1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/bio.h> 7 #include <linux/slab.h> 8 #include <linux/pagemap.h> 9 #include <linux/highmem.h> 10 #include <linux/sched/mm.h> 11 #include <crypto/hash.h> 12 #include "misc.h" 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "print-tree.h" 18 #include "compression.h" 19 20 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \ 21 sizeof(struct btrfs_item) * 2) / \ 22 size) - 1)) 23 24 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \ 25 PAGE_SIZE)) 26 27 /** 28 * Set inode's size according to filesystem options 29 * 30 * @inode: inode we want to update the disk_i_size for 31 * @new_i_size: i_size we want to set to, 0 if we use i_size 32 * 33 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read() 34 * returns as it is perfectly fine with a file that has holes without hole file 35 * extent items. 36 * 37 * However without NO_HOLES we need to only return the area that is contiguous 38 * from the 0 offset of the file. Otherwise we could end up adjust i_size up 39 * to an extent that has a gap in between. 40 * 41 * Finally new_i_size should only be set in the case of truncate where we're not 42 * ready to use i_size_read() as the limiter yet. 43 */ 44 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size) 45 { 46 struct btrfs_fs_info *fs_info = inode->root->fs_info; 47 u64 start, end, i_size; 48 int ret; 49 50 i_size = new_i_size ?: i_size_read(&inode->vfs_inode); 51 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 52 inode->disk_i_size = i_size; 53 return; 54 } 55 56 spin_lock(&inode->lock); 57 ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start, 58 &end, EXTENT_DIRTY); 59 if (!ret && start == 0) 60 i_size = min(i_size, end + 1); 61 else 62 i_size = 0; 63 inode->disk_i_size = i_size; 64 spin_unlock(&inode->lock); 65 } 66 67 /** 68 * Mark range within a file as having a new extent inserted 69 * 70 * @inode: inode being modified 71 * @start: start file offset of the file extent we've inserted 72 * @len: logical length of the file extent item 73 * 74 * Call when we are inserting a new file extent where there was none before. 75 * Does not need to call this in the case where we're replacing an existing file 76 * extent, however if not sure it's fine to call this multiple times. 77 * 78 * The start and len must match the file extent item, so thus must be sectorsize 79 * aligned. 80 */ 81 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 82 u64 len) 83 { 84 if (len == 0) 85 return 0; 86 87 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize)); 88 89 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 90 return 0; 91 return set_extent_bits(&inode->file_extent_tree, start, start + len - 1, 92 EXTENT_DIRTY); 93 } 94 95 /** 96 * Marks an inode range as not having a backing extent 97 * 98 * @inode: inode being modified 99 * @start: start file offset of the file extent we've inserted 100 * @len: logical length of the file extent item 101 * 102 * Called when we drop a file extent, for example when we truncate. Doesn't 103 * need to be called for cases where we're replacing a file extent, like when 104 * we've COWed a file extent. 105 * 106 * The start and len must match the file extent item, so thus must be sectorsize 107 * aligned. 108 */ 109 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 110 u64 len) 111 { 112 if (len == 0) 113 return 0; 114 115 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) || 116 len == (u64)-1); 117 118 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 119 return 0; 120 return clear_extent_bit(&inode->file_extent_tree, start, 121 start + len - 1, EXTENT_DIRTY, 0, 0, NULL); 122 } 123 124 static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info, 125 u16 csum_size) 126 { 127 u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size; 128 129 return ncsums * fs_info->sectorsize; 130 } 131 132 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 133 struct btrfs_root *root, 134 u64 objectid, u64 pos, 135 u64 disk_offset, u64 disk_num_bytes, 136 u64 num_bytes, u64 offset, u64 ram_bytes, 137 u8 compression, u8 encryption, u16 other_encoding) 138 { 139 int ret = 0; 140 struct btrfs_file_extent_item *item; 141 struct btrfs_key file_key; 142 struct btrfs_path *path; 143 struct extent_buffer *leaf; 144 145 path = btrfs_alloc_path(); 146 if (!path) 147 return -ENOMEM; 148 file_key.objectid = objectid; 149 file_key.offset = pos; 150 file_key.type = BTRFS_EXTENT_DATA_KEY; 151 152 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 153 sizeof(*item)); 154 if (ret < 0) 155 goto out; 156 BUG_ON(ret); /* Can't happen */ 157 leaf = path->nodes[0]; 158 item = btrfs_item_ptr(leaf, path->slots[0], 159 struct btrfs_file_extent_item); 160 btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset); 161 btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes); 