xref: /openbmc/linux/fs/btrfs/file-item.c (revision 8ffdff6a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "volumes.h"
16 #include "print-tree.h"
17 #include "compression.h"
18 
19 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
20 				   sizeof(struct btrfs_item) * 2) / \
21 				  size) - 1))
22 
23 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
24 				       PAGE_SIZE))
25 
26 /**
27  * Set inode's size according to filesystem options
28  *
29  * @inode:      inode we want to update the disk_i_size for
30  * @new_i_size: i_size we want to set to, 0 if we use i_size
31  *
32  * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
33  * returns as it is perfectly fine with a file that has holes without hole file
34  * extent items.
35  *
36  * However without NO_HOLES we need to only return the area that is contiguous
37  * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
38  * to an extent that has a gap in between.
39  *
40  * Finally new_i_size should only be set in the case of truncate where we're not
41  * ready to use i_size_read() as the limiter yet.
42  */
43 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
44 {
45 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
46 	u64 start, end, i_size;
47 	int ret;
48 
49 	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
50 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
51 		inode->disk_i_size = i_size;
52 		return;
53 	}
54 
55 	spin_lock(&inode->lock);
56 	ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
57 					 &end, EXTENT_DIRTY);
58 	if (!ret && start == 0)
59 		i_size = min(i_size, end + 1);
60 	else
61 		i_size = 0;
62 	inode->disk_i_size = i_size;
63 	spin_unlock(&inode->lock);
64 }
65 
66 /**
67  * Mark range within a file as having a new extent inserted
68  *
69  * @inode: inode being modified
70  * @start: start file offset of the file extent we've inserted
71  * @len:   logical length of the file extent item
72  *
73  * Call when we are inserting a new file extent where there was none before.
74  * Does not need to call this in the case where we're replacing an existing file
75  * extent, however if not sure it's fine to call this multiple times.
76  *
77  * The start and len must match the file extent item, so thus must be sectorsize
78  * aligned.
79  */
80 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
81 				      u64 len)
82 {
83 	if (len == 0)
84 		return 0;
85 
86 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
87 
88 	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
89 		return 0;
90 	return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
91 			       EXTENT_DIRTY);
92 }
93 
94 /**
95  * Marks an inode range as not having a backing extent
96  *
97  * @inode: inode being modified
98  * @start: start file offset of the file extent we've inserted
99  * @len:   logical length of the file extent item
100  *
101  * Called when we drop a file extent, for example when we truncate.  Doesn't
102  * need to be called for cases where we're replacing a file extent, like when
103  * we've COWed a file extent.
104  *
105  * The start and len must match the file extent item, so thus must be sectorsize
106  * aligned.
107  */
108 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
109 					u64 len)
110 {
111 	if (len == 0)
112 		return 0;
113 
114 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
115 	       len == (u64)-1);
116 
117 	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
118 		return 0;
119 	return clear_extent_bit(&inode->file_extent_tree, start,
120 				start + len - 1, EXTENT_DIRTY, 0, 0, NULL);
121 }
122 
123 static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
124 					u16 csum_size)
125 {
126 	u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
127 
128 	return ncsums * fs_info->sectorsize;
129 }
130 
131 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
132 			     struct btrfs_root *root,
133 			     u64 objectid, u64 pos,
134 			     u64 disk_offset, u64 disk_num_bytes,
135 			     u64 num_bytes, u64 offset, u64 ram_bytes,
136 			     u8 compression, u8 encryption, u16 other_encoding)
137 {
138 	int ret = 0;
139 	struct btrfs_file_extent_item *item;
140 	struct btrfs_key file_key;
141 	struct btrfs_path *path;
142 	struct extent_buffer *leaf;
143 
144 	path = btrfs_alloc_path();
145 	if (!path)
146 		return -ENOMEM;
147 	file_key.objectid = objectid;
148 	file_key.offset = pos;
149 	file_key.type = BTRFS_EXTENT_DATA_KEY;
150 
151 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
152 				      sizeof(*item));
153 	if (ret < 0)
154 		goto out;
155 	BUG_ON(ret); /* Can't happen */
156 	leaf = path->nodes[0];
157 	item = btrfs_item_ptr(leaf, path->slots[0],
158 			      struct btrfs_file_extent_item);
159 	btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
160 	btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
161 	btrfs_set_file_extent_offset(leaf, item, offset);
162 	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
163 	btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
