1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/bio.h> 7 #include <linux/slab.h> 8 #include <linux/pagemap.h> 9 #include <linux/highmem.h> 10 #include <linux/sched/mm.h> 11 #include <crypto/hash.h> 12 #include "messages.h" 13 #include "misc.h" 14 #include "ctree.h" 15 #include "disk-io.h" 16 #include "transaction.h" 17 #include "bio.h" 18 #include "print-tree.h" 19 #include "compression.h" 20 #include "fs.h" 21 #include "accessors.h" 22 #include "file-item.h" 23 #include "super.h" 24 25 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \ 26 sizeof(struct btrfs_item) * 2) / \ 27 size) - 1)) 28 29 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \ 30 PAGE_SIZE)) 31 32 /* 33 * Set inode's size according to filesystem options. 34 * 35 * @inode: inode we want to update the disk_i_size for 36 * @new_i_size: i_size we want to set to, 0 if we use i_size 37 * 38 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read() 39 * returns as it is perfectly fine with a file that has holes without hole file 40 * extent items. 41 * 42 * However without NO_HOLES we need to only return the area that is contiguous 43 * from the 0 offset of the file. Otherwise we could end up adjust i_size up 44 * to an extent that has a gap in between. 45 * 46 * Finally new_i_size should only be set in the case of truncate where we're not 47 * ready to use i_size_read() as the limiter yet. 48 */ 49 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size) 50 { 51 struct btrfs_fs_info *fs_info = inode->root->fs_info; 52 u64 start, end, i_size; 53 int ret; 54 55 i_size = new_i_size ?: i_size_read(&inode->vfs_inode); 56 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 57 inode->disk_i_size = i_size; 58 return; 59 } 60 61 spin_lock(&inode->lock); 62 ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start, 63 &end, EXTENT_DIRTY); 64 if (!ret && start == 0) 65 i_size = min(i_size, end + 1); 66 else 67 i_size = 0; 68 inode->disk_i_size = i_size; 69 spin_unlock(&inode->lock); 70 } 71 72 /* 73 * Mark range within a file as having a new extent inserted. 74 * 75 * @inode: inode being modified 76 * @start: start file offset of the file extent we've inserted 77 * @len: logical length of the file extent item 78 * 79 * Call when we are inserting a new file extent where there was none before. 80 * Does not need to call this in the case where we're replacing an existing file 81 * extent, however if not sure it's fine to call this multiple times. 82 * 83 * The start and len must match the file extent item, so thus must be sectorsize 84 * aligned. 85 */ 86 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 87 u64 len) 88 { 89 if (len == 0) 90 return 0; 91 92 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize)); 93 94 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 95 return 0; 96 return set_extent_bits(&inode->file_extent_tree, start, start + len - 1, 97 EXTENT_DIRTY); 98 } 99 100 /* 101 * Mark an inode range as not having a backing extent. 102 * 103 * @inode: inode being modified 104 * @start: start file offset of the file extent we've inserted 105 * @len: logical length of the file extent item 106 * 107 * Called when we drop a file extent, for example when we truncate. Doesn't 108 * need to be called for cases where we're replacing a file extent, like when 109 * we've COWed a file extent. 110 * 111 * The start and len must match the file extent item, so thus must be sectorsize 112 * aligned. 113 */ 114 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 115 u64 len) 116 { 117 if (len == 0) 118 return 0; 119 120 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) || 121 len == (u64)-1); 122 123 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 124 return 0; 125 return clear_extent_bit(&inode->file_extent_tree, start, 126 start + len - 1, EXTENT_DIRTY, NULL); 127 } 128 129 static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes) 130 { 131 ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize)); 132 133 return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size; 134 } 135 136 static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size) 137 { 138 ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size)); 139 140 return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits; 141 } 142 143 static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info) 144 { 145 u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum), 146 fs_info->csum_size); 147 148 return csum_size_to_bytes(fs_info, max_csum_size); 149 } 150 151 /* 152 * Calculate the total size needed to allocate for an ordered sum structure 153 * spanning @bytes in the file. 154 */ 155 static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes) 156 { 157 return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes); 158 } 159 160 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans, 161 struct btrfs_root *root, 162 u64 objectid, u64 pos, u64 num_bytes) 163 { 164 int ret = 0; 165 struct btrfs_file_extent_item *item; 166 struct btrfs_key file_key; 167 struct btrfs_path *path; 168 struct extent_buffer *leaf; 169 170 path = btrfs_alloc_path(); 171 if (!path) 172 return -ENOMEM; 173 file_key.objectid = objectid; 174 file_key.offset = pos; 175 file_key.type = BTRFS_EXTENT_DATA_KEY; 176 177 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 178 sizeof(*item)); 179 if (ret < 0) 180 goto out; 181 BUG_ON(ret); /* Can't happen */ 182 leaf = path->nodes[0]; 183 item = btrfs_item_ptr(leaf, path->slots[0], 184 struct btrfs_file_extent_item); 185 btrfs_set_file_extent_disk_bytenr(leaf, item, 0); 186 btrfs_set_file_extent_disk_num_bytes(leaf, item, 0); 187 btrfs_set_file_extent_offset(leaf, item, 0); 188 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes); 189 btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes); 190 btrfs_set_file_extent_generation(leaf, item, trans->transid); 191 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 192 btrfs_set_file_extent_compression(leaf, item, 0); 193 btrfs_set_file_extent_encryption(leaf, item, 0); 194 btrfs_set_file_extent_other_encoding(leaf, item, 0); 195 196 btrfs_mark_buffer_dirty(leaf); 197 out: 198 btrfs_free_path(path); 199 return ret; 200 } 201 202 static struct btrfs_csum_item * 203 btrfs_lookup_csum(struct btrfs_trans_handle *trans, 204 struct btrfs_root *root, 205 struct btrfs_path *path, 206 u64 bytenr, int cow) 207 { 208 struct btrfs_fs_info *fs_info = root->fs_info; 209 int ret; 210 struct btrfs_key file_key; 211 struct btrfs_key found_key; 212 struct btrfs_csum_item *item; 213 struct extent_buffer *leaf; 214 u64 csum_offset = 0; 215 const u32 csum_size = fs_info->csum_size; 216 int csums_in_item; 217 218 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 219 file_key.offset = bytenr; 220 file_key.type = BTRFS_EXTENT_CSUM_KEY; 221 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow); 222 if (ret < 0) 223 goto fail; 224 leaf = path->nodes[0]; 225 if (ret > 0) { 226 ret = 1; 227 if (path->slots[0] == 0) 228 goto fail; 229 path->slots[0]--; 230 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 231 if (found_key.type != BTRFS_EXTENT_CSUM_KEY) 232 goto fail; 233 234 csum_offset = (bytenr - found_key.offset) >> 235 fs_info->sectorsize_bits; 236 csums_in_item = btrfs_item_size(leaf, path->slots[0]); 237 csums_in_item /= csum_size; 238 239 if (csum_offset == csums_in_item) { 240 ret = -EFBIG; 241 goto fail; 242 } else if (csum_offset > csums_in_item) { 243 goto fail; 244 } 245 } 246 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 247 item = (struct btrfs_csum_item *)((unsigned char *)item + 248 csum_offset * csum_size); 249 return item; 250 fail: 251 if (ret > 0) 252 ret = -ENOENT; 253 return ERR_PTR(ret); 254 } 255 256 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 257 struct btrfs_root *root, 258 struct btrfs_path *path, u64 objectid, 259 u64 offset, int mod) 260 { 261 struct btrfs_key file_key; 262 int ins_len = mod < 0 ? -1 : 0; 263 int cow = mod != 0; 264 265 file_key.objectid = objectid; 266 file_key.offset = offset; 267 file_key.type = BTRFS_EXTENT_DATA_KEY; 268 269 return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow); 270 } 271 272 /* 273 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and 274 * store the result to @dst. 275 * 276 * Return >0 for the number of sectors we found. 277 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum 278 * for it. Caller may want to try next sector until one range is hit. 279 * Return <0 for fatal error. 280 */ 281 static int search_csum_tree(struct btrfs_fs_info *fs_info, 282 struct btrfs_path *path, u64 disk_bytenr, 283 u64 len, u8 *dst) 284 { 285 struct btrfs_root *csum_root; 286 struct btrfs_csum_item *item = NULL; 287 struct btrfs_key key; 288 const u32 sectorsize = fs_info->sectorsize; 289 const u32 csum_size = fs_info->csum_size; 290 u32 itemsize; 291 int ret; 292 u64 csum_start; 293 u64 csum_len; 294 295 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) && 296 IS_ALIGNED(len, sectorsize)); 297 298 /* Check if the current csum item covers disk_bytenr */ 299 if (path->nodes[0]) { 300 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 301 struct btrfs_csum_item); 302 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 303 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]); 304 305 csum_start = key.offset; 306 csum_len = (itemsize / csum_size) * sectorsize; 307 308 if (in_range(disk_bytenr, csum_start, csum_len)) 309 goto found; 310 } 311 312 /* Current item doesn't contain the desired range, search again */ 313 btrfs_release_path(path); 314 csum_root = btrfs_csum_root(fs_info, disk_bytenr); 315 item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0); 316 if (IS_ERR(item)) { 317 ret = PTR_ERR(item); 318 goto out; 319 } 320 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 321 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]); 322 323 csum_start = key.offset; 324 csum_len = (itemsize / csum_size) * sectorsize; 325 ASSERT(in_range(disk_bytenr, csum_start, csum_len)); 326 327 found: 328 ret = (min(csum_start + csum_len, disk_bytenr + len) - 329 disk_bytenr) >> fs_info->sectorsize_bits; 330 read_extent_buffer(path->nodes[0], dst, (unsigned long)item, 331 ret * csum_size); 332 out: 333 if (ret == -ENOENT || ret == -EFBIG) 334 ret = 0; 335 return ret; 336 } 337 338 /* 339 * Locate the file_offset of @cur_disk_bytenr of a @bio. 340 * 341 * Bio of btrfs represents read range of 342 * [bi_sector << 9, bi_sector << 9 + bi_size). 343 * Knowing this, we can iterate through each bvec to locate the page belong to 344 * @cur_disk_bytenr and get the file offset. 345 * 346 * @inode is used to determine if the bvec page really belongs to @inode. 