xref: /openbmc/linux/fs/btrfs/file-item.c (revision dba52960)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "misc.h"
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "print-tree.h"
18 #include "compression.h"
19 
20 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
21 				   sizeof(struct btrfs_item) * 2) / \
22 				  size) - 1))
23 
24 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
25 				       PAGE_SIZE))
26 
27 /**
28  * Set inode's size according to filesystem options
29  *
30  * @inode:      inode we want to update the disk_i_size for
31  * @new_i_size: i_size we want to set to, 0 if we use i_size
32  *
33  * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
34  * returns as it is perfectly fine with a file that has holes without hole file
35  * extent items.
36  *
37  * However without NO_HOLES we need to only return the area that is contiguous
38  * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
39  * to an extent that has a gap in between.
40  *
41  * Finally new_i_size should only be set in the case of truncate where we're not
42  * ready to use i_size_read() as the limiter yet.
43  */
44 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
45 {
46 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
47 	u64 start, end, i_size;
48 	int ret;
49 
50 	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
51 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
52 		inode->disk_i_size = i_size;
53 		return;
54 	}
55 
56 	spin_lock(&inode->lock);
57 	ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
58 					 &end, EXTENT_DIRTY);
59 	if (!ret && start == 0)
60 		i_size = min(i_size, end + 1);
61 	else
62 		i_size = 0;
63 	inode->disk_i_size = i_size;
64 	spin_unlock(&inode->lock);
65 }
66 
67 /**
68  * Mark range within a file as having a new extent inserted
69  *
70  * @inode: inode being modified
71  * @start: start file offset of the file extent we've inserted
72  * @len:   logical length of the file extent item
73  *
74  * Call when we are inserting a new file extent where there was none before.
75  * Does not need to call this in the case where we're replacing an existing file
76  * extent, however if not sure it's fine to call this multiple times.
77  *
78  * The start and len must match the file extent item, so thus must be sectorsize
79  * aligned.
80  */
81 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
82 				      u64 len)
83 {
84 	if (len == 0)
85 		return 0;
86 
87 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
88 
89 	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
90 		return 0;
91 	return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
92 			       EXTENT_DIRTY);
93 }
94 
95 /**
96  * Marks an inode range as not having a backing extent
97  *
98  * @inode: inode being modified
99  * @start: start file offset of the file extent we've inserted
100  * @len:   logical length of the file extent item
101  *
102  * Called when we drop a file extent, for example when we truncate.  Doesn't
103  * need to be called for cases where we're replacing a file extent, like when
104  * we've COWed a file extent.
105  *
106  * The start and len must match the file extent item, so thus must be sectorsize
107  * aligned.
108  */
109 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
110 					u64 len)
111 {
112 	if (len == 0)
113 		return 0;
114 
115 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
116 	       len == (u64)-1);
117 
118 	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
119 		return 0;
120 	return clear_extent_bit(&inode->file_extent_tree, start,
121 				start + len - 1, EXTENT_DIRTY, 0, 0, NULL);
122 }
123 
124 static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
125 					u16 csum_size)
126 {
127 	u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
128 
129 	return ncsums * fs_info->sectorsize;
130 }
131 
132 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
133 			     struct btrfs_root *root,
134 			     u64 objectid, u64 pos,
135 			     u64 disk_offset, u64 disk_num_bytes,
136 			     u64 num_bytes, u64 offset, u64 ram_bytes,
137 			     u8 compression, u8 encryption, u16 other_encoding)
138 {
139 	int ret = 0;
140 	struct btrfs_file_extent_item *item;
141 	struct btrfs_key file_key;
142 	struct btrfs_path *path;
143 	struct extent_buffer *leaf;
144 
145 	path = btrfs_alloc_path();
146 	if (!path)
147 		return -ENOMEM;
148 	file_key.objectid = objectid;
149 	file_key.offset = pos;
150 	file_key.type = BTRFS_EXTENT_DATA_KEY;
151 
152 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
153 				      sizeof(*item));
154 	if (ret < 0)
155 		goto out;
156 	BUG_ON(ret); /* Can't happen */
157 	leaf = path->nodes[0];
158 	item = btrfs_item_ptr(leaf, path->slots[0],
159 			      struct btrfs_file_extent_item);
160 	btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
161 	btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
162 	btrfs_set_file_extent_offset(leaf, item, offset);
163 	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
164 	btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
165 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
166 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
167 	btrfs_set_file_extent_compression(leaf, item, compression);
168 	btrfs_set_file_extent_encryption(leaf, item, encryption);
169 	btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
170 
171 	btrfs_mark_buffer_dirty(leaf);
172 out:
173 	btrfs_free_path(path);
174 	return ret;
175 }
176 
177 static struct btrfs_csum_item *
178 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