164 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
165 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
166 	btrfs_set_file_extent_compression(leaf, item, compression);
167 	btrfs_set_file_extent_encryption(leaf, item, encryption);
168 	btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
169 
170 	btrfs_mark_buffer_dirty(leaf);
171 out:
172 	btrfs_free_path(path);
173 	return ret;
174 }
175 
176 static struct btrfs_csum_item *
177 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
178 		  struct btrfs_root *root,
179 		  struct btrfs_path *path,
180 		  u64 bytenr, int cow)
181 {
182 	struct btrfs_fs_info *fs_info = root->fs_info;
183 	int ret;
184 	struct btrfs_key file_key;
185 	struct btrfs_key found_key;
186 	struct btrfs_csum_item *item;
187 	struct extent_buffer *leaf;
188 	u64 csum_offset = 0;
189 	const u32 csum_size = fs_info->csum_size;
190 	int csums_in_item;
191 
192 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
193 	file_key.offset = bytenr;
194 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
195 	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
196 	if (ret < 0)
197 		goto fail;
198 	leaf = path->nodes[0];
199 	if (ret > 0) {
200 		ret = 1;
201 		if (path->slots[0] == 0)
202 			goto fail;
203 		path->slots[0]--;
204 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
205 		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
206 			goto fail;
207 
208 		csum_offset = (bytenr - found_key.offset) >>
209 				fs_info->sectorsize_bits;
210 		csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
211 		csums_in_item /= csum_size;
212 
213 		if (csum_offset == csums_in_item) {
214 			ret = -EFBIG;
215 			goto fail;
216 		} else if (csum_offset > csums_in_item) {
217 			goto fail;
218 		}
219 	}
220 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
221 	item = (struct btrfs_csum_item *)((unsigned char *)item +
222 					  csum_offset * csum_size);
223 	return item;
224 fail:
225 	if (ret > 0)
226 		ret = -ENOENT;
227 	return ERR_PTR(ret);
228 }
229 
230 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
231 			     struct btrfs_root *root,
232 			     struct btrfs_path *path, u64 objectid,
233 			     u64 offset, int mod)
234 {
235 	int ret;
236 	struct btrfs_key file_key;
237 	int ins_len = mod < 0 ? -1 : 0;
238 	int cow = mod != 0;
239 
240 	file_key.objectid = objectid;
241 	file_key.offset = offset;
242 	file_key.type = BTRFS_EXTENT_DATA_KEY;
243 	ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
244 	return ret;
245 }
246 
247 /*
248  * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
249  * estore the result to @dst.
250  *
251  * Return >0 for the number of sectors we found.
252  * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
253  * for it. Caller may want to try next sector until one range is hit.
254  * Return <0 for fatal error.
255  */
256 static int search_csum_tree(struct btrfs_fs_info *fs_info,
257 			    struct btrfs_path *path, u64 disk_bytenr,
258 			    u64 len, u8 *dst)
259 {
260 	struct btrfs_csum_item *item = NULL;
261 	struct btrfs_key key;
262 	const u32 sectorsize = fs_info->sectorsize;
263 	const u32 csum_size = fs_info->csum_size;
264 	u32 itemsize;
265 	int ret;
266 	u64 csum_start;
267 	u64 csum_len;
268 
269 	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
270 	       IS_ALIGNED(len, sectorsize));
271 
272 	/* Check if the current csum item covers disk_bytenr */
273 	if (path->nodes[0]) {
274 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
275 				      struct btrfs_csum_item);
276 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
277 		itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
278 
279 		csum_start = key.offset;
280 		csum_len = (itemsize / csum_size) * sectorsize;
281 
282 		if (in_range(disk_bytenr, csum_start, csum_len))
283 			goto found;
284 	}
285 
286 	/* Current item doesn't contain the desired range, search again */
287 	btrfs_release_path(path);
288 	item = btrfs_lookup_csum(NULL, fs_info->csum_root, path, disk_bytenr, 0);
289 	if (IS_ERR(item)) {
290 		ret = PTR_ERR(item);
291 		goto out;
292 	}
293 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
294 	itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
295 
296 	csum_start = key.offset;
297 	csum_len = (itemsize / csum_size) * sectorsize;
298 	ASSERT(in_range(disk_bytenr, csum_start, csum_len));
299 
300 found:
301 	ret = (min(csum_start + csum_len, disk_bytenr + len) -
302 		   disk_bytenr) >> fs_info->sectorsize_bits;
303 	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
304 			ret * csum_size);
305 out:
306 	if (ret == -ENOENT)
307 		ret = 0;
308 	return ret;
309 }
310 
311 /*
312  * Locate the file_offset of @cur_disk_bytenr of a @bio.
313  *
314  * Bio of btrfs represents read range of
315  * [bi_sector << 9, bi_sector << 9 + bi_size).
316  * Knowing this, we can iterate through each bvec to locate the page belong to
317  * @cur_disk_bytenr and get the file offset.
318  *
319  * @inode is used to determine if the bvec page really belongs to @inode.