347 * 348 * Return 0 if we can't find the file offset 349 * Return >0 if we find the file offset and restore it to @file_offset_ret 350 */ 351 static int search_file_offset_in_bio(struct bio *bio, struct inode *inode, 352 u64 disk_bytenr, u64 *file_offset_ret) 353 { 354 struct bvec_iter iter; 355 struct bio_vec bvec; 356 u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT; 357 int ret = 0; 358 359 bio_for_each_segment(bvec, bio, iter) { 360 struct page *page = bvec.bv_page; 361 362 if (cur > disk_bytenr) 363 break; 364 if (cur + bvec.bv_len <= disk_bytenr) { 365 cur += bvec.bv_len; 366 continue; 367 } 368 ASSERT(in_range(disk_bytenr, cur, bvec.bv_len)); 369 if (page->mapping && page->mapping->host && 370 page->mapping->host == inode) { 371 ret = 1; 372 *file_offset_ret = page_offset(page) + bvec.bv_offset + 373 disk_bytenr - cur; 374 break; 375 } 376 } 377 return ret; 378 } 379 380 /* 381 * Lookup the checksum for the read bio in csum tree. 382 * 383 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise. 384 */ 385 blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio) 386 { 387 struct btrfs_inode *inode = bbio->inode; 388 struct btrfs_fs_info *fs_info = inode->root->fs_info; 389 struct extent_io_tree *io_tree = &inode->io_tree; 390 struct bio *bio = &bbio->bio; 391 struct btrfs_path *path; 392 const u32 sectorsize = fs_info->sectorsize; 393 const u32 csum_size = fs_info->csum_size; 394 u32 orig_len = bio->bi_iter.bi_size; 395 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT; 396 u64 cur_disk_bytenr; 397 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits; 398 int count = 0; 399 blk_status_t ret = BLK_STS_OK; 400 401 if ((inode->flags & BTRFS_INODE_NODATASUM) || 402 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) 403 return BLK_STS_OK; 404 405 /* 406 * This function is only called for read bio. 407 * 408 * This means two things: 409 * - All our csums should only be in csum tree 410 * No ordered extents csums, as ordered extents are only for write 411 * path. 412 * - No need to bother any other info from bvec 413 * Since we're looking up csums, the only important info is the 414 * disk_bytenr and the length, which can be extracted from bi_iter 415 * directly. 416 */ 417 ASSERT(bio_op(bio) == REQ_OP_READ); 418 path = btrfs_alloc_path(); 419 if (!path) 420 return BLK_STS_RESOURCE; 421 422 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) { 423 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS); 424 if (!bbio->csum) { 425 btrfs_free_path(path); 426 return BLK_STS_RESOURCE; 427 } 428 } else { 429 bbio->csum = bbio->csum_inline; 430 } 431 432 /* 433 * If requested number of sectors is larger than one leaf can contain, 434 * kick the readahead for csum tree. 435 */ 436 if (nblocks > fs_info->csums_per_leaf) 437 path->reada = READA_FORWARD; 438 439 /* 440 * the free space stuff is only read when it hasn't been 441 * updated in the current transaction. So, we can safely 442 * read from the commit root and sidestep a nasty deadlock 443 * between reading the free space cache and updating the csum tree. 444 */ 445 if (btrfs_is_free_space_inode(inode)) { 446 path->search_commit_root = 1; 447 path->skip_locking = 1; 448 } 449 450 for (cur_disk_bytenr = orig_disk_bytenr; 451 cur_disk_bytenr < orig_disk_bytenr + orig_len; 452 cur_disk_bytenr += (count * sectorsize)) { 453 u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr; 454 unsigned int sector_offset; 455 u8 *csum_dst; 456 457 /* 458 * Although both cur_disk_bytenr and orig_disk_bytenr is u64, 459 * we're calculating the offset to the bio start. 460 * 461 * Bio size is limited to UINT_MAX, thus unsigned int is large 462 * enough to contain the raw result, not to mention the right 463 * shifted result. 464 */ 465 ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX); 466 sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >> 467 fs_info->sectorsize_bits; 468 csum_dst = bbio->csum + sector_offset * csum_size; 469 470 count = search_csum_tree(fs_info, path, cur_disk_bytenr, 471 search_len, csum_dst); 472 if (count < 0) { 473 ret = errno_to_blk_status(count); 474 if (bbio->csum != bbio->csum_inline) 475 kfree(bbio->csum); 476 bbio->csum = NULL; 477 break; 478 } 479 480 /* 481 * We didn't find a csum for this range. We need to make sure 482 * we complain loudly about this, because we are not NODATASUM. 483 * 484 * However for the DATA_RELOC inode we could potentially be 485 * relocating data extents for a NODATASUM inode, so the inode 486 * itself won't be marked with NODATASUM, but the extent we're 487 * copying is in fact NODATASUM. If we don't find a csum we 488 * assume this is the case. 489 */ 490 if (count == 0) { 491 memset(csum_dst, 0, csum_size); 492 count = 1; 493 494 if (inode->root->root_key.objectid == 495 BTRFS_DATA_RELOC_TREE_OBJECTID) { 496 u64 file_offset; 497 int ret; 498 499 ret = search_file_offset_in_bio(bio, 500 &inode->vfs_inode, 501 cur_disk_bytenr, &file_offset); 502 if (ret) 503 set_extent_bits(io_tree, file_offset, 504 file_offset + sectorsize - 1, 505 EXTENT_NODATASUM); 506 } else { 507 btrfs_warn_rl(fs_info, 508 "csum hole found for disk bytenr range [%llu, %llu)", 509 cur_disk_bytenr, cur_disk_bytenr + sectorsize); 510 } 511 } 512 } 513 514 btrfs_free_path(path); 515 return ret; 516 } 517 518 int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end, 