179 		  struct btrfs_root *root,
180 		  struct btrfs_path *path,
181 		  u64 bytenr, int cow)
182 {
183 	struct btrfs_fs_info *fs_info = root->fs_info;
184 	int ret;
185 	struct btrfs_key file_key;
186 	struct btrfs_key found_key;
187 	struct btrfs_csum_item *item;
188 	struct extent_buffer *leaf;
189 	u64 csum_offset = 0;
190 	const u32 csum_size = fs_info->csum_size;
191 	int csums_in_item;
192 
193 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
194 	file_key.offset = bytenr;
195 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
196 	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
197 	if (ret < 0)
198 		goto fail;
199 	leaf = path->nodes[0];
200 	if (ret > 0) {
201 		ret = 1;
202 		if (path->slots[0] == 0)
203 			goto fail;
204 		path->slots[0]--;
205 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
206 		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
207 			goto fail;
208 
209 		csum_offset = (bytenr - found_key.offset) >>
210 				fs_info->sectorsize_bits;
211 		csums_in_item = btrfs_item_size(leaf, path->slots[0]);
212 		csums_in_item /= csum_size;
213 
214 		if (csum_offset == csums_in_item) {
215 			ret = -EFBIG;
216 			goto fail;
217 		} else if (csum_offset > csums_in_item) {
218 			goto fail;
219 		}
220 	}
221 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
222 	item = (struct btrfs_csum_item *)((unsigned char *)item +
223 					  csum_offset * csum_size);
224 	return item;
225 fail:
226 	if (ret > 0)
227 		ret = -ENOENT;
228 	return ERR_PTR(ret);
229 }
230 
231 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
232 			     struct btrfs_root *root,
233 			     struct btrfs_path *path, u64 objectid,
234 			     u64 offset, int mod)
235 {
236 	struct btrfs_key file_key;
237 	int ins_len = mod < 0 ? -1 : 0;
238 	int cow = mod != 0;
239 
240 	file_key.objectid = objectid;
241 	file_key.offset = offset;
242 	file_key.type = BTRFS_EXTENT_DATA_KEY;
243 
244 	return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
245 }
246 
247 /*
248  * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
249  * estore the result to @dst.
250  *
251  * Return >0 for the number of sectors we found.
252  * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
253  * for it. Caller may want to try next sector until one range is hit.
254  * Return <0 for fatal error.
255  */
256 static int search_csum_tree(struct btrfs_fs_info *fs_info,
257 			    struct btrfs_path *path, u64 disk_bytenr,
258 			    u64 len, u8 *dst)
259 {
260 	struct btrfs_root *csum_root;
261 	struct btrfs_csum_item *item = NULL;
262 	struct btrfs_key key;
263 	const u32 sectorsize = fs_info->sectorsize;
264 	const u32 csum_size = fs_info->csum_size;
265 	u32 itemsize;
266 	int ret;
267 	u64 csum_start;
268 	u64 csum_len;
269 
270 	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
271 	       IS_ALIGNED(len, sectorsize));
272 
273 	/* Check if the current csum item covers disk_bytenr */
274 	if (path->nodes[0]) {
275 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
276 				      struct btrfs_csum_item);
277 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
278 		itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
279 
280 		csum_start = key.offset;
281 		csum_len = (itemsize / csum_size) * sectorsize;
282 
283 		if (in_range(disk_bytenr, csum_start, csum_len))
284 			goto found;
285 	}
286 
287 	/* Current item doesn't contain the desired range, search again */
288 	btrfs_release_path(path);
289 	csum_root = btrfs_csum_root(fs_info, disk_bytenr);
290 	item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
291 	if (IS_ERR(item)) {
292 		ret = PTR_ERR(item);
293 		goto out;
294 	}
295 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
296 	itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
297 
298 	csum_start = key.offset;
299 	csum_len = (itemsize / csum_size) * sectorsize;
300 	ASSERT(in_range(disk_bytenr, csum_start, csum_len));
301 
302 found:
303 	ret = (min(csum_start + csum_len, disk_bytenr + len) -
304 		   disk_bytenr) >> fs_info->sectorsize_bits;
305 	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
306 			ret * csum_size);
307 out:
308 	if (ret == -ENOENT)
309 		ret = 0;
310 	return ret;
311 }
312 
313 /*
314  * Locate the file_offset of @cur_disk_bytenr of a @bio.
315  *
316  * Bio of btrfs represents read range of
317  * [bi_sector << 9, bi_sector << 9 + bi_size).
318  * Knowing this, we can iterate through each bvec to locate the page belong to
319  * @cur_disk_bytenr and get the file offset.
320  *
321  * @inode is used to determine if the bvec page really belongs to @inode.
322  *
323  * Return 0 if we can't find the file offset
324  * Return >0 if we find the file offset and restore it to @file_offset_ret
325  */
326 static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
327 				     u64 disk_bytenr, u64 *file_offset_ret)
328 {
329 	struct bvec_iter iter;
330 	struct bio_vec bvec;
331 	u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
332 	int ret = 0;
333 
334 	bio_for_each_segment(bvec, bio, iter) {
335 		struct page *page = bvec.bv_page;
336 
337 		if (cur > disk_bytenr)
338 			break;
339 		if (cur + bvec.bv_len <= disk_bytenr) {
340 			cur += bvec.bv_len;
341 			continue;
342 		}
343 		ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
344 		if (page->mapping && page->mapping->host &&
345 		    page->mapping->host == inode) {
346 			ret = 1;
347 			*file_offset_ret = page_offset(page) + bvec.bv_offset +
348 					   disk_bytenr - cur;
349 			break;
350 		}
351 	}
352 	return ret;
353 }
354 
355 /**
356  * Lookup the checksum for the read bio in csum tree.