162 btrfs_set_file_extent_offset(leaf, item, offset); 163 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes); 164 btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes); 165 btrfs_set_file_extent_generation(leaf, item, trans->transid); 166 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 167 btrfs_set_file_extent_compression(leaf, item, compression); 168 btrfs_set_file_extent_encryption(leaf, item, encryption); 169 btrfs_set_file_extent_other_encoding(leaf, item, other_encoding); 170 171 btrfs_mark_buffer_dirty(leaf); 172 out: 173 btrfs_free_path(path); 174 return ret; 175 } 176 177 static struct btrfs_csum_item * 178 btrfs_lookup_csum(struct btrfs_trans_handle *trans, 179 struct btrfs_root *root, 180 struct btrfs_path *path, 181 u64 bytenr, int cow) 182 { 183 struct btrfs_fs_info *fs_info = root->fs_info; 184 int ret; 185 struct btrfs_key file_key; 186 struct btrfs_key found_key; 187 struct btrfs_csum_item *item; 188 struct extent_buffer *leaf; 189 u64 csum_offset = 0; 190 const u32 csum_size = fs_info->csum_size; 191 int csums_in_item; 192 193 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 194 file_key.offset = bytenr; 195 file_key.type = BTRFS_EXTENT_CSUM_KEY; 196 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow); 197 if (ret < 0) 198 goto fail; 199 leaf = path->nodes[0]; 200 if (ret > 0) { 201 ret = 1; 202 if (path->slots[0] == 0) 203 goto fail; 204 path->slots[0]--; 205 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 206 if (found_key.type != BTRFS_EXTENT_CSUM_KEY) 207 goto fail; 208 209 csum_offset = (bytenr - found_key.offset) >> 210 fs_info->sectorsize_bits; 211 csums_in_item = btrfs_item_size(leaf, path->slots[0]); 212 csums_in_item /= csum_size; 213 214 if (csum_offset == csums_in_item) { 215 ret = -EFBIG; 216 goto fail; 217 } else if (csum_offset > csums_in_item) { 218 goto fail; 219 } 220 } 221 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 222 item = (struct btrfs_csum_item *)((unsigned char *)item + 223 csum_offset * csum_size); 224 return item; 225 fail: 226 if (ret > 0) 227 ret = -ENOENT; 228 return ERR_PTR(ret); 229 } 230 231 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 232 struct btrfs_root *root, 233 struct btrfs_path *path, u64 objectid, 234 u64 offset, int mod) 235 { 236 struct btrfs_key file_key; 237 int ins_len = mod < 0 ? -1 : 0; 238 int cow = mod != 0; 239 240 file_key.objectid = objectid; 241 file_key.offset = offset; 242 file_key.type = BTRFS_EXTENT_DATA_KEY; 243 244 return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow); 245 } 246 247 /* 248 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and 249 * estore the result to @dst. 250 * 251 * Return >0 for the number of sectors we found. 252 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum 253 * for it. Caller may want to try next sector until one range is hit. 254 * Return <0 for fatal error. 255 */ 256 static int search_csum_tree(struct btrfs_fs_info *fs_info, 257 struct btrfs_path *path, u64 disk_bytenr, 258 u64 len, u8 *dst) 259 { 260 struct btrfs_root *csum_root; 261 struct btrfs_csum_item *item = NULL; 262 struct btrfs_key key; 263 const u32 sectorsize = fs_info->sectorsize; 264 const u32 csum_size = fs_info->csum_size; 265 u32 itemsize; 266 int ret; 267 u64 csum_start; 268 u64 csum_len; 269 270 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) && 271 IS_ALIGNED(len, sectorsize)); 272 273 /* Check if the current csum item covers disk_bytenr */ 274 if (path->nodes[0]) { 275 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 276 struct btrfs_csum_item); 277 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 278 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]); 279 280 csum_start = key.offset; 281 csum_len = (itemsize / csum_size) * sectorsize; 282 283 if (in_range(disk_bytenr, csum_start, csum_len)) 284 goto found; 285 } 286 287 /* Current item doesn't contain the desired range, search again */ 288 btrfs_release_path(path); 289 csum_root = btrfs_csum_root(fs_info, disk_bytenr); 290 item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0); 291 if (IS_ERR(item)) { 292 ret = PTR_ERR(item); 293 goto out; 294 } 295 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 296 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]); 297 298 csum_start = key.offset; 299 csum_len = (itemsize / csum_size) * sectorsize; 300 ASSERT(in_range(disk_bytenr, csum_start, csum_len)); 301 302 found: 303 ret = (min(csum_start + csum_len, disk_bytenr + len) - 304 disk_bytenr) >> fs_info->sectorsize_bits; 305 read_extent_buffer(path->nodes[0], dst, (unsigned long)item, 306 ret * csum_size); 307 out: 308 if (ret == -ENOENT) 309 ret = 0; 310 return ret; 311 } 312 313 /* 314 * Locate the file_offset of @cur_disk_bytenr of a @bio. 315 * 316 * Bio of btrfs represents read range of 317 * [bi_sector << 9, bi_sector << 9 + bi_size). 