xref: /openbmc/linux/fs/btrfs/file-item.c (revision 65886d2b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "messages.h"
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "bio.h"
18 #include "print-tree.h"
19 #include "compression.h"
20 #include "fs.h"
21 #include "accessors.h"
22 #include "file-item.h"
23 #include "super.h"
24 
25 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
26 				   sizeof(struct btrfs_item) * 2) / \
27 				  size) - 1))
28 
29 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
30 				       PAGE_SIZE))
31 
32 /*
33  * Set inode's size according to filesystem options.
34  *
35  * @inode:      inode we want to update the disk_i_size for
36  * @new_i_size: i_size we want to set to, 0 if we use i_size
37  *
38  * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
39  * returns as it is perfectly fine with a file that has holes without hole file
40  * extent items.
41  *
42  * However without NO_HOLES we need to only return the area that is contiguous
43  * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
44  * to an extent that has a gap in between.
45  *
46  * Finally new_i_size should only be set in the case of truncate where we're not
47  * ready to use i_size_read() as the limiter yet.
48  */
49 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
50 {
51 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
52 	u64 start, end, i_size;
53 	int ret;
54 
55 	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
56 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
57 		inode->disk_i_size = i_size;
58 		return;
59 	}
60 
61 	spin_lock(&inode->lock);
62 	ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
63 					 &end, EXTENT_DIRTY);
64 	if (!ret && start == 0)
65 		i_size = min(i_size, end + 1);
66 	else
67 		i_size = 0;
68 	inode->disk_i_size = i_size;
69 	spin_unlock(&inode->lock);
70 }
71 
72 /*
73  * Mark range within a file as having a new extent inserted.
74  *
75  * @inode: inode being modified
76  * @start: start file offset of the file extent we've inserted
77  * @len:   logical length of the file extent item
78  *
79  * Call when we are inserting a new file extent where there was none before.
80  * Does not need to call this in the case where we're replacing an existing file
81  * extent, however if not sure it's fine to call this multiple times.
82  *
83  * The start and len must match the file extent item, so thus must be sectorsize
84  * aligned.
85  */
86 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
87 				      u64 len)
88 {
89 	if (len == 0)
90 		return 0;
91 
92 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
93 
94 	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
95 		return 0;
96 	return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
97 			       EXTENT_DIRTY);
98 }
99 
100 /*
101  * Mark an inode range as not having a backing extent.
102  *
103  * @inode: inode being modified
104  * @start: start file offset of the file extent we've inserted
105  * @len:   logical length of the file extent item
106  *
107  * Called when we drop a file extent, for example when we truncate.  Doesn't
108  * need to be called for cases where we're replacing a file extent, like when
109  * we've COWed a file extent.
110  *
111  * The start and len must match the file extent item, so thus must be sectorsize
112  * aligned.
113  */
114 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
115 					u64 len)
116 {
117 	if (len == 0)
118 		return 0;
119 
120 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
121 	       len == (u64)-1);
122 
123 	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
124 		return 0;
125 	return clear_extent_bit(&inode->file_extent_tree, start,
126 				start + len - 1, EXTENT_DIRTY, NULL);
127 }
128 
129 static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
130 {
131 	ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
132 
133 	return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
134 }
135 
136 static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
137 {
138 	ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
139 
140 	return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
141 }
142 
143 static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
144 {
145 	u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
146 				       fs_info->csum_size);
147 
148 	return csum_size_to_bytes(fs_info, max_csum_size);
149 }
150 
151 /*
152  * Calculate the total size needed to allocate for an ordered sum structure
153  * spanning @bytes in the file.
154  */
155 static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
156 {
157 	return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
158 }
159 
160 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
161 			     struct btrfs_root *root,
162 			     u64 objectid, u64 pos, u64 num_bytes)
163 {
164 	int ret = 0;
165 	struct btrfs_file_extent_item *item;
166 	struct btrfs_key file_key;
167 	struct btrfs_path *path;
168 	struct extent_buffer *leaf;
169 
170 	path = btrfs_alloc_path();
171 	if (!path)
172 		return -ENOMEM;
173 	file_key.objectid = objectid;
174 	file_key.offset = pos;
175 	file_key.type = BTRFS_EXTENT_DATA_KEY;
176 
177 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
178 				      sizeof(*item));
179 	if (ret < 0)
180 		goto out;
181 	BUG_ON(ret); /* Can't happen */
182 	leaf = path->nodes[0];
183 	item = btrfs_item_ptr(leaf, path->slots[0],
184 			      struct btrfs_file_extent_item);
185 	btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
186 	btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
187 	btrfs_set_file_extent_offset(leaf, item, 0);
188 	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
189 	btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
190 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
191 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
192 	btrfs_set_file_extent_compression(leaf, item, 0);
193 	btrfs_set_file_extent_encryption(leaf, item, 0);
194 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
195 
196 	btrfs_mark_buffer_dirty(leaf);
197 out:
198 	btrfs_free_path(path);
199 	return ret;
200 }
201 
202 static struct btrfs_csum_item *
203 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
204 		  struct btrfs_root *root,
205 		  struct btrfs_path *path,
206 		  u64 bytenr, int cow)
207 {
208 	struct btrfs_fs_info *fs_info = root->fs_info;
209 	int ret;
210 	struct btrfs_key file_key;
211 	struct btrfs_key found_key;
212 	struct btrfs_csum_item *item;
213 	struct extent_buffer *leaf;
214 	u64 csum_offset = 0;
215 	const u32 csum_size = fs_info->csum_size;
216 	int csums_in_item;
217 
218 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
219 	file_key.offset = bytenr;
220 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
221 	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
222 	if (ret < 0)
223 		goto fail;
224 	leaf = path->nodes[0];
225 	if (ret > 0) {
226 		ret = 1;
227 		if (path->slots[0] == 0)
228 			goto fail;
229 		path->slots[0]--;
230 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
231 		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
232 			goto fail;
233 
234 		csum_offset = (bytenr - found_key.offset) >>
235 				fs_info->sectorsize_bits;
236 		csums_in_item = btrfs_item_size(leaf, path->slots[0]);
237 		csums_in_item /= csum_size;
238 
239 		if (csum_offset == csums_in_item) {
240 			ret = -EFBIG;
241 			goto fail;
242 		} else if (csum_offset > csums_in_item) {
243 			goto fail;
244 		}
245 	}
246 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
247 	item = (struct btrfs_csum_item *)((unsigned char *)item +
248 					  csum_offset * csum_size);
249 	return item;
250 fail:
251 	if (ret > 0)
252 		ret = -ENOENT;
253 	return ERR_PTR(ret);
254 }
255 
256 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
257 			     struct btrfs_root *root,
258 			     struct btrfs_path *path, u64 objectid,
259 			     u64 offset, int mod)
260 {
261 	struct btrfs_key file_key;
262 	int ins_len = mod < 0 ? -1 : 0;
263 	int cow = mod != 0;
264 
265 	file_key.objectid = objectid;
266 	file_key.offset = offset;
267 	file_key.type = BTRFS_EXTENT_DATA_KEY;
268 
269 	return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
270 }
271 
272 /*
273  * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
274  * store the result to @dst.