357  *
358  * @inode: inode that the bio is for.
359  * @bio: bio to look up.
360  * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
361  *       checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
362  *       NULL, the checksum buffer is allocated and returned in
363  *       btrfs_bio(bio)->csum instead.
364  *
365  * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
366  */
367 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst)
368 {
369 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
370 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
371 	struct btrfs_path *path;
372 	const u32 sectorsize = fs_info->sectorsize;
373 	const u32 csum_size = fs_info->csum_size;
374 	u32 orig_len = bio->bi_iter.bi_size;
375 	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
376 	u64 cur_disk_bytenr;
377 	u8 *csum;
378 	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
379 	int count = 0;
380 
381 	if ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
382 	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
383 		return BLK_STS_OK;
384 
385 	/*
386 	 * This function is only called for read bio.
387 	 *
388 	 * This means two things:
389 	 * - All our csums should only be in csum tree
390 	 *   No ordered extents csums, as ordered extents are only for write
391 	 *   path.
392 	 * - No need to bother any other info from bvec
393 	 *   Since we're looking up csums, the only important info is the
394 	 *   disk_bytenr and the length, which can be extracted from bi_iter
395 	 *   directly.
396 	 */
397 	ASSERT(bio_op(bio) == REQ_OP_READ);
398 	path = btrfs_alloc_path();
399 	if (!path)
400 		return BLK_STS_RESOURCE;
401 
402 	if (!dst) {
403 		struct btrfs_bio *bbio = btrfs_bio(bio);
404 
405 		if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
406 			bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
407 			if (!bbio->csum) {
408 				btrfs_free_path(path);
409 				return BLK_STS_RESOURCE;
410 			}
411 		} else {
412 			bbio->csum = bbio->csum_inline;
413 		}
414 		csum = bbio->csum;
415 	} else {
416 		csum = dst;
417 	}
418 
419 	/*
420 	 * If requested number of sectors is larger than one leaf can contain,
421 	 * kick the readahead for csum tree.
422 	 */
423 	if (nblocks > fs_info->csums_per_leaf)
424 		path->reada = READA_FORWARD;
425 
426 	/*
427 	 * the free space stuff is only read when it hasn't been
428 	 * updated in the current transaction.  So, we can safely
429 	 * read from the commit root and sidestep a nasty deadlock
430 	 * between reading the free space cache and updating the csum tree.
431 	 */
432 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
433 		path->search_commit_root = 1;
434 		path->skip_locking = 1;
435 	}
436 
437 	for (cur_disk_bytenr = orig_disk_bytenr;
438 	     cur_disk_bytenr < orig_disk_bytenr + orig_len;
439 	     cur_disk_bytenr += (count * sectorsize)) {
440 		u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
441 		unsigned int sector_offset;
442 		u8 *csum_dst;
443 
444 		/*
445 		 * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
446 		 * we're calculating the offset to the bio start.
447 		 *
448 		 * Bio size is limited to UINT_MAX, thus unsigned int is large
449 		 * enough to contain the raw result, not to mention the right
450 		 * shifted result.
451 		 */
452 		ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
453 		sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
454 				fs_info->sectorsize_bits;
455 		csum_dst = csum + sector_offset * csum_size;
456 
457 		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
458 					 search_len, csum_dst);
459 		if (count <= 0) {
460 			/*
461 			 * Either we hit a critical error or we didn't find
462 			 * the csum.
463 			 * Either way, we put zero into the csums dst, and skip
464 			 * to the next sector.
465 			 */
466 			memset(csum_dst, 0, csum_size);
467 			count = 1;
468 
469 			/*
470 			 * For data reloc inode, we need to mark the range
471 			 * NODATASUM so that balance won't report false csum
472 			 * error.