519 struct list_head *list, int search_commit, 520 bool nowait) 521 { 522 struct btrfs_fs_info *fs_info = root->fs_info; 523 struct btrfs_key key; 524 struct btrfs_path *path; 525 struct extent_buffer *leaf; 526 struct btrfs_ordered_sum *sums; 527 struct btrfs_csum_item *item; 528 LIST_HEAD(tmplist); 529 int ret; 530 531 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 532 IS_ALIGNED(end + 1, fs_info->sectorsize)); 533 534 path = btrfs_alloc_path(); 535 if (!path) 536 return -ENOMEM; 537 538 path->nowait = nowait; 539 if (search_commit) { 540 path->skip_locking = 1; 541 path->reada = READA_FORWARD; 542 path->search_commit_root = 1; 543 } 544 545 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 546 key.offset = start; 547 key.type = BTRFS_EXTENT_CSUM_KEY; 548 549 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 550 if (ret < 0) 551 goto fail; 552 if (ret > 0 && path->slots[0] > 0) { 553 leaf = path->nodes[0]; 554 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 555 556 /* 557 * There are two cases we can hit here for the previous csum 558 * item: 559 * 560 * |<- search range ->| 561 * |<- csum item ->| 562 * 563 * Or 564 * |<- search range ->| 565 * |<- csum item ->| 566 * 567 * Check if the previous csum item covers the leading part of 568 * the search range. If so we have to start from previous csum 569 * item. 570 */ 571 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 572 key.type == BTRFS_EXTENT_CSUM_KEY) { 573 if (bytes_to_csum_size(fs_info, start - key.offset) < 574 btrfs_item_size(leaf, path->slots[0] - 1)) 575 path->slots[0]--; 576 } 577 } 578 579 while (start <= end) { 580 u64 csum_end; 581 582 leaf = path->nodes[0]; 583 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 584 ret = btrfs_next_leaf(root, path); 585 if (ret < 0) 586 goto fail; 587 if (ret > 0) 588 break; 589 leaf = path->nodes[0]; 590 } 591 592 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 593 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 594 key.type != BTRFS_EXTENT_CSUM_KEY || 595 key.offset > end) 596 break; 597 598 if (key.offset > start) 599 start = key.offset; 600 601 csum_end = key.offset + csum_size_to_bytes(fs_info, 602 btrfs_item_size(leaf, path->slots[0])); 603 if (csum_end <= start) { 604 path->slots[0]++; 605 continue; 606 } 607 608 csum_end = min(csum_end, end + 1); 609 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 610 struct btrfs_csum_item); 611 while (start < csum_end) { 612 unsigned long offset; 613 size_t size; 614 615 size = min_t(size_t, csum_end - start, 616 max_ordered_sum_bytes(fs_info)); 617 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size), 618 GFP_NOFS); 619 if (!sums) { 620 ret = -ENOMEM; 621 goto fail; 622 } 623 624 sums->bytenr = start; 625 sums->len = (int)size; 626 627 offset = bytes_to_csum_size(fs_info, start - key.offset); 628 629 read_extent_buffer(path->nodes[0], 630 sums->sums, 631 ((unsigned long)item) + offset, 632 bytes_to_csum_size(fs_info, size)); 633 634 start += size; 635 list_add_tail(&sums->list, &tmplist); 636 } 637 path->slots[0]++; 638 } 639 ret = 0; 640 fail: 641 while (ret < 0 && !list_empty(&tmplist)) { 642 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list); 643 list_del(&sums->list); 644 kfree(sums); 645 } 646 list_splice_tail(&tmplist, list); 647 648 btrfs_free_path(path); 649 return ret; 650 } 651 652 /* 653 * Do the same work as btrfs_lookup_csums_list(), the difference is in how 654 * we return the result. 655 * 656 * This version will set the corresponding bits in @csum_bitmap to represent 657 * that there is a csum found. 658 * Each bit represents a sector. Thus caller should ensure @csum_buf passed 659 * in is large enough to contain all csums. 660 */ 661 int btrfs_lookup_csums_bitmap(struct btrfs_root *root, u64 start, u64 end, 662 u8 *csum_buf, unsigned long *csum_bitmap) 663 { 664 struct btrfs_fs_info *fs_info = root->fs_info; 665 struct btrfs_key key; 666 struct btrfs_path *path; 667 struct extent_buffer *leaf; 668 struct btrfs_csum_item *item; 669 const u64 orig_start = start; 670 int ret; 671 672 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 673 IS_ALIGNED(end + 1, fs_info->sectorsize)); 674 675 path = btrfs_alloc_path(); 676 if (!path) 677 return -ENOMEM; 678 679 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 680 key.type = BTRFS_EXTENT_CSUM_KEY; 681 key.offset = start; 682 683 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 684 if (ret < 0) 685 goto fail; 686 if (ret > 0 && path->slots[0] > 0) { 687 leaf = path->nodes[0]; 688 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 689 690 /* 691 * There are two cases we can hit here for the previous csum 692 * item: 693 * 694 * |<- search range ->| 695 * |<- csum item ->| 696 * 697 * Or 698 * |<- search range ->| 699 * |<- csum item ->| 700 * 701 * Check if the previous csum item covers the leading part of 702 * the search range. If so we have to start from previous csum 703 * item. 704 */ 705 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 706 key.type == BTRFS_EXTENT_CSUM_KEY) { 707 if (bytes_to_csum_size(fs_info, start - key.offset) < 708 btrfs_item_size(leaf, path->slots[0] - 1)) 709 path->slots[0]--; 710 } 711 } 712 713 while (start <= end) { 714 u64 csum_end; 715 716 leaf = path->nodes[0]; 717 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 