275  *
276  * Return >0 for the number of sectors we found.
277  * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
278  * for it. Caller may want to try next sector until one range is hit.
279  * Return <0 for fatal error.
280  */
281 static int search_csum_tree(struct btrfs_fs_info *fs_info,
282 			    struct btrfs_path *path, u64 disk_bytenr,
283 			    u64 len, u8 *dst)
284 {
285 	struct btrfs_root *csum_root;
286 	struct btrfs_csum_item *item = NULL;
287 	struct btrfs_key key;
288 	const u32 sectorsize = fs_info->sectorsize;
289 	const u32 csum_size = fs_info->csum_size;
290 	u32 itemsize;
291 	int ret;
292 	u64 csum_start;
293 	u64 csum_len;
294 
295 	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
296 	       IS_ALIGNED(len, sectorsize));
297 
298 	/* Check if the current csum item covers disk_bytenr */
299 	if (path->nodes[0]) {
300 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
301 				      struct btrfs_csum_item);
302 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
303 		itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
304 
305 		csum_start = key.offset;
306 		csum_len = (itemsize / csum_size) * sectorsize;
307 
308 		if (in_range(disk_bytenr, csum_start, csum_len))
309 			goto found;
310 	}
311 
312 	/* Current item doesn't contain the desired range, search again */
313 	btrfs_release_path(path);
314 	csum_root = btrfs_csum_root(fs_info, disk_bytenr);
315 	item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
316 	if (IS_ERR(item)) {
317 		ret = PTR_ERR(item);
318 		goto out;
319 	}
320 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
321 	itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
322 
323 	csum_start = key.offset;
324 	csum_len = (itemsize / csum_size) * sectorsize;
325 	ASSERT(in_range(disk_bytenr, csum_start, csum_len));
326 
327 found:
328 	ret = (min(csum_start + csum_len, disk_bytenr + len) -
329 		   disk_bytenr) >> fs_info->sectorsize_bits;
330 	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
331 			ret * csum_size);
332 out:
333 	if (ret == -ENOENT || ret == -EFBIG)
334 		ret = 0;
335 	return ret;
336 }
337 
338 /*
339  * Lookup the checksum for the read bio in csum tree.
340  *
341  * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
342  */
343 blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
344 {
345 	struct btrfs_inode *inode = bbio->inode;
346 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
347 	struct bio *bio = &bbio->bio;
348 	struct btrfs_path *path;
349 	const u32 sectorsize = fs_info->sectorsize;
350 	const u32 csum_size = fs_info->csum_size;
351 	u32 orig_len = bio->bi_iter.bi_size;
352 	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
353 	u64 cur_disk_bytenr;
354 	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
355 	int count = 0;
356 	blk_status_t ret = BLK_STS_OK;
357 
358 	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
359 	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
360 		return BLK_STS_OK;
361 
362 	/*
363 	 * This function is only called for read bio.
364 	 *
365 	 * This means two things:
366 	 * - All our csums should only be in csum tree
367 	 *   No ordered extents csums, as ordered extents are only for write
368 	 *   path.
369 	 * - No need to bother any other info from bvec
370 	 *   Since we're looking up csums, the only important info is the
371 	 *   disk_bytenr and the length, which can be extracted from bi_iter
372 	 *   directly.
373 	 */
374 	ASSERT(bio_op(bio) == REQ_OP_READ);
375 	path = btrfs_alloc_path();
376 	if (!path)
377 		return BLK_STS_RESOURCE;
378 
379 	if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
380 		bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
381 		if (!bbio->csum) {
382 			btrfs_free_path(path);
383 			return BLK_STS_RESOURCE;
384 		}
385 	} else {
386 		bbio->csum = bbio->csum_inline;
387 	}
388 
389 	/*
390 	 * If requested number of sectors is larger than one leaf can contain,
391 	 * kick the readahead for csum tree.