318 * Knowing this, we can iterate through each bvec to locate the page belong to 319 * @cur_disk_bytenr and get the file offset. 320 * 321 * @inode is used to determine if the bvec page really belongs to @inode. 322 * 323 * Return 0 if we can't find the file offset 324 * Return >0 if we find the file offset and restore it to @file_offset_ret 325 */ 326 static int search_file_offset_in_bio(struct bio *bio, struct inode *inode, 327 u64 disk_bytenr, u64 *file_offset_ret) 328 { 329 struct bvec_iter iter; 330 struct bio_vec bvec; 331 u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT; 332 int ret = 0; 333 334 bio_for_each_segment(bvec, bio, iter) { 335 struct page *page = bvec.bv_page; 336 337 if (cur > disk_bytenr) 338 break; 339 if (cur + bvec.bv_len <= disk_bytenr) { 340 cur += bvec.bv_len; 341 continue; 342 } 343 ASSERT(in_range(disk_bytenr, cur, bvec.bv_len)); 344 if (page->mapping && page->mapping->host && 345 page->mapping->host == inode) { 346 ret = 1; 347 *file_offset_ret = page_offset(page) + bvec.bv_offset + 348 disk_bytenr - cur; 349 break; 350 } 351 } 352 return ret; 353 } 354 355 /** 356 * Lookup the checksum for the read bio in csum tree. 357 * 358 * @inode: inode that the bio is for. 359 * @bio: bio to look up. 360 * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return 361 * checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If 362 * NULL, the checksum buffer is allocated and returned in 363 * btrfs_bio(bio)->csum instead. 364 * 365 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise. 366 */ 367 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst) 368 { 369 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 370 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 371 struct btrfs_path *path; 372 const u32 sectorsize = fs_info->sectorsize; 373 const u32 csum_size = fs_info->csum_size; 374 u32 orig_len = bio->bi_iter.bi_size; 375 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT; 376 u64 cur_disk_bytenr; 377 u8 *csum; 378 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits; 379 int count = 0; 380 381 if ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) || 382 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) 383 return BLK_STS_OK; 384 385 /* 386 * This function is only called for read bio. 387 * 388 * This means two things: 389 * - All our csums should only be in csum tree 390 * No ordered extents csums, as ordered extents are only for write 391 * path. 392 * - No need to bother any other info from bvec 393 * Since we're looking up csums, the only important info is the 394 * disk_bytenr and the length, which can be extracted from bi_iter 395 * directly. 396 */ 397 ASSERT(bio_op(bio) == REQ_OP_READ); 398 path = btrfs_alloc_path(); 399 if (!path) 400 return BLK_STS_RESOURCE; 401 402 if (!dst) { 403 struct btrfs_bio *bbio = btrfs_bio(bio); 404 405 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) { 406 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS); 407 if (!bbio->csum) { 408 btrfs_free_path(path); 409 return BLK_STS_RESOURCE; 410 } 411 } else { 412 bbio->csum = bbio->csum_inline; 413 } 414 csum = bbio->csum; 415 } else { 416 csum = dst; 417 } 418 419 /* 420 * If requested number of sectors is larger than one leaf can contain, 421 * kick the readahead for csum tree. 422 */ 423 if (nblocks > fs_info->csums_per_leaf) 424 path->reada = READA_FORWARD; 425 426 /* 427 * the free space stuff is only read when it hasn't been 428 * updated in the current transaction. So, we can safely 429 * read from the commit root and sidestep a nasty deadlock 430 * between reading the free space cache and updating the csum tree. 431 */ 432 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 433 path->search_commit_root = 1; 434 path->skip_locking = 1; 435 } 436 437 for (cur_disk_bytenr = orig_disk_bytenr; 438 cur_disk_bytenr < orig_disk_bytenr + orig_len; 439 cur_disk_bytenr += (count * sectorsize)) { 440 u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr; 441 unsigned int sector_offset; 442 u8 *csum_dst; 443 444 /* 445 * Although both cur_disk_bytenr and orig_disk_bytenr is u64, 446 * we're calculating the offset to the bio start. 447 * 448 * Bio size is limited to UINT_MAX, thus unsigned int is large 449 * enough to contain the raw result, not to mention the right 450 * shifted result. 451 */ 452 ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX); 453 sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >> 454 fs_info->sectorsize_bits; 455 csum_dst = csum + sector_offset * csum_size; 456 457 count = search_csum_tree(fs_info, path, cur_disk_bytenr, 458 search_len, csum_dst); 459 if (count <= 0) { 460 /* 461 * Either we hit a critical error or we didn't find 462 * the csum. 463 * Either way, we put zero into the csums dst, and skip 464 * to the next sector. 