320  *
321  * Return 0 if we can't find the file offset
322  * Return >0 if we find the file offset and restore it to @file_offset_ret
323  */
324 static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
325 				     u64 disk_bytenr, u64 *file_offset_ret)
326 {
327 	struct bvec_iter iter;
328 	struct bio_vec bvec;
329 	u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
330 	int ret = 0;
331 
332 	bio_for_each_segment(bvec, bio, iter) {
333 		struct page *page = bvec.bv_page;
334 
335 		if (cur > disk_bytenr)
336 			break;
337 		if (cur + bvec.bv_len <= disk_bytenr) {
338 			cur += bvec.bv_len;
339 			continue;
340 		}
341 		ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
342 		if (page->mapping && page->mapping->host &&
343 		    page->mapping->host == inode) {
344 			ret = 1;
345 			*file_offset_ret = page_offset(page) + bvec.bv_offset +
346 					   disk_bytenr - cur;
347 			break;
348 		}
349 	}
350 	return ret;
351 }
352 
353 /**
354  * Lookup the checksum for the read bio in csum tree.
355  *
356  * @inode: inode that the bio is for.
357  * @bio: bio to look up.
358  * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
359  *       checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
360  *       NULL, the checksum buffer is allocated and returned in
361  *       btrfs_io_bio(bio)->csum instead.
362  *
363  * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
364  */
365 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst)
366 {
367 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
368 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
369 	struct btrfs_path *path;
370 	const u32 sectorsize = fs_info->sectorsize;
371 	const u32 csum_size = fs_info->csum_size;
372 	u32 orig_len = bio->bi_iter.bi_size;
373 	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
374 	u64 cur_disk_bytenr;
375 	u8 *csum;
376 	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
377 	int count = 0;
378 
379 	if (!fs_info->csum_root || (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
380 		return BLK_STS_OK;
381 
382 	/*
383 	 * This function is only called for read bio.
384 	 *
385 	 * This means two things:
386 	 * - All our csums should only be in csum tree
387 	 *   No ordered extents csums, as ordered extents are only for write
388 	 *   path.
389 	 * - No need to bother any other info from bvec
390 	 *   Since we're looking up csums, the only important info is the
391 	 *   disk_bytenr and the length, which can be extracted from bi_iter
392 	 *   directly.
393 	 */
394 	ASSERT(bio_op(bio) == REQ_OP_READ);
395 	path = btrfs_alloc_path();
396 	if (!path)
397 		return BLK_STS_RESOURCE;
398 
399 	if (!dst) {
400 		struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio);
401 
402 		if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
403 			btrfs_bio->csum = kmalloc_array(nblocks, csum_size,
404 							GFP_NOFS);
405 			if (!btrfs_bio->csum) {
406 				btrfs_free_path(path);
407 				return BLK_STS_RESOURCE;
408 			}
409 		} else {
410 			btrfs_bio->csum = btrfs_bio->csum_inline;
411 		}
412 		csum = btrfs_bio->csum;
413 	} else {
414 		csum = dst;
415 	}
416 
417 	/*
418 	 * If requested number of sectors is larger than one leaf can contain,
419 	 * kick the readahead for csum tree.
420 	 */
421 	if (nblocks > fs_info->csums_per_leaf)
422 		path->reada = READA_FORWARD;
423 
424 	/*
425 	 * the free space stuff is only read when it hasn't been
426 	 * updated in the current transaction.  So, we can safely
427 	 * read from the commit root and sidestep a nasty deadlock
428 	 * between reading the free space cache and updating the csum tree.
429 	 */
430 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
431 		path->search_commit_root = 1;
432 		path->skip_locking = 1;
433 	}
434 
435 	for (cur_disk_bytenr = orig_disk_bytenr;
436 	     cur_disk_bytenr < orig_disk_bytenr + orig_len;
437 	     cur_disk_bytenr += (count * sectorsize)) {
438 		u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
439 		unsigned int sector_offset;
440 		u8 *csum_dst;
441 
442 		/*
443 		 * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
444 		 * we're calculating the offset to the bio start.
445 		 *
446 		 * Bio size is limited to UINT_MAX, thus unsigned int is large
447 		 * enough to contain the raw result, not to mention the right
448 		 * shifted result.
449 		 */
450 		ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
451 		sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
452 				fs_info->sectorsize_bits;
453 		csum_dst = csum + sector_offset * csum_size;
454 
455 		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
456 					 search_len, csum_dst);
457 		if (count <= 0) {
458 			/*
459 			 * Either we hit a critical error or we didn't find
460 			 * the csum.
461 			 * Either way, we put zero into the csums dst, and skip
462 			 * to the next sector.
463 			 */
464 			memset(csum_dst, 0, csum_size);
465 			count = 1;
466 
467 			/*
468 			 * For data reloc inode, we need to mark the range
469 			 * NODATASUM so that balance won't report false csum
470 			 * error.