392 	 */
393 	if (nblocks > fs_info->csums_per_leaf)
394 		path->reada = READA_FORWARD;
395 
396 	/*
397 	 * the free space stuff is only read when it hasn't been
398 	 * updated in the current transaction.  So, we can safely
399 	 * read from the commit root and sidestep a nasty deadlock
400 	 * between reading the free space cache and updating the csum tree.
401 	 */
402 	if (btrfs_is_free_space_inode(inode)) {
403 		path->search_commit_root = 1;
404 		path->skip_locking = 1;
405 	}
406 
407 	for (cur_disk_bytenr = orig_disk_bytenr;
408 	     cur_disk_bytenr < orig_disk_bytenr + orig_len;
409 	     cur_disk_bytenr += (count * sectorsize)) {
410 		u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
411 		unsigned int sector_offset;
412 		u8 *csum_dst;
413 
414 		/*
415 		 * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
416 		 * we're calculating the offset to the bio start.
417 		 *
418 		 * Bio size is limited to UINT_MAX, thus unsigned int is large
419 		 * enough to contain the raw result, not to mention the right
420 		 * shifted result.
421 		 */
422 		ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
423 		sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
424 				fs_info->sectorsize_bits;
425 		csum_dst = bbio->csum + sector_offset * csum_size;
426 
427 		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
428 					 search_len, csum_dst);
429 		if (count < 0) {
430 			ret = errno_to_blk_status(count);
431 			if (bbio->csum != bbio->csum_inline)
432 				kfree(bbio->csum);
433 			bbio->csum = NULL;
434 			break;
435 		}
436 
437 		/*
438 		 * We didn't find a csum for this range.  We need to make sure
439 		 * we complain loudly about this, because we are not NODATASUM.
440 		 *
441 		 * However for the DATA_RELOC inode we could potentially be
442 		 * relocating data extents for a NODATASUM inode, so the inode
443 		 * itself won't be marked with NODATASUM, but the extent we're
444 		 * copying is in fact NODATASUM.  If we don't find a csum we
445 		 * assume this is the case.
446 		 */
447 		if (count == 0) {
448 			memset(csum_dst, 0, csum_size);
449 			count = 1;
450 
451 			if (inode->root->root_key.objectid ==
452 			    BTRFS_DATA_RELOC_TREE_OBJECTID) {
453 				u64 file_offset = bbio->file_offset +
454 					cur_disk_bytenr - orig_disk_bytenr;
455 
456 				set_extent_bits(&inode->io_tree, file_offset,
457 						file_offset + sectorsize - 1,
458 						EXTENT_NODATASUM);
459 			} else {
460 				btrfs_warn_rl(fs_info,
461 			"csum hole found for disk bytenr range [%llu, %llu)",
462 				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
463 			}
464 		}
465 	}
466 
467 	btrfs_free_path(path);
468 	return ret;
469 }
470 
471 int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
472 			    struct list_head *list, int search_commit,
473 			    bool nowait)
474 {
475 	struct btrfs_fs_info *fs_info = root->fs_info;
476 	struct btrfs_key key;
477 	struct btrfs_path *path;
478 	struct extent_buffer *leaf;
479 	struct btrfs_ordered_sum *sums;
480 	struct btrfs_csum_item *item;
481 	LIST_HEAD(tmplist);
482 	int ret;
483 
484 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
485 	       IS_ALIGNED(end + 1, fs_info->sectorsize));
486 
487 	path = btrfs_alloc_path();
488 	if (!path)
489 		return -ENOMEM;
490 
491 	path->nowait = nowait;
492 	if (search_commit) {
493 		path->skip_locking = 1;
494 		path->reada = READA_FORWARD;
495 		path->search_commit_root = 1;
496 	}
497 
498 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
499 	key.offset = start;
500 	key.type = BTRFS_EXTENT_CSUM_KEY;
501 
502 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
503 	if (ret < 0)
504 		goto fail;
505 	if (ret > 0 && path->slots[0] > 0) {
506 		leaf = path->nodes[0];
507 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
508 
509 		/*
510 		 * There are two cases we can hit here for the previous csum
511 		 * item:
512 		 *
513 		 *		|<- search range ->|
514 		 *	|<- csum item ->|
515 		 *
516 		 * Or
517 		 *				|<- search range ->|
518 		 *	|<- csum item ->|
519 		 *
520 		 * Check if the previous csum item covers the leading part of
521 		 * the search range.  If so we have to start from previous csum
522 		 * item.
523 		 */
524 		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
525 		    key.type == BTRFS_EXTENT_CSUM_KEY) {
526 			if (bytes_to_csum_size(fs_info, start - key.offset) <
527 			    btrfs_item_size(leaf, path->slots[0] - 1))
528 				path->slots[0]--;
529 		}
530 	}
531 
532 	while (start <= end) {
533 		u64 csum_end;
534 
535 		leaf = path->nodes[0];
536 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
537 			ret = btrfs_next_leaf(root, path);
538 			if (ret < 0)
539 				goto fail;
540 			if (ret > 0)
541 				break;
542 			leaf = path->nodes[0];
543 		}
544 
545 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
546 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
547 		    key.type != BTRFS_EXTENT_CSUM_KEY ||
548 		    key.offset > end)
549 			break;
550 
551 		if (key.offset > start)
552 			start = key.offset;
553 
554 		csum_end = key.offset + csum_size_to_bytes(fs_info,
555 					btrfs_item_size(leaf, path->slots[0]));
556 		if (csum_end <= start) {
557 			path->slots[0]++;
558 			continue;
559 		}
560 
561 		csum_end = min(csum_end, end + 1);
562 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
563 				      struct btrfs_csum_item);
564 		while (start < csum_end) {
565 			unsigned long offset;
566 			size_t size;
567 
568 			size = min_t(size_t, csum_end - start,
569 				     max_ordered_sum_bytes(fs_info));
570 			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
571 				       GFP_NOFS);
572 			if (!sums) {
573 				ret = -ENOMEM;
574 				goto fail;
575 			}
576 
577 			sums->bytenr = start;
578 			sums->len = (int)size;
579 
580 			offset = bytes_to_csum_size(fs_info, start - key.offset);
581 
582 			read_extent_buffer(path->nodes[0],
583 					   sums->sums,
584 					   ((unsigned long)item) + offset,
585 					   bytes_to_csum_size(fs_info, size));
586 
587 			start += size;
588 			list_add_tail(&sums->list, &tmplist);
589 		}
590 		path->slots[0]++;
591 	}
592 	ret = 0;
593 fail:
594 	while (ret < 0 && !list_empty(&tmplist)) {
595 		sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
596 		list_del(&sums->list);
597 		kfree(sums);
598 	}
599 	list_splice_tail(&tmplist, list);
600 
601 	btrfs_free_path(path);
602 	return ret;
603 }
604 
605 /*
606  * Do the same work as btrfs_lookup_csums_list(), the difference is in how
607  * we return the result.
