **pages, size_t num_pages, 494 loff_t pos, size_t write_bytes, 495 struct extent_state **cached) 496 { 497 int err = 0; 498 int i; 499 u64 num_bytes; 500 u64 start_pos; 501 u64 end_of_last_block; 502 u64 end_pos = pos + write_bytes; 503 loff_t isize = i_size_read(inode); 504 505 start_pos = pos & ~((u64)root->sectorsize - 1); 506 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize); 507 508 end_of_last_block = start_pos + num_bytes - 1; 509 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 510 cached); 511 if (err) 512 return err; 513 514 for (i = 0; i < num_pages; i++) { 515 struct page *p = pages[i]; 516 SetPageUptodate(p); 517 ClearPageChecked(p); 518 set_page_dirty(p); 519 } 520 521 /* 522 * we've only changed i_size in ram, and we haven't updated 523 * the disk i_size. There is no need to log the inode 524 * at this time. 525 */ 526 if (end_pos > isize) 527 i_size_write(inode, end_pos); 528 return 0; 529 } 530 531 /* 532 * this drops all the extents in the cache that intersect the range 533 * [start, end]. Existing extents are split as required. 534 */ 535 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, 536 int skip_pinned) 537 { 538 struct extent_map *em; 539 struct extent_map *split = NULL; 540 struct extent_map *split2 = NULL; 541 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 542 u64 len = end - start + 1; 543 u64 gen; 544 int ret; 545 int testend = 1; 546 unsigned long flags; 547 int compressed = 0; 548 bool modified; 549 550 WARN_ON(end < start); 551 if (end == (u64)-1) { 552 len = (u64)-1; 553 testend = 0; 554 } 555 while (1) { 556 int no_splits = 0; 557 558 modified = false; 559 if (!split) 560 split = alloc_extent_map(); 561 if (!split2) 562 split2 = alloc_extent_map(); 563 if (!split || !split2) 564 no_splits = 1; 565 566 write_lock(&em_tree->lock); 567 em = lookup_extent_mapping(em_tree, start, len); 568 if (!em) { 569 write_unlock(&em_tree->lock); 570 break; 571 } 572 flags = em->flags; 573 gen = em->generation; 574 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 575 if (testend && em->start + em->len >= start + len) { 576 free_extent_map(em); 577 write_unlock(&em_tree->lock); 578 break; 579 } 580 start = em->start + em->len; 581 if (testend) 582 len = start + len - (em->start + em->len); 583 free_extent_map(em); 584 write_unlock(&em_tree->lock); 585 continue; 586 } 587 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 588 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 589 clear_bit(EXTENT_FLAG_LOGGING, &flags); 590 modified = !list_empty(&em->list); 591 if (no_splits) 592 goto next; 593 594 if (em->start < start) { 595 split->start = em->start; 596 split->len = start - em->start; 597 598 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 599 split->orig_start = em->orig_start; 600 split->block_start = em->block_start; 601 602 if (compressed) 603 split->block_len = em->block_len; 604 else 605 split->block_len = split->len; 606 split->orig_block_len = max(split->block_len, 607 em->orig_block_len); 608 split->ram_bytes = em->ram_bytes; 609 } else { 610 split->orig_start = split->start; 611 split->block_len = 0; 612 split->block_start = em->block_start; 613 split->orig_block_len = 0; 614 split->ram_bytes = split->len; 615 } 616 617 split->generation = gen; 618 split->bdev = em->bdev; 619 split->flags = flags; 620 split->compress_type = em->compress_type; 621 replace_extent_mapping(em_tree, em, split, modified); 622 free_extent_map(split); 623 split = split2; 624 split2 = NULL; 625 } 626 if (testend && em->start + em->len > start + len) { 627 u64 diff = start + len - em->start; 628 629 split->start = start + len; 630 split->len = em->start + em->len - (start + len); 631 split->bdev = em->bdev; 632 split->flags = flags; 633 split->compress_type = em->compress_type; 634 split->generation = gen; 635 636 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 637 split->orig_block_len = max(em->block_len, 638 em->orig_block_len); 639 640 split->ram_bytes = em->ram_bytes; 641 if (compressed) { 642 split->block_len = em->block_len; 643 split->block_start = em->block_start; 644 split->orig_start = em->orig_start; 645 } else { 646 split->block_len = split->len; 647 split->block_start = em->block_start 648 + diff; 649 split->orig_start = em->orig_start; 650 } 651 } else { 652 split->ram_bytes = split->len; 653 split->orig_start = split->start; 654 split->block_len = 0; 655 split->block_start = em->block_start; 656 split->orig_block_len = 0; 657 } 658 659 if (extent_map_in_tree(em)) { 660 replace_extent_mapping(em_tree, em, split, 661 modified); 662 } else { 663 ret = add_extent_mapping(em_tree, split, 664 modified); 665 ASSERT(ret == 0); /* Logic error */ 666 } 667 free_extent_map(split); 668 split = NULL; 669 } 670 next: 671 if (extent_map_in_tree(em)) 672 remove_extent_mapping(em_tree, em); 673 write_unlock(&em_tree->lock); 674 675 /* once for us */ 676 free_extent_map(em); 677 /* once for the tree*/ 678 free_extent_map(em); 679 } 680 if (split) 681 free_extent_map(split); 682 if (split2) 683 free_extent_map(split2); 684 } 685 686 /* 687 * this is very complex, but the basic idea is to drop all extents 688 * in the range start - end. hint_block is filled in with a block number 689 * that would be a good hint to the block allocator for this file. 690 * 691 * If an extent intersects the range but is not entirely inside the range 692 * it is either truncated or split. Anything entirely inside the range 693 * is deleted from the tree. 694 */ 695 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 696 struct btrfs_root *root, struct inode *inode, 697 struct btrfs_path *path, u64 start, u64 end, 698 u64 *drop_end, int drop_cache, 699 int replace_extent, 700 u32 extent_item_size, 701 int *key_inserted) 702 { 703 struct extent_buffer *leaf; 704 struct btrfs_file_extent_item *fi; 705 struct btrfs_key key; 706 struct btrfs_key new_key; 707 u64 ino = btrfs_ino(inode); 708 u64 search_start = start; 709 u64 disk_bytenr = 0; 710 u64 num_bytes = 0; 711 u64 extent_offset = 0; 712 u64 extent_end = 0; 713 int del_nr = 0; 714 int del_slot = 0; 715 int extent_type; 716 int recow; 717 int ret; 718 int modify_tree = -1; 719 int update_refs; 720 int found = 0; 721 int leafs_visited = 0; 722 723 if (drop_cache) 724 btrfs_drop_extent_cache(inode, start, end - 1, 0); 725 726 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 727 modify_tree = 0; 728 729 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 730 root == root->fs_info->tree_root); 731 while (1) { 732 recow = 0; 733 ret = btrfs_lookup_file_extent(trans, root, path, ino, 734 search_start, modify_tree); 735 if (ret < 0) 736 break; 737 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 738 leaf = path->nodes[0]; 739 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 740 if (key.objectid == ino && 741 key.type == BTRFS_EXTENT_DATA_KEY) 742 path->slots[0]--; 743 } 744 ret = 0; 745 leafs_visited++; 746 next_slot: 747 leaf = path->nodes[0]; 748 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 749 BUG_ON(del_nr > 0); 750 ret = btrfs_next_leaf(root, path); 751 if (ret < 0) 752 break; 753 if (ret > 0) { 754 ret = 0; 755 break; 756 } 757 leafs_visited++; 758 leaf = path->nodes[0]; 759 recow = 1; 760 } 761 762 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 763 if (key.objectid > ino || 764 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 765 break; 766 767 fi = btrfs_item_ptr(leaf, path->slots[0], 768 struct btrfs_file_extent_item); 769 extent_type = btrfs_file_extent_type(leaf, fi); 770 771 if (extent_type == BTRFS_FILE_EXTENT_REG || 772 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 773 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 774 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 775 extent_offset = btrfs_file_extent_offset(leaf, fi); 776 extent_end = key.offset + 777 btrfs_file_extent_num_bytes(leaf, fi); 778 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 779 extent_end = key.offset + 780 btrfs_file_extent_inline_len(leaf, 781 path->slots[0], fi); 782 } else { 783 WARN_ON(1); 784 extent_end = search_start; 785 } 786 787 /* 788 * Don't skip extent items representing 0 byte lengths. They 789 * used to be created (bug) if while punching holes we hit 790 * -ENOSPC condition. So if we find one here, just ensure we 791 * delete it, otherwise we would insert a new file extent item 792 * with the same key (offset) as that 0 bytes length file 793 * extent item in the call to setup_items_for_insert() later 794 * in this function. 