471 			 */
472 			if (BTRFS_I(inode)->root->root_key.objectid ==
473 			    BTRFS_DATA_RELOC_TREE_OBJECTID) {
474 				u64 file_offset;
475 				int ret;
476 
477 				ret = search_file_offset_in_bio(bio, inode,
478 						cur_disk_bytenr, &file_offset);
479 				if (ret)
480 					set_extent_bits(io_tree, file_offset,
481 						file_offset + sectorsize - 1,
482 						EXTENT_NODATASUM);
483 			} else {
484 				btrfs_warn_rl(fs_info,
485 			"csum hole found for disk bytenr range [%llu, %llu)",
486 				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
487 			}
488 		}
489 	}
490 
491 	btrfs_free_path(path);
492 	return BLK_STS_OK;
493 }
494 
495 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
496 			     struct list_head *list, int search_commit)
497 {
498 	struct btrfs_fs_info *fs_info = root->fs_info;
499 	struct btrfs_key key;
500 	struct btrfs_path *path;
501 	struct extent_buffer *leaf;
502 	struct btrfs_ordered_sum *sums;
503 	struct btrfs_csum_item *item;
504 	LIST_HEAD(tmplist);
505 	unsigned long offset;
506 	int ret;
507 	size_t size;
508 	u64 csum_end;
509 	const u32 csum_size = fs_info->csum_size;
510 
511 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
512 	       IS_ALIGNED(end + 1, fs_info->sectorsize));
513 
514 	path = btrfs_alloc_path();
515 	if (!path)
516 		return -ENOMEM;
517 
518 	if (search_commit) {
519 		path->skip_locking = 1;
520 		path->reada = READA_FORWARD;
521 		path->search_commit_root = 1;
522 	}
523 
524 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
525 	key.offset = start;
526 	key.type = BTRFS_EXTENT_CSUM_KEY;
527 
528 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
529 	if (ret < 0)
530 		goto fail;
531 	if (ret > 0 && path->slots[0] > 0) {
532 		leaf = path->nodes[0];
533 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
534 		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
535 		    key.type == BTRFS_EXTENT_CSUM_KEY) {
536 			offset = (start - key.offset) >> fs_info->sectorsize_bits;
537 			if (offset * csum_size <
538 			    btrfs_item_size_nr(leaf, path->slots[0] - 1))
539 				path->slots[0]--;
540 		}
541 	}
542 
543 	while (start <= end) {
544 		leaf = path->nodes[0];
545 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
546 			ret = btrfs_next_leaf(root, path);
547 			if (ret < 0)
548 				goto fail;
549 			if (ret > 0)
550 				break;
551 			leaf = path->nodes[0];
552 		}
553 
554 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
555 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
556 		    key.type != BTRFS_EXTENT_CSUM_KEY ||
557 		    key.offset > end)
558 			break;
559 
560 		if (key.offset > start)
561 			start = key.offset;
562 
563 		size = btrfs_item_size_nr(leaf, path->slots[0]);
564 		csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
565 		if (csum_end <= start) {
566 			path->slots[0]++;
567 			continue;
568 		}
569 
570 		csum_end = min(csum_end, end + 1);
571 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
572 				      struct btrfs_csum_item);
573 		while (start < csum_end) {
574 			size = min_t(size_t, csum_end - start,
575 				     max_ordered_sum_bytes(fs_info, csum_size));
576 			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
577 				       GFP_NOFS);
578 			if (!sums) {
579 				ret = -ENOMEM;
580 				goto fail;
581 			}
582 
583 			sums->bytenr = start;
584 			sums->len = (int)size;
585 
586 			offset = (start - key.offset) >> fs_info->sectorsize_bits;
587 			offset *= csum_size;
588 			size >>= fs_info->sectorsize_bits;
589 
590 			read_extent_buffer(path->nodes[0],
591 					   sums->sums,
592 					   ((unsigned long)item) + offset,
593 					   csum_size * size);
594 
595 			start += fs_info->sectorsize * size;
596 			list_add_tail(&sums->list, &tmplist);
597 		}
598 		path->slots[0]++;
599 	}
600 	ret = 0;
601 fail:
602 	while (ret < 0 && !list_empty(&tmplist)) {
603 		sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
604 		list_del(&sums->list);
605 		kfree(sums);
606 	}
607 	list_splice_tail(&tmplist, list);
608 
609 	btrfs_free_path(path);
610 	return ret;
611 }
612 
613 /*
614  * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio
615  * @inode:	 Owner of the data inside the bio
616  * @bio:	 Contains the data to be checksummed
617  * @file_start:  offset in file this bio begins to describe
618  * @contig:	 Boolean. If true/1 means all bio vecs in this bio are
619  *		 contiguous and they begin at @file_start in the file. False/0
620  *		 means this bio can contains potentially discontigous bio vecs
621  *		 so the logical offset of each should be calculated separately.