473 			 */
474 			if (BTRFS_I(inode)->root->root_key.objectid ==
475 			    BTRFS_DATA_RELOC_TREE_OBJECTID) {
476 				u64 file_offset;
477 				int ret;
478 
479 				ret = search_file_offset_in_bio(bio, inode,
480 						cur_disk_bytenr, &file_offset);
481 				if (ret)
482 					set_extent_bits(io_tree, file_offset,
483 						file_offset + sectorsize - 1,
484 						EXTENT_NODATASUM);
485 			} else {
486 				btrfs_warn_rl(fs_info,
487 			"csum hole found for disk bytenr range [%llu, %llu)",
488 				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
489 			}
490 		}
491 	}
492 
493 	btrfs_free_path(path);
494 	return BLK_STS_OK;
495 }
496 
497 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
498 			     struct list_head *list, int search_commit)
499 {
500 	struct btrfs_fs_info *fs_info = root->fs_info;
501 	struct btrfs_key key;
502 	struct btrfs_path *path;
503 	struct extent_buffer *leaf;
504 	struct btrfs_ordered_sum *sums;
505 	struct btrfs_csum_item *item;
506 	LIST_HEAD(tmplist);
507 	unsigned long offset;
508 	int ret;
509 	size_t size;
510 	u64 csum_end;
511 	const u32 csum_size = fs_info->csum_size;
512 
513 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
514 	       IS_ALIGNED(end + 1, fs_info->sectorsize));
515 
516 	path = btrfs_alloc_path();
517 	if (!path)
518 		return -ENOMEM;
519 
520 	if (search_commit) {
521 		path->skip_locking = 1;
522 		path->reada = READA_FORWARD;
523 		path->search_commit_root = 1;
524 	}
525 
526 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
527 	key.offset = start;
528 	key.type = BTRFS_EXTENT_CSUM_KEY;
529 
530 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
531 	if (ret < 0)
532 		goto fail;
533 	if (ret > 0 && path->slots[0] > 0) {
534 		leaf = path->nodes[0];
535 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
536 		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
537 		    key.type == BTRFS_EXTENT_CSUM_KEY) {
538 			offset = (start - key.offset) >> fs_info->sectorsize_bits;
539 			if (offset * csum_size <
540 			    btrfs_item_size(leaf, path->slots[0] - 1))
541 				path->slots[0]--;
542 		}
543 	}
544 
545 	while (start <= end) {
546 		leaf = path->nodes[0];
547 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
548 			ret = btrfs_next_leaf(root, path);
549 			if (ret < 0)
550 				goto fail;
551 			if (ret > 0)
552 				break;
553 			leaf = path->nodes[0];
554 		}
555 
556 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
557 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
558 		    key.type != BTRFS_EXTENT_CSUM_KEY ||
559 		    key.offset > end)
560 			break;
561 
562 		if (key.offset > start)
563 			start = key.offset;
564 
565 		size = btrfs_item_size(leaf, path->slots[0]);
566 		csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
567 		if (csum_end <= start) {
568 			path->slots[0]++;
569 			continue;
570 		}
571 
572 		csum_end = min(csum_end, end + 1);
573 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
574 				      struct btrfs_csum_item);
575 		while (start < csum_end) {
576 			size = min_t(size_t, csum_end - start,
577 				     max_ordered_sum_bytes(fs_info, csum_size));
578 			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
579 				       GFP_NOFS);
580 			if (!sums) {
581 				ret = -ENOMEM;
582 				goto fail;
583 			}
584 
585 			sums->bytenr = start;
586 			sums->len = (int)size;
587 
588 			offset = (start - key.offset) >> fs_info->sectorsize_bits;
589 			offset *= csum_size;
590 			size >>= fs_info->sectorsize_bits;
591 
592 			read_extent_buffer(path->nodes[0],
593 					   sums->sums,
594 					   ((unsigned long)item) + offset,
595 					   csum_size * size);
596 
597 			start += fs_info->sectorsize * size;
598 			list_add_tail(&sums->list, &tmplist);
599 		}
600 		path->slots[0]++;
601 	}
602 	ret = 0;
603 fail:
604 	while (ret < 0 && !list_empty(&tmplist)) {
605 		sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
606 		list_del(&sums->list);
607 		kfree(sums);
608 	}
609 	list_splice_tail(&tmplist, list);
610 
611 	btrfs_free_path(path);
612 	return ret;
613 }
614 
615 /*
616  * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio
617  * @inode:	 Owner of the data inside the bio
618  * @bio:	 Contains the data to be checksummed
619  * @file_start:  offset in file this bio begins to describe
620  * @contig:	 Boolean. If true/1 means all bio vecs in this bio are
621  *		 contiguous and they begin at @file_start in the file. False/0
622  *		 means this bio can contain potentially discontiguous bio vecs
623  *		 so the logical offset of each should be calculated separately.
624  */
625 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
626 		       u64 file_start, int contig)
627 {
628 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
629 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
630 	struct btrfs_ordered_sum *sums;
631 	struct btrfs_ordered_extent *ordered = NULL;
632 	char *data;
633 	struct bvec_iter iter;
634 	struct bio_vec bvec;
635 	int index;
636 	int nr_sectors;
637 	unsigned long total_bytes = 0;
638 	unsigned long this_sum_bytes = 0;
639 	int i;
640 	u64 offset;
641 	unsigned nofs_flag;
642 
643 	nofs_flag = memalloc_nofs_save();
644 	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
645 		       GFP_KERNEL);
646 	memalloc_nofs_restore(nofs_flag);
647 
648 	if (!sums)
649 		return BLK_STS_RESOURCE;
650 
651 	sums->len = bio->bi_iter.bi_size;
652 	INIT_LIST_HEAD(&sums->list);
653 
654 	if (contig)
655 		offset = file_start;
656 	else
657 		offset = 0; /* shut up gcc */
658 
659 	sums->bytenr = bio->bi_iter.bi_sector << 9;
660 	index = 0;
661 
662 	shash->tfm = fs_info->csum_shash;
663 
664 	bio_for_each_segment(bvec, bio, iter) {
665 		if (!contig)
666 			offset = page_offset(bvec.bv_page) + bvec.bv_offset;
667 
668 		if (!ordered) {
669 			ordered = btrfs_lookup_ordered_extent(inode, offset);
670 			/*
671 			 * The bio range is not covered by any ordered extent,
672 			 * must be a code logic error.