465 */ 466 memset(csum_dst, 0, csum_size); 467 count = 1; 468 469 /* 470 * For data reloc inode, we need to mark the range 471 * NODATASUM so that balance won't report false csum 472 * error. 473 */ 474 if (BTRFS_I(inode)->root->root_key.objectid == 475 BTRFS_DATA_RELOC_TREE_OBJECTID) { 476 u64 file_offset; 477 int ret; 478 479 ret = search_file_offset_in_bio(bio, inode, 480 cur_disk_bytenr, &file_offset); 481 if (ret) 482 set_extent_bits(io_tree, file_offset, 483 file_offset + sectorsize - 1, 484 EXTENT_NODATASUM); 485 } else { 486 btrfs_warn_rl(fs_info, 487 "csum hole found for disk bytenr range [%llu, %llu)", 488 cur_disk_bytenr, cur_disk_bytenr + sectorsize); 489 } 490 } 491 } 492 493 btrfs_free_path(path); 494 return BLK_STS_OK; 495 } 496 497 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 498 struct list_head *list, int search_commit) 499 { 500 struct btrfs_fs_info *fs_info = root->fs_info; 501 struct btrfs_key key; 502 struct btrfs_path *path; 503 struct extent_buffer *leaf; 504 struct btrfs_ordered_sum *sums; 505 struct btrfs_csum_item *item; 506 LIST_HEAD(tmplist); 507 unsigned long offset; 508 int ret; 509 size_t size; 510 u64 csum_end; 511 const u32 csum_size = fs_info->csum_size; 512 513 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 514 IS_ALIGNED(end + 1, fs_info->sectorsize)); 515 516 path = btrfs_alloc_path(); 517 if (!path) 518 return -ENOMEM; 519 520 if (search_commit) { 521 path->skip_locking = 1; 522 path->reada = READA_FORWARD; 523 path->search_commit_root = 1; 524 } 525 526 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 527 key.offset = start; 528 key.type = BTRFS_EXTENT_CSUM_KEY; 529 530 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 531 if (ret < 0) 532 goto fail; 533 if (ret > 0 && path->slots[0] > 0) { 534 leaf = path->nodes[0]; 535 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 536 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 537 key.type == BTRFS_EXTENT_CSUM_KEY) { 538 offset = (start - key.offset) >> fs_info->sectorsize_bits; 539 if (offset * csum_size < 540 btrfs_item_size(leaf, path->slots[0] - 1)) 541 path->slots[0]--; 542 } 543 } 544 545 while (start <= end) { 546 leaf = path->nodes[0]; 547 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 548 ret = btrfs_next_leaf(root, path); 549 if (ret < 0) 550 goto fail; 551 if (ret > 0) 552 break; 553 leaf = path->nodes[0]; 554 } 555 556 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 557 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 558 key.type != BTRFS_EXTENT_CSUM_KEY || 559 key.offset > end) 560 break; 561 562 if (key.offset > start) 563 start = key.offset; 564 565 size = btrfs_item_size(leaf, path->slots[0]); 566 csum_end = key.offset + (size / csum_size) * fs_info->sectorsize; 567 if (csum_end <= start) { 568 path->slots[0]++; 569 continue; 570 } 571 572 csum_end = min(csum_end, end + 1); 573 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 574 struct btrfs_csum_item); 575 while (start < csum_end) { 576 size = min_t(size_t, csum_end - start, 577 max_ordered_sum_bytes(fs_info, csum_size)); 578 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size), 579 GFP_NOFS); 580 if (!sums) { 581 ret = -ENOMEM; 582 goto fail; 583 } 584 585 sums->bytenr = start; 586 sums->len = (int)size; 587 588 offset = (start - key.offset) >> fs_info->sectorsize_bits; 589 offset *= csum_size; 590 size >>= fs_info->sectorsize_bits; 591 592 read_extent_buffer(path->nodes[0], 593 sums->sums, 594 ((unsigned long)item) + offset, 595 csum_size * size); 596 597 start += fs_info->sectorsize * size; 598 list_add_tail(&sums->list, &tmplist); 599 } 600 path->slots[0]++; 601 } 602 ret = 0; 603 fail: 604 while (ret < 0 && !list_empty(&tmplist)) { 605 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list); 606 list_del(&sums->list); 607 kfree(sums); 608 } 609 list_splice_tail(&tmplist, list); 610 611 btrfs_free_path(path); 612 return ret; 613 } 614 615 /* 616 * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio 617 * @inode: Owner of the data inside the bio 618 * @bio: Contains the data to be checksummed 619 * @file_start: offset in file this bio begins to describe 620 * @contig: Boolean. If true/1 means all bio vecs in this bio are 621 * contiguous and they begin at @file_start in the file. False/0 622 * means this bio can contain potentially discontiguous bio vecs 623 * so the logical offset of each should be calculated separately. 