622  */
623 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
624 		       u64 file_start, int contig)
625 {
626 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
627 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
628 	struct btrfs_ordered_sum *sums;
629 	struct btrfs_ordered_extent *ordered = NULL;
630 	char *data;
631 	struct bvec_iter iter;
632 	struct bio_vec bvec;
633 	int index;
634 	int nr_sectors;
635 	unsigned long total_bytes = 0;
636 	unsigned long this_sum_bytes = 0;
637 	int i;
638 	u64 offset;
639 	unsigned nofs_flag;
640 
641 	nofs_flag = memalloc_nofs_save();
642 	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
643 		       GFP_KERNEL);
644 	memalloc_nofs_restore(nofs_flag);
645 
646 	if (!sums)
647 		return BLK_STS_RESOURCE;
648 
649 	sums->len = bio->bi_iter.bi_size;
650 	INIT_LIST_HEAD(&sums->list);
651 
652 	if (contig)
653 		offset = file_start;
654 	else
655 		offset = 0; /* shut up gcc */
656 
657 	sums->bytenr = bio->bi_iter.bi_sector << 9;
658 	index = 0;
659 
660 	shash->tfm = fs_info->csum_shash;
661 
662 	bio_for_each_segment(bvec, bio, iter) {
663 		if (!contig)
664 			offset = page_offset(bvec.bv_page) + bvec.bv_offset;
665 
666 		if (!ordered) {
667 			ordered = btrfs_lookup_ordered_extent(inode, offset);
668 			BUG_ON(!ordered); /* Logic error */
669 		}
670 
671 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info,
672 						 bvec.bv_len + fs_info->sectorsize
673 						 - 1);
674 
675 		for (i = 0; i < nr_sectors; i++) {
676 			if (offset >= ordered->file_offset + ordered->num_bytes ||
677 			    offset < ordered->file_offset) {
678 				unsigned long bytes_left;
679 
680 				sums->len = this_sum_bytes;
681 				this_sum_bytes = 0;
682 				btrfs_add_ordered_sum(ordered, sums);
683 				btrfs_put_ordered_extent(ordered);
684 
685 				bytes_left = bio->bi_iter.bi_size - total_bytes;
686 
687 				nofs_flag = memalloc_nofs_save();
688 				sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
689 						      bytes_left), GFP_KERNEL);
690 				memalloc_nofs_restore(nofs_flag);
691 				BUG_ON(!sums); /* -ENOMEM */
692 				sums->len = bytes_left;
693 				ordered = btrfs_lookup_ordered_extent(inode,
694 								offset);
695 				ASSERT(ordered); /* Logic error */
696 				sums->bytenr = (bio->bi_iter.bi_sector << 9)
697 					+ total_bytes;
698 				index = 0;
699 			}
700 
701 			data = kmap_atomic(bvec.bv_page);
702 			crypto_shash_digest(shash, data + bvec.bv_offset
703 					    + (i * fs_info->sectorsize),
704 					    fs_info->sectorsize,
705 					    sums->sums + index);
706 			kunmap_atomic(data);
707 			index += fs_info->csum_size;
708 			offset += fs_info->sectorsize;
709 			this_sum_bytes += fs_info->sectorsize;
710 			total_bytes += fs_info->sectorsize;
711 		}
712 
713 	}
714 	this_sum_bytes = 0;
715 	btrfs_add_ordered_sum(ordered, sums);
716 	btrfs_put_ordered_extent(ordered);
717 	return 0;
718 }
719 
720 /*
721  * helper function for csum removal, this expects the
722  * key to describe the csum pointed to by the path, and it expects
723  * the csum to overlap the range [bytenr, len]
724  *
725  * The csum should not be entirely contained in the range and the
726  * range should not be entirely contained in the csum.
727  *
728  * This calls btrfs_truncate_item with the correct args based on the
729  * overlap, and fixes up the key as required.
730  */
731 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
732 				       struct btrfs_path *path,
733 				       struct btrfs_key *key,
734 				       u64 bytenr, u64 len)
735 {
736 	struct extent_buffer *leaf;
737 	const u32 csum_size = fs_info->csum_size;
738 	u64 csum_end;
739 	u64 end_byte = bytenr + len;
740 	u32 blocksize_bits = fs_info->sectorsize_bits;
741 
742 	leaf = path->nodes[0];
743 	csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
744 	csum_end <<= blocksize_bits;
745 	csum_end += key->offset;
746 
747 	if (key->offset < bytenr && csum_end <= end_byte) {
748 		/*
749 		 *         [ bytenr - len ]
750 		 *         [   ]
751 		 *   [csum     ]
752 		 *   A simple truncate off the end of the item
753 		 */
754 		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
755 		new_size *= csum_size;
756 		btrfs_truncate_item(path, new_size, 1);
757 	} else if (key->offset >= bytenr && csum_end > end_byte &&
758 		   end_byte > key->offset) {
759 		/*
760 		 *         [ bytenr - len ]
761 		 *                 [ ]
762 		 *                 [csum     ]
763 		 * we need to truncate from the beginning of the csum
764 		 */
765 		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
766 		new_size *= csum_size;
767 
768 		btrfs_truncate_item(path, new_size, 0);
769 
770 		key->offset = end_byte;
771 		btrfs_set_item_key_safe(fs_info, path, key);
772 	} else {
773 		BUG();
774 	}
775 }
776 
777 /*
778  * deletes the csum items from the csum tree for a given
779  * range of bytes.