795 */ 796 if (extent_end == key.offset && extent_end >= search_start) 797 goto delete_extent_item; 798 799 if (extent_end <= search_start) { 800 path->slots[0]++; 801 goto next_slot; 802 } 803 804 found = 1; 805 search_start = max(key.offset, start); 806 if (recow || !modify_tree) { 807 modify_tree = -1; 808 btrfs_release_path(path); 809 continue; 810 } 811 812 /* 813 * | - range to drop - | 814 * | -------- extent -------- | 815 */ 816 if (start > key.offset && end < extent_end) { 817 BUG_ON(del_nr > 0); 818 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 819 ret = -EOPNOTSUPP; 820 break; 821 } 822 823 memcpy(&new_key, &key, sizeof(new_key)); 824 new_key.offset = start; 825 ret = btrfs_duplicate_item(trans, root, path, 826 &new_key); 827 if (ret == -EAGAIN) { 828 btrfs_release_path(path); 829 continue; 830 } 831 if (ret < 0) 832 break; 833 834 leaf = path->nodes[0]; 835 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 836 struct btrfs_file_extent_item); 837 btrfs_set_file_extent_num_bytes(leaf, fi, 838 start - key.offset); 839 840 fi = btrfs_item_ptr(leaf, path->slots[0], 841 struct btrfs_file_extent_item); 842 843 extent_offset += start - key.offset; 844 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 845 btrfs_set_file_extent_num_bytes(leaf, fi, 846 extent_end - start); 847 btrfs_mark_buffer_dirty(leaf); 848 849 if (update_refs && disk_bytenr > 0) { 850 ret = btrfs_inc_extent_ref(trans, root, 851 disk_bytenr, num_bytes, 0, 852 root->root_key.objectid, 853 new_key.objectid, 854 start - extent_offset, 1); 855 BUG_ON(ret); /* -ENOMEM */ 856 } 857 key.offset = start; 858 } 859 /* 860 * | ---- range to drop ----- | 861 * | -------- extent -------- | 862 */ 863 if (start <= key.offset && end < extent_end) { 864 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 865 ret = -EOPNOTSUPP; 866 break; 867 } 868 869 memcpy(&new_key, &key, sizeof(new_key)); 870 new_key.offset = end; 871 btrfs_set_item_key_safe(root, path, &new_key); 872 873 extent_offset += end - key.offset; 874 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 875 btrfs_set_file_extent_num_bytes(leaf, fi, 876 extent_end - end); 877 btrfs_mark_buffer_dirty(leaf); 878 if (update_refs && disk_bytenr > 0) 879 inode_sub_bytes(inode, end - key.offset); 880 break; 881 } 882 883 search_start = extent_end; 884 /* 885 * | ---- range to drop ----- | 886 * | -------- extent -------- | 887 */ 888 if (start > key.offset && end >= extent_end) { 889 BUG_ON(del_nr > 0); 890 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 891 ret = -EOPNOTSUPP; 892 break; 893 } 894 895 btrfs_set_file_extent_num_bytes(leaf, fi, 896 start - key.offset); 897 btrfs_mark_buffer_dirty(leaf); 898 if (update_refs && disk_bytenr > 0) 899 inode_sub_bytes(inode, extent_end - start); 900 if (end == extent_end) 901 break; 902 903 path->slots[0]++; 904 goto next_slot; 905 } 906 907 /* 908 * | ---- range to drop ----- | 909 * | ------ extent ------ | 910 */ 911 if (start <= key.offset && end >= extent_end) { 912 delete_extent_item: 913 if (del_nr == 0) { 914 del_slot = path->slots[0]; 915 del_nr = 1; 916 } else { 917 BUG_ON(del_slot + del_nr != path->slots[0]); 918 del_nr++; 919 } 920 921 if (update_refs && 922 extent_type == BTRFS_FILE_EXTENT_INLINE) { 923 inode_sub_bytes(inode, 924 extent_end - key.offset); 925 extent_end = ALIGN(extent_end, 926 root->sectorsize); 927 } else if (update_refs && disk_bytenr > 0) { 928 ret = btrfs_free_extent(trans, root, 929 disk_bytenr, num_bytes, 0, 930 root->root_key.objectid, 931 key.objectid, key.offset - 932 extent_offset, 0); 933 BUG_ON(ret); /* -ENOMEM */ 934 inode_sub_bytes(inode, 935 extent_end - key.offset); 936 } 937 938 if (end == extent_end) 939 break; 940 941 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 942 path->slots[0]++; 943 goto next_slot; 944 } 945 946 ret = btrfs_del_items(trans, root, path, del_slot, 947 del_nr); 948 if (ret) { 949 btrfs_abort_transaction(trans, root, ret); 950 break; 951 } 952 953 del_nr = 0; 954 del_slot = 0; 955 956 btrfs_release_path(path); 957 continue; 958 } 959 960 BUG_ON(1); 961 } 962 963 if (!ret && del_nr > 0) { 964 /* 965 * Set path->slots[0] to first slot, so that after the delete 966 * if items are move off from our leaf to its immediate left or 967 * right neighbor leafs, we end up with a correct and adjusted 968 * path->slots[0] for our insertion (if replace_extent != 0). 969 */ 970 path->slots[0] = del_slot; 971 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 972 if (ret) 973 btrfs_abort_transaction(trans, root, ret); 974 } 975 976 leaf = path->nodes[0]; 977 /* 978 * If btrfs_del_items() was called, it might have deleted a leaf, in 979 * which case it unlocked our path, so check path->locks[0] matches a 980 * write lock. 981 */ 982 if (!ret && replace_extent && leafs_visited == 1 && 983 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 984 path->locks[0] == BTRFS_WRITE_LOCK) && 985 btrfs_leaf_free_space(root, leaf) >= 986 sizeof(struct btrfs_item) + extent_item_size) { 987 988 key.objectid = ino; 989 key.type = BTRFS_EXTENT_DATA_KEY; 990 key.offset = start; 991 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 992 struct btrfs_key slot_key; 993 994 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 995 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 996 path->slots[0]++; 997 } 998 setup_items_for_insert(root, path, &key, 999 &extent_item_size, 1000 extent_item_size, 1001 sizeof(struct btrfs_item) + 1002 extent_item_size, 1); 1003 *key_inserted = 1; 1004 } 1005 1006 if (!replace_extent || !(*key_inserted)) 1007 btrfs_release_path(path); 1008 if (drop_end) 1009 *drop_end = found ? min(end, extent_end) : end; 1010 return ret; 1011 } 1012 1013 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1014 struct btrfs_root *root, struct inode *inode, u64 start, 1015 u64 end, int drop_cache) 1016 { 1017 struct btrfs_path *path; 1018 int ret; 1019 1020 path = btrfs_alloc_path(); 1021 if (!path) 1022 return -ENOMEM; 1023 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1024 drop_cache, 0, 0, NULL); 1025 btrfs_free_path(path); 1026 return ret; 1027 } 1028 1029 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1030 u64 objectid, u64 bytenr, u64 orig_offset, 1031 u64 *start, u64 *end) 1032 { 1033 struct btrfs_file_extent_item *fi; 1034 struct btrfs_key key; 1035 u64 extent_end; 1036 1037 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1038 return 0; 1039 1040 btrfs_item_key_to_cpu(leaf, &key, slot); 1041 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1042 return 0; 1043 1044 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1045 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1046 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1047 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1048 btrfs_file_extent_compression(leaf, fi) || 1049 btrfs_file_extent_encryption(leaf, fi) || 1050 btrfs_file_extent_other_encoding(leaf, fi)) 1051 return 0; 1052 1053 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1054 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1055 return 0; 1056 1057 *start = key.offset; 1058 *end = extent_end; 1059 return 1; 1060 } 1061 1062 /* 1063 * Mark extent in the range start - end as written. 1064 * 1065 * This changes extent type from 'pre-allocated' to 'regular'. If only 1066 * part of extent is marked as written, the extent will be split into 1067 * two or three. 1068 */ 1069 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1070 struct inode *inode, u64 start, u64 end) 1071 { 1072 struct btrfs_root *root = BTRFS_I(inode)->root; 1073 struct extent_buffer *leaf; 1074 struct btrfs_path *path; 1075 struct btrfs_file_extent_item *fi; 1076 struct btrfs_key key; 1077 struct btrfs_key new_key; 1078 u64 bytenr; 1079 u64 num_bytes; 1080 u64 extent_end; 1081 u64 orig_offset; 1082 u64 other_start; 1083 u64 other_end; 1084 u64 split; 1085 int del_nr = 0; 1086 int del_slot = 0; 1087 int recow; 1088 int ret; 1089 u64 ino = btrfs_ino(inode); 1090 1091 path = btrfs_alloc_path(); 1092 if (!path) 1093 return -ENOMEM; 1094 again: 1095 recow = 0; 1096 split = start; 1097 key.objectid = ino; 1098 key.type = BTRFS_EXTENT_DATA_KEY; 1099 key.offset = split; 1100 1101 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1102 if (ret < 0) 1103 goto out; 1104 if (ret > 0 && path->slots[0] > 0) 1105 path->slots[0]--; 1106 1107 leaf = path->nodes[0]; 1108 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1109 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY); 1110 fi = btrfs_item_ptr(leaf, path->slots[0], 1111 struct btrfs_file_extent_item); 1112 BUG_ON(btrfs_file_extent_type(leaf, fi) != 1113 BTRFS_FILE_EXTENT_PREALLOC); 1114 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1115 BUG_ON(key.offset > start || extent_end < end); 1116 1117 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1118 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1119 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1120 memcpy(&new_key, &key, sizeof(new_key)); 1121 1122 if (start == key.offset && end < extent_end) { 1123 other_start = 0; 