718 ret = btrfs_next_leaf(root, path); 719 if (ret < 0) 720 goto fail; 721 if (ret > 0) 722 break; 723 leaf = path->nodes[0]; 724 } 725 726 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 727 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 728 key.type != BTRFS_EXTENT_CSUM_KEY || 729 key.offset > end) 730 break; 731 732 if (key.offset > start) 733 start = key.offset; 734 735 csum_end = key.offset + csum_size_to_bytes(fs_info, 736 btrfs_item_size(leaf, path->slots[0])); 737 if (csum_end <= start) { 738 path->slots[0]++; 739 continue; 740 } 741 742 csum_end = min(csum_end, end + 1); 743 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 744 struct btrfs_csum_item); 745 while (start < csum_end) { 746 unsigned long offset; 747 size_t size; 748 u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info, 749 start - orig_start); 750 751 size = min_t(size_t, csum_end - start, end + 1 - start); 752 753 offset = bytes_to_csum_size(fs_info, start - key.offset); 754 755 read_extent_buffer(path->nodes[0], csum_dest, 756 ((unsigned long)item) + offset, 757 bytes_to_csum_size(fs_info, size)); 758 759 bitmap_set(csum_bitmap, 760 (start - orig_start) >> fs_info->sectorsize_bits, 761 size >> fs_info->sectorsize_bits); 762 763 start += size; 764 } 765 path->slots[0]++; 766 } 767 ret = 0; 768 fail: 769 btrfs_free_path(path); 770 return ret; 771 } 772 773 /* 774 * Calculate checksums of the data contained inside a bio. 775 */ 776 blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio) 777 { 778 struct btrfs_inode *inode = bbio->inode; 779 struct btrfs_fs_info *fs_info = inode->root->fs_info; 780 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 781 struct bio *bio = &bbio->bio; 782 u64 offset = bbio->file_offset; 783 struct btrfs_ordered_sum *sums; 784 struct btrfs_ordered_extent *ordered = NULL; 785 char *data; 786 struct bvec_iter iter; 787 struct bio_vec bvec; 788 int index; 789 unsigned int blockcount; 790 unsigned long total_bytes = 0; 791 unsigned long this_sum_bytes = 0; 792 int i; 793 unsigned nofs_flag; 794 795 nofs_flag = memalloc_nofs_save(); 796 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size), 797 GFP_KERNEL); 798 memalloc_nofs_restore(nofs_flag); 799 800 if (!sums) 801 return BLK_STS_RESOURCE; 802 803 sums->len = bio->bi_iter.bi_size; 804 INIT_LIST_HEAD(&sums->list); 805 806 sums->bytenr = bio->bi_iter.bi_sector << 9; 807 index = 0; 808 809 shash->tfm = fs_info->csum_shash; 810 811 bio_for_each_segment(bvec, bio, iter) { 812 if (!ordered) { 813 ordered = btrfs_lookup_ordered_extent(inode, offset); 814 /* 815 * The bio range is not covered by any ordered extent, 816 * must be a code logic error. 817 */ 818 if (unlikely(!ordered)) { 819 WARN(1, KERN_WARNING 820 "no ordered extent for root %llu ino %llu offset %llu\n", 821 inode->root->root_key.objectid, 822 btrfs_ino(inode), offset); 823 kvfree(sums); 824 return BLK_STS_IOERR; 825 } 826 } 827 828 blockcount = BTRFS_BYTES_TO_BLKS(fs_info, 829 bvec.bv_len + fs_info->sectorsize 830 - 1); 831 832 for (i = 0; i < blockcount; i++) { 833 if (!(bio->bi_opf & REQ_BTRFS_ONE_ORDERED) && 834 !in_range(offset, ordered->file_offset, 835 ordered->num_bytes)) { 836 unsigned long bytes_left; 837 838 sums->len = this_sum_bytes; 839 this_sum_bytes = 0; 840 btrfs_add_ordered_sum(ordered, sums); 841 btrfs_put_ordered_extent(ordered); 842 843 bytes_left = bio->bi_iter.bi_size - total_bytes; 844 845 nofs_flag = memalloc_nofs_save(); 846 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, 847 bytes_left), GFP_KERNEL); 848 memalloc_nofs_restore(nofs_flag); 849 BUG_ON(!sums); /* -ENOMEM */ 850 sums->len = bytes_left; 851 ordered = btrfs_lookup_ordered_extent(inode, 852 offset); 853 ASSERT(ordered); /* Logic error */ 854 sums->bytenr = (bio->bi_iter.bi_sector << 9) 855 + total_bytes; 856 index = 0; 857 } 858 859 data = bvec_kmap_local(&bvec); 860 crypto_shash_digest(shash, 861 data + (i * fs_info->sectorsize), 862 fs_info->sectorsize, 863 sums->sums + index); 864 kunmap_local(data); 865 index += fs_info->csum_size; 866 offset += fs_info->sectorsize; 867 this_sum_bytes += fs_info->sectorsize; 868 total_bytes += fs_info->sectorsize; 869 } 870 871 } 872 this_sum_bytes = 0; 873 btrfs_add_ordered_sum(ordered, sums); 874 btrfs_put_ordered_extent(ordered); 875 return 0; 876 } 877 878 /* 879 * Remove one checksum overlapping a range. 880 * 881 * This expects the key to describe the csum pointed to by the path, and it 882 * expects the csum to overlap the range [bytenr, len] 883 * 884 * The csum should not be entirely contained in the range and the range should 885 * not be entirely contained in the csum. 886 * 887 * This calls btrfs_truncate_item with the correct args based on the overlap, 888 * and fixes up the key as required. 