780  */
781 int btrfs_del_csums(struct btrfs_trans_handle *trans,
782 		    struct btrfs_root *root, u64 bytenr, u64 len)
783 {
784 	struct btrfs_fs_info *fs_info = trans->fs_info;
785 	struct btrfs_path *path;
786 	struct btrfs_key key;
787 	u64 end_byte = bytenr + len;
788 	u64 csum_end;
789 	struct extent_buffer *leaf;
790 	int ret;
791 	const u32 csum_size = fs_info->csum_size;
792 	u32 blocksize_bits = fs_info->sectorsize_bits;
793 
794 	ASSERT(root == fs_info->csum_root ||
795 	       root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
796 
797 	path = btrfs_alloc_path();
798 	if (!path)
799 		return -ENOMEM;
800 
801 	while (1) {
802 		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
803 		key.offset = end_byte - 1;
804 		key.type = BTRFS_EXTENT_CSUM_KEY;
805 
806 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
807 		if (ret > 0) {
808 			if (path->slots[0] == 0)
809 				break;
810 			path->slots[0]--;
811 		} else if (ret < 0) {
812 			break;
813 		}
814 
815 		leaf = path->nodes[0];
816 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
817 
818 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
819 		    key.type != BTRFS_EXTENT_CSUM_KEY) {
820 			break;
821 		}
822 
823 		if (key.offset >= end_byte)
824 			break;
825 
826 		csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
827 		csum_end <<= blocksize_bits;
828 		csum_end += key.offset;
829 
830 		/* this csum ends before we start, we're done */
831 		if (csum_end <= bytenr)
832 			break;
833 
834 		/* delete the entire item, it is inside our range */
835 		if (key.offset >= bytenr && csum_end <= end_byte) {
836 			int del_nr = 1;
837 
838 			/*
839 			 * Check how many csum items preceding this one in this
840 			 * leaf correspond to our range and then delete them all
841 			 * at once.
842 			 */
843 			if (key.offset > bytenr && path->slots[0] > 0) {
844 				int slot = path->slots[0] - 1;
845 
846 				while (slot >= 0) {
847 					struct btrfs_key pk;
848 
849 					btrfs_item_key_to_cpu(leaf, &pk, slot);
850 					if (pk.offset < bytenr ||
851 					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
852 					    pk.objectid !=
853 					    BTRFS_EXTENT_CSUM_OBJECTID)
854 						break;
855 					path->slots[0] = slot;
856 					del_nr++;
857 					key.offset = pk.offset;
858 					slot--;
859 				}
860 			}
861 			ret = btrfs_del_items(trans, root, path,
862 					      path->slots[0], del_nr);
863 			if (ret)
864 				goto out;
865 			if (key.offset == bytenr)
866 				break;
867 		} else if (key.offset < bytenr && csum_end > end_byte) {
868 			unsigned long offset;
869 			unsigned long shift_len;
870 			unsigned long item_offset;
871 			/*
872 			 *        [ bytenr - len ]
873 			 *     [csum                ]
874 			 *
875 			 * Our bytes are in the middle of the csum,
876 			 * we need to split this item and insert a new one.
877 			 *
878 			 * But we can't drop the path because the
879 			 * csum could change, get removed, extended etc.
880 			 *
881 			 * The trick here is the max size of a csum item leaves
882 			 * enough room in the tree block for a single
883 			 * item header.  So, we split the item in place,
884 			 * adding a new header pointing to the existing
885 			 * bytes.  Then we loop around again and we have
886 			 * a nicely formed csum item that we can neatly
887 			 * truncate.