608  *
609  * This version will set the corresponding bits in @csum_bitmap to represent
610  * that there is a csum found.
611  * Each bit represents a sector. Thus caller should ensure @csum_buf passed
612  * in is large enough to contain all csums.
613  */
614 int btrfs_lookup_csums_bitmap(struct btrfs_root *root, u64 start, u64 end,
615 			      u8 *csum_buf, unsigned long *csum_bitmap)
616 {
617 	struct btrfs_fs_info *fs_info = root->fs_info;
618 	struct btrfs_key key;
619 	struct btrfs_path *path;
620 	struct extent_buffer *leaf;
621 	struct btrfs_csum_item *item;
622 	const u64 orig_start = start;
623 	int ret;
624 
625 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
626 	       IS_ALIGNED(end + 1, fs_info->sectorsize));
627 
628 	path = btrfs_alloc_path();
629 	if (!path)
630 		return -ENOMEM;
631 
632 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
633 	key.type = BTRFS_EXTENT_CSUM_KEY;
634 	key.offset = start;
635 
636 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
637 	if (ret < 0)
638 		goto fail;
639 	if (ret > 0 && path->slots[0] > 0) {
640 		leaf = path->nodes[0];
641 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
642 
643 		/*
644 		 * There are two cases we can hit here for the previous csum
645 		 * item:
646 		 *
647 		 *		|<- search range ->|
648 		 *	|<- csum item ->|
649 		 *
650 		 * Or
651 		 *				|<- search range ->|
652 		 *	|<- csum item ->|
653 		 *
654 		 * Check if the previous csum item covers the leading part of
655 		 * the search range.  If so we have to start from previous csum
656 		 * item.
657 		 */
658 		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
659 		    key.type == BTRFS_EXTENT_CSUM_KEY) {
660 			if (bytes_to_csum_size(fs_info, start - key.offset) <
661 			    btrfs_item_size(leaf, path->slots[0] - 1))
662 				path->slots[0]--;
663 		}
664 	}
665 
666 	while (start <= end) {
667 		u64 csum_end;
668 
669 		leaf = path->nodes[0];
670 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
671 			ret = btrfs_next_leaf(root, path);
672 			if (ret < 0)
673 				goto fail;
674 			if (ret > 0)
675 				break;
676 			leaf = path->nodes[0];
677 		}
678 
679 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
680 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
681 		    key.type != BTRFS_EXTENT_CSUM_KEY ||
682 		    key.offset > end)
683 			break;
684 
685 		if (key.offset > start)
686 			start = key.offset;
687 
688 		csum_end = key.offset + csum_size_to_bytes(fs_info,
689 					btrfs_item_size(leaf, path->slots[0]));
690 		if (csum_end <= start) {
691 			path->slots[0]++;
692 			continue;
693 		}
694 
695 		csum_end = min(csum_end, end + 1);
696 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
697 				      struct btrfs_csum_item);
698 		while (start < csum_end) {
699 			unsigned long offset;
700 			size_t size;
701 			u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
702 						start - orig_start);
703 
704 			size = min_t(size_t, csum_end - start, end + 1 - start);
705 
706 			offset = bytes_to_csum_size(fs_info, start - key.offset);
707 
708 			read_extent_buffer(path->nodes[0], csum_dest,
709 					   ((unsigned long)item) + offset,
710 					   bytes_to_csum_size(fs_info, size));
711 
712 			bitmap_set(csum_bitmap,
713 				(start - orig_start) >> fs_info->sectorsize_bits,
714 				size >> fs_info->sectorsize_bits);
715 
716 			start += size;
717 		}
718 		path->slots[0]++;
719 	}
720 	ret = 0;
721 fail:
722 	btrfs_free_path(path);
723 	return ret;
724 }
725 
726 /*
727  * Calculate checksums of the data contained inside a bio.