1124 other_end = start; 1125 if (extent_mergeable(leaf, path->slots[0] - 1, 1126 ino, bytenr, orig_offset, 1127 &other_start, &other_end)) { 1128 new_key.offset = end; 1129 btrfs_set_item_key_safe(root, path, &new_key); 1130 fi = btrfs_item_ptr(leaf, path->slots[0], 1131 struct btrfs_file_extent_item); 1132 btrfs_set_file_extent_generation(leaf, fi, 1133 trans->transid); 1134 btrfs_set_file_extent_num_bytes(leaf, fi, 1135 extent_end - end); 1136 btrfs_set_file_extent_offset(leaf, fi, 1137 end - orig_offset); 1138 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1139 struct btrfs_file_extent_item); 1140 btrfs_set_file_extent_generation(leaf, fi, 1141 trans->transid); 1142 btrfs_set_file_extent_num_bytes(leaf, fi, 1143 end - other_start); 1144 btrfs_mark_buffer_dirty(leaf); 1145 goto out; 1146 } 1147 } 1148 1149 if (start > key.offset && end == extent_end) { 1150 other_start = end; 1151 other_end = 0; 1152 if (extent_mergeable(leaf, path->slots[0] + 1, 1153 ino, bytenr, orig_offset, 1154 &other_start, &other_end)) { 1155 fi = btrfs_item_ptr(leaf, path->slots[0], 1156 struct btrfs_file_extent_item); 1157 btrfs_set_file_extent_num_bytes(leaf, fi, 1158 start - key.offset); 1159 btrfs_set_file_extent_generation(leaf, fi, 1160 trans->transid); 1161 path->slots[0]++; 1162 new_key.offset = start; 1163 btrfs_set_item_key_safe(root, path, &new_key); 1164 1165 fi = btrfs_item_ptr(leaf, path->slots[0], 1166 struct btrfs_file_extent_item); 1167 btrfs_set_file_extent_generation(leaf, fi, 1168 trans->transid); 1169 btrfs_set_file_extent_num_bytes(leaf, fi, 1170 other_end - start); 1171 btrfs_set_file_extent_offset(leaf, fi, 1172 start - orig_offset); 1173 btrfs_mark_buffer_dirty(leaf); 1174 goto out; 1175 } 1176 } 1177 1178 while (start > key.offset || end < extent_end) { 1179 if (key.offset == start) 1180 split = end; 1181 1182 new_key.offset = split; 1183 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1184 if (ret == -EAGAIN) { 1185 btrfs_release_path(path); 1186 goto again; 1187 } 1188 if (ret < 0) { 1189 btrfs_abort_transaction(trans, root, ret); 1190 goto out; 1191 } 1192 1193 leaf = path->nodes[0]; 1194 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1195 struct btrfs_file_extent_item); 1196 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1197 btrfs_set_file_extent_num_bytes(leaf, fi, 1198 split - key.offset); 1199 1200 fi = btrfs_item_ptr(leaf, path->slots[0], 1201 struct btrfs_file_extent_item); 1202 1203 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1204 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1205 btrfs_set_file_extent_num_bytes(leaf, fi, 1206 extent_end - split); 1207 btrfs_mark_buffer_dirty(leaf); 1208 1209 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, 1210 root->root_key.objectid, 1211 ino, orig_offset, 1); 1212 BUG_ON(ret); /* -ENOMEM */ 1213 1214 if (split == start) { 1215 key.offset = start; 1216 } else { 1217 BUG_ON(start != key.offset); 1218 path->slots[0]--; 1219 extent_end = end; 1220 } 1221 recow = 1; 1222 } 1223 1224 other_start = end; 1225 other_end = 0; 1226 if (extent_mergeable(leaf, path->slots[0] + 1, 1227 ino, bytenr, orig_offset, 1228 &other_start, &other_end)) { 1229 if (recow) { 1230 btrfs_release_path(path); 1231 goto again; 1232 } 1233 extent_end = other_end; 1234 del_slot = path->slots[0] + 1; 1235 del_nr++; 1236 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1237 0, root->root_key.objectid, 1238 ino, orig_offset, 0); 1239 BUG_ON(ret); /* -ENOMEM */ 1240 } 1241 other_start = 0; 1242 other_end = start; 1243 if (extent_mergeable(leaf, path->slots[0] - 1, 1244 ino, bytenr, orig_offset, 1245 &other_start, &other_end)) { 1246 if (recow) { 1247 btrfs_release_path(path); 1248 goto again; 1249 } 1250 key.offset = other_start; 1251 del_slot = path->slots[0]; 1252 del_nr++; 1253 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1254 0, root->root_key.objectid, 1255 ino, orig_offset, 0); 1256 BUG_ON(ret); /* -ENOMEM */ 1257 } 1258 if (del_nr == 0) { 1259 fi = btrfs_item_ptr(leaf, path->slots[0], 1260 struct btrfs_file_extent_item); 1261 btrfs_set_file_extent_type(leaf, fi, 1262 BTRFS_FILE_EXTENT_REG); 1263 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1264 btrfs_mark_buffer_dirty(leaf); 1265 } else { 1266 fi = btrfs_item_ptr(leaf, del_slot - 1, 1267 struct btrfs_file_extent_item); 1268 btrfs_set_file_extent_type(leaf, fi, 1269 BTRFS_FILE_EXTENT_REG); 1270 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1271 btrfs_set_file_extent_num_bytes(leaf, fi, 1272 extent_end - key.offset); 1273 btrfs_mark_buffer_dirty(leaf); 1274 1275 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1276 if (ret < 0) { 1277 btrfs_abort_transaction(trans, root, ret); 1278 goto out; 1279 } 1280 } 1281 out: 1282 btrfs_free_path(path); 1283 return 0; 1284 } 1285 1286 /* 1287 * on error we return an unlocked page and the error value 1288 * on success we return a locked page and 0 1289 */ 1290 static int prepare_uptodate_page(struct page *page, u64 pos, 1291 bool force_uptodate) 1292 { 1293 int ret = 0; 1294 1295 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) && 1296 !PageUptodate(page)) { 1297 ret = btrfs_readpage(NULL, page); 1298 if (ret) 1299 return ret; 1300 lock_page(page); 1301 if (!PageUptodate(page)) { 1302 unlock_page(page); 1303 return -EIO; 1304 } 1305 } 1306 return 0; 1307 } 1308 1309 /* 1310 * this just gets pages into the page cache and locks them down. 1311 */ 1312 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1313 size_t num_pages, loff_t pos, 1314 size_t write_bytes, bool force_uptodate) 1315 { 1316 int i; 1317 unsigned long index = pos >> PAGE_CACHE_SHIFT; 1318 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1319 int err = 0; 1320 int faili; 1321 1322 for (i = 0; i < num_pages; i++) { 1323 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1324 mask | __GFP_WRITE); 1325 if (!pages[i]) { 1326 faili = i - 1; 1327 err = -ENOMEM; 1328 goto fail; 1329 } 1330 1331 if (i == 0) 1332 err = prepare_uptodate_page(pages[i], pos, 1333 force_uptodate); 1334 if (i == num_pages - 1) 1335 err = prepare_uptodate_page(pages[i], 1336 pos + write_bytes, false); 1337 if (err) { 1338 page_cache_release(pages[i]); 1339 faili = i - 1; 1340 goto fail; 1341 } 1342 wait_on_page_writeback(pages[i]); 1343 } 1344 1345 return 0; 1346 fail: 1347 while (faili >= 0) { 1348 unlock_page(pages[faili]); 1349 page_cache_release(pages[faili]); 1350 faili--; 1351 } 1352 return err; 1353 1354 } 1355 1356 /* 1357 * This function locks the extent and properly waits for data=ordered extents 1358 * to finish before allowing the pages to be modified if need. 1359 * 1360 * The return value: 1361 * 1 - the extent is locked 1362 * 0 - the extent is not locked, and everything is OK 1363 * -EAGAIN - need re-prepare the pages 1364 * the other < 0 number - Something wrong happens 1365 */ 1366 static noinline int 1367 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages, 1368 size_t num_pages, loff_t pos, 1369 u64 *lockstart, u64 *lockend, 1370 struct extent_state **cached_state) 1371 { 1372 u64 start_pos; 1373 u64 last_pos; 1374 int i; 1375 int ret = 0; 1376 1377 start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1); 1378 last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1; 1379 1380 if (start_pos < inode->i_size) { 1381 struct btrfs_ordered_extent *ordered; 1382 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1383 start_pos, last_pos, 0, cached_state); 1384 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1385 last_pos - start_pos + 1); 1386 if (ordered && 1387 ordered->file_offset + ordered->len > start_pos && 1388 ordered->file_offset <= last_pos) { 1389 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1390 start_pos, last_pos, 1391 cached_state, GFP_NOFS); 1392 for (i = 0; i < num_pages; i++) { 1393 unlock_page(pages[i]); 1394 page_cache_release(pages[i]); 1395 } 1396 btrfs_start_ordered_extent(inode, ordered, 1); 1397 btrfs_put_ordered_extent(ordered); 1398 return -EAGAIN; 1399 } 1400 if (ordered) 1401 btrfs_put_ordered_extent(ordered); 1402 1403 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, 1404 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC | 1405 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1406 0, 0, cached_state, GFP_NOFS); 1407 *lockstart = start_pos; 1408 *lockend = last_pos; 1409 ret = 1; 1410 } 1411 1412 for (i = 0; i < num_pages; i++) { 1413 if (clear_page_dirty_for_io(pages[i])) 1414 account_page_redirty(pages[i]); 1415 set_page_extent_mapped(pages[i]); 1416 WARN_ON(!PageLocked(pages[i])); 1417 } 1418 1419 return ret; 1420 } 1421 1422 static noinline int check_can_nocow(struct inode *inode, loff_t pos, 1423 size_t *write_bytes) 1424 { 1425 struct btrfs_root *root = BTRFS_I(inode)->root; 1426 struct btrfs_ordered_extent *ordered; 1427 