888 			 */
889 			offset = (bytenr - key.offset) >> blocksize_bits;
890 			offset *= csum_size;
891 
892 			shift_len = (len >> blocksize_bits) * csum_size;
893 
894 			item_offset = btrfs_item_ptr_offset(leaf,
895 							    path->slots[0]);
896 
897 			memzero_extent_buffer(leaf, item_offset + offset,
898 					     shift_len);
899 			key.offset = bytenr;
900 
901 			/*
902 			 * btrfs_split_item returns -EAGAIN when the
903 			 * item changed size or key
904 			 */
905 			ret = btrfs_split_item(trans, root, path, &key, offset);
906 			if (ret && ret != -EAGAIN) {
907 				btrfs_abort_transaction(trans, ret);
908 				goto out;
909 			}
910 
911 			key.offset = end_byte - 1;
912 		} else {
913 			truncate_one_csum(fs_info, path, &key, bytenr, len);
914 			if (key.offset < bytenr)
915 				break;
916 		}
917 		btrfs_release_path(path);
918 	}
919 	ret = 0;
920 out:
921 	btrfs_free_path(path);
922 	return ret;
923 }
924 
925 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
926 			   struct btrfs_root *root,
927 			   struct btrfs_ordered_sum *sums)
928 {
929 	struct btrfs_fs_info *fs_info = root->fs_info;
930 	struct btrfs_key file_key;
931 	struct btrfs_key found_key;
932 	struct btrfs_path *path;
933 	struct btrfs_csum_item *item;
934 	struct btrfs_csum_item *item_end;
935 	struct extent_buffer *leaf = NULL;
936 	u64 next_offset;
937 	u64 total_bytes = 0;
938 	u64 csum_offset;
939 	u64 bytenr;
940 	u32 nritems;
941 	u32 ins_size;
942 	int index = 0;
943 	int found_next;
944 	int ret;
945 	const u32 csum_size = fs_info->csum_size;
946 
947 	path = btrfs_alloc_path();
948 	if (!path)
949 		return -ENOMEM;
950 again:
951 	next_offset = (u64)-1;
952 	found_next = 0;
953 	bytenr = sums->bytenr + total_bytes;
954 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
955 	file_key.offset = bytenr;
956 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
957 
958 	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
959 	if (!IS_ERR(item)) {
960 		ret = 0;
961 		leaf = path->nodes[0];
962 		item_end = btrfs_item_ptr(leaf, path->slots[0],
963 					  struct btrfs_csum_item);
964 		item_end = (struct btrfs_csum_item *)((char *)item_end +
965 			   btrfs_item_size_nr(leaf, path->slots[0]));
966 		goto found;
967 	}
968 	ret = PTR_ERR(item);
969 	if (ret != -EFBIG && ret != -ENOENT)
970 		goto out;
971 
972 	if (ret == -EFBIG) {
973 		u32 item_size;
974 		/* we found one, but it isn't big enough yet */
975 		leaf = path->nodes[0];
976 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
977 		if ((item_size / csum_size) >=
978 		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
979 			/* already at max size, make a new one */
980 			goto insert;
981 		}
982 	} else {
983 		int slot = path->slots[0] + 1;
984 		/* we didn't find a csum item, insert one */
985 		nritems = btrfs_header_nritems(path->nodes[0]);
986 		if (!nritems || (path->slots[0] >= nritems - 1)) {
987 			ret = btrfs_next_leaf(root, path);
988 			if (ret < 0) {
989 				goto out;
990 			} else if (ret > 0) {
991 				found_next = 1;
992 				goto insert;
993 			}
994 			slot = path->slots[0];
995 		}
996 		btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
997 		if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
998 		    found_key.type != BTRFS_EXTENT_CSUM_KEY) {
999 			found_next = 1;
1000 			goto insert;
1001 		}
1002 		next_offset = found_key.offset;
1003 		found_next = 1;
1004 		goto insert;
1005 	}
1006 
1007 	/*
1008 	 * At this point, we know the tree has a checksum item that ends at an
1009 	 * offset matching the start of the checksum range we want to insert.
1010 	 * We try to extend that item as much as possible and then add as many
1011 	 * checksums to it as they fit.
1012 	 *
1013 	 * First check if the leaf has enough free space for at least one
1014 	 * checksum. If it has go directly to the item extension code, otherwise
1015 	 * release the path and do a search for insertion before the extension.
1016 	 */
1017 	if (btrfs_leaf_free_space(leaf) >= csum_size) {
1018 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1019 		csum_offset = (bytenr - found_key.offset) >>
1020 			fs_info->sectorsize_bits;
1021 		goto extend_csum;
1022 	}
1023 
1024 	btrfs_release_path(path);
1025 	path->search_for_extension = 1;
1026 	ret = btrfs_search_slot(trans, root, &file_key, path,
1027 				csum_size, 1);
1028 	path->search_for_extension = 0;
1029 	if (ret < 0)
1030 		goto out;
1031 
1032 	if (ret > 0) {
1033 		if (path->slots[0] == 0)
1034 			goto insert;
1035 		path->slots[0]--;
1036 	}
1037 
1038 	leaf = path->nodes[0];
1039 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1040 	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1041 
1042 	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1043 	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1044 	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1045 		goto insert;
1046 	}
1047 
1048 extend_csum:
1049 	if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) /
1050 	    csum_size) {
1051 		int extend_nr;
1052 		u64 tmp;
1053 		u32 diff;
1054 
1055 		tmp = sums->len - total_bytes;
1056 		tmp >>= fs_info->sectorsize_bits;
1057 		WARN_ON(tmp < 1);
1058 
1059 		extend_nr = max_t(int, 1, (int)tmp);
1060 		diff = (csum_offset + extend_nr) * csum_size;
1061 		diff = min(diff,
1062 			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1063 