728  */
729 blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
730 {
731 	struct btrfs_inode *inode = bbio->inode;
732 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
733 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
734 	struct bio *bio = &bbio->bio;
735 	u64 offset = bbio->file_offset;
736 	struct btrfs_ordered_sum *sums;
737 	struct btrfs_ordered_extent *ordered = NULL;
738 	char *data;
739 	struct bvec_iter iter;
740 	struct bio_vec bvec;
741 	int index;
742 	unsigned int blockcount;
743 	unsigned long total_bytes = 0;
744 	unsigned long this_sum_bytes = 0;
745 	int i;
746 	unsigned nofs_flag;
747 
748 	nofs_flag = memalloc_nofs_save();
749 	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
750 		       GFP_KERNEL);
751 	memalloc_nofs_restore(nofs_flag);
752 
753 	if (!sums)
754 		return BLK_STS_RESOURCE;
755 
756 	sums->len = bio->bi_iter.bi_size;
757 	INIT_LIST_HEAD(&sums->list);
758 
759 	sums->bytenr = bio->bi_iter.bi_sector << 9;
760 	index = 0;
761 
762 	shash->tfm = fs_info->csum_shash;
763 
764 	bio_for_each_segment(bvec, bio, iter) {
765 		if (!ordered) {
766 			ordered = btrfs_lookup_ordered_extent(inode, offset);
767 			/*
768 			 * The bio range is not covered by any ordered extent,
769 			 * must be a code logic error.
770 			 */
771 			if (unlikely(!ordered)) {
772 				WARN(1, KERN_WARNING
773 			"no ordered extent for root %llu ino %llu offset %llu\n",
774 				     inode->root->root_key.objectid,
775 				     btrfs_ino(inode), offset);
776 				kvfree(sums);
777 				return BLK_STS_IOERR;
778 			}
779 		}
780 
781 		blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
782 						 bvec.bv_len + fs_info->sectorsize
783 						 - 1);
784 
785 		for (i = 0; i < blockcount; i++) {
786 			if (!(bio->bi_opf & REQ_BTRFS_ONE_ORDERED) &&
787 			    !in_range(offset, ordered->file_offset,
788 				      ordered->num_bytes)) {
789 				unsigned long bytes_left;
790 
791 				sums->len = this_sum_bytes;
792 				this_sum_bytes = 0;
793 				btrfs_add_ordered_sum(ordered, sums);
794 				btrfs_put_ordered_extent(ordered);
795 
796 				bytes_left = bio->bi_iter.bi_size - total_bytes;
797 
798 				nofs_flag = memalloc_nofs_save();
799 				sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
800 						      bytes_left), GFP_KERNEL);
801 				memalloc_nofs_restore(nofs_flag);
802 				BUG_ON(!sums); /* -ENOMEM */
803 				sums->len = bytes_left;
804 				ordered = btrfs_lookup_ordered_extent(inode,
805 								offset);
806 				ASSERT(ordered); /* Logic error */
807 				sums->bytenr = (bio->bi_iter.bi_sector << 9)
808 					+ total_bytes;
809 				index = 0;
810 			}
811 
812 			data = bvec_kmap_local(&bvec);
813 			crypto_shash_digest(shash,
814 					    data + (i * fs_info->sectorsize),
815 					    fs_info->sectorsize,
816 					    sums->sums + index);
817 			kunmap_local(data);
818 			index += fs_info->csum_size;
819 			offset += fs_info->sectorsize;
820 			this_sum_bytes += fs_info->sectorsize;
821 			total_bytes += fs_info->sectorsize;
822 		}
823 
824 	}
825 	this_sum_bytes = 0;
826 	btrfs_add_ordered_sum(ordered, sums);
827 	btrfs_put_ordered_extent(ordered);
828 	return 0;
829 }
830 
831 /*
832  * Remove one checksum overlapping a range.
833  *
834  * This expects the key to describe the csum pointed to by the path, and it
835  * expects the csum to overlap the range [bytenr, len]
836  *
837  * The csum should not be entirely contained in the range and the range should
838  * not be entirely contained in the csum.
839  *
840  * This calls btrfs_truncate_item with the correct args based on the overlap,
841  * and fixes up the key as required.
842  */
843 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
844 				       struct btrfs_path *path,
845 				       struct btrfs_key *key,
846 				       u64 bytenr, u64 len)
847 {
848 	struct extent_buffer *leaf;
849 	const u32 csum_size = fs_info->csum_size;
850 	u64 csum_end;
851 	u64 end_byte = bytenr + len;
852 	u32 blocksize_bits = fs_info->sectorsize_bits;
853 
854 	leaf = path->nodes[0];
855 	csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
856 	csum_end <<= blocksize_bits;
857 	csum_end += key->offset;
858 
859 	if (key->offset < bytenr && csum_end <= end_byte) {
860 		/*
861 		 *         [ bytenr - len ]
862 		 *         [   ]
863 		 *   [csum     ]
864 		 *   A simple truncate off the end of the item
865 		 */
866 		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
867 		new_size *= csum_size;
868 		btrfs_truncate_item(path, new_size, 1);
869 	} else if (key->offset >= bytenr && csum_end > end_byte &&
870 		   end_byte > key->offset) {
871 		/*
872 		 *         [ bytenr - len ]
873 		 *                 [ ]
874 		 *                 [csum     ]
875 		 * we need to truncate from the beginning of the csum
876 		 */
877 		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
878 		new_size *= csum_size;
879 
880 		btrfs_truncate_item(path, new_size, 0);
881 
882 		key->offset = end_byte;
883 		btrfs_set_item_key_safe(fs_info, path, key);
884 	} else {
885 		BUG();
886 	}
887 }
888 
889 /*
890  * Delete the csum items from the csum tree for a given range of bytes.