673 			 */
674 			if (unlikely(!ordered)) {
675 				WARN(1, KERN_WARNING
676 			"no ordered extent for root %llu ino %llu offset %llu\n",
677 				     inode->root->root_key.objectid,
678 				     btrfs_ino(inode), offset);
679 				kvfree(sums);
680 				return BLK_STS_IOERR;
681 			}
682 		}
683 
684 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info,
685 						 bvec.bv_len + fs_info->sectorsize
686 						 - 1);
687 
688 		for (i = 0; i < nr_sectors; i++) {
689 			if (offset >= ordered->file_offset + ordered->num_bytes ||
690 			    offset < ordered->file_offset) {
691 				unsigned long bytes_left;
692 
693 				sums->len = this_sum_bytes;
694 				this_sum_bytes = 0;
695 				btrfs_add_ordered_sum(ordered, sums);
696 				btrfs_put_ordered_extent(ordered);
697 
698 				bytes_left = bio->bi_iter.bi_size - total_bytes;
699 
700 				nofs_flag = memalloc_nofs_save();
701 				sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
702 						      bytes_left), GFP_KERNEL);
703 				memalloc_nofs_restore(nofs_flag);
704 				BUG_ON(!sums); /* -ENOMEM */
705 				sums->len = bytes_left;
706 				ordered = btrfs_lookup_ordered_extent(inode,
707 								offset);
708 				ASSERT(ordered); /* Logic error */
709 				sums->bytenr = (bio->bi_iter.bi_sector << 9)
710 					+ total_bytes;
711 				index = 0;
712 			}
713 
714 			data = bvec_kmap_local(&bvec);
715 			crypto_shash_digest(shash,
716 					    data + (i * fs_info->sectorsize),
717 					    fs_info->sectorsize,
718 					    sums->sums + index);
719 			kunmap_local(data);
720 			index += fs_info->csum_size;
721 			offset += fs_info->sectorsize;
722 			this_sum_bytes += fs_info->sectorsize;
723 			total_bytes += fs_info->sectorsize;
724 		}
725 
726 	}
727 	this_sum_bytes = 0;
728 	btrfs_add_ordered_sum(ordered, sums);
729 	btrfs_put_ordered_extent(ordered);
730 	return 0;
731 }
732 
733 /*
734  * helper function for csum removal, this expects the
735  * key to describe the csum pointed to by the path, and it expects
736  * the csum to overlap the range [bytenr, len]
737  *
738  * The csum should not be entirely contained in the range and the
739  * range should not be entirely contained in the csum.
740  *
741  * This calls btrfs_truncate_item with the correct args based on the
742  * overlap, and fixes up the key as required.
743  */
744 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
745 				       struct btrfs_path *path,
746 				       struct btrfs_key *key,
747 				       u64 bytenr, u64 len)
748 {
749 	struct extent_buffer *leaf;
750 	const u32 csum_size = fs_info->csum_size;
751 	u64 csum_end;
752 	u64 end_byte = bytenr + len;
753 	u32 blocksize_bits = fs_info->sectorsize_bits;
754 
755 	leaf = path->nodes[0];
756 	csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
757 	csum_end <<= blocksize_bits;
758 	csum_end += key->offset;
759 
760 	if (key->offset < bytenr && csum_end <= end_byte) {
761 		/*
762 		 *         [ bytenr - len ]
763 		 *         [   ]
764 		 *   [csum     ]
765 		 *   A simple truncate off the end of the item
766 		 */
767 		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
768 		new_size *= csum_size;
769 		btrfs_truncate_item(path, new_size, 1);
770 	} else if (key->offset >= bytenr && csum_end > end_byte &&
771 		   end_byte > key->offset) {
772 		/*
773 		 *         [ bytenr - len ]
774 		 *                 [ ]
775 		 *                 [csum     ]
776 		 * we need to truncate from the beginning of the csum
777 		 */
778 		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
779 		new_size *= csum_size;
780 
781 		btrfs_truncate_item(path, new_size, 0);
782 
783 		key->offset = end_byte;
784 		btrfs_set_item_key_safe(fs_info, path, key);
785 	} else {
786 		BUG();
787 	}
788 }
789 
790 /*
791  * deletes the csum items from the csum tree for a given
792  * range of bytes.
793  */
794 int btrfs_del_csums(struct btrfs_trans_handle *trans,
795 		    struct btrfs_root *root, u64 bytenr, u64 len)
796 {
797 	struct btrfs_fs_info *fs_info = trans->fs_info;
798 	struct btrfs_path *path;
799 	struct btrfs_key key;
800 	u64 end_byte = bytenr + len;
801 	u64 csum_end;
802 	struct extent_buffer *leaf;
803 	int ret = 0;
804 	const u32 csum_size = fs_info->csum_size;
805 	u32 blocksize_bits = fs_info->sectorsize_bits;
806 
807 	ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
808 	       root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
809 
810 	path = btrfs_alloc_path();
811 	if (!path)
812 		return -ENOMEM;
813 
814 	while (1) {
815 		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
816 		key.offset = end_byte - 1;
817 		key.type = BTRFS_EXTENT_CSUM_KEY;
818 
819 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
820 		if (ret > 0) {
821 			ret = 0;
822 			if (path->slots[0] == 0)
823 				break;
824 			path->slots[0]--;
825 		} else if (ret < 0) {
826 			break;
827 		}
828 
829 		leaf = path->nodes[0];
830 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
831 
832 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
833 		    key.type != BTRFS_EXTENT_CSUM_KEY) {
834 			break;
835 		}
836 
837 		if (key.offset >= end_byte)
838 			break;
839 
840 		csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
841 		csum_end <<= blocksize_bits;
842 		csum_end += key.offset;
843 
844 		/* this csum ends before we start, we're done */
845 		if (csum_end <= bytenr)
846 			break;
847 
848 		/* delete the entire item, it is inside our range */
849 		if (key.offset >= bytenr && csum_end <= end_byte) {
850 			int del_nr = 1;
851 
852 			/*
853 			 * Check how many csum items preceding this one in this
854 			 * leaf correspond to our range and then delete them all
855 			 * at once.