624 */ 625 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 626 u64 file_start, int contig) 627 { 628 struct btrfs_fs_info *fs_info = inode->root->fs_info; 629 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 630 struct btrfs_ordered_sum *sums; 631 struct btrfs_ordered_extent *ordered = NULL; 632 char *data; 633 struct bvec_iter iter; 634 struct bio_vec bvec; 635 int index; 636 int nr_sectors; 637 unsigned long total_bytes = 0; 638 unsigned long this_sum_bytes = 0; 639 int i; 640 u64 offset; 641 unsigned nofs_flag; 642 643 nofs_flag = memalloc_nofs_save(); 644 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size), 645 GFP_KERNEL); 646 memalloc_nofs_restore(nofs_flag); 647 648 if (!sums) 649 return BLK_STS_RESOURCE; 650 651 sums->len = bio->bi_iter.bi_size; 652 INIT_LIST_HEAD(&sums->list); 653 654 if (contig) 655 offset = file_start; 656 else 657 offset = 0; /* shut up gcc */ 658 659 sums->bytenr = bio->bi_iter.bi_sector << 9; 660 index = 0; 661 662 shash->tfm = fs_info->csum_shash; 663 664 bio_for_each_segment(bvec, bio, iter) { 665 if (!contig) 666 offset = page_offset(bvec.bv_page) + bvec.bv_offset; 667 668 if (!ordered) { 669 ordered = btrfs_lookup_ordered_extent(inode, offset); 670 /* 671 * The bio range is not covered by any ordered extent, 672 * must be a code logic error. 673 */ 674 if (unlikely(!ordered)) { 675 WARN(1, KERN_WARNING 676 "no ordered extent for root %llu ino %llu offset %llu\n", 677 inode->root->root_key.objectid, 678 btrfs_ino(inode), offset); 679 kvfree(sums); 680 return BLK_STS_IOERR; 681 } 682 } 683 684 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, 685 bvec.bv_len + fs_info->sectorsize 686 - 1); 687 688 for (i = 0; i < nr_sectors; i++) { 689 if (offset >= ordered->file_offset + ordered->num_bytes || 690 offset < ordered->file_offset) { 691 unsigned long bytes_left; 692 693 sums->len = this_sum_bytes; 694 this_sum_bytes = 0; 695 btrfs_add_ordered_sum(ordered, sums); 696 btrfs_put_ordered_extent(ordered); 697 698 bytes_left = bio->bi_iter.bi_size - total_bytes; 699 700 nofs_flag = memalloc_nofs_save(); 701 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, 702 bytes_left), GFP_KERNEL); 703 memalloc_nofs_restore(nofs_flag); 704 BUG_ON(!sums); /* -ENOMEM */ 705 sums->len = bytes_left; 706 ordered = btrfs_lookup_ordered_extent(inode, 707 offset); 708 ASSERT(ordered); /* Logic error */ 709 sums->bytenr = (bio->bi_iter.bi_sector << 9) 710 + total_bytes; 711 index = 0; 712 } 713 714 data = bvec_kmap_local(&bvec); 715 crypto_shash_digest(shash, 716 data + (i * fs_info->sectorsize), 717 fs_info->sectorsize, 718 sums->sums + index); 719 kunmap_local(data); 720 index += fs_info->csum_size; 721 offset += fs_info->sectorsize; 722 this_sum_bytes += fs_info->sectorsize; 723 total_bytes += fs_info->sectorsize; 724 } 725 726 } 727 this_sum_bytes = 0; 728 btrfs_add_ordered_sum(ordered, sums); 729 btrfs_put_ordered_extent(ordered); 730 return 0; 731 } 732 733 /* 734 * helper function for csum removal, this expects the 735 * key to describe the csum pointed to by the path, and it expects 736 * the csum to overlap the range [bytenr, len] 737 * 738 * The csum should not be entirely contained in the range and the 739 * range should not be entirely contained in the csum. 740 * 741 * This calls btrfs_truncate_item with the correct args based on the 742 * overlap, and fixes up the key as required. 743 */ 744 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info, 745 struct btrfs_path *path, 746 struct btrfs_key *key, 747 u64 bytenr, u64 len) 748 { 749 struct extent_buffer *leaf; 750 const u32 csum_size = fs_info->csum_size; 751 u64 csum_end; 752 u64 end_byte = bytenr + len; 753 u32 blocksize_bits = fs_info->sectorsize_bits; 754 755 leaf = path->nodes[0]; 756 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size; 757 csum_end <<= blocksize_bits; 758 csum_end += key->offset; 759 760 if (key->offset < bytenr && csum_end <= end_byte) { 761 /* 762 * [ bytenr - len ] 763 * [ ] 764 * [csum ] 765 * A simple truncate off the end of the item 766 */ 767 u32 new_size = (bytenr - key->offset) >> blocksize_bits; 768 new_size *= csum_size; 769 btrfs_truncate_item(path, new_size, 1); 770 } else if (key->offset >= bytenr && csum_end > end_byte && 771 end_byte > key->offset) { 772 /* 773 * [ bytenr - len ] 774 * [ ] 775 * [csum ] 776 * we need to truncate from the beginning of the csum 777 */ 778 u32 new_size = (csum_end - end_byte) >> blocksize_bits; 779 new_size *= csum_size; 780 781 btrfs_truncate_item(path, new_size, 0); 782 783 key->offset = end_byte; 784 btrfs_set_item_key_safe(fs_info, path, key); 785 } else { 786 BUG(); 787 } 788 } 789 790 /* 791 * deletes the csum items from the csum tree for a given 792 * range of bytes. 