u64 lockstart, lockend; 1428 u64 num_bytes; 1429 int ret; 1430 1431 ret = btrfs_start_write_no_snapshoting(root); 1432 if (!ret) 1433 return -ENOSPC; 1434 1435 lockstart = round_down(pos, root->sectorsize); 1436 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1; 1437 1438 while (1) { 1439 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1440 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1441 lockend - lockstart + 1); 1442 if (!ordered) { 1443 break; 1444 } 1445 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1446 btrfs_start_ordered_extent(inode, ordered, 1); 1447 btrfs_put_ordered_extent(ordered); 1448 } 1449 1450 num_bytes = lockend - lockstart + 1; 1451 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL); 1452 if (ret <= 0) { 1453 ret = 0; 1454 btrfs_end_write_no_snapshoting(root); 1455 } else { 1456 *write_bytes = min_t(size_t, *write_bytes , 1457 num_bytes - pos + lockstart); 1458 } 1459 1460 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1461 1462 return ret; 1463 } 1464 1465 static noinline ssize_t __btrfs_buffered_write(struct file *file, 1466 struct iov_iter *i, 1467 loff_t pos) 1468 { 1469 struct inode *inode = file_inode(file); 1470 struct btrfs_root *root = BTRFS_I(inode)->root; 1471 struct page **pages = NULL; 1472 struct extent_state *cached_state = NULL; 1473 u64 release_bytes = 0; 1474 u64 lockstart; 1475 u64 lockend; 1476 unsigned long first_index; 1477 size_t num_written = 0; 1478 int nrptrs; 1479 int ret = 0; 1480 bool only_release_metadata = false; 1481 bool force_page_uptodate = false; 1482 bool need_unlock; 1483 1484 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_CACHE_SIZE), 1485 PAGE_CACHE_SIZE / (sizeof(struct page *))); 1486 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1487 nrptrs = max(nrptrs, 8); 1488 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL); 1489 if (!pages) 1490 return -ENOMEM; 1491 1492 first_index = pos >> PAGE_CACHE_SHIFT; 1493 1494 while (iov_iter_count(i) > 0) { 1495 size_t offset = pos & (PAGE_CACHE_SIZE - 1); 1496 size_t write_bytes = min(iov_iter_count(i), 1497 nrptrs * (size_t)PAGE_CACHE_SIZE - 1498 offset); 1499 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1500 PAGE_CACHE_SIZE); 1501 size_t reserve_bytes; 1502 size_t dirty_pages; 1503 size_t copied; 1504 1505 WARN_ON(num_pages > nrptrs); 1506 1507 /* 1508 * Fault pages before locking them in prepare_pages 1509 * to avoid recursive lock 1510 */ 1511 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1512 ret = -EFAULT; 1513 break; 1514 } 1515 1516 reserve_bytes = num_pages << PAGE_CACHE_SHIFT; 1517 ret = btrfs_check_data_free_space(inode, reserve_bytes); 1518 if (ret == -ENOSPC && 1519 (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1520 BTRFS_INODE_PREALLOC))) { 1521 ret = check_can_nocow(inode, pos, &write_bytes); 1522 if (ret > 0) { 1523 only_release_metadata = true; 1524 /* 1525 * our prealloc extent may be smaller than 1526 * write_bytes, so scale down. 1527 */ 1528 num_pages = DIV_ROUND_UP(write_bytes + offset, 1529 PAGE_CACHE_SIZE); 1530 reserve_bytes = num_pages << PAGE_CACHE_SHIFT; 1531 ret = 0; 1532 } else { 1533 ret = -ENOSPC; 1534 } 1535 } 1536 1537 if (ret) 1538 break; 1539 1540 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes); 1541 if (ret) { 1542 if (!only_release_metadata) 1543 btrfs_free_reserved_data_space(inode, 1544 reserve_bytes); 1545 else 1546 btrfs_end_write_no_snapshoting(root); 1547 break; 1548 } 1549 1550 release_bytes = reserve_bytes; 1551 need_unlock = false; 1552 again: 1553 /* 1554 * This is going to setup the pages array with the number of 1555 * pages we want, so we don't really need to worry about the 1556 * contents of pages from loop to loop 1557 */ 1558 ret = prepare_pages(inode, pages, num_pages, 1559 pos, write_bytes, 1560 force_page_uptodate); 1561 if (ret) 1562 break; 1563 1564 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages, 1565 pos, &lockstart, &lockend, 1566 &cached_state); 1567 if (ret < 0) { 1568 if (ret == -EAGAIN) 1569 goto again; 1570 break; 1571 } else if (ret > 0) { 1572 need_unlock = true; 1573 ret = 0; 1574 } 1575 1576 copied = btrfs_copy_from_user(pos, num_pages, 1577 write_bytes, pages, i); 1578 1579 /* 1580 * if we have trouble faulting in the pages, fall 1581 * back to one page at a time 1582 */ 1583 if (copied < write_bytes) 1584 nrptrs = 1; 1585 1586 if (copied == 0) { 1587 force_page_uptodate = true; 1588 dirty_pages = 0; 1589 } else { 1590 force_page_uptodate = false; 1591 dirty_pages = DIV_ROUND_UP(copied + offset, 1592 PAGE_CACHE_SIZE); 1593 } 1594 1595 /* 1596 * If we had a short copy we need to release the excess delaloc 1597 * bytes we reserved. We need to increment outstanding_extents 1598 * because btrfs_delalloc_release_space will decrement it, but 1599 * we still have an outstanding extent for the chunk we actually 1600 * managed to copy. 1601 */ 1602 if (num_pages > dirty_pages) { 1603 release_bytes = (num_pages - dirty_pages) << 1604 PAGE_CACHE_SHIFT; 1605 if (copied > 0) { 1606 spin_lock(&BTRFS_I(inode)->lock); 1607 BTRFS_I(inode)->outstanding_extents++; 1608 spin_unlock(&BTRFS_I(inode)->lock); 1609 } 1610 if (only_release_metadata) 1611 btrfs_delalloc_release_metadata(inode, 1612 release_bytes); 1613 else 1614 btrfs_delalloc_release_space(inode, 1615 release_bytes); 1616 } 1617 1618 release_bytes = dirty_pages << PAGE_CACHE_SHIFT; 1619 1620 if (copied > 0) 1621 ret = btrfs_dirty_pages(root, inode, pages, 1622 dirty_pages, pos, copied, 1623 NULL); 1624 if (need_unlock) 1625 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1626 lockstart, lockend, &cached_state, 1627 GFP_NOFS); 1628 if (ret) { 1629 btrfs_drop_pages(pages, num_pages); 1630 break; 1631 } 1632 1633 release_bytes = 0; 1634 if (only_release_metadata) 1635 btrfs_end_write_no_snapshoting(root); 1636 1637 if (only_release_metadata && copied > 0) { 1638 u64 lockstart = round_down(pos, root->sectorsize); 1639 u64 lockend = lockstart + 1640 (dirty_pages << PAGE_CACHE_SHIFT) - 1; 1641 1642 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1643 lockend, EXTENT_NORESERVE, NULL, 1644 NULL, GFP_NOFS); 1645 only_release_metadata = false; 1646 } 1647 1648 btrfs_drop_pages(pages, num_pages); 1649 1650 cond_resched(); 1651 1652 balance_dirty_pages_ratelimited(inode->i_mapping); 1653 if (dirty_pages < (root->nodesize >> PAGE_CACHE_SHIFT) + 1) 1654 btrfs_btree_balance_dirty(root); 1655 1656 pos += copied; 1657 num_written += copied; 1658 } 1659 1660 kfree(pages); 1661 1662 if (release_bytes) { 1663 if (only_release_metadata) { 1664 btrfs_end_write_no_snapshoting(root); 1665 btrfs_delalloc_release_metadata(inode, release_bytes); 1666 } else { 1667 btrfs_delalloc_release_space(inode, release_bytes); 1668 } 1669 } 1670 1671 return num_written ? num_written : ret; 1672 } 1673 1674 static ssize_t __btrfs_direct_write(struct kiocb *iocb, 1675 struct iov_iter *from, 1676 loff_t pos) 1677 { 1678 struct file *file = iocb->ki_filp; 1679 struct inode *inode = file_inode(file); 1680 ssize_t written; 1681 ssize_t written_buffered; 1682 loff_t endbyte; 1683 int err; 1684 1685 written = generic_file_direct_write(iocb, from, pos); 1686 1687 if (written < 0 || !iov_iter_count(from)) 1688 return written; 1689 1690 pos += written; 1691 written_buffered = __btrfs_buffered_write(file, from, pos); 1692 if (written_buffered < 0) { 1693 err = written_buffered; 1694 goto out; 1695 } 1696 /* 1697 * Ensure all data is persisted. We want the next direct IO read to be 1698 * able to read what was just written. 1699 */ 1700 endbyte = pos + written_buffered - 1; 1701 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1702 if (err) 1703 goto out; 1704 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1705 if (err) 1706 goto out; 1707 written += written_buffered; 1708 iocb->ki_pos = pos + written_buffered; 1709 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT, 1710 endbyte >> PAGE_CACHE_SHIFT); 1711 out: 1712 return written ? written : err; 1713 } 1714 1715 static void update_time_for_write(struct inode *inode) 1716 { 1717 struct timespec now; 1718 1719 if (IS_NOCMTIME(inode)) 1720 return; 1721 1722 now = current_fs_time(inode->i_sb); 1723 if (!timespec_equal(&inode->i_mtime, &now)) 1724 inode->i_mtime = now; 1725 1726 if (!timespec_equal(&inode->i_ctime, &now)) 1727 inode->i_ctime = now; 1728 1729 if (IS_I_VERSION(inode)) 1730 inode_inc_iversion(inode); 1731 } 1732 1733 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1734 struct iov_iter *from) 1735 { 1736 struct file *file = iocb->ki_filp; 1737 struct inode *inode = file_inode(file); 1738 struct btrfs_root *root = BTRFS_I(inode)->root; 1739 u64 start_pos; 1740 u64 end_pos; 1741 ssize_t num_written = 0; 1742 ssize_t err = 0; 1743 size_t count = iov_iter_count(from); 1744 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1745 loff_t pos = iocb->ki_pos; 1746 1747 mutex_lock(&inode->i_mutex); 1748 1749 current->backing_dev_info = inode_to_bdi(inode); 1750 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 1751 if (err) { 1752 mutex_unlock(&inode->i_mutex); 1753 goto out; 1754 } 1755 1756 if (count == 0) { 1757 mutex_unlock(&inode->i_mutex); 1758 goto out; 1759 } 1760 1761 iov_iter_truncate(from, count); 1762 1763 err = file_remove_suid(file); 1764 if (err) { 1765 mutex_unlock(&inode->i_mutex); 1766 goto out; 1767 } 1768 1769 /* 1770 * If BTRFS flips readonly due to some impossible error 1771 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1772 * although we have opened a file as writable, we have 1773 * to stop this write operation to ensure FS consistency. 