891  */
892 int btrfs_del_csums(struct btrfs_trans_handle *trans,
893 		    struct btrfs_root *root, u64 bytenr, u64 len)
894 {
895 	struct btrfs_fs_info *fs_info = trans->fs_info;
896 	struct btrfs_path *path;
897 	struct btrfs_key key;
898 	u64 end_byte = bytenr + len;
899 	u64 csum_end;
900 	struct extent_buffer *leaf;
901 	int ret = 0;
902 	const u32 csum_size = fs_info->csum_size;
903 	u32 blocksize_bits = fs_info->sectorsize_bits;
904 
905 	ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
906 	       root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
907 
908 	path = btrfs_alloc_path();
909 	if (!path)
910 		return -ENOMEM;
911 
912 	while (1) {
913 		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
914 		key.offset = end_byte - 1;
915 		key.type = BTRFS_EXTENT_CSUM_KEY;
916 
917 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
918 		if (ret > 0) {
919 			ret = 0;
920 			if (path->slots[0] == 0)
921 				break;
922 			path->slots[0]--;
923 		} else if (ret < 0) {
924 			break;
925 		}
926 
927 		leaf = path->nodes[0];
928 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
929 
930 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
931 		    key.type != BTRFS_EXTENT_CSUM_KEY) {
932 			break;
933 		}
934 
935 		if (key.offset >= end_byte)
936 			break;
937 
938 		csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
939 		csum_end <<= blocksize_bits;
940 		csum_end += key.offset;
941 
942 		/* this csum ends before we start, we're done */
943 		if (csum_end <= bytenr)
944 			break;
945 
946 		/* delete the entire item, it is inside our range */
947 		if (key.offset >= bytenr && csum_end <= end_byte) {
948 			int del_nr = 1;
949 
950 			/*
951 			 * Check how many csum items preceding this one in this
952 			 * leaf correspond to our range and then delete them all
953 			 * at once.
954 			 */
955 			if (key.offset > bytenr && path->slots[0] > 0) {
956 				int slot = path->slots[0] - 1;
957 
958 				while (slot >= 0) {
959 					struct btrfs_key pk;
960 
961 					btrfs_item_key_to_cpu(leaf, &pk, slot);
962 					if (pk.offset < bytenr ||
963 					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
964 					    pk.objectid !=
965 					    BTRFS_EXTENT_CSUM_OBJECTID)
966 						break;
967 					path->slots[0] = slot;
968 					del_nr++;
969 					key.offset = pk.offset;
970 					slot--;
971 				}
972 			}
973 			ret = btrfs_del_items(trans, root, path,
974 					      path->slots[0], del_nr);
975 			if (ret)
976 				break;
977 			if (key.offset == bytenr)
978 				break;
979 		} else if (key.offset < bytenr && csum_end > end_byte) {
980 			unsigned long offset;
981 			unsigned long shift_len;
982 			unsigned long item_offset;
983 			/*
984 			 *        [ bytenr - len ]
985 			 *     [csum                ]
986 			 *
987 			 * Our bytes are in the middle of the csum,
988 			 * we need to split this item and insert a new one.
989 			 *
990 			 * But we can't drop the path because the
991 			 * csum could change, get removed, extended etc.
992 			 *
993 			 * The trick here is the max size of a csum item leaves
994 			 * enough room in the tree block for a single
995 			 * item header.  So, we split the item in place,
996 			 * adding a new header pointing to the existing
997 			 * bytes.  Then we loop around again and we have
998 			 * a nicely formed csum item that we can neatly
999 			 * truncate.
1000 			 */
1001 			offset = (bytenr - key.offset) >> blocksize_bits;
1002 			offset *= csum_size;
1003 
1004 			shift_len = (len >> blocksize_bits) * csum_size;
1005 
1006 			item_offset = btrfs_item_ptr_offset(leaf,
1007 							    path->slots[0]);
1008 
1009 			memzero_extent_buffer(leaf, item_offset + offset,
1010 					     shift_len);
1011 			key.offset = bytenr;
1012 
1013 			/*
1014 			 * btrfs_split_item returns -EAGAIN when the
1015 			 * item changed size or key
1016 			 */
1017 			ret = btrfs_split_item(trans, root, path, &key, offset);
1018 			if (ret && ret != -EAGAIN) {
1019 				btrfs_abort_transaction(trans, ret);
1020 				break;
1021 			}
1022 			ret = 0;
1023 
1024 			key.offset = end_byte - 1;
1025 		} else {
1026 			truncate_one_csum(fs_info, path, &key, bytenr, len);
1027 			if (key.offset < bytenr)
1028 				break;
1029 		}
1030 		btrfs_release_path(path);
1031 	}
1032 	btrfs_free_path(path);
1033 	return ret;
1034 }
1035 
1036 static int find_next_csum_offset(struct btrfs_root *root,
1037 				 struct btrfs_path *path,
1038 				 u64 *next_offset)
1039 {
1040 	const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1041 	struct btrfs_key found_key;
1042 	int slot = path->slots[0] + 1;
1043 	int ret;
1044 
1045 	if (nritems == 0 || slot >= nritems) {
1046 		ret = btrfs_next_leaf(root, path);
1047 		if (ret < 0) {
1048 			return ret;
1049 		} else if (ret > 0) {
1050 			*next_offset = (u64)-1;
1051 			return 0;
1052 		}
1053 		slot = path->slots[0];
1054 	}
1055 
1056 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1057 
1058 	if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1059 	    found_key.type != BTRFS_EXTENT_CSUM_KEY)
1060 		*next_offset = (u64)-1;
1061 	else