856 			 */
857 			if (key.offset > bytenr && path->slots[0] > 0) {
858 				int slot = path->slots[0] - 1;
859 
860 				while (slot >= 0) {
861 					struct btrfs_key pk;
862 
863 					btrfs_item_key_to_cpu(leaf, &pk, slot);
864 					if (pk.offset < bytenr ||
865 					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
866 					    pk.objectid !=
867 					    BTRFS_EXTENT_CSUM_OBJECTID)
868 						break;
869 					path->slots[0] = slot;
870 					del_nr++;
871 					key.offset = pk.offset;
872 					slot--;
873 				}
874 			}
875 			ret = btrfs_del_items(trans, root, path,
876 					      path->slots[0], del_nr);
877 			if (ret)
878 				break;
879 			if (key.offset == bytenr)
880 				break;
881 		} else if (key.offset < bytenr && csum_end > end_byte) {
882 			unsigned long offset;
883 			unsigned long shift_len;
884 			unsigned long item_offset;
885 			/*
886 			 *        [ bytenr - len ]
887 			 *     [csum                ]
888 			 *
889 			 * Our bytes are in the middle of the csum,
890 			 * we need to split this item and insert a new one.
891 			 *
892 			 * But we can't drop the path because the
893 			 * csum could change, get removed, extended etc.
894 			 *
895 			 * The trick here is the max size of a csum item leaves
896 			 * enough room in the tree block for a single
897 			 * item header.  So, we split the item in place,
898 			 * adding a new header pointing to the existing
899 			 * bytes.  Then we loop around again and we have
900 			 * a nicely formed csum item that we can neatly
901 			 * truncate.
902 			 */
903 			offset = (bytenr - key.offset) >> blocksize_bits;
904 			offset *= csum_size;
905 
906 			shift_len = (len >> blocksize_bits) * csum_size;
907 
908 			item_offset = btrfs_item_ptr_offset(leaf,
909 							    path->slots[0]);
910 
911 			memzero_extent_buffer(leaf, item_offset + offset,
912 					     shift_len);
913 			key.offset = bytenr;
914 
915 			/*
916 			 * btrfs_split_item returns -EAGAIN when the
917 			 * item changed size or key
918 			 */
919 			ret = btrfs_split_item(trans, root, path, &key, offset);
920 			if (ret && ret != -EAGAIN) {
921 				btrfs_abort_transaction(trans, ret);
922 				break;
923 			}
924 			ret = 0;
925 
926 			key.offset = end_byte - 1;
927 		} else {
928 			truncate_one_csum(fs_info, path, &key, bytenr, len);
929 			if (key.offset < bytenr)
930 				break;
931 		}
932 		btrfs_release_path(path);
933 	}
934 	btrfs_free_path(path);
935 	return ret;
936 }
937 
938 static int find_next_csum_offset(struct btrfs_root *root,
939 				 struct btrfs_path *path,
940 				 u64 *next_offset)
941 {
942 	const u32 nritems = btrfs_header_nritems(path->nodes[0]);
943 	struct btrfs_key found_key;
944 	int slot = path->slots[0] + 1;
945 	int ret;
946 
947 	if (nritems == 0 || slot >= nritems) {
948 		ret = btrfs_next_leaf(root, path);
949 		if (ret < 0) {
950 			return ret;
951 		} else if (ret > 0) {
952 			*next_offset = (u64)-1;
953 			return 0;
954 		}
955 		slot = path->slots[0];
956 	}
957 
958 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
959 
960 	if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
961 	    found_key.type != BTRFS_EXTENT_CSUM_KEY)
962 		*next_offset = (u64)-1;
963 	else
964 		*next_offset = found_key.offset;
965 
966 	return 0;
967 }
968 
969 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
970 			   struct btrfs_root *root,
971 			   struct btrfs_ordered_sum *sums)
972 {
973 	struct btrfs_fs_info *fs_info = root->fs_info;
974 	struct btrfs_key file_key;
975 	struct btrfs_key found_key;
976 	struct btrfs_path *path;
977 	struct btrfs_csum_item *item;
978 	struct btrfs_csum_item *item_end;
979 	struct extent_buffer *leaf = NULL;
980 	u64 next_offset;
981 	u64 total_bytes = 0;
982 	u64 csum_offset;
983 	u64 bytenr;
984 	u32 ins_size;
985 	int index = 0;
986 	int found_next;
987 	int ret;
988 	const u32 csum_size = fs_info->csum_size;
989 
990 	path = btrfs_alloc_path();
991 	if (!path)
992 		return -ENOMEM;
993 again:
994 	next_offset = (u64)-1;
995 	found_next = 0;
996 	bytenr = sums->bytenr + total_bytes;
997 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
998 	file_key.offset = bytenr;