1774 */ 1775 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1776 mutex_unlock(&inode->i_mutex); 1777 err = -EROFS; 1778 goto out; 1779 } 1780 1781 /* 1782 * We reserve space for updating the inode when we reserve space for the 1783 * extent we are going to write, so we will enospc out there. We don't 1784 * need to start yet another transaction to update the inode as we will 1785 * update the inode when we finish writing whatever data we write. 1786 */ 1787 update_time_for_write(inode); 1788 1789 start_pos = round_down(pos, root->sectorsize); 1790 if (start_pos > i_size_read(inode)) { 1791 /* Expand hole size to cover write data, preventing empty gap */ 1792 end_pos = round_up(pos + count, root->sectorsize); 1793 err = btrfs_cont_expand(inode, i_size_read(inode), end_pos); 1794 if (err) { 1795 mutex_unlock(&inode->i_mutex); 1796 goto out; 1797 } 1798 } 1799 1800 if (sync) 1801 atomic_inc(&BTRFS_I(inode)->sync_writers); 1802 1803 if (file->f_flags & O_DIRECT) { 1804 num_written = __btrfs_direct_write(iocb, from, pos); 1805 } else { 1806 num_written = __btrfs_buffered_write(file, from, pos); 1807 if (num_written > 0) 1808 iocb->ki_pos = pos + num_written; 1809 } 1810 1811 mutex_unlock(&inode->i_mutex); 1812 1813 /* 1814 * We also have to set last_sub_trans to the current log transid, 1815 * otherwise subsequent syncs to a file that's been synced in this 1816 * transaction will appear to have already occured. 1817 */ 1818 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1819 if (num_written > 0) { 1820 err = generic_write_sync(file, pos, num_written); 1821 if (err < 0) 1822 num_written = err; 1823 } 1824 1825 if (sync) 1826 atomic_dec(&BTRFS_I(inode)->sync_writers); 1827 out: 1828 current->backing_dev_info = NULL; 1829 return num_written ? num_written : err; 1830 } 1831 1832 int btrfs_release_file(struct inode *inode, struct file *filp) 1833 { 1834 if (filp->private_data) 1835 btrfs_ioctl_trans_end(filp); 1836 /* 1837 * ordered_data_close is set by settattr when we are about to truncate 1838 * a file from a non-zero size to a zero size. This tries to 1839 * flush down new bytes that may have been written if the 1840 * application were using truncate to replace a file in place. 1841 */ 1842 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 1843 &BTRFS_I(inode)->runtime_flags)) 1844 filemap_flush(inode->i_mapping); 1845 return 0; 1846 } 1847 1848 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 1849 { 1850 int ret; 1851 1852 atomic_inc(&BTRFS_I(inode)->sync_writers); 1853 ret = btrfs_fdatawrite_range(inode, start, end); 1854 atomic_dec(&BTRFS_I(inode)->sync_writers); 1855 1856 return ret; 1857 } 1858 1859 /* 1860 * fsync call for both files and directories. This logs the inode into 1861 * the tree log instead of forcing full commits whenever possible. 1862 * 1863 * It needs to call filemap_fdatawait so that all ordered extent updates are 1864 * in the metadata btree are up to date for copying to the log. 1865 * 1866 * It drops the inode mutex before doing the tree log commit. This is an 1867 * important optimization for directories because holding the mutex prevents 1868 * new operations on the dir while we write to disk. 1869 */ 1870 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1871 { 1872 struct dentry *dentry = file->f_path.dentry; 1873 struct inode *inode = dentry->d_inode; 1874 struct btrfs_root *root = BTRFS_I(inode)->root; 1875 struct btrfs_trans_handle *trans; 1876 struct btrfs_log_ctx ctx; 1877 int ret = 0; 1878 bool full_sync = 0; 1879 1880 trace_btrfs_sync_file(file, datasync); 1881 1882 /* 1883 * We write the dirty pages in the range and wait until they complete 1884 * out of the ->i_mutex. If so, we can flush the dirty pages by 1885 * multi-task, and make the performance up. See 1886 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1887 */ 1888 ret = start_ordered_ops(inode, start, end); 1889 if (ret) 1890 return ret; 1891 1892 mutex_lock(&inode->i_mutex); 1893 atomic_inc(&root->log_batch); 1894 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1895 &BTRFS_I(inode)->runtime_flags); 1896 /* 1897 * We might have have had more pages made dirty after calling 1898 * start_ordered_ops and before acquiring the inode's i_mutex. 1899 */ 1900 if (full_sync) { 1901 /* 1902 * For a full sync, we need to make sure any ordered operations 1903 * start and finish before we start logging the inode, so that 1904 * all extents are persisted and the respective file extent 1905 * items are in the fs/subvol btree. 1906 */ 1907 ret = btrfs_wait_ordered_range(inode, start, end - start + 1); 1908 } else { 1909 /* 1910 * Start any new ordered operations before starting to log the 1911 * inode. We will wait for them to finish in btrfs_sync_log(). 1912 * 1913 * Right before acquiring the inode's mutex, we might have new 1914 * writes dirtying pages, which won't immediately start the 1915 * respective ordered operations - that is done through the 1916 * fill_delalloc callbacks invoked from the writepage and 1917 * writepages address space operations. So make sure we start 1918 * all ordered operations before starting to log our inode. Not 1919 * doing this means that while logging the inode, writeback 1920 * could start and invoke writepage/writepages, which would call 1921 * the fill_delalloc callbacks (cow_file_range, 1922 * submit_compressed_extents). These callbacks add first an 1923 * extent map to the modified list of extents and then create 1924 * the respective ordered operation, which means in 1925 * tree-log.c:btrfs_log_inode() we might capture all existing 1926 * ordered operations (with btrfs_get_logged_extents()) before 1927 * the fill_delalloc callback adds its ordered operation, and by 1928 * the time we visit the modified list of extent maps (with 1929 * btrfs_log_changed_extents()), we see and process the extent 1930 * map they created. We then use the extent map to construct a 1931 * file extent item for logging without waiting for the 1932 * respective ordered operation to finish - this file extent 1933 * item points to a disk location that might not have yet been 1934 * written to, containing random data - so after a crash a log 1935 * replay will make our inode have file extent items that point 1936 * to disk locations containing invalid data, as we returned 1937 * success to userspace without waiting for the respective 1938 * ordered operation to finish, because it wasn't captured by 1939 * btrfs_get_logged_extents(). 1940 */ 1941 ret = start_ordered_ops(inode, start, end); 1942 } 1943 if (ret) { 1944 mutex_unlock(&inode->i_mutex); 1945 goto out; 1946 } 1947 atomic_inc(&root->log_batch); 1948 1949 /* 1950 * If the last transaction that changed this file was before the current 1951 * transaction and we have the full sync flag set in our inode, we can 1952 * bail out now without any syncing. 1953 * 1954 * Note that we can't bail out if the full sync flag isn't set. This is 1955 * because when the full sync flag is set we start all ordered extents 1956 * and wait for them to fully complete - when they complete they update 1957 * the inode's last_trans field through: 1958 * 1959 * btrfs_finish_ordered_io() -> 1960 * btrfs_update_inode_fallback() -> 1961 * btrfs_update_inode() -> 1962 * btrfs_set_inode_last_trans() 1963 * 1964 * So we are sure that last_trans is up to date and can do this check to 1965 * bail out safely. For the fast path, when the full sync flag is not 1966 * set in our inode, we can not do it because we start only our ordered 1967 * extents and don't wait for them to complete (that is when 1968 * btrfs_finish_ordered_io runs), so here at this point their last_trans 1969 * value might be less than or equals to fs_info->last_trans_committed, 1970 * and setting a speculative last_trans for an inode when a buffered 1971 * write is made (such as fs_info->generation + 1 for example) would not 1972 * be reliable since after setting the value and before fsync is called 1973 * any number of transactions can start and commit (transaction kthread 1974 * commits the current transaction periodically), and a transaction 1975 * commit does not start nor waits for ordered extents to complete. 