793 */ 794 int btrfs_del_csums(struct btrfs_trans_handle *trans, 795 struct btrfs_root *root, u64 bytenr, u64 len) 796 { 797 struct btrfs_fs_info *fs_info = trans->fs_info; 798 struct btrfs_path *path; 799 struct btrfs_key key; 800 u64 end_byte = bytenr + len; 801 u64 csum_end; 802 struct extent_buffer *leaf; 803 int ret = 0; 804 const u32 csum_size = fs_info->csum_size; 805 u32 blocksize_bits = fs_info->sectorsize_bits; 806 807 ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID || 808 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 809 810 path = btrfs_alloc_path(); 811 if (!path) 812 return -ENOMEM; 813 814 while (1) { 815 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 816 key.offset = end_byte - 1; 817 key.type = BTRFS_EXTENT_CSUM_KEY; 818 819 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 820 if (ret > 0) { 821 ret = 0; 822 if (path->slots[0] == 0) 823 break; 824 path->slots[0]--; 825 } else if (ret < 0) { 826 break; 827 } 828 829 leaf = path->nodes[0]; 830 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 831 832 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 833 key.type != BTRFS_EXTENT_CSUM_KEY) { 834 break; 835 } 836 837 if (key.offset >= end_byte) 838 break; 839 840 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size; 841 csum_end <<= blocksize_bits; 842 csum_end += key.offset; 843 844 /* this csum ends before we start, we're done */ 845 if (csum_end <= bytenr) 846 break; 847 848 /* delete the entire item, it is inside our range */ 849 if (key.offset >= bytenr && csum_end <= end_byte) { 850 int del_nr = 1; 851 852 /* 853 * Check how many csum items preceding this one in this 854 * leaf correspond to our range and then delete them all 855 * at once. 856 */ 857 if (key.offset > bytenr && path->slots[0] > 0) { 858 int slot = path->slots[0] - 1; 859 860 while (slot >= 0) { 861 struct btrfs_key pk; 862 863 btrfs_item_key_to_cpu(leaf, &pk, slot); 864 if (pk.offset < bytenr || 865 pk.type != BTRFS_EXTENT_CSUM_KEY || 866 pk.objectid != 867 BTRFS_EXTENT_CSUM_OBJECTID) 868 break; 869 path->slots[0] = slot; 870 del_nr++; 871 key.offset = pk.offset; 872 slot--; 873 } 874 } 875 ret = btrfs_del_items(trans, root, path, 876 path->slots[0], del_nr); 877 if (ret) 878 break; 879 if (key.offset == bytenr) 880 break; 881 } else if (key.offset < bytenr && csum_end > end_byte) { 882 unsigned long offset; 883 unsigned long shift_len; 884 unsigned long item_offset; 885 /* 886 * [ bytenr - len ] 887 * [csum ] 888 * 889 * Our bytes are in the middle of the csum, 890 * we need to split this item and insert a new one. 891 * 892 * But we can't drop the path because the 893 * csum could change, get removed, extended etc. 894 * 895 * The trick here is the max size of a csum item leaves 896 * enough room in the tree block for a single 897 * item header. So, we split the item in place, 898 * adding a new header pointing to the existing 899 * bytes. Then we loop around again and we have 900 * a nicely formed csum item that we can neatly 901 * truncate. 902 */ 903 offset = (bytenr - key.offset) >> blocksize_bits; 904 offset *= csum_size; 905 906 shift_len = (len >> blocksize_bits) * csum_size; 907 908 item_offset = btrfs_item_ptr_offset(leaf, 909 path->slots[0]); 910 911 memzero_extent_buffer(leaf, item_offset + offset, 912 shift_len); 913 key.offset = bytenr; 914 915 /* 916 * btrfs_split_item returns -EAGAIN when the 917 * item changed size or key 918 */ 919 ret = btrfs_split_item(trans, root, path, &key, offset); 920 if (ret && ret != -EAGAIN) { 921 btrfs_abort_transaction(trans, ret); 922 break; 923 } 924 ret = 0; 925 926 key.offset = end_byte - 1; 927 } else { 928 truncate_one_csum(fs_info, path, &key, bytenr, len); 929 if (key.offset < bytenr) 930 break; 931 } 932 btrfs_release_path(path); 933 } 934 btrfs_free_path(path); 935 return ret; 936 } 937 938 static int find_next_csum_offset(struct btrfs_root *root, 939 struct btrfs_path *path, 940 u64 *next_offset) 941 { 942 const u32 nritems = btrfs_header_nritems(path->nodes[0]); 943 struct btrfs_key found_key; 944 int slot = path->slots[0] + 1; 945 int ret; 946 947 if (nritems == 0 || slot >= nritems) { 948 ret = btrfs_next_leaf(root, path); 949 if (ret < 0) { 950 return ret; 951 } else if (ret > 0) { 952 *next_offset = (u64)-1; 953 return 0; 954 } 955 slot = path->slots[0]; 956 } 957 958 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot); 959 960 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 961 found_key.type != BTRFS_EXTENT_CSUM_KEY) 962 *next_offset = (u64)-1; 963 else 964 *next_offset = found_key.offset; 965 966 return 0; 967 } 968 969 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 970 struct btrfs_root *root, 971 struct btrfs_ordered_sum *sums) 972 { 973 struct btrfs_fs_info *fs_info = root->fs_info; 974 struct btrfs_key file_key; 975 struct btrfs_key found_key; 976 struct btrfs_path *path; 977 struct btrfs_csum_item *item; 978 struct btrfs_csum_item *item_end; 979 struct extent_buffer *leaf = NULL; 980 u64 next_offset; 981 u64 total_bytes = 0; 982 u64 csum_offset; 983 u64 bytenr; 984 u32 ins_size; 985 int index = 0; 986 int found_next; 987 int ret; 988 const u32 csum_size = fs_info->csum_size; 989 990 path = btrfs_alloc_path(); 991 if (!path) 992 return -ENOMEM; 993 again: 994 next_offset = (u64)-1; 995 found_next = 0; 996 bytenr = sums->bytenr + total_bytes; 997 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 