999 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
1000 
1001 	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1002 	if (!IS_ERR(item)) {
1003 		ret = 0;
1004 		leaf = path->nodes[0];
1005 		item_end = btrfs_item_ptr(leaf, path->slots[0],
1006 					  struct btrfs_csum_item);
1007 		item_end = (struct btrfs_csum_item *)((char *)item_end +
1008 			   btrfs_item_size(leaf, path->slots[0]));
1009 		goto found;
1010 	}
1011 	ret = PTR_ERR(item);
1012 	if (ret != -EFBIG && ret != -ENOENT)
1013 		goto out;
1014 
1015 	if (ret == -EFBIG) {
1016 		u32 item_size;
1017 		/* we found one, but it isn't big enough yet */
1018 		leaf = path->nodes[0];
1019 		item_size = btrfs_item_size(leaf, path->slots[0]);
1020 		if ((item_size / csum_size) >=
1021 		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
1022 			/* already at max size, make a new one */
1023 			goto insert;
1024 		}
1025 	} else {
1026 		/* We didn't find a csum item, insert one. */
1027 		ret = find_next_csum_offset(root, path, &next_offset);
1028 		if (ret < 0)
1029 			goto out;
1030 		found_next = 1;
1031 		goto insert;
1032 	}
1033 
1034 	/*
1035 	 * At this point, we know the tree has a checksum item that ends at an
1036 	 * offset matching the start of the checksum range we want to insert.
1037 	 * We try to extend that item as much as possible and then add as many
1038 	 * checksums to it as they fit.
1039 	 *
1040 	 * First check if the leaf has enough free space for at least one
1041 	 * checksum. If it has go directly to the item extension code, otherwise
1042 	 * release the path and do a search for insertion before the extension.
1043 	 */
1044 	if (btrfs_leaf_free_space(leaf) >= csum_size) {
1045 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1046 		csum_offset = (bytenr - found_key.offset) >>
1047 			fs_info->sectorsize_bits;
1048 		goto extend_csum;
1049 	}
1050 
1051 	btrfs_release_path(path);
1052 	path->search_for_extension = 1;
1053 	ret = btrfs_search_slot(trans, root, &file_key, path,
1054 				csum_size, 1);
1055 	path->search_for_extension = 0;
1056 	if (ret < 0)
1057 		goto out;
1058 
1059 	if (ret > 0) {
1060 		if (path->slots[0] == 0)
1061 			goto insert;
1062 		path->slots[0]--;
1063 	}
1064 
1065 	leaf = path->nodes[0];
1066 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1067 	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1068 
1069 	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1070 	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1071 	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1072 		goto insert;
1073 	}
1074 
1075 extend_csum:
1076 	if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1077 	    csum_size) {
1078 		int extend_nr;
1079 		u64 tmp;
1080 		u32 diff;
1081 
1082 		tmp = sums->len - total_bytes;
1083 		tmp >>= fs_info->sectorsize_bits;
1084 		WARN_ON(tmp < 1);
1085 		extend_nr = max_t(int, 1, tmp);
1086 
1087 		/*
1088 		 * A log tree can already have checksum items with a subset of
1089 		 * the checksums we are trying to log. This can happen after
1090 		 * doing a sequence of partial writes into prealloc extents and
1091 		 * fsyncs in between, with a full fsync logging a larger subrange
1092 		 * of an extent for which a previous fast fsync logged a smaller
1093 		 * subrange. And this happens in particular due to merging file
1094 		 * extent items when we complete an ordered extent for a range
1095 		 * covered by a prealloc extent - this is done at
1096 		 * btrfs_mark_extent_written().
1097 		 *
1098 		 * So if we try to extend the previous checksum item, which has
1099 		 * a range that ends at the start of the range we want to insert,
1100 		 * make sure we don't extend beyond the start offset of the next
1101 		 * checksum item. If we are at the last item in the leaf, then
1102 		 * forget the optimization of extending and add a new checksum
1103 		 * item - it is not worth the complexity of releasing the path,
1104 		 * getting the first key for the next leaf, repeat the btree
1105 		 * search, etc, because log trees are temporary anyway and it
1106 		 * would only save a few bytes of leaf space.