1976 */ 1977 smp_mb(); 1978 if (btrfs_inode_in_log(inode, root->fs_info->generation) || 1979 (full_sync && BTRFS_I(inode)->last_trans <= 1980 root->fs_info->last_trans_committed)) { 1981 /* 1982 * We'v had everything committed since the last time we were 1983 * modified so clear this flag in case it was set for whatever 1984 * reason, it's no longer relevant. 1985 */ 1986 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1987 &BTRFS_I(inode)->runtime_flags); 1988 mutex_unlock(&inode->i_mutex); 1989 goto out; 1990 } 1991 1992 /* 1993 * ok we haven't committed the transaction yet, lets do a commit 1994 */ 1995 if (file->private_data) 1996 btrfs_ioctl_trans_end(file); 1997 1998 /* 1999 * We use start here because we will need to wait on the IO to complete 2000 * in btrfs_sync_log, which could require joining a transaction (for 2001 * example checking cross references in the nocow path). If we use join 2002 * here we could get into a situation where we're waiting on IO to 2003 * happen that is blocked on a transaction trying to commit. With start 2004 * we inc the extwriter counter, so we wait for all extwriters to exit 2005 * before we start blocking join'ers. This comment is to keep somebody 2006 * from thinking they are super smart and changing this to 2007 * btrfs_join_transaction *cough*Josef*cough*. 2008 */ 2009 trans = btrfs_start_transaction(root, 0); 2010 if (IS_ERR(trans)) { 2011 ret = PTR_ERR(trans); 2012 mutex_unlock(&inode->i_mutex); 2013 goto out; 2014 } 2015 trans->sync = true; 2016 2017 btrfs_init_log_ctx(&ctx); 2018 2019 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx); 2020 if (ret < 0) { 2021 /* Fallthrough and commit/free transaction. */ 2022 ret = 1; 2023 } 2024 2025 /* we've logged all the items and now have a consistent 2026 * version of the file in the log. It is possible that 2027 * someone will come in and modify the file, but that's 2028 * fine because the log is consistent on disk, and we 2029 * have references to all of the file's extents 2030 * 2031 * It is possible that someone will come in and log the 2032 * file again, but that will end up using the synchronization 2033 * inside btrfs_sync_log to keep things safe. 2034 */ 2035 mutex_unlock(&inode->i_mutex); 2036 2037 /* 2038 * If any of the ordered extents had an error, just return it to user 2039 * space, so that the application knows some writes didn't succeed and 2040 * can take proper action (retry for e.g.). Blindly committing the 2041 * transaction in this case, would fool userspace that everything was 2042 * successful. And we also want to make sure our log doesn't contain 2043 * file extent items pointing to extents that weren't fully written to - 2044 * just like in the non fast fsync path, where we check for the ordered 2045 * operation's error flag before writing to the log tree and return -EIO 2046 * if any of them had this flag set (btrfs_wait_ordered_range) - 2047 * therefore we need to check for errors in the ordered operations, 2048 * which are indicated by ctx.io_err. 2049 */ 2050 if (ctx.io_err) { 2051 btrfs_end_transaction(trans, root); 2052 ret = ctx.io_err; 2053 goto out; 2054 } 2055 2056 if (ret != BTRFS_NO_LOG_SYNC) { 2057 if (!ret) { 2058 ret = btrfs_sync_log(trans, root, &ctx); 2059 if (!ret) { 2060 ret = btrfs_end_transaction(trans, root); 2061 goto out; 2062 } 2063 } 2064 if (!full_sync) { 2065 ret = btrfs_wait_ordered_range(inode, start, 2066 end - start + 1); 2067 if (ret) { 2068 btrfs_end_transaction(trans, root); 2069 goto out; 2070 } 2071 } 2072 ret = btrfs_commit_transaction(trans, root); 2073 } else { 2074 ret = btrfs_end_transaction(trans, root); 2075 } 2076 out: 2077 return ret > 0 ? -EIO : ret; 2078 } 2079 2080 static const struct vm_operations_struct btrfs_file_vm_ops = { 2081 .fault = filemap_fault, 2082 .map_pages = filemap_map_pages, 2083 .page_mkwrite = btrfs_page_mkwrite, 2084 }; 2085 2086 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2087 { 2088 struct address_space *mapping = filp->f_mapping; 2089 2090 if (!mapping->a_ops->readpage) 2091 return -ENOEXEC; 2092 2093 file_accessed(filp); 2094 vma->vm_ops = &btrfs_file_vm_ops; 2095 2096 return 0; 2097 } 2098 2099 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf, 2100 int slot, u64 start, u64 end) 2101 { 2102 struct btrfs_file_extent_item *fi; 2103 struct btrfs_key key; 2104 2105 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2106 return 0; 2107 2108 btrfs_item_key_to_cpu(leaf, &key, slot); 2109 if (key.objectid != btrfs_ino(inode) || 2110 key.type != BTRFS_EXTENT_DATA_KEY) 2111 return 0; 2112 2113 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2114 2115 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2116 return 0; 2117 2118 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2119 return 0; 2120 2121 if (key.offset == end) 2122 return 1; 2123 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2124 return 1; 2125 return 0; 2126 } 2127 2128 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode, 2129 struct btrfs_path *path, u64 offset, u64 end) 2130 { 2131 struct btrfs_root *root = BTRFS_I(inode)->root; 2132 struct extent_buffer *leaf; 2133 struct btrfs_file_extent_item *fi; 2134 struct extent_map *hole_em; 2135 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2136 struct btrfs_key key; 2137 int ret; 2138 2139 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) 2140 goto out; 2141 2142 key.objectid = btrfs_ino(inode); 2143 key.type = BTRFS_EXTENT_DATA_KEY; 2144 key.offset = offset; 2145 2146 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2147 if (ret < 0) 2148 return ret; 2149 BUG_ON(!ret); 2150 2151 leaf = path->nodes[0]; 2152 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) { 2153 u64 num_bytes; 2154 2155 path->slots[0]--; 2156 fi = btrfs_item_ptr(leaf, path->slots[0], 2157 struct btrfs_file_extent_item); 2158 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2159 end - offset; 2160 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2161 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2162 btrfs_set_file_extent_offset(leaf, fi, 0); 2163 btrfs_mark_buffer_dirty(leaf); 2164 goto out; 2165 } 2166 2167 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2168 u64 num_bytes; 2169 2170 key.offset = offset; 2171 btrfs_set_item_key_safe(root, path, &key); 2172 fi = btrfs_item_ptr(leaf, path->slots[0], 2173 struct btrfs_file_extent_item); 2174 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2175 offset; 2176 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2177 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2178 btrfs_set_file_extent_offset(leaf, fi, 0); 2179 btrfs_mark_buffer_dirty(leaf); 2180 goto out; 2181 } 2182 btrfs_release_path(path); 2183 2184 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 2185 0, 0, end - offset, 0, end - offset, 2186 0, 0, 0); 2187 if (ret) 2188 return ret; 2189 2190 out: 2191 btrfs_release_path(path); 2192 2193 hole_em = alloc_extent_map(); 2194 if (!hole_em) { 2195 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2196 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2197 &BTRFS_I(inode)->runtime_flags); 2198 } else { 2199 hole_em->start = offset; 2200 hole_em->len = end - offset; 2201 hole_em->ram_bytes = hole_em->len; 2202 hole_em->orig_start = offset; 2203 2204 hole_em->block_start = EXTENT_MAP_HOLE; 2205 hole_em->block_len = 0; 2206 hole_em->orig_block_len = 0; 2207 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 2208 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2209 hole_em->generation = trans->transid; 2210 2211 do { 2212 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2213 write_lock(&em_tree->lock); 2214 ret = add_extent_mapping(em_tree, hole_em, 1); 2215 write_unlock(&em_tree->lock); 2216 } while (ret == -EEXIST); 2217 free_extent_map(hole_em); 2218 if (ret) 2219 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2220 &BTRFS_I(inode)->runtime_flags); 2221 } 2222 2223 return 0; 2224 } 2225 2226 /* 2227 * Find a hole extent on given inode and change start/len to the end of hole 2228 * extent.(hole/vacuum extent whose em->start <= start && 2229 * em->start + em->len > start) 2230 * When a hole extent is found, return 1 and modify start/len. 2231 */ 2232 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2233 { 2234 struct extent_map *em; 2235 int ret = 0; 2236 2237 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0); 2238 if (IS_ERR_OR_NULL(em)) { 2239 if (!em) 2240 ret = -ENOMEM; 2241 else 2242 ret = PTR_ERR(em); 2243 return ret; 2244 } 2245 2246 /* Hole or vacuum extent(only exists in no-hole mode) */ 2247 if (em->block_start == EXTENT_MAP_HOLE) { 2248 ret = 1; 2249 *len = em->start + em->len > *start + *len ? 