889 */ 890 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info, 891 struct btrfs_path *path, 892 struct btrfs_key *key, 893 u64 bytenr, u64 len) 894 { 895 struct extent_buffer *leaf; 896 const u32 csum_size = fs_info->csum_size; 897 u64 csum_end; 898 u64 end_byte = bytenr + len; 899 u32 blocksize_bits = fs_info->sectorsize_bits; 900 901 leaf = path->nodes[0]; 902 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size; 903 csum_end <<= blocksize_bits; 904 csum_end += key->offset; 905 906 if (key->offset < bytenr && csum_end <= end_byte) { 907 /* 908 * [ bytenr - len ] 909 * [ ] 910 * [csum ] 911 * A simple truncate off the end of the item 912 */ 913 u32 new_size = (bytenr - key->offset) >> blocksize_bits; 914 new_size *= csum_size; 915 btrfs_truncate_item(path, new_size, 1); 916 } else if (key->offset >= bytenr && csum_end > end_byte && 917 end_byte > key->offset) { 918 /* 919 * [ bytenr - len ] 920 * [ ] 921 * [csum ] 922 * we need to truncate from the beginning of the csum 923 */ 924 u32 new_size = (csum_end - end_byte) >> blocksize_bits; 925 new_size *= csum_size; 926 927 btrfs_truncate_item(path, new_size, 0); 928 929 key->offset = end_byte; 930 btrfs_set_item_key_safe(fs_info, path, key); 931 } else { 932 BUG(); 933 } 934 } 935 936 /* 937 * Delete the csum items from the csum tree for a given range of bytes. 938 */ 939 int btrfs_del_csums(struct btrfs_trans_handle *trans, 940 struct btrfs_root *root, u64 bytenr, u64 len) 941 { 942 struct btrfs_fs_info *fs_info = trans->fs_info; 943 struct btrfs_path *path; 944 struct btrfs_key key; 945 u64 end_byte = bytenr + len; 946 u64 csum_end; 947 struct extent_buffer *leaf; 948 int ret = 0; 949 const u32 csum_size = fs_info->csum_size; 950 u32 blocksize_bits = fs_info->sectorsize_bits; 951 952 ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID || 953 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 954 955 path = btrfs_alloc_path(); 956 if (!path) 957 return -ENOMEM; 958 959 while (1) { 960 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 961 key.offset = end_byte - 1; 962 key.type = BTRFS_EXTENT_CSUM_KEY; 963 964 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 965 if (ret > 0) { 966 ret = 0; 967 if (path->slots[0] == 0) 968 break; 969 path->slots[0]--; 970 } else if (ret < 0) { 971 break; 972 } 973 974 leaf = path->nodes[0]; 975 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 976 977 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 978 key.type != BTRFS_EXTENT_CSUM_KEY) { 979 break; 980 } 981 982 if (key.offset >= end_byte) 983 break; 984 985 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size; 986 csum_end <<= blocksize_bits; 987 csum_end += key.offset; 988 989 /* this csum ends before we start, we're done */ 990 if (csum_end <= bytenr) 991 break; 992 993 /* delete the entire item, it is inside our range */ 994 if (key.offset >= bytenr && csum_end <= end_byte) { 995 int del_nr = 1; 996 997 /* 998 * Check how many csum items preceding this one in this 999 * leaf correspond to our range and then delete them all 1000 * at once. 1001 */ 1002 if (key.offset > bytenr && path->slots[0] > 0) { 1003 int slot = path->slots[0] - 1; 1004 1005 while (slot >= 0) { 1006 struct btrfs_key pk; 1007 1008 btrfs_item_key_to_cpu(leaf, &pk, slot); 1009 if (pk.offset < bytenr || 1010 pk.type != BTRFS_EXTENT_CSUM_KEY || 1011 pk.objectid != 1012 BTRFS_EXTENT_CSUM_OBJECTID) 1013 break; 1014 path->slots[0] = slot; 1015 del_nr++; 1016 key.offset = pk.offset; 1017 slot--; 1018 } 1019 } 1020 ret = btrfs_del_items(trans, root, path, 1021 path->slots[0], del_nr); 1022 if (ret) 1023 break; 1024 if (key.offset == bytenr) 1025 break; 1026 } else if (key.offset < bytenr && csum_end > end_byte) { 1027 unsigned long offset; 1028 unsigned long shift_len; 1029 unsigned long item_offset; 1030 /* 1031 * [ bytenr - len ] 1032 * [csum ] 1033 * 1034 * Our bytes are in the middle of the csum, 1035 * we need to split this item and insert a new one. 1036 * 1037 * But we can't drop the path because the 1038 * csum could change, get removed, extended etc. 1039 * 1040 * The trick here is the max size of a csum item leaves 1041 * enough room in the tree block for a single 1042 * item header. So, we split the item in place, 1043 * adding a new header pointing to the existing 1044 * bytes. Then we loop around again and we have 1045 * a nicely formed csum item that we can neatly 1046 * truncate. 1047 */ 1048 offset = (bytenr - key.offset) >> blocksize_bits; 1049 offset *= csum_size; 1050 1051 shift_len = (len >> blocksize_bits) * csum_size; 1052 1053 item_offset = btrfs_item_ptr_offset(leaf, 1054 path->slots[0]); 1055 1056 memzero_extent_buffer(leaf, item_offset + offset, 1057 shift_len); 1058 key.offset = bytenr; 1059 1060 /* 1061 * btrfs_split_item returns -EAGAIN when the 1062 * item changed size or key 1063 */ 1064 ret = btrfs_split_item(trans, root, path, &key, offset); 1065 if (ret && ret != -EAGAIN) { 1066 btrfs_abort_transaction(trans, ret); 1067 break; 1068 } 1069 ret = 0; 1070 1071 key.offset = end_byte - 1; 1072 } else { 1073 truncate_one_csum(fs_info, path, &key, bytenr, len); 1074 if (key.offset < bytenr) 1075 break; 1076 } 1077 btrfs_release_path(path); 1078 } 1079 btrfs_free_path(path); 1080 return ret; 1081 } 1082 1083 static int find_next_csum_offset(struct btrfs_root *root, 1084 struct btrfs_path *path, 1085 u64 *next_offset) 1086 { 1087 const u32 nritems = btrfs_header_nritems(path->nodes[0]); 1088 struct btrfs_key found_key; 1089 int slot = path->slots[0] + 1; 1090 int ret; 1091 1092 if (nritems == 0 || slot >= nritems) { 1093 ret = btrfs_next_leaf(root, path); 1094 if (ret < 0) { 1095 return ret; 1096 } else if (ret > 0) { 1097 *next_offset = (u64)-1; 1098 return 0; 1099 } 1100 slot = path->slots[0]; 1101 } 1102 1103 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot); 1104 1105 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 1106 found_key.type != BTRFS_EXTENT_CSUM_KEY) 1107 *next_offset = (u64)-1; 1108 else 1109 *next_offset = found_key.offset; 1110 1111 return 0; 1112 } 1113 1114 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 1115 struct btrfs_root *root, 1116 struct btrfs_ordered_sum *sums) 1117 { 1118 struct btrfs_fs_info *fs_info = root->fs_info; 1119 struct btrfs_key file_key; 1120 struct btrfs_key found_key; 1121 struct btrfs_path *path; 1122 struct btrfs_csum_item *item; 1123 struct btrfs_csum_item *item_end; 1124 struct extent_buffer *leaf = NULL; 1125 u64 next_offset; 1126 u64 total_bytes = 0; 1127 u64 csum_offset; 1128 u64 bytenr; 1129 u32 ins_size; 1130 int index = 0; 1131 int found_next; 1132 int ret; 1133 const u32 csum_size = fs_info->csum_size; 1134 1135 path = btrfs_alloc_path(); 1136 if (!path) 1137 return -ENOMEM; 1138 again: 1139 next_offset = (u64)-1; 1140 found_next = 0; 1141 bytenr = sums->bytenr + total_bytes; 1142 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 1143 file_key.offset = bytenr; 1144 file_key.type = BTRFS_EXTENT_CSUM_KEY; 1145 1146 item = btrfs_lookup_csum(trans, root, path, bytenr, 1); 1147 if (!IS_ERR(item)) { 1148 ret = 0; 1149 leaf = path->nodes[0]; 1150 item_end = btrfs_item_ptr(leaf, path->slots[0], 1151 struct btrfs_csum_item); 1152 item_end = (struct btrfs_csum_item *)((char *)item_end + 1153 btrfs_item_size(leaf, path->slots[0])); 1154 goto found; 1155 } 1156 ret = PTR_ERR(item); 1157 if (ret != -EFBIG && ret != -ENOENT) 1158 goto out; 1159 1160 if (ret == -EFBIG) { 1161 u32 item_size; 1162 /* we found one, but it isn't big enough yet */ 1163 leaf = path->nodes[0]; 1164 item_size = btrfs_item_size(leaf, path->slots[0]); 1165 if ((item_size / csum_size) >= 1166 MAX_CSUM_ITEMS(fs_info, csum_size)) { 1167 /* already at max size, make a new one */ 1168 goto insert; 1169 } 1170 } else { 1171 /* We didn't find a csum item, insert one. */ 1172 ret = find_next_csum_offset(root, path, &next_offset); 1173 if (ret < 0) 1174 goto out; 1175 found_next = 1; 1176 goto insert; 1177 } 1178 1179 /* 1180 * At this point, we know the tree has a checksum item that ends at an 1181 * offset matching the start of the checksum range we want to insert. 1182 * We try to extend that item as much as possible and then add as many 1183 * checksums to it as they fit. 1184 * 1185 * First check if the leaf has enough free space for at least one 1186 * checksum. If it has go directly to the item extension code, otherwise 1187 * release the path and do a search for insertion before the extension. 1188 */ 1189 if (btrfs_leaf_free_space(leaf) >= csum_size) { 1190 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1191 csum_offset = (bytenr - found_key.offset) >> 1192 fs_info->sectorsize_bits; 1193 goto extend_csum; 1194 } 1195 1196 btrfs_release_path(path); 1197 path->search_for_extension = 1; 1198 ret = btrfs_search_slot(trans, root, &file_key, path, 1199 csum_size, 1); 1200 path->search_for_extension = 0; 1201 if (ret < 0) 1202 goto out; 1203 1204 if (ret > 0) { 1205 if (path->slots[0] == 0) 1206 goto insert; 1207 path->slots[0]--; 1208 } 1209 1210 leaf = path->nodes[0]; 1211 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1212 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits; 1213 1214 if (found_key.type != BTRFS_EXTENT_CSUM_KEY || 1215 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 1216 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) { 1217 goto insert; 1218 } 1219 1220 extend_csum: 1221 if (csum_offset == btrfs_item_size(leaf, path->slots[0]) / 1222 csum_size) { 1223 int extend_nr; 1224 u64 tmp; 1225 u32 diff; 1226 1227 tmp = sums->len - total_bytes; 1228 tmp >>= fs_info->sectorsize_bits; 1229 WARN_ON(tmp < 1); 1230 extend_nr = max_t(int, 1, tmp); 1231 1232 /* 1233 * A log tree can already have checksum items with a subset of 1234 * the checksums we are trying to log. This can happen after 1235 * doing a sequence of partial writes into prealloc extents and 1236 * fsyncs in between, with a full fsync logging a larger subrange 1237 * of an extent for which a previous fast fsync logged a smaller 1238 * subrange. And this happens in particular due to merging file 1239 * extent items when we complete an ordered extent for a range 1240 * covered by a prealloc extent - this is done at 1241 * btrfs_mark_extent_written(). 1242 * 1243 * So if we try to extend the previous checksum item, which has 1244 * a range that ends at the start of the range we want to insert, 1245 * make sure we don't extend beyond the start offset of the next 1246 * checksum item. If we are at the last item in the leaf, then 1247 * forget the optimization of extending and add a new checksum 1248 * item - it is not worth the complexity of releasing the path, 1249 * getting the first key for the next leaf, repeat the btree 1250 * search, etc, because log trees are temporary anyway and it 1251 * would only save a few bytes of leaf space. 