998 file_key.offset = bytenr; 999 file_key.type = BTRFS_EXTENT_CSUM_KEY; 1000 1001 item = btrfs_lookup_csum(trans, root, path, bytenr, 1); 1002 if (!IS_ERR(item)) { 1003 ret = 0; 1004 leaf = path->nodes[0]; 1005 item_end = btrfs_item_ptr(leaf, path->slots[0], 1006 struct btrfs_csum_item); 1007 item_end = (struct btrfs_csum_item *)((char *)item_end + 1008 btrfs_item_size(leaf, path->slots[0])); 1009 goto found; 1010 } 1011 ret = PTR_ERR(item); 1012 if (ret != -EFBIG && ret != -ENOENT) 1013 goto out; 1014 1015 if (ret == -EFBIG) { 1016 u32 item_size; 1017 /* we found one, but it isn't big enough yet */ 1018 leaf = path->nodes[0]; 1019 item_size = btrfs_item_size(leaf, path->slots[0]); 1020 if ((item_size / csum_size) >= 1021 MAX_CSUM_ITEMS(fs_info, csum_size)) { 1022 /* already at max size, make a new one */ 1023 goto insert; 1024 } 1025 } else { 1026 /* We didn't find a csum item, insert one. */ 1027 ret = find_next_csum_offset(root, path, &next_offset); 1028 if (ret < 0) 1029 goto out; 1030 found_next = 1; 1031 goto insert; 1032 } 1033 1034 /* 1035 * At this point, we know the tree has a checksum item that ends at an 1036 * offset matching the start of the checksum range we want to insert. 1037 * We try to extend that item as much as possible and then add as many 1038 * checksums to it as they fit. 1039 * 1040 * First check if the leaf has enough free space for at least one 1041 * checksum. If it has go directly to the item extension code, otherwise 1042 * release the path and do a search for insertion before the extension. 1043 */ 1044 if (btrfs_leaf_free_space(leaf) >= csum_size) { 1045 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1046 csum_offset = (bytenr - found_key.offset) >> 1047 fs_info->sectorsize_bits; 1048 goto extend_csum; 1049 } 1050 1051 btrfs_release_path(path); 1052 path->search_for_extension = 1; 1053 ret = btrfs_search_slot(trans, root, &file_key, path, 1054 csum_size, 1); 1055 path->search_for_extension = 0; 1056 if (ret < 0) 1057 goto out; 1058 1059 if (ret > 0) { 1060 if (path->slots[0] == 0) 1061 goto insert; 1062 path->slots[0]--; 1063 } 1064 1065 leaf = path->nodes[0]; 1066 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1067 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits; 1068 1069 if (found_key.type != BTRFS_EXTENT_CSUM_KEY || 1070 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 1071 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) { 1072 goto insert; 1073 } 1074 1075 extend_csum: 1076 if (csum_offset == btrfs_item_size(leaf, path->slots[0]) / 1077 csum_size) { 1078 int extend_nr; 1079 u64 tmp; 1080 u32 diff; 1081 1082 tmp = sums->len - total_bytes; 1083 tmp >>= fs_info->sectorsize_bits; 1084 WARN_ON(tmp < 1); 1085 extend_nr = max_t(int, 1, tmp); 1086 1087 /* 1088 * A log tree can already have checksum items with a subset of 1089 * the checksums we are trying to log. This can happen after 1090 * doing a sequence of partial writes into prealloc extents and 1091 * fsyncs in between, with a full fsync logging a larger subrange 1092 * of an extent for which a previous fast fsync logged a smaller 1093 * subrange. And this happens in particular due to merging file 1094 * extent items when we complete an ordered extent for a range 1095 * covered by a prealloc extent - this is done at 1096 * btrfs_mark_extent_written(). 1097 * 1098 * So if we try to extend the previous checksum item, which has 1099 * a range that ends at the start of the range we want to insert, 1100 * make sure we don't extend beyond the start offset of the next 1101 * checksum item. If we are at the last item in the leaf, then 1102 * forget the optimization of extending and add a new checksum 1103 * item - it is not worth the complexity of releasing the path, 1104 * getting the first key for the next leaf, repeat the btree 1105 * search, etc, because log trees are temporary anyway and it 1106 * would only save a few bytes of leaf space. 1107 */ 1108 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 1109 if (path->slots[0] + 1 >= 1110 btrfs_header_nritems(path->nodes[0])) { 1111 ret = find_next_csum_offset(root, path, &next_offset); 1112 if (ret < 0) 1113 goto out; 1114 found_next = 1; 1115 goto insert; 1116 } 1117 1118 ret = find_next_csum_offset(root, path, &next_offset); 1119 if (ret < 0) 1120 goto out; 1121 1122 tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits; 1123 if (tmp <= INT_MAX) 1124 extend_nr = min_t(int, extend_nr, tmp); 1125 } 1126 1127 diff = (csum_offset + extend_nr) * csum_size; 1128 diff = min(diff, 1129 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size); 1130 1131 diff = diff - btrfs_item_size(leaf, path->slots[0]); 1132 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff); 1133 diff /= csum_size; 1134 diff *= csum_size; 1135 1136 btrfs_extend_item(path, diff); 1137 ret = 0; 1138 goto csum; 