2250 0 : *start + *len - em->start - em->len; 2251 *start = em->start + em->len; 2252 } 2253 free_extent_map(em); 2254 return ret; 2255 } 2256 2257 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2258 { 2259 struct btrfs_root *root = BTRFS_I(inode)->root; 2260 struct extent_state *cached_state = NULL; 2261 struct btrfs_path *path; 2262 struct btrfs_block_rsv *rsv; 2263 struct btrfs_trans_handle *trans; 2264 u64 lockstart; 2265 u64 lockend; 2266 u64 tail_start; 2267 u64 tail_len; 2268 u64 orig_start = offset; 2269 u64 cur_offset; 2270 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 2271 u64 drop_end; 2272 int ret = 0; 2273 int err = 0; 2274 int rsv_count; 2275 bool same_page; 2276 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES); 2277 u64 ino_size; 2278 bool truncated_page = false; 2279 bool updated_inode = false; 2280 2281 ret = btrfs_wait_ordered_range(inode, offset, len); 2282 if (ret) 2283 return ret; 2284 2285 mutex_lock(&inode->i_mutex); 2286 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE); 2287 ret = find_first_non_hole(inode, &offset, &len); 2288 if (ret < 0) 2289 goto out_only_mutex; 2290 if (ret && !len) { 2291 /* Already in a large hole */ 2292 ret = 0; 2293 goto out_only_mutex; 2294 } 2295 2296 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize); 2297 lockend = round_down(offset + len, 2298 BTRFS_I(inode)->root->sectorsize) - 1; 2299 same_page = ((offset >> PAGE_CACHE_SHIFT) == 2300 ((offset + len - 1) >> PAGE_CACHE_SHIFT)); 2301 2302 /* 2303 * We needn't truncate any page which is beyond the end of the file 2304 * because we are sure there is no data there. 2305 */ 2306 /* 2307 * Only do this if we are in the same page and we aren't doing the 2308 * entire page. 2309 */ 2310 if (same_page && len < PAGE_CACHE_SIZE) { 2311 if (offset < ino_size) { 2312 truncated_page = true; 2313 ret = btrfs_truncate_page(inode, offset, len, 0); 2314 } else { 2315 ret = 0; 2316 } 2317 goto out_only_mutex; 2318 } 2319 2320 /* zero back part of the first page */ 2321 if (offset < ino_size) { 2322 truncated_page = true; 2323 ret = btrfs_truncate_page(inode, offset, 0, 0); 2324 if (ret) { 2325 mutex_unlock(&inode->i_mutex); 2326 return ret; 2327 } 2328 } 2329 2330 /* Check the aligned pages after the first unaligned page, 2331 * if offset != orig_start, which means the first unaligned page 2332 * including serveral following pages are already in holes, 2333 * the extra check can be skipped */ 2334 if (offset == orig_start) { 2335 /* after truncate page, check hole again */ 2336 len = offset + len - lockstart; 2337 offset = lockstart; 2338 ret = find_first_non_hole(inode, &offset, &len); 2339 if (ret < 0) 2340 goto out_only_mutex; 2341 if (ret && !len) { 2342 ret = 0; 2343 goto out_only_mutex; 2344 } 2345 lockstart = offset; 2346 } 2347 2348 /* Check the tail unaligned part is in a hole */ 2349 tail_start = lockend + 1; 2350 tail_len = offset + len - tail_start; 2351 if (tail_len) { 2352 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2353 if (unlikely(ret < 0)) 2354 goto out_only_mutex; 2355 if (!ret) { 2356 /* zero the front end of the last page */ 2357 if (tail_start + tail_len < ino_size) { 2358 truncated_page = true; 2359 ret = btrfs_truncate_page(inode, 2360 tail_start + tail_len, 0, 1); 2361 if (ret) 2362 goto out_only_mutex; 2363 } 2364 } 2365 } 2366 2367 if (lockend < lockstart) { 2368 ret = 0; 2369 goto out_only_mutex; 2370 } 2371 2372 while (1) { 2373 struct btrfs_ordered_extent *ordered; 2374 2375 truncate_pagecache_range(inode, lockstart, lockend); 2376 2377 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2378 0, &cached_state); 2379 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2380 2381 /* 2382 * We need to make sure we have no ordered extents in this range 2383 * and nobody raced in and read a page in this range, if we did 2384 * we need to try again. 2385 */ 2386 if ((!ordered || 2387 (ordered->file_offset + ordered->len <= lockstart || 2388 ordered->file_offset > lockend)) && 2389 !btrfs_page_exists_in_range(inode, lockstart, lockend)) { 2390 if (ordered) 2391 btrfs_put_ordered_extent(ordered); 2392 break; 2393 } 2394 if (ordered) 2395 btrfs_put_ordered_extent(ordered); 2396 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2397 lockend, &cached_state, GFP_NOFS); 2398 ret = btrfs_wait_ordered_range(inode, lockstart, 2399 lockend - lockstart + 1); 2400 if (ret) { 2401 mutex_unlock(&inode->i_mutex); 2402 return ret; 2403 } 2404 } 2405 2406 path = btrfs_alloc_path(); 2407 if (!path) { 2408 ret = -ENOMEM; 2409 goto out; 2410 } 2411 2412 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2413 if (!rsv) { 2414 ret = -ENOMEM; 2415 goto out_free; 2416 } 2417 rsv->size = btrfs_calc_trunc_metadata_size(root, 1); 2418 rsv->failfast = 1; 2419 2420 /* 2421 * 1 - update the inode 2422 * 1 - removing the extents in the range 2423 * 1 - adding the hole extent if no_holes isn't set 2424 */ 2425 rsv_count = no_holes ? 2 : 3; 2426 trans = btrfs_start_transaction(root, rsv_count); 2427 if (IS_ERR(trans)) { 2428 err = PTR_ERR(trans); 2429 goto out_free; 2430 } 2431 2432 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 2433 min_size); 2434 BUG_ON(ret); 2435 trans->block_rsv = rsv; 2436 2437 cur_offset = lockstart; 2438 len = lockend - cur_offset; 2439 while (cur_offset < lockend) { 2440 ret = __btrfs_drop_extents(trans, root, inode, path, 2441 cur_offset, lockend + 1, 2442 &drop_end, 1, 0, 0, NULL); 2443 if (ret != -ENOSPC) 2444 break; 2445 2446 trans->block_rsv = &root->fs_info->trans_block_rsv; 2447 2448 if (cur_offset < ino_size) { 2449 ret = fill_holes(trans, inode, path, cur_offset, 2450 drop_end); 2451 if (ret) { 2452 err = ret; 2453 break; 2454 } 2455 } 2456 2457 cur_offset = drop_end; 2458 2459 ret = btrfs_update_inode(trans, root, inode); 2460 if (ret) { 2461 err = ret; 2462 break; 2463 } 2464 2465 btrfs_end_transaction(trans, root); 2466 btrfs_btree_balance_dirty(root); 2467 2468 trans = btrfs_start_transaction(root, rsv_count); 2469 if (IS_ERR(trans)) { 2470 ret = PTR_ERR(trans); 2471 trans = NULL; 2472 break; 2473 } 2474 2475 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 2476 rsv, min_size); 2477 BUG_ON(ret); /* shouldn't happen */ 2478 trans->block_rsv = rsv; 2479 2480 ret = find_first_non_hole(inode, &cur_offset, &len); 2481 if (unlikely(ret < 0)) 2482 break; 2483 if (ret && !len) { 2484 ret = 0; 2485 break; 2486 } 2487 } 2488 2489 if (ret) { 2490 err = ret; 2491 goto out_trans; 2492 } 2493 2494 trans->block_rsv = &root->fs_info->trans_block_rsv; 2495 /* 2496 * Don't insert file hole extent item if it's for a range beyond eof 2497 * (because it's useless) or if it represents a 0 bytes range (when 2498 * cur_offset == drop_end). 2499 */ 2500 if (cur_offset < ino_size && cur_offset < drop_end) { 2501 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2502 if (ret) { 2503 err = ret; 2504 goto out_trans; 2505 } 2506 } 2507 2508 out_trans: 2509 if (!trans) 2510 goto out_free; 2511 2512 inode_inc_iversion(inode); 2513 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2514 2515 trans->block_rsv = &root->fs_info->trans_block_rsv; 2516 ret = btrfs_update_inode(trans, root, inode); 2517 updated_inode = true; 2518 btrfs_end_transaction(trans, root); 2519 btrfs_btree_balance_dirty(root); 2520 out_free: 2521 btrfs_free_path(path); 2522 btrfs_free_block_rsv(root, rsv); 2523 out: 2524 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2525 &cached_state, GFP_NOFS); 2526 out_only_mutex: 2527 if (!updated_inode && truncated_page && !ret && !err) { 2528 /* 2529 * If we only end up zeroing part of a page, we still need to 2530 * update the inode item, so that all the time fields are 2531 * updated as well as the necessary btrfs inode in memory fields 2532 * for detecting, at fsync time, if the inode isn't yet in the 2533 * log tree or it's there but not up to date. 2534 */ 2535 trans = btrfs_start_transaction(root, 1); 2536 if (IS_ERR(trans)) { 2537 err = PTR_ERR(trans); 2538 } else { 2539 err = btrfs_update_inode(trans, root, inode); 2540 ret = btrfs_end_transaction(trans, root); 2541 } 2542 } 2543 mutex_unlock(&inode->i_mutex); 2544 if (ret && !err) 2545 err = ret; 2546 return err; 2547 } 2548 2549 static long btrfs_fallocate(struct file *file, int mode, 2550 loff_t offset, loff_t len) 2551 { 2552 struct inode *inode = file_inode(file); 2553 struct extent_state *cached_state = NULL; 2554 struct btrfs_root *root = BTRFS_I(inode)->root; 2555 u64 cur_offset; 2556 u64 last_byte; 2557 u64 alloc_start; 2558 u64 alloc_end; 2559 u64 alloc_hint = 0; 2560 u64 locked_end; 2561 struct extent_map *em; 2562 int blocksize = BTRFS_I(inode)->root->sectorsize; 2563 int ret; 2564 2565 alloc_start = round_down(offset, blocksize); 2566 alloc_end = round_up(offset + len, blocksize); 2567 2568 /* Make sure we aren't being give some crap mode */ 2569 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2570 return -EOPNOTSUPP; 2571 2572 if (mode & FALLOC_FL_PUNCH_HOLE) 2573 return btrfs_punch_hole(inode, offset, len); 2574 2575 /* 2576 * Make sure we have enough space before we do the 2577 * allocation. 