1062 		*next_offset = found_key.offset;
1063 
1064 	return 0;
1065 }
1066 
1067 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1068 			   struct btrfs_root *root,
1069 			   struct btrfs_ordered_sum *sums)
1070 {
1071 	struct btrfs_fs_info *fs_info = root->fs_info;
1072 	struct btrfs_key file_key;
1073 	struct btrfs_key found_key;
1074 	struct btrfs_path *path;
1075 	struct btrfs_csum_item *item;
1076 	struct btrfs_csum_item *item_end;
1077 	struct extent_buffer *leaf = NULL;
1078 	u64 next_offset;
1079 	u64 total_bytes = 0;
1080 	u64 csum_offset;
1081 	u64 bytenr;
1082 	u32 ins_size;
1083 	int index = 0;
1084 	int found_next;
1085 	int ret;
1086 	const u32 csum_size = fs_info->csum_size;
1087 
1088 	path = btrfs_alloc_path();
1089 	if (!path)
1090 		return -ENOMEM;
1091 again:
1092 	next_offset = (u64)-1;
1093 	found_next = 0;
1094 	bytenr = sums->bytenr + total_bytes;
1095 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1096 	file_key.offset = bytenr;
1097 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
1098 
1099 	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1100 	if (!IS_ERR(item)) {
1101 		ret = 0;
1102 		leaf = path->nodes[0];
1103 		item_end = btrfs_item_ptr(leaf, path->slots[0],
1104 					  struct btrfs_csum_item);
1105 		item_end = (struct btrfs_csum_item *)((char *)item_end +
1106 			   btrfs_item_size(leaf, path->slots[0]));
1107 		goto found;
1108 	}
1109 	ret = PTR_ERR(item);
1110 	if (ret != -EFBIG && ret != -ENOENT)
1111 		goto out;
1112 
1113 	if (ret == -EFBIG) {
1114 		u32 item_size;
1115 		/* we found one, but it isn't big enough yet */
1116 		leaf = path->nodes[0];
1117 		item_size = btrfs_item_size(leaf, path->slots[0]);
1118 		if ((item_size / csum_size) >=
1119 		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
1120 			/* already at max size, make a new one */
1121 			goto insert;
1122 		}
1123 	} else {
1124 		/* We didn't find a csum item, insert one. */
1125 		ret = find_next_csum_offset(root, path, &next_offset);
1126 		if (ret < 0)
1127 			goto out;
1128 		found_next = 1;
1129 		goto insert;
1130 	}
1131 
1132 	/*
1133 	 * At this point, we know the tree has a checksum item that ends at an
1134 	 * offset matching the start of the checksum range we want to insert.
1135 	 * We try to extend that item as much as possible and then add as many
1136 	 * checksums to it as they fit.
1137 	 *
1138 	 * First check if the leaf has enough free space for at least one
1139 	 * checksum. If it has go directly to the item extension code, otherwise
1140 	 * release the path and do a search for insertion before the extension.
1141 	 */
1142 	if (btrfs_leaf_free_space(leaf) >= csum_size) {
1143 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1144 		csum_offset = (bytenr - found_key.offset) >>
1145 			fs_info->sectorsize_bits;
1146 		goto extend_csum;
1147 	}
1148 
1149 	btrfs_release_path(path);
1150 	path->search_for_extension = 1;
1151 	ret = btrfs_search_slot(trans, root, &file_key, path,
1152 				csum_size, 1);
1153 	path->search_for_extension = 0;
1154 	if (ret < 0)
1155 		goto out;
1156 
1157 	if (ret > 0) {
1158 		if (path->slots[0] == 0)
1159 			goto insert;
1160 		path->slots[0]--;
1161 	}
1162 
1163 	leaf = path->nodes[0];
1164 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1165 	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1166 
1167 	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1168 	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1169 	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1170 		goto insert;
1171 	}
1172 
1173 extend_csum:
1174 	if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1175 	    csum_size) {
1176 		int extend_nr;
1177 		u64 tmp;
1178 		u32 diff;
1179 
1180 		tmp = sums->len - total_bytes;
1181 		tmp >>= fs_info->sectorsize_bits;
1182 		WARN_ON(tmp < 1);
1183 		extend_nr = max_t(int, 1, tmp);
1184 
1185 		/*
1186 		 * A log tree can already have checksum items with a subset of
1187 		 * the checksums we are trying to log. This can happen after
1188 		 * doing a sequence of partial writes into prealloc extents and
1189 		 * fsyncs in between, with a full fsync logging a larger subrange
1190 		 * of an extent for which a previous fast fsync logged a smaller
1191 		 * subrange. And this happens in particular due to merging file
1192 		 * extent items when we complete an ordered extent for a range
1193 		 * covered by a prealloc extent - this is done at
1194 		 * btrfs_mark_extent_written().
1195 		 *
1196 		 * So if we try to extend the previous checksum item, which has
1197 		 * a range that ends at the start of the range we want to insert,
1198 		 * make sure we don't extend beyond the start offset of the next
1199 		 * checksum item. If we are at the last item in the leaf, then
1200 		 * forget the optimization of extending and add a new checksum
1201 		 * item - it is not worth the complexity of releasing the path,
1202 		 * getting the first key for the next leaf, repeat the btree
1203 		 * search, etc, because log trees are temporary anyway and it
1204 		 * would only save a few bytes of leaf space.