1139 } 1140 1141 insert: 1142 btrfs_release_path(path); 1143 csum_offset = 0; 1144 if (found_next) { 1145 u64 tmp; 1146 1147 tmp = sums->len - total_bytes; 1148 tmp >>= fs_info->sectorsize_bits; 1149 tmp = min(tmp, (next_offset - file_key.offset) >> 1150 fs_info->sectorsize_bits); 1151 1152 tmp = max_t(u64, 1, tmp); 1153 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size)); 1154 ins_size = csum_size * tmp; 1155 } else { 1156 ins_size = csum_size; 1157 } 1158 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 1159 ins_size); 1160 if (ret < 0) 1161 goto out; 1162 if (WARN_ON(ret != 0)) 1163 goto out; 1164 leaf = path->nodes[0]; 1165 csum: 1166 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 1167 item_end = (struct btrfs_csum_item *)((unsigned char *)item + 1168 btrfs_item_size(leaf, path->slots[0])); 1169 item = (struct btrfs_csum_item *)((unsigned char *)item + 1170 csum_offset * csum_size); 1171 found: 1172 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits; 1173 ins_size *= csum_size; 1174 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item, 1175 ins_size); 1176 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item, 1177 ins_size); 1178 1179 index += ins_size; 1180 ins_size /= csum_size; 1181 total_bytes += ins_size * fs_info->sectorsize; 1182 1183 btrfs_mark_buffer_dirty(path->nodes[0]); 1184 if (total_bytes < sums->len) { 1185 btrfs_release_path(path); 1186 cond_resched(); 1187 goto again; 1188 } 1189 out: 1190 btrfs_free_path(path); 1191 return ret; 1192 } 1193 1194 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 1195 const struct btrfs_path *path, 1196 struct btrfs_file_extent_item *fi, 1197 const bool new_inline, 1198 struct extent_map *em) 1199 { 1200 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1201 struct btrfs_root *root = inode->root; 1202 struct extent_buffer *leaf = path->nodes[0]; 1203 const int slot = path->slots[0]; 1204 struct btrfs_key key; 1205 u64 extent_start, extent_end; 1206 u64 bytenr; 1207 u8 type = btrfs_file_extent_type(leaf, fi); 1208 int compress_type = btrfs_file_extent_compression(leaf, fi); 1209 1210 btrfs_item_key_to_cpu(leaf, &key, slot); 1211 extent_start = key.offset; 1212 extent_end = btrfs_file_extent_end(path); 1213 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1214 if (type == BTRFS_FILE_EXTENT_REG || 1215 type == BTRFS_FILE_EXTENT_PREALLOC) { 1216 em->start = extent_start; 1217 em->len = extent_end - extent_start; 1218 em->orig_start = extent_start - 1219 btrfs_file_extent_offset(leaf, fi); 1220 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 1221 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1222 if (bytenr == 0) { 1223 em->block_start = EXTENT_MAP_HOLE; 1224 return; 1225 } 1226 if (compress_type != BTRFS_COMPRESS_NONE) { 1227 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1228 em->compress_type = compress_type; 1229 em->block_start = bytenr; 1230 em->block_len = em->orig_block_len; 1231 } else { 1232 bytenr += btrfs_file_extent_offset(leaf, fi); 1233 em->block_start = bytenr; 1234 em->block_len = em->len; 1235 if (type == BTRFS_FILE_EXTENT_PREALLOC) 1236 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 1237 } 1238 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 1239 em->block_start = EXTENT_MAP_INLINE; 1240 em->start = extent_start; 1241 em->len = extent_end - extent_start; 1242 /* 1243 * Initialize orig_start and block_len with the same values 1244 * as in inode.c:btrfs_get_extent(). 1245 */ 1246 em->orig_start = EXTENT_MAP_HOLE; 1247 em->block_len = (u64)-1; 1248 if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) { 1249 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1250 em->compress_type = compress_type; 1251 } 1252 } else { 1253 btrfs_err(fs_info, 1254 "unknown file extent item type %d, inode %llu, offset %llu, " 1255 "root %llu", type, btrfs_ino(inode), extent_start, 1256 root->root_key.objectid); 1257 } 1258 } 1259 1260 /* 1261 * Returns the end offset (non inclusive) of the file extent item the given path 1262 * points to. If it points to an inline extent, the returned offset is rounded 1263 * up to the sector size. 1264 */ 1265 u64 btrfs_file_extent_end(const struct btrfs_path *path) 1266 { 1267 const struct extent_buffer *leaf = path->nodes[0]; 1268 const int slot = path->slots[0]; 1269 struct btrfs_file_extent_item *fi; 1270 struct btrfs_key key; 1271 u64 end; 1272 1273 btrfs_item_key_to_cpu(leaf, &key, slot); 1274 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 1275 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1276 1277 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 1278 end = btrfs_file_extent_ram_bytes(leaf, fi); 1279 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize); 1280 } else { 1281 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1282 } 1283 1284 return end; 1285 } 1286