1064 		diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
1065 		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1066 		diff /= csum_size;
1067 		diff *= csum_size;
1068 
1069 		btrfs_extend_item(path, diff);
1070 		ret = 0;
1071 		goto csum;
1072 	}
1073 
1074 insert:
1075 	btrfs_release_path(path);
1076 	csum_offset = 0;
1077 	if (found_next) {
1078 		u64 tmp;
1079 
1080 		tmp = sums->len - total_bytes;
1081 		tmp >>= fs_info->sectorsize_bits;
1082 		tmp = min(tmp, (next_offset - file_key.offset) >>
1083 					 fs_info->sectorsize_bits);
1084 
1085 		tmp = max_t(u64, 1, tmp);
1086 		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1087 		ins_size = csum_size * tmp;
1088 	} else {
1089 		ins_size = csum_size;
1090 	}
1091 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1092 				      ins_size);
1093 	if (ret < 0)
1094 		goto out;
1095 	if (WARN_ON(ret != 0))
1096 		goto out;
1097 	leaf = path->nodes[0];
1098 csum:
1099 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1100 	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1101 				      btrfs_item_size_nr(leaf, path->slots[0]));
1102 	item = (struct btrfs_csum_item *)((unsigned char *)item +
1103 					  csum_offset * csum_size);
1104 found:
1105 	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1106 	ins_size *= csum_size;
1107 	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1108 			      ins_size);
1109 	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1110 			    ins_size);
1111 
1112 	index += ins_size;
1113 	ins_size /= csum_size;
1114 	total_bytes += ins_size * fs_info->sectorsize;
1115 
1116 	btrfs_mark_buffer_dirty(path->nodes[0]);
1117 	if (total_bytes < sums->len) {
1118 		btrfs_release_path(path);
1119 		cond_resched();
1120 		goto again;
1121 	}
1122 out:
1123 	btrfs_free_path(path);
1124 	return ret;
1125 }
1126 
1127 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1128 				     const struct btrfs_path *path,
1129 				     struct btrfs_file_extent_item *fi,
1130 				     const bool new_inline,
1131 				     struct extent_map *em)
1132 {
1133 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1134 	struct btrfs_root *root = inode->root;
1135 	struct extent_buffer *leaf = path->nodes[0];
1136 	const int slot = path->slots[0];
1137 	struct btrfs_key key;
1138 	u64 extent_start, extent_end;
1139 	u64 bytenr;
1140 	u8 type = btrfs_file_extent_type(leaf, fi);
1141 	int compress_type = btrfs_file_extent_compression(leaf, fi);
1142 
1143 	btrfs_item_key_to_cpu(leaf, &key, slot);
1144 	extent_start = key.offset;
1145 	extent_end = btrfs_file_extent_end(path);
1146 	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1147 	if (type == BTRFS_FILE_EXTENT_REG ||
1148 	    type == BTRFS_FILE_EXTENT_PREALLOC) {
1149 		em->start = extent_start;
1150 		em->len = extent_end - extent_start;
1151 		em->orig_start = extent_start -
1152 			btrfs_file_extent_offset(leaf, fi);
1153 		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1154 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1155 		if (bytenr == 0) {
1156 			em->block_start = EXTENT_MAP_HOLE;
1157 			return;
1158 		}
1159 		if (compress_type != BTRFS_COMPRESS_NONE) {
1160 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1161 			em->compress_type = compress_type;
1162 			em->block_start = bytenr;
1163 			em->block_len = em->orig_block_len;
1164 		} else {
1165 			bytenr += btrfs_file_extent_offset(leaf, fi);
1166 			em->block_start = bytenr;
1167 			em->block_len = em->len;
1168 			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1169 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1170 		}
1171 	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1172 		em->block_start = EXTENT_MAP_INLINE;
1173 		em->start = extent_start;
1174 		em->len = extent_end - extent_start;
1175 		/*
1176 		 * Initialize orig_start and block_len with the same values
1177 		 * as in inode.c:btrfs_get_extent().
1178 		 */
1179 		em->orig_start = EXTENT_MAP_HOLE;
1180 		em->block_len = (u64)-1;
1181 		if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
1182 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1183 			em->compress_type = compress_type;
1184 		}
1185 	} else {
1186 		btrfs_err(fs_info,
1187 			  "unknown file extent item type %d, inode %llu, offset %llu, "
1188 			  "root %llu", type, btrfs_ino(inode), extent_start,
1189 			  root->root_key.objectid);
1190 	}
1191 }
1192 
1193 /*
1194  * Returns the end offset (non inclusive) of the file extent item the given path
1195  * points to. If it points to an inline extent, the returned offset is rounded
1196  * up to the sector size.
1197  */
1198 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1199 {
1200 	const struct extent_buffer *leaf = path->nodes[0];
1201 	const int slot = path->slots[0];
1202 	struct btrfs_file_extent_item *fi;
1203 	struct btrfs_key key;
1204 	u64 end;
1205 
1206 	btrfs_item_key_to_cpu(leaf, &key, slot);
1207 	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1208 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1209 
1210 	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1211 		end = btrfs_file_extent_ram_bytes(leaf, fi);
1212 		end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1213 	} else {
1214 		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1215 	}
1216 
1217 	return end;
1218 }
1219