1205 		 */
1206 		if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1207 			if (path->slots[0] + 1 >=
1208 			    btrfs_header_nritems(path->nodes[0])) {
1209 				ret = find_next_csum_offset(root, path, &next_offset);
1210 				if (ret < 0)
1211 					goto out;
1212 				found_next = 1;
1213 				goto insert;
1214 			}
1215 
1216 			ret = find_next_csum_offset(root, path, &next_offset);
1217 			if (ret < 0)
1218 				goto out;
1219 
1220 			tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1221 			if (tmp <= INT_MAX)
1222 				extend_nr = min_t(int, extend_nr, tmp);
1223 		}
1224 
1225 		diff = (csum_offset + extend_nr) * csum_size;
1226 		diff = min(diff,
1227 			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1228 
1229 		diff = diff - btrfs_item_size(leaf, path->slots[0]);
1230 		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1231 		diff /= csum_size;
1232 		diff *= csum_size;
1233 
1234 		btrfs_extend_item(path, diff);
1235 		ret = 0;
1236 		goto csum;
1237 	}
1238 
1239 insert:
1240 	btrfs_release_path(path);
1241 	csum_offset = 0;
1242 	if (found_next) {
1243 		u64 tmp;
1244 
1245 		tmp = sums->len - total_bytes;
1246 		tmp >>= fs_info->sectorsize_bits;
1247 		tmp = min(tmp, (next_offset - file_key.offset) >>
1248 					 fs_info->sectorsize_bits);
1249 
1250 		tmp = max_t(u64, 1, tmp);
1251 		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1252 		ins_size = csum_size * tmp;
1253 	} else {
1254 		ins_size = csum_size;
1255 	}
1256 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1257 				      ins_size);
1258 	if (ret < 0)
1259 		goto out;
1260 	if (WARN_ON(ret != 0))
1261 		goto out;
1262 	leaf = path->nodes[0];
1263 csum:
1264 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1265 	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1266 				      btrfs_item_size(leaf, path->slots[0]));
1267 	item = (struct btrfs_csum_item *)((unsigned char *)item +
1268 					  csum_offset * csum_size);
1269 found:
1270 	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1271 	ins_size *= csum_size;
1272 	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1273 			      ins_size);
1274 	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1275 			    ins_size);
1276 
1277 	index += ins_size;
1278 	ins_size /= csum_size;
1279 	total_bytes += ins_size * fs_info->sectorsize;
1280 
1281 	btrfs_mark_buffer_dirty(path->nodes[0]);
1282 	if (total_bytes < sums->len) {
1283 		btrfs_release_path(path);
1284 		cond_resched();
1285 		goto again;
1286 	}
1287 out:
1288 	btrfs_free_path(path);
1289 	return ret;
1290 }
1291 
1292 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1293 				     const struct btrfs_path *path,
1294 				     struct btrfs_file_extent_item *fi,
1295 				     struct extent_map *em)
1296 {
1297 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1298 	struct btrfs_root *root = inode->root;
1299 	struct extent_buffer *leaf = path->nodes[0];
1300 	const int slot = path->slots[0];
1301 	struct btrfs_key key;
1302 	u64 extent_start, extent_end;
1303 	u64 bytenr;
1304 	u8 type = btrfs_file_extent_type(leaf, fi);
1305 	int compress_type = btrfs_file_extent_compression(leaf, fi);
1306 
1307 	btrfs_item_key_to_cpu(leaf, &key, slot);
1308 	extent_start = key.offset;
1309 	extent_end = btrfs_file_extent_end(path);
1310 	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1311 	em->generation = btrfs_file_extent_generation(leaf, fi);
1312 	if (type == BTRFS_FILE_EXTENT_REG ||
1313 	    type == BTRFS_FILE_EXTENT_PREALLOC) {
1314 		em->start = extent_start;
1315 		em->len = extent_end - extent_start;
1316 		em->orig_start = extent_start -
1317 			btrfs_file_extent_offset(leaf, fi);
1318 		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1319 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1320 		if (bytenr == 0) {
1321 			em->block_start = EXTENT_MAP_HOLE;
1322 			return;
1323 		}
1324 		if (compress_type != BTRFS_COMPRESS_NONE) {
1325 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1326 			em->compress_type = compress_type;
1327 			em->block_start = bytenr;
1328 			em->block_len = em->orig_block_len;
1329 		} else {
1330 			bytenr += btrfs_file_extent_offset(leaf, fi);
1331 			em->block_start = bytenr;
1332 			em->block_len = em->len;
1333 			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1334 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1335 		}
1336 	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1337 		em->block_start = EXTENT_MAP_INLINE;
1338 		em->start = extent_start;
1339 		em->len = extent_end - extent_start;
1340 		/*
1341 		 * Initialize orig_start and block_len with the same values
1342 		 * as in inode.c:btrfs_get_extent().
1343 		 */
1344 		em->orig_start = EXTENT_MAP_HOLE;
1345 		em->block_len = (u64)-1;
1346 		em->compress_type = compress_type;
1347 		if (compress_type != BTRFS_COMPRESS_NONE)
1348 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1349 	} else {
1350 		btrfs_err(fs_info,
1351 			  "unknown file extent item type %d, inode %llu, offset %llu, "
1352 			  "root %llu", type, btrfs_ino(inode), extent_start,
1353 			  root->root_key.objectid);
1354 	}
1355 }
1356 
1357 /*
1358  * Returns the end offset (non inclusive) of the file extent item the given path
1359  * points to. If it points to an inline extent, the returned offset is rounded
1360  * up to the sector size.
1361  */
1362 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1363 {
1364 	const struct extent_buffer *leaf = path->nodes[0];
1365 	const int slot = path->slots[0];
1366 	struct btrfs_file_extent_item *fi;
1367 	struct btrfs_key key;
1368 	u64 end;
1369 
1370 	btrfs_item_key_to_cpu(leaf, &key, slot);
1371 	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1372 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1373 
1374 	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1375 		end = btrfs_file_extent_ram_bytes(leaf, fi);
1376 		end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1377 	} else {
1378 		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1379 	}
1380 
1381 	return end;
1382 }
1383