1252 */ 1253 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 1254 if (path->slots[0] + 1 >= 1255 btrfs_header_nritems(path->nodes[0])) { 1256 ret = find_next_csum_offset(root, path, &next_offset); 1257 if (ret < 0) 1258 goto out; 1259 found_next = 1; 1260 goto insert; 1261 } 1262 1263 ret = find_next_csum_offset(root, path, &next_offset); 1264 if (ret < 0) 1265 goto out; 1266 1267 tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits; 1268 if (tmp <= INT_MAX) 1269 extend_nr = min_t(int, extend_nr, tmp); 1270 } 1271 1272 diff = (csum_offset + extend_nr) * csum_size; 1273 diff = min(diff, 1274 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size); 1275 1276 diff = diff - btrfs_item_size(leaf, path->slots[0]); 1277 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff); 1278 diff /= csum_size; 1279 diff *= csum_size; 1280 1281 btrfs_extend_item(path, diff); 1282 ret = 0; 1283 goto csum; 1284 } 1285 1286 insert: 1287 btrfs_release_path(path); 1288 csum_offset = 0; 1289 if (found_next) { 1290 u64 tmp; 1291 1292 tmp = sums->len - total_bytes; 1293 tmp >>= fs_info->sectorsize_bits; 1294 tmp = min(tmp, (next_offset - file_key.offset) >> 1295 fs_info->sectorsize_bits); 1296 1297 tmp = max_t(u64, 1, tmp); 1298 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size)); 1299 ins_size = csum_size * tmp; 1300 } else { 1301 ins_size = csum_size; 1302 } 1303 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 1304 ins_size); 1305 if (ret < 0) 1306 goto out; 1307 if (WARN_ON(ret != 0)) 1308 goto out; 1309 leaf = path->nodes[0]; 1310 csum: 1311 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 1312 item_end = (struct btrfs_csum_item *)((unsigned char *)item + 1313 btrfs_item_size(leaf, path->slots[0])); 1314 item = (struct btrfs_csum_item *)((unsigned char *)item + 1315 csum_offset * csum_size); 1316 found: 1317 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits; 1318 ins_size *= csum_size; 1319 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item, 1320 ins_size); 1321 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item, 1322 ins_size); 1323 1324 index += ins_size; 1325 ins_size /= csum_size; 1326 total_bytes += ins_size * fs_info->sectorsize; 1327 1328 btrfs_mark_buffer_dirty(path->nodes[0]); 1329 if (total_bytes < sums->len) { 1330 btrfs_release_path(path); 1331 cond_resched(); 1332 goto again; 1333 } 1334 out: 1335 btrfs_free_path(path); 1336 return ret; 1337 } 1338 1339 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 1340 const struct btrfs_path *path, 1341 struct btrfs_file_extent_item *fi, 1342 struct extent_map *em) 1343 { 1344 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1345 struct btrfs_root *root = inode->root; 1346 struct extent_buffer *leaf = path->nodes[0]; 1347 const int slot = path->slots[0]; 1348 struct btrfs_key key; 1349 u64 extent_start, extent_end; 1350 u64 bytenr; 1351 u8 type = btrfs_file_extent_type(leaf, fi); 1352 int compress_type = btrfs_file_extent_compression(leaf, fi); 1353 1354 btrfs_item_key_to_cpu(leaf, &key, slot); 1355 extent_start = key.offset; 1356 extent_end = btrfs_file_extent_end(path); 1357 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1358 em->generation = btrfs_file_extent_generation(leaf, fi); 1359 if (type == BTRFS_FILE_EXTENT_REG || 1360 type == BTRFS_FILE_EXTENT_PREALLOC) { 1361 em->start = extent_start; 1362 em->len = extent_end - extent_start; 1363 em->orig_start = extent_start - 1364 btrfs_file_extent_offset(leaf, fi); 1365 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 1366 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1367 if (bytenr == 0) { 1368 em->block_start = EXTENT_MAP_HOLE; 1369 return; 1370 } 1371 if (compress_type != BTRFS_COMPRESS_NONE) { 1372 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1373 em->compress_type = compress_type; 1374 em->block_start = bytenr; 1375 em->block_len = em->orig_block_len; 1376 } else { 1377 bytenr += btrfs_file_extent_offset(leaf, fi); 1378 em->block_start = bytenr; 1379 em->block_len = em->len; 1380 if (type == BTRFS_FILE_EXTENT_PREALLOC) 1381 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 1382 } 1383 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 1384 em->block_start = EXTENT_MAP_INLINE; 1385 em->start = extent_start; 1386 em->len = extent_end - extent_start; 1387 /* 1388 * Initialize orig_start and block_len with the same values 1389 * as in inode.c:btrfs_get_extent(). 1390 */ 1391 em->orig_start = EXTENT_MAP_HOLE; 1392 em->block_len = (u64)-1; 1393 em->compress_type = compress_type; 1394 if (compress_type != BTRFS_COMPRESS_NONE) 1395 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1396 } else { 1397 btrfs_err(fs_info, 1398 "unknown file extent item type %d, inode %llu, offset %llu, " 1399 "root %llu", type, btrfs_ino(inode), extent_start, 1400 root->root_key.objectid); 1401 } 1402 } 1403 1404 /* 1405 * Returns the end offset (non inclusive) of the file extent item the given path 1406 * points to. If it points to an inline extent, the returned offset is rounded 1407 * up to the sector size. 1408 */ 1409 u64 btrfs_file_extent_end(const struct btrfs_path *path) 1410 { 1411 const struct extent_buffer *leaf = path->nodes[0]; 1412 const int slot = path->slots[0]; 1413 struct btrfs_file_extent_item *fi; 1414 struct btrfs_key key; 1415 u64 end; 1416 1417 btrfs_item_key_to_cpu(leaf, &key, slot); 1418 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 1419 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1420 1421 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 1422 end = btrfs_file_extent_ram_bytes(leaf, fi); 1423 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize); 1424 } else { 1425 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1426 } 1427 1428 return end; 1429 } 1430