1107 		 */
1108 		if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1109 			if (path->slots[0] + 1 >=
1110 			    btrfs_header_nritems(path->nodes[0])) {
1111 				ret = find_next_csum_offset(root, path, &next_offset);
1112 				if (ret < 0)
1113 					goto out;
1114 				found_next = 1;
1115 				goto insert;
1116 			}
1117 
1118 			ret = find_next_csum_offset(root, path, &next_offset);
1119 			if (ret < 0)
1120 				goto out;
1121 
1122 			tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1123 			if (tmp <= INT_MAX)
1124 				extend_nr = min_t(int, extend_nr, tmp);
1125 		}
1126 
1127 		diff = (csum_offset + extend_nr) * csum_size;
1128 		diff = min(diff,
1129 			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1130 
1131 		diff = diff - btrfs_item_size(leaf, path->slots[0]);
1132 		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1133 		diff /= csum_size;
1134 		diff *= csum_size;
1135 
1136 		btrfs_extend_item(path, diff);
1137 		ret = 0;
1138 		goto csum;
1139 	}
1140 
1141 insert:
1142 	btrfs_release_path(path);
1143 	csum_offset = 0;
1144 	if (found_next) {
1145 		u64 tmp;
1146 
1147 		tmp = sums->len - total_bytes;
1148 		tmp >>= fs_info->sectorsize_bits;
1149 		tmp = min(tmp, (next_offset - file_key.offset) >>
1150 					 fs_info->sectorsize_bits);
1151 
1152 		tmp = max_t(u64, 1, tmp);
1153 		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1154 		ins_size = csum_size * tmp;
1155 	} else {
1156 		ins_size = csum_size;
1157 	}
1158 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1159 				      ins_size);
1160 	if (ret < 0)
1161 		goto out;
1162 	if (WARN_ON(ret != 0))
1163 		goto out;
1164 	leaf = path->nodes[0];
1165 csum:
1166 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1167 	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1168 				      btrfs_item_size(leaf, path->slots[0]));
1169 	item = (struct btrfs_csum_item *)((unsigned char *)item +
1170 					  csum_offset * csum_size);
1171 found:
1172 	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1173 	ins_size *= csum_size;
1174 	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1175 			      ins_size);
1176 	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1177 			    ins_size);
1178 
1179 	index += ins_size;
1180 	ins_size /= csum_size;
1181 	total_bytes += ins_size * fs_info->sectorsize;
1182 
1183 	btrfs_mark_buffer_dirty(path->nodes[0]);
1184 	if (total_bytes < sums->len) {
1185 		btrfs_release_path(path);
1186 		cond_resched();
1187 		goto again;
1188 	}
1189 out:
1190 	btrfs_free_path(path);
1191 	return ret;
1192 }
1193 
1194 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1195 				     const struct btrfs_path *path,
1196 				     struct btrfs_file_extent_item *fi,
1197 				     const bool new_inline,
1198 				     struct extent_map *em)
1199 {
1200 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1201 	struct btrfs_root *root = inode->root;
1202 	struct extent_buffer *leaf = path->nodes[0];
1203 	const int slot = path->slots[0];
1204 	struct btrfs_key key;
1205 	u64 extent_start, extent_end;
1206 	u64 bytenr;
1207 	u8 type = btrfs_file_extent_type(leaf, fi);
1208 	int compress_type = btrfs_file_extent_compression(leaf, fi);
1209 
1210 	btrfs_item_key_to_cpu(leaf, &key, slot);
1211 	extent_start = key.offset;
1212 	extent_end = btrfs_file_extent_end(path);
1213 	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1214 	if (type == BTRFS_FILE_EXTENT_REG ||
1215 	    type == BTRFS_FILE_EXTENT_PREALLOC) {
1216 		em->start = extent_start;
1217 		em->len = extent_end - extent_start;
1218 		em->orig_start = extent_start -
1219 			btrfs_file_extent_offset(leaf, fi);
1220 		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1221 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1222 		if (bytenr == 0) {
1223 			em->block_start = EXTENT_MAP_HOLE;
1224 			return;
1225 		}
1226 		if (compress_type != BTRFS_COMPRESS_NONE) {
1227 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1228 			em->compress_type = compress_type;
1229 			em->block_start = bytenr;
1230 			em->block_len = em->orig_block_len;
1231 		} else {
1232 			bytenr += btrfs_file_extent_offset(leaf, fi);
1233 			em->block_start = bytenr;
1234 			em->block_len = em->len;
1235 			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1236 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1237 		}
1238 	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1239 		em->block_start = EXTENT_MAP_INLINE;
1240 		em->start = extent_start;
1241 		em->len = extent_end - extent_start;
1242 		/*
1243 		 * Initialize orig_start and block_len with the same values
1244 		 * as in inode.c:btrfs_get_extent().
1245 		 */
1246 		em->orig_start = EXTENT_MAP_HOLE;
1247 		em->block_len = (u64)-1;
1248 		if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
1249 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1250 			em->compress_type = compress_type;
1251 		}
1252 	} else {
1253 		btrfs_err(fs_info,
1254 			  "unknown file extent item type %d, inode %llu, offset %llu, "
1255 			  "root %llu", type, btrfs_ino(inode), extent_start,
1256 			  root->root_key.objectid);
1257 	}
1258 }
1259 
1260 /*
1261  * Returns the end offset (non inclusive) of the file extent item the given path
1262  * points to. If it points to an inline extent, the returned offset is rounded
1263  * up to the sector size.
1264  */
1265 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1266 {
1267 	const struct extent_buffer *leaf = path->nodes[0];
1268 	const int slot = path->slots[0];
1269 	struct btrfs_file_extent_item *fi;
1270 	struct btrfs_key key;
1271 	u64 end;
1272 
1273 	btrfs_item_key_to_cpu(leaf, &key, slot);
1274 	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1275 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1276 
1277 	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1278 		end = btrfs_file_extent_ram_bytes(leaf, fi);
1279 		end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1280 	} else {
1281 		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1282 	}
1283 
1284 	return end;
1285 }
1286