2578 */ 2579 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start); 2580 if (ret) 2581 return ret; 2582 if (root->fs_info->quota_enabled) { 2583 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start); 2584 if (ret) 2585 goto out_reserve_fail; 2586 } 2587 2588 mutex_lock(&inode->i_mutex); 2589 ret = inode_newsize_ok(inode, alloc_end); 2590 if (ret) 2591 goto out; 2592 2593 if (alloc_start > inode->i_size) { 2594 ret = btrfs_cont_expand(inode, i_size_read(inode), 2595 alloc_start); 2596 if (ret) 2597 goto out; 2598 } else { 2599 /* 2600 * If we are fallocating from the end of the file onward we 2601 * need to zero out the end of the page if i_size lands in the 2602 * middle of a page. 2603 */ 2604 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0); 2605 if (ret) 2606 goto out; 2607 } 2608 2609 /* 2610 * wait for ordered IO before we have any locks. We'll loop again 2611 * below with the locks held. 2612 */ 2613 ret = btrfs_wait_ordered_range(inode, alloc_start, 2614 alloc_end - alloc_start); 2615 if (ret) 2616 goto out; 2617 2618 locked_end = alloc_end - 1; 2619 while (1) { 2620 struct btrfs_ordered_extent *ordered; 2621 2622 /* the extent lock is ordered inside the running 2623 * transaction 2624 */ 2625 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 2626 locked_end, 0, &cached_state); 2627 ordered = btrfs_lookup_first_ordered_extent(inode, 2628 alloc_end - 1); 2629 if (ordered && 2630 ordered->file_offset + ordered->len > alloc_start && 2631 ordered->file_offset < alloc_end) { 2632 btrfs_put_ordered_extent(ordered); 2633 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 2634 alloc_start, locked_end, 2635 &cached_state, GFP_NOFS); 2636 /* 2637 * we can't wait on the range with the transaction 2638 * running or with the extent lock held 2639 */ 2640 ret = btrfs_wait_ordered_range(inode, alloc_start, 2641 alloc_end - alloc_start); 2642 if (ret) 2643 goto out; 2644 } else { 2645 if (ordered) 2646 btrfs_put_ordered_extent(ordered); 2647 break; 2648 } 2649 } 2650 2651 cur_offset = alloc_start; 2652 while (1) { 2653 u64 actual_end; 2654 2655 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2656 alloc_end - cur_offset, 0); 2657 if (IS_ERR_OR_NULL(em)) { 2658 if (!em) 2659 ret = -ENOMEM; 2660 else 2661 ret = PTR_ERR(em); 2662 break; 2663 } 2664 last_byte = min(extent_map_end(em), alloc_end); 2665 actual_end = min_t(u64, extent_map_end(em), offset + len); 2666 last_byte = ALIGN(last_byte, blocksize); 2667 2668 if (em->block_start == EXTENT_MAP_HOLE || 2669 (cur_offset >= inode->i_size && 2670 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 2671 ret = btrfs_prealloc_file_range(inode, mode, cur_offset, 2672 last_byte - cur_offset, 2673 1 << inode->i_blkbits, 2674 offset + len, 2675 &alloc_hint); 2676 2677 if (ret < 0) { 2678 free_extent_map(em); 2679 break; 2680 } 2681 } else if (actual_end > inode->i_size && 2682 !(mode & FALLOC_FL_KEEP_SIZE)) { 2683 /* 2684 * We didn't need to allocate any more space, but we 2685 * still extended the size of the file so we need to 2686 * update i_size. 2687 */ 2688 inode->i_ctime = CURRENT_TIME; 2689 i_size_write(inode, actual_end); 2690 btrfs_ordered_update_i_size(inode, actual_end, NULL); 2691 } 2692 free_extent_map(em); 2693 2694 cur_offset = last_byte; 2695 if (cur_offset >= alloc_end) { 2696 ret = 0; 2697 break; 2698 } 2699 } 2700 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 2701 &cached_state, GFP_NOFS); 2702 out: 2703 mutex_unlock(&inode->i_mutex); 2704 if (root->fs_info->quota_enabled) 2705 btrfs_qgroup_free(root, alloc_end - alloc_start); 2706 out_reserve_fail: 2707 /* Let go of our reservation. */ 2708 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start); 2709 return ret; 2710 } 2711 2712 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 2713 { 2714 struct btrfs_root *root = BTRFS_I(inode)->root; 2715 struct extent_map *em = NULL; 2716 struct extent_state *cached_state = NULL; 2717 u64 lockstart; 2718 u64 lockend; 2719 u64 start; 2720 u64 len; 2721 int ret = 0; 2722 2723 if (inode->i_size == 0) 2724 return -ENXIO; 2725 2726 /* 2727 * *offset can be negative, in this case we start finding DATA/HOLE from 2728 * the very start of the file. 2729 */ 2730 start = max_t(loff_t, 0, *offset); 2731 2732 lockstart = round_down(start, root->sectorsize); 2733 lockend = round_up(i_size_read(inode), root->sectorsize); 2734 if (lockend <= lockstart) 2735 lockend = lockstart + root->sectorsize; 2736 lockend--; 2737 len = lockend - lockstart + 1; 2738 2739 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0, 2740 &cached_state); 2741 2742 while (start < inode->i_size) { 2743 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0); 2744 if (IS_ERR(em)) { 2745 ret = PTR_ERR(em); 2746 em = NULL; 2747 break; 2748 } 2749 2750 if (whence == SEEK_HOLE && 2751 (em->block_start == EXTENT_MAP_HOLE || 2752 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2753 break; 2754 else if (whence == SEEK_DATA && 2755 (em->block_start != EXTENT_MAP_HOLE && 2756 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2757 break; 2758 2759 start = em->start + em->len; 2760 free_extent_map(em); 2761 em = NULL; 2762 cond_resched(); 2763 } 2764 free_extent_map(em); 2765 if (!ret) { 2766 if (whence == SEEK_DATA && start >= inode->i_size) 2767 ret = -ENXIO; 2768 else 2769 *offset = min_t(loff_t, start, inode->i_size); 2770 } 2771 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2772 &cached_state, GFP_NOFS); 2773 return ret; 2774 } 2775 2776 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 2777 { 2778 struct inode *inode = file->f_mapping->host; 2779 int ret; 2780 2781 mutex_lock(&inode->i_mutex); 2782 switch (whence) { 2783 case SEEK_END: 2784 case SEEK_CUR: 2785 offset = generic_file_llseek(file, offset, whence); 2786 goto out; 2787 case SEEK_DATA: 2788 case SEEK_HOLE: 2789 if (offset >= i_size_read(inode)) { 2790 mutex_unlock(&inode->i_mutex); 2791 return -ENXIO; 2792 } 2793 2794 ret = find_desired_extent(inode, &offset, whence); 2795 if (ret) { 2796 mutex_unlock(&inode->i_mutex); 2797 return ret; 2798 } 2799 } 2800 2801 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2802 out: 2803 mutex_unlock(&inode->i_mutex); 2804 return offset; 2805 } 2806 2807 const struct file_operations btrfs_file_operations = { 2808 .llseek = btrfs_file_llseek, 2809 .read = new_sync_read, 2810 .write = new_sync_write, 2811 .read_iter = generic_file_read_iter, 2812 .splice_read = generic_file_splice_read, 2813 .write_iter = btrfs_file_write_iter, 2814 .mmap = btrfs_file_mmap, 2815 .open = generic_file_open, 2816 .release = btrfs_release_file, 2817 .fsync = btrfs_sync_file, 2818 .fallocate = btrfs_fallocate, 2819 .unlocked_ioctl = btrfs_ioctl, 2820 #ifdef CONFIG_COMPAT 2821 .compat_ioctl = btrfs_ioctl, 2822 #endif 2823 }; 2824 2825 void btrfs_auto_defrag_exit(void) 2826 { 2827 if (btrfs_inode_defrag_cachep) 2828 kmem_cache_destroy(btrfs_inode_defrag_cachep); 2829 } 2830 2831 int btrfs_auto_defrag_init(void) 2832 { 2833 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 2834 sizeof(struct inode_defrag), 0, 2835 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 2836 NULL); 2837 if (!btrfs_inode_defrag_cachep) 2838 return -ENOMEM; 2839 2840 return 0; 2841 } 2842 2843 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 2844 { 2845 int ret; 2846 2847 /* 2848 * So with compression we will find and lock a dirty page and clear the 2849 * first one as dirty, setup an async extent, and immediately return 2850 * with the entire range locked but with nobody actually marked with 2851 * writeback. So we can't just filemap_write_and_wait_range() and 2852 * expect it to work since it will just kick off a thread to do the 2853 * actual work. So we need to call filemap_fdatawrite_range _again_ 2854 * since it will wait on the page lock, which won't be unlocked until 2855 * after the pages have been marked as writeback and so we're good to go 2856 * from there. We have to do this otherwise we'll miss the ordered 2857 * extents and that results in badness. Please Josef, do not think you 2858 * know better and pull this out at some point in the future, it is 2859 * right and you are wrong. 2860 */ 2861 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 2862 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 2863 &BTRFS_I(inode)->runtime_flags)) 2864 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 2865 2866 return ret; 2867 } 2868